

NATIONAL INSTITUTE oF STANDARDS &
iliLiiKOL 1

• V

Research Information Center
Gaithersburg, MD 20899

(VJDOC

GiLf l>C>

.CJLS(*

m%
c.p.

MATERIAL HANDLING WORKSTATION IMPLEMENTATION

Carl E. Wenger

May 19, 1988

This publication was prepared by United States Government
employees as part of their official duties and is therefore a
work of the U.S. Government and not subject to copyright.

Certain commercial software and hardware systems are identified
in this paper to adequately describe the systems under
development. Such identification does not imply recommendation or
endorsement by the National Bureau of Standards, nor does it
imply that the systems identified are the best available for the
purpose

.

'

Table of Contents

I

.

INTRODUCTION 1

lc PURPOSE OF THIS DOCUMENT 1

2 . AUDIENCE 1

II. SYSTEM ARCHITECTURE 3

1. MATERIAL HANDLING FUNCTIONS 3

2. MATERIAL HANDLING EQUIPMENT 3

3. WORKSTATION CONTROLLER 5

APPENDIX Al AGV COMMAND AND STATUS MESSAGE FORMATS 13

APPENDIX B: DESCRIPTION OF TYPICAL COMMAND MESSAGE SETS 23

APPENDIX C: CHANGING AGV PROGRAM CODE OR DATA 26

APPENDIX D: PC COMPATIBLE AGV CONTROL SOFTWARE 32

APPENDIX E: ASRS COMMAND AND STATUS MESSAGE FORMATS 44

APPENDIX F: ROLLER TABLE COMMAND AND STATUS FORMATS 46

APPENDIX G: MATERIAL HANDLING SYSTEM WORK ELEMENTS 47

i

List of Figures

Figure .L AMRF Shop Floor Layout

Figure 2c Material Handling Equipment

ii

I. INTRODUCTION

1. PURPOSE OF THIS DOCUMENT

The purpose of this document is to provide a general description
of the design and implementation of the AMRF Material Handling
Workstation (MHWS) . The MHWS equipment includes two Automatic
Guided Vehicles (AGVs) , an Automatic Storage and Retrieval
Stystem (ASRS) , and roller tables at other workstations. The
material handling equipment with other AMRF equipment is shown in
the AMRF shop floor layout, figure 1. The document should provide
the reader with an understanding of concepts used to implement
the MHWS.

2 . AUDIENCE

The intended audience for this document is anyone who may be
planning to build a material handling system for use in an
automated facility.

3 . CONTENTS FLOW

This document is one of a series of three MHWS documents. The two
other documents in the series are "Material Handling Workstation,
Recommended Technical Specifications for Procurement of Comm-
ercially Available Systems, NBSIR 88-3786" and "Material Handling
Workstation Operator Manual, NBSIR 88-3785".

1

QNV DNINV310

2

Figure

1
.

AMRF

Floor

Layout

MHWS Implementation

II. • SYSTEM ARCHITECTURE

1. MATERIAL HANDLING FUNCTIONS

The AMRF Material Handling Workstation is composed of (1) two
automatic guided vehicles (AGVs) that transport trays of parts
and tooling between the workstations, (2) an automatic storage
and retrieval system (ASRS) , and (3) roller tables at other
workstations onto which trays are transferred. The MHWS
controller manages these subordinate systems by executing the
operations specified in process plans. The controller also
provides interfaces that are required to integrate material
handling with other AMRF systems. The configuration of the
material handling equipment is shown in figure 2.

2. EQUIPMENT OF THE MATERIAL HANDLING WORKSTATION

2 . 1 Control Computer

The material handling control computer is a COMPAQ PORTABLE 286.
Figure 1 shows how the control computer is connected with the
material handling equipment. It executes a control program
written in the ' C* programming language which controls the
activities of the material handling equipment. It communicates
with all the material handling equipment through hard wire RS232
connections sending commands to and receiving status from this
equipment. It receives commands from the Cell control computer
and reports status to the Cell.

2 . 2 Automatic Guided Vehicles

The material handling equipment includes two Automatic Guided
Vehicles (AGVs) which are used to transfer parts trays between
the Automatic Storage and Retrieval System (ASRS) and the work
stations. Each AGV contains an 8085 control computer which
communicates with the MHWS control computer via inductive wire
buried in the shop floor. A second wire in the floor provides a
guidance signal for the AGV to follow.

The AGVs are controlled by the material handling control
computer. Seven byte command messages are transmitted to the AGVs
and seven byte status messages are received. The formats of the
AGV command and status messages are detailed in Appendix A.

The AGV command messages are combined into message sets of 1 or
more messages which are transmitted to the AGV in sequence. The
received command messages are stored in a queue in the AGV
computer until the last message of a message set is received, and
then all received messages are executed. After execution of all

3

Equipment

of

the

AMRF

Material

Handling

Workstation

4

Fi'

jixr©

2
„

Material

Handling

Equipment

MHWS Implementation

received messages is complete, the AGV stops and awaits further
instruction. A message set usually completes one AGV function
such as traveling from one tray transfer point to another, or
transfering a tray to or from the AGV. Typical message set
functions are detailed in Appendix B.

Both of the AGV systems were originally identical. They contained
an on board AGV control system which included an 8085 central
processor. The control program is stored in eight programmable
read only memory (PROM) devices. A maximum of 32K of memory is
used for the control program. The control program is implemented
in the Forth programming language. Any modifications to the
control program must be made by programming new PROM chips. A
typical procedure to program new chips is given in Appendix C.

At the present time, the AGV control system hardware and software
of one of the two AGVs are being upgraded. The new hardware will
be controlled by an 80286 CPU and is IBM PC compatible. Off-the-
shelf analog-to-digital and digital-to-analog boards are being
used. The control software is being replaced and the new software
is implemented in the Turbo "C" programming language. Because of
the PC compatibility, most of the control software development
may be done on standard office PC computers. Preliminary
documentation on the new AGV software is given in Appendix D.

2 . 3 Storage and Retrieval System

The Automatic Storage and Retrieval System (ASRS) is a KARDEX
8000 Industriever Storage Retrieval System. The system has six
identical modules with each module storing 33 parts-trays on
shelves in the module. Each module has a conveyor for
transferring trays between the module and an AGV. The system has
random access to the trays in a specific module in that a tray
may be moved between any shelf in the module and the conveyor
attached to that module. To access all trays in the system would
require an AGV stop at each module.

The MHWS control computer communicates with the ASRS through one
RS232 hard wire connection sending commands to the ASRS and
receiving status upon request. Each command contains a module id
byte, and a command byte. Commands which transfer trays between
the conveyor and a shelf also contain the shelf number. The
command and status message formats are given in Appendix E.

2 . 4 Roller Tables

Each workstation (except the Horizontal Workstation) served by
the material handling system has 1 or 2 roller tables which are
used to transfer trays between an AGV and the workstation. The

5

MHWS Implementation

tables are manufactured by the Litton Corp. and the table
controllers were designed and constructed in-house at NBS . The
controllers accept 1-byte commands to control the electric motors
which rotate the rollers to move trays on and off the tables.
Each table controller controls 1 or 2 tables and is connected to
the MHWS control computer through a hardwire RS-232 connection.
Upon request, the controller will return a 6-byte status message.
The command and status message formats for the table controllers
are given in appendix F.

