
NBSIR 88-3776

The GRAMPS Operating System:
User’s Guide

Peter Mansbach

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Manufacturing Engineering

Robot Systems Division

Gaithersburg, MD 20899

and

Michael Shneier

Philips Laboratories

North American Philips Corporation

345 Scarborough Road
Briarcliff Manor, NY 10510

September 1988

75 Year? Stimulating America s Prograss
1813-1988

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

NBSIR 88-3776

THE GRAMPS OPERATING SYSTEM:

USER’S GUIDE

Peter Mansbach

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Manufacturing Engineering

Robot Systems Division

Gaithersburg, MD 20899

and

Michael Shneier

Philips Laboratories

North American Philips Corporation

345 Scarborough Road
Briarcliff Manor, NY 10510

September 1988

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

The GRAMPS Operating System: User’s Guide

Peter Mansbach f and Michael Shneier*

f Sensory-Interactive Robotics Group

National Bureau of Standards

Bldg. 220/Rm. B-124

Gaithersburg, MD 20899

* Philips Laboratories

North American Philips Corporation

345 Scarborough Road

Briarcliff Manor, NY 10510

ABSTRACT

This guide describes the GRAMPS real-time multiprocessor operating system

from an applications viewpoint It presents the information needed to use GRAMPS in

implementing distributed processing applications. Additional information needed by

an administrator to set up and maintain a specific application appears in the

Administrator’ s Guide.

April 15, 1988

r

The GRAMPS Operating System: User’s Guide

Peter Mansbach f and Michael Shneier *

* Sensory-Interactive Robotics Group

National Bureau of Standards

Bldg. 220/Rm. B-124

Gaithersburg, MD 20899

* Philips Laboratories

North American Philips Corporation

345 Scarborough Road

Briarcliff Manor, NY 10510

System Overview

GRAMPS (for General Real-time Asynchronous Multi-Processor System) is a distributed operat-

ing system developed at the National Bureau of Standards [Ref. 1] and designed to allow applications

involving multiple processors to be implemented easily. A typical system using GRAMPS will consist of

several processors (Motorola 680x0 in the current implementation
1

), a backplane (VMEbus), and a

number of memory boards, special-purpose peripherals, and I/O ports. GRAMPS provides facilities for

passing information from one process to another, for sharing dynamically allocated memory among

processes, and for communicating with users and peripherals.

GRAMPS does not provide a development environment, although many debugging facilities have

been implemented. The applications must be programmed on a host computer (e.g., a Sun) and be com-

piled, linked with the GRAMPS library, and downloaded (preferably using GRAMPS ’ downloader) onto

the target boards. Once downloaded, the programs will run stand-alone, and communicate with each

other and with the user.

GRAMPS is a true distributed operating system, in that each processor contains a part of the

operating system. Each processor can run by itself, in the absence of other processors, without risk of

failure, and processors can be downloaded and started in any order, with the same system characteristics

guaranteed to exist when the total system is running. In addition, each processor will contain code only

for those sections of the operating system that it actually uses, ensuring the least possible impact of the

operating system on the size of the code.

GRAMPS is deliberately not a multi-tasking system. It was felt that the overhead involved in task

switching was an undesirable burden. Also, the code for I/O operations becomes much more complex

in a multi-tasking system, particularly when a communication my arrive while the task expecting it is

not running, or worse yet, swapped out. Keeping these operations simple results in faster execution,

smaller code, and easier modification by users.

In response to user requests, provision for simple task-switching, under user control, has been

added. A timer-initiated task switch is also provided. It is thus possible for the user to create a custom-

ized multi-tasking system.

Two protocols are provided for processes to communicate. The primary (and only necessary)

way is through "files". A file is an area of common memory, accessible to all the processes that will

use it, and known to them by a name, which is an ASCII string. A file is implemented as a common

1

Commercial products are identified in order adequately to describe the equipment In no case does such identification

imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the equipment

identified is necessarily the best available for the purpose.

- 2 -

memory buffer, an area of fixed size and location. Its use, however, is more like a file on an ordinary

operating system, such as Unix1
, except that it only exists in (volatile) memory. A process can open a

file, write or read the information in it either randomly or sequentially, and close the file. The system

ensures that no two processes can write the same file at the same time (or one read while the other

writes).

Information is passed from one process to another by writing it into the file, which must be read

by the other process. (Note that there is no requirement that the processes run on different processors.)

The system does not insist that something be written in the file before the reader can access it, so the

user must make sure that there is useful information available before reading. This is usually done by

checking flags. The identity of the previous user of a file is always available (in the flag previous_user),

and is updated every time the file is opened. Thus, after writing data into a file, the identifier of the

writing process is associated with the file until some other process opens the file, either to read or to

write. It is left to the implementor to decide whether or not processes should be allowed to overwrite

information before it has been read, or to read information that was seen before. In appropriate

instances, both preventing and allowing these operations may be useful, and are easily accommodated.

The second way that processes may interact is through the use of dynamically allocated structures

in memory. GRAMPS includes two kinds of dynamic memory allocation. The first is a purely local sys-

tem, internal to a process, in which memory may be allocated in a private area, and is not accessible by

other processes. The second is a common memory allocation system, in which a process can allocate

memory, pass a pointer to the allocated area to other processes, and, eventually, free the memory. Each

process that receives a pointer to the information must free the area before the memory is returned to

the free list, thus guaranteeing that structures will be available as long as any process has need of them.

Allocation and freeing are managed in a way similar to that used for links to files in Unix. A bit is set

(normally by the allocating process) for each process which will use an allocated area. As each process

frees the area, its bit is turned off. When all bits are off, the area is finally returned to the free list.

It is obviously necessary to pass the address of the dynamically allocated area to each of the

processes that will use it. This is done by means of a file, so that files are the more basic means of data

transfer. Once a process has read the address, it may access the structure, modify it, and pass it on to

other processes. There is not as much protection for these structures as there is for files, in that there is

no attempt to prevent multiple writers or readers from simultaneously accessing the same structure. If

this is a problem, a dummy file can be set up, which must be opened or closed before accessing the

structure. This provides the same protection for a dynamically allocated structure as is given to normal

files. Note that this is considered an implementation-level decision, rather than being part of the operat-

ing system.

In addition to communicating with other processes, access is provided to whatever serial ports

may be available to the processor. These ports may be written and read as if they were files. Standard

input and output files are provided by the system, and usually bound to the terminal port When special

peripherals are available, it is necessary to write simple drivers that either use fixed memory locations

for communication, or that have their own processors to interact with the system.

The rest of this document provides a guide to using the system for the general user. It explains

how to create and run a process, and describes tools which may be used in debugging it. Examples of

simple programs are given to illustrate some of the concepts. Appendix A gives a list of the GRAMPS
functions of interest to the user, together with brief descriptions of what they do. Appendix B is a list-

ing of the header file vbus.h, which must be #include’d in user programs which access GRAMPS facili-

ties. Appendix C is a complete list of all the functions currently in the GRAMPS library. This is

arranged by source file, and is intended for use by an advanced programmer or system administrator

needing further insight into the workings of the operating system. It is suggested that the casual user

skip this section. Appendix D describes the local development environment at the National Bureau of

Standards, and Appendix E describes the environment at Philips Laboratories, and local modifications to

GRAMPS.

2
Unix is trademark of AT&T Bell Laboratories

-3 -

The companion document Administrator' s Guide, [Ref. 2] is intended for a system administrator.

It explains how to set up common memory files and dynamic-memory free lists, and explains in some

detail what happens during system initialization. The general user who simply wants to implement an

application need not read that document

User’s Guide

A user of GRAMPS will typically want to run one or more processes in a stand-alone system.

Usually, the processes will communicate with each other, and will run asynchronously (although syn-

chronous operation is supported). This section describes how to write applications that make use of the

GRAMPS primitives to develop such systems. For most operations, there are several different ways of

achieving the same effect. In these cases, a preferred method will be described, and the options men-

tioned. In some cases, reference will be made to Appendix A without further elaboration. The follow-

ing assumes the reader is familiar with the syntax of the C programming language.

An application to be run under GRAMPS must be manually broken into separate processes, since

GRAMPS does not perform dynamic process allocation. Each process is coded as a separate program, in

the usual way, with each process having a main program and whatever subroutines are needed. When
processes need to communicate with each other, or with the outside world, GRAMPS function calls are

used in the place of the analogous run-time library routines or operating system calls. For many such

calls, the usual C syntax may be used (e.g., read, write). For two processes to communicate, it is

necessary to set up one or more files. The programmers of the processes need only agree on a conven-

tional file name (an ASCII string) that both will use to refer to each file , and use that name in opening

the file
3

. This name should be given to the system administrator, together with an estimate of the

maximum size (in bytes) of a single transaction. The system administrator will assign a common
memory area for the file, and set up the appropriate initialization so that communication can be esta-

blished.

Information about each of the GRAMPS files, including location and size, is stored in a disk file

on the host computer, alongside the user’s source code files. This file is given an extension of ".cm" by

convention (for "common memory"). This file must be included in the main program of each applica-

tion process (using #include). The system administrator will supply this file, and keep it up to date.

Usually, the filename is the same as the process name (for example, a process called pi will have a

main file called pl.c, and a #include file called pl.cm). A special "cm" directory will be established,

where all the included files will be kept, so for the example above, the statement necessary to bring in

the information about the files used by pi would be

#include <pl.cm>

The ".cm" files contain information that enables the process to find the common memory loca-

tions associated with each file name, and ensures that initializations happen in an orderly way. It

should not be necessary to examine these files, but an example of one is given in the section for system

administrators, together with explanations of all the entries.

Note that the file parameters may be overridden at run time, in that a special system process

called SYS creates a system-wide list of files which are used in preference to the ".cm" entries. This

assures that each process is using the same, current, file data. The ".cm" entries are primarily for use in

debugging, when the SYS process may not be present.

Usually, a process running stand-alone will take the form of an endless loop, rather than running

to a conclusion. Given the overhead of downloading a program, it is usually not cost-effective to exe-

cute a single operation on multiple processors. Thus, programs take a common form of polling their

inputs, operating when they receive information, writing out their results, and repeating the process.

Obviously, there can be many variations on this formula, but a common thread is the use of polling.

GRAMPS as currently implemented does not support interrupt-driven I/O.

3
In fact, the name does not have to be the same for the two processes, so long as the system administrator is told that

the names refer to the same file. For simplicity, however, it is conventional to use the same name for all accesses to the

same file.

- 4 -

The main features of the CRAMPS operating system will be introduced here by means of exam-

ples. Three annotated programs follow, two dealing with passing information by means of files, and one

that makes use of the dynamic memory allocation capabilities. Included in the annotations are descrip-

tions both of the GRAMPS system calls actually used in the programs, and alternatives that may be

more appropriate in some situations. A listing of user-callable functions, with brief descriptions,

appears in Appendix A. Both of the examples have been implemented and tested, using a pair of essen-

tially identical programs, communicating with each other. Where several calls are available to perform

similar or identical functions, the preferred version is noted. A convention throughout what follows is to

use italics to describe variables and boldface for GRAMPS functions and C keywords.

Figure 1 shows a simple program for a process, PI, that writes data to a file, reads from another

file, and prints what it read to the terminal. An analysis of this program will give a flavor of how
GRAMPS programs are written. It is fruitful to study the program as a whole before reading the annota-

tions. Note that, for the program to run properly, a second process, P2, will also need to be running.

The second program in this case can be exactly the same as this one, except that it writes the file read

by this program, and reads the one written by this program.

Line 1

Line 2

Line 3

Line 4

Line 6

Lines 8-9

Line 10

Line 12

pi.cm contains information about the files and dynamic memory allocation areas

specific to this process. It includes a structure (the files structure) that has an entry for

each file giving its name, the address where its flags are stored for opening and clos-

ing the file, and the address and size of its data area. It should be included only

once, in the main program, pi.cm is shown in Figure 1 in the Administrators Guide.

vbus.h contains structure definitions, external GRAMPS function declarations, and

defined constants that may be useful to the user process. It also contains typedefs for

ADDR (char * used as a pointer), STR (char * used specifically as a pointer to a

string), uchar, uint, ulong (unsigned char, int, and long, respectively), and

USRBITS (32-bit longword used as a set of user bit vectors), vbus.h may be

finclude’d in any file that makes use of its definitions. A listing is included in

Appendix B.

