
NBS
Publi-

cations

NBSiR 33-2704
i i

A 1 1 1 2 7 5 3 fl 5 3

January 6, 19SS By:

Thomas R. Kramer
Rebecca E. Weaver

88-3704

1988 OF COWSRCE:wmmmmi
Mohal -teeau !Ggthefs^& /Maryland;





Research Information Center

National Bureau of Standards

Gaithersburg, Maryland 20899

MBSC

3 3

'a

THE DATA EXECUTION MODULE OF THE VERTICAL WORKSTATION
OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY

AT THE NATIONAL BUREAU OF STANDARDS

Dr. Thomas R. Kramer

Guest Worker, National Bureau of Standards, &
Research Associate, Catholic University

\

Ms. Rebecca E. Weaver

Summer Intern, National Bureau of Standards

January 6, 1988

Funding for the research performed by Dr. Kramer and reported in this paper was provided to

Catholic University under Grant No. 60NANB5D0522 and Grant No. 70NANB7H0716 from

the National Bureau of Standards.

Certain commercial equipment and software are identified in this paper in order to adequately

specify the experimental facility. Such identification does not imply recommendation or

endorsement by the National Bureau of Standards, nor does it imply that the equipment and

software identified are necessarily the best available for the purpose.

This publication was prepared in part by a United States Government employee as pan of

her official duties and is, therefore, a work of the United States Government and not subject

to copyright.





VWS Data Execution

CONTENTS

Page

I. INTRODUCTION 1

1. CONTENTS.. 1

2. AUDIENCE.. 1

3. BRIEF VWS DESCRIPTION 1

4. DESIGN PROTOCOL........ 2

5. PROCESS PLAN PROTOCOL... 3

6. SUMMARY OF DATA EXECUTION MODULE CAPABILITIES 4

7. RELATED READING 5

II. DATA EXECUTION MODULE OPERATION..... 7

1. INTRODUCTION 7

2. INITIALIZATION .....11

2.1. Overview. 11

2.2. Workpiece Model. 11

2.3. Process Plan Enhancement 11

2.4. Process Plan Sequencing 14

2.5. Data Base Initialization....................... 14

3. STEPPING THROUGH THE PROCESS PLAN............. 14

3.1. Introduction........... 14

3.2. Function Call Assembly 15

4. CLOSING 16

4.1. Introduction 16

4.2. Printing Pseudocode 16

4.3. Use of Graphics for Flashing and Tool Path..... 16

5. DATA REQUIREMENTS 19

III. WORKPIECE MODEL 21

1. INITIALIZATION 21

2. CONSTRUCTION 21

3. USES 21

- i
-



VWS Data Execution

IV. MACHINING 23

1. OVERVIEW 23

2. VERTICAL PASS INCREMENTS 23

3. TYPES OF METAL CUTTING 23

3.1. Overview 23

3.2. Slot Milling 24

3.2.1. Introduction 24

3.2.2. Ramping 25

3.3. Peripheral Milling 25

3.3.1. Introduction 25

3.3.2. Conventional vs. Climb Cutting 25

3.3.3. Stepover 26

3.4. Finish Milling 29

3.5. Drilling. 29

3.6. Tapping. 29

3.7. Countersinking. 29

3.8. Chamfering 29

3.9. Center Drilling .....30

3.10. Counterboring..... 30

3.11. Face Milling 30

3.12. Fly Cutting 30

4. SPEEDS AND FEED RATES 31

5. ZERO FINDING ....!.. 31

5.1. Introduction 31

5.2. Setting X-Zero and Y-Zero 31

5.2.1. Introduction.. 31

5.2.2. Probing a Comer. 32

5.2.3. Probing a Hole 32

5.3. Setting Z-Zero ...35

5.3.1. W-axis Setting.......... 35

5.3.2. Setting Z-zero from the Top of the Part 36

6. TOOL CHANGING......... 36

- ii -



VWS Data Execution

V. AUTOMATIC NC-CODING .

1. OVERVIEW
2. NC-CODE.

2.1. Introduction

2.2. An Example

2.3. First and Last Lines of a Program

3. GENERAL APPROACH TO CODE-WRITING
3.1. Introduction

3.2. Pseudocode and Print Routine

3.3. Comments...

3.4. Machine Capabilities

3.4.1. Introduction.

3.4.2. Common Capabilities

3.4.3. Less Common Capabilities

4. SIMPLE ALGORITHMS
4.1. Drilling

4.2. Tapping

4.3. Countersinking,

4.4. Milling a Straight_Groove

4.5. Milling a Groove.......................................

4.6. Chamfering

4.7. Center Drilling

4.8. Counterboring

5. NON-TRIVIAL BUT EASY ALGORITHMS
5.1. Face Milling

5.2. Fly Cutting

6. SOPHISTICATED ALGORITHMS
6.1. Pocket Milling

6.1.1. Introduction

6.1.2. Normal Pocket Algorithm......

6.1.3. Very Small Pockets

6.1.4. Small Pockets

6.1.5. Making the Initial Slot.........

6.2. Text Milling

6.3. Milling a Contour Groove.

6.4. Milling a Contour Pocket..

6.5. Milling a Side Contour

VI. DATA EXECUTION MODULE SOFTWARE
1. INTRODUCTION
2. LISP FUNCTIONS

.37

.37

.37

. 37

. 39

.41

,41

,41

. 42

. 43

.43

.43

, 44

. 44

.45

, 45

, 45

.45

, 45

.46

.46

.46

. 46

. 46

.46

.47

.47

. 47

.47

. 47

.47

. 48

,48

„ 50

„ 52

, 52

, 52

55

55

55

57

- iii -

REFERENCES



VWS Data Execution

LIST OF FIGURES

Page

Figure 1. Data Execution Drawing 17

Figure 2. Slot Milling.. 24

Figure 3. Climb-Cut Peripheral Milling 27

Figure 4. Conventional Peripheral Milling......... 28

Figure 5. Setting Zero 34

Figure 6. Pocket Cutting Tool Paths 49

Figure 7. Text Tool Path 51

Figure 8. Contour Pocket Tool Path 53

Figure 9. Side Contour Tool Path 54

- iv -



VWS Data Execution

LIST OF TABLES

Page

Table 1. Data Execution Screen Messages 8

Table 2. Process Plan............... 9

Table3. Design and Workpiece 10

Table 4. Enhanced Process Plan 13

Table 5. NC-Code.. 18

Table 6. Numerical Control Codes 38

Table 7. Data Execution LISP Functions 56

- v -



°



THE DATA EXECUTION MODULE OF THE VERTICAL WORKSTATION
OF THE AUTOMATED MANUFACTURING RESEARCH FACILITY

AT THE NATIONAL BUREAU OF STANDARDS

L INTRODUCTION

1. CONTENTS

This paper discusses the Data Execution module of the Vertical Workstation (VWS) of the

Automated Manufacturing Research Facility (AMRF) at the National Bureau of Standards.

The Data Execution module is where numerical control code (NC-code) for the

workstation’s vertical milling machine is prepared. The descriptions pertain to the system in

use during the summer of 1987.

Chapter II tells what the module does in its three phases of action: initialization, stepping

through the process plan and closing.

Chapter III discusses the workpiece model used by the module: how it is initialized, kept up

to date as steps of the process plan are executed, and used.

Chapter IV discusses machining metal and describes the machining operations used in the

system.

Chapter V discusses automatic NC-coding in the VWS2 system: what NC-code looks like,

how NC-code is interpreted, the general approach to NC-coding taken by the module, and

what the machining algorithms are which have been implemented.

Chapter VI discusses the LISP software which comprises the module.

2. AUDIENCE

The paper is intended to be useful to people interested in concepts and technical details of

the VWS, particularly AMRF personnel who are running the VWS or maintaining or

improving the software for the VWS. The paper is intended to be useful also to other

researchers in automated manufacturing. Knowledge of (i) the computer language LISP, (ii)

machining tools, and (iii) NC-code language is useful but not essential to reading this paper.

Detailed documentation of the LISP functions that are involved with the systems described

here is being prepared separately.

3. BRIEF VWS DESCRIPTION

The VWS is a computer-integrated automated machining workstation. It includes a control

system, a computer-aided design system, an automatic process planning system, and an

automatic NC-code generator. The principal machinery is a milling center (Monarch VMC-
75 with a GE2000 controller) and a robot (Unimate 4070 with a Val II controller) to tend the

milling center. There is quite a bit of ancillary hardware. The system is controlled from a

microcomputer (Sun 3/160 with 6M memory, BW monitor). Running in stand-alone mode, it

- 1 -



VWS Data Execution

is possible to design and machine a simple metal part within an hour. The VWS may also be
run as an integrated part of the AMRF. The workstation is described in more detail in

[K&J1].

The software for the VWS is written in the Franz LISP dialect of the computer language

LISP. In this paper this software is called the VWS2 system. Six principal modules
comprise the VWS2 system: the Production Management Operating System (the control

system), the State Table Editor, the Equipment Program Generator, the Part Design Editor,

the Process Planner, and the Data Execution module.

The Part Design Editor, Process Planning and Data Execution modules, as well as other

system capabilities, may be accessed by the user through a small user interface called

vws_cadm. Vws_cadm asks the user questions about what the user wants to do and then

activates the appropriate module or other capability accordingly.

To produce a part from scratch, the user sits at the Sun workstation and creates a design

using the Part Design Editor. The Process Planner is then called to write a plan for how to

machine a part of that design. Next NC-code is generated automatically from the design and

the plan by the Data Execution module. Finally the user tells the control system to make the

part. The control system coordinates the activities of the workstation equipment so that the

part blank is loaded onto the milling machine, the NC-code is sent to the milling machine and

executed (making the part), and the finished part is unloaded.

4. DESIGN PROTOCOL

The VWS2 system uses a feature-based design protocol. The design protocol is described

in detail in [K&J2]. The design of a part is expressed as a list of features on a piece of

stock. The piece of stock is always a rectangular block. The design protocol currently

assumes that all features are being made on one side of the block.

Although all the features and subfeatures are purely geometric, they were selected to be

included in the system on the basis of being features commonly found on machined parts that

could be produced in one, or at most a very few, machining operations. Each feature and

subfeature is a removed volume.

The design of a part is a purely geometric description of the shape of a part and gives no idea

of what machining operations are required to make the part.

The primary features in the system in September, 1987 are: chamfer_out, groove, hole,

pocket, straight_groove, text, contour_groove, contour_pocket, and side_contour. There are

also subfeatures which may be made on the primary features: chamfer_out, chamfer_in,

countersink, and thread. A feature is specified in the system by giving its name and the

values of several parameters which specify its location, shape, and size.

. i -



VWS Data Execution

The design protocol includes the use of "reference features". If feature A is to be made at the

bottom of feature B, then one of the parameters of feature A is "reference_feature", and the

value of that parameter is the feature number of feature B. Normally, if B is the reference

feature for A, the outline of feature A must fit within the outline of feature B, and the bottom

of feature B must be flat (there are exceptions in special cases).

Although a design could be prepared according to the VWS2 design protocol using a text

editor, the only reasonable way to make a design is by using the VWS2 Design Editor

module. The Design Editor is a friendly system which runs on a Sun computer that engages

the user in a dialog to find out what the user wants to make and prepares the design

document for the user. An example design is shown in Table 3 (page 10).

5. PROCESS PLAN PROTOCOL

The core of a process plan which is to be executed by the Data Execution module is a set of

operations, or "steps", that must be carried out in order to make some or all of the features

from a design on a workpiece. In addition to a set of steps, a process plan may also have (1)

a list of requirements of tools and workpieces needed to carry out the plan, (2)

administrative information such as the name of the plan, the id_number of the design to which

the plan is tied, the version number, etc., and (3) a list of parameters used in the plan (if the

plan is parametric).

Each step in a plan describes .some operation, to be carried out. The description is given by

naming the operation (which we will call the "work element") and giving the names and

values of several parameters required to describe the operation fully. Each work element

has its own set of parameters, but a given parameter type may be used for many or all types

of work elements. A bare-bones step includes the work element, the number of the feature

from the design to which the work element applies, the name of the type of tool needed to

carry out the step, and a list of "precedent steps" which must be carried out before the step

under consideration. Additional information which is added at some point usually includes a

changer slot from the milling machine in which a tool of the correct type may be found, spindle

speed, and feed rate.

For steps which refer to features, most or all of the geometric information needed to carry out

the step is extracted from the design, and is not carried in the process plan. For steps which

do not refer to features (such as zero-setting steps), geometric information is carried in the

process plan.