3. WORKSTATION CONTROLLER

3 c 1 General Description

The MHWS controller is a software system developed at NBS which
executes material handling commands received from either the Cell
controller or a MHWS operator. The MHWS controller (MHWSC)
operates in two primary modes, stand-alone or remote. While
operating in the remote mode, commands are received from the
Cell, and while in the stand-alone mode, commands are received
from the MHS operator. In either mode, the commands are
decomposed into low level commands to be executed by the
equipment. The MHSC is executed on a Compaq computer which has a
hard wire serial link to each equipment controller.

The MHSC executes the Cell work element DELIVER_TRAY by executing
material handling process plans containing equipment level work
elements GOTO, GOTHRU, GETJTRAY, PUT_TRAY, and TRANSFERJTRAY

.

Work elements GOTO and GOTHRU are decomposed into AGV command
messages to send the AGVs to the tray transfer points. Work
element GETJTRAY gets a tray from an ASRS shelf and transfers it
to the conveyor for loading onto an AGV, while PUTJTRAY puts a
tray off-loaded from an AGV back onto an ASRS shelf. Work
element TRANSFER_TRAY transfers trays between an AGV and either
the ASRS or a roller table. Detailed descriptions of the
material handling work element formats are given in Appendix G.

All of the MHWS work elements listed above can also be initiated
by an operator of the material handling control computer. In
addition to the DELIVERJTRAY work elements, several additional
work elements can be initiated by the MHWS operator. The
CHARGE_BATTERY work element extends the charge probe, charges the
battery for a specified period of time, and then retracts the
probe after the specified time has elasped. The RETRACT_PROBE
work element allows the charge probe to be retracted immediately
whether or not the specified charge cycle has been completed.

The software modules of the MHWS controller include: a system
supervisor which sequences the activation of major subsystems, a

6

MHWS Implementation

communications manager which handles message traffic, a data
manager which handles the translation of data to/from internal
formats from/to external formats, a material handling manager
that sequences equipment level instructions to the material
handling equipment, and a screen manager which handles the user
interface.

3.2. System Supervisor

This module is responsible for initializing the MHWS system,
coordinating orderly system shutdowns, and activating each of the
following major system modules during normal operations:

- Communications Manager
- Data Manager
- Manufacturing Manager
- Material Handling Manager
- Screen Manager

All of the above modules are described in greater detail in the
paragraphs that follow. The System Supervisor activates each
module at least once per control cycle. Running on a COMPAQ
PORTABLE 286, the system executes several control cycles per
second.

During each control cycle, the System Supervisor invokes a
subroutine which advances the system clock and updates counters
and timers. Next, it invokes the Communications Manager in
RECEIVE mode, to give it the opportunity to handle incoming
communications traffic. Then, the Data Manager is activated in
INPUT mode to translate any newly received mailgrams into
internal data formats.

The Material Handling Manager is activated to check for new
orders from the Cell and to monitor status of the MHWS equipment.
When equipment status so indicates, new MHWS process plan work
elements are decomposed into equipment instructions and
transmitted to the equipment.

After the Material Handling Manager completes its processing, the
System Supervisor activates the Data Manager in OUTPUT mode. The
Data Manager checks internal data structures for changes and
generates mailgrams in prescribed external formats, as required.
Finally, the Supervisor invokes the Communications Manager in
SEND mode. The Communications Manager checks to see if it is time
to transmit messages, then looks for new outgoing mailgrams. It
sends them across a serial link to a Sun computer which provides
common memory mailboxes which are accessed by the AMRF network.
Between each entry to a major module described above, the Screen

7

MHWS Implementation

Manager is activated. The Screen Manager determines if any data
needs to be updated on the monitor, and refreshes it. The System
Supervisor loops and continues to repeat the entire sequence
until it is shutdown.

The System Supervisor is able to repeat this entire process
quickly because events that require any significant processing
occur only at sparse instants over time. Furthermore, all major
data elements within the system have tags, called "data sequence
numbers' 1 or DSNs, associated with them. The DSN is an array of
counters. One counter is allocated to the data element itself.
Another counter is allocated for each major module identified
above. Whenever the contents of a major data element are changed,
the self counter is incremented by the system that changed the
data. During the control cycle, each module that has a reason to
look at the data element, compares its own module counter to the
self counter. If they differ, it processes the data and sets its
own counter to match the data self counter. If they are the same,
the system has already processed the data and it may continue
with its next activity. This scheme minimizes unnecessary
processing of data by ensuring that each piece of information is
only handled by each subsystem once.

3.3. Communications Manager

The Communications Manager coordinates the transmission and
receipt of all message traffic for the MHWSC. It is implemented
as a finite state machine. When the module is activated by the
System Supervisor, it cycles through the state machine performing
communications functions until an EXIT state is reached. Upon
each entry to the Communications Manager, it first determines
whether or not it is time to send or receive messages. Message
transmission is currently set to occur on 7.5 second intervals
for performance reasons. Because of the 9600 baud serial link to
the Sun computer and the relative infrequency of traffic at the
MHWSC level in the AMRF hierarchy, this interval seems to be
satisfactory. When a direct network link is established on the
Cell, traffic will probably be processed in each control cycle.

If it is time to transmit messages, one of the following actions
is taken. If the Communications Manager is activated in SEND
mode, it checks the counter, i.e. DSN, on each mailbox to
determine whether or not it contains new outgoing mail. Each
mailbox has a pointer to the chain of ready message blocks that
make up the mailgram. Each message block has a 4 byte binary
header and between 1 and 240 bytes of text. The header includes a
checksum, a block length, a mailbox number, and the number of the
particular block within the mailgram. Pointers to all READY
message blocks are entered into a READY blocks table. Through a

8

MHWS Implementation

handshake protocol, the Communications Manager places the state
machine-based communications server on the Sun microcomputer in
RECEIVE mode. Message blocks are subsequently transmitted and
acknowledged. The servers at both ends of the serial link
automatically handle some error recovery and retransmission of
garbled messages. From the mailboxes internal to the server on
the Sun, the messages are transferred to the Sun common memory
areas by subroutine calls. Once mailgrams reach this memory area
they are accessible to the AMRF network and all other systems
within the AMRF that are connected to the network.

If the Communications Manager is in RECEIVE mode, it uses the
same protocol to place the server running on the Sun in SEND
mode. The other communications server follows a procedure similar
to that outlined above to transfer new mailgrams that it has
obtained from common memory on the Sun. As each message is
received on the PC, the Communications Manager obtains a data
block from a free list, copies the incoming bytes into the block,
reads the header, performs checksum calculations, chains error-
free blocks into the specified mailbox, and updates the appropri-
ate data sequence numbers. If necessary, it will request retrans-
mission of garbled blocks.

It is possible that network services will be integrated with
common memory on the PC some time within the next year. When this
changeover occurs, only the operation of the Communications
Manager module will be affected. The communications function is
transparent to all other modules within the MHWS control system.

3.4. Data Manager

The principal functions of this module are the translation
internal data to and from external message formats, and the
management of updates of internal and external data areas.
Currently, the Data Manager handles the translation of process
plans, commands, and status information. Work is currently
underway to support a wide variety of data base transactions and
reports

.

When the Data Manager is activated in INPUT mode, it checks the
DSN on each mailbox to see if a new mailgram has arrived. If new
mail is found, it checks the type code associated with the
mailbox, and activates the parser that handles that type of
message traffic. The parser reads the message, performs required
translations, and enters the information into the appropriate
internal data areas. DSNs on the mailboxes and internal data
structures are updated as required. When all mailboxes have been
handled, the Data Manager returns execution back to the System
Supervisor.

