
NBSiR 87-3684

December 3, 1987

THE NBS VISION SYSTEM IN THE AMRF

NEW NIST PUBLICATION
October 18, 1988

By:

Marilyn Nashman
Karen J. CJiaconas

'rt
00

. ^ "
S“V o 0 V °ro O^V

^^?S?4Sss9SwS

US. DEPARTMENT OF COMMERCE^® National Bureau of Standsrtfs Gaithersburg, Maryland

THE NBS VISION SYSTEM
IN THE AMRF

Marilyn Nashman
Karen J. Chaconas

December 1987

Certain commercial equipment, instruments, or materials are
identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by the National Bureau of
Standards, nor does it imply that the materials or equipment
identified are necessarily the best available for the
purpose

.

This publication was prepared by United States Government
employees as part of their official duties and is, therefore,
a work of the U.S. Government and not subject to copyright.

TABLE OF CONTENTS

I. Introduction 1

II. System Overview 2

1. Vision and the Real-Time Control System 2

2. Vision and the Material Handling Station 2

III. Architecture Description 4

1. First Stage Vision (FSV) 4

2. Second Stage Vision A (SSVA) 5

3. Second Stage Vision B (SSVB) 6

4. Multilevel Database and Server (MLDSERV) 8

5. Supervisor (SUP) 11

6. Netboard (NET) 12

7. Physical Description of the Vision System 13

IV. System Operation 15

V. System Interface 19

VI. Future Plans 22

VII. References 23

Appendix A. Data Structures 24

Appendix B. Interactive Debugging Features 43

i

LIST OF FIGURES

Figure 1.

Figure 2.

Figure 3

.

AMRF Shop Floor

Enlargement of the Vision System Work Area

NBS Vision System

I . INTRODUCTION

This document describes the NBS Vision System in the AMRF. It
discusses the objectives of the vision system and its
applications in the factory environment. Since the vision system
is a multi-processor system, each process is described according
to its position in the vision hierarchy as well as to its
particular logical and computational functions. The unique
hardware used is discussed and its capabilities described. In
addition, a guide to operations is included? this contains
step-by-step directions for ’’bringing up" the system in either
stand-alone mode or integrated mode. The interfaces between the
individual processes of the vision system, as well as the
interfaces between the vision system and other AMRF systems, are
described. Finally, appendices are included which describe
data structures, and debugging features.

The document may be referenced at different levels. Section II
describes the vision system in very general terms? it is intended
for the reader who requires only an overview of the function of
vision in the AMRF. Sections III and V contain a more detailed
description of the vision system and its interfaces with other
systems. It assumes that the reader is familiar with computers
and the concept of hierarchical design. A background in image
processing techniques is useful in understanding the subroutines
described. Section IV serves as an operations manual and is
intended for the user who will be "bringing up" and monitoring
the vision system. It assumes that the user is familiar with
computers

.

AMRF documentation packages describing the Horizontal Workstation
and the Material Handling Workstation are useful references when
reading this document.

1

NBS Vision System

II. SYSTEM OVERVIEW

The vision system developed by the Sensory-Interactive Robotics
Group of the Robot Systems Division at NBS serves
two functions in the AMRF: it is used both by the Horizontal
Workstation (HWS) and the Material Handling Workstation (MHWS)

.

In both AMRF applications, the vision system processes an
image only upon request. However it is constantly polling for
command requests and monitoring the status of individual
vision processing modules.

h VISION AND THE REAL-TIME CONTROL SYSTEM (RCS)

There are currently three commands defined in the interface
between the vision system and the RCS. Upon receiving an RCS
command, vision first determines which information is being
requested. Only information relevant to the type of question
being asked is returned. Question one is a request for the
centroid of the object in view; this enables RCS to center the
robot tool over the part. Question two is a request for
verification of a specific part, and if confirmed, the position
and orientation of that part. Question three is a request for
the computed range to the surface of the object in view. The
answers supplied by the vision system enable RCS to compute the
required robot motion to pick up the part at the ideal grasp
point

.

The vision system always supplies an answer to RCS after a
request is made. The answer includes not only the requested
information but a status flag which indicates success or failure
of the action. A failed action can be the result of
non-recognition of an expected part or a result of a ’'poor' 1

image. Causes of poor images include improper lighting
conditions, camera exposure problems, or degraded camera images.
As will be explained further, the vision system attempts to
adjust its internal parameters to overcome failures caused by
poor images. An action is considered to be successful if an
expected part can be favorably matched to its internal model (see
description of vision process MLDSERV) , and if that part is
located in the approximate portion of the tray in which it had
been predicted.

2. VISION AND THE MATERIAL HANDLING WORKSTATION (MHWS)

The vision system acts to verify the contents of trays for the
Material Handling Workstation. There is one command defined in
the vision system's interface with MHWS. This question requests

2

NBS Vision System

verification, position, and orientation of parts on a tray. At
present, there is only one configuration of the tray that can be
verified. This request can be initiated either by an MHWS
network communication or by a manually triggered signal sent from
a remote location. It is expected that the methods used in the
default verification can be expanded to be used on any tray
configuration when actual MHWS data is entered into the AMF.F
database. At that time, the vision system will request a tray
definition report and a tray contents report and will extract the
pertinent information required for it to verify the identity and
position of the expected parts. The interface between the vision
system and the AMRF database has been independently tested
successfully. At the completion of the verification task, vision
sends a status report to MHWS. Currently, this report consists
of a "done" flag, but in the future will include fields
indicating success or failure of the task as well as updated
positions and orientations of the verified parts.

3

NBS Vision System

III. ARCHITECTURE DESCRIPTION

The vision system is designed in a hierarchical manner: commands
from the control system and/or the MHWS are decomposed into lower
level tasks and executed by the appropriate process. There are
currently six independent processes, operating asynchronously,
that analyze and extract information from an image scene. Each
process resides on its own microprocessor board and communicates
to other processes via a pre-defined memory block (common
memory) . System routines have been developed to insure the
integrity of this data transfer.

Currently, three of the processes operate in a bottom-up mode to
read an image and globally extract information from it. These
processes are First Stage Vision (FSV) , Second Stage
Vision A (SSVA) and Second Stage Vision B (SSVB) . The
Multi-Level Database Processor (MLDSERV) acts in a top-down
mode using its model database to identify specific objects
in a scene. The Supervisor (SUP) process monitors vision
system activity and communicates with the "outside world" via
the Netboard (NET) processor (used for communicating with MHWS
and the AMRF Database) or a 589 board 1 (used for communicating
with the RCS) . Requests for information are passed
from SUP to the server which resides on the same board as
MLDSERV. A more detailed description of the functions of
each process is presented below.

1. FIRST STAGE VISION (FSV)

First Stage Vision is the lowest level in the vision processing
hierarchy; it acts as the interface between the camera hardware
and the upper levels of the vision system. It is responsible for
receiving requests for image information and translating those
requests to the camera hardware. It is further responsible for
reading back run-length data and transferring it to the
appropriate common-memory locations for the requesting processes.

FSV controls the commands sent to the Digital Analog Design (DAD)
Frame Buffer which reads in an image and converts it to a binary
image according to a threshold value supplied by SUP. The binary
image is converted to run-length encoded information by DAD and
is read back by FSV.