In the VWS2 system, a process plan may have two formats: the standard AMRF format or a

LISP-readable format. To be executed, a plan must be in the LISP environment in LISP-

readable format. A reading facility which sets up a LISP-readable plan in the environment

from a file in standard AMRF format is part of the VWS2 system, as is a facility which prints

a standard file from a LISP-readable plan in the environment.

A detailed explanation of process plans for the VWS milling machine, including examples, is

given in [KRAI]. An example of a LISP-readable process plan is shown in Table 2 (page 9).

- 3 -



VWS Data Execution

6. SUMMARY OF DATA EXECUTION MODULE CAPABILITIES

The VWS2 Data Execution Module is best known as the automatic NC-code generator used

in the VWS. However, it does much more than generate NC-code. The only important

action the module always takes when it runs is to build a data model of a workpiece. An
example of a model is shown in the bottom half of Table 1. In addition to building this model,

the module has five processing and output options: (1) write NC-code, (2) enhance a

process plan, (3) verify a process plan, (4) graphically emulate execution of a process plan,

and (5) save the model. The five options are independent; any combination of them may be

used simultaneously.

The enhancement of a process plan has several elements: adding or deleting steps of the

plan, picking a specific changer slot for each tool, and calculating spindle speeds, feed rates,

stepovers, and vertical pass depths, if necessary. The input process plan may already be

enhanced. Any step of the input process plan may already contain values for any of: spindle

speed, feed rate, stepover, or vertical pass depth.

The incoming workpiece may be a partly machined part, as long as the data model of the

workpiece is correct. The same process plan may be used to finish many differently shaped

partly machined workpieces, as long the features on the incoming workpieces are all given in

the design which is named in the plan. This is accomplished by simply removing the steps of

the plan needed to produce any feature that is already present on the incoming workpiece.

Conversely, a process plan does not need to produce all the features from a design. Thus,

the VWS may produce partly machined parts. The system will produce a data set correctly

representing a partly machined part.

Once the VWS2 LISP environment is set up on a Sun computer, the Data Execution module

may be used via the "vws_cadm" friendly front end, or by a LISP function call to

"execute_plan".

With all five options on, the Data Execution module, running in uncompiled LISP on a Sun

3/160 microcomputer with 6 megabytes of on-board memory and floating point hardware, will

write NC-code at the rate of about 200 lines per minute. With only the NC-coding option on

the rate roughly doubles.

- 4 -



VWS Data Execution

7. RELATED READING

This paper is one of about a dozen papers being prepared as part of the AMRF
documentation to describe all aspects of the VWS. The others are [JUN], [KRAI], [KRA3],

[KRA4], [KRA5], [K&J2], [K&S2], [LOVE], [NA&J], and [RUDD]. Other papers,

prepared for professional meetings, also describe the VWS [KRA2], [K&J1], and [K&S1].

The brief descriptions of the design protocol and the process plan protocol given above in

sections 4 and 5 are not adequate for a detailed understanding of the Data Execution

Module. The reader who wants details is referred to [K&J1] or [K&J2] for the design

protocol and to [KRAI] or [KRA2] for the process plan protocol.

Some of the functions of the Data Execution module are not described in detail in this paper.

In particular, process plan enhancement is dealt with in Chapter V of the process planning

paper [KRAI], and seven types of verification carried out in the module are described in

various chapters of the verification paper [K&S2].



VWS Data Execution

.

ifflSfi't.& k: mw. < ktk v,y

19&2SE . :
•.• >'

:
•*. -:



VWS Data Execution

H. DATA EXECUTION MODULE OPERATION

1. INTRODUCTION

The Data Execution module capabilities were summarized in section 6 of Chapter I. The
operation of the module may be roughly divided into three phases: initialization, stepping

through the process plan, and termination. The module may be used directly from LISP. An
example of a function call to the module is:

(execute_plan ’datex_plan ’datex_part ’datxnc ’datex_plan_enhanced’ soft t ’vise ’top_of_part)

This function call means: run the Data Execution module on the plan named "datex_plan",

using the workpiece "datex_part". Write NC-code to the file "datxnc”. Save the enhanced

version of the plan in the file named "datex_plan_enhanced". Put verification on soft. Draw a

picture emulating the machining process. Assume for the purposes of verification and NC-
code writing that the part is to be milled in the vise. Establish z-zero by probing the top of

the part (and, possibly, offsetting from there).

What happens when this function call is made is shown in several tables and figures

throughout this chapter. The function call itself appears at the top of Table 1. That table

shows the messages sent back to the user during module operation. In a test run, the

module carried out the function call in just over one minute. The process plan "datex_plan"

which is being executed is shown in Table 2. To illustrate the flexibility of the module, this

process plan contains non-sequential precedent steps, one speed, and one pass depth. This

plan is not much like the one produced by the VWS2 Process Planning module, which would

use sequential precedent steps and put speeds and pass depths in either all or none of the

steps for which they are appropriate.

The name of the design does not appear in the function call. The name of the design is found

in the process plan. In the example the design is called "datex_design". The data used by

the system giving the design and the workpiece are shown in Table 3. The design has three

features in it: a countersunk hole, a chamfered pocket to the right of the hole, and the letter

"D" at the bottom of the pocket. The workpiece has already been partially machined. It has

the hole in it, but the hole is not yet countersunk. Figure 1 (page 17) shows a picture of the

part without the letter "D". The process plan is a plan for making the hole and the pocket, but

not the letter "D".

In actual use, the vws_cadm friendly front end would normally be used to run the module,

rather than making a direct function call. This is a great deal easier than trying to remember
what all those arguments mean and what the correct order is. In the test run, it took about

30 seconds to answer vws_cadm‘s questions so that it could construct the function call.

Using vws_cadm has the added advantage that vws_cadm will print the description of the

finished workpiece to a file if the user wishes. The direct function call results in the

workpiece description being the value returned by LISP. The last half of Table 1 is the final

workpiece description.

- 7 -



VWS Data Execution

(pp_plist (executejplan ’datex_plan *datex_part ’datxnc

Matexjjlan^enhanced ’soft t
’ vise ’top_of_part))

Starting design enhancement

Design enhancement completed successfully.

Feature 1 hole is OK.
Feature 2 pocket is OK.
Feature 3 text is OK.
Starting process plan enhancement, phase 1.

Process plan enhancement, phase 1, completed successfully.

Starting process plan enhancement, phase 2.

Process plan enhancement, phase 2, completed successfully.

Fix Luring is OK.
Step 1 initialize_plan is OK.
Feature . I hole is OK.
Step 2 setO_comer is OK.

Step 3 setO_z is OK.

S tep 5 mill_pocket is OK.
Step 4 machine_chamfer_in is OK.

Step 6 machine_countersink is OK.
Step 7 close_plan is OK.

(workpiece

features (features

1 (1

countersink_diameter 0.5

feature_type hole

center^ 1

cemer_y 1

diameter 0.316

depth 0.6

bottomOype conical)

2 (2

chamferJn_depth

feature_type

upperJ_x
upper_Ly
lower_r_x

lower_r_y

depth

comer radius:

header (header

workpiece_id datex_part

designjd datex_design

material aluminum
block_size (block_size

length 6.95

width 2.975

height 0.735)

description
a
data execution demo part”))

INITIAL COMMAND FROM USER

ENHANCE THE DESIGN

VERIFY THE DESIGN

— ENHANCE THE PROCESS PLAN

CHECK FIXTURING
VERIFY STEP 1 & INITIALIZE

< VERIFY WORKPIECE

VERIFY & EXECUTE PLAN

0.06:

pocket_comers

2 :

2.5

5

0.5

0.3

0.4))

PRINT OUT WORKPIECE

- 8 -



VWS Data Execution

Table 2. Process Plan
This table shows the LISP-readable unenhanced process plan file for the example in

Chapter II.

(setplist ’datex_plan ’(

header (header

plan_id datex_plan

designed datex_design

material aluminum)

steps (steps

1 (1 work_element initialize_plan

prog_name "data execution demo design ')

2 (2 work_element setO_comer

tool_type_id probe_0.25

comer 1

x_offset 0.0

y_offset 0.0

near_x 16.825

near_y 7.425

precedent_steps (D)

3 (3 work_element machine_chamfer_in

feature_id 2

tool_type_id chamfer_0.375_3_abs

speed 5103

precedent_steps (4 2))

4 (4 work_element mill_pocket

feature_id 2

tool_type_id end_mill_0.625_2_ab

precedent_steps (5))

5 (5 work_element drill_hole

feature_id 1

tool_type_id drill_0.316_2_abs

pass_depth 0.3

precedent_steps (2))

6 (6 work_element machine_countersink

feature_id 1

tool_type_id countersink_0.75_ 1 _ab

precedent_steps (3 2 4))

7 (7 work_element close_plan

precedent_steps (6 3)))

tool_requirements (probe_0.25 end_mill_0.625_2_ab drill_0.316_2_abs

chamfer_0.375_3_abs countersink_0.75_ l_ab)))

- 9 -



VWS Data Execution

Table 3. Design and Workpiece

This table shows the LISP-readable files which set up a design and a workpiece for

the example used in Chapter EL

The Design The Workpiece

(setplist ’datex_design ’( (setplist ’datex_part ’(

features (features features (features

1 (1 1 (1

feature_type hole feature_type hole
center__x 1 center x 1

center_y 1
center y 1

diameter 0.316
diameter 0.316

depth

bottom tvne

0.6

conical
depth 0.6

countersink diameter 0.5)
bottomjype conical))

2 (2
header (header

feature_type pocket comers workpiece_id datex_part

upper_l_x 2 design_id datex_design

upper_l_y 2.5 material aluminum

lower_r_x 5 block_size (block_size

lower_r_y 0.5 length 6.95

depth 0.3 width 2.975

comer_radius 0.4 heisht 0.735)
chamfer_in_depth 0.06) description "data execution demo part")))

3 (3

feature_type text

text "d"

font broad

lower_l_x 3

lower_l_y 1

height 1

depth 0.02

line_width 0.1356466

reference_feature 2))

header (header

designed datex_design

material aluminum
block_size (block_size

length 6.95

width 2.975

height 0.735)

description "data execution demo design")))

- 10 -



VWS Data Execution

2. INITIALIZATION

2.1. Overview

During initialization of the execution of a process plan:

A. The design is enhanced.

B. If the verification option is on, the design is verified.

C. The process plan is enhanced (unless the input plan has been enhanced).

D. Step 1 of the plan (initialize_plan) is earned out.

E. If the drawing option is on, the initial view of the workpiece is drawn, and, if the

verification option is also on, the workpiece is verified.

F. The workpiece model is set up.

G. The model of the fixturing, including obstacles, is set up.

H. If the NC-coding option is on, a working data base is set up and the first seven lines

of pseudocode are generated.

The verification operations carried out during initialization are quite extensive. They are

described in Chapter IX of the verification paper [K&S2].

Design enhancement is also extensive. It is described in Chapter II of the design protocol

paper [K&J2].

2.2. Workpiece Model

Workpiece models are described in Chapter II, section 2.12, of [K&J2]. To make the initial

model of the workpiece, the module copies the property list of the workpiece named in the

function call. If the workpiece is too tall, its height is changed to the height given in the

design. If the workpiece has a "slab", the slab is removed. These two things are done in

conjunction with adding steps to the process plan, as described next.

When the module is used from vws_cadm, the user is asked to name a workpiece. A check

is made of the property list of that name. If the property list exists and is in good format, that

model is used. If there is no property list for the name, vws_cadm makes one, assuming that

the workpiece is a blank block the same size as the one specified in the design.

2.3. Process Plan Enhancement

Process plan enhancement takes place in two phases. These are described in detail in

Chapter V of the process planning paper [KRAI]. In this section we will follow what

happens to our example. Table 2 and Table 4 show the "before and after" of enhancement.

- 11 -



VWS Data Execution

In phase 1 of enhancement, because the user has asked to have the top of the workpiece
used for establishing z-zero, a new step, setO_z, is added as step 3. Then the plan is

renumbered so that there are no duplicate numbers. Precedent step numbers must be

updated as part of the renumbering. In order that setO_z be carried out immediately after

step 2 (which is setO_comer), the precedent step for step 3 is step 2, and any operation

which has step 2 as a precedent step has step 3 added to its list of precedent steps.

If the workpiece in our example had no features and was too thick, a face milling operation

would have been added to bring the workpiece down to the proper thickness. If the

workpiece had had the "slab" property (see the design protocol paper [K&J2] Chapter II,

section 2.12), a face milling operation to remove the slab and a setO_comer operation to find

the block below the slab would have been added.