NTRIES is a number indicating how many times to attempt to open a file before

declaring it busy. This will be discussed in more detail below.

user is simply the name the programmer has given to the process (PI or P2 for this

example). This name must be given to the system administrator, and will be used as

an identifier allowing processes to know who last used each file. User identifiers are

one-byte numbers (PI is actually #define’d to be 0x01, in this case).

This is the beginning of the program. As required in C, the main program is called

main. Note that there are no arguments to main. Since there is nowhere to pass

arguments from, there is no way to give values to the conventional argc , argv, env.

fdin and fdout are file descriptors for the two files. They can take values of -1, in the

case of an error return from a file operation, FTLEBUSY (defined in vbus.h to be -2),

in the case of trying to access a file currently in use by another process, or a small

positive number, when a file is open. They correspond almost exactly to the file

descriptors usually available in C. bufjn is simply an array that will be used to store

the data read from the input file.

This is the start of a never-ending loop. The program will execute the contents of this

loop until a fatal error occurs, or the system is interrupted or reset by a user or

another process. Most real-time programs will have such a loop.

This is the first call to a GRAMPS function, flagpeek. flagpeek returns the current

value of the open/closed flag for the given filename. This flag consists of two bytes,

one containing the status (open or closed) of the file, the other containing the ID of

the current user (if open) or the previous user (if closed). CLOSEDTOYOU is a

mnemonic #define’d in vbus.h. The while statement will loop in a null loop as long

as YOU (this user) is the most recent user of the file. When any other user uses the

file, the condition will no longer be met, and control will pass to the next statement.

- 5 -

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

#include <pl.cm> /* the common memory map for this process */

finclude <vbus.h> /* the GRAMPS header file */

#define NTRIES 500 /* number of tries to open file */

extern unsigned int user-, /* this process’s ID, defined by the system */

mainO

{

int fdin, fdout, f* file descriptors for input and output */

char buf_in[20]; /* buffer for reading */

for(;;) /* loop forever */

{

while(flagpeek("sendtop2") = CLOSEDTOYOU)
;

fdout = openn("sendtop2", W, NTRIES);

switchf/Jour)

{

case -1: /* error in open */

abort("ERROR in opening sendtop2\n");

case FILEBUSY: /* file is open to other process */

printf("sendtop2 busy againNn");

break;

default: /* file is now open to PI */

if(write(fdout, "1234567890", 11) != 11)

printf("bad write to P2\n");

Iffclosel/dou/) = -1)

abort("can’t close sendtop2>n");

}

fdin = openn_with_previous_user("getfromp2", R, NTRIES, P2);

switch(fdin)

{

case -1: /* error in open */

abort("error in opening getfromp2\n");

case FILEBUSY: f* file is open to other process */

printf("getfromp2 busyVi");

break;

default: /* file is now open to PI */

l* there are new data in the file */

if(read(/ifi>i, buf_in, 11) != 11)

printf("bad read from getfromp2\n");

else printf("bu/lin = %sNn",buf_in)\

if(close(/<im) == -1)

abort("can’t close getfromp2Nn");

}

}

}

Figure 1.

It is preferable to use flagpeek to determine the previous_user flag, rather than

repeatedly opening and closing the file. This is because opening and closing the file

may interfere with another user trying to gain access, delaying him and possibly lock-

ing him out entirely. Also, opening the file causes this user’s ID to be put in the

previousjuser flag, and the current time to be entered in the flag buffer, giving an

incorrect picture of the status of the file to other users who may require this informa-

tion, and to the debugging tools.

Line 13

- 6 -

openn is the basic file opening command, used here to open the file named "send-

top2" for writing. It takes three arguments, the first of which is the file name, a

string. The second is an int, which may be either (int) 'W for read/write privileges,

or (int) ’R’ for read-only privileges. The names W and R have been #define’d to be

(int) ’W and (int) ’R\ respectively, in the header file vbus.h (Appendix B). (A char

argument would not be portable and would lead to inconsistencies with Unix System

V.) Note also that this argument is not a string, i.e., "W" (with double-quotes) would

NOT be correct.

In any case, the second argument is meaningful only for multiple-reader files. A
multiple-reader file is one that may be simultaneously accessed by several read-only

users. Only one user may write the file at a time, however, and no other users may
have access to the file during a write operation. The W argument will cause new users

to be shut out while waiting until all current users have finished with the file, and

only then allowing the file to be opened for writing. (Changing a single #define in

GRAMPS allows multiple-reader files to be treated as ordinary files, if this is desired.)

The third argument to openn is the number of times the function will attempt to

access a busy file before returning FILEBUSY. When this function is executed, it

looks for a file in the files array with the given name. If it does not exist, or if the

associated flags have been corrupted, openn returns -1. Otherwise, the file may
already be open to another process, in which case openn tries up to NTRIES times

before returning FILEBUSY. (If NTRIES is 0, it will continue trying as long as

necessary.) Usually, only a small number of tries should be needed to open a file,

unless some process is not behaving properly. If neither of these cases is found, the

file will be opened, the identifier of the current process will be stored with the file as

its current user, and a small integer will be returned as the value of the function call.

The file will now be available for use by this processor. The following function calls

are variations on this basic theme.

openn_fd(/<i, rwflags , ntries) provides a much faster access to the file, by avoiding

the need to look up the file name each time. It can only be used after the file descrip-

tor, fd, has been established, which requires at least one call to openn, one of the

other open calls, or get_fd (see Appendix A and Example 3). By obtaining the file

descriptors for each file before the forever loop, the calls within the loop can be made

more efficient.

open(filename , rwflags) is included for compatibility with Unix. It will attempt to

open the file given by the string filename , but will keep trying if the file is busy

(equivalent to openn(filename, rwflags, 0)). The rwflags argument may take the pre-

defined values W or R (see openn above), or the Unix System V values 0_WR0NLY,
0_RDWR, or 0_RD0NLY.

open_synch(filename, rwflags) is used when processes want to use synchronous com-

munications. It will wait for the next tick on a system clock before opening the file.

(This function will retry as long as necessary, since in normal usage different users

will access the file on' different offsets from the clock tick.) The ticks on the clock are

defined as being a given offset from a given multiple of the basic system clock (see

Appendix A). The offset and multiple are contained in the global variables

synchrjbase and synchr_incr, which may be set by the user.

openn_with_previous_user(/ii, rwflags, ntries,
previous_user) insists that a particular

user was the last to use the file. Often, two processes use a file, but each process is

only interested in reading what the other one wrote. This call can be used instead of

flagpeek to ensure that the file is not continually being opened by the process that

wrote the last data, only to be closed again immediately. The use of this call is illus-

trated in line 27 of the program in Figure 1. Note that at initialization a writer of the

file will be permitted to openn_with_previous_user even though there is no previous

user.

- 7 -

Line 14

Lines 16-17

Lines 18-20

Line 21

Lines 22-23

openn_with_otheruser(/tf, rwflags, ntries) is similar. In this case the process waits

until any user ID other than this user’s appears in the flag. As soon as this happens,

the file is opened.

There are three possible outcomes of an open call. The switch statement starting on

this line accounts for each of them.

If the open call resulted in an error, something is very wrong with the system. In this

program, the abort system call is used to print a message and stop the process. Note

that this is very drastic. A system with a supervisor might want to send an error mes-

sage, try again, or request to be reset and restarted. Here the result will be that a trace

of the functions called by the process will be printed on the terminal (if one is

attached to the processor), and the program will stop. The exit call is an alternative.

It does not print a message before stopping the process. If given an argument, exit

will print a stack trace before calling stop, which halts the program.

If FILEBUSY is returned, the file is currently being used by another process. That is,

each time an attempt was made to open the file, it was found to be open to another

processor (up to NTRIES times). Often this means that something is wrong with the

other process, but this is not a fatal error, so a message is printed to the terminal, and

the process continues, printf behaves exactly as it would in normal C implementa-

tions, except that it is specially written to check whether or not a terminal is attached

to a processor. If there are many terminal output statements in a program (e.g., for

debugging), the program will not run in real time, and the debugging may be invalid.

Simply by disconnecting the terminal line from the board, however, it is possible to

run at (almost) the normal speed. As soon as the terminal is reconnected, the message

will reappear. This is sometimes the only way of determining why certain failures

occur.

If neither of the first two cases has occurred, then the file has been opened success-

fully. (Note that we determined in line 12 that this process was not the last user of

the file. Clearly this process has not used it since. Thus it is still not the last user,

and no further examination of the flag is necessary. It is worth noting, however, that

had we needed to know specifically that a particular user was the last user, it would

NOT have been sufficient to have performed the flagpeek, since a different user may
have opened the file after the flagpeek but before this user’s openn. In this case a

lastuser(/<f) is required, once the file has been opened.) Since another user has opened

(and since closed) the file, the previous data have presumably been read, so new
information can be written. Thus, line 22 is executed. In this program, nothing is

written until the old data have been read. This is not, however, enforced by the

operating system. Many applications, such as real-time sensing, are better off

overwriting old data before it is read, to ensure that the receiving process always has

up-to-date information.

The write call actually copies the data out to the file. It is analogous to the usual C
write, and returns the number of characters written. Hence, the check for the number

of characters, and the message if something goes wrong. As with open, there are a

number of variations on the write command.

writeran(/tf, buffer, count, offset) performs a random-access write, to an address offset

bytes from the beginning of the file. Note that there is no seek command (although

one could easily be implemented).

writepointer(/i/eflam£, wronguser, pointer) (formerly called writeheader) is used

when a single address pointer is to be passed to another process. It waits until some

process other than wronguser was the previous user of the file, and then writes the

address (in pointer) to the file. It does not need a prior open call, nor a following

close. A common use is to create a structure containing pointers to all the dynami-

cally allocated areas to be passed to another process. The address of this structure is

- 8 -

Lines 24-25

passed to the other process, which can then access all the areas.

autowrite(/i/emzm£, buffer , count) performs an openn on the file, writes the data in

buffer to it, and closes the file. It is similar to writepointer, except that it writes an

arbitrary length buffer. Figure 2 shows its use.

After a file is opened, no other user can gain access until it has been closed. The

close call changes the semaphore associated with the file to indicate that the file is

available. The previousjuser flag is not changed; it continues to show the process that

last opened the file, and that is now closing it Note that for the error (-1) and the

FILEBUSY cases in the switch statement, the file was not successfully opened, so

should not be closed. A call to close in these cases will result in an error message.

An error in closing, signalled by a returned value of -1, is serious when the file was

successfully opened. In this program, it will result in stopping the process with a mes-

sage and a stack trace.

Line 27 Having finished with the write part of the program (whether or not it was successful),

the next step is to read data from process P2, using the file called "getfromp2". As

described above, the openn_with_previous_user call is used to ensure that P2 has

actually written new information to the file before the file is opened. The file is

opened only for reading in this case, and NTRIES attempts will be made to open

before FILEBUSY will be returned.

Lines 28-42 Just as in the previous open, there are three possible outcomes of the open call. The

switch statement is analogous to the one described above, except for the default case

(lines 35-41). If the file is successfully opened, it is guaranteed that P2 was the pre-

vious user, so no special check need be done. The read statement is the same as the

usual C statement, returning the number of characters read. Usually, the number of

characters to read is known. It is possible, however, to keep on reading until no char-

acters are received (or less than were asked for). This is not an error, unlike writing

fewer characters than requested. A serious error will return -1. As for the write com-

mand, there are variations on the read.

readran(/#, buffer, count, offset) is analogous to writeran.

readpo'wterifilename, wronguser) (formerly called readheader) is analogous to wri-

tepointer (except that readpointer returns as its value the pointer read from the file).

The declaration of readpointer as a function returning a pointer to characters appears

in vbus.h. An example of the use of readpointer is illustrated in Figure 3.

autoread(/z/enome, buffer, count) is analogous to autowrite. It opens the file, reads

the specified number of bytes, and closes the file.

Lines 40-41 Once again, the close statement makes the file available to other users, and is only

used on a successfully opened file.

The above example can be programmed more succinctly using autoread and autowrite. This is

shown in Figure 2, which is the same basic program as in Figure 1.

