
Research Informatioin Center

National Bureau of Standards

Gaithersburg, Maryland 20899

NBSIR 88-3709
I'SL.aS 1

ou

mar 1 » 1988

Reference Model for DBMS User
Facility

by

User Facility Task Group
of the ASC X3/SPARC Database System Study Group

Authors:

Elizabeth Fong, National Bureau of Standards

John Gersting, Indiana Univ.-Purdue Univ. at Indianapolis

Kate Kinsley, Datawise, Inc.

Nancy McDonald, Computer Technology Planning

John North, AT&T Technologies

Mark Sastry, Honeywell Inc.

Edward Stull, GTE Government Systems

January 1988

*

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

NBSIR 88-3709

REFERENCE MODEL FOR DBMS USER
FACILITY

by

User Facility Task Group

of the ASC X3/SPARC Database System Study Group

Authors:

Elizabeth Fong, National Bureau of Standards

John Gersting, Indiana Univ.-Purdue Univ. at Indianapolis

Kate Kinsley, Datawise, Inc.

Nancy McDonald, Computer Technology Planning

John North AT&T Technologies

Mark Sastry, Honeywell Inc.

Edward Stull, GTE Government Systems

January 1988

U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

M-

. , -.^r" ' • ;;r";l5 «!.,'

*
•• --••*’^- - •

•
• fiV’C.':.*:-

'
'.

pS^ "!;¥<' : :.

p?. • ' •'

V

' l.r?'' .

TABLE OF CONTENTS

PREFACE 1

EXECUTIVE SUMMARY 2

1. INTRODUCTION 3

1.1 PURPOSE AND SCOPE . 3

1.2 STRUCTURE OF THE REPORT 3

1.3 EXPLANATION OF THE TERM "REFERENCE MODEL" 3

1.4 USES OF A USER FACILITY REFERENCE MODEL (UFRM) . . 3

1.5 RELATIONSHIP OF UFRM TO OTHER DATABASE REFERENCE
MODELS 4

1.5.1 The DAFTG Reference Model 4

1.5.2 The Communications Model 5

1.5.3 The Actor/Act/Action/Message Model 5

1.5.4 The Fundamental Theory of Computation Model 6

2. BACKGROUND 7

2.1 INTRODUCTION 7

2.2 THE USER ENVIRONMENT/USER FACILITY 7

2.2.1 The DB User Task Translation Sequence ... 8

2.2.2 User Roles 9

2.2.3 User Attributes 12
2.3 INTERACTION DEVICES 14
2.4 EXISTING DBMS FACILITIES 15

3. USER FACILITY REFERENCE MODEL 16
3.1 INTRODUCTION 16
3.2 FUNCTIONAL DESCRIPTION OF THE USER FACILITY ... 16
3.3 COMPONENTS OF THE UFRM 16
3.4 POTENTIAL COMPONENTS FOR STANDARDIZATION 19

3.4.1 The User Data Language Interface (UDL) ... 19
3.4.2 The Internal User Data Language Interface

(iUDL) 22
3.4.3 The Data Language (DL) and Internal Data

Language (iDL) 23
3.5 EXAMPLE 23
3.6 SUMMARY 25

4.
.
CONCLUSION AND FUTURE WORK 27

5. REFERENCES 28

6. GLOSSARY 29

.,3 -

P

4^
I

V
r

S-'

SX
' u

:3J' .»*

<i. Vi

^^1
,.

ax.

di
Bl
su
^ i”

'

fix

£X

s.fi-

rs

i'i i;.

it
"

' ^ i,. '*' *

ikiMj

lOKajjasa® a«/.6Ai?A<i mmK>
y *' *- .' ,•' a

• t

‘v-
'

'

'

,

X. -; ;-:'
'

'

:;

* - .
'^

i'.- ^ ^ . V- , ,, '\-
,

.. -''A-.

X '

,

- ' '-A-'

. . . . • * ,-i.
,-:' '.:

<-, ^oriowoiiTifi
*?0 ^DX^X5iD^30 JilHOIXQWlP'^

m%^ JiCBi'*' tc)

i i, , . Koxm^xaE^d-WAX^s.xKOf
, X .

-(J.O0)
-

' i!s:? a®;
' f

^

.sie.d l^Ci:mstnT
• '

»
'* ^'* ,• /# * • * * '» ' *, » *' * -’‘‘ » * ..i^ -

\X'Od^ y 'X

b'Jb'^ bgi£ '(Jd) 0:p&p"g^'%ski ®,:^'Bd; ''t.^%'dti

, . - -'. •. -?’»,.• «. - . . « ^ {JCU) ^^t^rngmCL ,'i ;

' a»«si&SEa
. f,

VM«0KI3 j
. .-' ,<;»-> , JU 7

*

2
^'

,. .. .
-:

; ,..,
- *?• w

««(«» aw
.*

'

- -

'

^
•

* •« tf ' ^

» .?!
‘

4.* -

* <> 'V «). u ,X A «

'

4 '

,

,

I
- r.r .A^

5 f'

i-'.i.;-.'v-'i

..-. ,A-
(,

LIST OF FIGURES

Figure 1.1 - DAFTG DBMS Reference Model 5

Figure 1.2 - Communicating Actors 6

Figure 2.1 - User Task Translation Sequence 8

Figure 2.2 - User Roles 10
Figure 2.3 - User Roles to Attributes Matrix 12
Figure 3.1 - A Unified Perspective 17
Figure 3.2 - The User Facility Reference Model (UFRM) ... 17
Figure 3.3 - User to DBMS Communication 2 0

Figure 3.4 - Example Flow in UFRM 24
Figure 3.5 - Organization of current tools 25
Figure 3.6 - UFRM/DAFTG RM configuration 26

,vM'

^

-f

.-•T yj-w^..

Pr-.'.

,,
^ '* ^.T.? ': ' 'r't

vf ’.» ..:r:^~^i^‘"::;r
J .,

-i' - “Wr, .

;.,, -\K :

d.lXUk^'

.y«

J#:'

'
,'Tr*.. .*

,;:
I'.r

/’"•'
' fti’-'/'V vwv=

-

m

;i»3'

' • ... '.Ji 'I.j:(i>jJ

.

,
., ...v!

'••''

;f " '

•• 'h., ''; !'-.. H i *
4 '^•-V-

)V5.

-V
‘

'

-'..
• Ci- 01

,
, '.m

’•'*V
^

i. K'
' \19JS

• f' ' -Mv iii.

, l- ,»i

fe

*
A/4
'.<©'

PREFACE

This report is a contribution to X3/SPARC Database system
Study Group (DBSSG) . The technical work represents the careful
distillation of the contribution of the authors and others who
have participated in the meetings and studies of the User
Facility Task Group (UFTG) which is a sub-group of the DBSSG.