9

MHWS Implementation

When the Data Manager is activated in OUTPUT mode, it checks the
DSN on each internal data element that it monitors to see if a
new mailgram must be generated. If new outgoing command or status
data is found, the appropriate message generation software is
activated. The message generation software determines which
mailbox is affected, returns any message blocks which are chained
to that mailbox to the free list, obtains new blocks as required
from the freelist for storing the new message, enters appropriate
header information into each message block as it is used, chains
the message blocks of the new mailgram into the mailbox, and
updates the appropriate DSNs on the mailbox and the internal data
structure.

The Data Manager provides a layer of transparency between the
Communications Manager and the Manufacturing Manager. External
message formats can be modified without affecting the functioning
of the Manufacturing Manager and internal manufacturing data can
be restructured without affecting the Communications Manager.

3.5. Transition Manager

The Transition Manager module has not been implemented in the
current version of the Material Handling Controller. When this
module is implemented, it will manage the transition states
during startup and shutdown of the MHWS.

3.6. Material Handling Manager

This subsystem processes material handling orders to transfer
trays between the storage and retrieval system and the work-
stations. Orders may be entered into the system by three
different methods, (1) command from the Cell, (2) manual entry by
MHWS operator, or (3) automatic entry from an orders file. The
communications manager must be activated to receive orders from
the Cell. Each order for tray delivery specifies a process plan
id and a tray id. Orders from the Cell may be received only if
the communications manager is activated and communications with
the Cell is established. The MHWS operator may enter an order at
any time using the order entry screen. Up to 100 orders may be
read in from the orders file and all orders in the file may be
cycled up to 100 times. For all order entry methods, the orders
are processed in sequence as received unless the workstation
involved is not ready to receive a tray. In that case, the order
is temporarily placed on hold for later processing.

At the beginning of each control cycle, the system checks to see
if a new material handling order has been received. If so, the
order is placed in a queue and processing continues on the

10

MHWS Implementation

current order. When the current order is completed, the entire
queue is scanned and each order status is checked. If an order
status of not DONE is found, the status of the specified
workstation is checked to determine if it is ready to receive a
tray. If the workstation is ready, the order is analyzed and the
specified process plan is loaded into memory from a local disk
file. Each order specifies a delivery tray id as well as the
process plan id. The current locations of the tray to be
delivered and the tray to be returned are retrieved from the
local data base, and the process plan is edited so that the plan
contains actual storage and delivery locations and tray id's 0

Each work element in the plan is then executed in sequence.

After processing of a work element is initiated, the next work
element of the plan is analyzed to determine which equipment is
needed to complete the task specified in the work element. If the
status of any necessary equipment is BUSY, that equipment status
is again polled. After the status of all necessary equipment is
found to be READY, the "next work element" becomes the current
work element and commands are sent to the equipment to complete
the task.

If the current work element is a GOTO or GOTHRU, an AGV is the
only equipment required. These work elements specify that the AGV
travel over a path segment between two adjacent transfer points.
The beginning and ending transfer points (TO and FROM locations)
are decoded from the plan and are matched with table entries from
data file "msgset.dat". When a record from the file is found
which matches the TO and FROM locations, the data set number is
extracted from the record. The individual AGV commands in that
data set are then transmitted to the AGV.

The MHWS controller processes the GOTHRU work elements somewhat
differently from GOTO elements. A series of GOTHRU' s may be
processed to send an AGV from any transfer point on the AGV path
to any other point. A series of one or more GOTHRU' s in a process
plan must always be terminated by a GOTO work element. A GOTHRU
message set is actually a modified GOTO message set. The message
numbers in the GOTO message set commands are modified so that the
command messages are presented to the AGV in numerical sequence.
Also, the last message in each message set is modified to specify
that more messages follow.

The GET_TRAY and PUT_TRAY work elements always require only the
ASRS as an equipment resource. GET_TRAY gets a tray from the
specified shelf and places it on the stub conveyor for later
transfer to an AGV. PUT_TRAY returns a tray from the conveyor to
the specifed shelf. Since GET__TRAY and PUT_TRAY only involve the

11

MHWS Implementation

ASRS and because GOTO involves only an AGV, these work elements
may be processed simultaneously.

The CHARGE_BATTERY work element is processed to charge the AGV
batteries when the AGV is at the charging station. Usually, it is
included in a plan to go to the charging station from the ASRS.
Currently, this work element is initiated by the MHWS operator
with the MHWS controller operating in its stand-alone mode. When
the new PC compatible hardware is in operation, the AGV status
data will include the battery voltage so that battery charging
can be done automatically when necessary „ This work element has a
charge time argument. When the batteries have been charged for
the specified time, the remaining portion of the plan is
processed. Usually, this part of the plan would include work
elements to retract the charge probe followed by GOTHRU's and a
GOTO to return to the ASRS . The RETRACT__PROBE may be executed at
any time whether or not the specified charging cycle has been
completed.

3.7. Screen Manager

The Screen Manager's primary responsibility is handling the user
interface. The display and menu interface for the MHWS control
system uses techniques found in many PC-based applications, such
as spreadsheets and database systems. The display screen is
divided into three areas; 1) the menu, 2) the data page, and 3)
the status bar. These areas are described below.

Most user interaction with the system is directed through the
menu area. The menu area occupies the topmost three lines on the
monitor screen. The first line displays the name of the menu that
the user has currently selected. The second line provides
selection operations or data that may be chosen by the user.
Left and right cursor control keys move the highlighting bar over
the possible selections. Depressing the ENTER key, makes a
selection which may cause an associated menu function to be
called and/or another level of descent in the menu structure to
occur. Depressing the ESCAPE key, causes the user to back up a
level in the menu structure. Other keys provide the user with
direct access to many functions and screens, too numerous to
describe here. The third line displays the next level of options
with the selection that is currently highlighted on line 2.

Most information about the MHWS is presented in the second area
on the screen, the data page. The data page covers from line 4 to
line 24 on the screen. Many different page formats are defined
which provide control and communications information to the user
in real-time.

12

MHWS Implementation

The last area on the screen, the status bar, provides summary or
diagnostic information. The highlighted status bar displays the
current clock cycle, the current screen identifier,
communications status, and the current time. It provides constant
feedback to the user that the MHWS is operating correctly.

Excluding the initialization and shutdown phases, the Screen
Manager is always activated in UPDATE mode. In UPDATE mode, it
first determines if a new screen has been selected by the user.
If a new screen is selected, the data area is cleared, and the
new background/foreground fields are displayed. The Screen
Manager next determines if the new screen makes use of cursor
control and other keys to change display data. If these keys are
to be activated, the menu area is cleared, i.e. turned off. Next,
the keyboard input buffer is checked, and if keystrokes are
present, they are processed.

If the Screen Manager finds that a new screen has not been
selected, it performs a series of tests and checks on DSNs to
determine if the foreground data fields on the screen need to be
refreshed, and takes appropriate action. Depending on the
functions which have been defined for a particular screen,
keystrokes may affect the data that is displayed or may cause a
return to the menu mode of operation.

The user interface system coordinated by the Screen Manager,
facilitates the development of new screens or the modification of
existing ones. More than a dozen different screens are currently
available in the system. Each screen in turn may have several
different data pages associated with it. Because of the low
overhead associated with checking DSNs, system programmers may
invoke the Screen Manager at anytime to have the screen
refreshed, with virtually no effect on system performance. The
current implementation of the MHWS control system activates the
Screen Manager many times during each clock cycle.

13

MHWS Implementation

Appendix A. AGV Command and Status Message Formats

Notes For all messages, Byte 1 contains the value EE hex, and
byte 7 is the checksum of bytes 2 through 6.

