NBSIR 88－3691

Alコリロコ 7529タ8

Evaluating Office Lighting Environments：Reference Lighting Power Density Data

Gary Gillette
Research Associate

U．S．DEPARTMENT OF COMMERCE National Bureau of Standards Center for Building Technology Building Environment Division Gaithersburg，MD 20899

In Collaboration with：
The Lighting Research Institute
345 East 47th Street
9th Floor
New York，NY 10017

October 1987
Issued January 1988

Sponsored by：
The National Electrical Manufacturers Association －QC＿ng Equipment Division
100 ．Street，NW

EVALUATING OFFICE LIGHTING
 ENVIRONMENTS: REFERENCE LIGHTING POWER DENSITY DATA

Gary Gillette
Research Associate

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Building Technology Building Environment Division Gaithersburg, MD 20899

In Collaboration with:
The Lighting Research Institute
345 East 47th Street
9th Floor
New York, NY 10017

October 1987
Issued January 1988

Sponsored by:
The National Electrical Manufacturers Association Lighting Equipment Division
2101 L Street, NW
Washington, DC 20037
U.S. DEPARTMENT OF COMMERCE, C. William Verity, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Abstract

This document reports on an exercise in archiving in situ lighting power densities for occupied office lighting environments. Using data from a previous study where field surveys of existing lighting installations were recorded, the present study extends these data to include referencable lighting power densities for the installed conditions. In addition, theoretical alternate ANSI lighting power densities were computed assuming one-for-one replacement with either energy saving or standard lamps and ballasts.

Keywords: Lighting power density; unit power density; energy performance; lighting energy standards; occupant satisfaction
Page
ABSTRACT iii
ACKNOWLEDGEMENTS vi

1. BACKGROUND 1
2. SCOPE OF CURRENT STUDY 2
3. PROCEDURE FOR OBTAINING POWER DENSITY DATA 2
4. PROCEDURE FOR OBTAINING ALTERNATE ANSI POWER DENSITY DATA 3
5. SUMMARY OF RESULTS 3
6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK. 5
REFERENCES 19
APPENDIX A: LUMINAIRE DESCRIPTIVE TABES 21
APPENDIX B: LIGHTING POWER DENSITY TABLES BY WORK STATION 27

Assistance was received from a number of individuals throughout the scope of the project. Substantial technical support was provided by Belinda Collins and Art Rubin at the National Bureau of Standards, as well as from Harry Lobdell representing the National Electrical Manufacturers Association. Advisory and administrative support was provided by Thomas Schneider and Richard Vincent of the Lighting Research Institute. Will Fisher provided valuable insight during the review process.

The extended study built upon an earlier effort which supplied the raw field data. The original work was supported jointly by the New York State Energy Research and Development Authority, and the Office of Buildings and Community Systems, United States Department of Energy. Robert W. Marans and his colleagues at the Institute for Social Research, University of Michigan, were instrumental in developing the questionnaires and survey procedures in the original study.

With the concern over reducing the energy consumption in buildings, several professional societies, government organizations and others have been exploring strategies to conserve energy in new buildings. As research in this area has progressed, lighting has surfaced as an important area for potential energy savings. As a result, major reductions have been suggested in the unit power density (UPD) ${ }^{1}$ limits used in many building energy standards. These lower numbers, however, differ from those previously recommended by the Illuminating Engineering Society of North America. For example, the base UPD suggested by the draft ASHRAE/IES Standard $90.1 R$ [1] for small enclosed offices shows a reduction of 18 percent for reading and typing tasks to as much as 53 percent for drafting tasks as compared to the original IES Lighting Energy Management document LEM1 [2]. While attractive from an energy standpoint, these lower limits were suggested from modifications in hypothetical lighting systems (computer simulated scenarios) where the impact on the quality of the visual environment was never fully assessed. Also, they do not account for the realities of space use and operational conditions. Unfortunately, measured data have been lacking to date in support of specific lighting power numbers.

Under the auspices of the U.S. Department of Energy and the New York State Energy Research and Development Authority, an earlier research project was initiated to develop a reference set of archival data to help bridge this gap [3]. As part of that project, extensive field measurements were made at several hundred work stations in thirteen office buildings, and collected into a database archived at the National Bureau of Standards [4]. The project scope, however, did not allow for detailed documentation of the lighting system characteristics. Furthermore, some concern was expressed over the lamp/ballast wattages used since they were estimated rather than measured. To supplement the existing data with more referencable lamp/ballast data, and complete the documentation of the lighting power data, an extended documentation program was initiated by the National Electrical Manufacturers Association (NEMA) and the Lighting Research Institute (LRI), in collaboration with the Lighting Group at the National Bureau of Standards.

A full discussion of how the original data were obtained can be found in the methodology report [3]. Of interest in this extended study is the power density data recorded during the field measurements. The connected lighting power load and the floor areas for each work station were determined from drawings, photographs, and field surveys for 912 work stations from thirteen office buildings. Originally, the lamp and ballast wattages were determined by visual inspection, examining the

1 Throughout this study the term lighting power density (LPD) is used in lieu of unit power density to distinguish the measured quantity, LPD, from the prescribed quantity, UPD.
luminaire and assigning wattages based on observed characteristics. The weakness in this approach is that the ballasts are not directly observable: only by disconnecting and disassembling the unit and making individual measurements could the actual input wattages be determined. However, since the lighting systems were well documented, including the type of fixtures, lamps, ballasts, and control media, it was possible in the extended study to augment the database with lamp and ballast wattages conforming to the ANSI $C 82.2$ test method [5]. In this way, more referencable lighting power data associated with the lighting conditions in occupied spaces were developed, including the consideration for ballast and thermal factors in specific luminaires having various lamp/ballast combinations.

