

IMPLEMENTATION OF THE INSPECTION ROBOT CONTROLLER

Howard T. Moncarz
Bruce Borchardt

April 21, 1988

This publication was prepared by United States Government
employees as part of their official duties and is, therefore, a
work of the U.S. Government and not subject to copyright.

Certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Bureau of Standards,
nor does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

TABLE OF CONTENTS

II.

III.

IV.

V.

Page

INTRODUCTION 1

1. WHAT THIS DOCUMENT IS ABOUT 1

2. AUDIENCE . . . 1

3. OVERVIEW 1

TOP LEVEL DESCRIPTION OF THE ROBOT CONTROLLER 3

1. DESCRIPTION OF THE ROBOT 3

2. LOCATION IN THE WORKSTATION ARCHITECTURE 3

3 . MAIN CONTROLLER FUNCTIONS 5

4. WORK ELEMENTS AND STATUSES 5

DEFINING POINTS FOR THE ROBOT 7

1. REFERENCE FRAMES 7

2. POINTS ASSOCIATED WITH REFERENCE FRAMES.... 7

3. TYPES OF LOGICAL POINTS 7

4. PATH TRAVERSAL 8

5 . PHYSICAL POINTS 9

DATA STRUCTURES 11

1. AMRF DATA. 11

2 . LOCAL DATA. 11

TASK DECOMPOSITION 13

1 . wsc_irc 13

2. task 13

3. 15

4 . machine 16

0

1

Page

VI.

VII.

5. am_robot 18
5.1. Handshake (lines 1-18) 18
5.2. Initialization (lines 19-31) 18
5.3. State Table Parser (lines 32-82) 18
5.4. Execution Of State Table (lines 83-124) 18
5.5. Utility Subroutines (lines 124-169) 18
5.6. Command Subroutines (line 170-368) 19
5.7. Read Serial Port (lines 369-383) 19

PROCEDURE MODULES

1

.

irc_l ib . .

2 . irc_types

3 . irc_funcs

4 . rpt_funcs

5 o o ^t data. o o o o

INTERFACE TO EQUIPMENT .

1. MODULES THAT INTERFACE TO EQUIPMENT...

2. DETAILS OF THE CURRENT IMPLEMENTATION...

3. CHANGES REQUIRED FOR EQUIPMENT SUBSTITUTION

21

21

21

21

21

21

23

23

23

23

VIII. INITIALIZATION AND SHUT DOWN 25

1. STARTUP....................... 25

2 . SHUT DOWN. 25

IX. ERROR HANDLING 27

1. CONTROLLER PROGRAM HANGS ... 27

2. MOVE ERROR 27

3. EMERGENCY STOPS 28

4. ERRORS UNDER MANUAL CONTROL 2 8

X. USER INTERFACE 31

1. EXTRA MODULES REQUIRED FOR TESTING 31

2, USER COMMANDS 31

C •

11

Page

XI. FUTURE PLANS . 33

1. SOFTWARE DEVELOPMENT 3 3

2 . NEW HARDWARE 33

3 . PROBLEM AREAS 3 3

3.1. Locating the Part . . 33
3.2. Move Errors 33
3.3-. Starting the Robot 34
3.4. Time Delays 34
3.5. Flipping the Part . 35

APPENDICES

A. IWS DOCUMENTATION LIST 37

B. REFERENCES 39

C. GLOSSARY (and abbreviations) 41

D. FLAT FILE SPECIFICATIONS 47

READER COMMENT FORM 53

in

LIST OF FIGURES

Page

Figure 1. Logical Configuration of the IWS 4

Figure 2. Task Decomposition for the Robot Controller 14

iv

IMPLEMENTATION OF THE INSPECTION ROBOT CONTROLLER

I. INTRODUCTION

1. WHAT THIS DOCUMENT IS ABOUT

This document describes the implementation specifics of the
Inspection Robot Controller (IRC) program. This program runs
under the control of the ECS program that is described in the
document IMPLEMENTATION OF THE EXECUTION CONTROL SYSTEM OF THE
INSPECTION WORKSTATION . The controller program consists of state
machine modules that "customize" the controller for its particular
application — i.e. supervising the Robot.

2 . AUDIENCE

Anyone who needs to understand the internals of the IRC software
should read this document. This includes anyone who will continue
the development of the IRC or make modifications to it.

The document ARCHITECTURE AND PRINCIPLES OF THE INSPECTION
WORKSTATION describes the principles that the ECS and the IRC
programs utilize. It is recommended that that document
be read first.

3 . OVERVIEW

Chapter II gives a top level description of the Robot Controller.
It describes the equipment, specifies the location of the IRC
in the IWS control hierarchy, and describes the main functions the
controller performs.

Chapter III explains how locations are specified to IRC and how
dynamic path generation is accomplished during controller
execution.

Next, Chapter IV describes the main data structures, both global
to the AMRF as well as local to the IWS, that the controller
program uses. The specific task decomposition that the IRC
incorporates is explained next in Chapter V. Additionally,
procedure modules used by the main tasks discussed in Chapter V
are described in Chapter VI.

The actual interface to the Robot is specified in Chapter VII.
Specific details used in the start up and shut down procedures are
described in Chapter VIII. Errors that can occur during operation
are listed and explained in Chapter IX. Chapter X desribes the
user interface to the IRC.

1

IRC Implementation

Finally, Chapter XI discusses future development plans for the
IRC.

The appendices include further information and implementation
details. Appendix A lists the entire IWS documentation set.
References specific to the Robot and IRC are listed in Appendix B.
Appendix C contains a glossary of terms used in this document.
Appendix D specifies the internal file formats used to contain all
the data for the IRC.

Completing the document is a reader/comment form. You are
encouraged to write down your comments and mail the attached form
to the address specified.

IRC Implementation

II. TOP LEVEL DESCRIPTION OF THE ROBOT CONTROLLER

The two primary duties of the Inspection Robot Controller (IRC)
are to control the robot and to supervise the Surface Roughness
Instrument (SRI) Controller.

The design of the Horizontal Workstation's robot controller (RCS)
was studied and used as a starting point for the IRC. In
particular, the RCS task decomposition strategy was adapted for
the IRC, as well as the definition of the task level commands.
(Please note that the task level commands refer to the commands
specified in the task module.)

Several commands were added to the IRC's list of task commands to
customize the IRC to its special requirements. However, those
commands were defined so that they could be considered general
robot commands, rather than specialized commands used only in an
inspection workstation.

The task decomposition is discussed in Chapter V. The task level
commands are. discussed in Section 2 of that chapter.

1. DESCRIPTION OF THE ROBOT

The robot used at the IWS was manufactured by American Robot, now
named American Cimflex. The IWS Robot is used to transfer parts
from one place in the workstation to another, and to work as a
unit with the SRI to position a part in front of it as required.