Type 0 Command Format

Byte 2 s 8
| | | | | | | [

i i i i i i i i

| | | | | | | |
message number

I I I I

I I I I
agv id

|_|_| unused

0 more messages
1 last message

message type

| J | # of PCI's to sense
(unused)

speed * 10 ft/min

Byte 4 24

Byte 3: 16

i_i_i

14

MHWS Implementation

Byte 5 32

I l_l unused

0 wire guide
1 virtual guide

__ 0 ignore optics
1 look for optics

0 turn left
1 turn right

0 direction A
1 direction B

0 reverse
1 forward

0 stop
1 go

Byte 6: 40

unused

0 noop
1 initialize AGV

0 transfer left
1 transfer right

0 rear deck
1 front deck

0 unload
1 load

0 disable conveyor
1 enable conveyor ***

*** Command terminator

15

MHWS Implementation

Type 1 Command Format

Byte 2 s 8

agv id

message number

Byte 3

:

16

|
0 turn left
1 turn right

I I

| |
0 reverse
1 forward

I

|
0 wire guide
1 virtual guide

0 more messages
1 last message

message type

Byte 4: 24

_ j

distance

distance 1

2

Byte 5: 32

angle

distance 2

Byte 6; 40

distance 3 ***

angle

16

MHWS Implementation

Type 2 Command Format

Byte 2 % 8
|_ | ___ j __

Byte 3 : 16 |_|_|_| |_|

_

|

|

message number

agv id

0 turn left
1 turn right

unused

0 more messages
1 last message

message type

Byte 4s 24
I_ I_ I_ I_ I_ I_ I_ I_ I

I I I I I I I I

| | | | | | | |

seek angle argument
I I I I I I

1 1 J | | |

seek distance argument

Byte 5

:

32

_| | |

seek speed argument

seek angle argument

Byte 6: 40

|

0 do not seek wire
1 seek wire ***

0 stop w/ delay ***

1 go

unused

17

MHWS Implementation

Type

Byte

Byte

Byte

Byte

Command Format

8
i

i i i i 1

1

1 1 1

1 1

1 1 1 1

1 1 1 1

1

1.

1 1 I

| | |

message number
1 1 1 1

i i i i
agv id

16

i i i i

i i i i

1 1 1 1

z
1

1

i i i

| | |
unused

1

1 1 1 1

i i i i

1

1

1

1

| |

0 reverse
1 forward

i

i i i i

1

1

1

1

1

|

0 wire guide
1 virtual guide

1 1 1 1

i i i i

i i i i

1 | | |

1

1
0 more messages
1 last message

l l I l

i i i i_ message type

24
i

1

ZiZiZi
1 1

1 1 1 1

1 1 1 1

1 1 1 1till
1

1.

1 1

| j |

distance before
slowtill

1 1 1 L speed * 10 ft/min

32 |"Z 1Z 1Z 1Z 1

1 1 1 1

1 1 1 1till
z

1

1

1

i i i

| | |
no. of optics to
sense ***

1 1 1

1 1 1 1

1

1

AGV speed after slow

0 stop
1 go

18

MHWS Implementation

Byte 6

:

40

|
0 noop
1 charge battery

0 noop
1 retract probe ***

unused

** End command sequence
*** Command terminator

Type 4 Command Format

Byte 2: 8 |~|~|~|“|~l~lHl~l
I I I I I I I I

| | | | | | | |

message number
I I I I

I I I I
agv id

Byte 3

:

16

1

1

1

1

1

1

1 1 1

1 1

1 1

1 i

1 1 1 1

1 1 1 1

| | | |

unused
1

1

1

1

1

1

i

1 1

1 1

1 1

|

0 more messages
1 last message

l

1

l l

message type

Byte 4

:

24
i 1 1 1 1 1 1

unused

|
0 Optics off
1 Optics on

0 stop
1 go

speed * 10 ft/min

* *

19

MHWS Implementation

Byte 5: 3 2
| | | | | | | |

I I I I I I I I

j | j j j j | |

distance 1 ***
in ft.

Byte 6: 40

time 1 ***
in seconds

*** Command terminator

Type 5 Command Format

Byte 2 : 8 | | | | | | | |

I I I I I I I I

j | | | | | | |

message number
I I I I

1 1 | |

agv id

Byte 3

:

1 1 |

unused

0 more messages
1 last message

message type

Byte 4

:

Byte 5

:

Byte 6 i

PROM message
set # ***

(unused)

(unused)

20

MHWS Implementation

Type 6 Command Format

Byte 2 : 8
|

1 1

Byte 3s 16

_ | | 1
message number

agv id

|_ unused
I I

| |
0 no select
1 select FI ***

I

|
0 no select
1 select F2 ***

0 more messages
1 last message

message type

Byte 4: 24

unused

0 stop
1 go

_i speed * 10 ft/min

Byte 5: 32

distance inch/3

Byte 6

:

unused

* * *

21

MHWS Implementation

Type 14 Status Format

Byte 2: 8
| | | | | | | |

I II II I I I

| | | | | | | |

message number
I I I I

I I I I

agv id

Byte 3 i 16

error code
0 no error
1 unload failure
2 load failure
3 bumper stop
4 optic stop
9 unrecoverable unld err

10 unrecoverable load err
15 lost wire

message type

Byte 4: 24
| | | | | | | | |

I I I I ! I I I

I I I I I I I I
last stop

I I I I

| | | |
speed * 10 ft/min

_j |_J | | |

distance past stop

toggle on first
optic at each station

Byte 5: 32

MHWS Implementation

Byte 65 40

0 busy
1 idle

|__ 0 battery low
1 battery OK

0 transfering left
1 transfering right

0 rear deck
1 front deck

0 unloading
1 loading

0 conveyor stopped
1 conveyor moving

0 reverse
1 forward

0 AGV stopped
1 AGV moving

23

MHWS Implementation

Appendix B. Description of Typical Command Message Sets

Following is a description of an AGV command message set used to
implement either the GOTO or GOTHRU work element

.

Message set 0; Go to CDWS table 1 from ASRS unit 1.

Command Message 0: EE 00 14 35 25 05 73

Message Parameter Values

AGV ID; 0 Turn Left
Message No; 0 Distance 1; 3.25
Message Type; 1 Distance 2

;

4.50
More Messages Turn Angle; 40
Virtual
Reverse

Guide Distance 3; 1 e 25

Pattern turn command with more messages to follow. Move without
guidance 3.25 feet straight backwards. Move back 4.50 feet with
steering angle set to 40 degrees left. Set steering to 0 degrees
and move back 1.25 feet. Pass control to the next command in the
queue when the pattern turn is completed. A default speed of 40
fpm is used for all reverse moves.

Command Message 1: EE 01 24 00 A3 04 CC

Message Parameter Values

AGV ID; 0

Message No; 1

Message Type; 2

More Messages
Turn Left

Seek Distance; 0

Seek Angle; 10
Seek Speed; 30
Stop with Delay
Don’t Seek Wire

Type 2 command with more messages to follow. Stop AGV immediately
after execution is started and wait 2 seconds before passing
control to the next command in the Queue. When the "stop with
delay” action is specified, the turn direction, distance, angle,
and speed parameters have no effect on the AGV action.

24

MHWS Implementation

Command Message 2: EE 02 25 04 53 07 85

Message Parameter Values

AGV IDs 0

Message No: 2

Message Type: 2

More Messages
Turn Right

Seek Distances 1

Seek Angle: 5

Seek Speed: 30
Start AGV (Go)
Seek the Wire

Type 2 command with more messages to follow* Set steering angle
to 5 degrees left and speed to 30 feet per minute. Move 1 foot
(the seek distance) and then start seeking the wire. If the wire
is not found within a default distance of 3 feet, the AGV stops.