2. SCOPE OF CURRENT STUDY

There were two general thrusts to the present NEMA/LRI project. First, data review, editing, and additional documentation were done to reconstruct lighting power densities based on a consistent procedure for obtaining lamp/ballast input wattages. These new data were added to the archival database. The second was to extend the database to include alternative ANSI power densities for four different lamp/ ballast combinations.

3. PROCEDURE FOR OBTAINING POWER DENSITY DATA

The compilation of lighting powex density data involved obtaining the in situ lamp and ballast characteristics for all luminaires in and around each work station, and assigning fixture wattages and floor areas associated wich these wattages. The luminaire characteristics for portable and stationary units were obtained by a combination of field observations and reviewing drawings and photographs of the space. Once the lamp, ballast, and fixture characteristics were recorded, tables for each luminaire with a unique lamp/ballast combination (Appendix A) were prepared. Fixture category assignments, Table 1, were employed to arrange the various fixture mountings into four representative categories for obtaining luminaire thermal factors. Working in conjunction with the NEMA Lighting Divisional Technical Advisory Committee, ANSI input wattages were established for the individual lamp/ballast combinations based on laboratory measurements following the ANSI C82.2 test method ${ }^{2}$. Also in consultation with the NEMA Committee, luminaire thermal correction factors were assigned for the various lamp/ballast, and louver/lens combinations (Tables 2, 3, and 4). Thus, the installed input wattages conformed to the ANSI wattages, with the correction factors applied.

The lighting power density for the space was computed as follows:

2 ANSI C82.2 test results were provided by the NEMA Lighting Divisional Technical Advisory Committee.

LPD = Wattage for zone lighting + Wattage for task lighting Zone area
where,
LPD = total lighting power density associated with the specified work station
Zone $=$ space enclosed by walls, such as a fully enclosed office or the bay where cubicles reside.
Work station
area $=$ personal space area (defined on pages 79-81 in reference [3]).

4. PROCEDURE FOR OBTAINING ALTERNATE ANSI POWER DENSITY DATA

In addition to the installed lighting power density, LPD, four alternative lighting power densities were computed using only the ANSI C82.2 reference wattages. Here, theoretical scenarios were generated analytically assuming a one-for-one substitution of lamps and/or ballasts, replacing the existing equipment in the occupied space with either standard or energy saving alternatives. No changes were made in the work station or fixture data, other than the ballast and lamp wattage. It should be noted that although the operating conditions with the substituted equipment would be similar, they would not be identical since luminaire light output varies depending on the particular lamp and ballast combination. No attempt was made to evaluate the potential differences in measured illuminance or luminance attributable to the four different lamps and ballasts described. The first scenario assumed that all the luminaires in the database had energy saving lamps and energy saving ballasts, where available. The second scenario assumed that the luminaires had energy saving lamps and standard ballasts, and the third scenario used only energy saving ballasts with standard lamps. The last scenario assumed that standard lamps and standard ballasts were used throughout. Unlike the input wattage for the installed power densities, the ANSI alternative power densities did not employ the luminaire thermal factors.

5. SUMMARY OF RESULTS

The lighting power densities for each work station are given in Appendix B and summarized in tables 5 and 6. A frequency distribution of all lighting power densities is given in figure 1. Inspection of the figure reveals that the most frequently occurring LPD band is 20 $\mathrm{w} / \mathrm{m}^{2}\left(1.9 \mathrm{w} / \mathrm{ft}^{2}\right)$ with 15 percent of the sample. Fourteen percent of the sample is below $20 \mathrm{w} / \mathrm{m}^{2}$, 52 percent between 20 and $29 \mathrm{w} / \mathrm{m}^{2}(2.7$ $\left.\mathrm{w} / \mathrm{ft} \mathrm{t}^{2}\right), 26$ percent between $30 \mathrm{w} / \mathrm{m}^{2}\left(2.8 \mathrm{w} / \mathrm{ft}^{2}\right)$ and $39 \mathrm{w} / \mathrm{m}^{2}\left(3.6 \mathrm{w} / \mathrm{ft} \mathrm{t}^{2}\right)$, and 8 percent above $40 \mathrm{w} / \mathrm{m}^{2}\left(3.7 \mathrm{w} / \mathrm{ft}^{2}\right)$. Since both the unit power density limits presently in use and currently under consideration in LEM-1 and Standard 90.1 R are between $19.4 \mathrm{w} / \mathrm{m}^{2}\left(1.8 \mathrm{w} / \mathrm{ft} \mathrm{t}^{2}\right)$ and 50.6
$\mathrm{w} / \mathrm{m}^{2}\left(4.7 \mathrm{w} / \mathrm{ft}^{2}\right)$, depending on the task type and the room geometry, the present data can be considered comparable to the range of lighting power densities specified by various existing standards in place and under revision.

Figure 2 presents the distribution of lighting power densities for each type of ambient lighting system. The maximum and the minimum (the range) are shown along with the standard deviation about the mean for the seven lighting systems. By inspection, no one type of lighting system appears to be substantially different in terms of mean power densities. It is important to note that the mean for each system type is between 23 and 31 watts per square meter (2.1 and $2.9 \mathrm{w} / \mathrm{ft}^{2}$, respectively) (table 5). The three direct fluorescent systems (DRFLV, DRFLN, DF-SM) have a broad range of power densities, with the recessed lensed system (DRFLN) providing one of the lowest means while the surface mounted system (DF-SM) has the highest mean scor?. On the other hand, the fluorescent indirect systems (IF-FM, INDF-P, both show higher power densities. The other two pendant mounted systems, the direct/indirect fluorescent (DIF-P) and the metal halide indirect (HIDP), show lower mean power densities as well as a more constricted range.