In addition to collecting data for other processes, FSV can also
act as a fast ranging mechanism. When appropriately commanded by
the vision Supervisor module, it can read in an image and compute
the range to the closest point in a given windowed area in real
time.

4

NBS Vision System

FSV is coded in C and assembly language. The code was developed
on a CPM S100 system and is downloaded to an 8086 microprocessor.

2. SECOND STAGE VISION A (SSVA)

SSVA receives commands from Second Stage Vision B (SSVB) , and
passes them down to FSV. It then waits for FSV to read in an
image and pass the run-length encoded data back to SSVA. SSVA
performs different operations on the resulting data depending on
the kind of picture (flood or structured light) being processed.

On receiving picture data from a floodlit image, SSVA performs a
connected-components analysis and constructs a tree of the
objects (blobs) in the image. It also computes various mass
properties of each blob (area, centroid, and moments) and
extracts the boundary. This structure is passed to SSVB.

When the image results from using structured light, SSVA
constructs groups of connected curve segments which will be
described by SSVB in terms of Chebyshev polynomials. The
segments correspond to single curves in the image or to pieces of
curves, starting where a curve splits and ending when it ends or
when it merges with another curve. The structures are passed up
to SSVB, and SSVA polls SSVB until it receives the next command.

The following files contain the code used to implement the
actions of SSVA:

ssva.h This file contains default parameters and
constants, as well as descriptions of the
structures used to store objects and to pass
commands

.

ssva.cm This file, along with vbus.h, are files that
define operating system parameters and addresses
particular to the individual processor. In
general, they are included in other files but are
only modified by the operating system.

ainit560.c This code performs the hardware-dependent
initializations. Currently these include setting
camera variables and operating system parameters.

ssva.c This is the main program. It polls SSVB for
commands, sends the commands to FSV, and waits
for the image to be returned. It then invokes

5

NBS Vision System

the connected components procedure or the
Chebyshev segmentation and writes the results to
SSVB. Error conditions are flagged and reported
to the supervisor, and the program goes back to
poll SSVB.

conn[12].c These routines implement the connected-components
procedure. They perform the main processing for
flood images, constructing the tree structure of
blobs in the image and computing properties of
each blob. It requires some assembly language
subroutines.

interface ,c This program carries out the communications with
FSV . It reformats the commands received from
SSVB, sends them to FSV, and then waits for the
results of the processing performed by FSV.

inicheb.c This file and the two described below
contain the algorithms for segmenting curves for
Chebyshev processing. Inicheb.c initializes the
line-linking process for structured-light images
on a row-by-row basis.

runlen.

c

This file contains the algorithm that computes
the extent of each curve.

split. c This program performs some postprocessing to
split curves at points of sharp orientation
change, i.e. corners.

3. SECOND STAGE VISION B (SSVB)

SSVB receives commands from the first level of the Multilevel
Database Processor (MLDSERV) and passes them down to SSVA. It
then waits for SSVA to perform connected components analysis or
curve segmentation and construct a tree of the objects (blobs) or
curves in the image. SSVB accepts the tree of structures and
performs feature analysis on each object in the image. For
floodlit images, this currently involves finding the corners,
principal axis, number of holes, and perimeter of each object.
For structured-light images, each segment is described in terms
of a polynomial, and the endpoints are reported as features.
SSVB sends the tree of components and a set of structures
describing the features to MLDSERV and then polls until it
receives the next command from MLDSERV.

The following files contain the code used to implement the

6

NBS Vision System

action of SSVB:

ssvb.h This file contains default parameters and
constants, as well as descriptions of the
structures used to store objects and features
and to pass commands.

ssvb. cm This file and vbus.h are files that define
operating system parameters and addresses
particular to the individual processor. In
general, they are included in other files but
only modified by the operating system manager.

init560 .

c

This code performs the hardware-dependent
initializations. Currently these include setting
camera variables and operating-system parameters.
This file is maintained by the operating system
manager. (The same program is used to initialize
MLDSERV)

.

ssvb.

c

This is the main program. It polls MLDSERV for
commands, sends the commands to SSVA, and waits
for the connected components structure or the
curve segment structures to be returned. For
flood images, it then invokes the various
feature extraction procedures for each component
and sets up structures describing the results.
For structured-light images, Chebyshev polynomials
are computed and segment endpoints found.
The results are written out to MLDSERV. Error
conditions are flagged and reported to SUP,
and the program goes back to poll MLDSERV.

readssva.

c

This program receives the tree of components or
the curve segments from SSVA. It reformats the
data into a more useful form for later processing.

cornfast .

c

This code finds the corners in the boundary of
an object. Cornfast contains a fast algorithm
that works on clean boundaries.

cornslow.

c

This routine finds the corners in the boundarv
of an object. Cornslow uses a k-curvature
algorithm that takes longer than the algorithm
in cornfast. c, but works better. A flag passed
by the Supervisor determines which algorithm is
called on any particular image.

7

NBS Vision System

prinax.

c

numholes .

c

perimeter.

c

perimpma. a86

ssvbout.c

This file computes the principal axis of an
object.

This file finds the number of holes in an object.

This file computes the perimeter of an object.

This routine is an assembly-language version
of the perimeter computation.

This routine writes the structures for objects
and features or the Chebyshev structures to
MLDSERV.

chebfit.c This routine computes the Chebyshev polynomials
for each curve segment.

chebcorn.c This routine finds the endpoints of Chebyshev
segments and builds feature structures to describe
them.

4. MULTILEVEL DATABASE AND SERVER (MLDSERV)

The purpose of MLDSERV is to store the results of the lower level
processing in a structure appropriate for the upper level
recognition algorithms. The server is the portion of MLDSERV
which interprets commands received by the Supervisor and attempts
to answer the requests. Its main activities are concerned with
recognizing objects and extracting relevant information from the
database. MLDSERV also performs some of the range and position
computations and is responsible for driving the graphic displays.

The following files contain the code used to implement the
actions of MLDSERV.

camera. h. This file contains external declarations of the
camera variables.

mldi.h This file contains default parameters and
constants, as well as structure definitions for
objects, features and communications with SUP
and the lower levels of the vision system.

init560.c This routine performs hardware dependent
initializations. Currently these include setting
camera variables used in the range computations
and initializing various parameters. (The same

8

NBS Vision System

mldserv.

c

program is used to initialize SSVB)

.

This is the main program. It polls SUP for
commands to take pictures, for questions to be
answered, and for error messages to be displayed.
Depending on the input from SUP, either a command
is sent down to SSVB to take a picture, the server
is invoked to answer a question, or a display
routine is called to output an error message. On
completion of the task, any errors are reported to
the Supervisor, and the polling is resumed.

midi.

c

This routine sends commands to SSVB, calls the
routine to set up the entries for the results in
the database and causes the 3D position
computations to be invoked.

readssvb.

c

This program receives the components and features
from SSVB. It uses a dynamic storage allocation
technique to store the data in a database.

findeqns.c This routine performs analysis of line-flash
images. First, it attempts to pair up line
segments. When it succeeds, it uses triangulation
to compute the surface equations, orientations,
and positions of the implied surfaces. It works
with either Chebyshev or "blob" representations
of curves.

newcal .

c

This routine contains the procedures that implement
the camera calibration. The procedures allow
transformations from image coordinates to
real-world coordinates, and vice-versa (in a number
of different coordinate systems)

.

display.

c

This routine contains output routines for printing
information about objects and displaying objects
and features on a graphics display.

gap. c This set of routines contains low-level routines
for driving the graphics display device.

marlchp.

c

This file contains low-level routines for driving
the graphics chip.

drawraw.

c

This file contains routines for displaying the raw
data read by FSV.