The IWS Robot is a standard robot that is custom mounted upside
down on a gantry to permit it to reach any place in the IWS that
is required. The robot system consists of the robot itself, the
robot computer, the teach pendant, and the monitor. The robot has
two modes of movement: position and track. in position mode, the
robot can be moved at six joints -- the waist, shoulder, elbow,
wrist roll, wrist flex, and hand roll. In track mode, the robot
can be moved along the gantry track. The robot cannot move in
both modes simultaneously.

The robot has its own computer built into it that is considered
part of the robot itself. This computer runs a program written in
the robot's language (AR Smart) that interfaces it to the HP
computer that acts as its controller.

2. LOCATION IN THE WORKSTATION ARCHITECTURE

As shown in Figure 1, the Robot controller is subordinate to the
Workstation Controller and is the supervisor to the Robot.

3

IRC Implementation

Figure 1 . Logical Configuration of the IWS

4

IRC Implementation

Additionally, the Robot Controller is the supervisor to the SRI
Controller. In a future implementation, the Robot Controller will
be able to access the IMDAS (Integrated Manufacturing Data
Administration System) , the distributed data system which provides
common interfaces to the AMRF ' s user programs and underlying
databases [B.5, B.6].

3. MAIN CONTROLLER FUNCTIONS

The main functions of the Robot controller are the following:

Respond to Workstation Controller (WSC) commands and return
status information.

Retrieve data mapping out the IWS from the IMDAS.

Control the robot's motion.

4. WORK ELEMENTS AND STATUSES

The Robot Controller receives commands from the Workstation
Controller. These commands are either transition commands
(involved in the start up/shut down protocol) , or work order
commands (for operating in ready state)

,

which contain the work
elements that command the main functions that the Robot Controller
is responsible for doing.

The work elements executed by the Robot Controller are listed
below:

INITIALIZE

LOAD_DATA

ACQUIRE

CLEAR

MOVE

RELEASE

TRANSFER

GET_DIAL_READING

LOAD_SRI__DATA

INSPECT WITH SRI

5

IRC Implementation

Details for these work elements are discussed in Chapter V,
Section 2

.

Statuses returned by the Robot Controller to the Workstation
Controller are:

WORKING

DONE

ERROR

6

IRC Implementation

III. DEFINING POINTS FOR THE ROBOT

IRC commands refer to locations in the IWS . To generalize the
IRC , so it can be interfaced to other robots, locations are
specified by logical points, and are read in as data. A logical
point consists of a reference frame and a point number. This is
discussed in Sections 1 and 2

.

Path traversal between any two logical points is specified in
Sections 3 and 4.

Ultimately, a logical point refers to the actual location in the
IWS, known as the physical point. Physical points are discussed
in Section 5.

1 . REFERENCE FRAMES

An IRC reference frame is used to group a collection of points
together by their physical proximity. A convenient choice is to
associate a reference frame with each piece of equipment at the
IWS

.

The particular reference frames used are specified by data, and
are read in as character strings. For the benchmark IWS, the
reference frames used are: 'TRAY', 'CMM', 'SRI', 'DIAL', and
' ROBOT '

.

Currently there is only one tray at the IWS. If a second tray is
added, the reference frames for the two trays could be specified
as 1 TRAY1 ' and ' TRAY 2

'
(or whatever names are desired). The

' DIAL ' reference frame refers to points around the dial indicator.
'ROBOT' refers to the reference frame assumed when the robot is
first started up — which could be considered the absolute
reference frame for the IWS.

2. POINTS ASSOCIATED WITH REFERENCE FRAMES

The points associated with a reference frame are identified by
numbers -- using a different number for each point. They do not
have to be in consecutive order. Also, the same numbers can be
used to specify points in different reference frames.

3. TYPES OF LOGICAL POINTS

Logical points are grouped into three separate categories —
destination points, individual approach points, and group approach
points

.

Destination points include all those points that the robot could
end up at the completion of a command. These points could include

7

IRC Implementation

positions on the tray, positions on the coordinate measuring
machine, positions in front of the surface roughness instrument,
etc

.

Every destination point has an individual approach point
associated with it. The robot must always go through the
individual approach point to go to the destination point.
Conversely, the robot must always pass through the individual
approach point after coming from the destination point.

It is possible for the robot to complete its movement at an
individual approach point. In that case the approach point must
still have an individual approach point. However, an approach
point may have itself defined as its approach point.

Finally, every reference frame has one point associated with it
that is called the group approach point. Whenever the robot
leaves or arrives at a reference frame, it must pass through that
reference frame's group approach point.

At the completion of a robot move command, the robot may be
ordered to go to the safe position for its current destination
point. The destination point's individual approach point is used
for that safe position.

4 . PATH TRAVERSAL

A predetermined strategy is used in going from one destination
point to the next. This strategy is implemented in the module
e_move

.

In general, the robot will move from its current point to that
point's individual approach point. From there it will go to the
group approach point for its current reference frame. Next, it
will move to the group approach point of the destination's
reference frame. From that point, it will move to the
destination's individual approach point, and finally to the
destination point itself.

It is assumed that the robot can always move from a destination
point to that point's individual approach point and vice versa,
directly. Between any other two points, a path may be defined.
If a path is defined, the robot is directed to move to
intermediate points between the end points of the path. If a path
is not defined, then it is assumed that the robot can move safely
between those two points.

If a reference frame is specified as 'safe* (by data), then the
robot can move from any approach point within that reference frame
to any other approach point within that reference frame directly,

8

IRC Implementation

without checking to see if a path has been defined. If the
destination point is in the same reference frame as the current
point, then the group approach point can be skipped in the path
traversal. I.e. the entire path would be from the current point
to its individual approach point to the destination's approach
point to the destination point.

The robot is always commanded to move at its approach speed
between a destination point and its approach point — either
coming or going. Between any other two points, the robot is
directed to move at its faster free space speed. Also, the robot
is directed to move in its 'continuous mode' to all points except
a destination point. In 'continuous mode', the robot does not
pause at all in moving to the point following the immediate point
it is approaching. In going to a destination point, the robot is
directed to move in its 'stop at point mode.' In this mode, the
robot comes to a complete stop before it moves to the next point.

5. PHYSICAL POINTS

Eventually, all logical points refer to physical points -- actual
locations in the IWS. These points are all taught ahead of time,
but are loaded in as data when the IRC receives the ' LOAD_DATA

'

command. The paths taken in going from one point to another are
dynamic, within the limitations described in the previous section.

By simply redefining the taught points, small adjustments can be
made to the actual locations throughout the IWS, without affecting
the logical points or paths at all.

Additionally, the IRC has the capability to specify any absolute
point in the IWS work space (either a taught point or an
arbitrarily specified or computed point) as a local reference
frame for moves relative to that point. (Note that a point
includes position as well as orientation components for its
specification. The IRC uses this capability when it adjusts the
position of the part in front of the SRI, based on feedback from
the SRI Controller. In this case, the points moved to by the
robot are dynamically determined.

