
ilR 88-3717

THE DESIGN PROTOCOL, PART DESIGN
EDITOR, AND GEOMETRY LIBRARY
OF THE VERTICAL WORKSTATION

H uary 28, 1988 By:

Thomas R. Kramer
Jau-Shi Jun

NEW NIST PUBLICATION
February 7> 1989

illii

mmmmsm

mmm
.'' Wj*x

^ *

; 'S:Hi
; ^ ;< -V r

;.
.

w:
;

:
;

lH !•:

HK-:

&S. Gaitasbu rg,.'Maryland

'

THE DESIGN PROTOCOL, PART DESIGN EDITOR, AND GEOMETRY LIBRARY
OF THE VERTICAL WORKSTATION

OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY
AT THE NATIONAL BUREAU OF STANDARDS

Dr. Thomas R. Kramer

Guest Worker, National Bureau of Standards, &
Research Associate, Catholic University

Dr. Jau-Shi Jun

Computer Scientist, National Bureau of Standards

January 28, 1988

Funding for the research performed by Dr. Kramer and reported in this paper was provided to

Catholic University under Grant No. 60NANB5D0522 and Grant No. 70NANB7H0716 from

the National Bureau of Standards.

Certain commercial equipment and software are identified in this paper in order to adequately

specify the experimental facility. Such identification does not imply recommendation or

endorsement by the National Bureau of Standards, nor does it imply that the equipment and

software identified are necessarily the best available for the purpose.

This publication was prepared in part by a United States Government employee as part of his

official duties and is, therefore, a work of the United States Government and not subject to

copyright.

%

VWS Design

CONTENTS

Page

I. INTRODUCTION 1

1. CONTENTS . 1

2. AUDIENCE 1

3. BRIEF VWS DESCRIPTION 1

4. RELATED READING 2

E. DESIGN PROTOCOL 3

1. DESIGN PROTOCOLS GENERALLY 3

1.1. Definition 3

1.2. Uses 3

1.3. Other Considerations of Design Protocols 4

1.3.1. Wide Range 4

1.3.2. Ambiguity.... 4

1.3.3. Physical Realizability 4

1.3.4. Uniqueness 4

1.4. Software 5

1.5. Exact vs. Approximate 5

1.6. Types 5

1.7. Constructive Solid Geometry (CSG) 5

1.7.1. Approximate CSG 5

1.7.2. Octrees 6

1.7.3. Exact CSG 6

1.7.4. Aspects of CSG 8

1.7.4. 1. Range 8

1.7.4.2. Ambiguity 8

1.7.4.3. Realizability 8

1.7.4.4. Uniqueness 9

1.7.4.5. Computer Graphics 9

1.7.4.6. Automated Machining 9

1.8. Boundary Representation 11

1.8.1. Approximate Boundary Representation 11

1.8.2. Exact Boundary Representation 11

1.8.3. The AMRF Standard 12

1.8.4. Aspects of Boundary Representation 12

1. 8.4.1. Range 12

1. 8.4.2. Ambiguity 12

1. 8.4.3. Realizability 12

1. 8.4.4. Uniqueness 13

1. 8.4.5. Computer Graphics 13

1.8.4.6. Automated Machining 13

- i -

VWS Design

2. VWS DESIGN PROTOCOL 13

2.1. Introduction 13

2.2. Reference Features 14

2.3. Objectives of the Protocol 15

2.4. VWS2 Design Protocol as a Type of CSG 15

2.5. Advantages and Disadvantages... 16

2.6. Relationship To Other Design Protocols 22
2.7. Enhanced Design 22

2.7.1. Introduction 22
2.7.2. Why Have an Enhanced Design? 28

2.7.3. z_surf. 28

2.8. Feature Verification 28

2.9. Data Structure 28

2.10. Block Description and Coordinate System 29
2.11. Feature Depth 29

2.12. Workpiece Description 29

2.12.1. Introduction.. 29

2.12.2. Differences in the Header Section ... 30

2.12.3. Differences in the Features Section 30

2.13. Adding a Feature to the Protocol 32

2.13.1. Introduction 32

2.13.2. Verification... 32

2.13.3. Drawing........ 32

2.13.4. Data Execution.. 33

2.13.5. Design Editor.... 33

2.13.6. DataBase 33

2.13.7. Geometry. 33

2.13.8. Process Planning 33

2.14. An Example of a Design... 34

2.15. Feature Descriptions 34

2.15.1. Introduction...... 34

2.15.2. Chamfer_out 38

2.15.2.1. Comments 38

2.15.2.2. Appearance 38

2.15.2.3. Required Parameters 38

2.15.2.4. Optional Subfeatures 38

2.15.2.5. Optional Parameters....... 38

2.15.2.6. Enhancement Parameters 38

2.15.2.7. Verification Rules 39

2.15.2.8. Example Design 39

2.15.3. Groove. 40

2.15.3.1. Comments 40

2.15.3.2. Appearance 40

2.15.3.3. Required Parameters 40

2.15.3.4. Optional Subfeatures 40

2.15.3.5. Optional Parameters 41

- ii -

VWS Design

2.15.3.6. Enhancement Parameters 41

2.15.3.7. Verification Rules 42

2.15.3.8. Example Design 43

2.15.4. Hole 45

2. 15.4. 1. Comments 45

2.15.4.2. Appearance 45

2.15.4.3. Required Parameters 45

2.15.4.4. Optional Subfeatures 46

2.15.4.5. Optional Parameters 46

2.15.4.6. Enhancement Parameters 46

2.15.4.7. Verification Rules 46

2.15.4.8. Example Design 47

2.15.5. Pocket 49

2.15.5.1. Comments 49

2.15.5.2. Appearance 49

2.15.5.3. Required Parameters 50

2.15.5.4. Optional Subfeatures 50

2.15.5.5. Optional Parameters 50

2.15.5.6. Enhancement Parameters 51

2.15.5.7. Verification Rules 51

2.15.5.8. Example Design 52

2.15.6. Straight_groove 54

2.15.6.1. Comments 54

2.15.6.2. Appearance 54

2.15.6.3. Required Parameters 54

2.15.6.4. Optional Subfeatures 54

2.15.6.5. Optional Parameters 54

2.15.6.6. Enhancement Parameters 55

2.15.6.7. Verification Rules 56

2.15.6.8. Example Design 57

2.15.7. Text 59

2.15.7.1. Comments 59

2.15.7.2. Appearance 59

2.15.7.3. Required Parameters 60

2.15.7.4. Optional Subfeatures 60

2.15.7.5. Optional Parameters 60

2.15.7.6. Enhancement Parameters 60

2.15.7.7. Verification Rules 61

2.15.7.8. Example Design 61

2.15.8. Contour_groove 63

2.15.8.1. Comments 63

2.15.8.2. Appearance 67

2.15.8.3. Required Parameters 67

2.15.8.4. Optional Subfeatures.... 67

2.15.8.5. Optional Parameters 67

2.15.8.6. Enhancement Parameters 68

- iii -

VWS Design

2.15.8.7. Verification Rules 69
2.15.8.8. Example Design 69

2.15.9. Contour_pocket 71
2.15.9.1. Comments 71
2.15.9.2. Appearance 71

2.15.9.3. Required Parameters.. 71

2.15.9.4. Optional Subfeatures 71

2.15.9.5. Optional Parameters 71

2.15.9.6. Enhancement Parameters 71

2.15.9.7. Verification Rules 72
2.15.9.8. Example Design 72

2.15.10. Side_contour 74
2.15.10.1. Comments 74
2.15.10.2. Appearance 74
2.15.10.3. Required Parameters 74
2.15.10.4. Optional Subfeatures 74
2.15.10.5. Optional Parameters.. 74
2.15.10.6. Enhancement Parameters.. 75
2.15.10.7. Verification Rules 75

2.15.10.8. Example Design 75

2.16. Text System 77

2.16.1. Overview 77

2.16.2. Characters 77

2.16.3. Making New Fonts Automatically... 80

2.16.3.1. Overview................ 80

2.16.3.2. Mirror.. 81

2.16.3.3. Hw_ratio 81

2.16.3.4. Roundness.......... 81

2.16.3.5. Curve 82

2.16.3.6. Tilt......... 82

2.16.3.7. Spacing... 83

2.16.4. The Fonts Database.. 83

ffl. PART DESIGN EDITOR 85

1. OVERVIEW 85

2. CAPABILITIES OF THE SYSTEM 85

2.1. Save Design Documents 85

2.2. Automatic Mechanical Drawing 85

2.3. Feature Verification 87

3. GENERAL APPROACH 87

4. SCREEN LAYOUT. 88

5. MENU.. 90

5.1. Overview 90

5.2. Design Editor Commands.. 91

5.2.1. "dp" Clear All Designs 91

5.2.2. "dpd" Delete a Design 91

- iv -

VWS Design

5.2.3. "e
H

Select a Design to Edit 91

5.2.4. "1" Load a Design File 91

5.2.5. "Iff Load Designs from Index File 91

5.2.6. "Is" List Designs 91

5.2.7. "n" Rename a Design 91

5.2.8. "new" Generate a New Design .91

5.2.9. "p" Display the Current Design 92

5.2.10. "save" Save the Current Design to Disk 92

5.2.11. "feat" Display Design Features 92

5.2.12. "stf Store Designs to Index File 92
5.2.13. "c" Change the Design 92
5.2.14. "d" Delete a Feature 92

5.2.15. "i" Insert a Feature 92

5.2.16. "array" Make a Feature Pattern 92

5.2.17. "group" Duplicate a Group of Features 93

5.2.18. "rseq" Resequence Design Features 93

5.3. System Commands 93

5.3.1. "b" Break 93

5.3.2. "els" Clear this Screen 93

5.3.3. "elem" Print a List of Features 93

5.3.4. "m" Print a List of Commands 93

5.3.5. "q" Quit from Part Design Editor 93

5.4. Graphics and Verification Commands 94

5.4.1. "block" Draw the Block with no Features 94

5.4.2. "draw" Draw a Feature 94

5.4.3. "flash" Flash a Feature 94
5.4.4. "goff' Set the Graphic Mode to OFF 94

5.4.5. "gon" Set the Graphic Mode to ON 94

5.4.6. "loc" Use Mouse to Pick a Position 94

5.4.7. "pick" Use Mouse to Pick a Feature 95

5.4.8. "rdraw" Redraw the Screen 95

5.4.9. "verif ’ Verify a Design 95

5.4.10. "vset" Set the Verification Mode 95

6. SOFTWARE 95

7. ADVANTAGES AND DISADVANTAGES 96

IV. GEOMETRY LIBRARY 97

1. OVERVIEW 97

1.1. Introduction 97

1.2. Significant Figures 97

1.3. Colinearity and Tangency 98

2. ELEMENTARY FUNCTIONS 98

3. FEATURE ENHANCERS 99

4. CONTOUR FUNCTIONS 99

REFERENCES 100

- v -

VWS Design

LIST OF FIGURES

Page

Figure 1. Constructive Solid Geometry Example.... 7

Figure 2. Boundary Representation Example 10

Figure 3. Coordinate System and Block Location 14

Figure 4. Hole with Pocket for Reference Feature 15

Figure 5. Drawing ofXYZ Part 16

Figure 6. Workpiece With Slab 31

Figure 7. Locating a Pocket, a Groove, and Text 37

Figure 8. ChamferJDut 39

Figure 9. Grooves... 44

Figure 10. Holes... 48

Figure 11. Pockets.............. 53

Figure 12. Straight_Grooves 58

Figure 13. Text 62

Figure 14. Defining Line of a Contour Feature 65

Figure 15. Join_back in a Contour Outline........ 65

Figure 16. Radius Too Large in a Contour Feature 66

Figure 17. Contour_Grooves 70

Figure 18. Contour_Pockets 73

Figure 19. Side_Contours 76

Figure 20. The Letter R...... 78

Figure 21. Aspects ofVWS2 Fonts ... 84

Figure 22. Part Design Editor Configuration...... 86

Figure 23. Part Design Editor Screen Layout....... 89

Figure 24. Colinearity and Tangency.... 99

- vi -

VWS Design

LIST OF TABLES

Page

Table 1. Lisp-Readable XYZ Part Design Document 17

Table 2. Human-Readable XYZ Part Design Document 19

Table 3. Enhanced Design ofXYZ Part 24

Table 4. Feature Parameters and Subfeatures 36

Table 5. Summary of Font Aspects 81

- Vll -

THE DESIGN PROTOCOL, PART DESIGN EDITOR, AND GEOMETRY LIBRARY
OF THE VERTICAL WORKSTATION

OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY
AT THE NATIONAL BUREAU OF STANDARDS

L INTRODUCTION—
L. CONTENTS

This paper describes the part design protocol (method of describing the geometry of a part),

the part design editor, and the geometry library used in the Vertical Workstation (VWS) of

the Automated Manufacturing Research Facility (AMR!7
) at the National Bureau of

Standards, Chapter II describes the design protocol, Chapter HI discusses the design editor,

and Chapter IV discusses the geometry library. The descriptions pertain to the versions in

use during September 1987.

2. AUDIENCE

The paper is intended to be useful to people interested in concepts and technical details of

the VWS, particularly AMRF personnel who are running the VWS or maintaining or

i improving the software for the VWS. The paper is intended to be useful also to other

i researchers in automated manufacturing. A knowledge of the computer language LISP is

useful but not essential to reading this paper. Detailed documentation of the LISP functions

I that are involved with the systems described here is being prepared separately.

3. BRIEF VWS DESCRIPTION

The VWS is a computer-integrated automated machining workstation. It includes a control

system, a computer-aided design system, an automatic process planning system, and an

automatic nc-code generator. The principal machinery is a milling center (Monarch VMC-75
with a GE2000 controller) and a robot (Unimate 4070 with a Val H controller) to tend the

milling center. There is quite a bit of ancillary hardware. The system is controlled from a

microcomputer (Sun 3/160 with 6Mb memory, BW monitor). Running in stand-alone mode, it

is possible to design and machine a simple metal part within an hour. The VWS may also be

run as an integrated part of the AMRF. The workstation is described in more detail in

[KR&J].

The software for the VWS is written in the Franz LISP dialect of the computer language

LISP. In this paper this software is called the VWS2 system. Six principal modules

comprise the VWS2 system: the Production Management Operating System (the control

system), the State Table Editor, the Equipment Program Generator, the Part Design Editor,

the Process Planner, and the Data Execution module.

. - 1 -

VWS Design

To produce a part from scratch, the user sits at the Sun workstation and creates a design

using the Part Design Editor. The Process Planner is then called to write a plan for how to

machine a part of that design. Next NC-code is generated automatically from the design and

the plan by the Data Execution module. Finally the user tells the control system to make the

part. The control system coordinates the activities of the workstation equipment so that the

part blank is loaded onto the milling machine, the NC-code is sent to the milling machine and

executed (making the part), and the finished part is unloaded.

4. RELATED READING

This paper is one of about a dozen papers being prepared as part of the AMRF
documentation to describe all aspects of the VWS. The others are [JUN], [KRA2], [KRAS],

[KRA4], [KRA5], [K&S2], [KR&W], [LOVE], and [RUDD]. Other papers, prepared for

professional meetings, also describe the VWS [KRAI], [KR&J], [K&S1], and [NA&J].

- 2 -

VWS Design

D. DESIGN PROTOCOL
1.

DESIGN PROTOCOLS GENERALLY

1.1. Definition

A part design protocol is a method of representing the geometry (and possibly other

information) of a family of parts. Non-geometric information might include the material from

which a part is intended to be made.

The rules for making a mechanical drawing, for example, may be considered to be a design

protocol. A document conforming to a design protocol and representing a particular part will

simply be called a design (or a "design document"). A mechanical drawing of a gear, for

example, is a design. A design document may be either a paper document, a printout on a

computer terminal screen, or a computer file.

A good discussion of design protocols is given by Requicha in [REQU].

1.2. Uses

The challenge to a design protocol for an integrated computer-automated machining system

is to be usable for all phases of part design and machining. This includes being:

1. comprehensible to a human user and yielding readable designs,

2. suitable for a computer aided design system,

3. usable by an automated drawing system,

4. usable by an automated process planning system,

5. usable for the automatic generation of nc-code,

6. usable for automated handling (by robot, conveyor, cart, etc.)

7. usable by a computer vision system,

8. usable for automated cleaning and deburring,

9. usable for automated inspection, and

10. usable by an automated analysis system (e.g. finite element analysis)

If the area of interest is extended beyond machining to manufacturing, add:

11. usable for automated assembly, and

12. usable for automatic document control.

The authors are not aware of any design protocol that is available for all these uses

simultaneously. It may be that employing several different design protocols for a given part

will be superior to trying to use a single protocol for all purposes.

Some of the uses above are closely linked in currently available commercial systems,

particularly computer aided design, automated drawing, and automated analysis. They may
be separated, however. The design editor described here may be run without drawing, for

example.

- 3 -

VWS Design

Producing a document comprehensible to a human may be circumvented by having a

sufficiently friendly computer interface between the design document and the user. With
such a system, a paper copy or a byte-by-byte printout on a computer terminal screen of a

design document may be useless or irritating to a human.1.3.

Other Considerations of Design Protocols

1.3.1. Wide Range

A design protocol should be capable of representing the design of a wide range of machined
parts. In practice, a "wide range" is whatever is sufficient to cover a part mix that is

interesting to some machine shop or research group.

1.3.2. Ambiguity

A design protocol should allow the expression of all geometric information needed for its

intended uses. On critical items the protocol should be unambiguous. Some ambiguity,

however, may be allowed. For example, the point on the circumference of a threaded hole at

which the threading emerges is almost never specified in common design practice.

1.3.3. Physical Realizability

A design protocol may permit the construction of a design that is not physically realizable -
an infinitely long cylinder, for example. It is desirable but not essential that a protocol (or the

computer interface to a protocol) minimize the possibility of designing non-realizable objects.

1.3.4. Uniqueness

One use of a design protocol is to determine if two objects (physical or design only) are the

same. If there are many ways to specify the design of an object, it becomes hard to

determine whether two objects are the same. Some design protocols make it possible to

describe a part in only one way, some permit a small number of different designs for a single

object, and some a large number.

Where a protocol is non-unique, it may be made less so by adding rules for orienting objects

and rules for how to choose a single method of constructing an object when there are several

possibilities. This may remove some of the difficulties of non-uniqueness, but it will add to

the difficulty of using the protocol.

Any determination of uniqueness will require a convention for when numbers are equal — at

the very least an agreement on how many significant figures will be recognized in the

representation of a number.

- 4 -

VWS Design

1.4. Software

Two kinds of software are essential for dealing with a design: the raw data of a design itself,

and routines for using the data. It is important not to confuse raw data with visual displays

produced by processing the data.

1.5. Exact vs. Approximate

Some design protocols represent parts exactly while others are only approximate. The usual

need for approximation is in the case of curved surfaces or curved solids. A curved surface

may be approximated by a set of planar polygons, and a curved solid may be approximated by

a set of solid objects (imagine a cylindrical salt shaker approximated by thousands of tiny

cubic salt crystals packed together, for example).

1.6. Types

Three common types of design protocol are: primitive instancing, constructive solid geometry,

and boundary representation.

In primitive instancing a design is specified by giving the name of a primitive object and

(usually) values for some parameters. For example, a gear may be a primitive object in a

group technology design protocol. Parameters required to specify a certain gear might be the

diameter, the number of teeth, the thickness, and the diameter of a hole through the middle.

The protocol could include a convention for the shape of a gear tooth so that the protocol

would be unambiguous. We will make no further mention of primitive instancing.

In constructive solid geometry (commonly abbreviated CSG) a design is specified by starting

with a set of primitive solids (cubes, spheres, cylinders, etc.) and allowing operations (union,

subtraction, intersection, etc.) which form complex solids from the primitives. The design

protocol used in the VWS is a type of constructive solid geometry.

In boundary representation a design is specified by giving a description of the surface of an

object. The object is what lies within the (necessarily closed) surface. The standard AMRF
design protocol is a boundary representation.

Hybrids of these types may be and have been constructed.

Translating the design of a given part from one protocol to another is apt to be a difficult

undertaking. Automatic conversion between a boundary representation and CSG is

particularly difficult.

1.7. Constructive Solid Geometry (CSG)

1.7.1. Approximate CSG

There are two common subtypes of CSG. In the first, a solid object is approximated by the

- 5 -

VWS Design

union of a lot of little solids. In this subtype the only primitive is usually a cube, and the only
operation is usually union. This subtype may be further divided into two varieties: one in

which the cubes (sometimes called voxels -- short for volume element) are all the same
size, and the other in which they are different sizes. In principle, voxels do not have to be
cubic, but might be any shape that can pack to fill space.

1.7.2. Octrees

One common protocol using cubes of different sizes creates "octrees". This system breaks

space down into cubes of a fixed starting size. The part is placed in this space, and all the

cubes which fit entirely inside the part are assigned to the set of inside cubes. Cubes which
intersect the surface of the part are subdivided into eight smaller cubes or octants, each of

which has a side half as long as a side of the parent cube. Again all the cubes which fit

entirely in the part are assigned to the set of inside cubes, and those which intersect the

surface are subdivided. This process goes on until either the part is exactly represented or a

minimum cube size is reached. Since it is necessary to keep track of the parent cube of each

child cube, the data structure for the part is a tree. The prefix "oct" for eight, plus "tree"

yields the name "octree".

1.7.3. Exact CSG

In exact CSG a solid object is represented by using a set of parameterized primitive volumes

and combining them with a set of operations. The VWS design protocol is of this type.