Lines 6-7 Note that we no longer need the file descriptors. This bookkeeping is taken care of by

Line 10

autoread/autowrite. The variable nchars is introduced here only to show that these

functions return a value, the number of characters read/written, nchars is not used in

this program.

As in line 12 of Figure 1, this line causes the process to loop, waiting until someone

else uses the file.

Line 11 This line replaces lines 13-26 of Figure 1. Most of the functions done explicitly in

Figure 1 are performed by the GRAMPS functions autoread and autowrite. An error

in opening the file will result in a diagnostic message and exit from the program, with

a stack trace. The same holds for errors in read, write, or close. Thus, there is no

return of -1 possible. FILEBUSY conditions will result in looping within the auto

subroutine, until the file is closed. This contrasts with the case in Figure 1, where

-9-

1 #include <pl.cm> /* the common memory map for this process */

2 #include <vbus.h> f* the GRAMPS header file */

3 extern unsigned int user ;

4 main()

5 {

6 int nchars ;
/* number of characters read or written */

7 char buf_in[20]\ f* buffer for reading */

8 for(;;) f* loop forever */

9 {

10 whi!e(flagpeek("sendtop2") = CLOSEDTOYOU)) ;

11 nchars = autowrite("sendtop2","1234567890",ll);

12 while(flagpeek("getfromp2") != CLOSFLAG(P2)) ;

13 /* now there are new data in the file */

14 nchars = autoread("getfromp2",bu/Jn,ll);

15 printf("bu/_m = %sW',bu/_m);

16 }

17 }

Figure 2.

after NTRIES attempts at opening the file, control is returned to the user’s program.

The advantage here is that the user need not concern himself with programming to

handle error conditions. Of course, the processor is halted on an error condition,

which may sometimes be a disadvantage.

Line 12 This line is analogous to line 10. Whereas there we waited for any flag other than

CLOSEDTOYOU, here we insist on a specific flag, closed-to-P2. CLOSFLAG(arg)
is a preprocessor macro, defined in vbus.h, which constructs the flag meaning "closed

to arg".

Line 14 Analogous to line 11. This line and the next replace lines 2742 of Figure 1, but not

exactly. openn_with_previous_user guarantees that if the file is opened, the previous

user will have been the one requested. Here, the while loop guarantees the same

thing, but a different user may have opened the file after the flagpeek but before the

open. Thus a different user would in fact be the previous one. For files which are

used by only two processes, as here, this cannot happen.

The above examples have illustrated many of the functions used to pass information between

processes using files, or fixed, named, regions of common memory. The next example expands further

on some of these methods, and introduces the use of shared, dynamically allocated memory. Here, one

process allocates a region of memory, and passes pointers to the region to one or more other processes.

Each of the processes makes use of the region as if it were part of its local memory. Processes may
read and write at will. Usually, this can be managed so that there are no conflicts. If conflicts are

hazardous, semaphores can be used for dynamically allocated memory, in the same way as for ordinary

files, but the resulting slowing of access may make it more practical to copy the data to each process

that will use it.

As processes finish with dynamically allocated regions, they must explicitly free them. The

memory is not, however, returned to the free list until the last processor that has access to it has

finished with it. Each processor to which the address is to be passed must be named in the call to the

dynamic memory allocator, or added to or deleted from the list of eligible users at some later time.

These requirements are elaborated below.

Figure 3 shows a program for a process, PI, that allocates common memory for a structure, opens

a file, and passes the address of the common memory to another process, P2. PI then reads a pointer

to dynamically allocated memory from P2, frees the memory for both regions, and exits. While this is

- 10 -

not a useful program, it illustrates the mechanics of the dynamic memory allocation and freeing pro-

cess. Once again, the program should be read as a whole before the annotations are studied.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#include <pl.em> f* the common memory map for this process */

#define NTRIES 500 f* number of tries to open file */

extern unsigned int user-,

main()

{

int fdout\ /* file descriptor for output */

char *mymem, *hismem

;

/* pointers to memory for PI and P2 */

fdout = get_fd("sendtop2"); f* get the file descriptor for output */

mymem = alloccm (20, PIBIT I P2BIT);

if(mymem — NULL)
abort("can’t allocate common memory for mymemVi");

strcpy(mymem, "message for P2\n"); /* insert message in allocated area */

fdout - openn_fd(fdout, W, NTRIES);

switch(fdout)

{

case -1: /* error in open */

abort("ERROR in opening sendtop2W);

case FILEBUSY: /* file is open to another process */

printf("sendtop2 busyVi");

break;

default: /* file is now open to PI */

ifOastusert/douf) != user)

{

if(wriie(fdout,8unymem,VYRSlZE) != PTRSIZE)

printf("bad write to P2V);

}

else printf("this user still is previous userO);

if(close(fdout) — -1)

abort("can’t close sendtop2>n");

}

if(freecm(mymem) < 0)

abort("cannot free common memory for Pl\n");

hismem = readpointer("getfromp2",Pl);

ifOhismem == NULL)
abort("could not read pointer from P2V);

printf("message from P2: %sVi",hismem);

if(freecm(hismem) < 0)

abort("can’t free common memory for P2Sn");

stop();

)

Figure 3.

Lines 1-5

Lines 6-7

Line 8

These are the same as for the program in Figure 1.

Here the variables used in the program are declared. Only one file descriptor is

needed, and there are two pointers. The pointers will be used to address the areas in

common memory, mymem will be allocated by this process, and sent to P2, while

hismem will be allocated by P2, and read by PI.

get_fd finds the file descriptor associated with the given file name, and returns it for

later use. Making use of the file descriptor and the calls openn_fd and flagpeek_fd

ensures that file accesses will be substantially faster than using the filename and

openn (etc.) directly.

- 11 -

Line 9

Lines 10-11

Line 12

Line 13

Lines 14-30

Lines 31-32

Lines 33-35

alloccm is the statement that allocates an area in common memory. The command
here is to allocate 20 bytes of common memory, to be used by processes PI and P2.

P1BIT and P2BIT are defined in custom.h, within vbus.h. The alloccm call returns a

pointer to the start of the available space (a char *), which may be coerced to other

types of pointers as necessary. Note that different processes allocate space in different

areas within common memory, so that it is possible for one process to run out of

space while others still have adequate space. The system administrator can reassign

these areas if necessary.

If there is some problem with allocating memory, or if there is no more memory

available, the alloccm call returns NULL. This can be used as a signal for the user’s

program to free memory that is no longer needed. Here, the program prints a mes-

sage and halts.

The pointer returned by the alloccm call can be used exactly like any other pointer in

the system. Here, a string is copied into the area, to be read by P2.

Having found the file descriptor by calling get_fd, the openn_fd call can now be

used to open the file. This works exactly the same as the openn call described in the

first example. It is faster because it does not have to look up the file descriptor that

corresponds to the file name. The same three results can occur after making the call

as for the openn command in Example 1.

The switch statement accounts for the three values returned from the open. There are

no differences between this code and that described in Figure 1 except in the default

case. Here, the pointer is written out to the file "sendtop2". Note that the value of

mymem is written out to P2, by passing the address of mymem to write, as in Unix.

Note that P2 needs to know where in memory PI allocated the space, and this is the

value of mymem, (and not, for example its address). As in Example 1, the file is

closed after writing, to make it available to P2.

After finishing with dynamically allocated memory, it is necessary to return it to the

free list. The freecm command is the usual way of doing this, freecm removes the

process from the list of legal users of the location, and, if there are no remaining

legal users, returns the memory to the free list for re-use. Usually it is a serious error

for freecm to return a negative value. Either an invalid address has been given as an

argument, or the free list has been corrupted, or the memory has already been freed.

Here, the process is halted if an error occurs. More robust systems would have to deal

with the problem in some other way.

A more general form of freecm is addusers. addusers(pointer, addvec, subvec)

takes a pointer to a common memory location, a vector of users to be added as hav-

ing legal access to the location, and a vector to be removed from access to the loca-

tion. addusers is used when the set of originally assigned users is to be modified.

For example, alloccm always assumes that the allocator will be a user of the area.

Often, one process simply creates and initializes an area, and then passes it to another

process, without further use. The first process can remove itself from consideration as

a user by calling freecm or addusers immediately after the location is allocated.

Another use is when a process needs to pass a pointer to a third process unknown to

the process that allocated the memory. The intermediate process would need to add

the third process to the list of legal users before passing the pointer, or there would

be a risk that the memory would be freed before it was claimed by that process.

Note that when no more users have a claim to the memory addusers returns the area

to the free list just like freecm, and the area can thereafter be reallocated at any time.

Having written the address of the area allocated by PI, the example program shows

one way of reading a similar address allocated by another process, in this case P2.

readpointer was discussed above, and is used here to return the value of a pointer,

(readpointer is declared to be a function returning (char *) in vbus.h.) The file used

- 12 -

for reading is "getfromp2", which is only read after PI is NOT the last user. That is,

the file flags are checked until some process other than PI was the previous user, and

a number of bytes equal to the length of an address is read and returned. If there is a

problem with the read, readpointer returns NULL, which is used here to abort the

process. Note that the above line 6, and most of lines 13 to 30 could have been

replaced by a single writepointer call, which writes an address to a given file, as

described above.

It should be pointed out that there are two types of dynamic allocation and freeing in the

GRAMPS system. In addition to the common memory handling described above, local, non-shared

memory can also be dynamically allocated. This is done using the usual C malloc and free calls.

Memory will be allocated and freed in the same way as for common memory, but will only be accessi-

ble to the process that created it (and possibly other processes that run on the same processor). Even

though the addresses of local pointers can be passed to other processes (as can any value), attempts to

access these addresses will result in reaching areas within the local memory of the receiving process,

rather than of the process that sent the pointer. This is usually disastrous.

In addition to these functions, there are a number of miscellaneous calls that have not yet been

described. They can be divided into functions for dealing with files, for communicating with a termi-

nal, and for accessing registers and memory locations. There are also system calls for process switching

and synchronization. These are described briefly below.

Three system functions are provided for checking the flags associated with a file, without disturb-

ing them, and without preventing other processes from accessing the files, as discussed earlier. The

three calls are ftagpeek(filename), flagpeek_fd(/<i), and lastuser(/tf). The first of these returns the

flagword associated with the given file when given the file name, the second returns the flagword when

given the file descriptor (which is faster), while the third returns only the byte containing the user ID of

the previous user, and it too requires the file descriptor argument The flagwords consist of two bytes,

one containing the identifier of the previous user of the file (which may be the current user if the file is

open). The second byte is used to determine if the file is OPEN or CLOSED. Successive calls to

flagpeek or flagpeek_fd may give different values if the files are in use.

Note that the decomposition of the flagword into the two bytes is machine dependent It is there-

fore recommended that this be done using the following preprocessor macros, which are defined in

vbus.h. FLAGBYTE(flagword) selects the OPEN/CLOSED byte, and PREVUSER(/fa£W0r<i) selects

the previousjuser byte. Also OPENFLAG(user/<i) constructs the flagword that means ’OPEN to

userid’, and similarly CLOSFLAG(ujerwf) for 'CLOSED to userid’.

Some of the functions that deal with terminal interaction have already been mentioned. In addi-

tion to the usual printf, scanf, getchar, putchar, etc., there is a function that reads from the terminal

up to, and including the next newline,' and returns the characters in a buffer. restdn\(dummy, buffer ,

count) behaves like a normal read, except that it always reads a complete line of text from the terminal.

Another useful function for terminal input is called ifcharO . This simply checks to see if something

has been typed at the terminal. If not, 0 is returned. If so, the character is returned, however the char-

acter also remains in the buffer until read by a getchar. (getchar, by comparison, does not return at all

until a character has been typed.) Note that ifchar will detect a ctrl-C, and stop the process. Finally,

there is a call, testcrtO , that checks to see if a terminal is connected to the board. If so, it returns non-

zero. This is useful in cases when timing is critical. The call is used in printf to ensure that processing

is done only when there is something to receive the message to be printed.

There is also a class of calls that deals with timing in the system. Some of these assume that

there is a clock available, so may not work in all cases, sleep(n) is used to wait some specified number

of milliseconds (approximately) before doing some action, sleep does not require a system clock; it

Line 36 Having read the pointer from P2, PI may now use it for its own purposes, just like

any other pointer. Here, the message is simply printed to the terminal.