9

NBS Vision System

caption.

c

malloc.

c

server.

c

reformat.

c

fldmatch.

c

marlch. a86

freeall .

c

models .

c

quests .

c

quick.

c

sidelength.

This routine supplies captions for the displays
created by display. c and drawraw.c and the text
describing the displays created by mldserv.c and
test . c.

This routine contains the dynamic storage
allocations and freeing algorithms.

This is the main program for the question-
answering part of the system. It accepts
questions and attempts to answer them by looking
in the database® Server. c contains the routines
for answering questions involving range
and orientation information and for answering
questions about the largest object in the field
of view. It also contains many utility
subroutines.

This routine contains procedures to reformat the
questions asked by the control system into the
structures used internally by the server and to
reformat the answers into the structure required
by the control system.

This routine contains the algorithms used to
recognize parts from floodlit images (prismatic
parts)

.

This is the driver for the Matrox graphics
boards 1.

This file contains routines that free dynamically
allocated memory for the various structures.

This file is where the object models are
defined and initialized.

This has the routine to begin processing the
tray verification request received from MHWS.

This contains the algorithm for answering fast
flood questions and returning the position of
the largest object in the field of view of the
camera

.

This routine performs the computations that
compare the side lengths of sensed objects
with the models and either accepts or rejects

10

NBS Vision System

matches on this basis.

5. SUPERVISOR (SUP)

SUP is considered to be the ,,brains ,, of the vision system: it
accepts commands from either RCS or MHWS, interprets them,
translates them into a form suitable for the vision system, and
initiates the command sequence in the vision system. If a poor
quality image is detected, SUP tries to adjust whatever is
necessary to obtain a good picture and then repeats the process.
If there are no processing errors, SUP sends the appropriate
status and answer to either RCS of MHWS. Simultaneously, SUP
checks that each of the vision levels is working. Furthermore,
it monitors the SUP keyboard to service any of the interactive
features described in Appendix B.

A short description of each of the files is given below:

super .h

talk.h

super . cm

This file defines constants and structures used
by SUP.

This file defines constants and structures used to
interface with the control system.

This file defines the common memory addresses of
modules with which SUP communicates.

sll.c This is the main level routine. It contains global
variable definitions, initializations, and the
main loop. It is responsible for running the
vision system and for error checking and
compensation.

sl2.c This section contains utility procedures for the
command stack, procedures for getting new commands
from the control system, procedures for starting a
vision command, and procedures for sending answers
back to RCS or MHWS.

sl3 . c This procedure reads and processes errors from FSV
and SSVA.

sl4.c This procedure reads and processes errors from
SSVB and MLDSERV.

sl5.c This routine contains the procedures which
communicate with RCS through the 589 card.

11

NBS Vision System

s 1 6 . c

.

This file contains procedures for user
interaction (operator service)

.

sl7 . c This file contains procedures for monitoring the
vision command service.

defaultt.

c

This routine sets up question 5 for a default tray
verification request.

makeparm.

c

This file sets up camera calibration parameters
for the camera configuration in the AMRF.

netport.a86 This code interprets signals emitted by a
remotely operated push button for generating an
interactive tray verification request.

6. NETBOARD (NET)

The NET process acts as an interface between the vision system
(SUP in particular) , MHWS and the AMRF database. All functions
contained in NET are activated by commands from SUP. These
functions include database initialization requests, checking for
MHWS requests, and issuing requests for tray definition reports
and tray contents reports. Communication between NET and either
the AMRF database or MHWS is done over the AMRF network. A brief
description of the routines resident on the NET board follows:

netbd.h This is an 11 include 1 * file containing definitions
of structures and constants used by NET and SUP.

commun.h This is an "include" file describing the structure
of command requests and status expected by MHWS
as well as the structure of mailbox communica-
tions.

address.

h

This file declares physical addresses used by NET
in communicating with the AMRF database and MHWS

.

net . cm This file contains vision system definitions of
physical addresses used for inter process
communications

.

mbus ,h This "include" file contains the definitions of
structures and constants used for
maintaining inter process communications.

netmain.

c

This is the main loop of the NET process. It

12

NBS Vision System

polls on requests from SUP and then calls the
appropriate routines to carry out the requests.
Status and answers are returned to SUP at the
completion of each command.

initnet.c This routine contains routines for starting the
AMRF database communications: ABORT, INITIATE,
and STARTUP.

netcommand.c This code polls on tray verification commands
from MHWS. When one is received, it is read and
the appropriate status is returned to SUP.

writenet.c This file contains routines for generating
status reports to MHWS upon completion of a tray
verification sequence.

dbio. c This routine constructs the status message to
be returned to MHWS.

newmail.c This file contains routines for ‘reading and
writing network mailbox communications,

netio.c This file is responsible for interprocess
communication between SUP and NET.

The following routines are responsible for formatting or
unpacking AMRF database communications: asnoi.c, userdsea.c.
These routines use definitions provided by asn.h, asnapp.h,
basic. h, imdassts.h, and userdse.h.

7 . PHYSICAL DESCRIPTION OF THE VISION SYSTEM:

A General Electric Model 2500 camera is mounted on the T3 robot
wrist in HWS , and a second camera is mounted on the gantry at the
tray verification station. A flash box is attached to the robot
mounted camera: this can be software activated to emit either a
double planes of light flash or a point light flash. Double
planes of light are used for determining range, pitch, and yaw of
the object in view. The point light flash is used to compute the
azimuth and roll of the object.

The image received from the camera is captured by a Digital
Analog Design (DAD) Frame Buffer. The DAD hardware provides the
ability to capture an image and threshold it in accordance with
software provided values. The result of the thresholding
operation is a binary image in which all grey level values
greater than the supplied threshold are converted to white, while

13

NBS Vision System

those values below the threshold are converted to black. The
binary image is then compacted into run-length encoded data,
i,e., only transitions from black to white or white to black are
recorded. In addition to generating run-length encoded data, the
DAD hardware also can filter "noisy” pixels from an image upon
software command or can read and transfer a full grey scale
image

.

The vision system rack which is resident in the AMRF contains
8086 microprocessor boards for the vision processes as well as
microprocessors for communication purposes. MLDSERV is executed
from an S100 board also located in the vision rack.

NBS Vision System

IV. SYSTEM OPERATION

To start the vision system, locate the vision system rack which
is to the right of the vision work area on the AMRF floor (see
Figures 1 and 2) . After opening the rear door of the rack, turn
on the power strip to the left. Also, turn on the power strip on
the right side of the three vision monitors that are in front of
the glass window in the hallway. Plug in the lamp that is
attached to the gantry at the tray verification station which is
located in front of the Turning Workstation.