9

IRC Implementation

*'

'

IRC Implementation

IV. DATA STRUCTURES

1 . AMRF DATA
i

Before the robot can be directed to its main tasks (moving
material around the IWS) , the Robot Controller must retrieve the
data that maps out the workstation. This data is specified in
Appendix D.

The data is retrieved after IRC receives the command to
' LOAD_DATA 1

. This command is passed down to the task module, and
this module directs the data retrieval.

The , LOAD_DATA‘ command is packaged with two arguments. The first
argument specifies which set of files contains the data required,
and the second argument specifies which mapping within that data
should be used. This second argument is used, because one set of
data may contain several mappings. Each mapping is referred to as
a robot plan.

In the current implementation, the data is stored locally and is
not retrieved from the IMDAS. The task module prepares the local
data structures so that the data files for the robot plan required
will be used by the Robot Controller. When the data is retrieved
from the IMDAS, each set of data will contain one robot plan, and
consequently the one argument to ' LOAD_DATA ' will be the name of
the robot plan.

2 . LOCAL DATA

The local data is stored in a flat file system — each relation is
stored in a separate file. A relation contains key fields that
are used to find the record required. Then, the data fields in
that record are retrieved. The full specification for all the IRC
flat files is in Appendix D. The description of how the flat file
system is implemented is in IWS document Implementation of the
Execution Control System of the Inspection Workstation .

11

IRC Implementation

-

.

.

12

'

.

IRC Implementation

V. TASK DECOMPOSITION

The state machine modules used to implement the Robot Controller
are shown in Figure 2. These are described below.

1. wsc_irc

The wsc_irc module implements the UVA Protocol [B.2] in
interfacing the Robot Controller to the Workstation Controller.
This module accepts commands from the WSC and passes those
commands down the task decomposition hierarchy. It receives
statuses from its subordinate, the task module, and returns
statuses to the WSC.

2 . task

The IRC task module supervises the main functions performed by the
Robot Controller. These are the work elements listed in Chapter
II, Section 4. Additionally, task takes care of starting itself
up and shutting itself down upon command from its superior
(wsc_irc) , as all state machine modules do in the IWS
implementation

.

Currently, task retrieves data from data files residing locally on
the Robot Controller. Eventually, this data will be retrieved
from the IMDAS*. This data will then be parsed and stored in local
data files in the same format as the data that is currently being
used.

The implementation of the work elements is described below. Some
of the work elements require arguments, and these are enclosed in
parentheses. Optional arguments are enclosed in brackets. If the
part name is not given, it is assumed that the robot is already
holding the proper part. The part name is abbreviated as OBJ. If
the location is not given, it is assumed that the location is the
safe point for the previous location referenced. The locations
are abbreviated as A, B, and C.

INITIALIZE
Initialize the robot and robot parameters.

LOAD_DATA (PLAN_NAME)

Load the PLAN_NAME robot data.

ACQUIRE (OBJ [at A])

Get the part (OBJ) at location A. If A is not specified, get OBJ
from the current location.

13

IRC Implementation

Figure 2. Task Decomposition for

the Robot Controller

14

IRC Implementation

CLEAR (drop-at A [end-at B])

Drop off OBJ at A. If B is specified, end up at B, otherwise end
up at the safe point for A (A's individual approach point).

MOVE ([OBJ from A] to B)

If A is specified, get OBJ from A. Then move to B.

RELEASE [end-at A]
If A is specified, then go to A. Release OBJ.

TRANSFER ([OBJ from A] to B [end-at C])

If A is specified, get OBJ from A. Go to B. Then, if C is
specified, go to B, otherwise go to the safe point for B (B's
individual approach point)

.

GET_DIAL_READING ([OBJ from A] to B, towards C)

If A is specified, get OBJ from A. Go to B. Then go in the
direction from B towards C and move a distance equal to the peck
length. Repeat this move until reading is obtained from the ADI.
Total dial reading is equal to the (number of pecks - 1) times the
peck length plus the dial reading.

LOAD_SRI_DATA (OBJ, PLAN_NAME
)

Tell the SRI Controller to load SRI data for OBJ, using data from
PLAN_NAME

.

INSPECT_WITH_SRI ([OBJ at A] to B, towards C)

If A is specified, get OBJ from A. Go to B. Then go from B
towards C and up to a distance of SRI_Clearance from the SRI
(using the reading obtained from GET_DIAL_READING) . Now, send
command to the SRI Controller (SRIC) to begin the SRI inspection.
At this point, move to the positions specified by the SRIC (track)
until the SRIC reports back DONE. This completes the work
element.

3 . e_mov@

The term e_move stands for elementary move. This module contains
procedures that are required for each move segment (see Chapter
III, Section 4) . The main e_move procedures that are currently
implemented are: xqt_pickup, xqt_move_to, xqt_move_to_ob j

,

xqt_release, xqt_load_robot_data ,
and xqt_init_mach. These are

described below.

Xqt_pickup closes the gripper to grasp a part.

Xqt_move_to moves the robot to the point specified by its
argument. The argument specifies the logical point in terms of
its reference frame and its point number. This command uses the
path traversal strategy described in Chapter III, Section 4, given

15

IRC Implementation

the current location of the robot and destination point specified
by the argument.

Xqt_move_to_obj first opens the gripper to prepare it to grasp a
specified part, then executes the move specified above.
Xqt_release opens the gripper to release a part.
Xqt_load_robot_data loads the robot data that specifies the layout
of the IWS in terms of reference frames used, point locations,
important dimensions, etc., as well as robot parameters such as
approach speed, free space speed, etc.

Finally, xqt_init_mach establishes synchonization between the
robot and the HP computer, and establishes default values for
certain robot parameters.

4 . machine

The IRC machine module provides the interface between the bottom
level IRC commands, that are still robot independent, to the
American Robot — a specific robot.

The main commands implemented at the machine module (that are
important for the Robot Controller) are: INIT_HP_TO_ROB,
INIT_HANDSHAKE , INIT_MACHINE , IDLE, MOVE_TO_POINT , SET_SPEED,
SET_MOVE_MODE, CHANGE_GRIP_POSITION, SET_RF, and SET_TOOL. These
commands are described below.

When the Robot Controller is first started, certain
initializations are required. The INIT_HP_TO_ROB command
initializes the interface boards on the HP computer in preparation
for communicating with the robot. The INIT_HANDSHAKE command then
establishes synchonization with the robot. Next the INIT_MACHINE
command sets default values for several robot parameters. After
this command is executed, the robot is ready to receive the normal
operating commands. These are described below.

The IDLE command is used to put the robot is its 'IDLE' state,
from which it can receive new commands. This state is required
after the completion of each command. In a future version of the
software this state will be eliminated and replaced by a
handshaking protocol.