Command Message 3: EE 03 45 CC 0A 00 IE

Message Parameter Values

AGV ID: 0

Message No: 3

Message Type: 4

More Messages
Speed: 120

Start AGV (Go)
Stop Optics On
Distance 1: 10
Time: 0

Type 4 command with more messages to follow. Travel 10 feet at
120 feet per minute and then pass control to the next command in
the queue.

Command Message 4: EE 04 45 CC 0A 00 IF

Message Parameter Values

AGV ID: 0

Message No: 4

Message Type: 4

More Messages
Speed: 120

Start AGV (Go)
Stop Optics On
Distance 1: 10
Time: 0

Type 4 command with more messages to follow. Travel 10 feet at
120 feet per minute and then pass control to the next command in
the queue.

25

MHWS Implementation

Command Message 5: EE 05 3B AE 63 00 51

Message Parameter Values

AGV IDs 0

Message Nos 5

Message Type: 3

Last Message
Follow Wire
Forward
Speed Is 100

Ft, Before Slow: 14
Stop AGV
Speed 2: 120
Optics to Sense: 3

Don't Retract Prb.
Don't Charge Batt,

Stop at optic command, the last message in the set. Follow the
wire for 14 feet at 100 fpm then change speed to 120 fpm if going
through or the default speed of 12 fpm if stopping. Control is
passed or the AGV stops at the 3rd optic. When a message set is
used for the GOTHRU work element, the "Stop AGV" bit is changed
in the last message of the message set.

26

MHWS Implementation

Appendix C. Changing AGV Program Code or Data

AGV ROM Memory Map

0000
Base

4000
Control

8000
|

1st. scr
| |

5th. scr
|

1000
code

5000
code

|

8FFF
|

2nd. scr
j j

6th. scr
j

2000

1 1

code
1 1

6000

1 1

j

code
1 1

|

3rd. scr
|

i i

|

7th. scr
|

|
I

3000

1

|

code
|

1 1

7000
|

code
|

1 I

3FF

|

4th. scr
|

1 1

|

code
|

1 1

7800_

7FFF

j

8th. scr
|

code
data

1 I

Changing data in ROM

Most of the command data sets used to implement the AGV work
elements are transmitted to the AGV from the MHWS controller at
the time of execution. However, some of the longer message sets
are stored in the read only memory (ROM) devices to save time in
transmitting commands to the AGV. These special message sets are
stored in the 8th ROM device which occasionally must be
reprogrammed when shop floor conditions change. The message set
data is stored beginning at memory location 7800 hex. The process
for modifying this data is as follows:

1. Enter the MHWS controller in mode 1

2. Find the work element and make the change.

3. Scroll through the elements you want in ROM.

4. Exit from the controller.

5. Copy CMD.DAT into the FORTH directory.

6. Using debug or Forth, copy CMD.DAT into file
8th. scr starting at the second 2K boundary.

27

MHWS Implementation

7. Burn a PROM from 8th. scr as described below.

Description of Process to Change Forth Code or Data

This description is intended to provide the information
neccessary to generate ROM based object code for the NBS AGV.
is assumed that the user has sufficient knowledge of Forth,
process control, and guided vehicles to modify the source
listing. Screens are presented as they should appear to the u

<CR> Carriage Return -> User Input Required
<F1> FI Function key
C> System Prompt

Sample Session

I. Compile

A. Bases

-> C> me

LMI Metacompiler 2.0
Hosts IBM PC Target; 8080 Created 02/20/85
Copyright (c) 1985 Laboratory Microsystems Inc.

-> Source file name? [] NBSBASE
-> Intermediate files? [MC] <CR>
-> Defining word prepass? (Y/N) [N] <CR>
-> Printer error audit? (VN) [N] <CR>
-> Print symbol table? (Y/N) [N] <CR>
-> Pause on errors? (Y/N) [Y] <CR>

MHWS Implementation

B 0 Control:

-> C> me

LMI Metacompiler 2 .

0

Host: IBM PC Target: 8080 Created 02/20/85
Copyright (c) 1985 Laboratory Microsystems Inc e

-> Source file name? C] NBS
-> Intermediate files? [MC] NBSBASE
-> Defining word prepass? (Y/N) [N] <CR>
-> Printer error audit? (Y/N) [N] <CR>
-> Print symbol table? (Y/N) [N] <CR>
-> Pause on errors? (Y/N) m <CR>

II. Locate

-> C> loc nbs

III. Burn Proms (using Unipak eprom programmer)

~> C> pi

PROMlink
Programmer/Computer Communications Link

Version 2.01

Copyright Data I/O Corp. 1984, 1985

Contact with programmer established.

> <F1>

MHWS Implementation

Title: User name and Job number
Programmer: Model 29 with UniPak
Device type: AMD 2732
Port: COM1/9600 baud
Data File: *

Programmer size: 16K
I/O Format: Binary
User Function File: *

Directory: c:\FORTH

(1) Program device
(2) Verify device
(3) Load RAM from device
(4) Load RAM from file
(5) Create file from RAM

(6) Error logging
(7) File functions
(8) Edit functions
(9) Configuration
(0) User functions

-> Press key in () for desired function: 4

Title: User name and Job number Device type: AMD 2732
I/O Format: Binary Data Files *

Directory c:\F0RTH

(1) Enter file name to be loaded
(2) Set operation boundaries
(3) Select I/O Format
(4) Load RAM from current data file
(5) Select device type

-> Press key in () for desired function: 1

Current data file: *

Directory of c:\FORTH
NBSBASE , SCR

-> Enter data file and RETURN: Ist.scr

Press SPACE to view remaining directory

30

MHWS Implementation

Loading RAM from files Ist.scr

Press CTRL-Z t© abort

Operation successfully completed

c

Current sumchecks 5 8 CD
-> <F1>

Titles User name and Job number
Programmers Model 29 with UniPak
Device types AMD 2732
Ports C0M1/9 600 baud
Data Files *

(1) Program device
(2) Verify device
(3) Load RAM from device
(4) Load RAM from file
(5) Create file from RAM

-> Press key in () for desired function

Titles User name and Job number
Programmers Model 29 with UniPak
Device types AMD 2732
Parts correctly programmed s 0

(1) Begin programming
(2) Select device type
(3) Set operation boundaries

-> Press key in () for desired function

Programmer sizes 16K
I/O Formats Binary
User Function Files *

Directory: c:\FORTH

(6) Error logging
(7) File functions
(8) Edit functions
(9) Configuration
(0) User functions

1

Programmer sizes 16K
Device Tests Illegal
Data File: Ist.scr

(4) Select blank/
(5) Set up handler
(6) Begin handler

1

31

MHWS Implementation

Title: User name and Job number
Programmer: Model 29 with UniPak
Device type: AMD 2732
Data File: 1st. scr

Programming device , please wait . ,

.