In phase 2 of enhancement, the module looks at the process plan and culls out any steps that

would make features or subfeatures which are already on the workpiece. In our example,

step 5 of the process plan is a hole drilling operation to make feature 1. Since feature 1 is

already in the part, step 5 is removed from the process plan. After removal, any other step

which had the removed step as a precedent step (step 4 in the example) has the precedent

steps for the removed step added to its list of precedent steps. Thus, step 2 is added to the

list of precedent steps of step 4 in our example. Then the plan is renumbered so that there

are no gaps in the numbering. Precedent step numbers must be updated as part of the

renumbering.

Notice that the countersinking step is not culled out because the hole in the workpiece is not

yet countersunk.

Although only one step has been added and one deleted, the net effect on the step numbers

and the precedent steps is significant, as may be seen by comparing these items on Table 2

with the same items from Table 4.

Also in phase 2 of enhancement, the slot number of a changer slot on the milling machine

which has a tool of the tool_type_id given in each step is inserted in the step. This is done

by examining the data model of the tools currently on the milling machine. If any necessary

tool is not on the machine, an error message is sent and the module quits work. Also in

phase 2, any step which requires a stepover, speed, feed_rate or pass_depth, has values for

the appropriate parameters added. If there are existing values, such as the speed for the

chamfering operation, these values are used.

Finally a new tool_requirements list is prepared from the enhanced steps. In our example,

since the hole drilling step has been deleted, the drill which appears in the list of tool

requirements for the unenhanced plan does not appear in the enhanced plan.

- 12 -



VWS Data Execution

TABLE 4. Enhanced Process Plan

This table shows the LISP-readable enhanced process plan file for the example of

Chapter n.

(setplist ’datex_plan
5

( 4 (4

header (header work_element machine_chamfer_in

plan_id datex_plan feature_id 2

designed datex_design tool_type_id chamfer_0.375_3_abs

material aluminum) changer_slot 6

steps (steps speed 5103

1 (1 feed_rate 28

work_element initialize_plan precedent_steps (3 5 2))

prog_name 5 (5

"data execution demo design") work_element mill_pocket

2 (2 feature_id 2

work_element setO_comer tool_type_id end_mill_0.625_2_ab

tool_type_id probe_0.25 changer_slot 12

changer_slot 40 stepover 0.3125

comer 1 speed 2750

x_offset 0.0 feed_rate 17

y_offset 0.0 pass„depth 0.3125

near_x 16.825 precedent_steps (3 2))

nearly 7.425 6 (6

precedent_steps (1)) work_element machine_countersink

3 (3 feature_id 1

work_element set0_z tool_tvpe_id countersink_0.75_ 1 _ab

tool_type_id probe_0.25 changer_slot 4

changer_slot 40 stepover 0.375

x_loc 20.3 speed 2291

yjoc 8.9125 feed_rate 5

offset 0.0 precedent_steps (3 4 2 5))

precedent_steps (2)) 7 (7

work_element close_plan

precedent_steps (6 4)))

tool_requirements (

probe_0.25

chamfer_0. 375_3_abs

end_mill_0.625_2_ab

countersink_0.75_l_ab)))

- 13 -



VWS Data Execution

2.4. Process Plan Sequencing

A list of step numbers giving the order in which the plan will actually be executed is

constructed during initialization as follows. This sequencing is done using a working copy of

the enhanced plan.

A. It is assumed that step 1, initialize_plan, will be executed first.

B. Step 1 is removed from the list of precedent steps of every step.

C. All the steps which have no remaining precedent steps are found and ordered so as to

minimize tool changes. This group of step numbers is added to the sequence number
list, and the steps themselves are removed from the working copy of the plan.

D. The numbers found in C are removed from the precedent steps of the steps left in the

working copy of the plan.

Items C and D repeated until the group of steps found in C is empty. If there are any steps

left in the working copy of the plan at this point, there must have been an error in the

assignment of precedent steps in the original process plan, so an error message is returned

and the module stops work. If the working copy is now empty, the sequence list is returned.

This method of sequencing was chosen to ensure that precedent requirements are followed,

to check the validity of the requirements, and to give an efficient sequence. Alternatives to

steps C and D which result in even fewer tool changes are feasible but more complicated;

none has been tried.

As may be seen in Table 1 and Table 5, the order in our example is 1,2, 3, 5, 4, 6, 7.

2.5. Data Base Initialization

The VWS2 system includes a "world model". This is a hierarchically arranged database of

information about the workstation. When the Data Execution module starts up, the

"fixturing" branch of the world model is reset by looking at the function call to see whether

the vise or the pallet area is being used, and extracting the correct description from

elsewhere in the world model. If the vise is being used, the description of the obstacles in

the vicinity of the fixture is modified according to the size of the workpiece. This is described

in detail in Chapter VI of the verification paper [K&S2],

Several large LISP property lists are set up under the following names:

A. drawp - for use by the graphics system if the drawing option is on

B. mockup - for use by execute_plan

C. mtool - for use by the NC-coding system.

3. STEPPING THROUGH THE PROCESS PLAN

3.1. Introduction

Once initialization is complete, the Data Execution module feeds the steps of the enhanced

- 14 -



VWS Data Execution

process plan (in the order specified in the sequence list) into the execute_step function,

which handles all but the init_plan and close_plan steps. This section describes the

operation of the execute_step function on a single step.

First, if verification is on, the step is verified. If verification fails while verification is "on

hard", or if verification fails while verification is "on soft" and the user elects not to continue,

the module quits.

Second, if the NC-coding option is on, an NC-coding function is called on to write

pseudocode.

Third, if the drawing option is on, and the step requires drawing, a drawing function is called.

Fourth, the workpiece model is updated. If the update fails, an error message is sent and the

module quits. Note that workpiece updating is the only thing that always happens. Of
course, some steps have no effect on the model, but that is not determined by execute_step

itself.

3.2. Function Call Assembly

A somewhat intricate method of constructing function calls is used for verification, NC-
coding and drawing. Each function call is built from four parts.

The first part is the name of the function. It is obtained from the "machine_ops" database.

The second part is the values of parameters present in the step. The names of these are

obtained from the "machine_ops" database, and then their values are extracted from the step.

The third part is the values of parameters present in the feature named in the step. The
names of these are obtained from the "machine_ops" database and then their values are

extracted from the enhanced design.

The fourth part is the values of some local variables present in the execute_step function.

The names of these are obtained from the "machine_ops" database and then the names are

simply evaluated to get the current local value. The drawing system does not use this fourth

part. The fourth part used by the drawing system is the number of the changer slot given in

the step.
X

To carry out a function, parts two, three, and four are joined together into a single list, and

the chosen function is applied to the list (by the LISP "apply" function).

There are 19 machine operations that may be carried out by execute_step. Each one has a

verification function and an nc-coding function. Most of them have drawing functions. Thus,

over 50 different functions for verification, NC-coding and drawing may be called through this

function call assembly process.

- 15 -



VWS Data Execution

4. CLOSING

4.1. Introduction

Stepping through the process plan stops with the next-to-last step on the sequenced list.

The last step on the list must be close_plan or execution of the plan would have aborted

earlier. If verification is on, this step is verified. If drawing is on, the drawing is remasked.

If NC-coding is on the last six lines of pseudocode are written, and the pseudocode is printed

as real code to a file. The features on the part model, which may have been added in random
order, are sorted into numerical order. The property list of "mockup" is wiped out. The
drawing is not wiped out but is left on the screen for further use. If drawing is on, a copy of

the pseudocode will be given to the drawing system.

4.2. Printing Pseudocode

If execution of the enhanced process plan has continued to completion and the NC-coding
option is on, pseudocode which was assembled while stepping through the plan will be

printed to the file named in the function call. In our example the file is "datxnc". A copy of

the file is shown in Table 5. Blocks of code in the table have been shaded and numbered with

the number of the step from the enhanced process plan which caused the code to be written.

Note that the order of the blocks of code is the order shown in Table 1, which was

established the by the module’s plan sequencer.

4.3. Use of Graphics for Flashing and Tool Path

After the end of module execution, three graphics facilities may be used to help the user

understand the machining process better: flash_step, flash_feature, and draw_tool_path. All

three of these are available to the expert user from LISP, but only draw_tool_path is

available through vws_cadm.

The LISP command (flash_step 5) will cause the part of the drawing that was generated by

execution of step 5 in the enhanced plan to flash off and on a few times. Any other step

number can be used in place of 5. If nothing was drawn as a result of step 5, the system will

print a message that says as much.

The LISP command (flash_feature 2) will cause the drawing of feature 2 to flash off and on a

few times. If feature 2 has not been drawn, the system will print a message that says so.

The tool path drawer will draw a picture of the path of the center of the tip of the tool. The

drawing is done from the pseudocode. A full description of tool path drawing is given in

Chapter XII of the verification paper [K&S2]. Magnified examples of tool path drawings (top

view only) are shown in Figure 8 (page 53) and Figure 9 (page 54).

- 16 -



VWS Data Execution

Figure 1. Data Execution Drawing

\new_surface

This figure shows the drawing made during operation of the data execution module.

- 17 -



VWS Data Execution

n0061 gl x+4.6

n0062g2 x+4.625 y+2.1 r+0.025

nG063 gl y+0-9

o0064 g2 x+4.6 y+0.875 r+0.025

ttOO65glx+4>6y+0.8225:

n0066gl x+2.4-

n0067 g2 x+2.3225 y+0.9 r+0.0775

n0068 gl y+2.1

00069 g2 x+2.4 y+2.1 775 r+0.0775

tt0070gl x+4.6
;

n<X)7 1
g2x+4.6775 y+2.1 t+0.0775

n0072gl y+0-9

; oOQ73 g2 x+4.6 y+0.8225 r+0.0775

n0074 gO z+1-0

n0075 x+4.6 y+0.8125

n0076x+0.1

o0077 gl z*0.3 fS

n0078 f 17 —
n0079 g3 x+4.6875 y+0.9 r+0.0875

n0080gl y+2.1;

n0081 g3 x+4.6 y+2. 1875 r+0.0875

n0082gl x+2.4

o0083 g3 x+2.3125 y+2.1 r+0.0875

o0084gt y+0.9

n0085 g3 x+2.4 y+0.8125 r+0.0875

n0086gi x+4.6 _
n0087 ! Changing tool to 0.375 inc

n0088 g90 gO m6 m9

n0089g53
n0090 g90 gO x+36.5 y+15.0

n0091 g90 gO s5 103 f28 t6 d6 m3 t

,5 1 0.5 dia

nOOOl (ID,PROG,datxnc,data execution demo design, 1)

n0002 g53

n0003 p69 = +0.735 1
n0004 p68 = +0.0

n0005 g90 gO w(p69+(p68-10.5)) m6

n0006p91 = 1.5

n0007 pi 2 = 9 1 m950

It0008p90=50p88=-.25p89=40

n0009 p83=+ 16.825 p84=+7.425 p85=i

o0010p70=0

oOQl 1 g53 m9
n00l2g0g90m5m6

n0013 g90g0 x+36.5 y+15.0

n0014 '. Changing tool to probe for setting x_zero an y_zer

n00l5 t(p89) m28 m67 m6

oOOlo x<p83) y(p84) ~
nOOlTlGSUB.OU'lWS)

**

n0018 p66=('p97+0.0) p67=(p98+0.0)

nOO 19 g56 g90 x(p66) y(p67)

n0020 p90=50 p89=40

n0021 p77=+20.3 p78=+8.9125

n0022g53m9

n0023 g0g90m5m6
n0024 g90 gO x+36.5 y+15.0

n0025 g90 t(p89) m28 m67 m6

n0026 ! Changing tool to probe for setting z_ze

n0027 p70=0x(p77) y(p78)

n0028 (GSUBJNT/WS) . 3
n0029 p91 = (p92+4.424+0.0)

n0030 pl2 = 91 m950

n0031 g56g90x(p66)y(p67>

n0034g9QgOm6m9

n0035g53 ; /

n0036g90g0x+36.Sy+l5.G

n0037 a90 g0s2750tl2 d!2 m3 m6

n0038 g56 g90 x(p66) y(p67)

n0039 m8
n0040 x+4.0 y+l*5

n0041 gO z+OJ

aQQ42gl 2+0*0 f5

n0043 x+3 0 y+1.5 z-0.2679

n0044 x+4.0 y+1.5 2-0.3

n0045 x+3.0 y+1.5

nO046 gO z+1-0

n0047 x+4.0 y+1.5

n0048 z+0.1

n0049 gl z*0.3f40 m8 m72
n0050fl7

n0051 x+43125 y+US75

o0052 x+2.6875

rv0053 y+l.Sl25

n0054 x+43 125

n0055 y+ 1.1 875

n0056gl x+4.6 y+0.875

n0057 gl x+2.4

nO058 g2 x+2.375 y+0.9 r+0025r

n0059gl y+2.1

i rK)060 g2 x+2.4 y+2. 125 r+0.025

- 18 -



VWS Data Execution

5. DATA REQUIREMENTS

This section briefly describes data requirements of the Data Execution module. The data

requirements of the VWS2 system and the proper formats for data structures are given in

detail in [KRA4].