The primitives in exact CSG are usually common solids from elementary solid geometry:

rectangular parallelepipeds (i.e. blocks), spheres, cones, cylinders, toruses, and sometimes

prisms. Objects which may be described are usually connected solids which are

combinations of the elementary solids. The allowable operations for combining primitives

may include union, intersection, and subtraction. Figure 1 shows an L-shaped solid

constructed three different ways from block shaped primitives.

In CSG, either the specification of a primitive must include its position in space, or the

description of a combination operation must include spatial information. In general, there is

no rule that the primitives must be either disjoint or touching. For example, suppose block B
is contained entirely in block A. Then the union of A and B is equal to A. If block B is

disjoint from block A, the difference between A and B is equal to A.

Notice that, in principle, it is possible to have a CSG system with subtraction as the only

operation. Any physical object can be imagined as contained in a block, and each part of the

outer surface of the object can be imagined as part of the surface of one of a number of

volumes that have been cut away from the block to produce the object. As long as all of the

volumes being cut away are in a set of primitive volumes, the original object may be

described in this hypothetical CSG system as the block minus the cut-away volumes.

- 6 -

VWS Design

Figure 1. Constructive Solid Geometry Example

-7-

VWS Design

1.7.4. Aspects of CSG

1.7.4. 1. Range

In principle, the design of any object may be expressed in an approximate CSG protocol.

However, the limit of resolution of the approximation is also a limit on the usefulness of the

protocol. For example, if the smallest voxel size is one millimeter on a side, every object

whose largest dimension is one millimeter is represented by one voxel — not very useful if

you are designing computer chips.

For the purposes of machining, it would be nice to have the limit of resolution be near the

closest tolerance required. If the tolerance requirement is 0.01 millimeter, then voxel size

should be about 0.01 millimeter on a side. For a part ten centimeters on a side, using equal

sized voxels, this would require a trillion voxels. This is beyond the on-board storage

capacity of today’s computers, and even a millionth of that number tests the limits of a

typical engineering workstation.

This is not to say approximate CSG is not useful for machining; it has been applied to real

problems. But using it requires either accepting lower tolerances or using heavy duty

computer hardware and software.

The range of designs expressible in an exact CSG is largely dependent on the suite of

primitives in the CSG. If all surfaces of a part match the surface of some primitive, the part

should be expressible. The range of parts which can be expressed in terms of the CSG
primitives listed above is enormous and includes the bulk of what American industry would

like to produce by machining. However, if the surface of a part is "sculpted" like the outside

of a car or the Winged Victory of Samothrace, it cannot be expressed.

1.7.4.2. Ambiguity

Constructive solid geometry may be ambiguous or unambiguous, depending on the rules of

combination.

L7.4.3. Realizability

Constructive solid geometry inherently makes realizable objects. All the primitives are

realizable objects, and the combination methods are all realizable, so the result is always

realizable. It is not difficult to generate disconnected objects, however (for example by

taking a chunk out of the middle of a long narrow block, splitting it in two), and this must be

forestalled.

- 8 -

VWS Design

1.

7.4.4.

Uniqueness

Exact CSG is inherently non-unique, as shown by the three methods of constructing the

simple object in Figure 1.

Approximate CSG is also inherendy non-unique.

1.7.4.5. Computer Graphics

Computer graphics for automated manufacturing normally involves either showing the surface

of a part or a wire frame for the part.

Exact CSG does not lend itself readily to drawing because when solids intersect, the

surfaces which result may be complex, requiring difficult calculations. Moreover, the

equations of lines of intersection are often of higher order than the equations of the surfaces

which are intersecting and may not have solutions in closed form.

As a rule, drawing the primitives themselves, or combinations of primitives which have

simple lines of intersection is not prohibitively difficult or time consuming, although many
routines may be required.

1.7.4.6. Automated Machining

Because machining is a process of material removal with a (usually) rotating tool, the

objects which can be created by machining lend themselves to expression in exact CSG. If a

flat-ended tool moves through a workpiece in a straight line perpendicular to the axis of tool

rotation, the solid removed is a block plus two cylinders, for example. If a ball-nosed tool is

moved in a circle whose radius is larger than the tool radius in a plane perpendicular to the

axis of tool rotation, the removed volume is a torus plus the difference of two concentric

cylinders.

The solids generated when a tool moves simultaneously along three axes are much more
complex than those generated when the value on one axis is held constant and the motion is

along one or both of the other two axes. The primitives in the design protocol used in the

Vertical Workstation may all be generated as the swept volume of a common tool with the

value of at least one axis held constant.

- 9 -

VWS Design

Figure 2. Boundary Representation Example
L-shape bounded by eight planar polygons

- 10 -

VWS Design

1.8. Boundary Representation

In a boundary representation, an object is whatever is contained inside the surface that is the

boundary of the object. The surface is described as being composed of a set of surface

patches which are joined together at their edges but do not otherwise intersect. Figure 2

shows a boundary representation of the same L-shaped block as is shown in Figure 1.

1.8.1. Approximate Boundary Representation

In an approximate boundary representation, the exterior surface of the object being

represented is approximated by a collection of elementary surface pieces. While the

elementary pieces could, in principle, be of any surface type, the only elementary surface

piece currently in common use is the planar polygon. Planar polygons are very well suited to

both computer graphics and geometric calculations.

Since a planar polygon may be defined simply by identifying the points at its vertices, one

common method of giving a design definition in a protocol of this sort is to give two lists. The
first is a list of points (each of which is a list of three numbers — the x, y, and z coordinates,

of the point). The points on the first list are implicitly or explicitly numbered. The second list

is a list of polygons. Each polygon is represented by a list of point numbers. The idea is that

i the polygon is described by drawing a line from the first point to the second, and so on. Since

it is possible to describe a polygon in this way by starting at any vertex (this corresponds to

circular permutations of the list of points), there may be a convention for choosing the

starting point (e.g. the lowest numbered point).

In many such protocols the direction (clockwise or counterclockwise) in which the vertices

are traversed serves to show which side of the polygon the inside of the object lies on. This

is redundant information, of course, since it could be deduced from an examination of the

whole finished object, but it is extremely convenient to retain that information locally.

Care must be taken in creating designs with such protocols that all of the vertices of a

polygon really do lie on a single plane.

In existing protocols of this sort there may be additional limitations, such as an upper limit on
the number of vertices a polygon may have, or a requirement that only convex polygons be

used, or a prohibition on having adjacent coplanar polygons.

1.8.2. Exact Boundary Representation

In an exact boundary representation, the patches of surface used to build the boundary of an

object are cut from a collection of primitive surface types: plane, cylinder, sphere, etc. The
allowable cut lines on the surface patches are also taken from a set of primitives: straight

line, circular arc, ellipsoidal arc, helical arc, etc.

- 11 -

VWS Design

A surface patch is defined by giving descriptions of three sorts of items: 1. the surface from
which a patch is cut, 2. the lines which form the edges of the cut, and 3. the points which are

the ends of the lines.

As in approximate boundary representation, the order of the edges of a patch may be used to

indicate where the inside of the object lies.

In an exact boundary representation information about the numerical parameters of the

surfaces, lines, and points may be called "geometry" and separated from information about

which lines form edge loops and which edge loops are used to cut which surfaces.

Information of the second sort may be called "topology".

1.8.3. The AMRF Standard

The AMRF Standard part design protocol is described in a paper by Ted Hopp [HOPP]. In

its geometry and topology sections the AMRF standard part model is an exact boundary

representation. The standard also has header, functionality, and features sections, however.

The inclusion of the features section allows the addition of information about features, but

there is no requirement that the features section be used.

The primitive geometric surfaces included in the AMRF standard are: plane, cylinder, cone,

sphere, and torus. The curves which may bound surfaces are limited to straight lines and

circular arcs.

1.8.4. Aspects of Boundary Representation

1.8.4. 1. Range

The situation for the range of representable parts in boundary representation is similar to the

situation in CSG. Approximate methods may represent anything, but often with poor

resolution. The range of representables in exact representations depends upon the range of

primitives but is limited by the suite of primitives.

1. 8.4.2. Ambiguity

The degree of ambiguity of a boundary representation depends upon the individual protocol.

1.8.4. 3. Realizability

The object described by a boundary representation is whatever happens to be inside the

boundary. If the designer fails to make the boundary closed, then a non-realizable object will

be described. The reversal of directionality of an edge loop may indicate to some boundary

representations that the object is on the wrong side of the surface surrounded by the loop,

also creating a non-realizable object Peculiar intersections of surfaces may cause other non-

realizable conditions. Thus boundary representations are prone to allow description of non-

realizable objects.

- 12 -

VWS Design

1. 8.4.4. Uniqueness

Exact boundary representations are nearly unique within differences of translation and

rotation. Conventions may be required for the direction of axes, the location of points on

closed curved edges, and determining which is the first point in an edge loop or the order of

surfaces. The uniqueness of approximate boundary representations is more difficult.

1. 8.4.5. Computer Graphics

Because the drawing of a part consists of drawing the surfaces or the edges of the part, and

the data base contains surface and edge information, boundary representation lends itself to

computer drawing of parts.

1 . 8 .4. 6. Automated Machining

Because machining operations usually create several surfaces at once and the boundaries of

the surfaces which are created depend upon the current shape of the workpiece as well as on

the tool path, boundary representation does not lend itself to automated machining.

2. VWS DESIGN PROTOCOL

2.1. Introduction

The VWS2 system employs a feature-based design protocol which satisfies uses one

! through five from the list in section 1.2 above. Using the protocol for the other purposes

listed has not been attempted, but there is no apparent obstacle to its use for these purposes.

The design of a part is expressed as a list of features on a piece of stock. The piece of stock

is always a rectangular block. The stock is fixed with respect to a three-dimensional

cartesian coordinate system, as shown in Figure 3.

The primary features in the system in September, 1987 are: chamfer_out, groove, hole,

pocket, straight_groove, text, contour_groove, contour_pocket, and side_contour. There are

also subfeatures which may be made on the primary features: chamfer_out, chamfer_in,

countersink, and thread. A feature is specified in the system by giving its name and the

values of several parameters which specify its location, shape, and size. Parameter

information is kept by storing the name of each parameter followed by its value. Parameter

values representing physical dimensions are given in inches.

The design file has two parts: a header and a list of features. The header includes the id

number of the design, a description not more than 30 characters long, the dimensions of the

block, and (optionally) the material from which a workpiece of that design is intended to be

made. The list of features is numbered sequentially starting with 1, so that each feature has

a number. The feature number is important as an identifier of the feature, but the order of the

features is irrelevant.

- 13 -

VWS Design

Figure 3. Coordinate System and Block Location

2.2. Reference Features

The design protocol includes the use of "reference features". If feature A is to be made at the

bottom of feature B ? then one of the parameters of feature A is "reference„feature", and the

value of that parameter is the feature number of feature B. As a rule, whenever B is the

reference feature for A, the outline of feature A must fit within the outline of feature B, and

the bottom of feature B must be flat. An example of a hole which has a pocket as its

reference feature is shown in Figure 4. Cases in which the rule is broken are described

below.

- 14 -

VWS Design

Figure 4. Hole with Pocket for Reference Feature

2.3. Objectives of the Protocol

The VWS2 design protocol was established to meet the following objectives:

1. Be able to express the design of a large variety of one-sided, two-and-a-half dimensional

parts.

2. Be able automatically to produce a process plan (whose structure is the standard AMRF
process plan structure) from the design of a part.

3. Be able automatically to generate NC-code to carry out the process plan and machine the

part.

4. Be able automatically to make a mechanical drawing of the part

5. Be able to support automatic verification of design and process plan.

6. Produce design documents easy for a human to read without computer help.

2.4. VWS2 Design Protocol as a Type of CSG

The VWS2 design protocol is an exact CSG representation in which each feature and

subfeature is a removed volume. For example, the description of a pocket, in terms of

geometric primitives might be as follows: remove (i) a rectangular parallepiped centered on

the center of the pocket whose height is the depth of the pocket, whose length is the length

of the pocket and whose width is the width of the pocket minus twice the comer radius of the

pocket, (ii) a rectangular parallepiped centered on the center of the pocket whose height is

the depth of the pocket, whose width is the width of the pocket and whose length is the

length of the pocket minus twice the comer radius of the pocket, and (iii) four quarter

- 15 -

VWS Design

cylinders (one at each comer of the pocket) whose height is the depth of the pocket and
whose radius is the comer radius of the pocket.

Each of the features can be broken down into a set of garden-variety geometric primitives in

this fashion, but nowhere in the VWS2 system has this been done. It would not be difficult

(although it would take some time) to write a subsystem that would decompose a feature-

based design into a set of primitive removed volumes. It has been feasible thus far in the

development of the system to treat each feature type as a describing a unified object and
develop computational techniques appropriate to each feature type.

Although all the features and subfeatures are purely geometric, they were selected to be
included in the system on the basis of being features commonly found on machined parts that

could be produced in one, or at most a very few, machining operations.

2.5. Advantages and Disadvantages

The design system currently assumes that all features are being made from one side of the

block. A part with features in several sides can be described with the system by specifying a

design for each side. It has proved feasible to make very complex parts using this method.

During AMRF test runs in September and December, 1986, parts of several different

designs, all of which were real designs for parts used by the US Navy, were machined using

this technique. On the other hand, having a separate design for each side of the part is

awkward, and it is expected that future versions of the system will allow features in several

sides in a single design.

An extremely wide range of parts can be described with this design system, and the parts

may be complex. An example of a modestly complex design, which we will call the "XYZ
Part" since the letters XYZ are machined into it, is given in different formats in Table 1 and

Table 2. A mechanical drawing of the XYZ Part, which was generated automatically by the

drawing subsystem, is shown in Figure 5. This part contains at least one feature of each type

except a chamfer of the whole block.

On the other hand, there are also many parts which cannot be described because none of the

feature types fits some portion of the design. For example, a rectangular hole with a sloping

flat bottom cannot be described. It is feasible to add features to the design protocol, as

described below. Adding a feature and integrating it into all parts of the system is a large

project.

There is currently no provision in this design protocol for including tolerance information. It

appears feasible to revise the protocol to include tolerance information without much change

to the rest of the protocol.

The great advantage of this feature-based design system is that a process plan can be

produced automatically to machine any design that can be described in the design protocol

and passes design verification. And, if the appropriate tools exist, a part of the design can be

machined.

- 16 -

VWS Design

Table 1. LISP-Readable
XYZ Part Design Document

(setplist ’xyz 5 (5 feature_type side_contour

’(features (features comers (comers

1 (1 feature_type side_contour 1 (1 x -0.75 y3 radius join_back)

depth 0.2 2 (2 x 5.25 y 2.25 radius 0.27)

comers (comers 3 (3 x 5.25 y 2.8 radius 0)

1 (1 x 5.25 y 2.8 radius 0) 4 (4 x 5.75 y 2.8 radius 0)

2 (2 x 5.75 y 2.8 radius 0) 5 (5 x 5.75 y 0.2 radius 0)

3 (3 x 5.75 y 0.2 radius 0) 6 (6 x 5.25 y 0.2 radius 0)

4 (4 x 5.25 y 0.2 radius 0))) 7 (7 x 5.25 y 0.75 radius 0.27)

8 (8 x -0.75 y 0 radius join_ahead)

2 (2 feature type text 9 (9 x 0.75 y 1 radius 0.27)

text X 10(10x0.75 y 2 radius 0.27))

font round
depth 0.75

lower_l_x 5.38
reference_feature 1)

lower_l_y 2.1
6 (6 feature type hole

height 0.4
center x 0.875

depth 0.015
center y 2.375

line_width 0.1187434) diameter 0.1719

depth 0.8

3 (3 feature_type text bottom_type conical

text y thread_diameter 0.19

font round threads_per_inch 24

lower 1 x 5.38 thread_depth 0.6

lower 1 y 1.3 countersink_diameter 0.35

height 0.4 reference_feature 1)

depth 0.015

line width 0.1187434) 7 (7 feature_type hole

center_x 0.875

center y 0.625
4 (4 feature_type text

diameter 0.1719
text z

depth 0.8
font round bottom_type conical
lower_l_x 5.38 thread_diameter 0.19

lower_l_y 0.5 threads_per_inch 24
height 0.4 thread_depth 0.6

depth 0.015 countersink_diameter 0.35

line_width 0.1187434) reference_feature 1)

- 17 -

VWS Design

8 (8 feature_type pocket_comers 12(12 feature_type contour_pocket

upper_l_x 1.45 comers (comers

upper_l_y 2 1 (1 x 1.25 y 1.9 radius 0.14)

lower_r_x 4.5 2 (2x2.0 y 1.5 radius join_back)

lower_r_y 1 3 (3x1.25 y 1.1 radius 0.14)

depth 0.3 4 (4x2.75 y 1.1 radius 0.14)

comer_radius 0.3 5 (5x2.0 y 1.5 radius join_ahead)

chamfer_in_depth 0.04 6 (6x2.75 y 1.9 radius 0.14))

reference_feature i) depth 0.3

reference„feature 8)

9 (9 feature_type contour
.
groove

comers (comers 13 (13 feature__type straight_groove

1 (1 x 1.25 y2.57 radius 0.2) xl 2.2

2 (2 x 5 y 2oll radius 0.2) yl 1.8

3 (3 x 5 y 0.87 radius 0.2) x2 3.0
4 (4 x 1.25 y 0.43 radius 0.2))

y2 1.5

depth 0.1
depth

width

0.1

0.125

bottom type flat
width 0.125

reference feature 1)
bottom.type flat

referencejfeature 8)

10 (10 featurejype hole

center_x 3.0 14(14 feature_type straight_groove

center_y 1.5 xl 2.2

diameter 0.5 yl 1.2

depth thru x2 3.0

reference .feature 8) yl 1.5

depth 0.1

11 (11 feature_type groove width 0.125

upper_l_x 2.875 bottom_type flat

upperj„y 1.85 reference_feature 8))

lower,_r_x 4.25

lower_r_y 1.15 header (header

depth 0.3 material aluminum

width 0.25 design_id xyz

comer_radius 0.2 block_size (block_size

bottom_type round length 6

chamfer_in_depth 0.05 width 2.95

chamfer_out_depth 0.04 height 1.45)

reference_feature 8) description "demo part")))

- 18 -

VWS Design

Table 2. Human-Readable XYZ Part Design Document

feature 4 - text

text = z

design_id: xyz font = round

material: aluminum lower_l_x = 5.38

description: demo part lower_l_y = 0.5

block_used: (block_size length 6 height = 0.4

width 2.95 height L45) depth = 0.015

line_width = 0.1 187434

feature 1 - side_contour feature 5 - side_contour

depth = 0.2 comer_l = (x -0.75 y 3 radius join_back)

comer_l = (x 5.25 y 2.8 radius 0) comer_2 = (x 5.25 y 2.25 radius 0.27)

comer_2 = (x 5.75 y 2.8 radius 0) comer_3 = (x 5.25 y 2.8 radius 0)

comer_3 = (x 5.75 y 0.2 radius 0) comer_4 = (x 5.75 y 2.8 radius 0)

comer_4 = (x 5.25 y 0.2 radius 0) comer_5 = (x 5.75 y 0.2 radius 0)

comer_6 = (x 5.25 y 0.2 radius 0)

feature 2 - text comer_7 = (x 5.25 y 0.75 radius 0.27)

text = x comer_8 = (x -0.75 y 0 radius join_ahead)

font = round comer_9 = (x 0.75 y 1 radius 0.27)

lower_l_x = 5.38 comer_10 = (x 0.75 y 2 radius 0.27)

lower_l_y = 2.1 depth = 0.75

height = 0.4

depth = 0.015

reference_feature = 1

line_width = 0.1187434 feature 6 - hole

center_x = 0.875

feature 3 - text center_y = 2.375

text = y diameter = 0.1719

font = round depth = 0.8

lower_l_x = 5.38 bottom_type = conical

lower_l_y = 1.3 thread_diameter = 0.19

height = 0.4 threads_per_inch = 24

depth = 0.015 thread_depth = 0.6

line_width = 0. 1 1 87434 countersink_diameter = 0.35

reference_feature = 1

- 19 -

VWS Design

feature 7 - hole feature 1 1 - groove

center_x = 0.875 upper_l_x = 2.875

center_y = 0.625 upper_l_y = 1.85

diameter = 0.1719 lower_r_x = 4.25

depth = 0.8 lower_r_y =1.15

bottom_type = conical depth = 0.3

thread_diameter = 0.19 width = 0.25

threads_per_inch = 24 comer_radius = 0.2

thread_depth = 0.6 bottornjype = round

countersink_diameter = 0.35 chamfer_in„depth = 0.05

reference_feature = 1 chamfer_out_depth = 0.04

reference_feature = 8

feature 8 - pocket_comers

upperj_x = 1.45 feature 12 - contour_pocket

upper_l_y = 2 comerj = (x 1.25 y 1.9 radius 0.14)

lower_r_x = 4.5 comer_2 = (x 2.0 y 1.5 radius join=back)

lower_r_y = 1 comer_3 = (x 1.25 y 1.1 radius 0.14)

depth = 0.3 comer_4 = (x 2.75 y 1.1 radius 0.14)

comer_radius = 0.3 comer_5 = (x 2.0 y 1.5 radius join_ahead)

chamfer_in_depth = 0.04 comer_6 = (x 2.75 y 1.9 radius 0.14)

reference„feature = 1 depth = 0.3

reference_feature = 8

feature 9 - contour_groove

comer_l = (x 1.25 y 2.57 radius 0.2) feature 13 - straight_groove

comer_2 = (x 5 y 2.1 1 radius 0.2) xl = 2.2

comer_3 = (x 5 y 0.87 radius 0.2) yl = 1.8

comer„4 = (x 1.25 y 0.43 radius 0.2) x2 = 3.0

depth = 0.1 y2= 1.5

width =0.125 depth = 0.1

bottornjype = flat width = 0.125

reference_feature = 1 bottornjype = flat

reference_feature = 8

feature 10 - hole

center_x = 3.0 feature 14 - straight_groove

center_y =1.5 xl = 2.2

diameter = 0.5 yl = 1.2

depth = thru x2 = 3.0

reference_feature = 8 y2= 1.5

depth = 0.1

width = 0.125

bottom_type = flat

reference_feature = 8

- 20 -

VWS Design

Figure 5. Drawing of XYZ Part

L PLAIN

DESIGN EDITOR
WORKING ON DESIGN ID: xyz

DESIGN VERIFICATION IS: on soft

S. BROAD
3. ROUND
Y ITALIC

5. ANGULAR

scale: One grid square equals 1/4 inch.