Press CTRL-Z to abort

-> Press SPACE to program device again

Repeat process for:

2nd. scr
3rd. scr
4th. scr
5th. scr
6th. scr
7th. scr
8th. scr

Programmer size: 16K
Device Test: Illegal

<FX>

MHWS Implementation

Appendix D. PC Compatible AGV Control Software

1. COMPILING AND LINKING

To compile and link the system the following . C files are needed?
COMM.C, TEST.C, and GFXPAK.C. They should be compiled and linked
using TurboC, from Borland. The .H header files needed are as
follows: AGVC0M1 . H, AGVC0M2.H, GFXCOM.H, STDIO.H, DOS.H,
IBMKEYS ,H, ASPORTS. H, and TIMEDATE . H. The first three header
files should be in the directory with the .C files, the next two
should be in \src\turboc and the last three in \src\ccc. For
compiling the files TCCONFIG.TC and TEST.PRJ should be with the
*»C files. To do the actual compile and link, enter TurboC from
DOS by typing TC <return>. Go to the Compile window by typing
Alt-C, and select Build All by typing B. If an error occurs type
Alt-P, and make sure the project name is TEST.PRJ. If no project
is shown, or it isn’t TEST.PRJ, type P then type TEST <return>,
after which, type Alt-C and B again. Alt-X will exit you from
the TurboC environment.

2. RUN TIME FILES

To run the system the following files should be in the current
directory: TEST.EXE, AGVMODE.DAT, MSGSET.DAT, INPUT. DEF, and
MSGSET.DEF. The files do the following:

TEST . EXE - The main program.

AGVMODE.DAT - Sets values at run-time for I/O mode, lights
enable, keyboard emulation, test speed, agv id, and sonar enable.

MSGSET.DAT - Contains message sets that are read in if the mode
is set to file msg I/O.

INPUT. DEF - Holds information for the screen setup.

MSGSET.DEF - Contains the internal message sets that can be
executed by certain commands.

MSGSET.DAT and MSGSET.DEF are both generated as described in 3.

AGVMODE.DAT can be changed by any editor, and is described in
detail in 4. INPUT. DEF can also be changed by any editor and is
described with the screen I/O in section 11.

33

MHWS Implementation

3. MHWSINT.BAT, MHS. BAT, MHS.EXE, AND CREATING MESSAGE SETS

The two batch files, MHS. BAT and MHSINT.BAT, can be used to call
MHS.EXE and cause it to create new message set files. Both batch
files call MHS.EXE and then return to \agvctl, copying the new
message set into the proper file. To create a new internal set
file (MSGSET.DEF) type MHSINT <return> from DOS. To create a
file I/O message set (MSGSET.DAT) type MHS <return> from DOS.
Either will put you into MHS.EXE. This executable file holds a
group of message sets. It is a version of the MHS controller
modified to send message sets to a file instead of a port.
Message sets are numbered from zero to 103, with from 1 to 12
messages in each set. The PGUP and PGDN keys move you from set
to set, while the up and down arrows move from message to
message. Once in a message, the left and right arrow keys move
you from parameter to parameter. The parameters can be changed
while using the right and left keys, with a return storing the
values. To send a message set to the file the message set name
should be located using the up/down arrows and a CNTRL-return
entered. As many sets as desired can be stored in this way.
When all the sets needed are stored an esc leaves the executable.
Re-running the mhs.exe will reinitiallize the file. In MSGSET.DEF
(the internal sets) the first message (#0) is ignored, therefore
when creating this file hit CNTRL-return twice for the first
message set entered. If mhs.exe is run from the batch file,
the proper file will get the message sets and you will end in the
directory \agvctl.

4. THE RUN TIME MODES

The AGV OS can be set to several different modes during runtime,
these modes being set from AGVMODE.DAT. The file looks as
follows

:

mode keybd_enable sonar_enable lights_enable test_speed agv_id

3 1 0 0 10
Mode controls the I/O to both the serial port (modem) and the
other ports (AGV I/O)

.

The Message I/O can be conducted either
over the serial port or from the file MSGSET.DAT. In File mode
the messages are started by the keyboard numbers (0 - 9) and read
from the file, with no status being sent. In serial mode the
message sets and status requests are recieved by the port, with
the status being returned through the same port. The input from
the AGV can either be read from the AD board and the parallel
port, or can be generated internally by the program. The
internally generated AGV input allows the keyboard to control
On/Off wire and Optics (To have the keyboard inputs faked by the

MHWS Implementation

program KEYBOARD_ENABLE should be set to false (0)

.

See below)

.

Output to the AGV can be disabled if the cart isn't hooked up.
This keeps the printer port from being disrupted.

The value for mode for each combination of I/O is listed in this
table.

mode# msg I/O AGV input AGV output

0 File Faked/Keybd None
1 File Faked/Keybd Send
2 File Real None
3 File Real Send
4 Serial Port Faked/Keybd None
5 Serial Port Faked/Keybd Send
6 Serial Port Real None
7 Serial Port Real Send

Keyboard Enable »controls the method used to fake the AGV inputs
A 1 allows the keyboard to control Optics and On/Off wire, while
a 0 indicates the optics and wire are to be faked internally.

The Sonar Enable and Lights Enable values indicate whether the
sonar range should checked or the lights should be flashed, with
a 1 being the on and 0 being the off value.

Test Speed controls the speed of command execution in fake
execution mode. A 1 is normal speed and a 0 is fast.

Agv Id is the ID number used by the commands to indicate which
cart gets which message set. If it doesn't match the command AGV
ID numbers the message will be ignored.

5. FILES GENERATED BY THE SYSTEM

The files generated by the system include: DBUG.DAT, LOG. DAT,
PORT.DAT, and SCRDMP.DAT. These files are reinitiallized
everytime the program is started. To print a value to a file the
format is:

fprintf (?????_fp, "YOUR COMMENT" ,ARG ' s) , with ???? being the
name of the file, and the rest of the line working exactly like a
printf

.

DBUG.DAT - A general use file for tracking and variable value
checks. No restrictions on use.

LOG. DAT - Lists the commands as they are put into the message set

35

MHWS Implementation

and as they are executed. Internal sets are listed as they are
used and executed. This file should be used only on on a short
term for debugging.

PORT. DAT - All input and output bytes are listed as they are
recieved or sent. Short term debugging only. Note: a 6 on input
is the Acknowledge signal.

SCRDMP.DAT - Holds all the screens dumped during execution.
Shouldn't be used for debugging.

6. AN EXAMPLE OF CONTROL FLOW

An example of how a message set is recieved and executed is
provided by the following: The message set being sent to the agv
is message set #78 in the MHS.

Msg set 0: TWS to MHS_CA
EE 00 55 09 00 B0 0E
EE 01 15 11 80 B0 57
EE 02 24 04 A3 B0 7D
EE 03 16 08 D3 04 F8
EE 04 26 04 53 07 88
EE 05 3A 67 21 04 CB

Each message is recieved byte by byte, with the program checking
the checksum before each 7 byte message is stored. An
acknowledge is sent after each message. Messages are read in
until a message with the last message bit set to On is sent. At
that point the current message number is set to zero. Start new
command is called. This routine decodes the message according to
it's type and sets up the initial values and statuses needed for
execution. Start new command also sets the current command
status to zero, allowing the current command to be executed. At
this point control will pass from get agv status to process
current command every cycle until the message is completed. A
special case for execution is message type 5. This message type
calls an internal set. When it is detected in Start new command
the needed internal set is loaded and executed, when it is done
control is passed back to the original message set.

7 . STATUS VARIABLES

The status variables indicate whether a subroutine, or set of
subroutines is being, or should be called. A 0 indicates
executing and a 1 indicates idle.