The MOVE_TO_POINT command moves the robot to the point specified
by its seven coordinates — track and six coordinates for the arm.
The robot moves to the track position first, and then to the arm
position. (The track and arm moves are independent.) The first
argument for this command (before the coordinates) specifies
whether the move is absolute or relative. If absolute, the
coordinates are measured from the robot power up reference frame.

16

IRC Implementation

Otherwise the coordinates are measured from the reference frame
specified by the SET_RF command (described below)

.

The SET_SPEED command sets the speed of the hand. • E_move changes
the speed between the free space speed and the approach speed back
and forth as required. The speed set in the machine module is an
index — the program on the robot (am_robot) determines what the
speed actually is. If the speed specified by this command is the
one currently being used, no command will be sent to the robot.

SET_MOVE_MODE has arguments to set several parameters for the
robot which it uses while it is moving between points. The first
argument specifies whether the move is to be joint-coordinated or
straight-line mode. The next argument specifies whether the move
is to be continuous, or if the robot will stop at the point to
which it is moving. If it is continuous, the robot will go at
full speed to that point and immediately proceed to the next
point. Otherwise, if the 'stop at point' mode is used, the robot
will come to a complete stop at the specified point before it will
accept another command. The third argument specifies whether the
elbow is up or down during arm moves. Whenever the SET_MOVE_MODE
command is issued, the machine module determines what the current
settings of the three modes affected are, and only sends commands
to the robot to set those modes that must be changed.

The CHANGE_GRIP_POS ITION command is used to open or close the
gripper. It has one argument which specifies the gripper position
-- either opened or closed. This command is only sent to the
robot if the position specified is different from the current
gripper position.

The first argument of the SET_RF command determines whether the
robot reference frame is absolute (the reference frame on start
up) or if a local reference frame is to be used. In the latter
case, the next six arguments specify a point (for the arm only)
that will be used as local reference frame from here on (until the
local reference frame is cancelled by a new SET_RF command which
specifies the absolute frame) . For a clear understanding of this
command and the SET_TOOL command (to be described below) , consult
the American Robot manual

.

The arguments for the SET_TOOL command are similar to the SET_RF
command. The first argument specifies whether to cancel the tool
or else to define a new tool. If a new tool is specified, the
next six arguments give the point location (of the arm) to use to
define the new tool. The SET_RF command sets a reference frame
that is used to specify positions for the center of the hand. The
SET__TOOL command provides an offset to that position.

17

IRC Implementation

This is useful when the robot is holding a part in front of the
SRI. If a SET_TOOL command is used to define the offset of the
part surface to the robot's hand, and then that same point on the
part (which is in front of the SRI) is defined as the local
reference frame to use, a move may be specified (i.e. a pure roll
motion) about that point.

5 . am_robot

Am_robot is a program, written in the AR Smart language, that runs
on the robot's computer, and interprets and executes commands
issued by the IRC. The program is implemented as a state table
interpreter. The following describes the program, line by line.

5.1. Handshake (lines 1-18)

This section checks the HP GPIO port (on the controller) to be
sure that communications are working. It raises its line, then
checks the line from the controller. After waiting one second, it
checks again, and if the controller has lowered its line in that
second, continues. This assures that both sides are "live."

5.2. Initialization (lines 19-31)

This fills up the registers with appropriate values (mostly zero)

.

This section is just insurance; the program would probably work
fine without it, as the registers are normally filled in the
program.

5.3. State Table Parser (lines 32-82)

This section decides which line of the state table we're on, based
on the command (register 8) and the current status (register 20)

.

The state table line number is placed in register 21? 50 is added
to this number? and the appropriate auxiliary commands are
executed by subroutines 51-57.

5.4. Execution Of State Table (lines 83-124)

Here is where the state table housekeeping is done. The various
subroutines (120 to 196) do some necessary chores (filling
registers, output and input lines, etc.). The execution of
subroutine 54 is where the actual robot commands are carried out.

5.5. Utility Subroutines (lines 124-169)

Here are the housekeeping subroutines.

18

IRC Implementation

5.6. Command Subroutines (lines 170-368)

This section executes specific commands, numbered 1 through 8

(commands 9-15 are null; they could be written later). Each is
treated as a subroutine. These subroutines work entirely through
robot commands, except for calls to the serial port for data.

i. Move Track. Notes the current position, gets 1 number from
the serial port, loads it into register 1, decides whether the
move is long enough to require the three second wait, branches to
the move with wait or move without wait routine, defines a point
from register 1, and moves to it.

ii. Move Arm. Gets 6 numbers from the serial port, loads them
into the registers, defines a point from them, and moves to it.

iii. Move Track and Arm. Gets 7 numbers from the serial port,
loads them into registers, defines a track point from register 1,
moves to it, puts the x-coordinate back into register 1, defines
an arm point from the 6, and moves to it.

iv. Set Speed. Reads one number from the serial port, and sets
the arm speed and track speed to a number close to it (0.5 to 40).
This round off is necessary because of the limited choices
accessible to the Set Speed command.

v. Set Move mode. Sets the robot to the move mode passed as the
command argument.

vi. Open/close gripper. Looks at the command argument (0 or 1)
and opens the gripper for a 0 or closes it for a 1.

vii. Set Frame. Gets 6 numbers, defines a point, and sets frame
to it.

viii. Set Tool. Gets 6 numbers, defines a tool, and sets it.
i

5.7. Read Serial Port (lines 369-383)

This gets one number from the serial port and puts it into the
accumulator. It includes handshaking to be sure that the control
computer sends only one number.

19

IRC Implementation

.

.

-

on2 0

IRC Implementation

VI. PROCEDURE MODULES

The modules in the task decomposition (state machine modules plus
the machine module) use procedures that are packaged into separate
modules. These modules are described in this section.

1. irc_lib

This library module contains procedures from the HP library that
are not used by the other controllers. The particular modules
included here are used to access the Hewlett Packard Interface
boards

.

2 . irc_types

This module includes data structure types that are specific to the
Robot Controller, and are referenced by state machine modules as
well as procedure modules throughout the Robot Controller program.

3 . irc_funcs

This module contains some general functions that are specific to
the Robot Controller and are referenced by modules throughout the
Robot Controller program.

4 . rpt_funcs

This module exports the data structures and functions to allow the
Robot Controller to track the orientations requested by the SRI
controller.

5

.

get_data

This module contains the procedures that search the locally stored
data files to return the data values needed by the state machine
modules as they are running.

21

*

IRC Implementation

.

-

22
'

IRC Implementation

VII. INTERFACE TO EQUIPMENT

1. MODULES THAT INTERFACE TO EQUIPMENT

The machine module interfaces the HP computer to the robot, and is
the only module to do so.

2. DETAILS OF THE CURRENT IMPLEMENTATION

Details for the machine module are described in Chapter V, Section
4 above.