-21 -

VWS Design

2.6. Relationship To Other Design Protocols

There is currently no automatic method of extracting a design according to this protocol from
the AMRF standard boundary representation of a design or from design documents produced
by commercial computer aided design systems. It should be feasible to perform this

extraction automatically from a marked AMRF standard design, where the marking has been
done by a human. It is believed that a fully automatic system to do this would be extremely

difficult to construct.

There is also no method, currently, of automatically producing a design according to some
other protocol from the protocol given here. A limited automatic conversion system should

be feasible. In particular, an AMRF standard design should be producible from a VWS2

design for those parts in which features do not intersect and which are expressible in the

AMRF standard.

Since the AMRF standard design protocol allows only straight lines and circular arcs as

edges, there are many parts covering a wide range which can be expressed in the VWS

2

protocol which cannot be expressed in the AMRF standard. On the other hand, there are

also many parts covering a wide range that can be expressed in the AMRF standard but not

the VWS2 system.

The AMRF standard design protocol has the advantage of having the representation of a

part be unique, assuming appropriate conventions for locating the part with respect to

coordinate axes. The AMRF standard may lend itself better to producing drawings, since it

contains much detailed information about points and lines. The AMRF standard and other

non-feature-based protocols have the drawbacks of not lending themselves to automatic

process planning or generation of nc-code.

The VWS2 design protocol described here has the advantage of being usable as the basis for

a fully integrated, automatic CAD-CAM system. In particular, it lends itself to automatic

process planning and nc-code generation. The VWS2 design protocol is much easier for a

human to read since all the parameter names are meaningful and are printed, and the features

are natural. The VWS2 design protocol requires fewer data to represent a given part, since a

single feature encompasses points, lines, and faces, and a minimal amount of information is

needed to specify a feature.

2.7. Enhanced Design

2.7.1. Introduction

Each feature has an enhanced version, which is prepared automatically by the VWS2 system

at the appropriate time. In the enhanced version there are several additional parameter-

value pairs and the value of user-given parameters may change.

- 22 -

VWS Design

Except for "z_surf\ which is discussed in this section, all details of design enhancement are

given under the descriptions of features. The enhanced design of the XYZ Part is shown in

Table 3.

The enhanced design is invisible to the user and is prepared automatically by the

enhancement subsystem. The enhanced design is not written to a file. The enhanced design

is shared among subsystems to a certain extent, however.

In the design editor one feature is enhanced at a time because the user is dealing with one

feature at a time. In other parts of the VWS2 system, an entire design is enhanced.

VWS Design

Table 3. Enhanced Design of XYZ Part

(setplist ’xyz 2 (2 5 (5

’(features (features tool_diam 0.25 lry_nc 0.0

1 (1 z_surf 0 Irxjic 6

lry_nc 0.0 feature_type text uly=nc 2.95

lrx_nc 6 text (X) ulx_nc 0.0

uly_nc 2.95 font round min_y 0.2

ulx_nc 0.0 lower.L.x 5.38 max_y 2.8

min__y 0.2 lower_J_y 2.1 minx 0.4554494

max_y 2.8 height 0.4 max_x 5.75

min_x 5.25 depth 0.015 z„surf -0.2

max_x 5.75 line_width 0.1187434) feature_type side_contour

z surf 0 comers (comers

feature_type side contour 3 (3 1 (1 max_y 2.7973391

depth 0.2 tool_diam 0.25 min_x 0.4554494

comers (comers z_surf 0 inangle 2.5535901

1 (1 y2 2.8 feature_type text turn -2.677945

x2 5.25 text 00 center_y 2.4058733

yi 2.8 font round center x 0.8469152

xl 5.25 lower 1 x 5.38 y2 2.7943162

inangle 1.5707963 lower 1 y 1.3 x2 0.8954706

turn -1.5707963 height 0.4 yi 2.080154

X 5.25 depth 0.015 xl 0.6297691

y 2.8 line_width 0.1187434) X -0.75

radius 0) y 3

2 (2 y2 2.8 4 (4 radius 0.3914659)

x2 5.75 tool_diam 0.25 2 (2 min,j 2.2858512

yi 2.8 z_surf 0 rnaxx 5.25

xl 5.75 feature_type text center_y 2.5558512

inangle 0.0 text (Z) center x 4.98

turn -1.5707963 font round y2 2.5558512

X 5.75 lower 1 x 5.38 x2 5.25

y 2.8 lower 1 v 0.5 yl 2.2879362

radius 0) height 0.4 xl 4.9465106

3 (3 y2 0.2 depth 0.015 inangle 6.1588303

x2 5.75 line_width 0.1187434) turn 1.6951513

yl 0.2 X 5.25

xl 5.75 y 2.25

inangle 4.712389 radius 0.27)

turn -1.5707963 3 (3 y2 2.8

x 5.75
*

x2 5.25

y 0.2 yl 2.8

radius 0) xl 5.25

4 (4 y2 0.2 inangle 1.5707963

x2 5.25 turn -1.5707963

yl 0.2 X 5.25

xl 5.25 y 2.8

inangle 3.1415927 radius 0)

turn -1.5707963

X 5.25

y 0.2

radius 0)))

- 24 -

VWS Design

4 (4 y2 2.8 9 (9 max_x 0.75 7 (7

x2 5.75 center_y 1.1444996 comer_radius 0.08595

yi 2.8 center x 0.48 lower r y 0.53905

xl 5.75 y2 1.1444996 lower r x 0.96095

inangle 0.0 x2 0.75 upper_l_y 0.71095

turn -1.5707963 yi 0.919846 upper_l_x 0.78905

X 5.75 xl 0.6297691 z_surf -0.2

y 2.8 inangle 0.5880026 feature_type hole

radius 0) turn 0.9827937 center_x 0.875

5 (5 y2 0.2 X 0.75 center_y 0.625

x2 5.75 y 1 diameter 0.1719

yi 0.2 radius 0.27) depth 0.8

xl 5.75 10 (10 center_y 1.8555004 bottom_type conical

inangle 4.712389 center x 0.48 thread_diameter 0.19

turn -1.5707963 y2 2.080154 threads_per_inch 24

X 5.75 x2 0.6297691 thread_depth 0.6

y 0.2 yi 1.8555004 countersink_diameter 0.35

radius 0) xl 0.75 reference_feature 1)

6 (6 y2 0.2 inangle 1.5707963

x2 5.25 turn 0.9827937 8 (8

yi 0.2 X 0.75 chin_cr 0.3

xl 5.25 y 2 chin_lry 1

inangle 3.1415927 radius 0.27)) chin_lrx 4.5

turn -1.5707963 depth 0.75 chin_uly 2

X 5.25 reference_feature 1) chin_ulx 1.45

y 0.2 center_y 1.5

radius 0) 6 (6 center_x 2.975

7 (7 max_y 0.7141488 comer_radius 0.08595 z_surf -0.2

center_y 0.4441488 lower_r_y 2.28905 feature_type pocket

center x 4.98 lower_r_x 0.96095 upper_l_x 1.45

y2 0.7120638 upper_l_y 2.46095 upper_l_y 2

x2 4.9465106 upper_l_x 0.78905 lower r x 4.5

yi 0.4441488 z_surf -0.2 lower_r_y 1

xl 5.25 feature_type hole depth 0.3

inangle 1.5707963 center_x 0.875 comer_radius 0.3

turn 1.6951513 center_y 2.375 chamfer_in_depth 0.04

X 5.25 diameter 0.1719 reference_feature 1)

y 0.75 depth 0.8

radius 0.27) bottom_type conical

8 (8 min_x 0.4554494 thread_diameter 0.19

min_y 0.2026609 threads_per_inch 24

inangle 3.2659476 thread_depth 0.6

turn -2.677945 countersink_diameter 0.35

center_y 0.5941267 reference_feature 1)

center x 0.8469152

y2 0.919846

x2 0.6297691

yi 0.2056838

xl 0.8954706

X -0.75

y 0

radius 0.3914659)

- 25 -

VWS Design

9 (9 4 (4 min_x 1.25 11 (11

min_y 0.4548387 miny 0.4548387 chout_cr 0.0

max_y 2.5439676 center_y 0.6548387 chout_lry 1.4

min_x 1.25 center_x 1.45 chout_lrx 4.0

max_x 5.0 y2 0.6548387 chout_uly 1.6

tool_diam 0.125 x2 1.25 chout_ulx 3.125

z_surf -0.2 yi 0.4562013 chin_cr 0.2

feature_type contour_groove xl 1.4733068 chin_Jry 1.15

comers (comers inangle 3.2583919 chinlrx 4.25

1 (1 max_y 2.5439676 turn -1.6875956 chin_uly 1.85

min_x 1.25 X 1.25 chin_ulx 2.875

center_y 2.3439676 y 0.43 tool.diam 0.25

center x 1.45 radius 0.2)) lry_nc 1.275

y2 2.5424796 depth 0.1 lrx_nc 4.125

x2 1.4743508 width 0.125 uly_nc 1.725

yl 2.3439676 bottom_type flat ulxjnc 3.0

xl 1.25 reference_feature 1) crjic 0.075

mangle 1.5707963 zsurf -0.5

turn -1.6928532 10(10 feature_type groove

X 1.25 comer_radius 0.25 upper_l„x 2.875

y 2.57 lower_r_y 1.25 upperJ_j 1.85

radius 0.2) lower r x 3.25 lower r x 4.25

2 (2 center_y 1.9330342 upper_l_y 1.75 iower_r,_y 1.15

center_x 4.8 upper_l_x 2.75 depth 0.3

y2 1.9330342 z_surf -0.5 width 0.25

x2 5.0 feature_type hole comerjadius 0.2

yl 2.1315463 center,*. 3.0 bottom,type round

xl 4.8243508 center_y 1.5 chamfer_in_depth 0.05

inangle 6.1611284 diameter 0.5 chamfer_out_depth 0.04

turn -1.4487394 depth 1.12 reference__feature 8)

X 5 reference_feature 8)

y 2.11

radius 0.2)

3 (3 max_x 5.0

center_y 1.0479053

center x 4.8

y2 0.849268

x2 4.8233068

yl 1.0479053

xl 5.0

inangle 4.712389

turn -1.453997 •

X 5

y 0.87

radius 0.2)

- 26 -

VWS Design

12(12 4 (4 max_x 2.33 13(13
min_y 1.1 center_y 1.24 y2_nc 1.5219452

max_y 1.9 center x 2.19 yl_nc 1.7780548

min_x 1.67 y2 1.3635294 x2_nc 2.9414794

max x 2.33 x2 2.2558824 xl_nc 2.2585206

z_surf -0.5 yi 1.1 tool_diam 0.125

feature_type contour_pocket xl 2.19 z_surf -0.5

comers (comers inangle 0.0 feature type straight_groove

1 (1 min_x 1.67 turn 2.6516353 xl 2.2

center_y 1.76 X 2.75 yi 1.8

center x 1.81 y 1.1 x2 3.0

y2 1.6364706 radius 0.14) y2 1.5

x2 1.7441176 5 (5 min_x 2.174 depth 0.1

yi 1.9 inangle 2.6516353 width 0.125

xl 1.81 turn -2.161678 bottom_type flat

inangle 3.1415927 center_y 1.5 reference_feature 8)

turn 2.6516353 center x 2.3286667

X 1.25 y2 1.6364706 14(14

y 1.9 x2 2.2558824 y2_nc 1.4780548

radius 0.14) yl 1.3635294 yl_nc 1.2219452

2 (2 max_x 1.826 xl 2.2558824 x2_nc 2.9414794

inangle 5.793228 X 2.0 xl_nc 2.2585206

turn -2.161678 y 1.5 tool_diam 0.125

center_y 1.5 radius 0.1546667) z_surf -0.5

center x 1.6713333 6 (6 max_x 2.33 feature_type straight_groove

y2 1.3635294 max_y 1.9 xl 2.2

x2 1.7441176 center_y 1.76 yi 1.2

yi 1.6364706 center x 2.19 x2 3.0

xl 1.7441176 y2 1.9 y2 1.5

X 2.0 x2 2.19 depth 0.1

y 1.5 yi 1.6364706 width 0.125

radius 0.1546667) xl 2.2558824 bottom_type flat

3 (3 min_x 1.67 inangle 0.4899573 reference_feature 8))

min_y 1.1 turn 2.6516353

center_y 1.24 X 2.75

center x 1.81 y 1.9

y2 1.1 radius 0.14)) header (header

x2 1.81 depth 0.3 material aluminum

yi 1.3635294 reference_feature 8) design_id xyz

xl 1.7441176 block_size (block size

inangle 3.63155 length 6

turn 2.6516353 width 2.95

X 1.25 height 1.45)

y 1.1 description "demo part”))))

radius 0.14)

- 27 -

VWS Design

2.7.2. Why Have an Enhanced Design?

Having an enhanced version of the design is useful for three reasons:

1. The design protocol is structured to allow the user to specify features in a commonsense
manner. For example, if a thru-hole is to be made, the value of the "depth" parameter for the

hole is simply "thru". In other parts of the VWS2 system, particularly when nc-code is to be

generated, it may be necessary to have a numerical value for the depth of the hole. The
enhanced version of a thru-hole has a numerical value.

2. The VWS2 design editor allows the user to specify a feature with different sets of

parameters in some cases. For example, the outline of a pocket may be specified either by
giving the coordinates of diagonally opposite comers (in which case the feature_type is

"pocket_comers") or by giving the coordinates of the center plus the length and width (in

which case the feature_type is "pocket_center"). In this case the rest of the system might

want to know the coordinates of the comers or the center even if the user has not specified

them. In the enhanced version of a pocket, the feature-type is changed to "pocket" in both

cases, and all the missing parameters are calculated and inserted.

3. In order to prepare nc-code, it is helpful to have parameters pertaining to the path of tool

making a feature, rather than the outline of the resulting feature. In many cases such

parameters are calculated and placed in the enhanced design.

2.7.3. z_surf

One enhancement parameter which every feature has is called "z_surf" (short for

z_surface). The z_surf is the negative of the distance below the top surface of the block

where the top of the feature is located. This parameter is calculated by examining the

reference feature situation. If a feature has no reference feature, its z_surf is zero.

Otherwise, the z_surf is the negative of the sum of the depths of the nest of reference

features above the given feature.

2.8. Feature Verification

The parameters for each feature type must satisfy a number of conditions. For example, the

depth of the thread on a hole cannot be greater than the depth of the hole. There is a list of

these conditions (called verification rules) for each feature type. The lists are included

below. There is a verification subsystem in the VWS2 which checks that the rules are

followed. The verification subsystem is described in [K&S1] and [K&S2].

A feature which passes feature verification and reference feature fit checking is guaranteed to

be physically realizable. If it fails, like the hole mentioned above, it may not be.

2.9. Data Structure

The design data structure is a tree of attribute-value pairs. The value of some attributes is a

subtree. For example, the design itself consists of two pairs: the attribute "header" followed

by the header subtree and the attribute "features" followed by the features subtree. The

- 28 -

VWS Design

features subtree is composed of pairs in which the attributes are integers and the values are

feature descriptions. This pairwise structure goes down to the lowest level of the design, as

may be seen in Table 1.

Although the data structure is independent of the choice of computer language chosen to

represent it, since the VWS2 system is written in LISP, the system’s internal

representation is a LISP property list. The VWS2 design editor prepares both a LISP-

readable file giving the design, and a file more easily read by humans. Table 2 gives the

human-readable version of the XYZ part design document.

2.10. Block Description and Coordinate System

The block-shaped piece of stock material that is always the starting shape is taken to be

fixed to a right_handed three_dimensional cartesian coordinate system, as shown in Figure

3. The origin of the coordinate system is at the front lower left-hand comer of the block. The
x-axis is coincident with the front lower edge of the block, and is positive towards the right.

The y-axis is coincident with the left lower edge of the block and is positive going away. The
z-axis is coincident with the front left edge of the block and is positive going upwards. The
dimensions of the block are called length (in the x-direction), width (in the y-direction), and

height (in the z-direction).

2.11. Feature Depth

The coordinate system is used extensively for specifying x and y values, but not for

specifying z-values. Instead of specifying z-values, a parameter called "depth" is used for

all the features. The depth of a feature is positive extending downwards into the block, and

is measured from the top of the feature. This method of specifying depth was selected as the

easiest, most natural to deal with. The depths of the two features in Figure 4 are marked as

an example. Remember that the top of a feature is at the top of the block if the feature has no

reference feature and at the bottom of the reference feature if there is one. Whenever
"depth" is a parameter of a feature, its value either will be a positive number, or it will be the

word "thru", which means the feature extends completely through the part.

2.12. Workpiece Description

2.12.1. Introduction

A workpiece description is a set of data that describes an individual workpiece. Every

workpiece must refer to a design, but there may be many workpieces made from the same
design.

The workpiece description document makes it feasible to represent parts in process, either

within the workstation or coming from other workstations. Also by using the workpiece

description, it is feasible to use a process plan which was intended to make a part from

scratch to write nc-code to finish machining a partially made part. The VWS2 data execution

module does this automatically, as described in [KR&W],

- 29 -

VWS Design

A workpiece description may be verified in the same way a design may be verified.

At the current stage of development, the workpiece description loses usefulness if the

workpiece is to be turned over, because, as in a design, it is expected that all features are

made from one side. Thus, a single physical object may have several workpiece descriptions

if there are features in several sides.

The description of a workpiece is nearly identical to a design. The differences are as follows.

2.12.2. Differences in the Header Section

L A workpiece description must name the material the workpiece is made of (this is

optional in a design). The workpiece material may differ from the design material.

2. A workpiece description must have a "workpiece_id".

3. The block...size may include the "slab” property. This has five sub-properties: front_over,

back_over, right„overs left-over, and depth. As shown in Figure 6, the idea is that the block

may include overhangs on the four sides which project beyond the given length and width.

The overhangs must all be the same thickness, as given by the depth parameter for the slab.

If overhangs are present, it looks as if a slab of material is lying atop the block. The slab

notion was developed to make it easy to work on the reverse side of a block which was
milled flat on four sides to a fixed depth during a previous milling.

The VWS2 system will deal automatically with a workpiece which has this slab property.

When the slab on a workpiece is removed, the workpiece must have the same length and

width as specified in the corresponding design, and the remaining height must be at least as

large as the design height. The description of a workpiece with a slab may have no features.

4. The "description" property, which is required in a design, is optional in a workpiece.

2.12.3. Differences in the Features Section

1. Each feature in a workpiece description must have the same feature number as the

corresponding feature in the design. However, the workpiece description does not have to

have all the features in the design. For example, it would be feasible to have a workpiece

made from the XYZ Part design with only features 1 and 6.

2. A given feature in the workpiece description may not have all the subfeatures of the

corresponding design feature. Suppose, for example, that feature 6 on the XYZ part design

(which is a hole) had been drilled and countersunk, but not tapped. Then feature 6 would be

present in the workpiece description, but it would not have the parameters "thread_depth",

"threads_per_inch", and "thread_diameter". The values of all the other parameters for

feature 6 would be as given in the design.

- 30 -

VWS Design

Figure 6. Workpiece With Slab

Arrows

1 = left_over

2 = back_over

3 = right_over

4 = front_over

5 = depth of slab

i

VWS Design

2.13. Adding a Feature to the Protocol

2.13.1. Introduction

This section explains how a feature type may be added to the VWS2 design protocol. To add
a feature type, changes must be made in several subsystems: verification, drawing, data

execution (particularly nc-code generation), design editor, data base, geometry, and process

planning.

The list given below is based on several assumptions:

1. The feature is machinable in a single (new) operation.

2. The feature has no allowable subfeatures.

3. The feature is not flat_bottomed, and, therefore, cannot be a reference feature.

4. A new type of tool, not currently known to the system, will be required for the new
operation that makes the feature.

If new tools and a new operation are not needed or if the feature cannot have any reference

feature, less work will be necessary. If more than one operation will be required, if the

feature has subfeatures, or if the feature can be a reference feature, more work will be

necessary.

In the list below, it may be necessary to write several auxiliary functions for some of the

principal functions.

Almost every feature has something unique about it that requires unique additions to the

system. A few such additions, not listed here, are to be expected.

2.13.2. Verification

1. Write a new function that produces a set of comers of the type used for contour features

which has the same outline as the feature. This is so the feature can have a reference

feature (we are still assuming it cannot itself be a reference feature for some other feature).

2. Generate verifier:

a. Write verification rules.

b. Make three new sets of entries in the 'Verify_data
,
' file, so that the automatic verification

function generator will be able to interpret the verification rules for the feature.

c. Call "define_verifier" to generate a new verification function.

3. Write a new function that checks the new machining operation.

2.13.3. Drawing

1. Write a function to draw the feature. This normally requires auxiliary functions, such as an

outline drawer, a profile drawer, and a masker.