Two portions of the VWS2 world model are particularly important: the description of the

tools currently in the milling machine, and the description of the geometry of the fixturing area.

For each tool in the machine, the following items (and others not being used) are in the world

model: id, changer_slot, type, tool_type_id, cutting_depth, exposedjength,

cutting_diameter, shank_diameter, tip description, number of flutes, materials the tool can

cut, and material the tool is made of. As long as a process plan uses only tools that are

already in the tool magazine of the milling machine, the tooling information in the world model

can be regarded as fixed, and once the model is set up, the user does not need to worry about

it.

The fixturing geometry information includes: obstacles, maximum run-offs in five directions,

and a safe_z_plane. It is described in detail in [K&S2], Chapter VI, section 2.

The module requires a process plan, a design, and a workpiece description. Examples of

these have already been shown in Table 2 and Table 3. An enhanced process plan (an

example is shown in Table 4) may be either input to the module or output from it.

The module makes heavy use of the "machine_ops" database, as described in section 3.

If verification is used, the "features" database must be set up. This database includes

information about tests for parameters, names of feature verifiers, and names of reference

feature fit functions.

- 19 -



VWS Data Execution



VWS Data Execution

III. WORKPIECE MODEL

1. INITIALIZATION

The workpiece model, construction of which is the core of the Data Execution module, is

initialized simply by copying the workpiece description of the workpiece named in the call to

execute_plan. The module checks that the workpiece features are all features from the

design (possibly missing subfeatures). The module prints an error message and halts if this

is not so. The design and the material named in the workpiece description must match those

in the process plan. If verification is on, the workpiece is verified.

2. CONSTRUCTION

As a step of the enhanced process plan is executed, any feature or subfeature produced by

the step is copied from the unenhanced design onto the workpiece model. If the step is

making a primary feature (such as a pocket) which has a subfeature (such as a chamfer), the

subfeature is not copied to the model until the step which makes the subfeature is carried out.

3. USES

When execution is completed, the model may be saved as a description of the workpiece.

Also, the model is used to check that a step is reasonable to execute, as follows.

If a step makes a feature which has a reference feature, the model is checked to be sure the

reference feature already exists. If a step makes a subfeature, the model is checked to be

sure the parent feature already exists. In either case, if the required feature is not present on

the model, an error message is sent and the module quits work.

If a step makes a feature or subfeature that is already present on the model, once again an

error message is sent and the module quits work.

If the step is a counterbore, the hole being counterbored must already exist or an error

message is sent and the module quits work.

-21 -



VWS Data Execution



VWS Data Execution

IY. MACHINING

1. OVERVIEW

The approach to machining embodied in the VWS2 system is partly the result of evolution

and testing, and partly the application of the advice of expen machinists by the authors and

their predecessor, Mr. Alton Quist of General Dynamics. The authors consulted with expen
machinists Mr. Roben Lach of NBS, and Mr. Ken Woodall of Texas Instruments. Any
misapplication of their advice is due to the authors. Mr. Quist also used the advice of expen

machinists.

Most data for surface speeds and amount cut per tooth were extracted from published

handbooks, as noted below. On the advice of both machinists, however, the published

values for pass depths and stepovers were not used.

2. VERTICAL PASS INCREMENTS

If a feature is fairly deep, it will be unsafe to try to machine the entire depth of the feature at

once. Instead, the feature is machined in several passes, with a small amount removed by

each pass. The depth which can be milled on each pass is dependent upon the size and type

of tool. For drills, the pass depth is one tool diameter, whereas for end mills and ball-nosed

end mills the pass depth is half the tool diameter. For fly cutters the pass depth is 0.01

inches or the cutting depth of the tool, whichever is smaller. For face mills, the pass depth is

0. 1 inches or the cutting depth of the tool, whichever is smaller.

Vertical pass increments are used for the following types of machining: slot milling,

peripheral milling, drilling, face milling, and fly cutting. The name of the parameter used to

indicate the vertical pass increment is "pass_depth".

3. TYPES OF METAL CUTTING

3.1. Overview

This subsection discusses types of metal cutting used in the VWS2 system. There are other

types which may be performed by a milling machine but are not used in the system (reaming

and rough milling, for example). These are not discussed here.

All but three of the machining operations specified in process plans require only a single type

of cutting. Mill_pocket, mill_contour_pocket, and mill_side_contour, however, each require

three types of cutting (slot milling, peripheral milling, and finish milling) in most

circumstances.

- 23 -



VWS Data Execution

3.2. Slot Milling

3.2.1. Introduction

Slot milling is a material removal operation performed with an end mill or a ball nosed end

mill in which the tool is cutting across the entire width of the tool. In other words, the tool is

cutting a slot.

Figure 2 shows a cross-sectional view of a milling tool with four teeth which is cutting a

slot. The figure describes the meaning of four basic milling terms: inches per tooth, feed rate,

spindle speed, and surface speed. These four terms also apply to peripheral milling.

This figure is a cross-sectional view of a milling tool with four teeth cutting a slot. The

tool, shown in light gray, is moving from left to right and rotating clockwise. The dark

gray patch is the material that will be removed by the rightmost tooth as it rotates one

more quarter turn. The length of the flat side of that patch is the thickness of the chip

being removed (the "inches per tooth" parameter used in most machining handbooks).

The rate at which the tool moves from left to right is called the "feed rate". The rate of

revolution of the tool (usually expressed in rpm) is the spindle speed. The speed at

which the tip of a tooth is moving is called "surface speed", or simply the speed .

Figure 2* Slot Milling

- 24 -



VWS Data Execution

3.2.2. Ramping

When a slot milling operation is performed, the first step must necessarily be to get the tool

into the material at a certain depth. Since end mills do not cut effectively with the center of

the tool, simply plunging the end mill into the material vertically is usually unsafe. In soft

materials like aluminum, it will work, but the result is that the material under the center of

the tool is not cut, but simply pushed out of the way. In order to solve this problem, the tool

is moved diagonally into the material, creating a ramp. This allows more cutting to be done

with the side of the tool. The maximum angle at which this ramping may be done depends on

the hardness of the material. For the VWS2 system, the values used are 15 degrees for

aluminum and brass, and 5 degrees for steel and monel. In some cases where it is

convenient, a smaller angle is used.

Ramping is used for the slot milling phase of making pockets, contour pockets, and side

contours. Ramping is also used for all types of grooves (which are made by pure slot

milling). In principle, ramping is not needed when the slot to be milled intersects the side of

the part, since in that case the tool does not need to move vertically into the material -- it

can move to the correct depth outside the part. In practice, since changing the cutting

algorithms to suit the circumstances is difficult, ramping is used even if the feature passes

outside the part.

3.3. Peripheral Milling

3.3.1. Introduction

Peripheral milling is a material removal operation performed with an end mill or a ball nosed

end mill in which the tool is cutting more material away from an existing edge. The tool

follows a path around the periphery of the material being removed, hence the name
"peripheral milling".

3.3.2. Conventional vs. Climb Cutting

Peripheral milling may be done with either conventional or climb cutting. The distinction

between conventional cutting and climb cutting is illustrated in Figure 3 and Figure 4.

In climb cutting the material being cut is to the right of the path of the tool (for tools that turn

clockwise, which is the norm) and the teeth of the tool first contact the part at the wide end

of the chip being removed. Climb cutting may lead to tool chatter. Climb cutting tends to

force the tool away from the material being cut.

In conventional cutting the material being cut is to the left of the path of the tool and the teeth

of the tool first contact the part at the narrow end of the chip being removed. Conventional

cutting tends to pull the tool into the material being cut.

The distinction between these two types of cutting also applies to chamfering and face

milling.

- 25 -



VWS Data Execution

3.3.3. Stepover

When a lot of material is to be removed by peripheral milling, a number of passes are made
with the tool. Between each pass the tool is moved horizontally so that the same size bite

is taken by the tool on each pass. The horizontal distance between the tool paths on

successive passes is called the "stepover". The size of the stepover is determined by the

tool size and the material being milled. For aluminum, brass and steel, the stepover is half

the tool diameter. For monel it is one fourth of the tool diameter. Stepovers are shown in

Figure 3 and Figure 4.

According to our expert machinists, a larger stepover is feasible with conventional cutting

than with climb cutting because of the possibility of chatter in climb cutting. This led us to

structure our cutting algorithms so than only conventional peripheral milling is done.

Stepover applies to face milling as well as to peripheral milling.

- 26 -



VWS Data Execution

Figure 3. Climb-Cut Peripheral Milling

y y y y y y y y y y y^ y y > y y y y y y y

This figure is a cross-sectional view of a milling tool with four teeth which

is doing climb-cut peripheral milling. The tool, shown in light gray, is

moving from left to right and rotating clockwise. The dark gray patch is

the material that will be removed by the rightmost tooth as it rotates one

more quarter turn. The double-headed arrow at the right shows the

stepover of this cut.

Notice that the rightmost tooth is going to contact the material at the wide

end of the patch. This is the hallmark of climb cutting and mav lead to tool

chatter.

- 27 -



VWS Data Execution

Figure 4. Conventional Peripheral Milling

This figure is a cross-sectional view of a milling tool with four teeth which

is doing conventional peripheral milling. The tool, shown in light gray,

moves from left to right and rotates clockwise. The dark gray patch is the

material that will be removed by the topmost tooth as it rotates one more

quarter turn. The double-headed arrow at the right shows the stepover of

this cut.

Notice that the topmost tooth is going to contact the material at the narrow

end of the patch. This is the hallmark of conventional cutting.

- 28 -



VWS Data Execution

3.4. Finish Milling

Finish milling is a type of peripheral milling in which an end mill is used to make one last

light cut at full depth on a pocket, contour pocket, or side contour. The size of the stepover is

normally 0.01 inch in the VWS 2 system. Finish milling is normally preceded by slot milling

and peripheral milling.

Without finish milling, features made in several vertical passes often have horizontal lines on

the walls of the feature, one line at the bottom of each pass.

3.5. Drilling

In drilling (sometimes called twist drilling by other authors), a drill with a conical tip cuts a

round hole in the material. The actual cutting is done by the tip of the drill only. In the

VWS2 system, all drills are assumed to have an included angle of 118 degrees at the tip, the

standard angle.

A pass depth is used in drilling. The drill is retracted for a moment between passes to allow

cutting fluid to re-enter the hole. Otherwise, the drill tip would not be properly lubricated.

3.6. Tapping

In tapping, a tool with a screw thread on the outside is used to form threads on the inside of

a hole. The tool is always called a tap, but it may work either by cutting material out of the

hole or by deforming the material inside the hole. In the former case, the tool has grooves on

its outside parallel to the axis of the tool. In the latter case there are no grooves and the tool

is called a "roll form tap". The VWS2 system is set up for right-handed threads only.

On the Monarch vertical milling machine used in the VWS, tapping is performed by pushing

the tool lightly down into the hole with air pressure while turning the spindle clockwise. The
tool literally screws itself down into the hole. When the tap reaches the desired depth, the

spindle reverses and screws the tool out of the hole.

3.7. Countersinking

In a countersinking operation, a tool with a conical tip is inserted in the center of an existing

hole so that the edge of the hole is cut away. In the VWS 2 system the included angle at the

tip of the countersink is always 82 degrees, since that is the included angle of the head of a

standard machine bolt.

3.8. Chamfering

In a chamfering operation a sharp edge on a pan is blunted by milling a little of it awr

av. In

the VWS2 system, the edge is always the 90 degree angle between a vertical surface and a

horizontal surface -- the edge between the walls of a pocket and the top of the pan. for

example. In the VWS2 system, a conical chamfer tool with a 90 degree included angle at the

- 29 -



VWS Data Execution

tip is passed around the edge to mill it flat at a 45 degree angle to both existing surfaces. In

principle, any other angle might be used, or the edge might be rounded rather than flattened,

but only the flat 45 degree chamfer has been implemented.

3.9. Center Drilling

A center drilling operation is performed to make a small starting hole for a drill. It is made
with a center drill, which is a rigid tool with a conical tip. The tip angle of the center drill

should be smaller than the tip angle of the drill. In the VWS these angles are 90 degrees and

118 degrees, respectively.

Since drills usually have a high length to diameter ratio, they are usually flexible and tend to

wander across the surface of a part before the cut starts. When the entry point of a hole is

off center, the entire drill bends during cutting, and the axis of the hole is tilted from the

original axis of the drill. The bending may break the drill. Center drilling prevents this

wandering. Thus, center drilling improves the accuracy of the location of a hole, helps keep

the axis of the hole aligned correctly, and helps prevent drill breakage.