3. CHANGES REQUIRED FOR EQUIPMENT SUBSTITUTION

To substitute a robot from a different manufacturer, the machine
module must be modified to implement the functions specified in
Chapter V, Section 4 for that robot.

23

IRC Implementation

IRC Implementation

VIII. INITIALIZATION AND SHUT DOWN

The top level module of the Robot Controller, wsc_irc, implements
the UVA initialization and shut down protocol. This protocol
implementation is discussed in Chapter VI on the Workstation
Controller implementation.

This section discusses what is done in the Robot Controller when
it receives these transition commands. It ignores the interface
between wsc_irc and the Workstation Controller, which is discussed
in Chapter VI.

1 . START UP

On cold start up, i.e. when the Robot Controller program is first
started, the hardware interface to the robot is initialized, and
then a handshake is done to establish synchronization between the
controller and the robot. Additionally, common memory mailboxes
are established.

After these events occur, . IRC is ready to receive commands. When
the ' WARM_STARTUP ' command is received, task issues a
' WARM_STARTUP * command to the SRI Controller, and waits until that
controller acknowledges that it is started. The task module then
goes into its 'IDLE 1 state, reports 'DONE* back to wsc_irc, and is
then ready to receive order action commands. (A LOAD_DATA command
is required before any other order actions can be issued.)

2 . SHUT DOWN

On receiving the ' WARM_SHUTDOWN ' command, the command is passed on
to the SRI Controller, and task goes to the 'SHUTDOWN' state.
When the SRI Controller signals 'DONE' back, task reports 'DONE'
back to wsc ire.

25

IRC Implementation

.

'

'

-

26

IRC Implementation

IX. ERROR HANDLING

There are only a few error conditions that can be handled without
restarting the system. The most common diagnostic that appears on
the robot’s screen (not the IRC) is "extra status." This is a
non-error which requires no action.

1. CONTROLLER PROGRAM HANGS

This error has two main sources. First of all, when the
Controller is communicating with the robot, if the handshaking
between the two does not conform to the proper protocol, the
Controller program can hang. It will continually wait for a
certain response from the robot that will never occur. One cause
for this failure is a noisy interface between the Controller and
the robot.

Secondly, any bug in the control structure of the program can
force the Controller to go into an undetermined domain and
effectively crash the program.

Currently, the Robot Controller cannot recover from this error.
The IWS must be restarted.

2 . MOVE ERROR

During operation, there should in principle be no move errors.
Move errors occur when the robot is commanded to a position that
it calculates to be impossible, for instance one that is outside
its reach. They can also occur for other reasons, which should
not happen while executing our usual program. One that happens is
"failure to reach end position." This indicates that the position
was not reached, but fails to show why not. Usually, a MOV
command will succeed in moving the robot to the position that the
previous command failed to reach. Other move errors can also
occur, but the reasons are not clear. In a perfect system, since
we are moving only to points well-known to be legal, they should
never occur under program execution.

The only response to the move errors is to restart the robot
program at a point which does not require an initial handshake.
This is the procedure given in the operations manual. The
philosophy behind it is that the program can be made to begin
execution at a particular line, but only from the PGM (program)
mode. The technique is to issue, from immediate mode, ’GTS 19'.
(go to statement 19. The decimal point is required.) This is a

line which is after the initial handshake, so the program will
immediately start executing its state table. Next, issue PGM to
put the robot in the program mode, and issue RUN from that mode.
This is by no means an absolutely certain restart. If the robot

27

IRC Implementation

controller is not in a suitable state, or if the robot's registers
have unusual data in them, the restart may well not work. When
you try this, be sure to have your finger on the stop button.

3 . EMERGENCY STOPS

The system has several ways to stop it. None of them could be
considered "soft" stops, in that all require a restart of at least
the robot program.

The first thing to try might be the rocker switch ' Run/Stop ' on
the teach pendant. This will stop the robot program, and prevent
the next move from occurring. Use this in a non-emergency
situation, when there is plenty of time for the present move to
finish. This stop can be recovered from with the GTS 19., PGM,
RUN sequence.

Equal in ease of recovery are the next level of stops. This level
includes the MOTOR button on the teach pendant and the fence
circuit. Both of these shut off the robot motors immediately.
This also stops the executing program automatically. To recover
from these stops, it is necessary to restart the motors, and then
do the program restart. The fence circuit has a locking feature
which is controlled by the box on the northeast column of the
gantry. If the fence is triggered, it must be reset with the
black button before the motors will restart. The audio feature of
the fence alarm can be turned on or off independently of the fence
itself.

The next level up is the power off button on the front console.
Pushing this button also stops the robot, but it necessitates the
reloading of AR Smart, the recalibration of the robot arm and
gantry, the reloading of the program, and the restart of the
control program. It also makes the success of the GTS 19
procedure very uncertain, as none of the robot registers will be
properly loaded, except by coincidence.

4. ERRORS UNDER MANUAL CONTROL

There are lots of ways to generate errors while under manual
control. Besides soft move errors, where the requested move is
known to be impossible, there are hard move errors from the end of
travel of an axis, from the collision detector, and from all sorts
of moves. The recovery is similar to that under program control,
except that once the motors are live, you are already under manual
control. The only additional tip concerns axis end of travel:

28

IRC Implementation

sometimes the axis will be stuck at the end of travel (this seems
to happen especially with the elbow axis.) In this condition the
joystick controls will sometimes not work; the solution is to turn
off the motors and manhandle the arm away from the position, then
turn the motors on again.

29

IRC Implementation

#

’

.

.

MMp

30

IRC Implementation

X. USER INTERFACE

1. EXTRA MODULES REQUIRED FOR TESTING

In integrated mode, wsc_irc is the highest level module in the
Robot Controller. It receives commands, via the local network,
from the Workstation Controller. If the Robot is to be run in
stand-alone mode, the operator needs to enter commands to the
controller and have those commands transferred to the wsc_irc
module. The interface that provides this connection between the
user and the wsc_irc module is contained in three modules —
irctest, user_io, and xqt_file.

Irctest is a state machine module, analogous to cmmtest in the CMM
Controller program. The actual 'commands available are contained
in the procedure module user_io, and are exported to irctest.
Likewise, the procedures in xqt_file are also exported to irctest.
These procedures allow the user to execute a file of commands in
one batch.

2 . USER COMMANDS

The first level of commands available to the user are 'ABORT 1

,

'SHUTDOWN', 'STARTUP', and 'EXECUTE'. These are the transition
commands. The first three commands do not have arguments. The
arguments for 'EXECUTE' are the work orders and their respective
arguments

.

The user must first choose 'STARTUP' to transition the Robot
Controller to the ready state. Next, the user selects 'EXECUTE'
and is presented with the work order commands. The user may
continually request work order commands until he chooses the
command 'QUIT', which returns the program to the first level of
commands

.

31

IRC Implementation

.

.

-

.