The UFTG invites comments and suggestions for improvement.
Please forward your comments to;

Dr. John Gersting
Computer and Information Science
Indiana University Purdue University at Indianapolis
P. O. Box 647
1201 E. 38th Street
Indianapolis, IN 46223

This work was done under the leadership and chairmanship of:

Dr. Nancy McDonald
Computer Technology Planning
550 North Reo Street
Suite 222
Tampa, FL 33609-1033

1

EXECUTIVE SUMMARY

In this report we present the following reference model for the
user facility portion of a database management system.

UFRM DAFTG RM —
-j

—

I
• l> <1 |>i<l |> <|D1> <|H1

lU.TI >U< luj >U< IDl > < IM] >i< io|
I

S . C |==> D <==| F 1==> D <==| M |==> D <==j C j==> D <==
|

S
|

lE.Sj >L<
I I

>L< ITI >L< |si >L<
\
T

\

|R. |><j !><! |><j j><|
I1*1 li il It II

+ - -+ + + + + +-—+ + +

The User Facility Reference Model (UFRM)

This figure is a representation of a database management system
beginning with the user at the left and ending with the computer
system on the right. The model depicted here is composed of two
major parts, the User Facility Reference Model (UFRM) , which is
the topic of this report, in conjunction with the DAFTG (Database
Architecture Framework Task Group of the DBSSG) reference model
[DAF85] . There are three components of the UFRM, the User
Facility (UF) , and the interfaces; the User Data Language (UDL)
and the Internal User Data Language (iUDL)

.

The UDL is the single interface between the user environment and
the UF. It provides a uniform mechanism through which user
requests and resulting responses can be posed.

The UF contains components that process messages from and present
output to the user. It also sends and receives information from
the DBMS.

The iUDL is the single interface between the UF and the Data
Management Tool (DMT) layer of the DBMS. It provides a mechanism
to categorize the connections needed by various tools, thus
providing for reusability of UF implementations.

The User Facility Reference Model offers a separation between the
Data Management Tools and the User. The User Data Language and
the Internal User Data Language are candidates for
"standardization". Since the Data Management Tool Layer is
continually evolving and current technology often embeds a user
interface in each tool, the process of "standardization" must be
staged. The work here indicates that the User Data Language can
provide a focus for the start of this process. This report also
provides a theoretical basis from which a User Data Language
could be developed.

2

1 . INTRODUCTION

1.1 PURPOSE AND SCOPE

This report describes the aggregate work of the User Facility
Task Group (UFTG) of the Database System Study Group (DBSSG) in
developing a Reference Model for a database management system
user facility.

1.2 STRUCTURE OF THE REPORT

This chapter gives a short definition of the term "reference
model" and indicates how one may be used. In addition, a brief
review of other models examined by the UFTG is given.

Chapter 2 looks at the user and various devices that might be at
the user's disposal.

Chapter 3 suggests a User Facility Reference Model in terms of
component and functional descriptions.

Chapter 4 concludes, and discusses avenues for future work.

1.3 EXPLANATION OF THE TERM "REFERENCE MODEL"

The term Reference Model (RM) [FON86] is defined as a conceptual
framework for a subject area. The main use of an RM is to divide
standardization work into manageable pieces and to know at a
general level how these pieces are related to each other. This
definition is especially appropriate for this effort that seeks
to provide some order and structure to the User Facility (UF) of
a Database Management System (DBMS)

.

1.4 USES OF A USER FACILITY REFERENCE MODEL (UFRM)

There are numerous benefits that will be gained from the
development and acceptance of a UFRM for users, purchasers,
vendors, designers, servicers, teachers, and students of DBMSs.
Some of these benefits are discussed below.

* Promote understanding of DBMS.

By separating the DBMS functions from the user facility
functions and highlighting the interfaces between these
two sets of functions, many people will obtain a better
understanding of the DBMS inner workings as well as the
manner in which those workings are reflected to the
user populations.

* Help maintenance and control activities.

Through this type of top-down division of systems.

3

developers and users will obtain an increased
understanding of functions, which leads to easier
maintenance and stronger control mechanisms.

* Provide guidelines for modularization of functions and
standardization of interfaces.

The identification of pieces and their
interrelationships will establish a framework for
standardization. Such a framework will enhance
portability of software, improve human productivity,
reduce training requirements, provide comparability,
and potentially reduce costs of products.

* Aid in Comparison and Selection of Systems.

The categorization of the UFs is the first step toward
their qualification. This in turn aids the efforts of
organizations to choose, change, train for, and
maintain a new UF and/or DBMS.

1.5 RELATIONSHIP OF UFRM TO OTHER DATABASE REFERENCE MODELS

The DBSSG/UFTG reviewed several models related to the user
facility area. The most important of these was the DBSSG/DAFTG
(Data Architectural Framework Task Group) Reference Model [DAF85]
since it is used to establish the relationship between the user
facility and the proposed DBMS reference model. Other models
examined were Foley's model of communication [F0L81] for the
human elements of the problem, the actor/act/action model [HEW73]
for its humanistic appeal, and the fundamental theory of
computation for its computer orientation.

1.5.1 The DAFTG Reference Model

As will be seen, the User Facility Reference Model (UFRM) will
serve as a front-end to the DAFTG DBMS Reference Model ; these
together form a functionally compatible means of describing
interaction between the user and a database system. (See Figure
1 . 1 .)

The DAFTG Reference Model itself consists of three components,
each communicating via a language interface. Starting from the
right in Figure 1.1, the Operating System (OS) supports the DBMS
and communicates with the Data Mapping Control System (DMCS)
through the internal Data Language (iDL)

.

The DMCS is the "core" DBMS and provides operators for data
manipulation and data description. The Data Language (DL)
interface is the data manipulation language for the DMCS data

4

model. The Data Management Tools (DMT) represent software tools
that support high-level functions such as high-level query
languages, graphics-systems, report writers and database design
tools. There, tools communicate with the DMCS through the DL
interface.

U DATA
S DATA MAPPING
E MGMT CONTROL OPERATING
R TOOLS SYSTEM SYSTEM
S

DMT DL DMCS* iDL OS
^ Data Language internal Data Language

USER FACILITY DAFTG Model

Figure 1.1 - DAFTG DBMS Reference Model

1.5.2 The Communications Model

The Communications Model [F0L81] consists of four layers. At
the highest layer, the conceptual layer defines the key
application concepts of objects, relationships, and operations on
these objects in terms understood by the user. The semantic
layer defines items needed for each conceptual operation as
specified by the user to the machine and the machine to the user.
The syntactic layer defines sequences or a grammar of the tokens
exchanged between the user and the machine. The lexical layer
associates the primitive operations of the support hardware with
the tokens of the syntactic layer.

1.5.3 The Actor/Act/Action/Message Model

The Actor/Act/Action/Message Model (A3M) [HEW73], described in
this paper, is a modeling approach that is based on artificial
intelligence concepts and provides a humanistic model. Described
here is a perception where database actions are considered to be
the result of database acts being carried out by database
actors

.