3.10. Counterboring

A counterboring operation is performed to finish up an existing hole. An end mill is plunged

into the hole as deeply as desired (but not deeper than the existing hole). As used in the

VWS2 system, the existing hole must be the same diameter as the end mill. This is not a

requirement for counterboring in principle and is imposed to keep life simple for the VWS2
modelling system.

3.11. Face Milling

Face milling is a bulk material removal operation which leaves a good finish. Normally, the

entire top surface of a part will be removed in a face milling operation, but the only

requirement is that the material to be removed must be accessible from the side (since a face

mill will not cut vertically). A single face milling cut may remove up to 0.1 inch of material.

Typical size for a face mill is one to three inches in diameter. A face mill will typically have

four to eight cutting teeth.

3.12. Fly Cutting

Fly cutting is a surfacing operation. It is performed to give a high quality surface finish or to

remove small irregularities, not to remove a lot of material. Normally a fly cut will remove

0.005 to 0.01 inch of material from the entire top surface of a part. A fly cutter is a tool with

one tooth at the end of an arm. The fly cutter used in the VWS has a four inch diameter.

- 30 -



VWS Data Execution

4. SPEEDS AND FEED RATES

Spindle speeds for the different operations were calculated using data from the Machining

Data Handbook, [METC], published by Metcut Research Associates, Inc., along with advice

from experienced machinists. A range of values for surface speed are given in the book,

depending on the hardness of the material being machined. Since the hardness of the

material is not known in the system, the value used for surface speed was slightly lower

than the value given for the hardest material of the given type in the relevant hardness

range. The spindle speed in revolutions per minute is then calculated as the surface speed

(feet per minute) times 12 (inches per foot) divided by the circumference (inches per

revolution = pi times cutter_diameter in inches). The cutter_diameter is halved for chamfers,

since cutting is done starting at the middle of the tool, where the diameter is half the

diameter of the tool. The maximum spindle speed allowed is 5200 rpm.

Feed rates were calculated using data from the same sources. The values for feed rates in

inches per tooth were chosen in the same way as the values for surface speed. The feed rate

in inches per minute is then calculated as the feed (inches per tooth) times the number of

flutes (teeth per revolution) times the spindle speed (revolutions per minute). For drills, end

mills, and chamfers, the feed was also multiplied by a scaling factor of the tool diameter in

inches. This reduces the feed rate for smaller tools. For taps, the feed rate is always 300,

since this is required by the canned cycle used to do the tapping.

Both spindle speeds and feed rates depend upon the type of material being milled, so in both

cases, the top-level function for calculating the values calls a subordinate function which is

appropriate for the given type of material.

5. ZERO FINDING

5.1. Introduction

The origin of coordinates for machining is at the front left top comer of the workpiece. This is

the same xy-location as in the coordinates for the design protocol, but the z-location in the

design protocol is at the bottom of the workpiece. The setting of the xy-zero is done in one

step. Setting z-zero is a another, very different operation.

5.2. Setting X-Zero and Y-Zero

5.2.1. Introduction

When a workpiece is placed in the vise on the milling machine, it is centered in the vise to

within plus or minus roughly an eighth of an inch. The probe is used to locate the pan
exactly. There are two geometric configurations that may be probed: comers and holes. In

both cases the surface of the workpiece in the vicinity must be roughly flat.

- 31 -



VWS Data Execution

5.2.2. Probing a Comer

A comer to be probed must be a convex comer formed by the intersection of a plane parallel

to the xz-plane with a plane parallel to the yz-plane. As shown in Figure 5a (page 34),

which is a top view of a part, this is your garden variety comer. There are four types of

comer that may be formed this way, corresponding to the four comers of a block. The comer
types are numbered 1, 2, 3, and 4. On the figure there are three comers of type 1, two of type

2, one of type 3, and one of type 4. The comer being probed does not have to be an exterior

comer of the workpiece. It may be a configuration appearing inside. Any of the three type 1

comers on the figure could be probed.

To probe a comer, the user must give the approximate location and the type of comer. When
a rectangular block is placed in the vise, the approximate location of any of the four comers

may be determined automatically. At the lower left-hand corner, for example, the y-value is

the y-value of the fixed side of the vise (which would be at the top of Figure 5a) minus the

width of the part. The x-value is the x-value of the middle of the vise minus half the length

of the part. This is the comer that is usually probed. The automatic process planner uses

this comer.

The method of probing is illustrated by the schematically drawn tool path at the lower left

comer of the part in Figure 5a. The real tool path overlaps itself and would be hard to

understand.

The probe comes* down vertically at a location offset towards the interior of the part from the

given approximate location of the comer until it hits the part. This is only to find the top of

the part, not to set z-zero. Then the probe lifts up a little and moves outside the part, comes
down below the top of the part and approaches the part again slowly until it hits. When it

hits, the x-value of the contact point is recorded; that will be x-zero. Next the probe backs

off, moves over to the other side of the comer, and approaches the part again slowly until it

hits. When it hits, the y-value of the contact point is recorded; that will be y-zero.

If some comer other than the lower left-hand comer is probed, the values of x-zero and y-

zero are changed by an x-offset and a y-offset provided in the process plan. Inserting these

offsets in the plan must be done manually and requires knowing the geometry of the part.

5.2.3. Probing a Hole

The hole to be probed should be circular. The user must provide the approximate location

and diameter of the hole.

A simplified drawing of the hole probing routine is shown by the three lines crossing the hole

in Figure 5a. The probe routine starts by finding the top of the part (that is why the

approximate diameter is needed - so that the system knows when the probe may be

assumed to be outside the hole); this is not shown on the figure. Then the probe is inserted

into the hole at the given approximate center (where the vertical line on the left crosses the

horizontal line on the figure). The probe moves back and forth to find y-values where it hits

- 32 -



VWS Data Execution

the side of the hole. The average of these two values is used as a first approximation to the

y-value of the center of the hole. The probe moves to this y-value and then moves back and

forth in the x-direction to find x-values where it hits the side of the hole. The average of

these x-values is the x-value of the center of the hole, and their difference is the first

approximation to the diameter. Finally the probe moves to the center of the hole and then

moves back and forth in the y-direction to find two more y-values. The average of these new
y-values is the final y-value of the center of the hole and their difference is a second

approximation to the diameter. The average of the two approximations to the diameter is

returned as the diameter (but this value is not being used for anything).

Offsets may be used with hole probing exactly as with comer probing.

- 33 -



VWS Data Execution

| workpiece thickness
“

)

3 0r' top of pallet area'

1

;vX;X\vXy.v;.v.;.\\v.;.;.W’^>>>XvXvX%yI;XxvXv
xXyX;Xx.y.y«y.y.y.y.y.y.y.y.;..x.;.x»y.Xv;\y.y.y

!;!;!v.

:

|§

l,,
.
,.WW!4, V ,4'V:ww<1 '.'^ ' .."-vvs

' '\'"L

, .

1. Head set at W= -9.0 for setting tool length offsets.

2. Head moved 1.5 inches closer to workpiece.

3. Head moved up by thickness of workpiece.

4. Head moved down three inches for milling in pallet area.

b. setting the W-axis

- 34 -



VWS Data Execution

5.3. Setting Z-Zero

5.3.1. W-axis Setting

The entire head of the milling machine moves vertically with respect to the table of the

machine. Setting z-zero is complicated by location of the head of the machine (the W-axis

setting). There is no absolute zero in the vertical direction on the milling machine which can

be used by the machine tool controller. The quill of the machine (the large metal cylinder that

holds the spindle) has an absolute zero, and the position of the quill is what is controlled by

changing a z-value, but the quill’s motion is relative to the current position of the head of the

machine. If the W-axis is set at -8.0 and a program is run that expects the W-axis to be set

at -9.5, all the motions of the tools will be 1.5 inches above where they are expected to be.

A second complicating factor is that tool offsets are provided to compensate for the fact that

different tools are different lengths. The tool offsets are set with the W-axis in a given

position, and if the location of the W-axis is changed, the tool offsets must be changed.

In the VWS, tool offsets are taken where W=-9.0 and are measured to the bottom of the

vise jaws, where the workpiece sits. However, to be sure that the tools will be able to go

through the bottom of the workpiece without exceeding the limits of quill travel, during

cutting the W-axis is positioned 1.5 inches closer to the top of the workpiece. Thus the W-
axis would be set at W=-10.5 if the top of the workpiece were at the bottom of the vise

jaws. This also means that all tool length offsets must be adjusted by 1.5 inches.

To compensate for the thickness of the workpiece, since NOprograms expect z=0 to be at

the top of the workpiece, the head of the machine is moved upwards along the W-axis by the

design thickness of the workpiece. If the workpiece is thicker than the design thickness, it

will be face milled down to the correct height before any other milling is done. During this

face milling, z-values will be positive.

If machining is to be done in the pallet area, the head of the machine is moved downwards 3.0

inches along the W-axis, since the difference in height between the bottom of the vise jaw’s

and the top of the pallet holder is 3.0 inches.

The three adjustments of the W-axis and the one adjustment of the tool length offset just

described suffice to set z-zero when z-zero is to be set with respect to the fixture. Figure

5b shows a side view of the pallet and the vise along with four positions of the spindle as the

head of the machine is moved.

- 35 -



VWS Data Execution

5.3.2. Setting Z-zero from the Top of the Part

In some cases it will be desirable to set z-zero at the top of the part or some distance offset

from the top of the part. To do this the probe is moved to an xy-location specified by the user

and brought down slowly until it hits the part. Then the z-value of the quill is recorded. The
difference between this z-value and the corresponding z-value that was recorded when tool

offsets were measured (plus any additional offset the user may have specified) is used to

adjust all the tool length offsets.

6. TOOL CHANGING
All tool changing is done at a fixed xy location on the milling machine that is known to be free

of obstacles. If tools were changed near a part being milled, there would be a risk of

knocking into the part or fixturing. The height of the machine head above the table is always

set to be sufficient to allow for changing the longest tools at the preset xy location.

When a tool change is required, the x and y values of the current origin are temporarily

cancelled, so that absolute coordinates are in effect. The spindle is retracted, and flood

coolant is turned off. The spindle is moved to the tool changing location, and the tool is

changed. The Monarch VMC-75 vertical milling center holds 40 tools in its changer, and any

of these may be used. After the new tool is inserted, the origin is restored to its previous

location. For any of the 15 metal cutting operations the flood coolant is turned back on. For

the three zero- setting operations it is left off. Also for the metal cutting operations, the tool

change command may include a move to a new xy location after the change is completed.

- 36 -



VWS Data Execution

V. AUTOMATIC NC-CODING

1. OVERVIEW

In the VWS2 system numerical control code (NC-code) is generated automatically by the

Data Execution Module. The code that is generated is executable by the GE2000 machine

tool controller that controls the Monarch VMC-75 Vertical Machining Center. This code is

not a standard language, but it is very similar to many other NC-code languages.

The description of NC-code given in section 2 of this chapter is intended to give the reader

an understanding of basic concepts and how they are applied in the VWS2 system. For

details of the exact meaning of the codes, refer to [MONA].
)

2. NC-CODE

2.1. Introduction

NC-code is a series of lines of alphanumeric characters. The lines are interpreted line-by-

line by the controller. On each line there are one or more entries separated by spaces. Each

entry is usually a letter followed by a number, possibly with a plus or minus sign in between.

In some cases (as on the second line in the example below), the number may be replaced by

an expression in parentheses. This expression will be evaluated at the appropriate time by

the controller, and the value will be a number.

The order of the entries on a line should be according to the following alphabetical sequence:

ngxyrzwfstdm. There may be two "g" entries on a line and three "m" entries, but

there should not be more than one of any other type of entry.

The meanings of NC-codes used in the VWS2 system are given in Table 6. The table covers

all NC-codes used except for the codes used on the first and last lines of a program, which

are unique. There are many other NC-codes available for use on the Monarch which are not

used in the VWS2 system.

The controller is smart enough to execute the codes on a single line in a sensible order,

which may be different from the order on the line. However, all of one line is executed before

the controller proceeds to the next line.

The controller keeps track of the current position of the tip of the tool which is in the spindle.

Thus, to control the tool, it is sufficient to tell the controller where to move the tip of the tool

next.

37 -



VWS Data Execution

Table 6. Numerical Control Codes

CODE WHAT IT MEANS WHERE USED

d Use the tool offset value of tool in the following slot. many functions

f Set the feed rate to the following value. many functions

goto Go to the line number indicated. depth_loop, version 2

gsub Run the following subroutine. 3 setO’s

go Ignore feed rate and move at traverse speed (fast). many functions

gl Move in a straight line to the specified point. many functions

g2 Make a clockwise arc of less than a semicircle to the

point given by x and y, using the radius given by r.