3 2

IRC Implementation

XI. FUTURE PLANS

1. SOFTWARE DEVELOPMENT

The primary effort is involved with fully integrating IRC into the
AMRF. This entails software development so that IRC will retrieve
the data it requires from the IMDAS, and then translate that data
into the internal data structures required.

The next area of software development will be to allow the robot
to pick up a part at an offset and orientation from the
destination point where it is located. That transformation from
the destination point is referred to as a grip point for the part,
and each part will have one or more grip points assigned to it as
initial data. Currently, the grip point is assumed to be aligned
with the destination point. All destination points are at fixed
locations in the workstation, and the robot cannot compensate if
the part’-s grip point is not exactly where it is expected.

2. NEW HARDWARE

It is planned to add a vision system to the IWS that will aid the
robot in picking up the part. The vision system will tell IRC the
relative position and orientation of the part from its destination
point, and with the software development described above, it will
be a simple matter for the robot to pick up the part at the proper
grip point for it.

3. PROBLEM AREAS

3.1. Locating the Part

The main problem in integrating the IWS to the AMRF and making it
fully automatic is to be able to determine a part’s exact location
and orientation on the tray, and to pick it up at its proper grip
point. When the AGV delivers a tray to the IWS, it is very likely
(based on current experience) for a part to be considerably offset
from its proper location. This leads to problems. The robot may
not be able to pick up the part, or even if it can, the part may
be put so out of place on the CMM that the CMM cannot inspect it.
The same is true for the SRI inspection. The planned development
described in the two sections above should solve this problem.

3.2. Move Errors

To make the IRC truly data driven, all destination points should
be determined offline, and not need to be taught ahead of time by
the operator. With the current hardware, a move from one legal
point to another (both taught ahead of time) may result in a move
error. (This is indicated on the robot teach pendant.)

33

IRC Implementation

Unfortunately, this stops the robot program (am_robot) and can
crash the IWS . Even if the IWS can be recovered without rebooting
the system, the recovery involves an awkward procedure. To be
sure a move error doesn't occur during workstation operation, all
paths must be tested ahead of time. Obviously, this limits the
level of automation that can be achieved with this robot.

It should be noted before leaving this section, that there are two
other distressing problems concerning robot moves. First of all,
some moves that were tested offline, and in fact worked properly
over and over again, sometimes suddenly don't work, again due to a
move error. (This is despite following the manufacturer's
instructions

.

)

The second problem was discovered in moving between two points
that are very close to each other. Certain moves that are legal
and consistenly work take so long for the robot to accomplish that
they should be avoided. This move can be dramatically sped up by
moving to an appropriate intermediate point. The problem moves,
as well as the solution paths, can only be determined by
experiment insofar as we have been able to ascertain.

3.3. Starting the Robot

Every time the robot is turned on, it must be calibrated. This is
an awkward procedure relative to other IWS start up procedures,
and an automatic calibration on power up would be very worthwhile.

3.4. Time Delays

The robot does not move at speeds necessary for commercial
implementation, and there are time delays that seem excessive.
For proof of concept, the slow speed of the robot is not a
problem. The control structure could be implemented with
sufficient speed. The delays are caused for the following
reasons

:

The control structure was not optimized for speed.
Significant improvements are obtainable.

The retrieval from the local database is slow. A better
implementation can solve this.

The current network implementation is very slow. Its
upgrade will be much faster.

Communications between IRC and the robot ' s computer is

slow. This is limited by the current robot computer.

34

IRC Implementation

Motion of the robot along its track is independent of the
robot's arm motion. The robot does not signal IRC when a
track move is completed, and an artificial time delay is
necessary in the IRC program to account for this. Without
the built in delay, the arm could start moving while the
robot was moving along its track, and this could be
disastrous

.

3.5. Flipping the Part

Currently, there is no provision for flipping over a part. This
is necessary to allow the robot to present more surfaces to the
SRI, as well as to give more flexibility in placing the part on
the CMM. An automatic vise would be needed to erase this
limitation, but this has not yet been planned.

35

IRC Implementation

,

.

36

IRC Implementation

APPENDICES

A. IWS DOCUMENTATION LIST

1. H. T. Moncar z ,
Architecture and Principles of the

Inspection Workstation , to be published as an NBSIR.

2. H. T. Moncar z, Implementation of the Execution Control
System of the Inspection Workstation , to be published
as an NBSIR.

3. H. T. Moncar z and T. H. Hopp, Implementation of the
CMM Controller , to be published as an NBSIR.

4. H. T. Moncar z and T. V. Vorburger, Implementation of
the SRI Controller , to be published as an NBSIR.

5. H. T. Moncar z and B. Borchardt, Implementation of the
Inspection Robot Controller , NBSIR 88-3772, April 21,
1988.

6. S. A. Osella, Implementation of the Workstation
Controller , to be published as an NBSIR.

7. J. Zimmerman, Inventory of Equipment in the Inspection
Workstation , to be published as an NBSIR.

8. H. T. Moncarz, S. A. Osella, B. Borchardt, and R.
Veale, Operations Manual for the Inspection
Workstation . NBSIR 88-3766, April 21, 1988.

9. J. Zimmerman, Recommended Technical Specifications for
Procurement of Commercially Available Systems for the
Inspection Workstation , to be published as an NBSIR.

37

IRC Implementation

IRC Implementation

B. REFERENCES

1. American Robot Corporation, Merlin Robot System
Operators and User Guide , Revision 2.1, 15 February,
1984.

2. D. R. O'Halloran and P. F. Reynolds, Jr., "A Model for
AMRF Initialization, Restart, Reconfiguration, and
Shutdown", NBS/GCR 88/546, May 23, 1986.

3. Rodenstock Precision Optics, Inc., Operating Manual
for the Optical Surface Finish Measuring System RM400 .

1984.

4. A. J. Wavering and J. C. Fiala, The Real-Time Control
System of the Horizontal Workstation Robot . NBSIR 88-
3692, December 16, 1987.

5. D. Libes and E. Barkmeyer, "The integrated
manufacturing data administration system (IMDAS) —an
overview", International Journal of Computer
Integrated Manufacturing, Vol. 1, No. 1, pp.' 44-49.

6. C. Furlani, et al, "The Integrated Manufacturing Data
Administration System (IMDAS)", to be published as an
NBSIR, 1988.

39

IRC Implementation

.

40'

.

IRC Implementation

C. GLOSSARY (and abbreviations)

ADI Abbreviation for the Automatic Dial Indicator.

AGV Abbreviation for Automatic Guided Vehicle,

approach speed
Speed the robot uses when traveling between the destination
point and its individual approach point -- either to or
from the destination point.

automatic dial indicator
Instrument used to measure the distance that a spring
mounted stem is depressed.

automatic guided vehicle
Electric vehicle under control of the AMRF ' s MHS that
conveys trays of parts to and from workstations.

common memory system
Manages communications between state machines.

CMM Abbreviation for the Coordinate Measuring Machine.