At the vision work area, turn on the power strip to the right of
the system monitors. To boot the S100 system, hit the carriage
return key <CR> twice on the center keyboard. After the system
has completed booting, the "H>" prompt will appear on the screen.
If a system message followed by the system prompt does not appear
within 10 seconds, toggle the switch labelled "S100 Reset” on the
switch box up and down. Then hit the carriage return key twice
on the S100 monitor and wait for the "H>” prompt. Type "USER
10<CR>" on this same keyboard. Next, type "DOWNPARA -A ALLRL -

G<CR>" . The S100 monitor will display comments about which
process code it is downloading. The far right monitor, the
Supervisor monitor, will display information concerning the
status of the vision system start up and which processes are
successfully running.

Two messages should appear next: one on the S100 monitor asking
whether to enter in tray corner coordinates, and one on the
Supervisor monitor asking for a <CR> when the network connections
are present. The operator response to the tray corner coordinate
query should always be "0" followed by <CR>. (Tray coordinates
provide for the alignment of the lower left corner of the tray
with the lower left corner of the image. They should be entered
manually only if the tray position on the cart has changed
significantly from past usage.) The prompt on the Supervisor
requires only a "<CR>" whenever the operator has verified that
the vision system's network connections to MHWS and the database
have been established. At the completion of the downloading
procedure, the message "THE VISION SYSTEM IS UPl" will appear on
the Supervisor monitor. No further response is required of the
operator. The vision system will run unattended until it is
powered off.

Any variation on this sequence of events implies that the vision
system is not running properly. The easiest remedy is to
restart and redownload the vision processes. This can be done
using the switchbox to the right of the vision system process
monitors. Flip the lever marked "global" on the face of the box

15

NBS Vision System

Shop Floor Barrier

Turning Workstation

in this direction

vision

system ^ i

work area

rcs-ii/13

terminal

area u
n

hws eqpt.

hwseqpt.

rcs-ii/t3

controller

active pedestal
controller

vision system

rack

vision monitors

graphics
monitor

s
h

c

0

r

B

a

r

r

i

e

r

Window Wall

Figure 1 . flflRF Shop Floor

16

NBS Vision System

doorwavl
vision systam monitors

hallway

Figure 2. Enlargement of Vision System Work Area

NBS Vision System

to the up position, then press the button marked ,s reset H
. Then

restart the system by reentering "DOWNPARA -A ALLRL -G" on the
S100 keyboard.

The vision system has two modes of operation. During normal
command mode, the vision system will poll and wait on commands
from either RCS or MHWS (see Section II) . In simulated command
mode, the operator can enter a command from the keyboard (see
Appendix B) . If the RCS is present and sends command "O'*

,
the

vision system will generate its own simulated commands. The
monitor on the left displays the status of the network process,
NET, and will show the interaction of the vision system with
MHWS . There are two other monitors that are used for displaying
results of vision recognition tasks. The monitor on top of the
SUP monitor displays the field of view that the current camera
sees. The monitor on top of the S100 monitor is a graphic
representation of the results of the most recent vision task.

To shut down the vision system, turn off the
that are referred to in the initial power-up
the light above the tray inspection camera,
the vision system rack securely.

three power strips
sequence and unplug
Close the doors on

18

NBS Vision System

V. SYSTEM INTERFACE

The vision system processes communicate via a common memory area
governed by a file system. The system operates in both a top-
down and bottom-up manner (see Figure 2) . The multiprocessing
levels of the vision system pass raw data using a bottom-up
process. FSV is responsible for commanding the camera to take a

picture. The image data is passed to SSVA for processing and
then to SSVB for further analysis. The multiprocessing levels
perform object recognition in a top-down manner. SUP is
responsible for starting and checking all levels of the vision
system and for accepting commands from RCS . NET accepts commands
from the Material Handling Work Station (MHWS) . MLDSERV
reformats these questions so that they may be passed down to the
other processes.

The interprocess communications are handled using the vision
system's MBUS library. The purpose of the MBUS library is to
ensure data integrity of communications and to allow for
asynchronous communications between processes. Blocks of
predefined common memory, called "files", accessible to each
vision process are defined. A set of flags associated with each
file records its current state (i.e, which process owns the file,
is it currently open or closed, which process accessed it last,
and the system time of last access) . Only those processes
granted read and/or write permission can access a file. A user
can only access a file if it is closed and must open the file
before it can be either read or written. The concept of opening
and closing files is analogous to the UNIX file system calls.

Communications betewen the RCS and the vision system are handled
using a high speed parallel link. A master-slave relationship is
represented on the board to describe the relationship between the
two systems and to indicate the direction of communication.
Communication is initialized by the RCS setting the appropriate
bits. Communication protocol and a command structure are used to
allow the RCS to request a command from the vision system (see
Appendix A)

.

The MHWS and the vision system communicate using the VAX common
memory mailbox system. Mailbox areas are established when the
network communications are made to provide for message passing
between the two systems and between the vision system and the
AMRF database. When first brought up, the vision system
initializes with the database by sending the UVA protocol
commands, "ABORT", "INITIATE", and "STARTUP" [1]. Vision then
polls the mailbox command area for a change in sequence number to
detect when a tray verification request has been sent from MHWS.

19

NBS Vision System

NET

Network

MHS or

DATABASE

Figure 3„ NBS Vision System

20

NBS Vision System

A question which describes a default tray configuration is then
posed to the vision system. Upon completion of the recognition
task, a status report is sent to MHWS in the status mailbox.

21

NBS Vision System

VI . FUTURE PLANS

Future plans include expanding the system software to make it
more versatile. The MHWS interface will be able to send UVA
protocol commands and to interpret more sophisticated status
messages. MHWS will be able to send commands to establish the
configuration between itself and the vision system. Vision will
also utilize its capability to notify MHWS of the status of the
verfication request and to detail either reasons for failure or
to update part locations.

The database interface will be used to extract information
relative to any particular tray and to store updated information
produced by the vision system. An MHWS command will be
decomposed to obtain the necessary keys for vision to access a
tray contents report and a tray definition report from the
database. Information from these data reports will be used to
construct a tray verification question. The updated part
positions will be posted to the database.

22

NBS Vision System

REFERENCES

[1] Nanzetta, P. and Rippey, W. , "Integration of the AMRF"
,

[To
Come]

.