36

MHWS Implementation

The 0 for a variable indicates the following:

auto_mode_status - Executing a command message that involves
moving the cart, either virtually or wire guided.

manual_mode__status

charge_status - In the process of extending or retracting the
charge probe.

extend__status - Extending the probe 0

retract_status - Retracting the probe.

roller_status - Activating the roller deck, either load or unload.

first_dist_status - Moving the cart under automatic control the
distance set from the command message. Guidance can be either
virtual or wire. In the case of virtual the wheel angle is
straight.

dist_2_status - Same as first_dist_status , except the angle for
virtual movement is set from the message.

last_dist_status - Same as first_dist_status

.

optic_count_status - Optics are counted until the number
indicated in the message are spotted.

seek_wire - Indicates that at a certain point seek wire status
should be turned on.

seek_wire_status - Looking for the wire for three feet. If the
wire isn't found stop the message set. If the wire is found
change to wire guidance.

stop_cart_status - Indicates that a slow stop is in progress.

e_stop_status - The sonars are being checked.

stop_w_delay_status - The cart is stopped and will wait for two
seconds

.

The three distance statuses and the optic status are executed in
order: first_dist_status , dist_2_status, last_dist_status, then
optic_count_status . Optic calls stop cart if the stop_go bit is
set to stop, otherwise it ends the command.

37

MHWS Implementation

8 . NON-STATUS VARIABLES

This is a description of many of the global variables.

????_count and ????_cnt - Count variables, so some subroutines
are only executed every few cycles.

TACH VARIABLES -

tach_reading - The value read from the AD board from the speed
tach.

current_dist - The distance traveled since the last reset
(floating)

.

int_dist - The integer value of current distance.

SCREEN AND SYSTEM VARIABLES -

help_num - The current help line to be displayed.

help_toggle - This indicates that the help_num has been changed.

help_blank - If this is true the help area is left blank.

sonar_enable - A zero here disables the sonar.

lights_enable - Enables the lights to flash (otherwise they stay
off) .

agv_test_speed - Zero is fast test speed, 1 is normal.

keybd_enable - A one allows keyboard inputs for test mode (Optics
and On/Off wire) to be generated by the program (i.e. no operator
needed)

.

key_optic_on - The status of the keyboard generated optic
(Broken/Unbroken)

.

key_e_stop - The status of the keyboard generated sonar stop.

key_wire - Indicates the status of the keyboard generated On/Off
wire

.

key_back_optic - Indicates that the optic on the wrong side for a

tray has been broken by the keyboard (test mode only)

.

error_num - The current error value. A list is in MSGFMT . IFT
type 15

.

38

MHWS Implementation

agv_id - The id number the cart uses to identify messages
intended for it.

last_msg_num - The highest message number in the set.

mode - The I/O mode (See #4)

.

curr_msg_num - The message being executed.

curr_cmd_status - A zero indicates that a command is in progress.

cmd_start_time - The start time of the last command.

message_set [][] - The currently executing message set.

command_msg [] - The message being read in.

status_msg [] - Status message last time it was requested.

msg_set_hold [][] - The external set being held while an internal
set is executing.

message_set_buf f [][][] - The internal message set buffer.

I/O VARIABLES -

in_out[31] - The array that holds most of the values inputed and
outputed by the AD and DA boards.

ad_port - Most of the major bit values to be sent out (Not roller
or charge)

.

parallel_byte - A byte to go out over the parallel port (bit
values)

.

para_port - One of the values to be sent out the parallel port
(bit values)

.

stat - The latest status byte from the parallel port.

ROLLER AND CHARGE VARIABLES -

roller_choice - The roller to be used (Front/Back)

.

roller_direction - The left_right direction for the roller to go.

roller - Roller deck Enable/Disable.

39

MHWS Implementation

roller_error_status - The value that indicates which roller
execution case statement the deck is currently in.

tray_error - The current error value of the tray
(RECOVERABLE/UNRECOVERABLE)

.

extended, retracted, charge, arm_connected - Charge probe status.

PROGRAM CALCULATED VARIABLES -

left_total, right_total - Filtered values from the wire sensor.

sonar_stopped - Indicates a sonar stop if True.

virtual_set_speed - The speed at which virtual movement is to be
executed.

halt - A true indicates that the cart isn't moving. (THIS IS
IMPORTANT)

.

optics_spotted - The number of optics that have completed the
beam since the last reset.

INTERNAL MESSAGE SET VARIABLES -

internal_msg_set - A flag meaning the set being executed is
internal

.

restore_msg_set_flag - The break out flag to get out of
start_new_cmmd and start execution of an internal set.

internal_set_last - The number of the last set of a type 5 msg.

internal_set_two - The set number for the second set to be
executed (0 is none)

.

old_msg_num - The saved current external message set.

old_last_msg - The saved value of the last message of the
external set.

guidance_type - Wire or Virtual.

set_speed - The speed value decoded from the message.

optic_speed - The speed to go when looking for optics.

optic_count - The number of optics to look for.

40

MHWS Implementation

stop_go - This indicates whether the cart should stop after the
last message in the set, or continue.

fwd_rev - The direction.

asrs_direction - Towards or away from the asrs.

turn_direction - Left or Right, (facing forward from the cart)

load_unload - Which roller operation.

first_dist - The distance to travel in a straight line.

dist_2 - The distance to travel at an angle 'angle'.

last_dist - The other distance to travel in a straight line,

angle - The angle to set the wheel to during distance 2

.

9. MODIFYING THE SCREEN

The screen layout is defined by the values in INPUT. DEF,
and the subroutine UPDATE_AGV_SCREEN. INPUT. DEF looks as
follows: Note: The text cannot contain embedded spaces.

41

MHWS Implementation

GRP ROW COLUMN LENGTH INT_VALUE TEXT_WIDTH TEXT

0 4 16 1 0 15 Dead Micro
0 5 16 1 0 15 Sonar Stoppe*
0 6 15 2 0 14 Error_Number

1 8 16 5 0 15 Rev Relay
1 9 16 1 0 15 Fwd Relay
1 10 16 1 0 15 Brake_On/Of

f

2 1 15 0 0 0 NBS_AGV_Control_by_Interface_Technology_Inc.

The data from this file is read in at the beginning of the
program and used to update the screen. The data has 6 integer
and one string field. The first field is the group number. The
values to be put on the screen are divided into groups, with a
maximum of MAX_GROUPS groups, and MAX_PARMS values per group.
The groups should be in order, starting with group 0. The next
two fields are the row and column at which the leftmost digit
will be located. Length is the size of the field allocated for
the value. Init val is the initial value put in the screen
location o Text width is the number of spaces left of the row-
column value the text is started. The text string is put on the
screen at the location figured by row-column and width. The
string can have no embedded spaces, so underscores _ in the
string are replaced with spaces on the screen.

The row, column, length, group, and value of each location is
stored in an array. UPDATE__AGV_SGREEN calls UPDATE_SCR_FIELD for
each variable to be updated on the screen. Each variable to be
checked is compared to the value indicated on the screen, if they
don’t match the screen is updated. To put an integer variable
value on the screen the variable needs to be passed to
UPDATE_SCR_FIELD using the following format:

update_scr_field (&??????, GROUP NUM, NUMBER INSIDE GROUP);
????? is the variable name, and the group number and number
inside the group are the array number from INPUT. DEF. For
example, to put the value of a variable named error_num next to
the words "Error Number", with the words starting at location (6,

1) and a field width of two for the value; using the INPUT. DEF
above, the call would look like this:

update_scr_field (&error_num, 0, 2)

;

42

MHWS Implementation

UPDATE_AGV_SCREEN also updates the help lines if needed. The
help lines are listed in a case statement , to add a help line
just add a new case, and set the help_num to the new value
whenever the line needs to be up and to zero when it is done.
Help_toggle should also be set to TRUE whenever the help_num is
changed

.