When the memory is no longer needed, it must be returned to the free list through the

freecm call.

The stop statement causes an immediate halt of the program.

Lines 37-38

Line 39

- 13 -

obtains its delay by executing do-nothing loops. (The remaining timing functions do require a system

clock.) wait_until(0 waits until the specified time, then returns the current time. If it is called when the

given time has already passed, it returns immediately. wait_to_multiple(f, dt) waits until the time is a

multiple of dt ,
after t, and then returns the current time. These calls can be used to simulate synchro-

nous communications (see e.g. open_synch), or to ensure that an action, such as taking a picture,

occurs at a given time. systimeO returns the system time (a common memory counter incremented

using a clock interrupt). imaliveO sets a location in the current process’s PROC array (see below) to

the current system time, so that another (supervisory) process can know the current process is still run-

ning. imalive also returns the current time.

A number of functions are provided for accessing registers and memory locations directly. These

are useful when interacting with special devices, peek(addr) returns the long word (32 bits) at the

address addr, which must be even (this restriction is imposed by the hardware), while peekb{addr)

fetches the single byte at the address addr (even or odd). Similarly, regpeek(register) returns the long

word value in the specified register. Registers are specified as follows (for the Motorola 680x0). Argu-

ments are integers, from 0 to 15, with 0 corresponding to dO, 1 to dl, etc., through 7 to d7\ then 8

corresponds to aO , 9 to al, etc., through 15 to a.7. There is no command to modify registers at present.

In analogy to the peek commands, there are poke commands. poke\{addr, longword) copies the value

longword (32 bits) to the given address addr, which must be even, pokew(addr, word) does the same

for word length data (16 bits), and pokeb(addr, byte) copies a byte (8 bits) to any given address addr

(even or odd).

Other commands can be used to copy data rapidly (using the loop mode of the 68010), or to zero

blocks of memory, movblkfaowrce, destination, count) moves count bytes (count < 65536) from source

to destination. The source and destination must not overlap. movblkfast(sc>urce, destination, count) is

similar but faster, requiring that the addresses be even, and the count be a multiple of four.

movbigfast(s0urce, destination, bigcount) has the same restrictions, except that bigcount is a long word,

so up to four gigabytes can be moved. To zero a block of memory, use zeroblk(address, count) where

count is the number of bytes (< 65536) to be set to zero, starting at address.

A large number of GRAMPS debugging tools are available. Some of these are automatically

invoked by the programs, such as the stack trace on exit, while others may be explicitly requested to

help locate programming errors. These are described in the following section.

Debugging Tools

Before discussing explicitly invoked debugging tools, we call attention to the design criterion that

whenever the system detects an error, it writes a message to the terminal (if there is one). This mes-

sage includes the name of the subroutine that detected the error and a brief description of the error.

This practice can save the programmer from having to code print statements at each place where a -1

error return can occur. (The system printout can be suppressed at any time, if desired, by setting the

global variable sysdebug to zero.) These messages may be further augmented by setting bit 1 of the

PROC array’s debugflag (see Selection 6 below). This bit causes a stack trace to be generated and

printed with every system message.

Once a program is debugged, it can be made much smaller by relinking it to a GRAMPS library

that has been created with the #include DEBUG switch (in vbus.h) removed. This removes many of the

run-time checks and associated error message texts.

Another execution time debug feature is the "system subroutine trace" facility. For every major

system function entered, a line is printed giving the name and arguments of the function. This feature

is invoked by setting bit 0 of the debugflag byte in the user board’s PROC array (see below). Already

mentioned are the stack traces which are automatically printed whenever abort or exit (with a non-zero

argument) is called.

The explicitly invoked tools are self-guiding and menu driven, tools is actually a standalone pro-

gram (a C main program) which is created and downloaded by GRAMPS alongside the user’s main
program, but is never called by any part of the user’s program. It uses a separate stack, and bypasses

the monitor’s register save area, in order not to destroy any information about the user’s program under

- 14 -

test.

The CRAMPS initialization message includes a reminder to "type XG for tools" when in the

GRAMPS monitor. Without this monitor, do a GO to location 21040 (hex), or find the location of the

tools subroutine, and do a GO to iL

The main tools menu then appears, as shown in Figure 4. These menu choices are elaborated on

in the following paragraphs.

CR - menu
l,t - stack trace

2 - display current stack

3 - display system flags

4 - display user’s ’files’ array

5,s - symbol table (addresses, or examine/change)

6 - set debug flags

7 - eliminate/restore subroutines

8 - display this user’s PROC structure

g - resume program

x - restart program

e - execute subroutine

*E - exit

(Note - ctrl-c will clobber the register save area)

Enter menu selection (CR for menu):

Figure 4.

Menu Selection 1 (or "t") presents a stack trace, the chain of nested function (subroutine) calls,

most recent first The addresses are obtained from the stack, which must not have been changed since

the program was stopped. These are converted to the ASCII function names using the symbol table,

which is downloaded by the download program at the same time as the code. The very last calls listed

by the trace should be main, vmain, and _main. vmain and _main are GRAMPS initialization rou-

tines, and main is the user’s main program. A stack trace run before starting the program is not mean-

ingful.

Selection 2 displays the contents of the stack itself, or at least of the most recent 256 bytes. Note

that the "top" of the stack, its most recent entries, are at the top of the display; however, these are the

lowest stack addresses. The stack grows downwards, from higher addresses to lower.

Selection 3 is particularly useful. This shows the current state of the system file flags, i.e. which

files are open and to whom, which have been closed and when (if the system clock has been running),

and who last did a "peekflag". If a parameter file ("parmfile") has been created by the system, then all

files will be listed (use control-S/control-Q to stop/start the output). Otherwise, only those files known

to the process, i.e. appearing in its .cm file, are listed.

The user’s internal files array is listed with Selection 4. This shows this user’s (the user executing

tools) own idea of the state of the file. Be careful, however, since some of this information has a

slightly different meaning here than in selection 3, and moreover is updated only when the user

attempts to open the file. Thus the open/closed flag tells only whether the file is open to this user, not

whether it’s open to any other user. Also, the previousjuser flag refers to the previous user at the time

this user last opened the file, and not the current user. In particular, if the file is open to this user, it is

still the previous user that appears.

- 15 -

The symbol table. Selection 5, or "s", is probably the most important of the tools. Of course, a

symbol table must have been downloaded along with the program. The symbol table is in a special

compact format, having been created from the compiler’s output by a GRAMPS formatter program bin-

map. The Administrator has probably put a call to this program into the shell file Ilf ("link, locate, and

format"), so that it is created automatically.

On entering Selection 5, another menu appears, shown in Figure 5. Note that one may return to

the main tools menu at any time by typing control-T (for lools), or directly to the monitor by typing

control-E.

Enter a global symbol name, or an address, or CR for menu.

To examine or modify a variable, enter its symbol or address followed

by %spec, where %spec is one of the following printf specifications:

%d int (output in decimal)

%ld long (decimal)

%x int (hex)

%lx long (hex)

%c char (ASCII)

%cx char (hex)

%s string (ASCII)

%&s pointer to string (ASCII)

%[float

%lf double

%m memory display (256 bytes)

%a array or structure (display sizeof(array) bytes)

You may also enter CTRL-T to return to the Tools menu,

or CTRL-E to Exit directly to the monitor.

Enter a global symbol name, or an address (or CR for menu):

Figure 5.

The simplest function is just symbol table lookup. Enter a symbol name, followed by carriage

return, and the program responds by printing "address = ", followed by the address. Conversely, enter

an address (a hexadecimal number up to 8 digits), and the program prints the name of the global sym-

bol at that address. If there is no symbol with that address, the closest symbol with a lower address is

primed. Thus, if an address within a function is given, the name of that function is printed.

To examine or modify a global variable, it is only necessary to enter its name or its address as

above, followed by a printf specification (intervening blanks are permitted). For example, to print the

long (32-bit) integer variable \ar in hexadecimal, one would enter

var%lx

The specification is required because the symbol table does not store information on the nature of the

variable: its size, or the interpretation of its bits (integer, string, floating point). The specifications listed

in Figure 5 are accepted. Most of these mean the same here as in printf, and are thus self-explanatory.

A few deserve special mention.

The %c specification, as in printf, prints the character value of the addressed byte. The character

"A" prints as "A". But a non-printing character like control-G is, well, non-printing. The %cx has been

added to print the two-digit hexadecimal value of the addressed byte. Note that hardware constraints of

the 680x0 cause an exception (trap) if a word or long specification is requested at an odd address, so it

- 16 -

is necessary to use %cx for byte values.

A tougher distinction needs to be made between %s and %&s. %s is used when the address

given, or the address of the symbol given, is the address of the first character of the suing. For instance

if name is declared by char name[5] = "ABCD", then the entry name %s would get the respone "value

= "ABCD"". But when the address or symbol given is that of a pointer to the suing, the other

specification %&s needs to be used. Thus if we define char *pointer_to_name, and we set

pointer_to_name = name then the entry pointer_to_name %s gives garbage, but pointer_to_name %&s
again gives "value = "ABCD"". This is because the object at address name (= &name[0]) is the first

character of the string, while the object at &pointer_to_name is not a character at all but another

pointer, to the actual string. In practice one may try both specs.

Finally the specifications %m and %a have been added to deal with arrays, structures, and general

memory dumps. %m gets a dump of 256 bytes starting at the given address or symbol. Similarly, %a
gives a dump, but to the end of the array or structure. This end is determined from the symbol table by

scanning for the next higher addressed symbol. If the symbol and the next higher symbol are not

contiguous-perhaps there are compiler-generated constants in between, for example, or a structure is

aligned to a word boundary— this algorithm will yield extra dump. For %m and %a specs, no

modification of the variables is allowed. But one can find the address of, say, a structure element of

interest, and then modify it using its numerical address and another of the specs.

Following the "value = " display just described, the program will prompt with "New value:". Con-

tinuing the example above ("var%lx"), the computer might respond with

value = 1A549D. New value:

A carriage return entered in response means "Make no change". Otherwise, enter the desired new value

in the same format implied by the printf specification just entered (hexadecimal, in this example).

Only global symbols are recognized. Function names are inherently global. Variable names

declared outside any function are also global (and thus anything referenced as extern is also). But vari-

ables declared within a function are automatic; these appear and reappear in various places on the

stack, and are not included in the current symbol table.

Returning to the main menu (Figure 4), item 6 allows the user to view and change the debugflag

byte in the PROC array. (See Selection 8 for a discussion of the PROC array.) The system currently

recognizes bit 0 ("system subroutine trace": print name and arguments on entry to the major system

functions) and bit 1 (print stack trace along with system enror messages). Of the remaining bits, bits 2

and 3 should be reserved for future GRAMPS debug tools, while bits 4 through 7 are available for user

use, for example to control the user’s own debug printouts. The global variable _debugflag is set to the

PROC array’s debugflag at program start and occasionally thereafter (currently at each call to dprintf).

There are two other ways to change the debugflag byte. One is "by hand", using the monitor on any

board (since the PROC array is in common memory). The other way is by giving an argument "-cLct"

to the downloaded where xx is the desired value (in hex) of debugflag.

Selection 7, eliminate or restore subroutines (functions), is often a quick way to determine which

function is the site of a bug. It will request the name of the function, and whether to eliminate or

restore it. Elimination involves placing a return-from-subroutine command as the first command to be

executed; restoring is simply restoring the link A6 with which it started. All C programs compiled with

the Intermetrics compiler, most GRAMPS assembly-language subroutines, and very likely many other

compilers’ functions start with link A6. The tools program will not eliminate anything not beginning

with link A6.

Selection 8 displays the user’s PROC structure (its entry in the PROC array) in a readable

fashion. The PROC array is an array of structures, one for each processor, which resides in common
memory (at E20C00 in the NBS vision system). The address of a process’s entry in the PROC array is

saved on its own board at location THISPROC, at 20600 hex (in the current NBS implementation), and

in the global variable thisproc (declared as struct PROC *) which is available to the user’s program

and thus is also in the symbol table. The PROC structure itself is defined in vbusJi (Appendix B). It is

- 17 -

32 bytes long, and includes the user ID, program status (initializing, running, or aborted), the debugflag

described in Selection 6 above, the user’s time (see imaliveO), program start address, location of data

segment, and PROM entries. The PROM entries will not be meaningful when used with other than

GRAMPS PROMs. Examining the entire PROC array (i.e . for all processes) may be useful in getting a

snapshot of the whole system.