NBS Vision System

APPENDIX A. DATA STRUCTURES

1. RCS COMMUNICATIONS

Following are the input and output structures defined between RCS
and SUP:

define CMDLNGTH 500

define RSPSLENGTH 500

struct inbuffer {

int bytecount;
int qtype ?

int cyclecount;

int writetime;

int iresrvi

;

int in_error;

int ireserv2

;

int ireservO

;

char data [CMDLENGTH]

;

} ;

struct outbuffer {

int bytecount;
int qtype;

int cyclecount;
int anstime;

int questime;

int out_error;

int oresrvi;

/* length of the command data
field */

/* length of the response
data field */

/* length of question */
/* question number */
/* count of control system -

incremental request
number */

/* real time when the question
was written */

/* reserved locations“-future
expansion */

/* control system error messages— currently unused*/
/* reserved location--future

expansion */
/* reserved locaton—-future

expansion */
/* parameters for the question*/

/* length of answer */
/* question type -- same as

for the question */
/* same as for the question */
/* real time that answer

buffer written */
/* real time that question

buffer written */
/* errors passed to the

control system */
/* reserved location 1—

temporarily used for
pictries */

24

NBS Vision System

int oresrv2 ; /* reserved location */
char data [RSPSELENGTH] ;/* data for the answer */

}?
struct prog589 {

char cmdbyte

;

char statusbyte
char chpl;
char chp2

;

char chp3

;

char chp4

;

char devnuml

;

char dtypel

;

char memptl;
char mempt2 ?

char mempt3

;

char mempt4

;

char devnum2

;

char dtyppe2

?

char mempt5 ?

char mempt6

;

char mempt7 ?

char memptS ?

char bcountl

;

char bcount2 ?

char bcount3

;

}

;

2. NETWORK COMMUNICATIONS

2 . 1 Mailbox Transfers

struct mgrm {

int mg_seq?
int mg_len?
char mg_txt[MAXMGM]

?

struct mbox {

int mb_wlock?
int mb_rlock;
struct mgrm mbmgrm;

2 . 2 Database Transactions

struct work element_def {

/* Description of bytes
used for communication
between RCS and vision */

/* mailgram structure */
/* sequence number */
/* mailgram length */
/* text of mailgram */

/* mailbox structure */
/* write lock semaphore */
/* read lock semaphore */
/* mailgram */

NBS Vision System

} ;

char wder__id [16] ;

char wupdate_number [16]

?

char waction[16]

;

char wworkelem[16]

;

char wnr_parms [16]

;

char wattl [16]

;

char wval [16]

?

char watt2 [16]

;

char wval2 [16]

?

char watt3 [16]

;

char wval3 [16]

;

char watt 4 [16]

?

char wval4 [16]

;

struct part_def {

char psector [16]?
char pitem_serial__nr [16];
char pitem_name [16]?

} ;

struc value_d@£ {

char name [32]

?

char type [16]

;

char width [16]

;

} ?

struct performance_report_def {

char prreport_name [32];
char prsystem_id [16]?
char prwork_element [16]?
char prnr_values [16]?
struct valu@_de£ prvalue [108];

} ;

struct order_performance_report {

char opreport__name [32];
char opsystem_id [16]?
char oporder_id [16];
char opp£r_version [16]?
char opsupervisor [16]?
char opsactual__start [32]?
char opcactual_completion [32]?
char opduration [32];
char opnr_sub_crders [16];
char opnr_parameters [16];
char opsub_order [16];
struct work_element_def opwork_element

;

struct performance_report_de£ cpperformance_report ; };

26

NBS Vision System

struct date_time {

char dreport_name [32];
char dcurrent_time [32]?

} ;

struct sector_def {

char ssector [16]?
char sx_offset [8]?
char sy_offset [3]?
char sz_offset [8]?
char sx__dimension [8]?
char sy-dimension [8]?
char sz_dimension [8]?

} z

struct tray_definition_report {

char tdreport_name [32]?
char tditem_subtype [32]?
char tdnr_locations [16]?
struct sector_def tdsector [9]?

}?

struct tray_contents__report {

char tcreport__name [32]?
char tctray_id [16]?
char tcitm_subtype [16]?
char tctray_clear [16]?
char tcnr_locations [16]?
struct part_def tcpartpos [9]

?

}?

typedef struct _Transaction{
ByteType itype_transaction?
char itransaction_id[4]

?

char old_user_id [8]

?

char old_transaction_id[4]

?

char *dml_string?
struct ^Transaction *nnext?

}^Transaction?

typedef struct {

struct {

SeqType ncommand_number

?

char userid [8]?
} fixed_segment

?

-Transaction *dtransaction;
} DataServerCommand?

27

NBS Vision System

struct TransactionStatus {

char stransaction_id [4]

?

ByteType stype__transaction?
struct {

ByteType summary__status

;

ByteType padbt;
long int detail_status

?

} status_elements

;

IS0646String error message? /* opt.

,

0 or ,,H if none
char data_reference [4]

?

/* opt. ,
h it if none */

int byte_count? /* opt .

,

< 0 if none */
int row_count? /* opt. ,

< 0 if none */
char source_station[8]

?

/* opt.

,

«t ii if none */
/* private */
struct TransactionStatus *next?/* 0 if no more */

struct _DataServerStatus{
struct {

char s_userid[8];
char serverid [8]

;

TimeType report time;
SeqType report_number

?

SeqType nlast_command_number

;

CharType server_ status

;

CharType user_link__status

;

CharType master__link_status ?

ByteType pad__byte?

} ds_fixed_segment

;

TransactionStatus transaction status?
} /

2.3 MHWS Transactions

struct com_message {

char cxnsg_id [4]?
int ccom_len?
int ccom_no?
char ccom_time [12]?
int cxact__len?
int cder_len;
int erc@__len?
int ctrns_actup?
char ctrns_keywd [16]?
int ctrns_cntparam?
char ctrns_params [16]?
int cder num?

28

NBS Vision System

struct work element def cwork element;

struct status_message {

char smessage__id [4];
int slen;
int snum;
char stime [12]

;

int secho_len;
int strns_len?
int sder_len;
int srce_len;
int scomno?
char scomtime [12]

;

int strns_statup ?

char strns_keywd [16];
int strns__paramcnt

;

int sder_num;
struct work element def swork element;

3. COMMUNICATIONS BETWEEN MLDSERV AND SUP

3.1 Data Structures for the Questions:

struct ql {

unsigned int qlobjid;

int qlrange;
}?

struct q2 {

unsigned int q2objid;
int q2range;

in-

struct q3 {

unsigned int q3objid;
int q3 range;
int q3cosx;

int q3cosy;
int q3cosz;

in-

struct q4 {

int q4objid;

/* dummy entry for
compatibility of
questions*/

/* expected range to object */

/* expected object name */
/* expected range to object*/

/* expected object name */
/* expected range to object */
/* directed cosines of normal

to surface */

29

NBS Vision System

}

;

struct q5 {

int sector?
float origin[2]?

float size[2]?

char identifier [16] ?

int flag?

unsigned int g5 error?
float qx, qy, qz?

float qorientation?
} ?

3.2 Structures for the Answers:

struct al {

int aldummy[3j?

int alcosx?

int alcosy?

int x blob centroid?

int y blob centroid?

In-

struct a2 {

unsigned int a2objid?
int confidence?

int best_obj_fit

?

int z_axis_range

?

int roll_angle?

/* sector number */
/* x,y position of sector

origin */
/* x,y position of sector

size */
/* part identifier */
/* part verified?

'no' =0 'yes' or 'no part'
=1 */

/* reason for failure */
/* position of part centroid

*/

/* dummy entry for answer
compatability */

/* cos of x component of angle
between lens axis and line
to centroid of blob */

/* cos of y component of angle
between lens axis and line
to centroid of blob */

/* observed x coordinate of
centroid if height was
given, otherwise 0 */

/* observed y coordinate of
centroid if height was
given, otherwise 0 */

/* expected object name */
/* confidence in

identification (computed
as difference between
between expected and
computed distances */

/* actual best id */
/* observed range to object

z axis */
/* observed roll angle of

30

NBS Vision System

int x_pos_centroid?

int y_pos_centroid?