The meta-model applied here for studying behavior in user
facilities extends the actor system of C. Hewitt and the
concept of object programming. Actors have the following
properties

:

o An actor may perform any number of acts. The
behavior of an actor results from the
"actions” taken as it performs an act.

5

o An actor embraces the internal knowledge
about itself.

o For communication, an actor may monitor and
send messages to other actors over one or
many communications channels.

Actors are agents that carry out acts resulting in actions as
pictured in Figure 1.2. An actor specified as an example of one
or more other actors may inherit properties from these
actors. Lateral actors are autonomous and may only communicate
through messages.

Figure 1.2 - Communicating Actors

1.5.4 The Fundamental Theory of Computation Model

The fundamental theory of computation (FTOC) Model is simply that
a machine, concrete or abstract, produces a result based on
descriptions (e.g. , data, instructions) operated upon by a set of
description-manipulating functions (sometimes called the
interpreter)

.

6

BACKGROUND2 .

2 . 1 INTRODUCTION

Three areas for collection of background information surfaced
early on:

- the user environment

modes of interaction with the DBMS (primarily
hardware devices)

"facilities" available in current DBMS
implementations

These areas were examined in some detail. This chapter contains
the salient results of these examinations.

Little is included on the latter two areas. These are mostly
subsumed in the DAFTG, which became available during the course
of the UFTG's studies, and by the User Facility Reference Model
itself. The user is still the most important element of the
study and will be the focus of the next sections.

2.2 THE USER ENVIRONMENT/USER FACILITY

The UFTG's decision to address the user facilities' needs for
DBMS and not the general user facilities for all of the user's
computing needs was appropriate for a subgroup of the DBSSG.
However, the UFTG quickly discovered that limiting the scope of
the project to DBMSs did not really limit the scope of the user
facilities since DBMSs are rapidly becoming the backbone to most
computer application systems.

Reviewing past research in related areas proved only partially
helpful. The existing literature about DBMS user facilities
mainly concentrates on such narrow aspects of the user's
interaction with DBMSs as query languages or experiments with
"novice" users.

The work of [MCD82] and [VAS82] developed classification schemes
for the functionality of query languages and for query language
users. They then developed a set of tables to aid the users in a
preselection of query languages based upon the user's interaction
capabilities, the structure of the task under consideration, and
the functionality of the query language. The final selection is
most often based on other indirect criteria such as cost and
existing hardware and software compatibility. Even though the
cited work addresses only a portion of the user facilities, query
languages, it has aided us in defining and combining the various
user attributes and in developing the table that associates user
roles with user attributes.

7

The British Computer Society, first through its Query Language
Group and now through its End User Systems Group and some of its
members, has produced several related papers, [BCS81]

,
[TAG84],

and [TAG85] . This work initially concentrated on query languages,
but now is aimed at models for user interactions with computing
systems. The UFTG members have used these ideas in our
discussion for relating user facilities to database architecture.
The use of a dialog manager and service manager interfacing to
the data access routines and application programs supports the
separation of the UF from the DMT layer in our work.

2.2.1 The DB User Task Translation Sequence

A user facility must provide good support for aiding the user in
performing a specific task with the DBMS. The task will differ
considerably depending upon the user's current role. It varies
from defining additional data structures for the database, to
building a new application program for performing a monthly
summary, to browsing through a portion of the database to help
make a business decision. But there is a common thread for all
the tasks independent of the user's role - the way a user
approaches the translation from his mental representation to the
physical sequence of operations that interact with the I/O system
or the user facility. The User Task Translation Sequence is
depicted in Figure 2.1.

User

I

Task Representation

TASK INTERFACE Conceptual

I
Functional Representation

|

TOOL INTERFACE Semantic

I

Dialogue System

DIALOGUE INTERFACE Syntactic

I

I/O Subsystem

Figure 2.1 - User Task Translation Sequence

8

The user has a conceptual model of the various objects, their
relationships, and the manipulations necessary to solve a task.
This Task Representation is usually in terms familiar to the user
(e.g. a business model of the enterprise and its goals) . This is
typically too conceptual for immediate translation to the system.

Thus the user first translates the Task Representation into a
Functional Representation that the system knows. This Functional
Representation includes the various data structures and commands
that the database management system uses. But even this set of
objects and commands must be translated into terms that the
Dialogue System understands before the user can interact with the
system.

The Dialogue System supports the user with many different modes
including menus, forms, command prompts, icons, etc., depending
upon the user's previous knowledge of the system, the task, and
the environment. Finally, the user translates a request from the
Dialogue System into physical movements or operations such as
entering keystrokes, picking an item on a menu, or speaking the
request to a voice recognizer.

As projected in Figure 2.1, the user performs a sequence of
mappings from the user's mental task representation into the
physical interactions with the user facility. We have indicated
the relationship to the conceptual, semantic, and syntactic
notions along the right side of Figure 2.1. The conceptual
mapping translates the user's mental Task Representation into the
functional representation the system knows; the semantic mapping
maps the database objects and functions to the various
representations available to the user in the Dialogue System; and
the syntactic mapping allows the user to interact with various
dialogue representations by manipulating the physical devices of
the user facility.

2.2.2 User Roles

In the early days of DBMSs the user classes of database
management systems were more distinct - the database
administrator was responsible for maintaining all the data
objects associated with the database management system as well as
monitoring and optimizing system performance; the application
programmer developed the transactions via screens for capturing
the information entered by the data clerks to be stored on the
database; and the end-user made use of reports generated from the
application programmer's programs.

Today, the use of DBMSs has migrated from mainframe systems,
through departmental computers, to single user workstations and
computers. The single user computer is often used by small
businesses to run one or more applications using a DBMS. This

9

migration has clouded the distinction of user classes so much
that it is best to consider users in the roles they are executing
at a moment in time.

The major roles that will be considered in this reference model
include the system programmer, the application programmer, the
database administrator, and the end user. Obviously, there are
many different subroles under each major role. Each role has
associated with it attributes that are necessary for the
successful execution of the role. Besides the human roles that
we usually associate with information systems, we must also
consider the virtual user. This is a computer system that has
been developed and implemented to stand-in as an agent for the
human. Figure 2.2, User Roles, shows the simple analysis of four
specific roles, the interface tool required, and the system
component needed.

Interface System
Role Technicme Component

database
system

programmer

prog
I

operational
lang j* environment

database
1
high

|

application j order j application
programmer

j
lang

j
generator

database 1 data
administrator

j
def

I
lang

information
resource

dictionary
system

database
|
data

|
operational

end 1 manip j data
user

1
lang

j
base

Figure 2.2 - User Roles

The system programmer role deals with either the DBMS software
itself or utility programs written to support the administration
of the database. There are three major subroles in this group -

the DBMS system programmer, the DBA system programmer, and the
tool builder. Each of these subroles demands a high level of

10

knowledge of the system's data structures, the hardware, and the
interface and functions of the operating system. People in these
roles direct the action of the system.