- 32 -

VWS Design2.

Revise "redefine_get_slot", if necessary, to produce a virtual description of the new tool

type, so that the design editor will be able to draw the feature.

2.13.4.

Data Execution

1. Write a function to generate nc-code. This normally requires auxiliary functions.

2. Revise "add_feature" so that the model of the workpiece can be handled properly.2.13.5.

Design Editor

:

li

1. Add appropriate data about the feature to the "FEATURES_LIST".
2. Devise a suitable question and answer routine to guide the user through the process of

creating a feature of the new type.

3. Revise the feature changing facility to handle the new feature type.

4. Revise the "array" and "group" facilities to handle the new feature type.
2.13.6.

DataBase

1. Add the feature to the "features" file, and revise other parts of that file.

2. Add the new machining operation to the "machine_ops" file.

3. Add appropriate tools to the "tool_catalog" file.

4. Revise the model of the tools in the milling machine to include some tools of the new type.

2.13.7.

Geometry

1. Write a function to enhance the new feature. This is an iterative process. As the nc-code

generation, verification, process planning, and drawing functions needed to deal with the new
feature are developed, it becomes clear what parameters are nice to have available for two or

more of these subsystems, and such parameters are candidates for inclusion in the

enhancement subsystem.

2. Write specialized geometry functions to deal with geometric aspects of the new feature for

which no capability already exists.

2.13.8.

Process Planning

1. Write a function to choose the machining operation to make the feature.

2. Revise "order_ops" to determine the place of the new machining operation in a sequence of

machining operations.

3. Revise "select_tool_diameter" to include the new tool.

4. Revise "select_tool_type" to include the new tool.

5. Revise the functions that pick spindle speeds, feed rates, and pass depths to include the

new tool.

- 33 -

VWS Design

2.14. An Example of a Design

As mentioned earlier, Table 1 gives the design of a part which we have called the "XYZ
Part". Table 3 shows the enhanced version of the design, and a picture of that part is shown
in Figure 5.

2.15. Feature Descriptions

2.15.1. Introduction

Immediately below there is a discussion of each feature type in the system. Each discussion

includes:

1. Comments about the feature type,

2. A description of the appearance of the feature type,

3. A list of required parameters,

4. A list of optional subfeatures,

5. A list of optional parameters,

6. A table of enhancement parameters,

7. The verification rules which a feature of that type must satisfy,

8. A design document consisting of features of the type under discussion, and

9. A drawing of the part made from the design.

Examples of enhanced features are in Table 3 and are not included below.

A summary of feature parameters and subfeatures follows immediately in Table 4.

The appearances described below are based on the assumption that the feature will pass its

verification test. If a feature does not pass its verification test, additional appearances are

possible, both on the part itself and on the drawing of the part made by the system. But in

this case it is possible that the part will not look like the drawing of it. A few of the

verification rules, in fact, are included only because the drawing subsystem is limited in what

it can draw correctly, and it was desired to be sure that all verifiable features would be drawn
correctly.

The appearances given here are based on the assumption that a feature does not intersect

any other features. Obviously, the appearance of the actual part will be different if there are

feature intersections. The drawing system does not detect feature intersections, so the

appearance of features on the drawing will be as described below, even if they intersect.

The groove and pocket features may have the size and location of their outlines specified by

giving the x and y coordinates of the upper left and lower right comers of an imaginary box

around the feature. Similarly, the location of text is specified by giving the x and y
coordinates of the lower left hand comer of an imaginary parallelogram around the outline of

the text. Figure 7 shows how this location is done. In the case of grooves and pockets, the

feature fits completely inside the box. In the case of text, the outline of the text extends

beyond the imaginary parallelogram because of the line_width of the text. The parallelogram

- 34 -

VWS Design

around text is located with respect to the center line of the text.

A few conventions have been followed in selecting parameter names. Any parameter name
that starts or ends with x or y represents an x or y value. Depth is always as described

above. The portion of a parameter name that is "upper_l", "lower_r", or "lower_l" refers to

the upper left, lower right, or lower left comer of one of the imaginary boundaries described in

the preceding paragraph, "ul" stands for upper left, "lr" for lower right, "ch" for chamfer,

"chout" for chamfer_out, "chin” for chamfer_in, and "cr" for comer radius.

The rules each feature must obey are written in English, but it is constrained English since it

must be read by the VWS2 automatic feature verifier generation system, which reads

English only as a second language. In the verification rules, the following usages are

observed:

1. "min_thick" is a small positive number representing a minimum wall thickness.

2. "The x-value of the plus-x side" of a feature means the x-value of a point on the top view

of the outline of the feature where x is largest. Similar phrases involving "plus-y", "minus-

x", and "minus-y" are defined analogously.

3. "maximum comer radius" means the comer radius of the feature plus any increment that

may result from countersinking or chamfering.

4. The "vertical rise" of a feature is the length of that portion of the wall of the feature which
i is vertical. In a hole, for example, some of the depth may be accounted for by a conical

bottom, and some may be accounted for by a chamfer at the top. The remainder of the depth

of the hole is its vertical rise.

- 35 -

VWS Design

Table 4. Feature Parameters and Subfeatures

Feature

Name
Required

Parameters

Optional

Subfeatures

Optional

Parameters

chamfer_out chamfer_out_depth none none

contour_groove comers

width

depth

bottom.jype

none offset

reference_feature

contour_pocket comers

depth

none reference„feature

groove upper_l_x

lower_r_x

depth

width

upper_l_y

lower, r_y

bottom_type

comer_radius

chamfer...in

chamfer„out

chamfer_in_depth

chamfer„out„depth

reference_feature

hole center_x

center„y

diameter

depth

bottom_type

chamfer_in

countersink

thread

chamfer_in_depth

countersink_depth

thread_diameter

thread_depth

threads„per_inch

reference_feature

pocket (2 types)

pocket„comers upper_l_x

lower_r_x

comer_radius

upper_l_y

lower. r_y

depth

chamfer_in chamfer_in_depth

reference_feature

pocket_center center_x

length

comer_radius

center_y

width

depth

chamfer_in chamfer_in_depth

reference_feature

side_contour comers depth none reference_feature

straight_groove xl yl x2 y2

depth width bottom_type

chamfer_in chamfer_in_depth

reference_feature

text lower_l_x

height

text

lower.!_.y

depth

line_width

none font

reference_feature

- 36 -

VWS Design

Figure 7. Locating a Pocket, a Groove, and Text

The upper left comer is given by two parameters: upper_l_x and upper_l_y.

The lower right comer is given by two parameters: lower_r_x and lower_r_y.

The lower left comer is given by two parameters: lower_l_x and lower_l_y

- 37 -

VWS Design

2.15.2.
Chamfer_out

2.15.2.1. Comments

There are three uses of chamfer in the system: chamfer_out as a primary feature, and
chamfer_out and chamfer_in as subfeatures. A chamfer_out is a primary feature only if it is

to be a chamfering of the original block. As a subfeature, chamfer_out is only used to chamfer
the island left inside a groove. Chamfer_in is used to chamfer the inside of the outline of a

groove, hole, pocket, or straight_groove.

All the chamfering routines expect the feature being chamfered to look like a rectangle with

rounded comers (which may degenerate either to a rectangle with square comers or to a

circle). A straight groove may be chamfered only if it is horizontal or vertical. All chamfers

are 45 degree bevels on an edge between a horizontal surface and a vertical surface.

Chamfers do not require much specification information because the information about the

edge being chamfered is contained either in the dimensions of the block or in parameters of

the feature being chamfered. The only specification needed is the
!t

ehamfer_out_depth". The
bevel extends to the depth given by this parameter. Since the bevel is at 45 degrees, the

width of the chamfer is equal to its depth.

Except where specifically noted otherwise, this remainder of this section describes the

chamfer feature, not the subfeature.

2.15.2.2. Appearance

45 degree bevel on the outside top edge of the original block, when used as a primary

feature. 45 degree bevel on the parent feature when used as a subfeature.

2.15.2.3. Required Parameters

feature_type Must be "chamfer_out".

chamfer_out_depth Must be a positive number less than the height of the block

if a primary feature.

Must be less than the vertical rise of the parent feature prior

to chamfering when used as a subfeature.

2.15.2.4. Optional Subfeatures - None.

2.15.2.5. Optional Parameters - None.

2.15.2.6. Enhancement Parameters

All the enhancers for features which can be chamfered look for the presence of a chamfering

depth. If one is found, enhancement parameters are added to specify the comers and comer

radius of the chamfer.

- 38 -

VWS Design

z_surf Set to a number.

chout_ulx Set to zero.

chout_uly Set to the width of the block.

chout_lrx Set to the length of the block.

chout_lry Set to zero.

chout cr Set to zero.

2.15.2.7. Verification Rules

The chamfer_out_depth should be less than the height of the block.

2.15.2.8. Example Design

This is a simple chamfer of a block. In examples for a number of other feature types there are

additional chamfers.

Figure 8. Chamfer_Out

(setplist ’chamfer_out

’(header (header design_id chamfer_out

description "block chamfer"

block_size (block_size length 6.95 width 2.975 height 0.735))

features (features 1

(1 feature_type chamfer_out

chamfer_out_depth 0.1))))

- 39 -

VWS Design

2.15.3.
Groove

2.15.3.1. Comments

A groove may be thought of as the volume removed when a tool which is either flat or

rounded on the end is passed through the block in a path shaped like a rectangle with

(optionally) rounded comers. Because of the radius of the tool, the exterior outline of a

groove always has rounded comers if the comers lie within the block. The tool path may
pass outside the block at some points. A groove may not go through the bottom of the

block. If it did, the island of material surrounded by the groove would fall out, which is not

safe, since the island might jam and break the tool.

2.15.3.2. Appearance

Round-bottomed grooves have bottoms that are circular arcs in cross-section. The walls of

grooves are vertical unless the groove is shallow with a round bottom. The straight parts of

the outline of a groove are parallel to the x or y axes. If the comer radius of the groove is

large enough, the rectangle may degenerate to a circle. There is always an island or infield

left inside the groove. If a groove passes through the sides of the block, it must be the

straight portion of the groove that passes through. If a groove passes through two opposite

sides of the block, it degenerates to two parallel straight cuts through the block.

2.15.3.3. Required Parameters

feature_type

upper_l_x

upper„Ly

lower_r_x

lower_r_y

depth

width

bottom_type

comer radius

Must be "groove".

Must be a number or "thru". Represents the x-coordinate of the

upper left hand comer of the bounding box.

Must be a number or "thru". Represents the y-coordinate of the

upper left hand comer of the bounding box.

Must be a number or "thru". Represents the x-coordinate of the

lower right hand comer of the bounding box.

Must be a number or "thru". Represents the y-coordinate of the

lower right hand comer of the bounding box.

Must be a positive number.

Must be a positive number. Represents the width of the cut.

Must be "flat" or "round".

Must be a positive number. Represents the radius of the outermost

circular arc at the comers of the groove.

2.15.3.4.

Optional Subfeatures

Chamfer_in and chamfer_out are optional subfeatures. See the discussion under chamfer_out

above.

- 40 -

VWS Design

2.15.3.5. Optional Parameters

reference_feature Must be a positive integer.

chamfer_in_depth Must be a positive number.

chamfer_out_depth Must be a positive number.

2.15.3.6. Enhancement Parameters

For several uses (especially writing nc-code), it is handy to have a second imaginary box

around the groove that touches the center line of the groove rather than the outside of the

groove. Parameters associated with this center line bounding box are put in place by the

enhancement subsystem. These are the parameters that end in "nc" in the following list. The
parameters that begin with "chin" or "chout" in the list are to assist in chamfering. The
"chin" parameters are inserted only for a chamfer-in, the "chout" parameters only for a

chamfer-out.

z_surf

upper_l_x

upper_l_y

lower_r_x

lower_r_y

ulx_nc

uly_nc

lrx_nc

lry_nc

cr_nc

tool diam

chin_ulx

chin_uly

chin_lrx

chin_lry

chin_cr

chout_ulx

chout_uly

chout_lrx

chout_lry

chout_cr

Set to a number.

If the given value is "thru", it is replaced by a negative number.

If the given value is "thru", it is replaced by a positive number.

If the given value is "thru", it is replaced by a positive number.

If the given value is "thru", it is replaced by a negative number.

A number representing the x-coordinate of the upper left hand

comer of the center line bounding box.

A number representing the y-coordinate of the upper left hand

comer of the center line bounding box.

A number representing the x-coordinate of the lower right hand
comer of the center line bounding box.

A number representing the y-coordinate of the lower right hand
comer of the center line bounding box.

A non-negative number representing the comer radius of the center

line of the groove.

A positive number representing the diameter of the tool needed to

make the groove. This is the same as the width of the groove

unless the groove is round-bottomed and its depth is less than

half the width.

Set to the value of upper_l_x.

Set to the value of upper_l_y.

Set to the value of lower_r_x.

Set to the value of lower_r_y.

Set to the value of comer_radius.

Set to the value of upper_l_x plus width.

Set to the value of upper_l_y minus width.

Set to the value of lower_r_x minus width.

Set to the value of lower_r_y plus width.

Set to the value of comer_radius minus width

(or zero if that is negative).

- 41 -

VWS Design

2.15.3.7. Verification Rules

If the x_value of the plus_x side of the groove is not greater than the length of the block, then

the x_value of the plus_x side of the groove should not be greater than the length of the block
minus min_thick.

If the x_value of the plus_x side of the groove is greater than the length of the block, then the

x_value of the plus_x side of the groove should be greater than the length of the block plus

the maximum comer radius of the groove.

If the x_value of the minus_x side of the groove is not less than zero, then the x_value of the

minus_x side of the groove should not be less than min_thick.

If the x_value of the minus_x side of the groove is less than zero, then the x„value of the

minus_x side of the groove should be less than zero minus the maximum comer radius of the

groove.

If the y„value of the plus_y side of the groove is not greater than the width of the block, then

the y_value of the plus_y side of the groove should not be greater than the width of the block

minus min_thick.

If the y_value of the plus_y side of the groove is greater than the width of the block, then the

y__value of the plus„y side of the groove should be greater than the width of the block plus

the maximum comer radius of the groove.

If the y_value of the minus_y side of the groove is not less than zero, then the y_value of the

minus_y side of the groove should not be less than min_thick.

If the y__value of the minus_y side of the groove is less than zero, then the y_value of the

minus_y side of the groove should be less than zero minus the maximum comer radius of the

groove.

The y_value of the plus_y side of the groove plus 0.00001 minus the y_value of the minus_y

side of the groove should be greater than 2.0 times the maximum comer radius of the groove.

The y_value of the plus_y side of the groove minus the y_value of the minus_y side of the

groove should be greater than 2.0 times the width of the groove plus the chamfer_in_depth of

the groove plus the chamfer_out_depth of the groove.

The y_value of the plus_y side of the groove minus the y_value of the minus_y side of the

groove should be greater than min_thick plus 2.0 times the width of the groove plus the

chamfer_in_depth of the groove.

The x_value of the plus_x side of the groove plus 0.00001 minus the x_value of the minus_x

side of the groove should be greater than 2.0 times the maximum comer radius of the groove.

- 42 -

VWS Design

The x_value of the plus_x side of the groove minus the x_value of the minus_x side of the

groove should be greater than 2.0 times the width of the groove plus the chamfer_in_depth of

the groove plus the chamfer_out_depth of the groove.

The x_value of the plus_x side of the groove minus the x_value of the minus_x side of the

groove should be greater than min_thick plus 2.0 times the width of the groove plus the

chamfer_in_depth of the groove.

The z_value of the top of the groove should be greater than 0.0.

The z_value of the bottom of the groove should be greater than min_thick.

The tool_diameter of the groove should be greater than 0.0624.

The width of the groove should be less than 0.00001 plus 2.0 times the comer radius of the

groove.

The chamfer _in__depth of the groove should not be greater than the vertical rise of the groove.

The chamfer_out_depth of the groove should not be greater than the vertical rise of the

groove.

2.15.3.8. Example Design

Figure 9 shows four grooves on a block, two round-bottomed and two flat-bottomed. The
groove in the upper right has a chamfer_in. The round groove has a chamfer_out.

- 43 -

VWS Design

(setplist grooves’ upper, j _y 1.25

(features (features lowerjr_x 5

1 (1 lower_r_y 0.25

feature_type groove depth 0.5

upper _l_x 0.2 width 0.125

upper_l_y thru comerj-adius 0.3

lower _r_x 1.2 bottom_type flat)

lower_r_y thru 4 (4

depth 03 featurejype groove

width 0.25 upper_l_x 4

comer_radius 0.2 upperJ_y 2.75

bottom type round) lower_r_x thru

2 (2 lower_r_y 1.5

featurejype groove depth 0.4

upper_l_x 1.5 width 0.5

upper_l„y 2.5 comerjradius 0.3

lower_r_x 2.5 bottom_type round

lower_r_y 1.5 chamfer_in_depth 0.15))

depth 0.2 header (header

width 0.375 designjd grooves

comer_radius 0.5 block_size (block_size

bottom_type flat length 6.95

chamfer_out_depth 0.046875) width 2.975

3 (3 height 0.735)

feature_type

upper_l_x

groove

3

description groove demo")))

- 44 -

VWS Design

2.15.4. Hole

2.15.4.1. Comments

The bottom of a hole may either be conical, like a drill hole, or flat. A hole is either (i) a

"clean through hole" (one that goes cleanly through the bottom of the part), (ii) a "partly

through hole" (one with a conical bottom where only the tip of the cone sticks through the

bottom of the part), or (iii) a "blind hole" (one that does not go through the bottom at all). A
clean through hole needs no bottom type. The bottom type of a partly through hole is always

conical. The bottom type of a blind hole is either flat or conical.

A hole may be chamfered or countersunk (but not both). It may also be threaded. In the case

of a thread, either all three parameters describing a thread (thread_depth, thread_diameter,

and threads_per_inch) should be present or they should all be absent.

A hole is the only feature type that can be used as a reference feature even if it is not

flat_bottomed. A conical_bottomed hole may be used as the reference feature for another

conical_bottomed hole if the two are concentric.

2.15.4.2. Appearance

A hole is a circular recess. If the bottom of the hole is conical, the tip angle is 1 1 8 degrees

(the tip angle of a standard drill). If the hole is chamfered or countersunk, the top edge of the

hole will be bevelled, the only difference being the angle of the bevel (45 degrees from the

horizontal for a chamfer, 49 degrees for a countersink). If the hole is threaded, a picture of

the threading will be shown on the side views on the picture of the hole. The thread depth

will be shown correctly in the picture. The number of threads per inch on the picture will be

shown correctly unless the threads would be too close together to distinguish one from the

next. In that case, the threads_per_inch on the picture will be fewer than in reality, so that

the threads are discemable on the picture.

2.15.4.3.

Required Parameters

feature,_type

center_x

center_y

depth

diameter

bottom_type

Must be "hole".

Must be a number.

Represents the x-coordinate of the center of the hole.

Must be a number.

Represents the y-coordinate of the center of the hole,

ust be a positive number or "thru".

If the depth is "thru", the hole is a clean through hole.

Must be a positive number. Represents the diameter of the hole.

This parameter is actually required in only some cases, as follows:

(i) blind hole — bottom_type must be either "flat" or "conical".

(ii) partly thru hole — bottom_type must be "conical".

(iii) clean thru hole — there should be no bottom_type. If there

is one, it will be ignored by the system.

- 45 -

VWS Design

2.15.4.4. Optional Subfeatures

A hole may be countersunk or chamfered, but not both. A hole may be threaded.

2.15.4.5. Optional Parameters

reference_feature

thread_diameter

thread_depth

threads_per_inch

chamfer_in_depth

countersink_diameter

Must be a positive integer.

Must be a positive number greater than the hole’s diameter.

Represents the maximum diameter of the thread.

Must be a positive number or "thru".

Must be a positive integer.

Must be a positive number.

Must be a positive number greater than the hole’s diameter.2.15.4.6.

Enhancement Parameters

Several of the enhancement parameters are used so that a hole and a pocket, when
enhanced, will have similar sets of parameters.

z_surf

depth

thread_depth

upper__l_x

upper_l_y

lower_r_x

lower_r_y

comer_radius

chin_ulx

chin_uly

chinjrx

chin_lry

chin cr

Set to a number.

If the value of depth is "thru", it will be replaced by a number.

If the value of thread__depth is "thru", it will be replaced by a

number.

Set to center_x minus radius.

Set to center_y plus radius.

Set to center_x plus radius.

Set to center_y minus radius.

Set to half the hole diameter.

Set to eenter_x minus radius for a chamfer.

Set to center_y plus radius for a chamfer.

Set to center_x plus radius for a chamfer.

Set to center_y minus radius for a chamfer.

Set to half the hole diameter for a chamfer.

2.15.4.7.

Verification Rules

The x_value of the plus_x side of the hole should not be greater than the length of the block

minus min_thick.

The x_value of the minus_x side of the hole should not be less than the x_value of the

minus_x side of the block plus min_thick.

The y_value of the plus_y side of the hole should be less than the width of the block minus

min_thick.

The y_value of the minus_y side of the hole should be greater than min_thick.

- 46 -

VWS Design

The z_value of the top of the hole should be greater than 0.0.

If the bottom_type of the hole is equal to flat and the z_value of the bottom of the hole is

greater than 0.0, then the z_value of the bottom of the hole should be greater than min_thick.

If the countersink_diameter of the hole is greater than zero, then the chamfer_in_depth of the

hole should not be greater than zero.