An another data plot is shown in figure 3. Here all work stations are grouped by presence and type of task lighting. The combined data for all work stations are shown to the left, and to the right, the same data are grouped into one of three categories: 1) work stations with no local task units, 2) work stations with furniture integrated task units, and 3) work stations with desk mounted movable task units. Figure 3 clearly shows an increase in the power density for work stations with task units, particularly if they are movable. The mean LPD for work stations without task lighting is $21.7 \mathrm{w} / \mathrm{m}^{2}\left(2.02 \mathrm{w} / \mathrm{ft}^{2}\right)$ as compared to that for work stations with furniture integrated task lighting of $28.9 \mathrm{w} / \mathrm{m}^{2}\left(2.69 \mathrm{w} / \mathrm{ft}^{2}\right)$, and that for work stations with movable task lighting of $34.4 \mathrm{w} / \mathrm{m}^{2}\left(3.20 \mathrm{w} / \mathrm{ft}^{2}\right)$.

The mean lighting power density for all work stations is $26.7 \mathrm{w} / \mathrm{m}^{2}$ ($2.48 \mathrm{w} / \mathrm{ft}^{2}$). Table 5 suggests that if energy saving lamps and energy saving ballasts ${ }^{3}$ were used where possible, the mean would be $23.8 \mathrm{w} / \mathrm{m}^{2}$ (2.21 w/ft ${ }^{2}$), and if no energy saving lamps or ballasts were used the mean would be $29.7 \mathrm{w} / \mathrm{m}^{2}\left(2.76 \mathrm{w} / \mathrm{ft}^{2}\right)$. Thus, a 20 percent reduction in lighting power density can be attributed to the use of efficient components in the installed lighting systems covered in the database. In addition, table 1 implies that the bulk of this improvement (12 percent) can be attributed to the use of energy saving lamps.

As defined by the NEMA Lighting Divisional Technical Advisory Committee.

6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

In conclusion, the lighting power data examined have revealed a wide range of power densities contained in the database. The review and editing of the LPD data have successfully sreated a unique database of reference lighting power data from a range of lighting system types. The 912 work stations are from 13 office buildings representing a variety of construction types, includir!g government (state and federal), university, speculative, and corporate offices. To the best of the author's knowledge, the database described here is the most sizable and unique collection of information about LPD's in existing buildings. Obviously, 13 buildings cannot represent the entire national building stock, but they do represent a beginning and do provide information about what is actually being done in lighting practice over the last two decades.

The data show a substantial range in lighting power densities for each lighting system with no one system (in terms of mounting type) clearly superior to the others. However, the data have revealed that task lighting plays a key role in increasing the lighting power density of a work station. In addition, the alternative energy scenarios have underscored the value of energy saving lamps and ballasts. The analysis in the present paper indicates that while several of these buildings are already using energy efficient lamps and energy efficient ballasts, the potential still exist for additional energy reduction by simply a more extensive application of energy efficient equipment in existing buildings.

Several areas of further work are suggested:

* The shape of the distribution curves in figure 1 is non-gaussian. It was assumed that this can be explained solely by the presence of multiple lighting systems displayed together. This should be tested.
* Task lighting appears to be associated with higher lighting power densities. The cause for this needs to be explored.
* The database contains occupant satisfaction measures that need to be explored in relation to the revised power data.
* Several factors, such as room geometry ani room size, type of lighting system, type of work station, and type of work activity, appear to be related to lighting power dersity. These factors and their impact should be evaluated.
* A variety of work station types, visual task types, lighting system types (beyond the seven groups in figure 2), and other group types are present in the database. The data need to be analyzed into work stations of comparable characteristics and evaluated.
* The relationship between LPD's and the task illuminances need to be explored.
* The impact of daylighting on the illuminance at the work stations needs to be explored, including an assessment of the effect on user satisfaction. If a sufficient number of work stations without daylighting can be identified, these should be evaluated separately.

Figure 1
Lighting power density histogram for all work stations

DRFLV = Direct recessed fluorescent units with louvers DRFLN $=$ Direct recessed fluorescent units with prismatic lens $D F-S M=$ Direct fluorescent surface mounted units with egg crates IF-FM = Indirect fluorescent furniture mounted units INDF-P= Indirect fluorescent pendant mounted units DIF-P = Direct/indirect fluorescent pendant mounted units HID-P = High intensity discharge (metal halide) indirect pendant mounted units

Figure 2
Lighting power distribution by lighting system

Combined = all work stations
None $=$ work stations without local task units
Furn int $=$ work stations with furniture integrated task units Movable $=$ work stations with desk mounted movable task units

Figure 3
Lighting power density by type of task lighting

Table 1
Fixture category assignment

Fixture Mounting
Recessed Ceiling
Cove
Furniture Mounted Indirect Fluorescent Wall Wash
Wall Panel
Ceiling Wall Wash
Ceiling Wash Indirect Fluorescent Furniture Indirect Fluorescent

Pendant
Drafting Unit Desk Unit

Surface Ceiling
Ceiling Surface
Under Shelf
Above Shelf
Surface Wall Wash
Shelf Box Unit