If z-value is given, move linearly in z, making a helix.

many functions

g3 Like g2, except counterclockwise. many functions

g53 Cancel the x and y zero settings. many functions

g56 Set x and y zero. change_tool, 3 setO’s

g81 Traverse to r-plane, feed to z-value, retract. center_dnll_nc

gB2 Traverse to r-plane, feed to z-value, hesitate, retract. cbore_hole_nc

csink_hole_nc

g83 Traverse to r-plane, peck feed to z-value, retract. hole_nc

g84 Run an air-pressure driven tapping cycle. tap_hole_nc

g90 Interpret x, y, and z values as coordinates measured

from the current origin.

many functions

if Check the truth of an expression. Do something if true depth_loop, version 2

m3 Start the spindle clockwise change_tool

m5 Stop the spindle. close_nc, 3 setO’s

m6 Retract the spindle. many functions

m8 Turn flood coolant on. many functions

m9 Turn flood coolant off. many functions

m28 Unknown - not documented. 2 setO’s

m67 Unknown - not documented 2 setO’s

mil Lock the quill against motion in the z-direction. pocket_chunk

m950 Set the z-axis offset parameter. close_nc, init_nc, setOz

n Starts line number, has no effect except as goto label. print_nc_line

P Denotes a parameter. Used in a variety of ways. depth_loop, version 2

3 setO’s

r If used with g2 or g3, the following number is a radius.

Otherwise, following number is a z-value above part.

many functions

s Set the spindle speed to the following number. manv functions
J

t Change to the tool whose slot number follows. change_tool

w The following number is a w-axis value. init_nc, close_nc

X The following number is an x-value. many functions

y The following number is a y-value. many functions

z The following number is a z-value. many functions

t What follows on this line is only a comment. many functions

- 38 -



VWS Data Execution

2.2. An Example

To understand how NC-code is interpreted, it is useful to look at an example. Here are

seven typical lines taken from a program written by the VWS2 system.

n0025 g90 gO s3437 t2 d2 m3 m6
n0026 g56 g90 x(p66) y(p67)

n0027 m8
n0028 x+0.3816 y-0.26

n0029 g90 gO z+0.

1

n0030 gl z+0.0 f5

n0031 g2 x+0.0473 y+0.2094 r+0.3538 z-0.0121

By referring to Table 6, we can interpret the seven lines of code as follows.

To begin with, the first entry on each line is simply a line number. The alphabetic part of the

line number is "n", and the numeric parts are in numerical order.

The entries on line n0025 mean:

g90 = use absolute positioning with respect to the current origin

gO = move at traverse rate when a move is indicated

s3437 = set .the spindle speed to 3437 rpm
t2 = put the tool in changer slot 2 into the spindle

d2 = use the tool offset value stored for the tool in slot 2

m3 = start the spindle clockwise at the new spindle speed

m6 = retract the spindle

In executing this line, the controller retracts the spindle first, then stops it if it is turning

(even though there is no m5 command), finds tool 2, puts it into the spindle, and restarts the

spindle at 3437 rpm. Notice that the g90 and gO commands have no effect on this line. These

commands continue in effect until countermanded by some other g code and may have an

effect on following lines.

The entries on line n0026 mean:

g56 = Set the x and y values of the origin at the values given on this line

(in absolute coordinates)

g90 = use absolute positioning with respect to the current origin

x(p66) = the x value is the value of parameter 66 (which must have been set earlier)

y(p67) = the y value is the value of parameter 67 (which must have been set earlier)

The machine does not move when this line is executed, it just changes internal variables.

The entry on line n0027 means:

m8 = turn on flood coolant

- 39 -



VWS Data Execution

The entries on line n0028 mean:

x+0.3816 = move to where x equals 0.3816

y-0.26 = move to where y equals -0.26

The spindle moves in a straight line at traverse speed (as set on line n0025) to the point

whose x and y values are given on this line. The x and y values are measured as coordinates

with respect to the new origin set on line n0026.

The entries on line n0029 mean:

g90 = use absolute positioning with respect to the current origin

gO = move at traverse rate

z+0. 1 = move to where z equals 0.

1

Neither the g90 nor the gO is really essential on this line, since both are already in force, but

they do no harm, either. There are many instances in the VWS2 system of reiterating g
codes that are already in force. This programming practice is recommended in the

programming manual [MONA], Codes other than g codes are not reiterated.

The entries on line n0030 mean:

gl = move in a straight line at the current feed rate

z+0.0 = move to where z equals 0.0

f5 = set the feed rate to 5 inches per minute

The feed rate will be reset before the move starts.

The entries on line n003 1 mean:

g2 = make a clockwise arc in the xy-plane

x+0.0473 = the arc should end where x equals 0.0473

y+0.2094 = the arc should end where y equals 0.2094

r+0.3538 = the radius of the arc should be 0.3538

z-0.0121 = at the same time, move the tool to where z equals -0.0121

The z move is linear, so that the actual tool path is a portion of a helix. The feed rate which

was set on the preceding line is still in effect, as is the g90 command on the line before that.

Two clockwise arcs are possible. The one that is less than a semicircle is used. If the given

radius is too small, the controller will come to a halt and post an error message.

- 40 -



VWS Data Execution

2.3. First and Last Lines of a Program

The first line of an NC program always has the following format:

nOOOl (ID,PROGJok Inc,locking clevis first cut,l)

The term "loklnc" on the above line is the program identifier, and may be replaced by any

other sequence of not more than six alphanumeric characters. The term "locking clevis first

cut" on the above line is a brief description of the program and may be replaced by any other

sequence of not more than 30 alphanumeric characters and spaces. No other spaces are

allowed within the parentheses.

The last line always has the format:

n0160 (END,PROG)

where "0160" may be replaced by any other four digits.

3. GENERAL APPROACH TO CODE-WRITING

3.1. Introduction

As noted earlier, if the NC-code writing option of the Data Execution module is on, a block of

code is written for each step in the enhanced process plan. Since there are twenty-one

different work elements in the VWS2 system, and two of them (face_mill and flv_cut) share

an NC-coding function, there are twenty coding functions which may be called. Five of these

(init_nc, close_nc, and the three zero-setting functions) do not write code for cutting metal;

the other 15 do.

The 15 coders for metal cutting always check first if a tool change is required, and make a

change if needed. In order to do this, the module keeps track at all times of which tool is in

the spindle. The module also keeps track of the current spindle speed, and changes it only

when necessary. Earlier versions of the system kept track of other items, as well, but the

benefit of keeping track (in shorter code and reduced machining time) was slight and not

worth the cost of complicating the NC-coding system.

At the end of a cut. the tool is always left down in the material, and it is left to the next

operation to withdraw the tool.

The NC-code is written as pseudocode by the system and stored in reverse order from the

way it will ultimately appear in the file. At the end of the module’s operation, the

pseudocode is printed out as real NC-code. Also at the end of the module's operation, if the

drawing option is on, a copy of the pseudocode (in the correct order) is given to the graphics

system in case the user wants to see the tool path. If the module aborts during operation, as

it may if some feature or operation fails verification, the pseudocode is scrapped, and nothing

is printed out.

- 41 -



VWS Data Execution

3.2. Pseudocode and Print Routine

The use of pseudocode was adopted principally to simplify the job of writing NC-coding
functions, but it has proved to have several other advantages. The biggest side advantage is

that pseudocode is easily used by the drawing system to draw tool paths. This is because

its format is native to LISP and because conceptually separate items (such as the name of a

coordinate and its value) are still separate. Drawing from real code would require that a

parsing routine be written to separate groups of characters into conceptually distinct bunches.

An earlier version of the system wrote NC-code line-by-line to a file, opening and closing a

port repeatedly. The system could not handle the frequent opening and closing of the port

correctly, and was dropping lines of code. The use of pseudocode cleared the problem up

since the port is opened only once and closed once.

Pseudocode is stored in the LISP environment as a list of sublists. Each sublist represents

one line of code. The pseudocode differs from the final code in the following respects (in

addition to the obvious difference of the pseudocode being in the environment only and the

real code being in a file only).

A. In pseudocode floating point numbers are kept with all the significant figures LISP
provides (17 or so). In real code, floating point numbers are rounded off to 4

decimal places, and terminal zeros are suppressed in the second through fourth

places.

B. In pseudocode some numbers may be either fixed or floating point and may or may
not have a sign; namely numbers that represent values of r, x, y, or z. Such

numbers are converted to floating point numbers by the print routine and are

always printed with a sign.

C. In pseudocode there are no line numbers; they are not needed since lists are

inherently ordered. Line numbers appear in the real code. The numbers are

generated by the print routine, which uses a counter to keep track. The absence of

line numbers in pseudocode is a big help when copies of several lines are to be

made, as when repeating code at several different depths.

D. Pseudocode may contain strings. Real code contains no strings. Strings may be

used to hold bits of code that will be welded together by the print routine.

E. The print routine automatically deletes spaces following some characters in the

pseudocode, unless instructed otherwise.

F. Pseudocode may contain three terms which are not printed, but are interpreted

specially by the print routine. These are:

Term Interpretation

nil Do not print anything. Using nil simplifies the writing of NC-coding functions.

sign Print the sign of the following number.

no_space Do not put any space between the previous and following items.

- 42 -



VWS Data Execution

The pseudocode that results in the seven lines of code given in the example of section 2.2. is

as follows:

(g2 x 0.04729792843330796 y 0.2093696684367282 r 0.35375 z -0.01210171 18049899)

(gl zOf 5)

(g90 gO z 0.1)

(x 0.3816198612624016 y -0.26)

(m8)

(g56 g90 "x(p66)" ”y(p67)")

(g90 gO s 3437 t 2 d 2 m3 m6)

An example of line made up in bits is the following:

("p66=(p97" sign 0.0 no_space ")" "p67=(p98" sign 0.0 no_space ")")

If this happens to be line 18, it prints out as follows:

n0018 p66=(p97+0.0) p67=(p98+0.0)

3.3. Comments

Whenever a tool change occurs, a comment line is put into the NC-code, describing the new
tool. Most of the 15 metal cutters insert a comment describing the operation or the feature

being machined. The comment may appear on a separate line, or at the end of an effective

line. Comments are denoted by an exclamation mark (!), and anything following the mark on

a line of code is interpreted as a comment, no matter how it would ordinarily be interpreted.

3.4. Machine Capabilities

3.4.1. Introduction

The NC-codes selected to be used in the VWS 2 system were generally ones which stand for

capabilities which are common to most numerically controlled milling machines. This was

done so that the system could be adapted easily to other machines. The system has been

adapted for a different milling machine at the University of Maryland, and pans have been cut

using NC-code written by the adapted system.

By not using any of the zero-setting routines, and using version 1 of the depth_loop function,

only the common capabilities listed in the next subsection are needed, except that init_nc,

close_nc, and change_tool all would have to be rewritten for a milling machine which does not

have parameter capability, since those three functions use parameters.

-43 -



VWS Data Execution

3.4.2. Common Capabilities

The following capabilities used in the VWS2 system we believe to be common to most
numerically controlled machine tools. They are given here in the order they appear in Table 6.

1 . use a tool offset value

2. set feed rate

3. move at traverse speed

4. mill in a straight line in three dimensions

5. make a circular arc in two dimensions or a helical arc in three

6. run canned cycles like those represented by g81, g82, g83, and g84.

7. interpret x, y, and z values as coordinates

(the alternative is to interpret x, y, and z values as distances from the current location).

8. start and stop the spindle

9. retract the spindle

10. turn coolant on and off

1 1. lock the quill

12. use NC-code with line numbers in it

13. set spindle speed

14. use radii in making arcs and traverse to a given z in canned cycles

15. change a tool

16. move the w-axis

17. use NC-code with comments in it

The air pressure driven tapping cycle used to implement the g84 code on the Monarch VMC-
75 is not a common capability, but a canned tapping cycle of some son is common and could

be substituted.

3.4.3. Less Common Capabilities

The least common capability of a milling machine used in the VWS2 system is the

Monarch’s probing capability. This capability is employed in the three zero- setting

operations. Probing is used in the system principally so that we can deal with slight

variations in the location of pans which have been loaded automatically by a robot into the

vise. The g53, g56, m27, m28, and m950 codes and subroutine calls are used only in

connection with zero-setting.

A second less common capability is the use of parameters and the evaluation of expressions

including parameters. Parameters are used in the three zero-setting operations, init_nc,

close_nc, change_tool, and the second version of depthjoop.