Finally, single-character codes allow various ways of exiting tools. Control-E will exit to the

monitor from anyplace where input is expected, without writing into the register save area, 0Control-C ,

available in the user’s program, will rewrite the save area, thereby destroying data regarding the pro-

gram under test, and should not be used from tools.) g will goto (resume at) the place the user’s pro-

gram was last stopped. It is not recommended to use g if the user’s program was never started, x will

restart the user’s main program (including the GRAMPS prologue) from the beginning, e will prompt

for the name of a subroutine to be executed, invoke the subroutine, and return to tools. This is currently

implemented only for subroutines with no arguments.

- 18 -

Appendix A

This appendix lists the functions in the GRAMPS library which are intended for use by user

processes, with brief descriptions, taken where possible from the function code itself. Additional func-

tions for system use are listed in Appendix C. Functions whose names are identical to the usual C
functions have the usual C arguments also (open, close, read, write, etc).

Argument types, and types returned by functions, are (16-bit) int except where otherwise noted.

Types uint and ulong are unsigned int and unsigned long, respectively; ADDR is char * and

USRBITS is unsigned long. (These are defined in vbus.h)

Functions of the GRAMPS system that open or close files:

open{filename, rwflags) STR filename ; Open a file. If file is busy, keep trying. Equivalent to

openn(Jilename, rwflags, 0). The second argument is used only for multiple-reader files; in other cases it

must be present, but its value is irrelevant. An ((int) *W*) as the second argument means write

privilege is being requested; the Unix System V symbols 0_WR0NLY and 0_RDWR are also recognized

as write requests. Any other value gets read-only. The symbols W and R are defined in vbus.h to have

the appropriate values. Note: "w" (the string) is NOT a valid write argument. This call is compatible

with Unix.

openn(filename, rwflags , ntries) STR filename ;
uint ntries; Try to open a file ntries times (if busy). If

there’s an error, retum(-l) immediately. If file is still busy after ntries tries, print a message and

retum(FTLEBUSY) (FILEBUSY == -2). ntries == 0 means keep trying until open. The second argu-

ment, rwflags , is the same as for open, openn is preferable to open in finished systems, where a pro-

gram which blocks indefinitely is not acceptable. The condition in which a file is busy for an unexpect-

edly long time requires corrective action by the affected process. However, for systems in a develop-

ment phase open is generally quicker to code (since there is no FILEBUSY return path), and is Unix-

compatible for easier testing.

openn_with_previous_user(/i/emjm£, rwflags , ntries
,
previous_user) STR filename ; Open a file, but

wait until previous user is previousjuser.

openn_with_otheruser(/z/emzm£, rwflags , ntries) STR filename ; Open a file, but wait until

previous_user is other than this user.

openn_fd(fd, rwflags , ntries) uint ntries; Open a file, given its file descriptor (index into files array).

This should be much faster than openn.

open_synch(filename, rwflags) STR filename; Wait until system clock is a multiple of synchrjncr

offset from synchrjbase , then open. This provides for synchronous communication, if desired. The vari-

ables synchrjncr and synchrjbase are extern unsigned int and extern unsigned long, respectively,

and may be changed by the user.

close(fd) Close the file with file descriptor fd.

fLagpeek(filename) STR filename; Read the flag of the specified file without changing it.

flagpeek_fd(/ii) Same, given the file-descriptor. Faster.

lastuser(/ii) Returns the previous_user flag obtained from the system file flags. If the file is currently

open to you, returns the user previous to you. (May need get_fd, below.)

gztjd(filename) STR filename; Get the file-descriptor of the named file. In GRAMPS, the file-descriptor

is permanently associated with a named file, so this is meaningful even for an unopened file.

The following preprocessor macros are provided (in vbus.h) in order to insure portability of

operations which form or decompose flagwords. This decomposition depends on the .order in which

bytes are concatenated to form words, which is different on an 8086 processor than on a 680x0, for

example.

FLAGBYTEiflagword) selects the byte that contains the OPEN/CLOSE information.

PREVUSER(/togw0rd) selects the byte that contains the previous user’s ID.

- 19 -

OPENFLAG(userfii) constructs a flag word that says ’OPEN to userid ’.

CLOSFLAG (userid) constructs a flag word that says ’CLOSED to userid’.

Read, write, and their analogs:

autoread(filename, buffer, count) STR filename ; ADDR buffer ;

autowrite(/z/en<2/rt£, buffer , count) STR filename ; ADDR buffer. These two functions perform their own

open and close.

read(fd, buffer, count) ADDR biffer,

writt(fd, biffer, count) ADDR buffer,

readran(/d, buffer, count, offset) ADDR buffer, long offset-. Direct access read (’readrandom’) - read

data starting offset bytes from the beginning of the file.

writeran(/d, buffer, count, offset) ADDR buffer, long offset,

ADDR readpoinier(filename, wronguser) (formerly called readheader) STR filename’, char wronguser;

Check that someone OTHER than wronguser has used filename then read and return pointer (ADDR).

writepointer{filename, wronguser, pointer) (formerly called writeheader) STR filename’, char

wronguser, ADDR pointer. Check that a user other than wronguser has used previous pointer, then

write new pointer.

Initialization:

vmainO Automatically called at startup by _main, to initialize the GRAMPS system. Should never be

called by user.

filinitO Reset flags of all files owned or currently accessed by this processor. This function is automati-

cally called at startup, by vmain. For any flag which is initialized, the remaining 14 bytes of the

system’s flagbuf are zeroed, and the entire file is zeroed also. Should never be called by the user.

Dynamic common-memory allocation programs:

Note the distinct names: malloc and free are the C-library routines that get space on the user’s own
board for its internal use; alloccm and freecm get space in common memory, which is accessible to

other users.

ADDR alloccm (.size, uservec) uint size’, USRBITS uservec; Get a block of common memory, of the

requested size (bytes). Return a pointer to it (ADDR). uservec is the bitwise OR of all userbits who
will get use of this block.

freecm(fp) ADDR p; Return a block of common memory to the free list freecm removes your userbit

from the uservec; only if you are the last user does the block actually get returned to the free list

addusers(/p, addvec, subvec) ADDR fp; USRBITS addvec, subvec; Update the bit vector of a block of

memory by adding the bits in addvec, and removing those in subvec (which may include the current

user himself).

Terminal I/O:

printf{control,args, ...) STR control; The usual C print-to-terminal function. However, printing is

skipped if no terminal is present.

readnl(dummy, buffer, count) ADDR buffer. Read from terminal to (and including) the next newline.

The returned count includes the newline (as on Unix).

getcharO retums(char). I/O primitive for reading from the terminal. Actually returns an int with high-

order byte 0. Control-C will cause the process to stop (by calling stop) as soon as it is read in, i.e. at

the next getchar, putchar, or ifchar).

putchar(char); I/O primitive for writing to the terminal. Control-S and control-Q may be used during

output to turn transmission off and back on, respectively. (The program will block - pause - during this

time.) Control-C will cause the process to stop (by calling stop) as soon as it is read in, i.e. at the next

- 20 -

getchar, putchar, or ifchar).

getchO retums(char). getch is like getchar, but does not echo the character to the terminal.

ifcharO retums(char). Returns 0 if no character is waiting to be read from the terminal. Otherwise,

returns the character but doesn’t ’use it up’: the next call to getchar will return the same character.

Normally used to see whether a character is waiting, if you don’t want to block (hang); getchar will

block if there is no character (as in Unix).

testcrtO testcrt is a subroutine to test if a device (presumably a CRT) is hooked up to the UART port.

Returns nonzero if a device is there, 0 if not.

Stop and related functions:

exit(z') stop, and print a stack trace if i is non-zero.

abort(/m/, args) STR fmt; Stop, and print ’ABORT’ and the specified message "fmt", filling in the args

as in printf. Provide a stack trace.

stopO This is the simplest way to exit the program when something goes wrong, without doing a return

to noplace.

Timer functions:

systimeO retums(longword). Returns system time.

imaliveO returns system time(long). Sets user time to systime to show SYS that this process is still

alive.

sleep(n) n is approximately in milliseconds.

ulong wait_until(0 ulong t; Wait until the specified time, then return current time (unsigned long). If

it’s past the specified time, return immediately.

ulong wait_to_multiple(f, dt) ulong /; uint dt\ Wait until time is a multiple of dt offset from t, then

return current time (unsigned long).

Moves, peeks, etc:

mo\b\k(sourceaddr, destaddr , bytecount); ADDR sourceaddr , destaddr, uint bytecount’, does a block

move (source and destination buffers must not overlap).

mo\b\kfast(sourceaddr, destaddr, bytecount)', ADDR sourceaddr, destaddr, uint bytecount', movblkfast

is similar to movblk, but addresses MUST be even, and count MUST be a multiple of 4. There is NO
checking. Count must be less than 65535.

mo\bigfast(sourceaddr, destaddr, bytecount)’, ADDR sourceaddr, destaddr, ulong bytecount’, movbig-

fast is like movblkfast, except count is a long (up to 4 M). As in movblkfast, addresses MUST be

even, and count MUST be a multiple of 4. There is NO checking.

zeTob\k(destaddr, bytecount); ADDR destaddr; uint bytecount; zeroblk zeroes a block of memory.

peek(address); ADDR address; retums(longword); Fetches the longword at location address, address

must be even (except 68020).

peekb(address); ADDR address; retums(byte); Fetches the byte at location address. Note that peek

cannot be slipped in in place of peekb, since the desired byte is returned at the other end of the long-

word return register.

poke\(address, longword); ADDR address; long longword; Stores a longword at location address,

address must be even (except 68020).

pokew(address, word); ADDR address; uint word; Stores a word at location address.

pokeb (address, byte); ADDR address; char byte; Stores a byte at location address.

regpeek{register); int register; retums(long); Returns contents of register (0-7 gets d0-d7; 8-15 gets aO-

a7).

- 21 -

Miscellaneous functions:

setcurrpic(n) uint n ; Set the currpic field of the PROC array (see Appendix B) to n.

changeproc{userid) uint userid’. Change process identity (to userid) (but still on same processor).

STR index(c, s) char c; char *s; Return a pointer to the first occurrence of c in string 5 ; or NULL if

none.

char makeprint(c) char c; Mask out the parity bit of the character argument c. If c is a printing char-

acter, return it; if c is non-printing, return instead.

Debugging tools directly callable by user:

toolsO A standalone program that may be entered directly from the monitor. Tools provides debugging

tools for understanding the current state of the user’s program. It takes care not to clobber the user’s

stack or register save area. The tools themselves are listed on and selected from a menu, q.v. Figure 4.

traceallO Print stack trace of the currently running program. This version is called by exit or abort,

and so ends with a call to stopO.

traceO Print stack trace of a stopped program. Uses saved_A6, in the register save area,

dispmem(addr, n) ADDR addr, Display n bytes of memory.

checkstackO Checks the current stack pointer to see if the stack is infringing on program space. If less

than 4k bytes remain, the program aborts.

Multi-tasking functions:

relinquishO - issue a trap 1 to voluntarily return control to the scheduler. This is the only user-callable

multi-tasking function. Those functions callable from the (application-dependent) scheduler are listed in

Appendix C.