If the countersink_diameter of the hole is greater than zero, then the countersink_diameter of

the hole should be greater than the diameter of the hole.

The countersink_diameter of the hole should not be greater than the diameter of the hole plus

(1.7385 times the vertical rise of the hole).

The chamfer_in_depth of the hole should not be greater than the vertical rise of the hole.

It should be that the thread_diameter of the hole is equal to zero and the threads_per_inch of

the hole is equal to nil and the thread_depth of the hole is equal to nil, or the thread_diameter

of the hole is greater than zero and the threads_per_inch of the hole is not equal to nil and

the thread_depth of the hole is not equal to nil.

If the thread_diameter of the hole is greater than zero and the vertical rise of the hole is less

i than the z_value of the top of the hole, then the thread_depth of the hole should be less than

i the vertical rise of the hole.

If the thread_diameter of the hole is greater than zero, then 8 should be equal to the

i threads_per_inch of the hole or 12 should be equal to the threads_per_inch of the hole or 16

should be equal to the threads_per_inch of the hole or 20 should be equal to the

threads_per_inch of the hole or 24 should be equal to the threads_per_inch of the hole or 32

should be equal to the threads_per_inch of the hole.

If the thread_diameter of the hole is greater than zero, then the threads_per_inch of the hole

times (the thread_diameter of the hole minus the diameter of the hole) should not be greater

than 1.08.

If the thread_diameter of the hole is greater than zero, then the thread_diameter of the hole

should not be less than the diameter of the hole.

If the chamfer_in_depth of the hole is greater than zero and the thread_depth of the hole is

not equal to nil, then the thread_depth of the hole should be greater than the

chamfer_in_depth of the hole.

If the countersink_diameter of the hole is greater than zero and the thread_depth of the hole

is not equal to nil, then the thread_depth of the hole should be greater than 0.5752 times the

countersink_diameter of the hole minus the diameter of the hole.

2.15.4.8. Example Design - See Figure 10.

- 47 -

VWS Design

Figure 10. Holes

front view side view

(setplist ’holes 4 (4 7 (7

’(features (features bottom_type conical bottom„type conical

1 (1 feature_type hole feature_type hole

bottomjype conical center_x 3 center_x 3.5

feature„type hole center_y 1.5 center_y 2.25

center_x 1 diameter 0.6 diameter 0.1065

center_y 1 depth 1.06) depth 0.8

diameter 0.25 5 (5 thread_diameter 0.12

depth 0.4) diameter 1 threads_per_inch 24

2 (2 feature_type hole thread_depth 0.5))

feature_type hole center.* 5 header (header

center_x 2 center_j 2.25 design_id holes

center_y 0.5 depth thru) block_size (block_size

diameter 0.5 6 (6 length 6

depth thru bottom_ type conical width 3

thread_diameter 0.53 fear,ure_type hole height 1)

threads_per_inch 16 center x 4 description "hole demo")))

thread_depth thru center_y 1

countersink diameter 0.7) diameter 0.1065

3 (3 depth 0.3

diameter 1 countersink_diameter 0.35)

bottom_type flat

feature_type hole

center_x 0.75

center_y 2

depth 0.2)

- 48 -

VWS Design

2.15.5. Pocket

2.15.5.1. Comments

A pocket is a recess with a flat bottom and vertical walls. A pocket may go through the

block at the bottom or at the sides (but not through two opposite sides and the bottom

1

simultaneously, or the block would be cut in half). If a pocket passes through the side of the

block, it must be a straight portion of the pocket that passes through.

In the design editor there are actually two kinds of pockets: pocket_comers and

pocket_center. The rest of the VWS2 system only recognizes "pocket". This ' is

accomplished by having the enhancement subsystem change the value of the feature_type

parameter to "pocket" in both cases.

2.15.5.2. Appearance

The outline of a pocket is a rectangle with rounded comers. It may degenerate to a circle.

Like a groove, a pocket may may be imagined as being surrounded by a bounding box whose
sides are parallel to the x and y axes. Because a pocket may pass through the block several

ways, there is quite a bit of variety in the appearance of pockets.

- 49 -

VWS Design

2.15.5.3.
Required Parameters

A pocket may be specified in two ways, either by giving the coordinates of diagonally

opposite comers of the bounding box or by giving the coordinates of the center of the box and
its length and width. Thus the first two sets of five parameters given below are

alternatives. The remaining parameters are the same in either case.

Use these five

feature_type

upperJ„x

upper__l„y

lower _r.x

lower_.r,y

Must be "pocket_comers".

Must be a number or "thru". Represents the x-coordinate of

the upper left hand comer of the bounding box.

Must be a number or "thru". Represents the y-coordinate of

the upper left hand comer of the bounding box.

Must be a number or "thru". Represents the x-coordinate of

the lower right hand comer of the bounding box.

Must be a number or "thru". Represents the y-coordinate of

the lower right hand comer of the bounding box.

or these five

feature_type

center„x

center_y

length

width

Must be "pocket_center".

Must be a number. Represents the x-coordinate of

the center of the bounding box.

Must be a number. Represents the y-coordinate of

the center of the bounding box.

Must be a positive number.

Represents the length of the bounding box.

Must be a positive number.

Represents the width of the bounding box.

and always these

depth Must be a positive number or "thru".

comer_radius Must be a positive number.

2.15.5.4. Optional Subfeatures

chamfer_in

2.15.5.5. Optional Parameters

reference_feature Must be a positive integer.

chamfer_in_depth Must be a positive number less than the depth of the pocket.

- 50 -

VWS Design

2.15.5.6. Enhancement Parameters

Regardless of whether the pocket starts as a pocket_center or a pocket_comers, it looks the

same when enhanced.

feature_type

z_surf

upper_l_x

upper_l_y

lower_r_x

lower_r_y

center_x

center_y

depth

chin_ulx

chin_uly

chin_lrx

chinjry

chin cr

Set to "pocket".

Set to a number.

If given as "thru" or not given, it is changed to a number.

If given as "thru" or not given, it is changed to a number.

If given as "thru" or not given, it is changed to a number.

If given as "thru" or not given, it is changed to a number.

If not given, it is calculated as a number.

If not given, it is calculated as a number.

If given as "thru", it is changed to a number.

Set to the value of upper_l_x if there is a chamfer_in.

Set to the value of upper_l_y if there is a chamfer_in.

Set to the value of lower„r_x if there is a chamfer_in.

Set to the value of lower_r_y if there is a chamfer_in.

Set to the value of comerjradius if there is a chamfer_in.

2.15.5.7. Verification Rules

If the x_value of the plus_x side of the pocket is not greater than the length of the block, then

the x_value of the plus_x side of the pocket should not be greater than the length of the block

minus min_thick.

If the x_value of the plus_x side of the pocket is greater than the length of the block, then the

x_value of the plus_x side of the pocket should be greater than the length of the block plus

the maximum comer radius of the pocket.

If the x_value of the minus_x side of the pocket is not less than zero, then the x_value of the

minus_x side of the pocket should not be less than min_thick.

If the x_value of the minus_x side of the pocket is less than zero, then the x_value of the

minus_x side of the pocket should be less than zero minus the maximum comer radius of the

pocket.

If the x_value of the plus_x side of the pocket is greater than the length of the block, and the

total depth of the pocket is greater than the height of the block, then the x_value of the

minus_x side of the pocket should be greater than 0.5.

If the x_value of the minus_x side of the pocket is less than zero and the total depth of the

pocket is greater than the height of the block, then the x_value of the plus_x side of the

pocket should be less than the length of the block minus 0.5.

-51 -

VWS Design

If the y_value of the plus_y side of the pocket is not greater than the width of the block, then

the y_value of the plus_y side of the pocket should not be greater than the width of the block

minus min_thick.

If the y_value of the plus_y side of the pocket is greater than the width of the block, then the

y_value of the plus_y side of the pocket should be greater than the width of the block plus the

maximum comer radius of the pocket.

If the y_value of the minus_y side of the pocket is not less than zero, then the y_value of the

minus_y side of the pocket should not be less than min__thick.

If the y_value of the minus_y side of the pocket is less than zero, then the y_value of the

minus_y side of the pocket should be less than zero minus the maximum comer radius of the

pocket.

If the y_value of the plus_y side of the pocket is greater than the width of the block, and the

total depth of the pocket is greater than the height of the block, then the y_value of the

minus_y side of the pocket should be greater than 0.5.

If the y_value of the minus_y side of the pocket is less than zero and the total depth of the

pocket is greater than the height of the block, then the y_value of the plus_y side of the

pocket should be less than the width of the block minus 0.5.

The length of the pocket should be greater than (the comer radius of the pocket times 2.0)

minus 0.0000

L

The width of the pocket should be greater than (the comer radius of the pocket times 2.0)

minus 0.00001.

The z_value of the top of the pocket should be greater than 0.0.

The comer radius of the pocket should be greater than 0.0624.

If the total depth of the pocket is less than the height of the block, then the z_value of the

bottom of the pocket should be greater than min_thick.

The chamfer_in_depth of the pocket should not be greater than the vertical rise of the pocket.

2.15.5.8. Example Design - See Figure 11.

- 52 -

VWS Design

Figure 11. Pockets

(setplist ’pockets upper_l_y 3

’(features (features lower_r_x 12

1 (1 feature_type pocket comers lower_r_y -1.7

upper_l_x 0.5 depth 0.5

upper_l_y 5.5 comer_radius 1.5)

lower_r_x 3 5 (5 feature_type pocket_comers

lower_r_y 3.5 upper_l_x 10

depth thru upper_l_y thru

comer_radius 1) lower r x thru

2 (2 feature_type pocket comers lower_r_y 4
upper_l_x 1 depth thru

upper_l_y 3 comerjradius 0.1)

lower r x 2 6 (6 feature_type pocket_center

lower_r_y 0.5 center_x 8

depth 0.5 center_y 4.5

comer_radius 0.1 length 2

chamfer_in_depth 0.3) width 1.5

3 (3 feature_type pocket comers depth 0.3

upper_l_x 5 comer_radius 0.3))

upper_l_y thru header (header

lower_r_x 6.5 design_id pockets

lower_r_y thru block_size (block size

depth 1 length 14

comer_radius 0.2) width 6

4 (4 feature_type pocket comers height 1.5)

upper_l_x 7 description "pocket demo")))

- 53 -

2.15.6. Straight_groove

2.15.6.1.
Comments

VWS Design

A straight_groove may be thought of as the volume removed when a tool is passed in a

straight line from one point to another. The straight_groove is defined by giving the

coordinates of the endpoints of this removed volume. A straight__groove may pass through

the bottom of the block. Unlike grooves and pockets, which have the sides of their bounding

boxes parallel to the x and y axes, a straight_groove may be oblique. A straight_groove

which is parallel to the x or y axis may be chamfered and may pass through the side of the

block, but an oblique straight_groove may not.2.15.6.2.

Appearance

The outline of straight_groove is a rectangle with semicircular ends. The bottom may be

either flat or round.2.15.6.3.

Required Parameters

feature_type

xl

yl

x2

y2

depth

width

bottom_type

Must be "straight_groove".

Must be a number or "thru". If xl is "thru", it is through the minus-

x side of the block. It represents the x-coordinate of one end of

the straight__groove.

Must be a number or "thru". If yl is "thru", it is through the minus-

y side of the block. It represents the y-coordinate of one end of

the straight_groove.

Must be a number or "thru". If x2 is "thru", it is through the plus-x

side of the block. It represents the x-coordinate of the other end

of the straight_groove.

Must be a number or "thru". If yl is "thru", it is through the plus-y

side of the block. It represents the y-coordinate of the other end

of the straight_groove.

Must be a positive number or "thru".

Must be a positive number.

Must be "flat" or "round".

2.15.6.4. Optional Subfeatures

chamferjn

2.15.6.5. Optional Parameters

reference_feature Must be a positive integer.

chamfer_in_depth Must be a positive number less than the vertical rise of the

straight_groove.

- 54 -

VWS Design

2.15.6.6.

z_surf

xl

yi

x2

y2
xl_nc

yl_nc

x2_nc

y2_nc

tool diam

chin_ulx

chin_uly

chin_lrx

chin_lry

chin_cr

Enhancement Parameters

Set to a number.

If xl is "thru" it is set to a negative number.

If yl is "thru" it is set to a negative number.

If x2 is "thru" it is set to a positive number.

If y2 is "thru" it is set to a positive number.

Set to the x-coordinate of the center point of the tool at the "1" end

of the straight_groove.

Set to the y-coordinate of the center point of the tool at the "1" end

of the straight_groove.

Set to the x-coordinate of the center point of the tool at the "2" end

of the straight_groove.

Set to the y-coordinate of the center point of the tool at the "2" end

of the straight_groove.

A positive number representing the diameter of the tool needed to

make the groove. This is the same as the width of the groove

unless the groove is round-bottomed and its depth is less than

half the width.

Set if there is a chamfer_in and the straight_groove is not oblique.

Set if there is a chamferjn and the straight_groove is not oblique.

Set if there is a chamfer_in and the straight_groove is not oblique.

Set if there is a chamfer_in and the straight_groove is not oblique.

Set if there is a chamferjn and the straight_groove is not oblique.

- 55 -

VWS Design

2.15.6.7. Verification Rules

If the x_value of the plus_x side of the groove is less than the length of the block, then the

x_value of the plus_x side of the groove should not be greater than the length of the block
minus min_thick.

If the x_value of the plus_x side of the groove is greater than the length of the block, then the

x_value of the plus_x side of the groove should be greater than the length of the block plus

the maximum comer radius of the groove.

If the x_value of the minus_x side of the groove is greater than zero, then the x_value of the

minus_x side of the groove should not be less than min_thick.

If the x_value of the minus_x side of the groove is less than zero, then the x_value of the

minus_x side of the groove should be less than zero minus the maximum comer radius of the

groove.

If the x_value of the plus_x side of the groove is greater than the length of the block, and the

total depth of the groove is greater than the height of the block, then the x_value of the

minus_x side of the groove should be greater than 0.5.

If the x_value of the minus„x side of the groove is less than zero and the total depth of the

groove is greater than the height of the block, then the x_value of the plus_x side of the

groove should be less than the length of the block minus 0.5.

If the y_value of the plus_y side of the groove is less than the width of the block, then the

y_value of the plus_y side of the groove should not be greater than the width of the block

minus min_thick.

If the y_value of the plus_y side of the groove is greater than the width of the block, then the

y_value of the plus_y side of the groove should be greater than the width of the block plus

the maximum comer radius of the groove.

If the y_value of the minus_y side of the groove is greater than zero, then the y_value of the

minus_y side of the groove should not be less than min_thick.

If the y_value of the minus_y side of the groove is less than zero, then the y_value of the

minus_y side of the groove should be less than zero minus the maximum comer radius of the

groove.

If the y_value of the plus_y side of the groove is greater than the width of the block, and the

total depth of the groove is greater than the height of the block, then the y_value of the

minus_y side of the groove should be greater than 0.5.

- 56 -

VWS Design

If the y_value of the minus_y side of the groove is less than zero and the total depth of the

groove is greater than the height of the block, then the y_value of the plus_y side of the

groove should be less than the width of the block minus 0.5.

The length of the groove should not be less than the width of the groove minus 0.00001.

The z_value of the top of the groove should be greater than 0.0.

The width of the groove should be greater than 0.0624.

If the total depth of the groove is less than the height of the block, then the z_value of the

bottom of the groove should be greater than min_thick.

The chamfer_in_depth of the groove should not be greater than the vertical rise of the groove.

If the chamfer_in_depth of the groove is greater than zero, then the xl of the groove should

be close to the x2 of the groove, or the yl of the groove should be close to the y2 of the

groove.

If the xl of the groove is not close to the x2 of the groove, and the yl of the groove is not

close to the y2 of the groove, then the x_value of the plus_x side of the groove should be less

i than the length of the block and the x_value of the minus_x side of the groove should be

greater than zero and the y_value of the plus_y side of the groove should be less than the

width of the block and the y_value of the minus_y side of the groove should be greater than

zero.

2.15.6.8. Example Design - See Figure 12.

- 57 -

VWS Design

Figure 12. Straight_Grooves

(setplist ’straight_grooves’ 4 (4 chamferjn.depth 0.046875

(features (features feature type straight_groove

1 (1 feature_type straight_groove xl 1

xl 0.25 yl 0.375

yi 0.75 x2 1.75

x2 0.25 y2 0.375

y2 thru depth 0.51

depth 0.53 width 0.25

width 0.25 bottom.type round)

bottomjype round) 5 (5 feature.type straightgroove

2 (2 featurejype straight_groove xl 2.5

xl thru yl 0.5

yi 1.125 x2 2.875

x2 thru y2 0.5

y2 1.125 depth 0.4

depth 0.1 width 0.375

width 0.5 bottomjype round))

bottom._type round) header (header

3 (3 feature_type straight.groove designjd straight_grooves

xl 0.6 block .size (block_size

yi 0.2 length 3

x2 1 width 1.5

y2 0.8 height 0.5)

depth 0.25 description "stg demo")))

width 0.125

bottom._type flat)

- 58 -

VWS Design

2.15.7. Text

2.15.7.1. Comments

Text is characters that may be machined into the block. The text is made as a series of

round-bottomed grooves that are either straight line segments or circular arcs. The
characters currently in the system are the 26 letters (upper case only), the digits 0 through 9,

and the space and period characters. It is feasible to add characters to the system.

A default font called "plain" is stored in the "fonts" database of the VWS2 system. A new
font may be designed and stored in the database in a few minutes with the "new_font"

command. This command is not accessible to the user of the system from the design editor;

access is directly from LISP. Documentation of the new_font command and the workings of

the font-making system is given later in this paper (section 2.16).

The system has been run with four additional fonts called "broad", "round", "italic", and

"angular". These are made by running the "new_font" command once for each additional font

when the system is loaded.

! Horizontal spacing of characters may be changed by making a new font, by inserting "space"

characters between the visible characters, or by making each character a separate feature.

Vertical spacing of lines of text is not an attribute of the system. Each line of text must be

i independently located by the user.

2.15.7.2. Appearance

The outline of text looks like the upper case of the letters and numbers being made. The
base of the characters is always horizontal, although the characters may be tilted to the right

or left. Unlike most other features, the outline of text on the top view of the part covers up
any previously drawn features. The profile is that of a series of round-bottomed grooves.

Since the height and line_width of characters are independent of the font, a great deal of

variety in the appearance of a given font is available. Compare the characters of the word
"THIS" with the same characters of the words "IS THE" on Figure 13 to get some
appreciation of the effect of height and line_width on characters of the same font.

VWS Design

2.15.7.3. Required Parameters

feature_type

text

lower_l_x

lower_l_y

depth

height

line width

Must be "text".

Must be a string made up of characters that are in the system.

Letters in the string may be either lower or upper case, but will

be machined in upper case, regardless.

Must be a positive number. Represents the x-coordinate of the

lower left hand comer of the bounding parallelogram shown in

Figure 7.

Must be a positive number. Represents the y-coordinate of the

lower left comer of the parallelogram.

Must be a positive number. Represents the depth of the grooves.

Must be a positive number. Represents the difference between the

maximum and minimum values of y that occur on the center lines

of the tallest characters. The toti height of a tall character is

equal to the value of this parameter plus the value of the

linejwidth parameter.

Must be a positive number. Represents the width of the grooves.

2.15.7.4. Optional Subfeatures - None.

2.15.7.5. Optional Parameters

reference^feature Must be a positive integer.

font Must be an atom which is the name of a font that is stored in the

system. If this parameter is not present, or if its value is nil, the

plain font is used.

2.15.7.6. Enhancement Parameters

z_ surf

text

tool diam

Set to a number.

Text is converted from a string to a list. This is done according to

the table of ascii equivalents in the fonts data base. Currently,

lower case letters are converted to upper case letters during

this process.

A positive number representing the diameter of the tool needed to

make the text. This is the same as the line_width of the text,

unless the depth is less than half the width.

- 60 -

VWS Design

2.15.7.7. Verification Rules

The set of text characters should be contained in the set of all machinable characters.

The x_value of the plus_x side of the text should not be greater than the length of the block

minus min_thick.

The x_value of the minus_x side of the text should not be less than the x_value of the

minus_x side of the block plus min_thick.

The y_value of the plus_y side of the text should be less than the width of the block minus

min_thick.

The y_value of the minus_y side of the text should be greater than min_thick.

The z_value of the top of the text should be greater than 0.0.

The total depth of the text should not be greater than the height of the block minus min_thick.

2.15.7.8. Example Design - See Figure 13.

-61 -

VWS Design

(setplist ’text 3 (3 feature_type text

’(features (features text "system"

1 (1 feature_type text font italic

text "tHIs" lower..l x 0.6

font plain lower_l_y 0.375

lower_l_x 0.12 height 1.2

lower_l_y 2 depth 0.3

height 0.6 line_width 0.25))

depth 0.01

line„width 0.0979796) header (header

design_id text

2 (2 feature_type text block_size (block_size

text "IS the teXt" length 6.95

font plain width 2.975

lower_l_x 2.7 height 0.735)

lower_l_y 2 description "text demo")))

height 0.4

depth 0.02

line_width 0.1356466)

- 62 -

VWS Design

2.15.8. Contour_groove

2.15.8.1. Comments

This is the first of the three contour features. The other two are contour_pocket and

side_contour. The three contour features share a common method of specifying a "defining

line". The defining line is the outer outline of a contour_pocket, the inner outline of a

side_contour, or the center line, right edge, or left edge of a contour_groove. The defining line

of a contour_pocket or a side_contour must be closed. The defining line of a contour_groove

may be either open or closed.