Free Standing
Recessed Can
Track Ceiling

Category to Use
Recessed Category

Pendant Category

Surface Category

Use standard wattage input

Table 2
Recessed category input wattage
1x4 Single Lamp F40T12-

Lamp

1 standard
1 standard
1 energy saving
1 energy saving

Ballast
standard
energy saving
standard
energy saving

	Louver	Lens
57	$-3=54$	$-4=53$
50	$-2=48$	$-3=47$
50	$-1=49$	$-2=48$
43	$-1=42$	$-1=42$

1x4 Single Lamp F40T12 (Tandem Ballast)

Lamp

1 standard
1 standard
1 energy saving
1 energy saving

Ballast

1/2 standard
1/2 energy saving
1/2 standard
$1 / 2$ energy saving

ANSI Louver Lens
$48-2=46-3=45$
$43-1=42-2=41$
$41-1=40-1=40$
$360=36 \quad 0=36$
1×42 Lamp F40T12-

Lamp

2 standard
2 standard
2 energy saving
2 energy saving

Ballast
standard
energy saving
standard
energy saving

ANSI	Louver	Lens
96	$-7=89$	$-8=88$
86	$-5=81$	$-6=80$
82	$-4=78$	$-5=77$
72	$-3=69$	$-3=69$

Ballast

standard
energy saving standard energy saving

ANSI	Louver	Lens.
96	$-6=90$	$-7=89$
86	$-4=82$	$-5=81$
82	$-3=79$	$-4=78$
72	$-2=70$	$-2=70$

Ballast
1+1 Standard
$1+1$ Energy saving
1+1 Standard
$1+1$ Energy saving

ANSI Louver Lens
$153-10=143-11=142$
$136-6=130-7=129$
$132-5=127-5=127$
$115-3=112-4=111$
2×43 Lamp F40T12 (Tandem Ballast)-

Lamp
3 standard
3 standard
3 energy saving
3 energy saving
Ballast
1 1/2 Standard
$11 / 2$ Energy saving $129 \quad-5=124 \quad-6=123$
$11 / 2$ Standard $\quad 123 \quad-4=119 \quad-4=119$
$11 / 2$ Energy saving $108 \quad-2=106 \quad-3=105$
2x4 4 Lamp F40T12-

Lamp

4 standard
4 standard
4 energy saving
4 energy saving

Ballast

2 standard
2 energy saving
2 standard
2 energy saving

ANSI Louver Lens
$196-12=180-16=176$
$172-8=164-12=160$
$164-5=159-9=155$
$144-4=140-6=138$

Table 3
Surface category input wattage
Single Lamp F40T12-

$\frac{\text { Lamp }}{}$	$\frac{\text { Ballast }}{\text { standard }}$
1 standard	energy saving
1 standard	standard
1 energy saving	energy saving
1	energy saving

ANSI	Louver	Lens
57	$-5=52$	$-6=51$
50	$-4=46$	$-5=45$
50	$-3=47$	$-4=46$
43	$-3=40$	$-3=40$

2 Lamp F40T12-

Lamp
2 standard
2 standard
2 energy saving
2 energy saving
3 Lamp F40T12-
Lamp
3 standard
3 standard
3 Energy saving
3 Energy saving
4 Lamp F40T12-
Lamp
4 standard
4 standard
4 energy saving
4 energy saving
Single Lamp F30T12-
Lamp

1 standard
1 energy saving
2 Lamp F30T12-
Lamp
2 standard
2 standard
2 energy saving
2 energy saving
Single Lamp F20T12-
Lamp
1 standard

Ballast standard
energy saving standard
energy saving

Ballast
$1+1$ Standard
$1+1$ Energy saving
1+1 Standard
$1+1$ Energy saving

Ballast
standard
energy saving standard
energy saving

Ballast

standard
standard

Ballast
standard
energy saving standard
energy saving

Ballast
standard
Single and Double Lamp F48T12/HO-

Lamp

1 standard
2 standard

Ballast
standard
standard
ANSI Louver Lens
$96-9=87-10=86$
$86-7=79-8=78$
$82-6=76-7=75$
$72-5=67-5=67$

ANSI	Louver	Lens
153	$-18=135$	N/A
136	N/A	N/A
132	N/A	N/A
115	N/A	N/A

ANSI Louver Lens
$192-14=178-18=174$
$172-10=162-14=158$
$164-7=157-11=153$
$144-6=138-8=136$

ANSI	Louver	Lens
46	$-2=44$	$-3=43$
42	$-1=41$	$-2=40$

ANSI Louver Lens
$79-9=70-10=69$
$74-7=67-8=66$
$71-6=65-7=64$
$66-5=31-5=61$

ANSI	Louver	Lens
32	$-2=30$	$-3=29$

ANSI	Louver	Lens
80	$-7=75$	$-9=79$
145	N/A	$-14=131$

Table 4
Pendant category input wattage

Single Lamp F40T12-

Lamp
1 standard
1 standard
1 energy saving
1 energy saving

Ballast
standard
energy saving standard
energy saving

ANSI	Louver	Lens
57	$-2=55$	$-3=53$
50	$-1=49$	$-2=48$
50	$-1=49$	$-1=49$
43	$-0=43$	$-0=43$

Ballast standard ANSI Louver Lens
energy saving standard
$86-4=82-5=81$
$82-3=79-4=78$
energy saving
Single and Double Lamp F48T12/HO (60w) =

Lamp
1 standard
2 standard

Ballast
standard
standard

ANSI	Louver	Lens
80	$-5=75$	$-7=73$
145	$-14=131$	$\mathrm{~N} / \mathrm{A}$

Single and Double Lamp F72T12/HO (85w)-

Lamp
1 standard
2 standard
2 standard

Ballast
standard
standard
energy saving
ANSI Louver Lens
$135-29=106$ N/A
$220-10=210-14=206$
$200-7=193-11=189$