CMMC Abbreviation for the CMM Controller,

continuous mode
Robot move mode in which the robot does not stop at the
point towards which it is traveling, but goes through that
point immediately on to the next point to which it is
directed. (The opposite mode is stop at point mode.)

controller
Supervises the operation of a mechanism, another
controller, or both.

coordinate measuring machine
Machine used to measure the dimensions of a part.

data server
Software module that interfaces the controller it resides
on to the data it requires.

destination point
Location within the IWS where the robot can stop after it
finishes its command.

ECS Abbreviation for the execution control system.

41

IRC Implementation

elbow mode
Robot move mode when the arm is moving — the robot's elbow
may be specified to be up or down.

execution control system
Computer program that runs on each controller computer and
implements the AMRF design principles. This program loads
and executes those modules which determine which controller
is actually being run.

free space speed
Speed that the robot uses when traveling between approach
points (whether individual or group)

FSM Abbreviation for finite state machine. Strictly speaking,
the software control modules used in the IWS are state
machines, not finite state machines. However, for
convenience, the abbreviation FSM is kept.

gantry
A track mounted above the IWS that supports the robot
(mounted upside down) , and allows the robot to glide along
it. This track gives the robot one more dimension (along
the track) than is normally provided with this robot.

group approach point
Point within one of the IWS defined robot reference frames
that the robot must pass through before going to a new
robot reference frame.

individual approach point
Point associated with a destination point. Whenever the
robot goes to a destination point, it must first pass
through the individual approach point, and vice versa when
the robot leaves the destination point. Every destination
point specified within the IWS has an individual approach
point associated with it.

inspection workstation
AMRF workstation that inspects parts for dimensional
tolerance and surface finish.

integrated mode
Mode of operation of the IWS in which the IWS is integrated
to the AMRF — receiving commands from the AMRF Cell, and
obtaining data from the IMDAS.

IRC Abbreviation for the Inspection Robot Controller.

IWS Abbreviation for the Inspection Workstation.

42

IRC Implementation

joint coordinated mode
A robot mode which allows the robot hand to move between
two points in its most efficient manner. The alternative
mode is straight line mode.

load file
Data file that specifies what state machines ECS should
load and execute.

logical architecture
Specifies the direction of commands and statuses between
controllers and between controllers and equipment.

logical point
A point defined in the IWS that is specified by its
reference frame name and its point number.

MHS Abbreviation for AMRF ' s Material Handling System.

network
The connections (both hardware and software) that connect
the IWS controllers together and to the rest of the AMRF.
Local network refers to the former only.

network interface unit
This device, connected to each controller in the IWS and to
the AMRF, provides the network link (both hardware and
software) to the IWS. (This is not currently implemented.
The IWS network consists of direct RS232 links.)

NIU Abbreviation for network interface unit.

offline
Mode in which the robot is controlled by an operator rather
than the IRC. This mode is used when starting up the robot
and calibrating it. It is also used to determine what
points to use and to test the motion between those points.

online
Mode in which the IRC is controlling the robot,

orientation mode
Robot mode (under teach pendant control) in which the robot
can move in yaw, pitch, and roll.

physical architecture
Specifies the physical connections among the controllers
and equipment.

43

IRC Implementation

physical point
Point within the IWS that is specified by its seven
components — position x, y, and z; orientation yaw, pitch,
and roll; and track.

position mode
Robot mode (under teach pendant control) in which the robot
can move in x, y, and z directions.

reference frame
Coordinate system containing a collection of points defined
in the IWS. Each specified reference frame should usually
be associated with a piece of equipment, and it is
appropriate to name it as such.

RF Abbreviation for one of the IWS defined robot reference
frames

.

safe point
Point out of the way (safe) from a destination point. The
safe point used is the destination point’s individual
approach point.

safety fence
An electric eye that surrounds the robot at the IWS and
detects if an object moves into the robot’s workspace, and
reacts according to its settings (either by audible alarm,
blinking light, or shutting down the robot)

.

SRI Abbreviation for the Surface Roughness Instrument.

SRIC Abbreviation for the SRI Controller.

stand-alone mode
Mode of operation of the IWS in which an operator commands
the IWS, and the data used by the IWS is stored in local
data files.

state machine
Software control unit with outputs dependent on inputs to
it plus its internal state. This is the building block for
the IWS control software.

straight line mode
A robot mode which forces the robot hand to move between
two points in a straight line. The alternative mode is
joint coordinated mode.

44

IRC Implementation

stop at point mode
Robot move mode in which the robot stops at the point
towards which it is traveling, before going on to its next
point. (The opposite mode is continuous mode.)

surface roughness instrument
Machine that measures the optical scattering off the
surface of a part that can be correlated with its surface
roughness

.

teach pendant
Hand held device with keyboard and display, used by an
operator to communicate with the robot offline from IWS
operation.

transition commands
Commands used to transfer the IWS to a new state (specified
by the UVA protocol)

.

UVA Protocol
Model, proposed by research group from the University of
Virginia and adopted by the AMRF, that specifies the start
up and shut down sequence for the AMRF as a whole as well
as every controller within the AMRF.

work order commands
A command accepted by a controller when it is in ready
state, and used to perform one of its main functions.

WSC Abbreviation for the Workstation Controller.

45

'

IRC Implementation

1

.

IRC Implementation

D. FLAT FILE SPECIFICATIONS

This appendix contains the specifications for the flat files used
by the Robot Controller and contained in local disk files. For
details concerning the implementation of the flat file system, see
the IWS document IMPLEMENTATION OF THE EXECUTION CONTROL SYSTEM OF
THE INSPECTION WORKSTATION . For a general description of what the
flat files are used for, see Chapter IV of this document.

The format for specifying these files (referred to as relations)
is described here. Each file is composed of ASCII characters that
are broken up into records -- each record containing one or more
fields. Records are separated by a carriage return and a line
feed. Fields are separated by one or more spaces.

The description for each relation begins with the name of the
relation. The name given here is the same as given in the
computer program, except that in the computer program the name ds
prefixed by 1 DS_'.

Next is given a brief description of what this relation is.

,

This is followed by the name of an example data file that is
actually used. The data files referenced contain data to inspect
the pipe clamp, which is one of the parts commonly manufactured at
the AMRF

.

Next is specified the task module from which this relation is
retrieved.

This is followed by the names of the key fields. These fields are
used to find the particular record in the relation that is
required. The names of these fields often include the underscore
character, so that a name will clearly specify a single field,
even if it has more than one word. However, these names are not
necessarily the same as they appear in the computer program. They
are named as such to self document what they are.

Additionally, the data types for these fields are indicated by
following the data field (or fields) by ' : ' and then the
identification of the type. (I.e. many of the fields are of type
integer.) Furthermore, comments are often included that elaborate
on what the fields mean. These are distinguished by enclosing
them between '

{
' and '

}

1

.