The objective in creating the notion of a "defining line" as part of the design protocol was to

allow the specification of a continuous line consisting of any combination of arcs of circles and

straight line segments, as long as the line never doubled back on itself. It was also desired

to facilitate the imposition of the requirement that a circular arc be tangent to an adjoining

straight line segment at the point of contact, if the designer wanted to impose that

requirement. This kind of defining line, with additional requirements, as discussed below,

insures that the feature which is described will be machinable. The following method of

specifying the defining line meets the objective and VWS Design Editor makes the creation

of defining lines a straightforward matter.

The method of specifying a defining line described here does not allow the user to specify the

center of a circular arc. This is a drawback that can be worked around, but often only

awkwardly. Allowing the user to specify the center of an arc, without sacrificing the

automatic calculation of tangent points would be a high-priority item in any revision of this

I

protocol.

To specify a defining line the user gives the x and y coordinates of a number of points. The
points are numbered sequentially starting with 1, and are connected temporarily with straight

lines, 1 to 2 to 3, etc. to form a "frame". If the defining line is closed, the last point is

connected to the first point. At each of these points (which may be thought of as comers),

the user specifies a radius. If the radius is zero, the comer is not rounded off. If the radius is

a positive number, the comer is rounded off with that radius. Comer rounding is done with

circular arcs which are tangent to the two lines which meet at the comer. This process

produces the defining line for the feature. Figure 14 shows the frame and the defining line for

a simple contour feature.

Instead of specifying a number for a comer radius, the user may specify either "join_back" or

"join_ahead" as a comer radius. If join_back is specified as the comer radius at comer n,

then the arc which rounds off comer n is taken to be tangent to the line between point n and

point n-1 at exactly the point where the arc that rounds off comer n-1 is tangent to that line.

If the radius at comer n-1 is zero, then the arc which rounds off comer n is taken to be

tangent to that line right at comer n-1. See Figure 15 to make sense of this.

Clearly, in order to interpret "join_back", comer n-1 must be rounded before comer n. If

comer n-1 also has the radius "join_back", then comer n-2 must be rounded first, and so on.

- 63 -

VWS Design

Thus, a sequence of join_back’s at successive comers must eventually be stopped at a

comer where the radius has been assigned as a number, or at the point 1 in the case of an
open defining line.

Join_ahead is analogous to join_back, except that the arc rounding comer n starts at the

tangent point of arc n+1 rather than arc n-1. In the case of closed defining lines, if there are

N comers, comer 1 is the n+l’th comer with respect to comer N, and comer N is the n-l’th

comer with respect to comer 1.

The one additional limitation on the use of join„back and join__ahead is that join__back may
never follow join_ahead as a radius. In this case the actual value of the radius for each of

them would have to be determined before the other.

Calculation of the actual radii at the comers is handled by the enhancement subsystem.

Because of the possible use of join_ahead and join_back, the enhancer needs to be fairly

clever about sorting out the generation of comer radii.

The main pitfall of describing defining lines for contour features (as shown in Figure 16) is

that between any two comers, n and n+1, the point of tangency of arc n+1 must fall between

comer n+1 and the point of tangency of arc n. If the radius of arc n+1 is too big, its point of

tangency may fall between comer n and the point of tangency of arc n, or it may lie completely

off the line segment between point n and point n+1, making an illegal defining line in either

case. This pitfall is particularly easy to fall into when using either of the join options. The
enhancer checks for this problem every time it generates tangent points.

Problems may also arise if three successive points are colinear, and the enhancer may
complain if it runs into this situation.

If a contour__groove is open, there is no comer radius at the end points. The value "nil" must

be assigned to the comer radius at those points. No other comer radius may be nil. The use

of nil tells the system when a defining line is open. The VWS Design Editor handles the

assignment of radius nil to the endpoints of an open defining line automatically, giving the

user no opportunity to do it wrong.

A contour_groove may be made to the left of the defining line by using the optional parameter

"offset", and having the value of offset be "left". By setting offset to "right", the

contour_groove is made to the right of the defining line. If the offset parameter is not used,

the defining line is the center line of the contour_groove. The offset parameter makes it easy

to cut a groove around some desired shape. To deal with the offset parameter, the

enhancement subsystem, when it is enhancing a contour_groove, first calculates a new
defining line, and then enhances the new line.

- 64 -

- 65 -

VWS Design

Figure 16. Radius Too Large in a Contour Feature

Suppose that the radius at comer 2 is zero and the radius

at comer 3 is drawn before the radius at comer 4.

The solid line in comer 1 shows an arc of the largest radius that

can be drawn in that comer. The dotted line at the left of the

figure shows an arc whose radius is too large to fit in comer 1.

The solid line in comer 4 shows an arc of the largest radius that

can be drawn in that comer. The dotted line at the right of the

figure shows an arc whose radius is too large to fit in comer 4.

- 66 -

VWS Design

2.15.8.2.
Appearance

The outline of a contour_groove is formed when a tool follows the enhanced defining line as

the center line of the cutting path. Where the defining line is straight, the outline is two

parallel lines on either side of the defining line. Where the defining line curves, the outline is

an arc of larger radius on the outside of the curve and an arc of smaller radius (possibly a

single point) on the inside. At any comers of the defining line where the radius is zero, the

outline will include arcs whose radius is half the groove width. If a contour_groove crosses

over itself, the outline may become arbitrarily complex, but it will be correctly drawn.

The bottom of a contour_groove may be round or flat.

In drawing the profile of a contour_groove, not all the lines which would appear in a

silhouette are shown, both to ease the computational and drawing burden and to avoid

bewildering the viewer. On the front profile, there are lines showing the maximum and

minimum extent of the contour_groove in the x-direction. In addition, if there are straight

sections of the groove parallel to the y-axis, the profiles of those sections are shown on the

front view. Analogous rules govern drawing the right side view. With this drawing

convention, if a contour_groove happens to be the same as an ordinary groove, the pictures of

the two will be the same.
2.15.8.3.

Required Parameters

feature_type

depth

width

bottom_type

comers

Must be "contour_groove".

Must be a positive number.

Must be a positive number representing the width of the cut.

Must be "flat" or "round"

Conceptually, "comers" is a list of comers, where each comer is

represented by a sublist. In the VWS2 system, the concept is

realized by having "comers" be a LISP disembodied property

list in which the properties are the comer numbers (1, 2, 3, etc.)

and the values are disembodied property lists with three

properties: x, y, and radius. The values of x and y must be

numbers representing the coordinates of the comer. Acceptable

values of radius are discussed above. See the examples in

section 3.15.8.8. and elsewhere.

2.15.8.4. Optional Subfeatures - None

2.15.8.5. Optional Parameters

offset Must be "right", "left" or "nil".

reference_feature Must be a positive integer.

- 67 -

VWS Design

2.15.8.6. Enhancement Parameters

Several parameters are added to the feature description at the top level of the list. In

addition, each comer in the set of comers is enhanced.

top level enhancement

z_surf

tool_diam

max_x

max. ..y

min_x
min_y

comer enhancement

radius The value of a radius which is either "join_baek" or "join_ahead'' is

converted to a number.

xl Set to the x-value of the comer if the comer radius is zero or nil

Otherwise set to the x-value of the point at which the arc at the

comer is tangent to the line between the comer and the

preceding comer.

yl Set to the y-value of the comer if the comer radius is zero or nil.

Otherwise set to the y-value of the point at which the arc at the

comer is tangent to the line between the comer and the

preceding comer.

x2 Set to the x-value of the comer if the comer radius is zero or nil

Otherwise set to the x-value of the point at which the arc at the

comer is tangent to the line between the comer and the

following comer.

y2 Set to the y-value of the comer if the comer radius is zero or nil.

Otherwise set to the y-value of the point at which the arc at the

comer is tangent to the line between the comer and the

following comer.

max_x If x reaches a maximum at a point on the interior of the arc at a

comer, the value of x is saved as the value of max_x for that

comer.

min_x If x reaches a minimum at a point on the interior of the arc at a

comer, the value of x is saved as the value of min_x for that

comer.

Set to a number.

A positive number representing the diameter of the tool needed to

make the contour_groove. This is the same as the width of the

contour_groove unless the groove is round-bottomed and its

depth is less than half the width.

A number representing the maximum value of x reached on the

enhanced defining line (i.e. the center line) of the groove.

A number representing the maximum value of y„

A number representing the minimum value of x.

A number representing the minimum value of y.

-. 68 -

VWS Design

max_y

min_y

center_x

center_y

turn

inangle

If y reaches a maximum at a point on the interior of the arc at a

comer, the value of y is saved as the value of max_y for that

comer.

If y reaches a minimum at a point on the interior of the arc at a

comer, the value of y is saved as the value of min_y for that

comer.

If the radius at a comer is not zero or nil, the x-value of the center

of the arc is saved as the value of center_x.

If the radius at a comer is not zero or nil, the y-value of the center

of the arc is saved as the value of center_y.

Imagine you are sitting at comer n on the point (x,y) and are

pointing in the direction you travel to get from comer n-1 to

comer n. The number of radians through which you must now
turn to point at comer n+1 is the value of turn. The absolute

value of turn is always less than pi. Turn is positive for going

counterclockwise and negative for going clockwise.

Inangle at comer n is the counterclockwise angle between a line

drawn horizontally to the right at comer n-1 and the line from

comer n-1 to comer n.

2.15.8.7. Verification Rules

The x_value of the plus_x side of the contour groove should not be greater than the length of

the block minus min_thick.

The x_value of the minus_x side of the contour groove should not be less than the x_value of

the minus_x side of the block plus min_thick.

The y_value of the plus_y side of the contour groove should be less than the width of the

block minus min thick.

The y_value of the minus_y side of the contour groove should be greater than min_thick.

(

The z_value of the top of the contour groove should be greater than 0.0.

The z_value of the bottom of the contour groove should be greater than min_thick.

The tool_diameter of the contour groove should be greater than 0.0624.

2.15.8.8. Example Design

In the following example, feature 1 (the feature on the right in Figure 17) is very simple to

describe and is easily entered using the design editor in less than five minutes. Feature 2,

which looks like a script "S", required over an hour to perfect because of the use of a long

series of "join_back" radii.

- 69 -

VWS Design

Figure 17. Contour_Grooves

(setplist ’cg_demo ’(

header (header

designjd contour_grooves

block_size (block_size

length 6*95

width 2.975

height 0.735)

description "contour_grooves")

features (features

1 (1 offset left

feature_type contour_groove

depth 0.3

bottom_type round

width 0.25

comers (comers

1 (1 x 3 y 0.5 radius 0.5)

2 (2 x 6 y 0.5 radius 1)

3 (3 x 6 y 2.5 radius 1)

4 (4 x 3 y 2.5 radius 0.5)))

2 (2 feature_type contour_groove

bottom_type flat

depth 0.

1

width 0.125

comers (comers

1 (1 x0.18 y0.25 radius nil)

2 (2 x 1.53 y 1.06 radius join_back)

3 (3 x 1.125 y3.04 radius join_back)

4 (4 x 0.63 y 1.96 radius join_back)

5 (5 x 1.26 y 1.15 radius join_back)

6 (6 x 1.35 y 0.25 radius join„back)

7 (7 x 0.36 y 0.25 radius join_back)

8 (8 x 0.225 y 0.835 radius 0)

9 (9 x 1.008 y 0.385 radius join_back)

10 (10 x 1.935 y 0.835 radius nil)))))

- 70 -

VWS Design

2.15.9. Contour_pocket

2.15.9.1. Comments

See the comments for contour_groove. There are three additional limitations on the defining

line of a contour_pocket beyond those given above. First, the defining points for a

contour_pocket must be traversed in the counterclockwise direction (with the inside of the

contour on the left). Second, the defining line of the contour„pocket may not intersect itself.

Third, no convex (i.e. counterclockwise) comer of the defming line may have zero radius.

In contour_pocket, all the material inside the defining line is removed to- constant depth.

Thus, the defining line is the outline of a contour_pocket.

The parameters of a contour_pocket are the same as those of a contour_groove, excluding

width and bottom_type, which a contour_pocket does not have.

2.15.9.2. Appearance

A flat_bottomed recess with vertical walls whose outline is given by the defining outline.

2.15.9.3. Required Parameters

same as contour_groove, excluding width and bottom_type.

2.15.9.4. Optional Subfeatures - None.

2.15.9.5. Optional Parameters

Note that offset is NOT included.

reference_feature Must be a positive integer.

2.15.9.6. Enhancement Parameters

same as contour_groove, excluding tool_diam.

- 71 -

VWS Design

2.15.9.7. Verification Rules

The outline of the contour_pocket should not intersect itself.

The x_value of the plus_x side of the contour_pocket should not be greater than the length of

the block minus min_thick.

The x_value of the minus_x side of the contour_pocket should not be less than min_thick.

The y_value of the plus_y side of the contour_pocket should not be greater than the width of

the block minus min_thick.

The y_value of the minus_y side of the contour_pocket should not be less than min_thick.

The z_value of the top of the contour_pocket should be greater than 0.0.

If the total depth of the contour_pocket is less than the height of the block, then the z_value

of the bottom of the contour_pocket should be greater than min__thick.

2.15.9.8. Example Design - See Figure 18.

- 72 -

VWS Design

Figure 18. Contour_Pockets

(setplist ’contour_pockets’ 3 (3 feature_type contour_pocket

(features (features comers (comers

1 (1 feature_type contour_pocket 1 (1 x 5.75 y 2.75 radius 0.5)

comers (comers 2 (2 x 4.75 y 0.2 radius 0.3)

1 (1 x0.5 y 2.5 radius 0.125) 3 (3 x 6.75 y 0.2 radius 0.4)

2 (2 x 1 y 1.5 radius 0.4) depth 0.6))

3 (3 x0.5 y0.5 radius 0.125) header (header

4 (4 x 2 y 1.5 radius join_ahead)) designed contour_pockets

depth 0.3) block_size (block_size

2 (2 feature_type contour_pocket length 6.95

comers (comers width 2.975

1 (1 x 2 y 2.5 radius 0.2) height 0.735)

2 (2 x 2.25 y 0.5 radius 0.4)

3 (3 x 3.75 y 0.5 radius 0.4)

4 (4 x 4 y 2.5 radius 0.2)

5 (5 x 3 y 2.5 radius 0.3)

6 (6 x 3.5 y 1.75 radius 0)

7 (7 x 3 y 2.25 radius join_back)

8 (8 x2.5 y 1.75 radius 0)

9 (9 x 3 y 2.5 radius 0.3))

depth 0.4)

description "contour pocket demo")))

- 73 -

VWS Design

2.15.10. Side_contour

2.15.10.1. Comments

See the comments for contour_groove. There are three additional limitations on the defining

line of a side_contour beyond those given for a contour_groove. First, the defining points for

a side_contour must be traversed in the clockwise direction (with the inside of the contour on
the right). Second, the defining line of a side_contour may not intersect itself. Third, no
concave (i.e. counterclockwise) comer of the defining line may have zero radius.

The notion of reference feature is different for side_contour than for the other features. If A
and B are both side_contours and B is the reference feature for A, that means that the top of

A is at the bottom of B (as usual), but the outline of B must lie entirely inside the outline of

A (the opposite of the normal situation). If B is the reference feature for any other type of

feature, the outline of the other feature must lie entirely outside of the outline of B (and not

enclose B), except that the outline of the island inside a groove may enclose B. Look at

Figure 19 if this sounds confusing. A groove and a pocket have been included with three

side__contours to help clarify the situation.

Note that if a side_contour has a reference feature, it must be another side_contour.

2.15.10.2. Appearance

A side_contour looks like a plateau with vertical walls whose outline is given by the defining

line.

2.15.10.3. Required Parameters

The parameters of a side_contour are the same as those of a contour^groove, excluding

width and bottom_type, which a side_contour does not have.

2.15.10.4. Optional Subfeatures - None.

2.15.10.5. Optional Parameters

Note that offset is NOT included.

reference_feature Must be a positive integer representing the feature number of

another side_contour.

- 74 -

VWS Design

2.15.10.6. Enhancement Parameters

same as contour_groove, excluding tool_diam. In addition, a side_contour has the following:

ulx_nc 0.0

uly_nc A number equal to the width of the block.

lrx_nc A number equal to the length of the block.

lry_nc 0.0

2.15.10.7. Verification Rules

The outline of the side_contour should not intersect itself.

The x_value of the plus_x side of the side_contour should not be greater than the length of

the block plus 0.00001.

The x__value of the minus_x side of the side_contour should not be less than -0.00001.

The y_value of the plus_y side of the side_contour should not be greater than the width of the

block plus 0.00001.

The y_value of the minus_y side of the side„contour should not be less than -0.00001.

The z_value of the top of the side_contour should be greater than 0.0.

If the total depth of the side_contour is less than the height of the block, then the z_value of

the bottom of the side_contour should be greater than min_thick.

2.15.10.8. Example Design - See Figure 19.

- 75 -

VWS Design

Figure 19. Side Contours

(setplist
s

side„contours
’

4 (4 x 3.75 y 1.25 radius join_back))

(features (features depth 0.25)

1 (1 reference_feature 2 4 (4 feature_type groove

feature„type side_contour upper_l_x 3.25

comers (comers upperj_y 2

1 (1 x 0 y 2.5 radius 0.1) lowerj_x 4.5

2 (2 x 4 y 2.75 radius 3) lower_r_y 1

3 (3 x 7 y 1.5 radius 0) depth 0.1

4 (4 x 4 y 0.25 radius 3) width 0.125

5 (5 x 0 y 0.5 radius 0.1)) comerjadius 0.3

depth 0.4) bottom_type flat

2(2 referencejeature 3 referencejeature 3)

featurejype side_contour 5 (5 featurejype pocketjomers
comers (comers upperJ_x 0.5

1 (1 x 2.5 y 2.25 radius 0) upper _l y 2

2 (2 x 4.5 y 2.25 radius 0.5) lower_r_x 2.7

3 (3 x 5 y 1 .5 radius join_back) lower_r_y 1

4 (4 x 4.5 y 0.75 radius 0.5) depth 0.25

5 (5 x 2.5 y 0.75 radius 0) comerjadius 0.4

6 (6 x 3 y 1 radius 0.6) referencejeature 2))

7 (7 x 3 y 2 radius 0.6)) header (header

depth 0.45) designjd side_contours

3 (3 feature_type side_contour block_size (block_size

comers (comers length 7

1 (1 x 3.75 y 1.75 radius join back) width 2.95

2 (2 x 4.25 y 1.75 radius 0.25) height 1.45)

3 (3 x 4.25 y 1.25 radius join_back) description "side contour demo")))

- 76 -

VWS Design

2.16. Text System

2.16.1. Overview

The text system may be thought of as a variable part of the design protocol since it is a

simple matter to define and use new fonts. There are currently five fonts in use in the VWS2

system. The same characters are available in all five fonts. The basic font of the system is

the "plain" font. All other fonts are derived by applying mixtures of six parametric

transformations to the plain font.

2.16.2. Characters

As discussed in section 2.15.7, the text system is based on characters. Each character in

each font has a template for making the character stored in the fonts database. The template

for making a character consists of two lists: nc_points and nc_path. In the plain font the

letter R, for example, has the following nc_points and nc_path. The letter R is shown in

Figure 20.

For R, nc_points is: ((0.0 0.0) (0.0 0.5) (0.0 1.0) (0.5 1.0) (0.6666666666666666

0.8333333333333334) (0.6666666666666666 0.6666666666666666) (0.5 0.5) (0.25 0.5)

(0.6666666666666666 0.0) (1.0 0.0)))

For R, nc_path is: ((s 3) (s 4) (w 5) (s 6) (w 7) (s 2) (j 8) (s 9))

Each entry on the nc_points list (except the last one) is a pair of numbers which represent

the x and y coordinates a point on the character.

The last entry on the nc_points list is the point to go to when the character is finished. The
x-value of the last point is always larger than the x-value of the lower right-hand comer of

an imaginary parallelogram that just fits around the character by an amount which is the

spacing for the particular font. The y-value of the last entry is always zero.

The machining of a character always starts at the first point on the nc_points list.

Each entry on the nc_path is a pair in which the first item represents a type of path to mill to

the next point, and the second item tells which point on the nc_points list is the next point

The letter codes found on the nc_path list mean the following:

s = straight line

w = clockwise arc

ccw = counterclockwise arc

j = jump without milling

The use of nc_points and nc_path is explained most easily by example.

- 77 -

VWS Design

Figure 20. The Letter R

This figure shows the letter R in plain font. The outline of the R is shown with a heavy black

line. The center line is shown with a heavy grey line. The center line is defined as follows.

Two sets of data are needed. Nc_points is a list of pairs of numbers representing coordinates:

((0 0) (0 0.5) (0 1) (0.5 1) (0.667 0.833) (0.667 0.667) (0.5 0.5) (0.25 0.5) (0.667 0) (1 0))

Nc_path is a list of pairs. The first element of each pair is a letter code, and the second

element is an integer standing for an element of the nc_points:

((s 3) (s 4) (w 5) (s 6) (w 7) (s 2) (j 8) (s 9)).

The center line of a character always starts at the first point on the nc_points list, which is

(0 0) in this case. Then the nc_path is followed in order:

(s 3) = go straight to point 3 at (0 1).

(s 4) = go straight to point 4 at (0.5 1).

(w 5) = go in a clockwise arc to point 5 at (0.667 0.833).

(s 6) = go straight to point 6 at (0.667 0.667).

(w 7) = go in a clockwise arc to point 7 at (0.5 0.5).

(s 2) = go straight to point 2 at (0 0.5).

(j 8) = jump to point 8 at (0.25 0.5).