Single and Double Lamp F96T12/HO (110/95w)-

Lamp
1 standard
1 energy saving
2 standard
2 standard
2 energy saving
2 energy saving

Ballast standard standard standard energy saving standard energy saving

ANSI	Louver	Lens
135	N/A	N/A
125	N/A	N/A

$257-10=247-14=243$
$237-7=230-11=226$
$227-10=217-14=213$
$207-7=200-11=196$

Single and double Lamp F15T8-

Lamp
1 standard
2 standard
2 standard

Ballast
low power factor standard
low power factor

ANSI Louver Lens
$27-9=18 \quad \mathrm{~N} / \mathrm{A}$
$50-8=42-9=41$
$40-7=35-8=32$
Single Lamp F8T5, FC6T9, And FC8T9-
Lamp
1 standard F8T5
1 standard FC6T9
1 standard FC8T9

Ballast
standard
standard
standard

ANSI Louver Lens

$15-6$	$=9$	$\mathrm{~N} / \mathrm{A}$
$33-11$	$=22$	$\mathrm{~N} / \mathrm{A}$
29	-5	$=24$
$\mathrm{~N} / \mathrm{A}$		

$z \mid$ 우
g
g

Minimum
 Building \#13:
All energy saving lamps and ballasts Energy saving lamps only No energy saving lamps or ballasts numbers (with only a few exceptions, the lighting system installed had energy saving lamps and ballasts throughout)
Table 7
Building Descriptions

$$
\text { Mean LPD, } w / m^{2}\left(w / f t^{2}\right)
$$

$$
(3.18)
$$

$$
\left(26^{\circ} 乙\right)
$$

$$
\left(26^{\circ} Z\right)
$$

$$
\left(\tau Z^{\circ} \tau\right)
$$

$$
(Z L \cdot Z)
$$

$$
\tau^{\left(\angle \varepsilon^{\circ} \tau\right)} \varsigma^{\circ} \varsigma \tau
$$

Building Descriptions
ұuəosəxontf pəssəวəx ұวəxtp yx General building description
Mid-rise corporate offices

High-xise corporate offices Small regional center
 Low-rise corporate offices High-rise federal offices High-rise federal offices See Appendix A for detailed description of luminaire characteristics (first digit in luminaire code in Appendix A is building number). High-rise corporate offices
Low-rise manufacturing offices ———_ 1
Building \#

$$
\text { Principal lighting system }{ }^{1}
$$

$$
1 \times 4 \text { direct recessed fluorescent }
$$

Indirect fluorescent furniture mounted
Indixect pendant mounted metai halide

$$
2 \times 4 \text { direct recessed fluorescent }
$$

$$
2 \times 4 \text { direct recessed ceiling }
$$

Indirect furniture mounted

$$
24.2(2.25)
$$

$$
24.5(2.28)
$$

$$
(2.07)
$$

$$
(3.18)
$$

$$
21.2(1.97)
$$

$$
24.4(2.27)
$$

$$
25.4(2.36)
$$

REFERENCES

1. Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings, ANSI/ASHRAE/IES 90.1P, Second Public Review Draft, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, August 22, 1986.
2. IES Energy Management Committee, IES Recommended Procedure for Lighting Power Limit Determination, IES LEM-1/1982, Illuminating Engineering Society of North America, New York, 1983.
3. Gillette, G., Brown, M., Occupant Evaluation of Commercial Office Lighting: Volume I, Methodology and Bibliography, ORNL/TM10264/V1, Oak Ridge National Laboratory, Oak Ridge, TN, November, 1986.
4. Gillette, G., Occupant Evaluation of Commercial Office Lighting: Volume III, Data Archive and Database Management System, ORNL/TM10264/V3, Oak Ridge National Laboratory, Oak Ridge, TN, August, 1987.
5. American National Standard for Fluorescent Lamp Ballasts- Methods of Measurement, ANSI C82.2-1984, American National Standards Institute, 1430 Broadway, New York 10018, 1984.

$$
\underline{1}
$$

age Notes	
46 Baliast shared by two units	
45 Ballast shared by two units	
45	
46 Ballast shared by two units	
150	
29	
43	
43	
51	
60	
100	
150	
60	
35	
18	
247	
89	
58	
54	
49	
46.5 ballast shared by two units	
44	
54	
54	
29	
51	
82	
35	
150	
60	
- 46	
43	
29	
77	
155	
295	
88	
55	
89	
90	
210	
106	
150	
86	
82	
84	
. 60	
18	
60 La ap assueed at 60 m	
	98 inch Cold Cathode (elizaal
127	
15	
89	
19	
90	

厄ict

$$
\begin{aligned}
& \text { 를 } \\
& \text { 를 } \\
& \text { 豆 }
\end{aligned}
$$

\qquad新点
 흔

 Pendant in Skylight Plastic Lens
 Free Standing kias Reflector
 Oratting Unit Reflector
Orafting Unit Reflector $\begin{array}{ll}\text { Dssk Unit } & \text { Reflector } \\ \text { Reflector }\end{array}$

总荡
呆 흘 Prisatic lens
Prisatic lens
Prisatic Prisoatic Lens
Prisoatic lens

 None
 lis 플品 $\bar{\sim}$

풀NN

菏台台
 Celling Sur iace
Recessed Celling
Dest Unit
Dest Unit
Desk Unit
Desk Unit
Oralting Unit
Under Shelif Unit
Recessed Ceiling
 Recessed Ceiling
Recessed Ceiling Recessed Cerling Recessed Celling
Dest Unit Dest Unit
Dest Unit $\stackrel{5}{5}$