The DBMS system programmer develops interfaces to the internal
access methods, command language interpreter, etc. The DBA
system programmer subrole writes utilities to aid in tuning the
system, in performing the backup and recovery of database files,
or in restructuring the database. The tool builder creates a
level of abstraction for application programmers to use when they
want to interface with the DBMS.

The application programmer role deals with extending the range of
data covered in the database while incorporating new functions
within the information systems for the enterprise. This
application programmer often uses a programming language
interface with the DBMS, writing much of the application code in
procedural computer languages. These applications tend to deal
primarily with transaction oriented production systems that have
regularly scheduled reports. In the last several years there has
been a push to infiltrate the data processing department with 4th
generation languages to improve the application programmers'
productivity

.

The DBA role deals with the metadata for the DBMS. This includes
the definition of the data elements, the enterprise and logical
structure of the data, different user views, and permissions for
security and privacy. Some organizations separate this role into
a DBA subrole that is concerned with interfacing to the
application programmer and the data administration (DA) role that
is concerned with the enterprise model . The DBA has a high level
of knowledge about the metadata and medium knowledge about the
real world data; this is reversed for the data administrator
since he must model the enterprise.

The end-user role is the fastest growing segment of DBMS users.
There are two groups of users, based on the frequency with which
they use the DBMS. The casual user group consists of the
infrequent data entry person, the intermediary for an
organization or management, and management itself. This group
requires a "user-friendly" front end to a general purpose query
language typified by natural language, graphics, or menus and
forms. The daily user group contains the regular data
entry/ inquiry person who, being familiar with the system, can
bypass some aspects of the restrictive front end, and the
analyst/researcher who uses the computer as an integrated tool
for compiling specific information relative to a job function.
These users utilize more command oriented query languages, forms,
non-procedural report languages, and specialized 4th generation
languages

.

11

2.2.3 User Attributes

Each user role has a set of attributes associated with it as
depicted in Figure 2.3. The first attribute is domain knowledge.
Each user has some knowledge of the domain within which the user
is working. This knowledge can vary from just enough to perform
a data input operation to a level high enough to realize the
ripple impact of changing one data field. Domain knowledge is
typically associated with level of experience and training. As
an example, a DBA programmer writing a utility for restructuring
the data within a database could have little understanding of the
real world data but would have a very good understanding of the
data dictionary metadata. People typically dealing with metadata
receive much more training than many of the end users dealing
with the real world data.

ATTRIBUTES

I
skill level | dialog style

|

ROLES
1
domain

1 knowl
1

1
data 1 appl

1 str 1 str
1

hdw
1

|os|
- — 1

sys
dir

user
dir

1 resp

1

1
time

1

-

1

system pgmr
DBMS sys pgmr

1

1

1
L

1

1

1
H L H

1

1

H
1

L H

1

!

1
L

DBA pgmr
1

L
1
H M H H

1
L H

1
L

tool builder
1

M
1

1
H H H H

1
L H

1
L

application pgmr
DP dept pgmr

1

1

1
M

1

1

1
M H M

1

1

M
1

L H

1

1

1
L

info cntr spec
1

L
1
M L M M

1
L H

1
M

dept support
1

M
1

1
M

1

H M M
1

1

L H
i

M
1

database admin
DBA

1

1

1
H

1

1

1
H M M

1

1

M
1

L H

1

1

1
M

DA
1

H
1
H M M M

1
M M

1
M

end-user
casual users

inf input

1

1

1

1
L

1

1

1

1
L L L

1

1

1

L
1

H L

1

1

1

1
H

intermediary
1

M
1
M M M M

1
M M

1
M

management
1

H
1
M L L L

1
M M

1
M

daily users
reg input

1

1
L

1

1
L L M

1

L
1

H L
1

1
H

anal/rschr
1

H
1
M M M M

1

L H
1

H

L = low, M = medium, H = high

Figure 2.3 - User Roles to Attributes Matrix

12

The skill level attributes help differentiate user roles. Skills
encompass familiarity with and ability to manipulate the data
structure (data str)

,

the application structure (appl str) , the
hardware (hdw) used to interface the user to the computer
system, and the underlying operating system (os)

.

The expertise needed to manipulate the data structure involves
knowing the data elements, the records, and the relationships
between the records. A programmer usually has more knowledge and
concern about the data structure than an end-user who relies on
the system (e.g. help screen, on-line tutorials, forms, graphics)
to help him remember all the data structure attributes.

The application structure skill level requires knowledge about
the operations, the relationship between the operations and
programs, and the transactions, forms and various output
reports. A frequent user may tire of too much system direction
(sys dir) found in rigid prompts, menus, or forms; rather, he may
prefer a user directed (user dir) dialog found in most command
oriented interfaces. The tool builder on the other hand needs
different tools to extend the operations and ensure that
extensions do not interfere with the existing operations.

The ability to use the hardware is tightly tied to the frequency
of use. Again, the highest level of expertise is typically
associated with the people building or enhancing the software
capabilities of the system. The end-user, on the other hand, has
benefited from the drive for "user-friendly" hardware devices
such as pick devices (mouse, light pen, touch screen) , multi-
color output devices, high-resolution graphics, etc. Though the
end-user at his own workstation or personal computer has gained
control over the time when data is input, the structure of
reports, and the overall flexibility in dealing with the data, he
no longer can depend on the operators and support staffs found in
large data processing organizations to insulate him from
hardware issues and problems.

Knowledge about the operating system is an important attribute
for users. The programmers must be able to invoke other
commands besides those associated with the DBMS since they deal
with existing data files and generating data files to be used by
other processes on the computer. The end-user prefers to have
all these operating system functions integrated into his
interface facility to minimize his education and memorization
needs

.

The Dialog Style attribute has been divided into two parts -

system directed (sys dir) , and user directed (user dir) . The
notion put forth by this attribute is that there is a low,
medium, or high utilization of dialogue styles by user roles.
Certain dialog styles are easier to learn, more flexible, and/or
easier to use for certain roles.

13

A system directed dialog style typically has less flexibility.
The system must track its current state and determine a list of
possibilities from this state. System directed dialogs are
typically associated with either the casual user or a frequent
data entry person who has just a few possible tasks to perform.
The more knowledge of the domain and the higher level of skills a
user has, the more likely that this user will become bored with a
system directed dialog style.

On the other hand, programmers and daily users needing
flexibility will choose a user-directed dialog style. This style
is typified by command languages often supported with macros
and/or command procedures to execute often run sequences of
operations. These users are often concerned about the
extendability of the command language so they can tailor their
own work environment. One of the recent user-driven dialog
styles is the desk-top metaphor that permits multi-tasking.

Response time requirements are based both on the user's real-time
needs and the user's expected response time. Often the end-
user's expectation of response time cannot be met. Some users
lack an understanding of the total number of operations, the
impact of shared resources, and the audit and recoverability
issues needed to achieve a successful completion of a function.
Hence, many users are looking to dedicated workstations to solve
this problem of variability of response times when they use
shared computer systems. Dedicated systems definitely provide a
more consistent response time operating in a single process
environment, but the use of multi-layer interfaces on these
workstations will cause the response times to elongate. The user
who chooses a dedicated workstation must also become responsible
for providing the audit and recoverability of functions, the data
to other users, and the concern for performance.