(s 9) = go straight to point 9 at (0.667 0).

The last point on the nc_points list, (1 0), shows where the next character should start.

The nc_points list is scaled and translated appropriately before being used.

- 78 -

VWS Design

The nc_path for R is interpreted as follows (if will help if you look at Figure 20).

Put a pencil down at the first point on the nc_points list, (0.0 0.0).

Now look at the first entry on the nc_path list, (s 3). It means draw a straight line to the

third point on the nc_points list (0.0 1.0).

Now look at the second entry on the nc_path list, (s 4). It means draw straight line to the

fourth point (0.5 1.0).

Now look at the third entry on the nc_path list, (w 5). It means draw a clockwise arc to the

fifth point (0.6666666666666666 0.8333333333333334).

You should be getting the hang of this by now. Keep going down the nc_path.

Draw a straight line to the sixth point (0.666666666666666 0.666666666666666).

Draw a clockwise arc to the seventh point (0.5 0.5).

Draw a straight line to the second point (0.0 0.5).

Jump to the eighth point (0.25 0.5), and draw a straight line to the ninth point

(0.666666666666666 0.0).

This completes the character. Now jump to the last point on the nc_points list (1.0 0.0).

With this system for representing characters, the characters may be translated so that the (0

0) point of the character is at the point (X Y) by adding X to the x-value of every point on the

nc_points list and Y to every y-value. The characters may be magnified or shrunk by
multiplying the x and y values of every point by a constant. The VWS2 nc-coding and

drawing functions apply both of these transformations. The same nc_path is used regardless

of how the points have been transformed. When several characters are to be milled, the

ending point of each character serves as the starting point for the next.

The plain font used in this system was originally designed by Alton Quist. Modifications

were made by the authors. The representation scheme and all software currently in the

system which deals with text were developed by the authors.

Adding a character to the default font is feasible. All that is necessary is to add an entry in

the "plain" portion of the fonts data base with nc_points and nc_path for the character and

add an entry for the character in the "ascii_table" of the fonts database. Any arc in the

character, however, must be a quarter circle of radius 1/6 and must be tangent to any

connecting arc or straight line at the point of connection. The tangents to the end points of

any arc must be vertical or horizontal. If the character is to be transformed, there should be a

horizontal separation between arcs that would otherwise be horizontally adjacent, of at least

1/6 .

- 79 -

VWS Design

2.16.3. Making New Fonts Automatically

2.16.3.1. Overview

The five fonts currently in the system are: plain, angular, italic, round, and broad. The last

four are derivatives of the plain font. It would be possible to make a new font by hand that

was unrelated to the plain font, but it would take several days. A new font may be created

from the plain font in a minute or so, however, by using the VWS2 automatic font-making

facility, "new_font". New_font generates a set of character templates and stores them in the

fonts database along with other information about the font being created.

The six aspects of a font which may be changed are:

1. hw_ratio (the height-to-width ratio of an average character such as S),

2. roundness (how much of the character is made up of arcs as opposed to straight lines),

3. curve (the proportional radius of arcs),

4. spacing (the amount of space between characters),

5o tilt (a slanting of the character), and

6. mirror (making a mirror image of the character).

With this selection of aspects an enormous variety of fonts may be created.

The height of the characters in the new font is always 1 (same as the default font). The
scale of the text may be varied when the font is used. The functions that deal with text all

require the user to specify "height" at some point. This "height" argument specifies the

scale. Changing scale is simple enough that it is not necessary to make a new font to do it.

The new_font function has only one required argument. That is the name of the font. The rest

of the arguments to new_font are optional and may be thought of as comprising a list that is

like a property list. The list includes the names of aspects of the font, each of which (with

one exception) is followed by a number which quantifies the aspect.

Each of the aspects listed above is quantified by a single number, except mirror, which has

no quantifier. Each aspect may be included or omitted from the arguments, and the order of

the aspects is irrelevant. Thus the command (new_font ’fl ’hw_ratio 3 ’mirror) makes the

same font as (new_font ’fl ’mirror ’hw_ratio 3). In both cases, a mirror image font named
"fl" is made which has a height-to-width ratio of 3 for the average character.

Table 5 summarizes the aspects of a font that are used in the new_font command.

- 80 -

VWS Design

Table 5. Summary of Font Aspects

Name Bounds of Quantifier Default Value

mirror (no quantifier) unmirrored

hw_ratio 0 < hw_ratio 1.5

roundness 0 <= roundness <=1 2/3

curve 1 <= curve 1

tilt no bound, but may be

limited by roundness

0

spacing 0 < spacing 0.5/hw_ratio

2.16.3.2. Mirror

If ’mirror appears in the argument list, a mirror image font is made. Mirror needs no

numerical quantifier. If ’mirror is not in the argument list, the font will not be a mirror font.

2.16.3.3. Hw ratio

Hw_ratio is the height-to-width ratio of an average character. It is quantified by any

positive number. The default characters have an hw-ratio of 3/2 for average characters

(seventeen of them). If ’hw_ratio is not in the argument list, or if its quantifier is out of

bounds, the hw_ratio of the font will be 3/2.

Characters with an hw_ratio greater than about 2 look skinny; larger than 4 is very skinny.

Characters with an hw_ratio less than 1 look wide. Less than 0.5 is very wide.

2.16.3.4. Roundness

Roundness is the proportion of the maximum possible roundness that the font will have. It is

quantified by a number between 0.01 and one. If the roundness is one (the maximum), the

character 8, for example, will have semicircles at either the right and left sides or the top and

bottom, or both, depending on the hw_ratio. If the roundness is 0.01, the characters will be

entirely composed of straight lines. At roundness 0.01, 8 is one rectangle on top of another.

If ’roundness is not in the argument list, or is not a number, the roundness of the font will be

2/3. If roundness is a number less than 0.01, it will be set to 0.01. If roundness is a number

greater than 1, it will be set to 1.

- 81 -

VWS Design

The appearance of roundness depends upon the hw_ratio. A character that is skinny will not

look very round even when roundness is at the maximum, because the semicircles at the top

and bottom of the rounded characters will be small compared to the straight sides. To get a

maximally rounded character, the hw_ratio should be 2. At this ratio the character 8, for

example, consists of one circle on top of another (which explains why the ratio is 2).

NOTE — The descriptions of roundness just given assume that ’’curve" is set to 1 and "tilt"

is zero. Now we will See what happens if they are not set this way.

2.16.3.5. Curve

Curve is the number of times larger than the minimum that the radius of arcs should be. It is

quantified by a number greater than or equal to 1. The minimum radius is the radius at which
the arcs flow into the straight portions of the characters tangentially. If curve is set to

anything greater than 1, the arcs flatten out and there are angles between the arcs and the

straight portions. If curve is set to anything greater than 10, the arcs appear to be flat. With
curve set to 10, hw„ratio at 2, and roundness at 1, for example, the character 8 looks like one

diamond on top of another. If ’curve is not in the argument list, or if its quantifier is out of

bounds, the curve of the font will be set to 1.

Fonts with curve set to anything greater than one look angular since comers appear at the

end of every arc.

2.16.3.6. Tilt

Tilt is a slanting of the character. It is quantified by any number. If the number is positive,

the slant is to the right. If the number is negative, the slant is to the left. The number
represents the distance that the top of a character is moved to the right by the slanting. The
slant is accomplished in a way that keeps horizontal lines horizontal, and is not a rotation of

the character. Adding "mirror" to the definition of a font will reverse the direction of slant. If

’tilt is not in the argument list, or if its quantifier is out of bounds, the tilt of the font will be

set to zero.

Characters with tilt set between about .1 and .4 look like italics. A tilt setting greater than

about five makes the font almost unreadable.

The amount a character can be tilted is limited by the roundness of the character. When
new_font is at work, it will not make the tilt greater than this limit. Thus, the setting of the

tilt may be less than requested. In general, the greater the roundness, the less the tilt.

Characters of roundness 1 cannot be tilted at all. Characters of roundness zero can be tilted

almost any amount (there is actually a limit around 100, but that is well beyond the limit of

legibility).

- 82 -

VWS Design

2.16.3.7. Spacing

Spacing is the amount of space, in inches, between characters. It is quantified by a positive

number. The spacing of default characters is 1/3, which is half the width of the average

character. The space specified between characters is the space that would be there if lines

had no thickness. Real lines have thickness, and, as a result, the actual space between

characters is less than the value of spacing by the thickness of a line. If thick lines are used,

it may be desirable to increase the spacing from the default value. If characters are tilted

they tend to merge into one another (again because of line thickness), so larger values of

spacing are desirable with tilted characters. If ’spacing is not in the argument list, or if its

quantifier is out of bounds, the spacing of the font will be set to half the width of an average

character, which is 0.5/hw_ratio.

2.16.4. The Fonts Database

The fonts database will be described in detail elsewhere. Briefly, it is a LISP property list in

which all but one of the properties is the name of a font. The value of the each property which

is a font name is a sublist, as described below.

The one property which is not a font name is "ascii_table". The value of this property is an

equivalence table which gives the character which should be milled that corresponds to the

ascii code for each allowable character which may appear in the text string of a text feature.

The ascii_table is what the system uses to know that if either "n" or "N" appears in the text

string, an "N" should be milled.

The sublist of the '’fonts" property list which represents a font has seven properties: mirror,

spacing, radius, roundness, tilt, hw_ratio, and characters.

The value of the "characters" property is a list of characters with nc_points and nc_path for

each. The values of hw-ratio, tilt, mirror, spacing, and roundness, are as determined by the

new_font function. Radius is the actual radius of the arcs of characters. It is assigned by the

new_font function through a complex formula involving hw_ratio, curve, and roundness.

The VWS2 system uses the characters, radius, spacing, and tilt information stored with each

font. No use is made of the stored mirror, roundness, and hw_ratio information.

The actual values of mirror, spacing, radius, roundness, tilt, and hw_ratio for the five fonts

currently in use, along with the new_font command used to generate the non-plain fonts, are

shown in Figure 21. Figure 21 uses the actual fonts to display this information.

- 83 -

VWS Design

Figure 21. Aspects of VWS2 Fonts

Font Name Mirror Hw_ratio Tilt Roundness Spacing Radius

PLAI no 1.5

no Oo 8 0,0

ANGULAR

no 2«0 0o 0 1

no 2« 75 0.4 1/2

no 2.0 0.0 1

0.33 i/6

0.33 1/4

0o 33 1/4

0.3 1/11

0.33 2.5

LISP Commands for Making Fonts

BROAD - (new_font ’broad ’roundness 1 ’hw_ratio 0.8 ’spacing 0.33)

ROUND - (new_font ’round ’roundness 1 ’hw_ratio 2 ’spacing 0.33)

ITALIC - (new_font ’italic ’hw_ratio 2.75 ’tilt 0.4 ’roundness 0.5 ’spacing 0.3)

ANGULAR - (new_font ’angular ’hw_ratio 2 ’spacing 0.33 ’roundness 1 ’curve 10)

- 84 -

VWS Design

TIL PART DESIGN EDITOR

1. OVERVIEW

The VWS2 Part Design Editor (PDE) is a friendly, computer-aided design system that runs

on a Sun microcomputer. It accepts commands from a user and engages the user in dialogs

to find out what the user wants and produces an internal data structure representing the

design of a part. New designs may be created or old designs edited. The internal data

structure is as described in Chapter II of this paper. A schematic diagram of the Design

Editor is shown in Figure 22.

PDE runs in a LISP window on the Sun black-and-white monitor when the monitor is being

used in the "suntools" multi-window mode. PDE may be called directly from LISP or through

the VWS_CADM friendly front end. At the top level, PDE uses a second window to show
the user a menu of options. PDE prompts the user to choose an option from the menu by

typing in the choice on the keyboard. When an option is chosen, it is either carried out

immediately or a routine is entered in which PDE engages the user in a question and answer

session, after which the main menu and the prompt reappear. When a drawing is being

made, PDE creates a large graphics window in the upper left of the terminal screen and uses

it for the drawing of the part being edited.

PDE is largely keyboard driven, using mouse input for only a few things, such as finding the

(coordinates of a point on the drawing of the part being edited.

, A 60-page users manual for PDE is given as Appendix B of [KRA4].

2. CAPABILITIES OF THE SYSTEM

2.1. Save Design Documents

At the user’s option, the designs prepared using PDE may be saved as design documents on

a disk file system, from where they may be printed out on paper. PDE prepares design

documents in two formats, one which is LISP-readable (Table 1, for example), and one which

is more easily human-readable (Table 2, for example). The LISP-readable format is not hard

for a human to read.

2.2. Automatic Mechanical Drawing

Another option is to have a mechanical drawing of the part being designed drawn

automatically on the Sun black-and-white display screen. The drawing is a standard three-

view mechanical drawing of the top and front and right sides of the part being designed. Each

view is two-dimensional. The drawing is updated whenever a feature is added, deleted, or

changed. It usually takes ten seconds to a minute to update the picture of a feature, which is

quick enough not to frustrate the user.

The drawing system does not have all capabilities frequently found in mechanical drawing

systems. It lacks:

- 85 -

VWS Design

- 86 -

VWS Design

1. dimensional labelling on the drawing,

2. tolerance information on the drawing,

3. the possibility of drawing other views, and

4. hidden line removal or representation.

Although the drawing is optional, it is unusual for a user to choose not to have it done. The
situation in which it is desirable to leave drawing off is when an existing design is to be

changed in a minor way, and the user does not want to wait for the drawing to be done.

When PDE starts up, automatic drawing is off. Turning it on is done using a system

command from the PDE menu.

2.3. Feature Verification

A third option is to have the features of the design verified. The verifier checks that a feature

conforms to the rules for the feature given in Chpater II and checks that if there is a reference

feature, the feature being checked fits inside the reference feature. The verification option

may be "off', "on hard", or "on soft". Off means no verification. On hard means that if an

error is encountered, PDE will delete the feature from the design and (in most cases) return

to the top level menu and prompt the user for new input. On soft means that if an error is

encountered, the system will ask the user if it should attempt to continue handling the

feature and will continue or quit, according to the user’s choice.

It is usually best to keep the verifier "on soft". When PDE starts up, its verification mode is

"on soft". In this mode the user usually has the opportunity to see any mistake that has

been made and to use the PDE "change" command to correct it after the initial drawing of the

feature. Some violations of the rules cause a LISP error that prevents a picture of the feature

from being drawn. If PDE runs into one of these, it notifies the user of the problem, deletes

the feature, and prompts the user for new input.

3. GENERAL APPROACH

In designing PDE a good deal of thought was given to making it easy to use. Emphasis was
also given to making it difficult to generate improper features. This was done without

constraining the variety of designs that can be created. The general approach to interacting

with the user in PDE is to give the user a free choice among proper choices at each step in

the editing process but not to offer improper choices. What the user is allowed to do next

depends upon what has been done in the recent past, and some of the trees of choices are

both tall and wide.

If the user makes an invalid response at any point, PDE gives brief but informative feedback

describing what is wrong with the response and prompts for a new response.

The top level function, pde, simply initializes the editor, and then goes into a read-evaluate

loop that stops when the user says quit. At the top level the user is allowed to choose from

a menu of 33 items. If the user enters anything readable not on the menu, PDE gives the

user brief feedback "invalid pde command" and prompts for a new entry.

VWS Design

Each choice on the menu results either in immediate action or in the user being prompted for

more input At this second level and succeeding levels, the user is either given a menu of
acceptable choices and is constrained to pick of one of the choices on the menu, or is asked to

enter data of a particular type at the keyboard. When data is asked for, some preliminary

checks of the data type are made. A reference feature, for example must be the number of an
existing feature. If the type constraints are violated, the user is notified and asked to enter

something else. Entering the number of a non-existent reference feature, for example causes

the system to give the feedback:

That reference_feature does not exist.

Enter "reference_feature" (numeral/n) ?

4. SCREEN LAYOUT

The normal screen layout of PDE for the Sun black-and-white monitor is shown in Figure

23. Three windows are used:

1. The command window (at the lower left)

2. The text window (on the right)

3. The graphics window (at the upper left).

In Figure 23 the text window is displaying the main menu, the command window shows the

interactive text of a few steps in an editing session, and the graphics window shows the

usual three views of a block with no features on it. The "loc" function has been used, so

there is a cross-hair drawn on one of the views of the block, and position information is being

displayed in the upper right comer of the graphics window, indicating where the cross-hair is

located.

The user must set up the command window and the text window in suntools. This may be

done manually with the mouse, or by using a suntools setup file. A LISP process must be

brought up in the command window. This may be either a stored LISP environment which

includes all the functions and data required by PDE, or a clean LISP into which the functions

and data are loaded. In order to cause messages to be sent to the text window, the value of

the global LISP variable pp_device must be set to the tty name of the text window, for

example by the command (setq pp_device 7dev/ttyp3").

The graphics window appears automatically when the graphic mode is "on" and a design is

being edited. It is under control of the LISP process running in the command window. At the

same time, however, the graphics window is an ordinary suntools window, so it may be

manipulated by the user with the mouse. The most common mouse manipulations are to

redisplay it or to change its size for making a paper copy of a design via a screen dump.

The graphics window is formatted automatically after the user has given the dimensions of

the block which serves as the starting point for a design. The three views of the block are

always in the same relative positions, but the scale and the number of grid squares are

varied so that the block takes up as much of the space available for the picture as possible.

- 88 -

VWS Design

Figure 23. Part Design Editor Screen Layout

DESIGN EDITOR
WORKING ON DESIGN IDs demo

DESIGN VERIFICATION IS: on soft

position
top view
x = 5c 0

y = 1.75

front view

scale: One grid square equals 1/4 inch.

choose a number, 0 to Ignore ? 0
abort
Enter 1 • add a feature, 2 * delete a feature, 3 * change a feature,
or 0 to Ignore ? 0

pde > m

pde > loc
3o1nt at the picture and press the right mouse button.
3ress right button to relocate, left or middle to return.

ade > f1

1 . PART DESIGN EDITOR CrtiMANnS f

PART DESIGN EDITOR COMMANDS

clp Clear All Designs
dpd Delete a Design
e Select a Design to Edit
1 Load a Design File
Iff Load Designs from Index File
Is List Designs
n Rename a Design

|

new Generate a New Design

P Display the Current Design
save Save the Current Design to Disk
feat Display Oeslgn Features
stf Store Designs to Index File
c Change the Design
d Delete a Feature
1 Insert a Feature
array Make a Feature Pattern
group Duplicate a Group of Features
r6eq Resequence Design Features

SYSTEM COWANDS

b Break
els Clear this Screen
elen Print a List of Features
m Print a List of Commands

q Quit from Part Design Editor

' GRAPHICS AND VERIFICATION COWANDS

block Draw the Block with no Features
draw Draw a Feature
flash Flash a Feature
goff Set the Graphic Mode to OFF

gon Set the Graphic Mode to ON
loc Use Mouse to Pick a Position

= Use Mouse to Pick a Feature
rdraw Redraw the Screen
verlf Verify a Design
vset Set the Verification Mode

r

imm mi mi in mim mim mim *mm i

The command window is at the lower left. All user commands and replies to questions from

the editor are typed in this window. The editor presents questions and requests for input in

the command window.

The graphics window is at the upper left. Three views of the part being designed are shown

on this window. A header describing what is happening is given in the upper left of this win-

dow. Position and font information is given at the upper right.

The text window is at the right. It is used for displaying information when the information is

long. The design editor menu is shown in the text window above.

- 89 -

VWS Design

5. MENU

5.1. Overview

The PDE menu offers the user 33 commands from which to choose. They are in three groups:

part design editor commands, system commands, and graphics and verification commands.

The 18 part design editor commands drive the editing of designs, the 5 system commands
control the editor itself, and the 10 graphics and verification commands control the graphics

and verification subsystems.

In most cases, after the user has selected a menu item, if there are further choices for the

user to make, the user will have the option of aborting the menu item rather than having it

carried out.

PDE designates at most one design as the currently active design. It is possible to have no
design currently active. Any editing operations are automatically applied to the currently

active design. Whenever a design is first made to be the currently active design, the first

four features in the design are displayed in the PDE text window, if drawing is on, a picture

is drawn of the design, and if verification is also on, each feature will be verified before it is

drawn.

PDE maintains a list called the "PART_DESIGN_LIST" of designs which are active during

the current editing session. Normally, any design which has been edited will be on this list.

PDE assumes that files to be written to disk should go in a subdirectory named "design" of

the directory which is currently the host directory for the LISP process in which PDE is

running. PDE also assumes that existing designs will be found there. In the design

subdirectory there are normally two copies of each design in the directory. One has the suffix

".pd" and is LISP-readable. The other has the suffix ".prt" (which is short for "pretty"), is

more easily human-readable, and is not LISP-readable.

PDE maintains a file in the design subdirectory called "part._designs.ndx", which is a sort of

index of part designs. This file does not necessarily contain all the designs in the design

subdirectory, but only those that a user has asked to have placed in the index. This file is

not like most things called indexes. It is simply a list of load instructions, each of which

loads one design. The list is not ordered.

In sections 5.2 through 5.4, except as noted, no further user input is required once the menu
item is chosen, and the user will be prompted to select another item from the main menu.

- 90 -

VWS Design
5.2.

Design Editor Commands

5.2.1. "clp" Clear All Designs

This deletes all entries from the PART_DESIGN_LIST, and if there is a currently active

design but no header or features in the design, eliminates the currently active design.

5.2.2. "dpd" Delete a Design

This prompts the user to select a specific design to delete from the PART_DESIGN_LIST.
The selected design is deleted from the list. If the selected design is currently active, it is

deactivated. The selected design is not removed from disk storage if it has been stored there.