>;

struct a3 {

unsigned int a3objid?
int a3dummy [2]

;

int obs_range;

int cosx_obs?

int cosy_obs?
int cosz obs?

struct a4 {

float led[4] [2]

?

}?

struct a5 {

int sector?
float origin[2]?

float size [2]?
int flag?

unsigned int qSerror?
float qx,qy,qz?
float qorientation?

struct model {

char *modname?
float modarea?

float modperim?
float modaxis?

float longside?

float shortside?
float modheight?
float bounds [6]?

object */
/* observed x coordinate of

centroid*/
/* observed y coordinate of

centroid*/

/* expected object name */
/* compatibility with other

answers*/
/* computed range to object

*/
/* directed cosines normal

to surface */

/* centroids of 4 leds*/

/* sector number */
/* x,y position of sector

origin */
/* part identifier */
/* part verified?

'no' = 0 'yes' or 'no
part'- 1 */

/* reason for failure */

/* models used in server */
/* ASCII name */
/* area of object in square

mm */
/* perimeter in mm */
/* principal axis

calculated */
/* length of long side - in

mm */
/* length of short side */

/* bounds on range of

NBS Vision System

measured values */
/* bounds [0] is distance slop

for flood */
/* bounds [1] is

for line */
distance slop

/* bounds [2] is area slop */
/* bounds [3] is

slop */
side length

/* bounds [4] is
slop */

side ratio

/* bounds [5] is

V
radius slop

int modhol@s,°
}

;

/* number of holes */

3 . 3 Model Data for the Obj ects

struct model proto []= {

/* box bottom */ Mbox bottom", 7137 .0, 340.0,
0.0, 95.25,

74.93, 36.83

,

1.1, 1.1,
1.1, 1.06,
0.1, 1.1,
o,

/* box top */ "box top ii

, 7137.0, 340.0,
0.0, 95.25,

74.93, 17.78,
1.1, 1.1,
1.1, 1.06,
0.1, 1.1,
o,

/* flag */ "flag", 7679.0, 350.5,
0.0, 87 . 63

24.13, 1.1,
1.1, 1.15,

• 1.08, 0. 1,
1.1, 0,

/* cylinder */ "cylinder is

, 469.97, 153.0,
0.0, 50.3,

50.3, 25.4,
^ 0 1 , 1.1,
1.25, 1.08,
0.1, 1.1,
1,

/* hole in cylinder */ "hole"

,

1516.5, 138.05,
0.0, 43.9,

43.9, 25.4,

32

NBS Vision System

/* dog "dogold'*

,

/* ring*/ "ring” ,

/* turning adapter */ "thold”

,

/* boring adapter */ "bhold"

,

/* pipe flange 205 */ '^1205-^*

,

/* pipe flange 207 */ ’^1207-^*

,

"f1209-b"

,

1.1,
1.15,
0 . 1 ,

0 ,

3225.8,
0 . 0 ,

31.75,
1 . 1 ,

1.15,
0 . 22 ,

0 ,

235.7,
0 . 0 ,

0 . 0 ,

1 . 1 ,

1 . 2 ,

0 . 0 ,

0,
5741.924,

0 . 0 ,

63.5,
38.1,
1 . 1 ,

1.09,
1.1,

5741.924
0.0,

63.5,
1 . 1 ,

1.1,
0.08,
0,

2199.092,
0.0,

35.1,
1.1,
1 . 1 ,

1.09,
1 . 1 ,

4143.167,
0 . 0 ,

49.28,
1 . 1 ,

1 . 1 ,

0.08,
0,

7646.760,
0 . 0 ,

1 . 1 ,

1.08,
1 . 1 ,

266.75,
101 . 6 ,

31.75,
1 . 1 ,

1 . 2 ,

1 . 1 ,

*/
62.86,
0 . 0 ,

0 . 0 ,

1 . 1 ,

0 . 0 ,

0 . 0 ,

307.848,
90.424,
63.5,
1 . 1 ,

1 . 1 ,

0.08,

307.848,
90.424,
50.8,
1 . 1 ,

1.09,
1 . 1 ,

195.58,
62.738,
23.0,
1 . 1 ,

1 . 1 ,

0.08,

266.71,
84.074,
27.0,
1 . 1 ,

1.09,
1 . 1 ,

358.65,
109.47,

/* pipe flange 209

NBS Vision System

69.85, 42.9,
1.1, 1.1,
1.1, 1.09,
0.08,
0,

1.1,

/* plunger bracket */ ”brack~b”

,

1862.667, 252.77,
0.0, 72.974

34.93, 40.46,
1.1, 1.1,
1.1, 1.2,
1.1, 0.08,
1.1,

/* IGES test part */ ’’iges^b”

,

6541.77, 360.08,
0.0, 129.54,

50.5, 50.5,
1.1, ,

1.1, 1.09,
0.08,
o,

1.1,

/* valve body */ "valvem-b”

,

18749.59, 854.61,
0.0, 222.50,

114 . 3 , 120.65,
1.1, 1.1,
1.1, . 1

,

00oe

«*.

o

o

1.1,

/* pen set base "penset"

,

13200.0, 502.0,
0.0, 176.0,

75.0, 18.0,
1.1, 1.1,
1.1, 1.06,
0.1, 1.1,
0, */

/* 14: locking clevis */”lockg clevis ”
, 5903 .21 312.93,

0.0, 92.964
63.5, 50.8,
1.1, 1.1,
1.1, 1.06,
0.1, 1.2,
o,

/* 15: hinge block */ ’’hinge block” , 3654.0, 242.0,
0.0, 63.0,

58.0, 32.0,
1.1, 1.1,
1.1, 1.05,
0.1,
0,

/* 16: link head */ "link head”

,

1575 . 0

,

163 . 0

,

34

NBS Vision System

0.0, 50.0,
31.50, 50.50
1.2, 1.1,
1.3, 1.06
0.25,
o,

1.1,

/* 17: link bar */ "link bar”, 1616.0, 234.0,
0.0, 101.0,

16.0, 16.0,
1.2, 1.1,
1.25, 1.20
0.25, 1.1,

- o,

/* 18: block */ "block”

,

6750.0, 37.00
0.0, 135.0,

50.0, 50.0,
1.1, 1.1,
1.1, 1.06
0.0, 1.1,
0,

/* 19: dog */ "dog", 4066.0, 290.0,
0.0, 107.0,

38.0, 38.0,
1.2, 1.1,
1.3, 1.06
0.25,
o,

1.1,

/* null model to end */ "", 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 ,

4. FILE COMMUNICATIONS

struct filebuf { /* one structure for each
file*/

char filename [16]

?

char status

;

/* open or closed (this flag is
internal to program) */

uchar prevuser

;

/* file is opened */
uchar otheruser

;

/* userid of other process
using this file */

char owner /* =1 if this processor "owns”
file */

unit otherusers ? /* Each bit is a user. Bit 15 set
means this is the owner */

uchar multiple; /* True says more than one reader
at a time may access file */

NBS Vision System

uchar uninitflags

;

/*

/*

struct /*

flagbuf * flagaddr? /*

unit segment

;

/*

char *buffaddr

?