2 . 3 INTERACTION DEVICES

Another of the initial concerns of the UFTG was how the user
interacts with the DBMS. Lists of devices were compiled,
including the obvious items of keyboard, light pen, mouse, voice,
etc. These lists seemed to require continual updating. In any
case, from a reference model point of view, the problem became
intractable (e.g., should defining a standard mouse interface be
part of the UFRM development?)

.

Figure 2.1 suggests that the task, not the device, is the
important item. For example, the user might be requested to make
a forced choice among, say, five items. This choice involves
"traffic" over the user interface. Such traffic should be
independent of the mode of presentation of the choice (e.g.,
menu, command line, and so forth) and of the device used to make
the choice (e.g., light pen pick, key stroke, and so forth). In

14

this case, the UFRM proposed later in this work might take on the
form of 5 items passing toward the user and one of the 5

returning.

In order to render the hardware problem tractable, the proposed
"interface” will be between the devices available to the user and
the rest of the DBMS, as opposed to an interface between the user
and the devices.

2.4 EXISTING DBMS FACILITIES

The third area of background investigation was the facilities
available in current DBMS implementations. Again, the limitation
of a database orientation did not really limit the scope of the
problem because a graphics display system or a statistical
package can present equally valid user facilities for databases.
The problem was to separate the user facility from a particular
user interface. Feature analysis techniques for some selected
systems were developed, but the results were difficult to
evaluate

.

When the DAFTG Reference Model became available, it provided a
solution to the problem in the form of the DMT, Database
Management Tool Layer, a "top layer." The natural place for the
user interface is between the user and the DMT. The next chapter
presents these ideas in more detail.

15

3. USER FACILITY REFERENCE MODEL

3.1 INTRODUCTION

The User Facilities Reference Model is defined to be a conceptual
categorization of functions/facilities that a database user would
like to use while interacting with a DBMS. It will provide a
common basis for the coordination of standards development, while
permitting existing standards to be placed into perspective. The
model has sufficient flexibility to accommodate advances in
technology and expansion in user demands. Accordingly, the model
should permit the phased transition from existing implementations
to new DBMS standards.

The database system is an agent that carries out a variety of
tasks on behalf of its user. It is from this perspective that
the database system must be studied to determine the support it
is to provide a user facility.

Figure 3.1 depicts the unification of the previously mentioned
models (DAFTG, Communications, A3M, FTOC) in the framework
proposed for the UFRM. The diagram itelf shows the form of the
proposed UFRM along with the DAFTG model. In the top of the
blocks are DAFTG terms (conceptual, syntactic, tool command,
database, operating system) . In the lower portion of the blocks
are the Communication Model's terms (semantic, lexical,...). The
D and I indicate data values and interpreters, i.e., that local
data and computing power exist at each stage. The A3M model is
used to describe how the "traffic" flows through the various
stages of the model.

3.2 FUNCTIONAL DESCRIPTION OF THE USER FACILITY

The User Facility Reference Model serves as a front end to the
DAFTG-DBMS Reference Model and together they form a functionally
compatible means of describing interaction between the user and
the system.

A User Facility: (1) transforms a user's request (for
information from a database) into functional requests for data
management tools and (2) maps the output from data management
tools into a presentation format to the user.

3.3 COMPONENTS OF THE UFRM

Figure 3.2 positions the UFRM within a database-oriented system.
This work focuses on the three components of the UFRM, called the
UF, UDL, and iUDL. The remaining portion of Figure 3.2 is the
DAFTG Reference Model. For completeness, all 9 of the elements
of Figure 3.2 are described below, first the processes (boxes)
and then the interfaces, denoted by > < .

16

abstract
representation

in
user's mind

concrete
representation
for machine
processing

H H

I

Conceptual
|

I

Structures
1

I

D
I

+ +=

I
I

I

I

Semantic
|

I

Interpreter
j

+ +

}

}

} U {

} {

} U {

D
L

:===} D {==

} L {

} {

+ +

I

Syntactic
1

I

Structures
j

__l D
1

I

I
I

I

Lexical
|

I

Interpreter
j

+ +

Tool
Command

Language
D

D {====

L {

{

:+ + =

I

Tool I
I

I
Command

j

I

Language
j

1
Interpreter

j

+ +

+•

Database

+

) {

} D {

{

{

{

D
==)

}

}

====+. -+===>

Database
Management

System

} {

} i (

Operating
System

+

====) D {====+
} L {

} {

D

I

•+

Hardware
Host

Figure 3.1 - A Unified Perspective

UFRM DAFTG RM

+ + + + + + + + + +

I
* l> <1 |>i<| |> <|D|> <|H|

|U.T| >U< |U| >U< IDI > < 1M| >i< |01
I

S . C 1==> D <==| F |==> D <==| M 1==> D <==i C |==> D <==
|

S
||E.S| >L<

I I

>L< |T| >L< |S| >L< |T|
|R. !><! !><! !><! !><!

I

I • j
II II II II

+ + + + + + + + + +

Figure 3.2 - The User Facility Reference Model (UFRM)

17

Processes:

o The term "user" represents a user environment
that interacts with a DBMS. This includes
the human component examined in Chapter 2 and
may include hardware devices in the form of
the TCS, Terminal Control System.

o The User Facility (UF) contains components
that process messages from and presents
output to the user and in turn directs and
accepts data to and from the database
management system as defined by the DAFTG of
the DBSSG.

o The Data Management Tools (DMT) processor,
as defined by the DAFTG, contains software
components that are plug-compatible with the
DMCS through the DL-interface . A simple DMT
could be a data definition language macro
facility which would transform DDL statements
into sequences of DL statements.

o The Data Mapping Control System (DMCS) , as
defined by the DAFTG, is a "core" database
management system (DBMS) supporting and
enforcing the ANSI/SPARC dimension of
external , conceptual , and internal schemas
and the orthogonal intension-extension
dimension of data model schemas, data
dictionary schemas, application schemas, and
application data. An active/dynamic data
dictionary system is an integral part of the
DMCS. Although the DMCS would be typically a
one-data-model DBMS, it is the core of a
potentially multi-data-model DBMS.

o The Host is the computational host for the
DMCS. The DAFTG defines Operating System
(OS) as part of the environment of a DBMS
which here is considered to be part of Host.
The operating system services in many
existing systems are either too slow or
inappropriate to support the DBMS. Therefore,
many current DBMSs provide their own
operating system environment. Future
operating system designers must recognize
such needs of the DBMS; these needs are to be
specified in the iDL interface.