- 22 -

Appendix B - listing of vbus.h and vbuscustom.h

/* <vbus.h> itself has those definitions which should not change */

/* from one installation to the next Things which may change are kept in */

f* <vbuscustom.h>, which is #include’d automatically by */

/* vbusx.h A few definitions in the system header file may also */

/* change; these are listed also, at the end of this Appendix. */

f* Related header files: vbyssys.h, vbusparm.h */

/* .cm files may also have some #define’s, and some variables */

l* defined, vbus.h includes remnants of stdio.h', DO NOT */

I* include that file too. */

#ifndef VBUS_DOT_H_IN f* define only if we haven’t defined before */

#define VBUS_DOT_H_IN f* say vbus.h has been included already */

/* #define MULTITASKING 1 [* include this #define for multi-tasking */

f* typedef s */

typedef unsigned char uchar;

typedef unsigned int uint;

typedef unsigned int ul6;

typedef unsigned long ulong;

typedef unsigned long USRBITS; f* user bit vectors */

typedef char * ADDR; f* any address */

typedef char * STR; /* strings in particular */

typedef struct alloheader * p_alloheader;

/* structure definitions */

struct PROC {
/* PROC (process) array on INTF board */

uint useruser, /* each byte has the value ’user’ */

uint status ;
/* Oxllll user program

0x2222 GRAMPS initialization

0x9999 task suspended

OxABAB aborted

OxAOAB interrupted (NMI)
*/

#ifdef MULTITASKING
struct context *context\

#else

USRBITS usermask\

#endif

uint currpic
; f* picture currently being worked on */

char reserved[4]; l* The first 2 bytes, in INTF only,

are used as SYSINITFLAG */

char debugflag ;

char irflag ; f* interrupt/reset flag */

ulong time ;

ADDR start;

ADDR data'.

- 23 -

ul6 busyflag;

ul6 startopf,

};

I*

The filebuf structure is internal to the user’s program.

It contains the location of the named file, who owns it and

who are the other users, and this program’s idea of whether it

has the file open and if so, who used it previously. The

system, of course, uses only the ’official’ status which is

maintained in common memory, in the ’flagbuf s.

*1

struct filebuf { I* one structure for each file */

char filename[\6];

char status-, /* open or closed (this flag is internal to program */

uchar previousjuser, f* obtained from flagaddr when file is opened */

USRBITS otherusers\ /* Each bit is a user. Bit 31 set means this is the owner */

/* (owner is responsible for resetting uninitialized flags at startup) */

I* This user must NOT be among otherusers */

uchar multiple-, /* True says more than one reader at a time may access file */

uchar uninitflags-, /* bit 0 says if msg printed, bit 1 if uninitialized */

uchar space[8]; t* filebuf should line up, i.e. be a multiple of 16 bytes */

struct flagbuf *flagaddr; f* */

ADDR buffaddr; f* starting address of file */

ADDR endaddr, /* last valid address plus one */

ADDR next-, /* address of next read or write position */

};

struct flagbuf
{

/* this lies in common memory */

uchar openflag-,

uchar curruser,

};

uint opentime-,

uint clostime;

uint peekuser-,

USRBITS rdusers-,

USRBITS writereq;

t* time file was last opened Qow-order part) */

/* time file was last closed */

f* time flag was last peeked at */

f* bit vector of users currently reading file */

/* (for multi-reader files only) */

f* bit vector of user (if any) wanting (or */

f* having) write permission. */

/* for allocation blocks: */

struct alloheader {

p_a!loheader nextfree-, f* pointer to (header of) next free block */

/* (for allocated blocks, points to itself) */

p_alloheader hnext, /* pointer to (header of) next block (free or allocated) */

ulong hsize-, /* the number of bytes in this block, including header */

USRBITS huservec; /* bit vector pointing to users of this block of memory */

};

struct IDstruct
{

uint id\

STR name;

};

- 24 -

/* basic #define's useful to users as well as system */

#dcfine NULL ((ADDR) 0)

^define EOF (-1)

#define TRUE 1

#dcfine FALSE 0

#define LOBYTE OxOOFF

#define HIBYTE OxFFOO

#define OPEN 0x80 /* bit 7 set. This value is necessary in order

to be able to use the 68000’s ’TAS’ instruction */

#define CLOSED 0

#define FILEBUSY -2

#define UNINIT 2 f* do not have another user with this ID *//* why not ??? */

#define ¥LAGBYTE(flagword)

#define PREVUSER(/fag>twd)

#define OPENFLAG(osm'J)
#define CLOSFLAG(wjcrid)

((flagword) » 8)

((flagword) & LOBYTE)

((userid) I (OPEN « 8))

((userid) I (CLOSED « 8))

#define OPENTOYOU (OPENFLAG(user))

#define CLOSEDTOYOU (CLOSFLAG(urcr))

#define R
#define W
#define 0_RDONLY
#define O.WRONLY
#define 0_RDWR

((int) ’R’ /* read only (used in open, etc) */

((int) ’W’ f* read-write (used in open, etc) */

0 /* System V flags used in ’open’ */

1

2

f* defines used in userids */

#define ALLBITS 0x7FFFFFFF

#define OWNERBIT 0x80000000

#define ENITBIT 0x80000000 f* used in openalloccm */

l* standard C file definitions: */

#deflne stdin 0

#define stdout 1

#define stderr 1

/* alternate definitions for allocation functions */

#define free(p) cfree(p)

#define malloc(n) calloc(l,n)

/* definitions of commonly used GRAMPS functions returning other than int */

extern ulong peek(), peekl(), systime(), imalive(), regpeekO;

extern char peekb();

externADDR alIoccm(), readpointer(), caIloc(), fgets();

extern double atof();

#ifndef MAIN
externstruct IDstruct _userids[\.

- 25 -

externstruct filebuf *fdes', f* the ’files’ array is defined in *.cm */

#endif /* end #ifndef MAIN */

#include <vbuscustom.h> [* see below */

#endif/* end tifndef VBUS_DOT_H_IN */

f* vbuscustom.h */

/***/

f* <vbuscustom.h> has the #define’s and initializations that may vary

from one site to another */

f* major system-wide parameters */

#define SYSTEM 1 f* NBS "lab" system. Mostly affects choice of

camera parameters */

#define FLAGBASE 0x400000 /* start of system’s copy of common-memory I/O flags */

#define FILEBASE 0x401000 [* start of file (buffer) space */

#define ALLOBASE 0x460000 f* start of allocation area */

#defineM0 f* M=1 for MULTIPLE-reader files, M=0 for no */

#define MAXFILES 20 /* max # of files available to this process */

#define MAXPROCS 32 f* max # of processors. This should never exceed

32, because we run out of userbits */

#define THISPROC 0x20600 f* location of pointer to this process’s

PROC structure. Set by PROM. */

#define DEF_SYNCHR_BASE 0/* default, for synchronous I/O */

#define DEF_SYNCHR_INCR 28 f* clock ticks, milliseconds (approx) */

/* user id’s: */

#define INIT0x66 /* used to be 0. x66 is better, because flags won’t

power up with that value */

#define UNSET 0x55 f* used in files .previous_user, which may be initialized

to LNIT, or totally UNSET */

#define NONE OxEE f* used in userids table below */

#define FSV 0x10

#define SSVA 0x2A
#define MLDI 0x31

#define SYS 0x7F

f* user bit mombers: */ f* (these are the indices, i.e. the mtmber of bits

to be shifted: usermask = 1L « userbitn) */

#define FSVN 0

#define SSVAN 1

#define MLDIN 3

#define SYSN 14

f* user bit masks: */ I* (these are the 16-bit masks, used for testing */

/* (userbit = 1L « USERN) */

#define FSVBIT 1

#define SSVABIT 2

^define MLDLBIT 8

#define SYSBIT 0x4000

- 26 -

#ifdef MAIN
struct IDstruct _j4smdls[MAXPROCS] = {

/* arranged so that _userids[userbitn].id == user */

/* i.e., given a userbitnumber n, the user id */

/* is just _userids[n] .id */

FSV, "FSV",

SSVA, "SSVA",

NONE,
MLDI, "MLDI",

NONE, NONE, •Ml NONE, "", NONE, ••••

9

NONE, NONE, If ft

* NONE, "", NONE, 9

NONE,
NONE,
SYS, "SYS",

NONE,

NONE, "", NONE, MM
9 NONE, "", NONE, 9

NONE, "", NONE, MM
f NONE, "", NONE, MM

9

NONE, "", NONE, MM
9 NONE, "", NONE, MM

9

NONE, "", NONE,

};

MM
9 NONE, "", NONE, MM

#ifndef SOUP f* The following is actually used only in SUP */

ADDR allfiles’,

#endif

I* dummy. */

#endif /* end #ifdef MAIN */

^** ******/

f* from vbussys.h */

!***!

I* INSTALLATION-DEPENDENT CONSTANTS */

#define ALLFILEMAX 50 /* Max number of files in entire system

(= allfiles array size) */

#define TIMEOUT 20000 /* max number of retries (opening a file) before printing warning */

/* #define MULTIPLE f* commented out means don’t include

multiple-reader file protocol */

#define SYSDEBUG f* perform run-time checks */

l* board locations */

#define USTART (ADDR)0x21000 f* entry point to (GRAMPS prologue to) user’s program */

#define UBASE (struct baseblock *) USTART /* start of user’s baseblock, q.v. */

#define SYM_TAB_ADDR_SLOT (struct symbol **) (UBASE->symboljable_addr

)

t* location of the symbol table address */

- 27 -

#define BOARDTOP ((ADDR) OxAOOOO) /* highest address on board, plus 1 */

#define USERSTACK BOARDTOP /* top of user stack space */

#define ZEROFROM (ADDR)0x90000 /* zero stack from here up to current stack pointer */

#define SYSINITFLAG (((struct PROC *) 0xE21000) -> reserved)

/* in PROC array, INTF board’s entry */

/* The following are PROM addresses used only in tools() (vbusg.c),

and will depend on the PROM used */

#define SGO (Gong *) 0x2022A) /* address of the address saved by */

/* stop(), in monitor’s save area. */

/* Printed out by trace(). */

((ADDR) 0x2022E) /* "save area" - monitor’s list of */

f* register contents as of the last stop() */

f* or breakpoint */

reg_A6 regpeek(14) f* frame pointer register */

saved_A6 peekI(USRBUF + 14*4) /* frame pointer register (in save area)*/

saved_A7 peekl(USRBUF + 15*4) /* stack pointer register (in save area)*/

G07 ((ADDR) 0x9BC) /* address in monitor of end of ’G’

command */

#define USRBUF

#dcfine

#define

#define

#define

-end of installation-dependent constants */

- 28 -

Appendix C

This appendix lists all the functions included in the GRAMPS library, under the source code file

in which they appear, for use by the advanced user. Again, brief descriptions are taken where possible

from the function code itself. Argument types, and types returned by functions, are (16-bit) int except

where otherwise noted. As before, types uint and ulong are unsigned int and unsigned long, respec-

tively; ADDR is char * and USRBITS is unsigned long. (These are defined in vbus.h

)

Indented function names are intended only for system use.

For system administrators and maintainers, the GRAMPS file names are given below. The source

is often very useful in understanding the behavior of the functions. The names of the files derive from

the VMEbus implementation. There used to be two separate versions, one for the VMEbus, and one for

the Multibus (called mbus). Later, the two were merged, but the names were not changed.

«< vbusa.c »>
vbusa.c contains those functions of the GRAMPS system that open or close ’files’.

open(filename, rwflags) STR filename ; Open a file. If file is busy, keep trying. Equivalent to

openn(filename, rwflags , 0). The second argument is used only for multiple-reader files; in other cases it

must be present, but its value is irrelevant. An ((int) *W*) as the second argument means write

privilege is being requested; the Unix System V symbols 0_WR0NLY and 0_RDWR are also recognized

as write requests. Any other value gets read-only. The symbols W and R are defined in vbus.h to have

the appropriate values. (The explicit cast to int is not required when using the Intermetrics cross-

compiler, but this is compiler-dependent) Note: "w" (the string) is NOT a valid write argument The

Unix System V flags 0_RDONLY, 0_WR0NLY, and 0_RDWR are recognized, and this call is compa-

tible with Unix.

openn (filename, rwflags , ntries, fd_arg) STR filename’, uint ntries’. Try to open a file ntries times (if

busy). If there’s an error, retum(-l) immediately. If file is still busy after ntries tries, print a message

and retum(FILEBUSY) (FILEBUSY = -2). ntries == 0 means keep trying until open. The second

argument rwflags, is the same as for open. fd_arg is used only iffilename = 0. It should be the value

returned by a previous get_fd or successful open call, openn is preferable to open in finished systems,

where a program which blocks indefinitely is not acceptable. The condition in which a file is busy for

an unexpectedly long time requires corrective action by the affected process. However, for systems in a

development phase open is generally quicker to code (since there is no FILEBUSY return path), and is

Unix-compatible for testing on a Unix host system.

openn((ADDR) 0, rwflags, ntries
, fd) uint ntries'. If the filename argument is 0, then a fourth argument

is present (used with openn_fd).

openn_with_previous_user(/z/enan2£, rwflags, ntries, previous,juser) STR filename’. Open a file, but

wait until the previousjuser flag is previousjuser.

openn_with_otheruser(/i/£mjm£, rwflags ,
ntries) STR filename’. Open a file, but wait until the

previousjuser flag is other than this user.

openn_fd(/<i, rwflags, ntries) uint ntries’. Open a file, given its file descriptor (index into files array).