43

MHWS Implementation

Appendix E. ASRS Command and Status Message Formats

The general command message format is,

<HeaderxUnit><Command><Argument><Terminator>

The header field is one byte with a value of 1. The unit (or
module) field is one byte which has a value of 0 to 255. The
value for each module is shown in the following table.

Module No.

1

2

3

4

5

6

Unit Value

0

4

8

16
32
36

The command field is one byte representing a command function to
be performed. Numerous commands are available to check out and
adjust the system in addition to the tray transfer comands. The
commands used by the MHS control system are detailed in the
following table. The command column shows the value of the comand
byte in hex.

Command Function

43 Transfer tray
conveyor.

from specified shelf to

44 Return tray to specified shelf from conveyor.

4B Transfer tray from ASRS to AGV.

4C Transfer tray from AGV to ASRS.

4E Update system status

.

IB Send status to MHS controller.

The argument field is not required for all commands, but it is
required for the transfer tray commands shown in the above table.
This field usually contains one or more numeric ASCII characters.
For example, for the transfer tray commands, if the shelf number
is 13, the field would contain two bytes; 31 and 33 hex. The
terminator field is 1 byte which usually has a value of OA hex.

44

MHWS Implementation

The system status is a one byte message described as follows:

Status bit
bit
bit
bit
bit
bit
bit
bit

0 - SI
1 - S2
2 - S3
3 = Unknown
4 = Error
5 = Busy
6 = Host
7 - S/flag

~ Error code. See below.
- Error code. See below.
- Error code. See below.
- Tray storage location unknown.
- Failed to complete command function.
- System is busy performing a function.
- The host buffer contains data.
- Marks this character as status. Always

set.

If the Error bit 4 is set SI, S2, and S3 are interpeted as
follows

:

SI S2 S3

0 0 1

0 10
Oil
10 0

110
111

Loc Full, a shelf location was found to be full.

Loc Empty, a shelf location was found to be empty.

In Use, requested tray is in use at another
delivery location.

Height, tray contents to high for storage
location.

Illegal shelf, shelf position not valid for unit
or has been canceled.

Conveyor, error related to conveyor.

45

MHWS Implementation

Appendix F. Roller Table Command and Status Formats

The roller table controllers accept a 1 byte alphabetic character
as shown in the following table

,

Command Function

•

k
1

m
o

P
q
r
s

t

Give up control of table 1.

Take control of table 1.

Give up control of table 2

.

Take control of table 2

.

Transfer table 1 tray from table to AGV
Transfer table 2 tray from table to AGV
Transfer table 1 tray from AGV to table
Transfer table 2 tray from AGV to table
Send latest status
Send tray position status

The status message consists of 8 bytes, 1 B C 2 E F CR LF. Bytes
B and E designate whether the workstation has taken control of
trays 1 and 2 respectively. '0 s indicates it has not, and 'I s

indicates that it has.

C and F are the status of trays 1 and 2 respectively as follows:

C & F Status

0

1

2

3

4

5

6

7

8

9

A

No tray on table
Tray is currently on table
Tray is between AGV and stop point
Error, tray handler is in local mode
Error, no tray motion
Loading in progress
Unloading in progress
Error, improper initial position
Error, tray did not transfer to AGV
Error, tray did not reach final position
Error, illegal switch readings

46

MHWS Implementation

Appendix G - Material Handling System Work Elements

1. Workstation Level

DELIVER_TRAY

WS_XD = <MHS>
PLAN_ID = <process plan operation sheet identifier>
PLAN__VERSION = <version number of process plan>
TRAY__I D = <logical tray identifier
TRAY_TYPE = <tray configuration type>
ITEM_SER_NR = <tray serial number
LOT_ID - <current lot associated with tray>
FROM = <pickup cart stop>
TO = <dropoff cart stop>

Note: This is a complex work element that is decomposed into
tasks to be executed by the MHS equipment level controllers

.

Work elements appearing in the reference PLAN_XD, which may
be used to decompose a DELIVER_TRAY , include:

GOTO, TRANSFER_TRAY, GOTHRU, GET_TRAY , PUT_TRAY

2 . Equipment Level

GOTO

AGV_XD = <AGV_1 or AGV_2>
ROLLER_BED = <FRONT or BACK>
FROM_POINT = <a point immediately ahead of TO_POINT>

TO__POINT = <a point immediately after FROM_POINT>

TRANSFER_TRAY

AGV_ID = <AGV_1 or AGV_2>
FROM_ROLLER = <FRONT , BACK or a transfer point>
TO_ROLLER = <FRONT , BACK or a transfer point>

GOTHRU

AGV_ID = <AGV_1 or AGV_2>
FROM_POINT = ccart stop point or through points>
THRU_POINT = <cart through points>

47

MHWS Implementation

GET TRAY

UNIT_ID = <ASRS_1 - ASRS_6 or MBD_1 - MBD_2>
TRAY_ID = <serial number of tray or NA for ASRS>
SHELF_ID = <shelf number of tray or NA for MBD>

PUT TRAY

UNIT_ID = <ASRS_1 - ASRS_6 or MBD_1 - MBD_2>
TRAY_ID = <serial number of tray or NA for ASRS>
SHELF_ID = <shelf number of tray or NA for MBD>

CHARGE BATTERY

AGV_ID
CHG TIME

<AGV_1 or AGV_2 >

<charge time in minutes>

RETRACT PROBE

AGV ID = <AGV 1 or AGV 2>

Cart through points:

CWS__STA
TWS_STA
VWS__STA
HWS_STA
IWS^STA
MHS_ASRS
MHS_HB

Cart stop points:

MHS_CA - Cart charging area
MHS_IP - Tray inspection point
MHS_TPn - ASRS transfer point where n = UNIT_ID

<1, 2, 3, 4,
cws _TPn (n = 1 or 2)
iws'_TPn (n = 1 or 2)
TWS _TPn (n = 1 or 2)
vws'__TPn (n = 1 or 2)
HWS _TPn (n = 1 or 2)

Shelves

:

SHELF ID = SHELF n where

5, or 6>

= 1 to maximum number of shelves

READER COMMENT FORM

Document Title Material Handling Workstation Implementation

This document is one in a series of publications which document
research done at the National Bureau of Standards 1 Automated
Manufacturing Research Facility from 1981 through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested
editorial changes.

Comments

:

If you wish a reply, give your name, company, and complete mailing

address

:

What is your occupation?

NOTE : This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

Please mail your comments to: AMRF Program Manager
National Bureau of Standards
Building 220, Room Bill
Gaithersburg, MD 20899

.

.

NBS-114A (REV. 2-80

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publ ication Date

BIBLIOGRAPHIC DATA
REPORT NO.

MAY 1988SHEET (See instructions) NBSIR 88-3784

4. TITLE AND SUBTITLE

Material Handling Workstation Implementation

5. AUTHOR(S)

Carl E. Wenger -

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City , State, ZIP)

10. SUPPLEMENTARY NOTES

H Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bi bliography or literature survey, mention it here)

The purpose of this document is to provide a general description of design and
implementation of the AMRF Material Handling Workstation (MHWS) . The MHWS
equipment includes two Automatic Guided Vehicles (AGVs) , an Automatic Storage and
Retrieval System (ASRS) , and roller tables at other workstations. The document
should provide the reader with an understanding of concepts used to implement
the MHWS.

12. KEY WORDS (Six to twelve entries ; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

AMRF; implementation; manufacturing, Material Handling Workstation

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

5D Unlimited

For Official Distribution. Do Not Release to NTIS 54
~| Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402. .15. Price

^1X1 Order From National Technical Information Service (NTIS), Springfield, VA. 22161
$13.95

U SCOMM'OC S043-P80