 $\frac{\text { 츨 }}{\frac{1}{4}}$

$$
\begin{aligned}
& 2 \\
& \text { 를 } \\
& =0 \\
& 0 \\
& 0
\end{aligned}
$$

E E E E E E E

$$
\begin{aligned}
& \text { à a } \\
& \frac{a}{2} \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

Cuainaire local
io Cysten
Codpe $\begin{gathered}\text { Fixlure } \\ \text { Shape }\end{gathered}$

Luainaire local 10 Code	Systen Type	Fix!ur Shape	Hounting	Contral	light Source	Lasp Type	Noginal Laep watts	Lapos/ Finture	gallast Caregory	Estialed Matlage Motes
9010 *A*type	DRF-LM	2x4	Recessed Celling	Prisatic lens	CHF	F40112/RS/CW	40	2	STD Ballast	29
9008 ${ }^{\text {a }}$ A type	DRF-IN	2x4	Recessed Ceiling	Prisadic lens	CWF	F40\%12/RS/MW	40	2	SID Ballast	89
$90200^{\circ}{ }^{\circ} \mathrm{t}$ type	FH-tast		Orafting Unit	Reflector	IN	A19/IF	75	1	None	75
$9021{ }^{\text {a a }}$ - 9 ype	Fh-task		Brafting Unit	Reflector	819	A $19 / 1 \mathrm{~F}$	95	1	None	95
90:2 "a'type	Fh-lask		Orafting Unit	Reflector	811	A21/IF	100	1	None	100
91530 "6 trype	FM-task		Dest Unit	Fieflector	CWF	F1518/CM	15	8	Oallast (low PF)	35
$90400^{\circ} c^{\circ}$ 'rype	Fh-task		Desk Unit	Reflector	IN	Sll hi intensity	$y \quad 40$		Wone	40 High intensity unit
9050 -d trype	FM-task		Dest Unat	Reflector	1110	Al9/IF	110	i	Mone	75
$90511^{\text {ce }}$ 'type	FM-tast		Dest Unit	Lapp Shade	IN	A21/IF	206	1	Mone	200
$90592^{\text {a }}$ 905 0° type	FM-task		Desk Unit	Lapp Shade	If	A21/1F	100	1	Mone	100
9055] "e 'trpe	FM-task		Desk Unit	Lasp Shade	III	A21/1F	$75: 100$	2	None	175
10010 "Actype	IF-FM		Above Shell	Prisatic lens	UWF	F40TI2/RS/MIM	40	4	STD 8allast	174
$100200^{\circ} 8{ }^{\text {ctitype }}$	If-FS		Floor lorchere	None	(1)	A21150/100/1501	150	1	None	150
$10030{ }^{\circ} \mathrm{C}$ 'type	18-MMT	Linear	Celling Mash	Cove	WUF	F40FI2/RS/MIW	40	1	STO 8allast	54
$10031{ }^{\circ} C^{\circ}$ 'type	IF-unt	Linear	Ceiling Mash	Cove	WMF	F40TI2/RS/MM	40	2	STO dalliast	89
$10040{ }^{\circ} \mathrm{C}$ 'type	IF- $\mathrm{HRT}^{\text {IF }}$	Linear	Ceiling Mash	Cove	WMF	F30112/RS/MW	30	1	5Id 8allast	44
10041 ${ }^{\circ} 0^{\prime \prime}$ 'type	IF-Wht	Linear	Ceiling Mash	Cove	UWF	F20112/m	20	1	Irigger start	29 low pomer factor assused
$10042{ }^{\circ} \mathrm{C}$ 'type	IF-Whit	Linear	Ceiling Mash	Cove	WHF	F20112/my	20	2	Irigger start	42 low power factor assuaed
$10050{ }^{\circ} 0{ }^{\circ}$ type	REC-IM		Recessed Cans	Cove	IN	840 Spot	150	,	Mone	150
$10060{ }^{\circ} \mathrm{d}^{\circ} \mathrm{type}$	Fl-tast		Under Shell Unit	Prisatic lens	CWF	F40712/RS/CW	40	1	STO Pallast	51
$10061{ }^{\text {a }}$ ' ${ }^{\text {chape }}$	Fi-task		Under Shelf Unit	Priseatic lens	WMF	FGOTI2/RS/M以	40	1	STD dallast	51
$100622^{\circ} \mathrm{a}^{\text {ctype }}$	OF-Mnt		Mall Panel	Prisatic lens	WMF	F40TI2/RS/MM	40	1	STO Oailast	51
$10070{ }^{\circ} \mathrm{B}$ 'type	FM-task		Desk Unit	Lamp Shade	IM	A21 150/100/1501	150	1	None	150
$10071{ }^{\circ} \mathrm{b}$ 'trpe	FH-task		Dest Unit	Laep Shade	In	A 21 150/200/2501	250	1	Wone	250
$10080{ }^{\circ} \mathrm{c}$ 'type	FH-task		Orafting Unit	Reflector	CWF/IM	FC819/RS/CH \&AL	- 22.60	2	Oailastilom PFi	84 lom power factor
$10081{ }^{\circ} \mathrm{C}$ 'type	FM-task		Orafting Unit	Reflector	CWF/IM	FC8I9/RS/CH BAL9	9 22:67	8	Ballastiliom PFI	91 low power factor
$10090{ }^{\text {- }} \mathrm{d}$ "type	FM-task		Orafting Unit	Reflector	IM	A19/IF	67	1	Mone	67