/*
char *endaddr

?

/*
char *n@xt ? /*

}

;

struct flagbuf { /*
/*

char openfIg?
uchar curruser

;

char dummyAA ? /*

/*

char dummyxx ?

unit opentime ? /*
unit closetime ? /*
unit rdusers ? /*

/*

unit writereq? /*

/*

unit futurespace

;

unit peektime

;

/*

} ?

struct allfilebuf { /*

char a_filename [16

]

•

9

unit a uservec

;

/*

Bit 0 set says we've already
printed a xnsg */
Bit 1 set says flag is
unitialized (illegal) */
(flagaddr currently resides in
segment x2860) */
upper byte=last user, lower
byte = open/closed */
segment in which buffadr,
endaddr, next lie */
starting address of file */
last valid address plus one */
address of next read or write
position */

this lies in FLAGSEG*/
(hence we don't reserve
storage for it here) */

used by elimFF to distinguish
bus timeouts */
dummyAA must NEVER be set to FF
by any process */

time file was last opened */
time file was last closed */
bit vector of users
currently reading file */
(for multi-reader files
only) */
bit vector of user (if
any) wanting (or */
having) write permission.
V
time flag was last peeked
at */

one structure for
each file */

bit id's of other process
using this file */

36

NBS Vision System

unit a_owner? /* bit id of "owner" of file */
'/* (flagaddr currently

resides in X2860) */

struct flagbuf *a_flagaddr?
/* address of system flagbuf for

this file */
unit a_segment? /* segment in which buffadr,

endaddr, next lie */
char *a_buffaddr

;

/*
char *a_endaddr

?

/*

int a_multiple? /*

int a_dummy2

;

/*

} ?

5. OBJECT DESCRIPTION

struct ssvaobj { /*

longs aarea, axcntr

;

long8 aycntr , am20 , amll

;

long8 di, d2 ? /*
#ifdef MOMENTS

long8 ammlO, ammOl, amm20,
amm02 , ammll, amm21, amml2 /

amm03, amm30;
#endif

int ast_list; /*
int aparent, achild,
asibling, acolor, aximin,
axmak, aymin,aymax?
int comp; /*
int ah__area, al_area;
struct frame *aframe? /*

int awhole? /*

} ?

struct objects {

double area? /*
double xcntr, ycntr? /*

starting address of file */
last valid address plus
one */
True means more than one
reader at a time may
access file */
make allfilebuf an even 32
bytes */

the structure received
from ssva */

scratchpad for ssva */

pointer into edge-list */

component number */

pointer to header structure
for picture */
1 if the blob was
completely processed, 0

otherwise */

area of the component */
the centroid of the object

V

NBS Vision System

double m2 0, mil;
double xnmlQ, mmOl, mm2 0,
mm02, mmll, mm21, mm0 3, mm3Q?

/* object moments */

float perim; /* index to length of
boundary (not including
holes) */

unsigned int equation; /* index of structure
containing surface
equation */

int holes; /* number of holes */
unsigned int olinks[2]; /* links to other objects */
int future; /* link to next frame */
int past; /* link to previous frame */
int ©description; /* further information about

the object */
int ox2d;
int oy2d;

/* 2d position: x, y */

float oaxis2d; /* 2d principal axis
(radians) */

int ox3 d?
int oy3d;
int oz3d;

/* 3d position: x, y, z */

int oyaw;

int opitch;
int oroll;

/* 3d position: yaw, pitch,
roll (degrees) */

unsigned int st_list? /* start address of edge
list */

unsigned int s_corn, e_corn;

unsigned int parent, child,

/* start and end
pointers for corners */

sibling

;

/* links in tree of
components */

int color; /* object or hole */
int xmin, xmax, ymin, ymax; /* bounding rectangle */
unsigned int h_area, l_area; /* links to next largest

and next smallest
components */

int ocoordsys; /* which coordinate system is
used for position */

struct frame *oframe; /* pointer to header
structure for picture */

int otype

;

/* object type or number */
int oname

;

/* name from model database*/
int opart_of; /* which object it belongs to

*/

38

NBS Vision System

int oconfidence? /* is this really the right
object? */

int whole? /* 1 if completely processed
by ssva, 0 otherwise */

5.1 Structures for Features in Database:

struct feature {

double surfeqn[4]?

int fx2d?
int fy2d;
float faxis2d;
int fx3d;

int fy3d;
int fz3d;
int fyaw ?

int fpitch?
int froll?
unsigned int flinks [2]?

unsigned int fdescription?

int fedgenum?

unsigned int fcomponent [3]

?

int fwindow [4]

?

int ftype?
int fname?

struct frame *fframe?

unsigned int fpart_of?

int fconfidence?

int fcoordsys?

In-

struct edges {

int l_link, x_coord, y_coord,

r

} 7

/* surface equation if
feature is a surface */

/* 2d position: x, y */

/* 2d angle (radians) */
/* 3d position: x, y, z,

yaw, pitch, roll */

/* 3d position: yaw, pitch,
roll (degrees) */

/* links to other features
*/

/* further information about
the feature */

/* number of edge points if
edge feature */

/* which components (s) it
belongs to */

/* e.g., flood blobs */
/* coords of window it was

detected in */
/* feature type or number */
/* name from model database

v
/* pointer to header

structure for picture */
/* which object it belongs to

in ssvb */
/* is this really the right

feature? */
/* which coordinate system is

used for position */

1 ink ?

NBS Vision System

struct cheby { /* The Chebyshev

int firstx; /*

coef ficients , errors, and
line endpoints */
image coordinate start and
end points of segment */

int lastx;
double coeffa; /* coefficients of polynomial

*/
double coeffb;
double coeffc;

/* origin is at firstx */

double coeffbb: /* (alternate coefficients)
*/

double coeffcc? /* origin is at midpoint of
curve */

double cerror; /* fitting error */
unsigned int *cequation; /* equation of surface */
unsigned int cnumfeats; /* number of features */
int chebfeats; /* pointer to corners of

segment */
int nextcheb; / * next structure of this

type */

} ?

struct frame *cpicture; /* pointer to frame info */

/* Chebyshev structures */

struct vert seq {

int a

;

/* dark to light
transition */

int b: /* light to dark
transition */

int center; /* center = (a + b)/2 */
int link; /* pointer to next segment:

}?

*/

struct start list {

int pointer; /* pointer to start seg */

}

;

int column; /* column index of segment */

5.2 Structure for Frame-Dependent Information;

struct frame {

unsigned int ferrorstat; /* system errors */
unsigned int ftod; / * time of day when picture

~ was taken */

40

NBS Vision System

}?

unsigned int fsequence? /*

unsigned int fpictype? /*

unsigned int fnumnodes? /*

unsigned int ffirstnode? /*
unsigned int fnummatches?/*

/*

unsigned int fnumedges ; /*
unsigned int ftabentries?/*

sequence number for
picture */
the picture that was
requested */
number of data entries
found */
pointer to first node */
number of matches whith
expectations */
used to be fnumfeats -

still is for old system
*/
number of edges */
number of table entries */

6. PICTURE COMMAND STRUCTURE

6.1 Structure for Commands Passed Between MLDI and SSVA:

struct pictype {

unsigned int time ? /* marker for current request
*/

int camheight? /* height of camera or line
flash above object */
bottom position of windowunsigned int bwindow ? /*
for camera */

unsigned int lwindow? /* left window */
unsigned int rwindow ? /* right window */
unsigned int twindow ? /* top window */

unsigned int flasht? /* type of flash (line of
flood) */

unsigned int flashval

?