Following the names for the key fields are the names for the data
fields. The names are specified in the same manner as for the key
fields. The remarks above concerning the data type information
and commenting apply here as well.

47

IRC Implementation

Every piece of equipment in the IWS has a reference frame (RF)
associated with it, and any point in the IWS can be identified by
its RF and point number (PN) within that RF.

All RF's are measured relative to an absolute zero, which is the
position of the robot after calibration. This point is assigned
the designation ('ROBOT', 1), which means that it is in the
'ROBOT' reference frame, and its point number is 1.

1 . PathData

Description:
Specifies the path (integer name for it and the number of
points on it) to follow based on the current location and
the destination location.

Example file name: path_tst

Retrieved from: e__move

Key fields:
Current_RF, Current_PN : (identifier, integer)
Destination_RF, Destination_PN : (identifier, integer)

(these refer to IWS__Points}

Data fields:
Path_Name, Path_Length : integer

2 . IWS_Point

Description:
Specifies the seven components of the robot point based on
the reference frame and point number. This relation
includes all points in the IWS, including local destination
points, approach points, path points, etc.

Example file name: pts_tst

Retrieved from: e_move

Keyfields

:

RF_Name, Point_Number :(identifier ,
integer)

Datafields

:

7 components of robot point in absolute coordinates : real
(track, x, y, z, yaw, pitch, roll)

48

IRC Implementation

3

.

PathPoint

Description:
Identifies the next point in the path, given the path name
and the point number.

Example file name: ppts_tst

Retrieved from: e_move

Keyfields

:

Path_Name, Path_Index : integer

Datafields

:

Path_Point : (identifier, integer) (refers to IWS_Point}

4.

DestinationPoint

Description:
Each Destination_Point has an Individual_Approach_Point
associated with it that is used to travel to and from that
Destination_Point . The Individual_Approach_Points are also
the Safe_Points — one for each Destination_Point . It is
assumed that there is always a clear path between the
Destination_Point and its Individual Approach_Point in
either direction. This relation specifies which
Individual_Approach_Point to use for a particular
Destination_Point

.

Example file name: dpt_tst

Retrieved from: e_move

Keyfields

:

Destination_RF, Destination_PN : (identifier, integer)

Datafields

:

Individual_Approach_Point_PN : integer
(It is assumed that the RF is the same as that for the
Destination_Point

.

}

5.

OneRowOf4x4

Description:
This relation specifies the 4x4 transformation for each RF
from the absolute reference frame (based on the 'ROBOT'
RF.) However, this relation is currently not used. All

49

IRC Implementation

points are given in absolute coordinates, and the relation
of the relative RF ' s to the absolute RF is currently not
necessary.

Example file name: xrow_tst

Retrieved from: (currently not used)

Keyfields

:

RF_Name : identifier
row number of 4x4 transformation : integer

Datafields

:

1 row (4 components) of 4x4 transformation : real

6. EquipmentPlan

Description:
Specifies relevant information for each RF identified in
the IWS . In general, each RF is identified with a piece of
equipment, and consequently the RF's are referred to by the
equipment with which they are associated.

Example file name: epln_tst

Retrieved from: e_move

Keyfields

:

EquipmentLayoutName : integer
{specifies a particular RF configuration)

Equipmentlndex : integer
(specifies a particular RF within the EquipmentLayout

}

Datafields

:

RF_Name : identifier {used to identify this RF to the IWS)
EquipmentType : identifier

{for future development, a particular EquipmentType
may be handled in a specific generic way by the robot)

RF_ApproachPointName : integer {the group approach point)
ForbiddenVolumeFlag : (0, 1, -1) {designates whether this

RF can currently be approached by the
robot. This is not currently
implemented.

0 if not defined for this RF_Name
1 if defined and currently active

-I if defined and currently inactive }

SafePaths : boolean {TRUE if don't need a path to travel
between two points, both within this
RF; else FALSE)

50

IRC Implementation

7. RobotPlan

Description:
Specifies (directly or indirectly) all information required
by the IWS robot, given the Robot_Plan_Name

.

Example file name: rpln_tst

Retrieved from: e_move

Keyfields

:

Robot_Plan_Name : integer

Datafields

:

Equipment_Layout__Name : integer
(used as a key in Equipment_Plan relation)

NumOf_RFs : integer (number of reference frames -- each is
represented in Equipment_Plan relation)

IorM : ('I', 'M') (units used -- English or Metric
system)

FreeSpaceSpeed : integer (specifies robot speed between
approach points. This is an index
to a range of allowable robot
speeds

.

)

ApproachSpeed : integer (specifies robot speed in
approaching a destination point)

DialPeckLength : real (specifies distance for each peck
to dial indicator)

SRIClearance : real (specifies distance for robot to
position part surface away from SRI)

51

IRC Implementation

,

'

52

READER COMMENT FORM

IMPLEMENTATION OF THE INSPECTION ROBOT CONTROLLER

This document is one in a series of publications which document
research done at the National Bureau of Standards' Automated
Manufacturing Research Facility from 1981 through March, 1987.

You may use this form to comment on the technical content or
organization of this document or to contribute suggested editorial
changes

.

Comments:

If you wish a reply, give your name, company, and complete mailing

address:

What is your occupation?

NOTE: This form may not be used to order additional copies of
this document or other documents in the series. Copies of AMRF
documents are available from NTIS.

AMRF Program Manager
National Bureau of Standards
Building 220, Room B-lll
Gaithersburg, MD 20899

Please mail your comments to:

NBS-114A (REV. 2-80

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
SHEET (See instructions)

REPORT NO.

NBSIR 88-3722 MAY 1988

4. TITLE AND SUBTITLE

"Implementation of the Inspection Robot Controller"

5. AUTHOR(S)

Howard T. Moncarz and Bruce Borchardt
6. PERFORMING ORGANIZATION (If joint or other than NBS. see in struction s)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

8 . Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

10. SUPPLEMENTARY NOTES

| [

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most
bi bliography or literature survey, mention it here)

This document describes the the
Robot Controller (IRC) program.
Inspection Workstation (IWS) in
Facility (ARMF) at the National
commanded by the Inspection Wor
IRC supervises the IWS robot an
Roughness Instrument Controller
as well as important points thr
as data.

significant in formation. If document includes a si gnificant

ory and implementation of the Inspection
This controller is part of the

the Automated Manufacturing Research
Bureau of Standards. The IRC is

kstation Controller, and in turn, the
d is also the supervisor to the Surface

The configuration of the workstation
oughout it are specified to the IRC

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

AMRF
;
data-driven control; inspection robot; inspection workstation;

IWS; robot controller; surface roughness

13. AVAILABILITY

1
X

j

Unlimited

|
|
For Official Distribution. Do Not Release to NTIS

} |

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

j"y~j Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

60

15. Price

$ 13.95

U SCOMM- O C 8043-P80