$10091{ }^{\text {d d }}$ - type	FM-task		Dratting Unit	Reflector	IN	Al9/IF	52	1	Wone	52
10092 "d cippe	FM-task		Orafting Unit	Reflector	IH	Al9/IF	60	-	Mone	60
$11010{ }^{\circ} A^{\circ}$ type	DRF-LM	tinear	Recessed Ceiling	Prisadic lens	CWF	F40ti2/RS/CM	40	2	STD Ballast	日8
$11011{ }^{\circ} A^{\circ}$ type	DRF-LIM	linear	Recessed Ceiling	Prisatic Lens	CMF	F40TI2/RS/CN	40	1	STO Ballast	53
$11020{ }^{\circ} \mathrm{A}^{\circ}$ type	DRF-(M)	Linear	Recessed Ceiling	Prisatic Lens	CHF	F201t3/RS/CM	20	1	Irigger gtart	29
$11030{ }^{\circ} \mathrm{a}^{\circ}$ trpe	FH-task		Orafting Unit	Reflector	In	A19/IF	40	1	None	40
$110400^{\circ}{ }^{\circ}$ type	Fh-task		Desk Unit	Lanp Shade	III	Al9130/70/100)	100	1	None	100
$11050{ }^{\circ} \mathrm{c}^{\circ} \mathrm{type}$	FM-task		Desk Unit	Mone	SWF	F15122/Sw	15	1	galiastliom Pri	88 L Low power factor
$11058{ }^{\circ} c^{\circ}$ type	FM-task		Desk Unit	Mone	SUF	F151/2/Sw	15	2	gallastilow PFi	35 Low power factor
$12019{ }^{\circ} \mathrm{A}^{\circ}$ lype	DRF-LV	$9 \cdot 14$	Recessed Ceiling	Paratollc louver	MuF	F40Ti2/RS/W	40	1	SID Tandea mallast	44.5 8allast shared by two units
$12018{ }^{\circ} A^{\circ}$ type	DRF-14	$9 \cdot 14$	Recessed Celling	Paratolic Louver	WUF	F40712/RS/MIW	40	1	STD daliast	54.
$12020{ }^{\text {a }}{ }^{\circ} \mathrm{P}$ iype	DRF-IV	$9 \cdot 8$	Recessed Ceiling	Parabolic Louver	WMF	F20112/RS/MW	20	1	Irigger start	29 Low power factor
12030 ${ }^{\circ}{ }^{\circ} \mathrm{typ}$ type	Fi-task		Under Shelf Unit	Prisatic Lens	CMF	F40512/RS/CU	40		STD Ballast	51
$120311^{\circ} \mathrm{a}^{\circ}$ trye	FI-8ask		Under Shelf Unit	Prisatic lens	mar	F40FI2/RS/WM	40	1	STD Ballast	$5!$
$180400^{\prime \prime} \mathrm{H}^{\text {ctrpe }}$	FM-task		Drafting Unit	Reflector	IVI	R-20	50	1	Mone	50
$820811^{\circ} 6$ "8ype	FM-task		Oratting Unit	Reflector	81	A19/IF	60	1	Mone	60
$12050{ }^{\circ}{ }^{\text {c }}$ 'type	FM-tast		Drafting Unit	Reflector	CWF/IM	FCer9/CH E Al9	22 86	2	Galiastion Pr:	84
\$2051 ${ }^{\circ} \mathrm{c}$ "type	FM-t ask		Orafting Unit	Reflector	CWF/IM	FC8T9/CH \& A19	22 \% 75	2	dallast (lom PF)	99
$12052{ }^{\circ} \mathrm{c}$ 'type	FM-task		Orafting Unit	Reflector	CWF/IM	Fcerg/cu : Al9	22-100	2	Oallastllow PFI	124
12060	FM-task		Dest Unit	Lasp Shade	IM	A19130/70/1008	100	8	Mone	100
$13010{ }^{\text {a }}$ A ${ }^{\text {a }}$ 19pe	ORF-L 4	2×4	Recessed Ceiling	Low Brightness Lve	duF	F90T12/RS/mu/wn	34	3	2-ES Ballast	112
$13011{ }^{\circ}{ }^{\text {a }}$ - $13012{ }^{\circ}{ }^{\circ}$-type	DRF-LV	2 x 4	Recessed Ceiling	Low Brightness lyr	UMF	F80TI2/RS/Wy/W	34	2	ES Ballest	70
$13012{ }^{\circ} \mathrm{A}^{\circ} \mathrm{type}$	ORF-LV	2×4	Recessed Celling	Low irightness Lvr	WHF	F40TI2/RS/WM/WM	38	1	ES Dellast	42
13n30 ${ }^{\text {a }}$ 'type	ORF-LM Fl-tast	2×4	Recessed Ceiling	Prisatic Lens	WMF	FSOII2/RS/WU/WK	34	3	2-ES Baliast	111
$130400^{\circ} \mathrm{b}$ 'type	FM-tast		Under Shell Unit Orafting Unit	None Rellector	WMF	F.901I2/RS/Wแ/Wh A2IIIF	34 100	8	ES Dallast	40
$13041{ }^{\text {ce }}$ 'type	FH-tast		Drafting tinit	Retlector	in	A19/IF	100 75	1	Mone	100 75
$13050{ }^{\circ} \mathrm{c}^{\text {ctype }}$	Fh-task		Desk Unit	Reflector	CWF	F1518/CM	15	\downarrow	yallastijom PFI	22 2-t.os ballastis lane out

$$
\begin{aligned}
& \text { S31 hi intensity } \\
& \text { fcBi9/CW }
\end{aligned}
$$