5.2.3. "e" Select a Design to Edit

This displays the entries on the PART_DESIGN_LIST and asks the user to choose one to

edit. The chosen design is made to be the currently active design.

5.2.4. "1" Load a Design File

This prompts the user to enter a design name and checks that the design (with the .prt suffix

added) is in the "design" subdirectory. If it is there, the design is added to the

PART_DESIGN_LIST and made to be the currently active design.

5.2.5. "Iff* Load Designs from Index File

This loads all the designs in the file "part_designs.ndx" from the "design" subdirectory into

the LISP environment and adds them to the PART_DESIGN_LIST.

5.2.6. "Is" List Designs

This lists the designed’ s and the descriptions of all the designs on the

PART_DESIGN_LIST. The listing is displayed in the PDE command window.

5.2.7. "n" Rename a Design

This copies the current design into a new data structure and prompts the user for a new
design_id and new description. The new design is made the currently active design.

5.2.8. "new" Generate a New Design

This allows the user to generate a new design from scratch. Choosing this option invokes a

very large tree of possible options before returning the user to the main menu.

- 91 -

VWS Design

5.2.9. "p" Display the Current Design

This prints the first four features of the current design in the PDE text window. If graphics is

on, the existing picture (if any) is removed and the current design is drawn.

5.2.10. "save" Save the Current Design to Disk

This writes the current design to two disk files, as described in section 5.1.

5.2.11. "feat" Display Design Features

This prompts the user for a feature number and prints four features of the current design in

the PDE text window, starting with the feature number entered by the user.

5.2.12. "stf" Store Designs to Index File

This overwrites the part, designs„ndx file in the design subdirectory so that the file will cause

only the designs on the PART_DESIGN_LIST to be loaded.

5.2.13. "c" Change the Design

This allows the user to change a feature or the header of the currently active design. It

causes PDE to enter into a substantial dialog with the user.

5.2.14. "d" Delete a Feature

This prompts the user to enter a feature number. If the number is the number of a feature in

the currently active design, that feature is deleted from the design (and from the picture of

the design, if there is one).

5.2.15. "i" Insert a Feature

This allows the user to insert a new feature in the currently active design. It causes PDE to

enter into a substantial dialog with the user.

5.2.16. "array" Make a Feature Pattern

This allows the user to generate an array of features identical to an existing feature except

for location. It causes PDE to enter into a substantial dialog with the user. Any feature may
be duplicated in an array, but it makes little sense to have an array of side„contours or

chamfer_outs. The array may be either rectangular or circular and there are several options

within each kind.

When "array" is used, the new features are inserted immediately after the feature being

duplicated. After the insertions, the design is resequenced.

- 92 -

VWS Design

5.2.17. "group" Duplicate a Group of Features

This allows the user to duplicate a group of features (such as a pocket with a set of holes at

the bottom of the pocket) in another location. It causes PDE to enter into a substantial

dialog with the user. It is sensible in its treatment of reference features. Any feature may be

duplicated in a group, but it makes little sense to repeat the chamfer_out feature.

When "group" is used, the new features are inserted immediately after the largest feature

number in the group. After the insertions, the design is resequenced.

5.2.18. "rseq" Resequence Design Features

If features are deleted from a design, gaps in the sequence of feature numbers may appear.

This command resequences the feature numbers so that they once again are 1, 2, 3, etc. In

doing this, it often has to change reference feature numbers, as well.

5.3.

System Commands

5.3.1. "b" Break

This command puts the user into the LISP command interpreter, where any valid LISP

command may be given. To return to PDE, the user enters "?ret".

5.3.2. "els" Clear this Screen

This clears the PDE command screen.

5.3.3. "elem" Print a List of Features

This prints a list of feature types known to PDE.

5.3.4. "m" Print a List of Commands

This displays the main menu in the PDE text window.

5.3.5. "q" Quit from Part Design Editor

This gets the user out of the Part Design Editor and back to wherever the editor was called

from (usually either LISP or VWS_CADM). Since the editor is no longer running, there is no

prompt from the editor. If the editor has drawn a picture, it will disappear. The command
window is cleared, but the text window is not cleared.

- 93 -

VWS Design
5.4.

Graphics and Verification Commands

5.4.1. "block" Draw the Block with no Features

This erases any existing picture, and, if there is a currently active design, draws a picture of
the block which is the starting point for the design, but without any features. This command
is available so that the user can draw a picture of any subset of the features in a design.

Such a picture is created by first calling this command, and then using the "draw" command
as often as desired.

5.4.2. "draw" Draw a Feature

If there is a picture, this command prompts the user to enter the number of the feature to be
drawn and draws the picture of that feature. If verification is on, the feature is verified first.

This command does nothing except print a message if there is no picture on the screen.

5.4.3. "flash" Flash a Feature

This command prompts the user to enter the number of the feature that should be flashed. If

a picture of that feature is on the screen, the picture is turned off and on three times. This

command is used to identify the picture of a given feature.

5.4.4. "goff ' Set the Graphic Mode to OFF

This sets the PDE graphics mode to "off' and makes any existing picture disappear. When
the graphics mode is "off", no picture will be drawn if a new design is made to be the

currently active design, and commands that otherwise will have some effect on a picture will

not have those effects.

5.4.5. "gon" Set the Graphic Mode to ON

This sets the PDE graphics mode to "on". It does not automatically draw a picture of the

currently active design; the "p" command will do this once graphics is "on". Other commands
which have graphics effects will have those effects enabled when the graphics mode is "on".

5.4.6. "loc" Use Mouse to Pick a Position

If there is a picture, this command prompts the user to use the mouse to point at the picture

and press the right mouse button. When the right button is pressed, a cross-hair is

displayed at the position of the mouse cursor, and the location of the point picked is shown in

the upper right comer of the picture, given in part coordinates. Position information is

rounded off to the nearest eightieth of an inch.

The user may then locate another point by moving the mouse and pressing the right button,

or may get out of "loc" by pressing the middle or left button. The position information and the

crosshair remain on the screen.

- 94 -

VWS Design

5.4.7. "pick" Use Mouse to Pick a Feature

If there is a picture, this command prompts the user to use the mouse to point at a feature on

the picture and press the left button. When the left button is pressed, the number of the

feature is displayed on the command screen. If the pick fails the user is offered several

options.

5.4.8. "rdraw" Redraw the Screen

This redisplays the picture, if there is one. This command produces a better picture than if

the picture is redisplayed via suntools, since "rdraw" redisplays pictures of features and

masks in the correct order. This command also deletes any pictures of fonts and any position

information that may have been drawn during the process of making a text feature or using

the "loc" command. Because "rdraw" simply turns existing images off and on, it is much
faster than a call to "p", which regenerates all the images.

5.4.9. "verif" Verify a Design

The entire currently active design is verified. The user is notified feature by feature whether

the feature passes or fails verification. If any feature fails, a list of all the features that failed

is presented to the user at the end.

5.4.10. "vset" Set the Verification Mode

The user is prompted to choose one of the three verification modes, "off’, "on_soft", or

"on_hard", from a menu in the PDE text window. The PDE verification mode is set to the

chosen level.

6. SOFTWARE

The software for PDE, like all the VWS2 software, is written in Franz LISP. About 70
functions, gathered in the "design2" subdirectory of the usr2/kramer/vws2 directory, make up
PDE. The functions in this subdirectory are solely for the use of PDE. If PDE is run without

graphics or verification, a few additional functions are needed from other directories. When
graphics and verification are operating, many of the 160 functions in those subsystems may
additionally be required.

One of the PDE files, "pde_plist", does not define a function, but rather establishes a large

property list in which the properties are the names of commands from the PDE main menu,

and the values are sections of LISP code which are executed when the corresponding

command is chosen by a user. Thus, this file is equivalent to an additional 33 functions.

PDE makes use of a dozen or so global variables, unlike much of the rest of the VWS

2

software, in which global variables are avoided.

- 95 -

VWS Design

The PDE software makes extensive use of the LISP "errset" function to catch errors and
handle them intelligently before the errors can propagate, throw the user out of PDE, or

corrupt the system.

7. ADVANTAGES AND DISADVANTAGES

PDE allows a user to create or change a design quickly and easily. With PDE it is easy to

create a design which conforms to all requirements of the VWS2 design protocol. The
authors have tried occasionally to edit a design using a general purpose text editor and have
found that design errors are nearly unavoidable in this circumstance. Thus PDE provides the

only reasonable way to generate designs which the VWS2 system can use.

The graphics and verification capabilities incorporated in PDE are powerful tools for insuring

that the design is correct and is what the user intends. Both subsystems operate quickly

enough that the user is unlikely to become impatient with the system.

PDE is fun to use, so that the user is likely to enjoy working with it. This is a critical factor

since any system which is unpleasant to use is not likely to be used effectively. PDE is not

tiring.

PDE is easy to learn to use. A person familiar with computers could learn to use all the

capabilities of PDE effectively in a few afternoons of personal instruction. A tutorial program

to help a user to learn the system without personal instruction is being prepared. A user

unfamiliar with computers but familiar with machining (a machinist, for example) should be

able to learn the system only slightly more slowly.

Aside from the limitations of the design protocol itself, which were discussed in section 2.5 of

Chapter II, the only known significant disadvantage of PDE is the limitations of the drawing

system, particularly its inability to show feature intersections. It is also a drawback not to

have the option of viewing a three-dimensional picture of a design. The blocks to adding

these capabilities to the drawing system are: (1) the time required to write the software, and

(2) the likelihood that these drawing capabilities would slow the system down unacceptably.

Users familiar with systems that use icons and mouse input heavily might find the almost

exclusive reliance on keyboard input a cumbersome feature of PDE. In future versions of

PDE (if any are written), it would be nice to give the user a choice of keyboard or mouse
input.

- 96 -

VWS Design

IV. GEOMETRY LIBRARY

1. OVERVIEW

1.1. Introduction

The VWS geometry library consists of 65 functions which perform geometric calculations in

the VWS2 system. Some 21 of these, such as "pi_times", are elementary functions that are

not available in Franz Lisp. Fifteen of them operate solely when a feature is being enhanced,

and another 27 have to do with manipulations of contour features.

These functions have been gathered into a single directory (~/vws2/geom2) because most

serve the purposes of more than one subsystem. The drawing, nc-coding, and verification

subsystems, for example, all make use of the enhanced version of a feature.

Many of the contour manipulating functions serve only the verification subsystem, but rather

than split the contour feature functions into two groups, they have all been gathered together

in the geom2 directory.

None of the functions in the geometry library is intended for use directly by a user of the

VWS2 system. Rather, the functions are called automatically as needed by the Design

Editor, the VWS control system, or the VWS_CADM friendly front end. A knowledgeable

user, however, might use some functions in the library directly, and the elementary functions

are available to any programmer doing geometric calculations for inclusion in some other

system.

1.2. Significant Figures

Franz Lisp on a Sun computer automatically performs calculations giving 16 significant

decimal figures, for example 2.000000000000001, which has an integer and fifteen places

after the decimal point. This is slightly better than adequate for the purposes of the VWS

2

system. Roughly speaking, in order to ensure accuracy to 0.0001 inch, which is about the

limit of accuracy of a good milling machine, calculations should be accurate to five decimal

places.

Since part dimensions are in inches, never are more than 99, and usually are less than 10,

only one or two significant figures are needed for the integer portion of numbers representing

part dimensions. Angles are usually in the range of zero to two pi, so the integer portion

requires only one digit. Thus there are usually 14 or 15 decimal places available to express

numbers.

Some algorithms require two more decimal places to prepare for contingencies, and about half

a dozen decimal places may be lost in certain inverse functions (such as inverse sine)

employed by the system. That makes a total of about 13 decimal places that are important

for calculation, two fewer than come automatically with Franz Lisp on a Sun computer. Thus,

no special computational algorithms have been needed to ensure sufficient accuracy. It is

- 97 -

VWS Design

likely that a few special routines would have to be written to adapt the VWS2 system to a

computer maintaining accuracy to significantly fewer decimal figures — but not many. A
precise analysis of this has not been done because it has not been necessary.

1.3. Colinearitv and Tangenev

Two computational gremlins, colinearity and tangency, have had to be accounted for

repeatedly in the geometry library, the verification subsystem, and the nc-coding subsystem.

The appearance of these gremlins in the feature verifiers is typical. For example, suppose,

as is shown in Figure 24, that one pocket is made inside another. The bottom of the inner

pocket may lie directly over a section of the bottom of the outer pocket, as shown.
Depending upon the mood of the roundoff algorithm, and regardless of how many decimal

places of accuracy are kept, a computational algorithm for determining if line AD intersects

line BC may show no intersection, may find intersection at one point, or may show what the

eye sees, namely that BC lies on top of AD all the way from B to C.

At point B the tangency problem arises. A calculation of whether circular arc EB intersects

line AD is apt to give no intersection, one point, or two points in the same place, again

depending on the vagaries of roundoff.

The approach taken to these gremlins in the VWS2 system is to try to identify when either of

the two might arise, and either: 1. Shrink or expand one of the figures in question by 0.00001

before performing the calculation, or 2. When checking for equality of two numbers in certain

situations, check instead whether the two numbers are within a certain tolerance of one

another (where the tolerance may be one- or two-sided, depending on the situation).

Both ploys are physically irrelevant but mathematically helpful. For example, if the inner

pocket of Figure 24 is shrunk by 0.00001, the nc-code generated to make the pocket will

probably be unaltered, since only four decimal places are used in the nc-code. On the other

hand, any decent algorithm for determining if AD intersects BC will show no intersection,

and a calculation of whether arc EB intersects line AD will show no intersection. This is the

situation that is desired since we would like to permit close fits of this sort.

The shrinking algorithms vary with the type of feature. In the case of contour features, the

shrinking algorithm is complex.

2. ELEMENTARY FUNCTIONS

The 21 elementary functions include three for dealing with pi, four for tolerances, and a few

miscellaneous. Most of the rest are for making basic geometric determinations, such as the

distance between two points, or if and where one straight or curved line segment intersects

another.

- 98 -

VWS Design

3. FEATURE ENHANCERS

The 15 feature enhancers are called into use only to produce the enhanced version of a

feature description. At the top of the hierarchy of these functions is "enhance_design", with

"enhance_feature", which is the real workhorse, immediately below it. Enhance_feature

makes a copy of the unenhanced feature, finds the z_surf and then consults the features data

base to find the proper enhancer for the given feature type. The enhancer which is selected

alters the copy in place, and returns it to enhance_design, which collects all the enhanced

features together.

Eight of the enhancers deal with contour features, and might equally well have been included

with the set of contour functions described next.

4. CONTOUR FUNCTIONS

The 27 contour functions in the geometry library include 6 for producing "virtual" contour

outlines used in the verification subsystem, 8 for determining the intersection of contour

features, 7 for generating new contour outlines from old, and 6 miscellaneous.

Figure 24. Colinearity and Tangency

- 99 -

VWS Design

REFERENCES

[HOPP]
Hopp, Ted; AMRF Database Report Format — Part Model; AMRF report; October 22, 1986.

[JUN]

Jun, Jau-Shi; "The Vertical Machining Workstation Systems"; to be published as an NBSIR;
1988.

[KRAI]
Kramer, Thomas R.; "Process Planning for a Milling Machine from a Feature-Based Design";

Proceedings of Manufacturing International Meeting; Atlanta, Georgia; April 1988; ASME;
1988; Vol. Ill, pp. 179-189.

[KRA2]
Kramer, Thomas R.; "The Graphics Subsystem of the Vertical Workstation of the Automated
Manufacturing Research Facility at the National Bureau of Standards"; to be published as an

NBSIR; 1988.

[KRAS]
Kramer, Thomas R.; "Data Handling in the Vertical Workstation of the Automated
Manufacturing Research Facility at the National Bureau of Standards"; NBSIR 88-3763;

National Bureau of Standards; 1988; 62 pages.

[KRA4]
Kramer, Thomas R.; "The vws_cadm User Interface in the Vertical Workstation of the

Automated Manufacturing Research Facility at the National Bureau of Standards"; NBSIR
88-3738; National Bureau of Standards; 1988; 110 pages.

[KRAS]
Kramer, Thomas R.; "Process Plan Expression, Generation, and Enhancement for the

Vertical Workstation Milling Machine in the Automated Manufacturing Research Facility at

the National Bureau of Standards"; NBSIR 87-3678; National Bureau of Standards; 1987; 56

pages.

[KR&J]
Kramer, Thomas R.; and Jun, Jau-Shi; "Software for an Automated Machining Workstation";

Proceedings of the 1986 International Machine Tool Technical Conference; Chicago; Illinois;

September 1986; pp. 12-9 through 12-44.

[K&S1]
Kramer, Thomas R.; and Strayer, W. Timothy; "Error Prevention in Data Preparation for a

Numerically Controlled Milling Machine"; Proceedings of 1987 ASME Annual Meeting;

ASME; 1987; PED-Vol. 25, pp. 195 - 213.

- 100 -

VWS Design

[K&S2]
Kramer, Thomas R.; and Strayer, W. Timothy; "Error Prevention and Detection in Data

Preparation for the Vertical Workstation Milling Machine in the Automated Manufacturing

Research Facility at the National Bureau of Standards"; NBSIR 87-3677; National Bureau of

Standards; 1987; 61 pages.

[KR&W]
Kramer, Thomas R., and Weaver, Rebecca E.; "The Data Execution Module of the Vertical

Workstation of the Automated Manufacturing Research Facility at the National Bureau of

Standards"; NBSIR 88-3704; National Bureau of Standards; 1988; 58 pages.

[LOVE]
Lovett, Denver, "Equipment Controllers of the Vertical Workstation"; NBSIR 88-3769;

National Bureau of Standards; 1988.

[NA&J]
Nakpalohpo, Ibrahim; and Jun, Jau-Shi; "Automated Equipment Program Generator and

Execution System of the AMRF Vertical Workstation"; not yet published; 17 pages.

[REQU]
Requicha, A. A. G.; "Representations of Solid Objects"; Lecture Notes in Computer Science;

Goos, G. and Hartmanis, J.; New York; Springer-Verlag; 1980, pp. 2 - 78.

[RUDD]
Rudder, Frederick; (a paper in preparation describing the VWS hardware and software for

the HP-9000 workstation supervisor), to be published as an NBSIR; 1988.

- 101 -

-

READER COMMENT FORM

The Design Protocol, Part Design Editor, and Geometry Library

of the Vertical Workstation

This document is one in a series of publications which document research done at the

National Bureau of Standards Automated Manufacturing Research Facility from 1981

through March, 1987.

You may use this form to comment on the technical content or organization of this

document or to contribute suggested editorial changes.

If you wish a reply, give your name, company, and complete mailing address:

What is your occupation?

NOTE: This form may not be used to order additional copies of this document or other

documents in the series. Copies ofAMRF documents are available from NTIS.

Please mail your comments to: AMRF Program Manager

National Bureau of Standards

Building 220, Room B-l 1

1

Gaithersburg, MD 20899

U.S. DIPT, or COMM. 1. PUBLICATION OR
REPORT NO.

2. Perfcrminf Organ. Report No. 3. Publication Data

BIBLIOGRAPHIC DATA
SHEET (See instructions)

NBSIR 88-3717 FEBRUARY 1988

4. title and subtitle Design Protocol, Part Design Editor, and Geometry Libra:

the Vertical Workstation of the Automated Manufacturing Research Facility at the

National Bureau of Standards

s. author(S) UKjnas R. Kramer; Research Associate, Catholic University; and Guest

Wbrker, NBS & Jan-Shi Jun, Computer Scientist, National Bureau of Standards

S. PERFORMING ORGANIZATION (If joint or other thorn NBS, see instructional

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.
70NANB4H0006 &

60NANB5D0522
I. Typo of Roport & Period Covered

J. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, Stole, ZIP)

Catholic University, Washington, DC 20064

10. SUPPLEMENTARY NOTES

P"~] Document describee o compelter program; SF»I8S, FIPS Software Summery, is attached.

11. ABSTRACT (A 200-*ord or less factual summary of most significant information c If document includes

bibliography or literature survey, mention it here) Tn the Vertical Workstation (vWS) Ol the Ixbo

automated Manufacturing Itesearch Facility, metal parts are machined autonatically fran

feature-based design. A simple two-and-a-half dimesnicnal part may be designed and

machined within an hour, allowing half the time for design input. Vfortetation acti ty

may be divided into design, process planning, data execution, and physical execution

stages. The design of a part is expressed as a list of features on a block-shaped

workpiece. Each feature is a rsroved volune. A feature is expressed by giving the

naie 0f the feature type and values for several parameters appropriate to that future

tvte There are nine feature types in the systen: chamfer cut, pocket, hole, text,

SSve, contour groove, contour pocket, and side contour. Three subfeatures (ch^f^ 3

Sfthreai) may be made cn sane features. The design editor is an mtezactive' system

that runs cn a sun computer which is used to create or change designs . T^^stan

engages the user in a dialog to determine what the user wants to do, and prepares a

design according to the user's instructions. The editor draws a toree-vi^picture of

the part being edited. The geometry library is a set of LISP functions tha

geoietric calculations to support the operation of the design editor and other modul

of the VW5 software.

chamfer out

anfnmatp^ maxuifacturing? design protocol; part geometry; CAD

pns)

13. AVAILABILITY

rxj Unlimited

f~~[For Official Distribution. Do Not Raieaaa to NTIS

f~~l Order From Suoenntendant of Documents, U.S. Government Printin* Office, Washinjton, D.C
20402.

5<j*Order From National Technical Information Servica (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

112

15. Price

*18.95

uieouM*oc

9
l

03

‘£

I

uri

1