18

Interfaces

:

o The User Data Language (UDL) is the
interface to the UF. UDL is an interface
between the user and user facility to
transcribe user requests and present the DBMS
responses

.

o The internal User Data Language (iUDL) is
the interface to data management tools so
that the user is not required to learn what
may be the specialized language requirements
for each data management tool

.

o The Data Language (DL) is the single
interface to the services offered by the
DMCS. It is the data manipulation language
for the fundamental data model of the DBMS

.

The fundamental data model is a data model
that supports the established data models
such as the relational, the
ent ity~relat ionship, the network, the
object-role models. Because of the
intension-extension dimension of the data
description and because the fundamental data
model is used at all levels of this
dimension, the DL supports both data and
meta-data management. The data model schema
is self-describing and thus all data
including data descriptions are defined,
retrieved, and manipulated through the DL
interface

.

o The internal Data Language (iDL) is the
single interface between the DMCS and the OS
through which all data is passed whether real
data, meta-data, meta-meta-data, etc.

3.4 POTENTIAL COMPONENTS FOR STANDARDIZATION

In keeping with previous standards practices, interfaces within
reference models are likely candidates for standardization. For
the UFRM this would be the User Data Language and the Internal
User Data Language.

3.4.1 The User Data Language Interface (UDL)

Communication between the user and the DBMS may be perceived as
an ordered series of assertions and interrogatives from one to
the other (Figure 3.3, User to DBMS Communication). Both
interrogatives and assertions are imperatives but here

19

imperatives are all those messages that are neither
interrogatives nor assertions. An interrogative message is
defined to be any action intended by the transmitting actor to
only examine knowledge available to the receiving actor. An
assertional message is any action intended by the transmitting
actor to cause a change to the knowledge available to the actor
receiving the message. In the most general sense, both
assertions and interrogatives of an actor may result in further
assertion and interrogative messages to the corresponding actor.
Note that both the transmission and receipt of a message are
actions resulting from an actor performing an act.

assertions and interrogatives

DBMS

assertions and interrogatives

Figure 3.3 - User to DBMS Communication

Assuming the DBMS is in operation, it somehow prompts, that is
interrogates the user for some act to be performed and upon
receipt, attempts to perform the act resulting in a corresponding
action possibly with side-effects to cause modification to the
database and advise (i.e., assert to) the user of its action.
Whether the user or the DBMS is in control is not important here.
What is important is the investigation of how it is that the user
may cause the DBMS to perform the correct act through a natural
and minimal effort on the part of both the user and the DBMS.

The following two definitions are provided from the database
system perspective:

1) An interrogative act is an act that
examines the content of the database. The
database may optionally respond to the user
with the results of the examination.

2) An assertional act is an act that causes a
change in the state-of-af fairs of the
database. It typically would be a statement
of new information with an embedded or
implied modification-type command.

20

In the most general sense, assertional acts may result in
other assertional acts as well as interrogative acts. Note:
Composite operations, such as audit trailing and user
queries, are considered a composite of both assertional and
interrogative acts.

All assertions belong to one of four major classes:

1) extend - The extend assertion adds new
knowledge (extensionally) to the knowledge
base.

2) update - The update assertion modifies
existing knowledge. The modification
identifies the previous knowledge as being
out-of-date and revokes it. Depending on the
intent of the roles involved, this may
initiate other appropriate actions such as
notifying the change.

3) correct - The correct assertion, like the
update assertion, modifies existing knowledge
and revokes it. However, the modification
identifies the previous knowledge as being
incorrect and, depending on the intent of
the roles involved, may initiate other
appropriate actions such as signaling an
error and resolving problems specified in the
cognitive models that used the incorrect
knowledge.

4) revoke - The revoke assertion also modifies
existing knowledge. Revoking explicit
knowledge may or may not cause deletion from
the information store depending on the
intent of the roles involved as in the
update and correct assertions. For example,
revoking implicit knowledge (i.e. information
which does not exist physically but must be
computed) causes knowledge to be added to the
information store that initiates failure of
the inference (i.e. computed information) for
the implicit knowledge being revoked.

Any system that assimilates new knowledge must both provide and
enforce semantics for the effects of assertion. This is perhaps
one of the weakest properties in many current knowledge base
systems. Often new rules and facts are admitted and stored
regardless of whether they make any sense in terms of the
existing knowledge. A sensible universe of discourse must always

21

be maintained and enforced between the external world and the
DBMS.

There are four important classes of interrogation:

1) The literal interrogation is an act that
attempts to solve a problem literally as
stated typically using only that inference
necessary to search the store of
information. Consider the fact: CPU is part
of computer. The fact employs the domain of
CPU, a relation of "is part of" and a
codomain of computer. A literal
interrogation of this fact would succeed only
if the problem were stated using any of
these three components (e.g.

,

<X> is part of
computer, CPU <Y> <Z>)

.

2) The explicit interrogation is a relaxation
of the literal interrogation. The relaxation
is to permit a limited inference over any or
all of the components of the problem.
Consider the problem: <X> has CPU. With a
small amount of inference, it may be reasoned
that <X> has CPU could be stated as CPU is
part of <X> thus leading to the solution of
CPU is part of a computer.

3) The implicit interrogation is the antithesis
of literal and explicit interrogation in that
it attempts to solve a problem by using
implied information. Even though the
information store contains the fact above,
implicit interrogation would only succeed if
it could somehow be implied that a CPU is
part of a computer.

4) The general interrogation is simply a
combination of all possible solutions
generated by interrogating literally,
implicitly and explicitly using whatever
information can be discovered to contribute
to the discovery of another solution. For
example, a literal interrogation may lead to
discovering an implicit solution, and so on.

3.4.2 The Internal User Data Language Interface (iUDL)

The iUDL provides the interface between the user facility (UF)
and the data management tools (DMT) . The iUDL provides a
mechanism to categorize the connections needed by various tools.

22

thus providing for reusability of UF implementations.

The existence of the iUDL makes the assumption that the data
management tools can be accessed directly by the iUDL, i.e.,
remotely from the user. This would provide access to data
dictionary tools or graphics tools from the UF. Embedding the
details of such accesses at the iUDL, the user need only see the
UDL view of these tools while benefiting from their full
capabilities

.

Currently many data management tools must be invoked directly by
the user. Providing categorization for the interfaces of the
wide variety of tools that will become available is an area for
future work.

3.4.3 The Data Language (DL) and Internal Data Language (iDL)

The remaining interfaces in Figure 3.1 are the DL and the iDL.
These are part of the DAFTG Reference Model.

3 . 5 EXAMPLE

Figure 3.4 demonstrates how the User Facility Reference Model
integrates with the DBMS Reference Model. For example, a row
could be inserted using a software tool such as Query-By-Example.
The UDL interface accepts the signal from the input device

—

whether it is a keyboard, light pen, audio or video response,
etc.—and sends it to the UF. The UF then interprets this signal
into the binary code that represents the action, such as the
number "1" selected from a menu, and passes it to the DMT through
the internal-Data Language (iUDL) for processing. The iUDL is
the interface through which all data is passed between the DMT
and the UF. In a similar fashion, the UF relays the correct
control sequences to cause the output device to display, print,
etc. , according to the information passed to it by the DMT via
the iUDL.