Ball ast (low Pf)A21／IF
FISTB／CW
参亭
프를
Motes

APPENDIX B: LIGHTING POWER DENSITIES BY WORK STATION

Notes:

WS - Work station identifier [3]
BLDG - Building identifer [3]
LTGSYS - Lighting system code
1 = direct recessed fluorescent w/ louvers 2 = direct recessed fluorescent w/ lenses 3 = direct surface mounted fluorescent w/ egg crates 4 = indirect fluorescent furniture mounted 5 = indirect fluorescent pendant mounted $6=$ direct/indirect fluorescent pendant mounted 7 = metal halide indirect pendant mounted $0=$ other or hybrid

LPD - Installed lighting power density, in $w / m^{2}\left(w / f t^{2}\right)$
LPDES - Alternate LPD with all energy saving lamps and ballasts in $w / m^{2}\left(w / f t^{2}\right)$

LPDSTD - Alternate LPD with all standard lamps and ballasts in $w / m^{2}\left(w / f t^{2}\right)$

LPDELSB - Alternate LPD with energy saving lamps and standard ballasts in $w / m^{2}\left(w / f t^{2}\right)$

LPDEBSL - Alternate LPD with energy saving ballasts and standard lamps in $w / \mathrm{m}^{2}\left(\mathrm{w} / f \mathrm{t}^{2}\right)$

The following listing of individual lighting power densities is presented in ascending order of estimated installed LPD, with the associated alternate (theoretical) power densities also listed. The alternate columns LPDES, LPDSTD, LPDELSB, and LPDEBSL are based on ANSI C82.2 input wattages alone, without the thermal factors applied; consequently, they are not directly compared to the installed LPD numbers. Also, there was no attempt made to evaluate the potential differences in measured light output attributable to the four alternate scenarios.

 $\stackrel{\square}{\square}$

$\stackrel{0}{\circ}$上
$+$

999

品

 H
 0 O u

4
+
+0
3

皆

 4 $\stackrel{0}{2}$
（1）苃运
 \Leftrightarrow

 H

 02 2
 8

 Watts per Square Foot:

リN～NNNのののののののののののののののののののののののののののの昜

合

 بٌ

 $\stackrel{\downarrow}{2}$
 2

 +
 $+$
 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN n N $\stackrel{\sim}{0}$命न -

 \because
$\dot{0}$
0
0 0 E es出

 $\stackrel{\perp}{\infty}$

 ar
 0

 08 +

 $\stackrel{2}{2}$
 O
E
H

 $\ddot{0}$
U
岂

 H HHNNHNNNMFHAHHMNNHNNNNNHAHANNHN ${ }_{4}^{4}$

 3

 M M
 es

巴 0 न-1
 $\stackrel{\unrhd}{\circ}$
 0

 $\stackrel{a}{7}$

 $\ddot{3}$
0
0

 DS

es

8


```
    A~\infty
```



```
    OC
```



```
oot
```



``` \(\underset{y}{2}\)








 थ \begin{tabular}{l}
\(\pm\) \\
\multirow{2}{*}{} \\
\\
\hline
\end{tabular}

 12
 \begin{tabular}{l}
O \\
E \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{}} \\
\hline & \\
\hline
\end{tabular}


 3





 \(0^{1}\) NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN H
+
3
3

○Nに
 ㅅNNNNNNNNNNNNNNNNN ๗
 \begin{tabular}{l} 
H \\
\hline
\end{tabular}





```

 #
    ```





```

0

```


```

O
*
<
年
3
~NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

```









 0
 0人





O
 し 8


 - NNNNNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNN y

\section*{}


 Ø1
E
1



苟

 MNMMNNNNNNNNNMMMNNNNNNNNMMMNNNNNNMM

 \begin{tabular}{l}
\(\ddot{3}\) \\
0 \\
0 \\
0 \\
\hline 10
\end{tabular}

会


 Q 01




10
0
0
0
0
0
0

 \(\stackrel{a}{\square}\)

 4
0
0
0
0

 ย 3
+
3
3
 0
0
0
0
E
1


```

 N-1/\mp@code{-1}0
    ```




```

 #
    ```

```

 <
    ```



```

 M
 u
    ```







```

 员


```




```

 &
    ```



```

0s

```








```

 - [r
 苃星

```


```

M,

$\stackrel{+}{\circ}$


```合
```



``` \(i\)
0
0
0
1




``` is
出运
```



``` 3
```



[^0]
 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm



0 出




0

0



 eter


$$
8
$$





```品
```






``` 4展
```




``` 4管
ช
荘 3
```










4
0
0
0
0
0
0


： $\stackrel{0}{0}$


 0
0
0
0
0

等





 $\omega$




SB
54
07
$\ddot{4}$ 品 PDE
69
77


4
0
0
0
4
0
0
0
0
 ค뭅 H品品品品
$\stackrel{2}{2}$



12. KEY WORDS (Six to twelve entries: alphabetical order: capitalize only proper names; and separate key words by semicolons)

Lighting power density; unit power density; energy performance; lighting energy standards; occupant satisfaction
13. AVAILABILITYUnlimitedFor Official Distribution. Do Not Release to NTIS
Order
20402Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF

PRINTED PAGES
15. Price
\$1.3.95


[^0]:    
    四品
    
    0${ }^{2}$
    