The last two uncommon capabilities are used only in the second version of depth_loop,

namely jumping to some other line of code than the next one (a "goto" statement) and using

the conditional "if" to trigger the jump. The depth_loop function writes all the NC-code

needed to repeat a series of lines of code at increasing depths. The first version of

depth_loop prints new lines at each new depth. The second version reuses the lines by

using a parameter to represent depth, using "if and "goto" to loop back as many times as

- 44 -



VWS Data Execution

necessary, and increasing the value of the depth parameter on each loop. The use of the

second version of depth_loop may save several hundred lines in a 1000 line program,

depending upon the nature of the cuts, of course.

4. SIMPLE ALGORITHMS

4.1. Drilling

The drill is located over the center of the hole, brought down quickly to 0.1 inch above the

material, and fed vertically downwards to make the hole. During feeding the drill is retracted

for a moment and then fed back into the hole each time it goes another pass depth deeper.

This is called pecking. Once in the right xy location, the entire algorithm is carried out by a

g83 canned cycle on one line of NC-code.

4.2. Tapping

The tap is located over the center of the hole, brought down quickly to 0.1 inch above the

material, and pushed vertically downwards by air pressure. The tap screws itself into the

material to the given depth. The spindle reverses and unscrews the tap from the hole. Once

in the right xy location, the entire algorithm is carried out by a g84 canned cycle on one line of

NC-code.

4.3. Countersinking

The countersink is located over the center of the hole, brought down quickly to 0. 1 inch above

the material, and fed vertically downwards to the necessary depth. At the final depth the

tool hesitates (dwells) for half a second to make a clean cut, and then it is withdrawn. Once
in the right xy location, the entire algorithm is carried out by a g82 canned cycle on one line of

NC-code.

4.4. Milling a Straight Groove

A straight groove is milled by ramping the tool back and forth into the material. On each

ramp the tool is angled downwards at the minimum of:

A. the maximum ramping angle,

B. an angle that will make the vertical depth of the cut at the far end of the groove be

one pass_depth,

C. an angle that will reach the bottom of the groove at the far end.

After the last ramp is done, the tool is returned to the starting point at constant depth

to complete the work.

If the length of the tool_path for a straight_groove is less than 0.1 inches, then the groove is

too short to ramp. In this case, an error message is issued, and the groove is milled by

plunging at a low feed rate into the material at one end of the groove and milling to the other

end. The experienced user, having been notified, can then decide whether or not it is safe to

use this code.

- 45 -



VWS Data Execution

4.5. Milling a Groove

The set of comers for the groove is converted into a set of contour comers, and the contour

groove milling algorithm is used.

4.6. Chamfering

A chamfer tool is moved on a path that is a rectangle with (possibly) rounded comers.

Recall that a chamfering operation breaks an edge where a vertical wall meets a horizontal

surface of the part. The tool meets the vertical wall at exactly half a tool radius from the axis

of the tool and cuts with only the upper half of the tool.

4.7. Center Drilling

A center drill is brought to the correct xy location, brought down quickly to 0.1 inch above the

material, and fed vertically downwards to the necessary depth. Once in the right xy location,

the entire- algorithm is carried out by a g81 canned cycle on one line of NC-code.

4.8. Counterboring

The counterboring algorithm is identical to the countersinking algorithm, exc.ept that the

dwell time is the amount of time it takes for the spindle to make two full turns, or a quarter of

a second, whichever is greater.

5. NON-TRIVIAL BUT EASY ALGORITHMS

5.1. Face Milling

The face milling algorithm mills away a rectangular area of the top of the part to a fixed

depth. Normally the rectangle includes the whole top surface of the part, but this is not

required.

If the rectangle is longer in the x-direction than the y-direction, the face mill is fed back and

forth across the part parallel to the x-axis, removing a strip of material one stepover wide on

each horizontal move. After each move parallel to the x-axis, the tool is rapidly moved one

stepover in the y-direction while it is outside the rectangle. The last move parallel to the x-

axis is adjusted so that the face mill extends beyond the rectangle by 0.1 inch in the positive

y-direction (less if the last strip is nearly as wide as the tool).

If the total depth to be milled is greater than the pass depth, the same moves are repeated

until the final depth is reached.

If the rectangle is longer in the y-direction than the x-direction, the back and forth motion is

parallel to the y-axis and the stepover is made in the x-direction.

The back and forth motion results in an alternation between conventional cutting and climb

cutting. This has not proved to be a problem.

- 46 -



VWS Data Execution
5.2.

Flv Cutting

The fly cutting algorithm is identical to the face milling algorithm. In fact, the same NC-
coding function is used for both. Of course speeds, feed rates, pass depths, and stepovers

are different for the two operations, but these are arguments to the NC-coding function.

6. SOPHISTICATED ALGORITHMS

6.1. Pocket Milling

6.1.1. Introduction

The normal pocket algorithm is non-trivial but easy. However, the overall algorithm is

complicated by the variety of situations it is designed to handle. The complicating factors

are: very small pockets, small pockets, and making the initial slot. Figure 6 shows the top

view of the cutter path for the normal situation and the three complications in milling a pocket.

6.1.2. Normal Pocket Algorithm

As shown in Figure 6(A), the normal situation is that a slot is milled across the center of the

pocket to full depth. Then several passes are made at successively increasing depths to mill

away the bulk of the material inside the pocket to within 0.01 inch of the final sides of the

pocket. Finally, a finish pass around the perimeter of the pocket is done at the full depth to

even up the sides of the pocket.

The bulk removal passes are identical except for the depth of the cut. On each pass the tool

is inserted in the initial slot, moved downwards and to the right to start the cut, and then

passed around the expanding periphery of uncut material in a clockwise direction, moving
downwards and to the right again after each full circuit. On the first few circuits, the tool path

is rectangular, but as milling proceeds, the comers of the rectangle are rounded concentrically

with the comers of the pocket.

6.1.3. Very Small Pockets

A very small pocket is one whose length and width are both less than 0.02 inch greater than

the diameter of the end mill being used to make the pocket. A very small pocket is made by-

plunging the end mill straight into the material to full depth, and then making a finish cut

(unless the tool is the same size as the pocket, in which case no finish cut is needed). This

is shown in Figure 6(B). Because plunge cutting may be unsafe, a message is sent to the

user if a plunge cut is to be made.

- 47 -



VWS Data Execution

6.1.4. Small Pockets

If both the length and the width of the pocket are smaller than 1.5 times the tool diameter

plus 0.02 inch, so that there is not enough room to mill a slot, but the pocket is not very small

(as defined above), bulk material removal is accomplished by generating a set of contour

comers, and a contour groove is milled 0.01 inch (or less, if the pocket is very narrow) inside

in final walls. Then a finish pass is made. This is shown in Figure 6(C). Because the

pocket is small, making a contour groove will not leave an island inside the pocket.

6.1.5. Making the Initial Slot

In the normal situation, the length of the initial slot is the difference between the length and

width of the pocket. If the pocket is longer in the x-direction, the slot is horizontal. If it is

longer in the y-direction, the slot is vertical. If the normal size slot is long enough (more

than one tool radius long), it is made by ramping down into it.

If the pocket is square, or close to it, the normal slot length will be too small for ramping. In

this case, as shown in Figure 6(D), the ends of the slot are extended to near the walls of the

pocket to allow room for ramping. This will provide a suitable line unless the pocket is small.

- 48 -



VWS Data Execution

Figure 6. Pocket Cutting Tool Paths

In this figure tool paths are shown for the four variations of the pocket making algorithm.

Heavy outlines show the pockets. Light lines show the tool paths.

The distance between the outermost pair of tool path lines, 0.01, is exaggerated in each case.

(A) the normal situation. First a slot is made, then material removed, then a finish cut made.

(B) a very small pocket. First a hole is plunge cut, then a finish cut made.

(C) a small pocket. First a contour groove is made and then a finish cut made.

(D) length and width are almost equal. The initial slot goes across the pocket, rest is like A.

- 49 -



VWS Data Execution

6.2. Text Milling

Text milling is accomplished by milling each character separately. The first character is

milled at the starting location of the text. The routine which generates NC-code for one
character also returns the x-value of the location where the next character should start.

The VWS2 methods for dealing with text are described in detail in sections 2.15.7 and 2.16 of

chapter II of the design protocol paper [K&J2].

Each character in each font has a template for making the character stored in the fonts

database. The template for making a character consists of two lists: nc_points and nc_path.

In the plain font the letter R, for example, has the nc_points and nc_path shown in Figure 7.

Each entry on the nc_points list (except the last one) is a pair of numbers which represent

the x and y coordinates of a point on the character. These coordinates are scaled according

to the height of the text and are translated to the proper xy-location.

The last entry on the nc_points list is the point to go to when the character is finished. The
x-value of the last point is always larger than the x-value of the lower right-hand comer of

an imaginary parallelogram that just fits around the character by an amount which is the

spacing for the particular font. The y-value of the last entry is always zero.

Each entry on the nc_path is a pair in which the first item represents a type of path to mill to

the next point, and the^second item tells which point on the nc_points list is the next point.

The letter codes found on the nc_path list mean the following:

s = straight line

w = clockwise arc

ccw = counterclockwise arc

j = jump without milling

The use of nc_points and nc_path to mill the letter R is explained in Figure 7.

If text is deep, it will be cut in several passes.

The initial entry of the tool into a text character is by plunge cutting. While this is not ideal,

since text is almost always quite shallow, entry by plunge cutting is almost always safe.

For most fonts, the radius used for making arcs is of such a size that arcs and straight lines

join together smoothly. However, one of the options of the font maker is to flatten out arcs

by making the radius larger. The "angular" font uses this option. No change in any other

part of the system is required.

- 50 -



VWS Data Execution

Figure 7. Text Tool Path

(0.0 1 .0)

(0.25 0.5)

(0.0 0.5)

(0.0 0 .0 )

This figure shows the tool path for milling the letter R in plain font. The outline of the R is

shown with a heavy black line. The tool path is shown with a heavy grey line.

Two sets of data are needed. Nc_points is a list of pairs of numbers representing coordinates:

((0 0) (0 0.5) (0 1) (0.5 1) (0.667 0.833) (0.667 0.667) (0.5 0.5) (0.25 0.5)

Nc_path is a list of pairs. The first element of each pair is a letter

element is an integer standing for an element of the nc_points:

((s 3) (s 4) (w 5) (s 6) (w 7) (s 2) (j 8) (s 9)).

The machining of a character always starts at the first point on the

milling begins by moving to (0 0) and inserting the tool. Then the nc_path

(s 3) = mill straight to point 3 at (0 1).

(s 4) = mill straight to point 4 at (0.5 1).

(w 5) = mill in a clockwise arc to point 5 at (0.667 0.833).

(s 6) = mill straight to point 6 at (0.667 0.667).

(w 7) = mill in a clockwise arc to point 7 at (0.5 0.5).

(s 2) = mill straight to point 2 at (0 0.5).

(j 8) = pull the tool up, jump to point 8 at (0.25 0.5), and reinsen the tool.

(s 9) = mill straight to point 9 at (0.667 0).

The last point on the nc_points list, (1 0), shows where the next character should start.

For NC-coding, the nc_points list is scaled and translated appropriately before being used.

(0.667 0) (1 0))

code, and the second

nc_points list. Thus,

is followed in order:

(0.5 1.0)

(0.667 0.833)

(0.667 0.667)

(0.5 0.5)

(0.667 0.0)

- 51 -



VWS Data Execution

6.3. Milling a Contour Groove

A contour groove is specified by a set of comers. The notion of a set of contour comers (a

contour outline) is discussed in detail in the design protocol paper [K&J2], Chapter II,

section 2.15.8. Included in the description of each comer are its starting and ending points,

the radius of the arc, and the angle it subtends. If the first comer has a nil radius, then the

groove is open. If the radius for the first comer has a value, then the groove is closed, and

can be milled by ramping downward in circuits around the groove. If the groove is open, then

the groove must be milled back and forth between the ends.

A separate routine is used for each type of contour groove. For a closed groove, the ramp
angle is set according to the type of material (5 degrees for steel and monel, 15 degrees for

aluminum and brass). The tool, which is an end mill for a flat-bottomed groove and a ball-

nosed-end-mill for a round-bottomed groove, is ramped into the material at the ramp angle

along the contour outline until (i) one pass depth is reached, or (ii) the bottom of the cut is

reached, or (iii) a complete circuit around the outline is made. In case (i), the tool path is

levelled off for the rest of the circuit. In case (ii), the path is levelled and one more complete

circuit is made to the place where levelling started.

For an open groove, the method is slightly different. The ramping depth is found as the

depth, the pass_depth, or the length of the groove times the tangent of the maximum ramping

angle, whichever is smallest. The change in depth for each segment is then the fraction of

the groove length covered by the segment times the ramping depth. This is repeated, with

NC code written for each segment, until the end of the groove is reached. The groove is then

milled in the reverse direction at a constant depth. This process is repeated as many times

as necessary to reach the proper depth.