/* flash intensity */
unsigned int threshold; /* threshold */
unsigned int refadd? /* additive factor for

reference frame (0-255)
Mode 0 */

unsigned int dadmode ? /* mode of using the dad
box: 0 = pixel-by-pixel
threshold */

/* (two pictures required)

,

1 = '•normal” single
threshold mode */

41

NBS Vision System

int reflshval; /* duration of flash for

/*
reference frame */
dadmode 0 only, 0-15 */

int reflasht; /* flash type of reference

int opmode; /*
frame inage */
mode of operation: 1 =

/*

operate default if no
commands from above */
0 - wait for new commands

int flashtest; /*
before proceeding */
flag for testing that

/*

flash fired. 0 - ignore
flash test */
1= perform flash test */

campos [6]

?

/* 6 words for the

char picstatus; /*

position of the camera
*/
whether a normal request

/*

(0) or a number of frames
*/
to tell fsv to process

char numwind; /*

for range in the given
window */
number of windows */

char startwind[10]

;

/* up to 10 windows;

char endwind[10];
int data_mode; /*

defined by start and end
V
0=read in 16 transitions?
l~read in run centers */

int d_type? 4c\ used only when data mode

/*

is 1. 0 = integer +
fraction returned */
1 = 16 center points

int b_w_filter; /*
returned */
noise filter for black to
white transitions (0, 1,

int w_b_filter; /*
2, 3, pixels) */
noise filter for white to
black transitions (0, 4,

8 , 12) */

42

NBS Vision System

APPENDIX B. DEBUGGING OPTIONS

Interactive debugging options are provided for viewing
intermediate results and for running the system in a simulated
mode. To enable this mode, press any character on the supervisor
keyboard while the system is running. A menu will appear on the
screen with nine choices. They are explained in further detail
below:

1. Vision system status - displays current vision system
status with respect to presence of external systems.

2. Command stack dump - shows the contents of the vision
command queue.

3 . Command/answer history stack dump - shows approximately
the 10 most recent question/answer pairs.

4. Change conditional printout variables - permits the user
to change the level of detail in the printouts.

5. Reduce command stack and history stack - flushes the
queue so that the control system does not have to wait
for all of the queued commands to be executed.

6. Modify default thresholds - interactively changes the
threshold for any object for either flood flash or
line flash images.

7. Modify default picture - allows the user to
interactively create a question and send it to
either RCS or MHWS.

8. Change DADBOX mode - determines the mode in which the
DAD framebuffer will be used.

9. Set up automatic sequence of questions - allows the user
to specify a sequence of simulated commands to be posed
to the vision system.

For commands 2 and 3 above, the format of the data is in unsigned
decimal bytes. The bytes are in the protocol of input/output
between the vision and control systems. Refer to Appendix A for
the data structure format.

For command 4 , the SUP printouts can be interactively changed to
suit the user's needs. This provides a tradeoff between
processing speed and debugging power. When command 4 is invoked,

43

NBS Vision System

each debug variable is printed out along with its current value*
There are print statements in the program which are conditional
on one of these debug variables? a "0", ignores the printout
while a "l 9

* permits it* The following debug variables are
currently available:

1. ptrace - prints out a trace showing the order in which
functions are called in the program.

2. debug - prints out almost everything.

3 * debugm - prints out the returns in the main loop of
the program.

4. debugvc - prints out the returns in the vision command
section, a major part of the supervisor
program.

5. debug589 - prints out useful information about the
interaction between the control system and
the vision system.

6 • debugvel - prints out lots of information concerning the
acquisition of errors from the vision levels
during picture processing.

7« debugve2 - prints out the errors from the vision levels
during picture processing.

8. debugh - enables the history stack so that the most
recent 10 commands and their answers can be
stored for future use.

9. debugl - enables the system to terminate when a
drastic error occurs.

Another interactive feature, command 5, allows the command and
history queues to be reduced so that they contain only the
current command. This option is useful in cases where SUP has
forced many simulated commands onto the queue before the control
system initialized the 589 board. This option allows the control
system's command to be processed immediately. Also, when the
vision system is being operated in debug mode, this option allows
different vision commands to be executed quickly.

Command 6 permits the user to change default thresholds for each
part. When this command is activated, the first question chooses
the type of flash, line or flood. The second question chooses

44

NBS Vision System

the part type. The user must enter the number of the part as it
appears in the data structure, model (see Appendix A) . The third
question is the request for a new threshold value.

With command 7, the user can interactively send a question to the
vision system. There are 5 choices of questions. Note that all
flash values range between 1-10, and all range values and sector
sizes are in millimeters. Question 1 calculates the centroid of
one object in the field of view. Question 2 verifies that the
part in the image is the expected part and also calculates its
position and orientation. Question 3 calculates the range to the
part in the image. Question 4 computes the centroid of four
L.E.D.s in the field of view. This question is available but is
not used in the AMRF. Question 5 verifies the occurrence of a
part in a specified sector of a tray and also returns that part's
position and orientation.

The next interactive feature, command 8, involves setting the
thresholding used by the DAD hardware.

The last command, 9, allows the user to specify which sequence of
questions will be posed to the vision system in simulated command
mode.

45

NBS-114A (REV. 2-80

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Publication Date

BI8U0GRAPHIC DATA
REPORT NO.

December 1987SHEET (See instructions) NBSIR 87-3684

4. TITLE AND SUBTITLE

The NBS Vision System in the AMRF,

5. AUTHOR(S)

Marilyn Nashman and Karen Chaconas
6. PERFORMING ORGANIZATION (If joint or other thanNBS. see in struetion s)

NATIONAL BUREAU OF STANDARDS
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

7. Contract/Grant No.

S. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

National Bureau of Standards
Route #270 and Quince Orchard Road
Gaithersburg, MD 20899

10c SUPPLEMENTARY NOTES

j Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. I f document includes a s,
: gnificant

bi blicgraphy or literature survey, mention it here)

This document describes the NBS Vision System in the AMRF. It discusses the

objectives of the vision system and its applications in the factory environ-
ment. Since the vision system is a multi-processor system, each process is

described according to its positron in the vision hierarchy as well as to its

particular logical and computational functions. The unique hardware used is

discussed and its capabilities described. In addition, a guide to operations
is included: This contains step-by-step directions for "bringing up" the

system in either stand-alone mode or integrated mode. The interfaces between
the individual processes of the vision system, as well as the interfaces be-

tween the vision system and other AMRF systems, are described. Finally,

appendices are included which describe data structures, and debugging
features

.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

Automated Manufacturing Research Facility; hierarchical design; Material Handling

Workstation; multi-processor system; Realtime Control System; realtime vision system.

13. availability

I
X! Unl imitea

I ;
For Official Distribution. Do Not Release to NTIS

|

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

rXl Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

48

15. Price

$11.95

USCOMM-CC 8043-090