23

FUNCTION: Insert via form

UDL iUDL DL iDL

User/TCS
1

UF
1

DMT
1

DMCS
1

OS

• •

keystroke

select from
menu

. interpret

. keystroke
interpret
keystroke
to menu

retrieve
from
database

1

^ M M M «

•
1

1

form info v

form
1

1

1

1

. escape

. sequence

. characters .

interpret
form info

V
1

• •

postion cursor, interpret .

enter contents keystrokes.
. to binary .

generate
check
validity
of DDL

1

check
1

1

1

1

1

^
1

generate
append
DDL

• •

process
write to OS.

User/TCS
1

UF
1

DMT
1

DMCS
1

OS

UDL iUDL DL iDL

Figure 3.4 - Example Flow in UFRM

24

3 . 6 SUMMARY

The goal of the UFRM is to provide a framework within which
transportable components for a user facility can be constructed.
These components fit between the user environment and the DBMS,
more specifically between the user and the DMT.

A mechanism, the A3M, is proposed as a starting point for the
UDL. The A3M would be used to "phrase” the traffic between the
user and the UF across the UDL interface.

The figure below restates the problem. Reviewing current
technology indicates that most systems expect the user to
interact with the DMT layer directly. The tools have "built in"

interfaces. Figure 3 . 5 shows such a situation.

1
User

1

/ 1 \
/ 1 \

/ 1 \
/ 1 \

/ 1
• • • \

/ 1 \
Tool 1 Tool 2 Tool n

1
user [process!

1
user

1
process

j 1
user [process

1
inter.

j 1
j 1

inter.

j

2
1 I

inter.
j

n

\ 1 /
\ 1 /

\ i /
\ 1 /

\ 1 /
\ 1 /

\ /

DBMS

Figure 3.5 - Organization of current tools

25

The UFRM and DAFTG RM suggest the configuration shown in Figure
3.6.

I
Process 1 |

/ \

/ \
/ \

/ \
User ---| UF

|

|
Process 2 1

|
DMCS

1

\ /
\ /
\ /
\ /

I
Process n

|

UDL UF iUDL DMT DL DMCS

Figure 3.6 - UFRM/DAFTG RM configuration

The configuration in Figure 3.6 provides for portability and
modularity of system components without a large impact on the
user.

26

4. CONCLUSION AND FUTURE WORK

The UFRM described and discussed in this document is a
consolidation of models from graphics, cognitive psychology,
database technology, and theoretical computer science thinking.
We, the UFTG, have attempted to mesh the concepts from many
disciplines. A major consideration was consistency with the
DAFTG Database Reference Model since that was our application
focus. We believe that the UFRM is a natural outgrowth of the
general database reference model. Throughout this report, we
have attempted to explain how our thinking was influenced by the
various models we analyzed and utilized to achieve our result.

Future activities are expected to revolve around two general
areas: 1. review of existing products, and 2. design and
development of new UF products. Initially, we believe an
analysis of the effectiveness of present systems and subsystems
with unmodularized UFs will be useful to better understand the
features that are most useful for certain actions and to
extrapolate into a single UF. From that experience, we
anticipate some interesting development activities that will
incorporate the lessons learned.

It is expected that the UDL and iUDL will be standardized to
facilitate future DBMS development.

27

5. REFERENCES

[BCS81] British Ccomputer Society, "Query Languages -

A Unified Approach", Report of the British
Computer Society Query Language Group, Heyden
& Son Ltd., Cambridge, Great Britain, 1981.

[DAF85] Database Architecture Framework Task Group
(DAFTG) of the Database System Study Group,
"Reference Model for DBMS Standardization,"
NBSIR 85-3173, May 1985. (Also published in
SIGMOD Record, Vol . 15, No. 1, March 1986).

[FOL80] Foley, James D., "The Structure of
Interactive Command Languages", Methodology
of Interaction, Guedj (ed.). North Holland
Publishing Company, IFIP, 1980.

[FOL74] Foley, James D. and Victor L. Wallace, "The
Art of Natural Graphic Man-Machine
Conversation", Proceedings of the IEEE, Vol.
62, No. 4, April 1974.

[FON86] Fong, E.N. and D.K. Jefferson, "Reference
Models for Standardization", Institute for
Computer Sciences and Technology, National
Bureau of Standards, Proceedings of Computer
Standards Conference, May 1986.

[HEW73] Hewitt, C. , P. Bishop and R. Steiger, "A
Universal Modular Actor Formalism for
Artificial Intelligence", Stanford
University, August, 1973.

[MCD82] McDonald, N.H. and J.P. McNally, "Query
Language Feature Analysis by Usability",
International Journal of Computer Languages,
Vol. 7, Nos. 3/4, 1982.

[TAG85] Tagg, R.M, "Object Modeling in a Generalized
End-User System", Unpublished paper, 1985.

[TAG84] Tagg, R.M. and M. Sandford, "Where to Now the
Mouse has Arrived?", Computer Bulletin (UK),
December 1984.

[VAS82] Vassiliou, Y. and M. Jarke, "A Framework for
Choosing a Database Query Language", NYU
Symposium on User Interfaces, May 1982.

28

6 . GLOSSARY

A3M - see Actor/Act/Action/Message Model

act - that which is carried out by an actor to perform an action
(see Actor/Act/Action/Message (A3M) Model)

action - the result of an actor carrying out an act (see
Actor/Act/Action/Message (A3M) Model)

actor - that abstraction which carries out an act resulting in an
action (see Actor/Act/Action/Message (A3M) Model)

Actor/Act/Action/Messaqe fA3M) Model - a model based on
artificial intelligence concepts. Actors are agents which
carry out acts resulting in actions. Each actor embraces the
internal knowledge about itself. The behavior of an actor results
from the "actions" taken as it performs an act. An actor may
perform any number of acts. For communication, an actor may
monitor and send messages to other actors. An actor specified as
an example of one or more other actors may inherit properties
from these actors. Lateral actors are autonomous and may only
communicate through messages.

ANSI - the American National Standards Institute

ASC - Accredited Standards Committee

BCS - the British Computer Society (BCS)

Communications Model - J. D. Foley defines a linguistic approach
broken into four layers of abstraction: the conceptual, the
semantic, the syntactic, and the lexical layers. The highest
layer, the conceptual layer, defines the key application concepts
of objects, relationships, and operations on these objects in
terms understood by the user. The semantic layer defines the
services needed for each conceptual operation as specified by the
user to the machine and the machine to the user. The syntactic
layer defines sequences or the grammar of the tokens exchanged
between the user and the machine. The lexical layer associates
the primitive operations of the support hardware with the tokens
of the syntactic layer.

DA - see Data Administrator

DAFTG - the SPARC/DBSSG Database Architectural Framework Task
Group

.