This should be much faster than openn.

open_synch(/z/ename, rwflags) STR filename’. Wait until system clock is a multiple of synchr_incr

offset from synchrjbase, then open. This provides for synchronous communication, if desired. The vari-

ables synchr_incr and synchrjbase are extern unsigned int and extern unsigned long, respectively,

and may be changed by the user.

openr(filename, DUMMY) STR filename’, open or retum(-2) if busy. Use openn(filename, R, 1).

openw(filename, ntries) STR filename; uint ntries; Open for writing (applies to "multiple-reader"

[simultaneous access] files). Use openn(filename, W, ntries). (openr and openw have been retained

for compatibility with existing programs.)

(for system use:)

-29-

openonc^{filename, rwflags, ntries, fdjarg) STR filename ; Open or return (return -2 (FILEBUSY)
if busy), ntries is vestigial; it used to be used for multiple-reader files. fd_arg is used only if

filename — 0.

_open(p) struct filebuf *p; System open.

_openwait(p, ntries) struct filebuf *p; uint ntries ; Keep trying to _open.

_openw(p, ntries) struct filebuf *p; uint ntries ; Open for writing,

close(fd) Close the file with file descriptor fd.

(for system use:)

_released(p) struct filebuf *p; Free a multiple-reader file of this user’s read and write bits.

_close(p) struct filebuf *p;

Qagpeek(filename) STR filename ;
Read the flag of the specified file without changing it

flagpeek_fd(/2i) Same, given the file-descriptor. Faster.

lastuser(/ii) Returns the previous_user obtained from the system file flags. If the file is currently open to

you, returns the user previous to you. (May need get_fd, below.)

get_fd(filename) STR filename ; Get the file-descriptor of the named file. In GRAMPS , the file-descriptor

is permanently associated with a named file, so this is meaningful even for an unopened file.

The following preprocessor macros are provided (in vbus.h) in order to insure portability of

operations which form or decompose flagwords. This decomposition depends on the order in which

bytes are concatenated to form words, which is different on an 8086 processor than on a 680x0, for

example.

FLAGBYTE(flagword) selects the byte that contains the OPEN/CLOSE information.

PREVUSER(/fagwwtf) selects the byte that contains the previous user’s ID.

QPENFLAG(Mserid) constructs a flag word that says ’OPEN to userid ’.

CLOSFLAG(u^criJ) constructs a flag word that says ’CLOSED to userid'.

(for system use:)

struct filebuf *getfptr(filename) STR filename'. Given a filename, return a pointer into the ’files’

array.

«< vbusb.c »>
This file contains the file initialization functions.

filinitO Reset flags of all files owned or currently accessed by this processor. This function MUST be

called by everyone at startup (and is called automatically in vmain). Current version zeroes all files

whose flags are reset by this process (other than parmfile). Zeroing the files should make for easier

debugging. If any flag is initialized, the remaining 14 bytes of the system’s flagbuf are zeroed also.

(for system use:)

multinit(p, flag) struct filebuf *p; uint flag’. Called by filinit to initialize a multiple-reader file.

initopen(adtfr, flag) ADDR addr, uint flag’. Return 1 for successful open, 0 if not successful.

zerofile(p) struct filebuf *p; Zero file pointed to by p and its flagbuf, unless it’s parmfile or

alloc*n.

getparmfO Locate parmfile in common memory, and return a pointer to it if it’s there. Wait for

it if so instructed.

getallfilesO Get parmfile and generate a ’files’ array. For now, just read it all in into temporary

(automatic) area. Later can screw around looking into file directly.

cpyfile(p, a) struct filebuf *p; struct allfilebuf *a; Copy a file’s info from the ’allfiles’ array to a

amongf(z'd, bits) uchar id; USRBITS bits; Is the userid id among those listed in bits'? id is a

userid like SSVA (0x2A); bits is OR'd from userbits like SSVABIT (1 « SSVAN, or 0x0002).

- 30 -

«< vbusc.c »>
vbusc.c contains CRAMPS functions other than ’file’ I/O, including printf, readO, writel.

(for system use:)

STR libdateO Get GRAMPS date-of-last-revision.

char datchar(^) long d; Used by libdate.

printf{control,args, ...) STR control ; The usual C print-to-terminal function. However, printing is

skipped if no terminal is present. Note that not only is printing skipped, but formatting is skipped as

well, thus removing the rather large overhead of the formatting whenever the terminal-device is discon-

nected.

dprintf(control , args, ...) Same as printf, except no printing takes place if sysdebug == 0. All

the GRAMPS system programs call dprintf, so that system messages may be entirely turned off.

setcurrpic(n) uint n; Set the currpic field of the PROC array {q.v. Appendix B) to n.

exit(z) stop, and print a stack trace if i is non-zero.

abort(j) STR 5 ; Stop, and print ’ABORT’ and the specified (null-terminated) message.

(for system use:)

writel(dummy, buffer , count

)

ADDR buffer. Write a message to the terminal.

readO(dummy, buffer, count) ADDR buffer. Read and echo a line from the terminal. Return

number of chars INCLUDING NEWLINE. Interpret line editing characters char delete and line

delete.

readnl(dummy, buffer, count) ADDR buffer. Read from the terminal to (and including) the next new-

line. The returned count includes the newline (as on Unix). This is the same function as readO and

readline.

readline(dummy, buffer, count) ADDR buffer. For compatibility with earlier forms.

changeproc(ujm'd) uint userid'. Change process identity (to userid) but still on same processor.

(for system use:)

getusern(userid) Get the user bit number usern (0 - 15) corresponding to the given userid (SSVA,

e.g.).

sleep (n) n is approx in milliseconds. The system administrator should set the count on the for loop such

that sleep(l) is approx 1 ms.

ulong wait_until(/) ulong t; Wait until the specified time, then return current time. If we’re past the

specified time return immediately.

ulong wait_to_muItiple(/, dt) ulong /; uint dt; Wait until time is a multiple of dt offset from t, then

return current time.

«< vbusd.c »>
vbusd.c contains read, write, and their analogs,

autoread(filename, buffer, count) STR filename', ADDR buffer,

autowrite(/z/em*m£, buffer, count) STR filename", ADDR buffer. These two functions perform their own

open and close.

read(/tf, buffer, count) ADDR buffer,

write(fd, biffer, count) ADDR buffer;

readran (fd, buffer, count, offset) ADDR buffer; long offset; Direct access read (’readrandom’) - read

data starting offset bytes from the beginning of the file.

writeran(/ii, buffer , count, offset) ADDR buffer; long offset,

ADDR readpointer(filename, wronguser) (formerly called readheader) STR filename; char wronguser;

Check that someone OTHER than wronguser has used filename then read and return pointer.

- 31 -

writepointer(filename, wronguser, pointer) (formerly called writeheader) STR filename', char

wronguser, ADDR pointer. Check that user other than wronguser has used previous pointer. Write new

pointer.

(for system use:)

isopen(p) struct filebuf *p\ Is this file open to you, according to the system flags?

«< vbuse.c »>
vmainO Always called at startup by pmain, to initialize the GRAMPS system.

«< vbusf.c »>
alloccm, freecm, and related programs. Note the distinct names: alloc and free are the C- library

routines that get space on the user’s own board for its internal use; alloccm and freecm get space in

common memory, which is accessible to other users.

ADDR alloccm (size, uservec) uint size', USRBITS uservec; Get a block of common memory, of the

requested size (bytes), uservec is the bitwise OR of all userbits who will get use of this block.

freecm(fp) ADDR p\ Return a block of common memory to the free list freecm removes your userbit

from the uservec; only if you are the last user does the block actually get returned to the free list

addusers(/p, addvec, subvec) ADDR fp\ USRBITS addvec, subvec; Update the bit vector of a block of

memory by adding the bits in addvec, and removing those in subvec (which may include the current

user itself).

freelink(//?, forward_offset, backward_offset) ADDR fp\ NOT YET SUPPORTED. Return a link of a

doubly-linked list to the free list, first fixing the links, fp points to the block (list element),

forward_ojfset is the offset from fp of the pointer to the next element in the linked list, backward_offset

is the offset from fp of the pointer to the previous element.

(called by system:)

initalloccmO Must be called by vmain.

freeinit(u^ern) Search list belonging to usern\ free any blocks that have your usermask.

get_allocb(3 Get parmfile and generate an _allocbase array. For now, just read it all in.

markallocbO Mark your own entry of the COMMON MEMORY copy of jallocbase as being

initted.

openalloc(ujern) If speed is needed, this can become its own streamlined version of open. For

now, use existing open (create entries in files array).

closalloc(/y) Close alloclist for this user.

gei2\\ocb(fulladdr) p_header fulladdr. Return userbit number in whose allocation area fulladdr is

located.

STR allistname(i4re/7i) Return filename of allocation list for usern.

«< vbusg.c »>
Debugging tools.

toolsO A standalone program that may be entered directly from the monitor. Tools provides debugging

tools for understanding the current state of the user’s program. It takes care not to clobber the user’s

stack or register save area. The tools themselves are listed on and selected from a menu, q.v. Figure 4.

menuO Prints the menu in Figure 4, for tools.

dispflagsO Display the system’s current file flags.

displfl_afa(q/z/e6) Display one flag using the allfiles array. Called by dispflags.

displfl_fa(/i/e6) Display one flag using the files array. Called by dispflags.

- 32 -

char *fstr(sfr,nu/n) Set up a filename string for printing.

dispfilesO Display the user’s ’files’ array in human-readable form.

STR flagletter(/fog) char flag\ Set up flag for printing; return pointer to the string.

STR subrname(tf<ii/') ADDR addr; Return the subroutine name that the address addr lies in, as a null-

terminated string.

traceallO Print stack trace of the currently running program. This version is called by exit and abort,

and ends with a call to stop().

traceO Print stack trace of a stopped program. Uses saved_A6, in the register save area.

symtabservO Menu-driven server subprogram to access global-symbol-table information, including

symbol names, addresses, and values, and to change those values.

struct symbol *getaddr(str//zg) STR string; Given a symbol string
,
return a pointer to its entry in the

symbol table. Return NULL if the symbol is not found.

ADDR getsubaddrO Request subroutine name, and return its address.

symtabmenuO Print menu for the symbol table server.

symeq(s, t) STR s, t; Return TRUE if null-terminated strings s and t are equal, FALSE if not.

ADDR ishexval(sfr) STR str ; If str is a hex number in ASCII, terminated by 0 or ’%’ or
’

’, return the

number in binary; otherwise return 0.

ishex(c) char c

;

Return TRUE if c is a valid hex character, FALSE if not.

printsymtabO Print the entire symbol table.

printsymboICsyw) struct symbol *sym; Print one entry in the symbol table.

displaysymbol(a^ir, inbuf, end) ADDR addr, end ;
char inbuf[

]

; For the symbol whose address is addr
,

print its contents according to the printf specification %spec (in inbuf). Ask if the contents are to be

modified, and if so, modify them. (The argument end is used only with the specification %a).

STR index(c, s) char c; char *s; return a pointer to the first occurrence of c in string s; or NULL if

none.

STR symbolstring(m2mc) STR name ; Copy string and add terminating 0; note that subsequent calls

will overwrite the copy.

char htoi(s) STR s; Return value (<256) of an ASCII string s taken to be one or two hex characters.

currstack() Print contents of stack, from current stack pointer back.

monitorO Print ’Monitor’ and exit DIRECTLY to monitor, do not save registers in save area.

debugflagO Set debug flags in PROC array and in program.

dispPROCO Display current entries in this user’s PROC structure in common memory.

subrQ Eliminate a subroutine by placing an rts (return from subroutine) right at the beginning; or

restore it by restoring its initial op-code. Works on subroutines beginning with ’unlk a6’~ this includes

all Intermetrics-compiled C programs, and most GRAMPS assembly programs. The subroutine will

prompt for the name of the target subroutine, and the function (eliminate or restore).

dispmem(adtfr, n) ADDR addr; Display n bytes of memory.

char makeprint(c) char c; Mask out the parity bit of the character argument c. If c is a printing char-

acter, return it; if c is non-printing, return instead.

readnltest(/tf, buf, count) ADDR buf,;
Read to newline, unless first character is ctrl-E or ctrl-T.