6.4. Milling a Contour Pocket

The algorithm for milling a contour pocket is shown in Figure 8. The algorithm is described

on the figure, as well. The initial cut is made by the routine described in section 6.3 for

ramping into closed contour grooves. The final cut is made by a simpler routine which inserts

the tool to full depth first and then follows the contour.

A second version of this algorithm, written earlier, replaces the middle portion of the

algorithm (bulk material removal) with a zigzag pattern. This second algorithm is more

difficult. It was discarded because it alternates between conventional cutting on the zig and

climb cutting on the zag. Using the algorithm would have required that a much smaller

stepover be used for steel to avoid chatter during climb cutting. This would have lengthened

machining time considerably.

6.5. Milling a Side Contour

The algorithm for milling a side contour is shown in Figure 9. The algorithm is described on

the figure, as well. As with a contour pocket, the initial cut is made by the routine described

in section 6.3 for ramping into closed contour grooves, and the final cut is made by the

simpler routine.

- 52 -



VWS Data Execution

Figure 8. Contour Pocket Tool Path

This tool path drawing, which is a bit image taken from the screen, shows the tool path

used to cut a particular contour pocket. The heavy line marks the outline of the contour

pocket. A light solid line is drawn when the tool is cutting. A light dotted line is drawn

when the tool is in the air above the part.

The cut starts at the top of the picture. The inner contour path is followed first. It is made
by ramping the tool down into the part to full depth while following the path.

The horizontal cuts are made next to remove the material on the inside of the contour.

Each cut spans the inner contour and is made from right to left so that conventional milling

is done. The order in which the cuts are made is from top to bottom. After each cut the

tool is withdrawn, - moved to the beginning of the next cut and inserted rapidly. Note that

there are no horizontal cuts in the neck of the figure. This is because cuts whose length is

less than a tooi radius have been suppressed; the material they would cut has already

been removed.

If the pocket is deep, the entire pattern of horizontal cuts is repeated several times at

increasing depths to reach the final depth.

The last step is to make a finish pass at full depth around the outer contour outline.

- 53 -



VWS Data Execution

Figure 9. Side Contour Tool Path

This tool path drawing, which is a bit image taken from the screen, shows the tool path

used to cut a particular side contour. The rectangle is the part, and the heavy line marks

the outline of the side contour. A light solid line is is drawn when the tool is cutting. A
light dotted line is drawn when the tool is in the air above the part.

The cut starts at the left of the picture, slightly below the top. The outer contour path is

followed first. It is made by ramping the tool down into the part to full depth while

following the contour path.

The horizontal cuts are made next to remove the material outside the outer contour. Each

cut is made from right to left so that conventional milling is done. The order in which the

cuts are made is from top to bottom. After each cut the tool is withdrawn, moved to the

beginning of the next cut, and inserted rapidly. At the right, the tool is inserted outside

the part by a tool radius plus 0.1 inch. At the left the tool is withdrawn just at the edge of

the part. Cuts whose length inside the material is less than a tool radius have been

suppressed; the material they would cut has already been removed. If the side contour is

deep, the entire pattern of horizontal cuts is repeated several times at increasing depths

to reach the final depth.

The last step is to make a finish pass at full depth around the inner contour outline.

- 54 -



VWS Data Execution

VI. DATA EXECUTION MODULE SOFTWARE

1. INTRODUCTION

The software for the Data Execution module is all written in Franz Lisp, as is nearly all the

rest of the VWS2 software. It is compilable, but is normally run interpreted rather than

compiled since changes have been frequent, and, if bugs appear they are much easier to find

and eliminate in uncompiled code.

In addition to the authors, portions of the code were written by three others. Mr. W.
Timothy Strayer, a summer worker at NBS, had. a hand in many earlier versions of the NC-
coding functions. Mr. Alton Quist, a research associate from General Dynamics who
worked at NBS for a year ending in June 1985 wrote most of the original version of the NC-
coding system, although only a few lines of it remain. Dr. Edward Magrab, formerly an NBS
employee, provided Monarch language versions of the three top-level zero-finding functions.

He also wrote the three Monarch language zero-finding subroutines which are called by the

top-level functions.

2. LISP FUNCTIONS

When it is run with all options off and the input process plan has already been enhanced, the

Data Execution module uses eight core functions plus a few miscellaneous and property list

manipulation functions (in addition to the functions provided by Franz LISP). When it is run

with all options on and the input process plan is not enhanced, the module uses 19 core

functions, 57 NC-coding functions, quite a few miscellaneous and property list manipulation

functions and several hundred graphics, verification, and geometry functions. The core

functions and the NC-coders are listed in Table 7. Half the core functions are in the exec2

directory and half in the proc2 directory. All of the NC-coders are in the exec2 directory.

There are no functions in the exec2 directory which are not listed in Table 7.

Functions not listed in Table 7 are discussed in other papers written for AMRF
documentation.

The function at the top of the hierarchy is "execute_plan". The real workhorse, though, is

"execute_step", which makes data-driven function calls to over 50 of the top level

verification, drawing, and NC-coding functions. The operation of these two functions is

described earlier in this paper.



VWS Data Execution

Table 7. Data Execution LISP Functions

CORE FUNCTIONS - EXEC2 CORE FUNCTIONS - PROC2

add_feature add_extra_items

enhance l_plan cull_steps

enhance_tool_parms delete_step

exec_header enhance_step

execute_plan insert_face._rnill

execute_step insert_step

init„exec_plan order_ops

init_workpiece pass_depth

precify print_plan

pu!l_tooi_req

TOP LEVEL NC-CODERS - EXEC2

cbore_hole_nc hole__nc

center_drill_nc init_nc

chamfer_in_nc pocket_nc

chamfer_out_nc setO_center_nc

close_nc setO_comer_nc

contour_groove._nc setO„z_nc

contour_pocket__nc side_contour_nc

csink_hole_nc straight_groove_nc

face_mill_nc tap_hole„nc

groove_nc text_nc

NC-CODING SUBORDINATES - EXEC2

arc_length cp_next_init letter„chunk

cg_chunk cp_next_pt mill_letter

cg_go_backwards cp_pick_angle nc_hunk

cg_ramp cp_ramp nc_line

change_tool cp_traverse pocket_chunk

compute_r_plane cs_chunk print_nc_file

cp_chunk cs_cull print_nc_line

cp_cull cs_traverse radial_stepover

cp_first_pt depth_loop 1 rev_path_edoc

cp_int_gen depth_loop2 spindle_speed

cp_int_order feed_rate straight_groove_chunk

cp_length gets_and_puts

groove_chunk

sub_face_mill

- 56 -



VWS Data Execution

REFERENCES

[JUN]

Jun, Jau-Shi; "The Vertical Machining Workstation Systems"; to be published as an NBSIR;
1987.

[KRAI]
Kramer, Thomas R.; "Process Plan Expression, Generation, and Enhancement for the

Vertical Workstation Milling Machine in the Automated Manufacturing Research Facility at

the National Bureau of Standards"; NBSIR 87-3678; National Bureau of Standards; 1987; 56

pages.

[KRA2]
Kramer, Thomas R.; "Process Planning for a Milling Machine from a Feature-Based Design";

not yet published; 1987; 18 pages.

[KRA3]
Kramer, Thomas R.; "The Graphics Subsystem of the Vertical Workstation of the Automated

Manufacturing Research Facility at the National Bureau of Standards"; to be published as an

NBSIR; 1988.

[KRA4]
Kramer, Thomas R.; "Data Handling in the Vertical Workstation of the Automated

Manufacturing Research Facility at the National Bureau of Standards"; to be published as an

NBSIR; 1987; 60 pages.

[KRA5]
Kramer, Thomas R.; "The vws_cadm User Interface of the Vertical Workstation of the

Automated Manufacturing Research Facility at the National Bureau of Standards"; to be

published as an NBSIR; 1988; 110 pages.

[K&J1]

Kramer, Thomas R.; and Jun, Jau-Shi; "Software for an Automated Machining Workstation";

Proceedings of the 1986 International Machine Tool Technical Conference; September 1986:

Chicago, Illinois; National Machine Tool Builders Association; 1986; pp. 12-9 through 12-44.

[K&J2]

Kramer, Thomas R.; and Jun, Jau-Shi; "The Design Protocol. Part Design Editor, and

Geometry Library of the Vertical Workstation of the Automated Manufacturing Research

Facility at the National Bureau of Standards"; NBSIR 88-3717; 1988; National Bureau of

Standards; 101 pages.

[K&S1]
Kramer, Thomas R.; and Straver, W. Timothy; "Error Prevention in Data Preparation for a

Numerically Controlled Milling Machine"; Proceedings of 1987 ASME Annual Meeting;

ASME; 1987; PED-Vol. 25; pp. 195 - 213.

- 57 -



VWS Data Execution

[K&S2]
Kramer, Thomas R.; and Strayer, W. Timothy; "Error Prevention and Detection in Data

Preparation for the Vertical Workstation Milling Machine in the Automated Manufacturing

Research Facility at the National Bureau of Standards"; NBSIR 87-3677; National Bureau of

Standards; 1987; 61 pages.

[LOVE]
Lovett, Denver, "Equipment Controllers of the Vertical Workstation"; to be published as an

NBSIR; 1987.

[METC]
Machining Data Handbook, Metcut Research Associates, Inc.

[MONA]
Programming Manual for the Monarch VMC-75 with GE2000MC Controls; Monarch
Cortland Publication Number PRO GE2000MC-4; Monarch Cortland; Cortland, NY; undated.

[NA&J]
Nakpalohpo, Ibrahim; and Jun, Jau-Shi; "Automated Equipment Program Generator and

Execution System of the AMRF Vertical Workstation"; not yet published; 1987; 17 pages.

[RUDD]
Rudder, Frederick; (a paper in preparation describing the VWS hardware and software for

the HP-9000 workstation supervisor); to be published as an NBSIR; 1987.

- 58 -



READER COMMENT FORM

The Data Execution Module of the Vertical Workstation

This document is one in a series of publications which document research done at the

National Bureau of Standards Automated Manufacturing Research Facility from 1981

through March, 1987.

You may use this form to comment on the technical content or organization of this

document or to contribute suggested editorial changes.

If you wish a reply, give your name, company, and complete mailing address:

What is your occupation?

NOTE: This form may not be used to order additional copies of this document or other

documents in the series. Copies of AMRF documents are available from NTIS.

AMRF Program Manager

National Bureau of Standards

Building 220, Room B-l 1

1

Gaithersburg, MD 20899

j
Please mail your comments to:

i



.

'



U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instruction s)
NBSIR 88-3704 FEBRUARY 1988

HBS-114A [*ev. 2«aci

4. TITLE AND SUBTITLE The Data Execution Module of the Vertical Workstation of the
Automated Manufacturing Research Facility at the National Bureau of Standards

s. author(S) Thomas R. Kramer; Research Associate, Catholic University; and Guest Worker,
MBS, Rebecca E. Weaver; Sumner Intern, NBS

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s)

NATIONAL bureau of STAKQARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 26234

“on traet/Gr ant No,

50NANB5D0522
I. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADORESS (Street, City. State, ZIP)

Catholic University, Washington, DC 20064

10. SUPPLEMENTARY NOTES

| |

Document describes a computer program; SF-185, FlPS Software Summary, is attached,

11. ABSTRACT (A 200-word or less factual summary of most Significant in formation. If document includes a significant
bibliography or literature survey, mention it here

)

In the Vertical Workstation (VWS) of the NBS Automated Manufacturing Research Facility,
metal parts are machined autonatically from a feature-based design, A simple
tws-and-a-half dimensional part may be designed and machined within an hour, allowing
half the time for design input. Workstation activity may be divided into design,
process planning, data execution, and physical execution stages. Data execution is
performed by the Data Execution Module. Ihe module goes through a process plan and
builds a model of a workpiece as machining steps frcm the plan are carried out. In
addition, the module has five independent options, any combination of which may be
carried out simultaneously

:
generate NC-code to make the part, enhance the process

plan, emulate machining of the part by updating a picture of the part each time a step
of the plan is executed, verify the process plan, and save the finished workpiece model

12. KEY WORDS (Six to twelve entries; alphabetical order ; capitalize only proper names; and separate key words by semicolons)

feature-based design; automated machining; nc machining; NC-code; computer-aided
machining; automated manufacturing; CAM

13. AVAILABILITY

[~H Unlimited

I I

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D C
20402.

P~1 Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

67

IS. Price

USCOum-OC S043-PS0



.

'