Data Administrator (DA) - Some organizations separate this role
into a DBA subrole that is concerned with interfacing to the
application programmer and the data administration (DA) role that
is concerned with the enterprise model. The DA must model an

29

enterprise with his understanding of the real world data and its
relationships as opposed to the Database Adminstrator (DBA) who
has a high level of knowledge about the metadata and medium
knowledge about the real world data.

Data Lanquacre (DL) - the single interface to the services of the
Data Mapping Control System (DMCS) . It is the data manipulation
language for the fundamental data model of the DBMS. The DL
supports both data and meta-data management.

Data Management Tools (DMT) - Data Management Tools processor is
a collection of software components that are plug-compatible
with the DMCS through the DL-interface. A sample DMT could
be a data definition language macro facility which would
transform DDL statements into sequences of DL statements.
The DMT supports high-level functions such as high-level query
tools. Each tool may have its own user interface.

Data Mapping Control System (DMCS) - a "core” database management
system (DBMS) providing operators for data manipulation and data
description, supporting and enforcing the ANSI/SPARC dimension
of external-, conceptual-, and internal-schemas and the
orthogonal intension-extension dimension of data model-, data
dictionary-, and application schemas, and application data. An
active/dynamic data dictionary system is an integral part of the
DMCS.

Database Administrator (DBA) - deals with the metadata for the
DBMS. This includes the definition of the data elements, the
enterprise and logical structure of the data, different user
views, and permissions for security and privacy. Some
organizations separate this role into a DBA subrole that is
concerned with interfacing to the application programmer and the
data administration (DA) role that is concerned with the
enterprise model. The DBA has a high level of knowledge about
the metadata and medium knowledge about the real world data as
opposed to the data administrator who must model an enterprise
with his understanding of the real world data and its
relationships

.

DBA - see Database Administrator

DBMS Reference Model - consists of three components, each
communicating via a language interface. The Operating System
(OS) supports the DBMS and communicates with the Data Mapping
Control System (DMCS) through the internal Data Language (iDL)

.

DBSSG - the X3/SPARC Database System Study Group

DL - see Data Language

DMCS - see Data Mapping Control System

30

DMT - see Data Management Tools

end-user - the fastest growing and largest segment of DBMS users
typically considered to be composed of two sub-segments depending
on frequency of use: the casual user and the daily user.

extensional information - the information being described by
intensional information.

FTOC - see fundamental theory of computation

fundamental data model - a data model that supports the
established data models such as the relational-, the
entity-relationship-, the network-, the object-role models.

fundamental theory of computation (FTOC) - is simply that a
machine, concrete or abstract, produces a result based on
descriptions (e.g., data, instructions) operated upon by a set of
description-manipulating functions (sometimes called the
interpreter)

.

Host - the computational host for the DMCS. The DAFTG
defines Operating System (OS) as part of the environment of
a DBMS which here is considered to be part of the Host.

Host Environment Actor - a more general concept for the DAFTG
Operating System. Here, the OS is considered data being operated
upon by the hardware. (Note, the firmware and microcode levels
are considered part of the hardware for simplicity.) This actor
also closely corresponds to Foley's lexical layer. There is no
good correspondence to the OSI except it might be said that it
would cover the OSI session through physical layers.

internal Data Language (iPL) - the single interface between the
DMCS and the OS through which all data is passed whether real
data, meta-data, meta-meta-data, etc.

internal User Data Language (iUDL) - the single interface to
data management tools. Thus, the user is not required to learn
what may be the specialized language requirements for each data
management tool . The iUDL provides the interface between the
User Facility (UF) and the Data Management Tools (DMT) . The iUDL
provides a mechanism to categorize the connections needed by
various tools, thus providing for reusability of UF
implementations

.

intensional information - the information that is description of
a description.

ISO - International Standards Organization

31

message - see Actor/Act/Action/Message (ASM) Model

OSI - see Open System Interconnection Reference Model

Open System Interconnection Reference Model fOSI) - the seven
layer architecture for autonomous communicating systems as
specified by the International Standards Organization (ISO)

.

reference model fRM) - conceptual framework for a subject area,
divides standardization work into manageable pieces and to know
at a general level how these pieces are related with each other.

SPARC - the Standards Planning and Requirements Committee of the
accredited standards committee Information Processing Systems
(X3) of ANSI.

Terminal Control System (TCS) - see User Facility (UF)

UFTG ” see User Facility Task Group

user “ the UFTG's abstraction to represent and describe any
user of the user facility; here, only those properties of a
user involved in using a database management system are
considered.

User Data Language CUDL) - the single interface to the UF. Most
DBMSs have user languages built-in to the DBMS. Under this
model, the user language is externalized relative to the DBMS.
Other languages are possible or an existing language may be
extended or adapted in the UF to accommodate the user. The UDL
interface accepts the signal from the input device—-whether it is
a keyboard, light pen, audio or video response, etc.—and sends
it to the UF.

User Facility (UF) - contains software components which process
messages from the user and in turn directs and accepts data to
and from the database management system as defined by the DAFTG
of the DBSSG. It is the major component of the User Facility
Reference Model and is the control system for the input and
output devices.

User Facility Reference Model (UFRM) - serves as a front-end to
the DBMS Reference Model and together they form a functionally
compatible means of describing interaction between the user and
the system. It is composed of five processors and four
interfaces. The processors are; the User, the DMT, the DMCS,
and the Host. The interfaces are; the UDL, the iUDL, the DL, and
the iDL.

User Facility Task Group (UFTG) - a task group of the SPARC/DBSSG
developing a reference model for the user facilities of a data
base management system.

32

virtual user - a software/hardware agent of some human or group
of humans. The range of this user is limited only by
intelligence built into the processes which represent this type
of user.

33

NBS-n4A (REV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See /nstruct/ons)

1. PUBLICATION OR
REPORT NO.

NBSIRS8-3709

2. Performing Organ. Report No, 3. Publication Date

J a nua r y 19 8 8

4. TITLE AND SUBTITLE

Reference Model for DBMS User Facility

5. AUTHOR(S)

Elizabeth N. Fong (Editor)

6. PERFORMING ORGANIZATION (If joint or other than MBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State. ZIP)

10.

SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

In this report we present a reference model for the user facility portion of a

database management system. The User Facility Reference Model offers a separation
between the Data Management Tools and the User. The User Data Language and the
Internal User Data Language are candidates for "standardization". Since the Data
Management tool Layer is continually evolving and current technology often embeds
a user interface in each tool, the process of "standardization" must be staged.
The work here indicates that the User Data Language can provide a focus for the
start of this process. This report also provides a theoretical basis from which
a User Data Language could be developed.

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

database management system, data language, end-users, reference model, standards,
user facility, user interface.

13. AVAILABILITY

Uni imited

1 1

For Official Distribution. Do Not Release to NTIS

1 1

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

38

15. Price

$11.95

USCOMM-DC 6043-P80

[I

. . * ' 1 : *. • fkj