«< vbusasm^sm »>
C-callable assembly-language subroutines run on VMEbus.

pmainO This is the starting point for all C programs. It is never called by a user program.

mo\b\k(sourceaddr, destaddr, bytecount); ADDR sourceaddr
, destaddr; uint bytecount; does a block

move (source and destination buffers must not overlap).

- 33 -

mo\b\kfast(sourceaddr, destaddr , bytecount); ADDR sourceaddr, destaddr, uint bytecounr, movblkfast

is similar to movblk, but addresses MUST be even, and count MUST be a multiple of 4. There is NO
checking. Count must be less than 65535.

mo\b'\g$2kSt(sourceaddr, destaddr , bytecount); ADDR sourceaddr, destaddr, ulong bytecounr, movbig-

fast is like movblkfast, except count is a long (up to 4 M). As in movblkfast, addresses MUST be

even, and count MUST be a multiple of 4. There is NO checking.

zeTob\k(destaddr, bytecount)-, ADDR destaddr, uint bytecounr, zeroblk zeroes a block of memory.

lockexch(a^re^5, number, type [, prevflag])-, ADDR address-, uint number, prevflag-, lockexch performs

a locked exchange with a specified location: (Returns the number originally in specified loc) type=l for

byte, type=2 for word, type=4 for ’initexchange’ (called to open a file during initialization) puts in

userid EF flag was previously not open (note difference from openexch), and restores flag if ’INUSE’.

type=5 for ’close-exchange’ (called during closing of file). This function w'as very useful on the 8086XS

processor, which had locked (uninterruptible) exchange capability. On the 680x0, it is easily replaced by

peeks and pokes.

openexch(address)-, ADDR address-, This is the subroutine that actually performs the open, on the flag

at address. If the flag is already OPEN, retum(FILEBUSY). Otherwise open it using a TAS (test-and-

set), and put userid next to flag. In either case, update user’s files.previous_user.

peek(address)-, ADDR address-, retumsQongword); Fetches the longword at location address, address

must be even (except 68020).

peekb(address)-, ADDR address', retums(byte); Fetches the byte at location address. Note that peek

cannot be slipped in in place of peekb, since the desired byte is returned at the other end of the long-

word return register.

pokz\(address, longword)-, ADDR address', long longword’, Stores a longword at location address,

address must be even (except 68020).

pokew(a<i<irej5, word)-, ADDR address', uint word ; Stores a word at location address, address must be

even (except 68020).

pokeb(address, byte)-, ADDR address-, char byte-. Stores a byte at location address.

regpeek(regriter); int register, retums(long); Returns contents of register (0-7 gets d0-d7; 8-15 gets aO-

a7).

poke(address, longword)-, ADDR address', long longword', Same as pokel, for compatibility with exist-

ing programs.

systimeO retums(longword). Returns system time.

imaliveO returns system time(long). Sets user time to systime to show SYS that this process is still

alive.

stopO stop is the simplest way to exit the program when something goes wrong, without doing a return

to noplace.

getcharO retums(char). I/O primitive for reading from the terminal. Actually returns an int with high-

order byte 0. (The earlier name getcha is also supported.) Control-C will cause the process to stop (by

calling stop) as soon as it is read in, i.e. at the next getchar, putchar, or ifchar).

putchar(c/uzr); I/O primitive for writing to the terminal. (The earlier name putcha is also supported.)

Control-S and control-Q may be used during output to turn transmission off and back on, respectively.

(The program will block - pause - during this time.) Control-C will cause the process to stop (by cal-

ling stop) as soon as it is read in, i.e. at the next getchar, putchar, or ifchar).

getchO retums(char). getch is like getchar, but does not echo the character to the terminal.

ifcharO retums(char). Returns 0 if no character is waiting to be read from the terminal. Otherwise,

returns the character but doesn’t ’use it up’: the next call to getchar will return the same character.

Normally used to see whether a character is waiting, if you don’t want to block (hang); getchar will

block if there is no character (as in Unix).

- 34 -

testcrtO testcrt is a subroutine to test if a device (presumably a CRT) is hooked up to the UART port.

Returns nonzero if a device is there, 0 if not.

checkstackO Checks the current stack pointer to see if the stack is infringing on program space. If less

than 4k bytes remain, the program aborts. This number (4k) may be changed by changing the value of

the symbol STACK_RESERVE in vbusasm.asm.

For SYS process only (and not currently implemented):

incrtimerO Interrupt service routine to increment system clock.

initintrO Called at startup to initialize interrupt chip (and sysclock for SUP).

resetm(n) Reset the board in slot n (n = 0, ..., 15).

initscopeO Initializes the parallel output ports for use by onscope and offscope.

onscope(arg) Sets a specified bit of the output ports.

offscope(arg) Resets a specified bit. These three routines are used to toggle output bits at specified

points in a program, so the program’s progress can be monitored on an oscilloscope.

«< vbussup.c »>
This is kept as a separate source file and linked only with SUP. vbussup.c contains GRAMPS

functions that only SUP uses, (including restart). It is not currently implemented.

resetallO Reset and restart all boards (operator can issue G xxxx).

restarted) Reset and restart board with userid id (userid = ’ALL’ works recursively).

resetonly(Lf)

(for system use:)

getslot(/d, PROCad) ADDR *PROCad\ Return slot number and PROC structure base address of

the given id.

«< schedulers »>
This file and the next contain the primitives for running multiple tasks on a single processor.

Most of these functions can only be called by the scheduler or by the system itself.

(only for use in scheduler:)

schedulerO - as the name implies, this function acts as the main program and calls the various tasks

according to the algorithm programmed by the system administrator. It runs in privileged mode. It is

called at the end of vmain, and should never return.

spawn(process_start, n) ADDR process_start\ - Attach context[n] to the process which starts at

process_start , and start it, returning at the end of that process’s vmain (i.e

.

go through user’s initializa-

tion).

«< sched.asm »>
relinquishO - issue a trap 1 to voluntarily return control to the scheduler. This is the only user-callable

multi-tasking function.

(only for use in scheduler:)

schedinitO - initialize the interrupt vectors for the scheduler clock and trap 1 , etc.

activate(nextcontext, time) struct context *nextcontext; - activate the task described in the indicated

- context slot If time is nonzero, set scheduler clock to interrupt task after time msec. ...

start_scheduler_clock(rime) - set scheduler clock to interrupt in time msec.

(for system use:)

schedisr - interrupt service routine for trap 1 command. Save context of current task and restore

context of scheduler. Return to scheduler.

- 35 -

sched_clock_isr - interrupt service routine for scheduler clock. Save context of current task and

restore context of scheduler. Return to scheduler.

- 36 -

Appendix D - Local Environment - NBS

Currently, the development environment at NBS consists of two Dual Systems computers (sight

and vision), connected to a VME-based system using a serial download link. (The speed of download-

ing will be greatly increased by using a parallel interface between the Duals and the VME bus, which is

expected shortly). Programs are developed in C, compiled on the Duals using the Intermetrics C cross-

compiler, and linked with the GRAMPS library. Only the C language and 68000 assembly language are

currently supported. Substantial effort would be required to support other environments and languages.

The choice of cross-compiler fixes certain parameters, such as the lengths of variables. Thus, for

the Intermetrics compiler, a char in the target system is 8 bits long, and both signed and unsigned ver-

sions may be used, short integers are also 8 bits long. A regular int is 16 bits long, and may also be

signed or unsigned, long integers are 32 bits in length, as are all pointers. The extra codes used by the

68020 and the 68881 coprocessor are not yet supported by the Intermetrics compiler, but should be in

the near future.

The library containing GRAMPS is located in the directory /a/vlib on both sight and vision. The

source programs are in /a/vlib/vbus , and are called vbusa.c, through vbusg.c, with assembly language

subroutines in vbusasm.asm. The current #include files are in /a/vlib. Some of these are discussed

further in the Administrators Guide.

To compile a C program using the Intermetrics cross-compiler, type

ccv filel.c JUe2.c ...

Assembly-language programs work much the same, except using asmv instead of ccv. In this case also

the extension .asm is optional:

asmv file3

ccv and asmv both create an object file with suffix .ol. The object files then have to be finked together

along with the GRAMPS library using Ilf:

Ilf filel file2 fde3 ...

Ilf stands for fink, locate, and format. It leaves its output ready for downloading in a .dn file, in

GRAMPS .dn format, ccv, asmv, and Ilf are in the directory lalx, which should be included in the

user’s PATH environment variable (in his .login or .profile file, as applicable).

- 37 -

Appendix E - Local Environment - Philips

Currently, the development environment at Philips consists of a Sun workstation (jay), connected

to a VME-based system using a serial downloader. Programs are developed in C, compiled using the

Intermetrics C cross-compiler, and linked with the GRAMPS library. It is expected that the download

capability will be improved, either by using a parallel interface to the VME bus, or by direct memory
transfer.

The choice of cross-compiler again fixes certain parameters; see Appendix D above.

The source code and library containing GRAMPS is located in the directory /usr/local/interc/glib

on jay. The source programs are called vbusa.c, through vbusg.c, with assembly support in

vbusasm.asm, pmain.68k, and mmu.68k. Those with strong constitutions might want to examine some

of these files. The corresponding #include files are in /usr/local/intere/include. Some of these are dis-

cussed in the Administrators Guide.

To compile a C program, or to assemble an assembly-language program, using the Intermetrics

tools type

ic68 -G -o name filel.c file2.c ...

where the -G flag includes the GRAMPS library, the -o flag renames the output to name, and filel.c,

file2.c, ... are file names. Assembly programs can also appear in the command line, and will be assem-

bled and linked. A manual page will be forthcoming on this command. ic68 is in the directory

/usr/local/interc/bin, which should be included in the user’s PATH environment variable (in hjs .login

or .profile file, as appropriate).

The following programs are specific to the Philips implementation of GRAMPS. Similar programs

may be necessary for each system, but will in general be hardware-specific.

«< mmu.68k »>
This assembly-language program sets up the memory mapping in the memory-management unit.

It also currently initializes some of the "magic" numbers and locations.

«< mkversion and version.c »>
In order to establish the date of last update of the GRAMPS system, a system date function is

included in the library, and printed out on startup of each process, mkversion creates a C program in

the file version.c, which is compiled and added to the library automatically with each use of candl or

aandl.

- 38 -

REFERENCES

[1] Mansbach, Peter, Overview of the 'CRAMPS' Multiprocessor Operating System, (to be publ.), 1988.

[2] Mansbach, Peter, and Shneier, Michael, The GRAMPS Operating System: Administrator' s Guide,

National Bureau of Standards, Gaithersburg, MD 20899 (to be publ.), 1988.

NBS-114A (REV. 2 »8C)

U.S. DEPT. OF COMM.

4.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 88-3778

2 . Performing Organ. Report No. 3.

TITLE AND SUBTITLE

Publication Date

SEPTEMBER 1988

The GRAMPS Operating System: User’s Guide

5. AUTHOR(S)

Peter Mansbach and Michael Shneier

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

GAITHERSBURG, MD 20899

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State, ZIP)

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Center for Manufacturing Engineering
Robot Systems Division
Gaithersburg. MD 20899

10. SUPPLEMENTARY NOTES

-jocl Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey, mention it here)

This guide describes the GRAMPS real-time multiprocessor
operating system from an applications viewpoint. It presents the
information needed to use GRAMPS in implementing distributed
processing applications. Additional information needed by an
administrator to set up and maintain a specific application
appears in the Administrator's Guide.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitali ze only proper names; and separate key words by semicolon s)

asynchronous communication; communications protocol; functionally-divided processes;
GRAMPS; multi-processor; multiprocessing; multiprocessor; operating systems;
real-time; robot vision; vision

13. AVAILABILITY 14. NO. OF
* PRINTED PAGES

1

Uni imited

|

For Official Distribution. Do Not Release to NTIS 42

I Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
15. Price20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $11.95

