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2. BENCHMARK PROBLEM
In this section we describe briefly the source of the benchmark problem, the major logical structure of

the Fortran program, and the parameters of three different specific instances of the benchmark problem

that vary widely in the amount of time and memory required for execution.

Research Background

As stated in the introduction, our purpose in benchmarking computers is solely in the interest of further-

ing our investigations into fundamental problems of fire science. Over a decade ago, stimulated by

federal recognition of very large losses of fife and property by fires each year throughout the nation,

NBS became actively involved in a national effort to reduce such losses. The work at NBS ranges from

very practical to quite theoretical; our approach, which proceeds directly from basic principles, is at the

theoretical end of this spectrum.

Early work was concentrated on developing a mathematical model of convection arising from a

prescribed source of heat in an enclosure, e.g. an open fire in a room. A set of partial differential equa-

tions [11] was derived from the basic physical principles of the conservation of mass, momentum and

energy to describe the transport of smoke and hot gases. The model is valid under assumptions

appropriate to very non-adiabatic, non-dissipative, buoyant flows of a perfect gas such as are generated

when heat is added slowly. The equations contain all the terms of the more familiar Boussinesq equa-

tions, to which a detailed comparison is made in [11].

The equations were rewritten as hyperbolic evolution equations for density and velocity plus an elliptic

equation for the pressure. From these, a finite-difference scheme was constructed for both 2D and 3D,

the former of which is presented in [3] together with sample calculations. The scheme is validated

[4, 12] by comparing special 2D and 3D test cases against analytic solutions that were developed

specifically for this purpose, and the overall model has been validated by comparison with salt-

water/fresh-water experiments of buoyancy-induced flows [1,2].

Recent work has turned to the problem of computing the heat source as the flow evolves, rather than

simply describing it a priori by means of a mathematical function [5,6]. The length and time scales of

combustion processes are so short compared to the scale of convection in an enclosure that it is impos-

sible to compute the heat source by refining the finite-difference mesh. Our approach is to model the

combustion process as a separate small-scale problem [5,6]. Toward this end we are calculating the

flame interface, the species consumption rates, and the heat release rate between two reacting species in

a stretched vortex flow field. Also, as a special two-dimensional case [13] we have determined these

quantities from an exact global analytical solution to a problem originally posed and analyzed by local

methods by Marble [10] ; a more general problem has been analyzed also by local methods by Karago-

zian and Marble [9].

We have been computing Lagrangian particle trajectories in BF3D and displaying them as a way of

visualizing the 3D fluid flow; the trajectory calculations are systems of ordinary differential equations.

Until now these particles have been serving passively only to mark the progress of the flow but they are

in fact a mechanism for distributing heat from burning fluid parcels into the flow. The additional com-

putations needed for this project will increase significantly the computational demands of BF3D.

Fortran Program

BF3D consists of a main program and 40 subroutines for a total of approximately 3500 lines, excluding

comments. It is written in standard Fortran 77 except for a single, isolated call to' a system-dependent

timing subroutine. The timing subroutine is used to generate a simple profile of time utilization among

major components of the program. Some of the timing data presented in the Appendix was obtained by

examining* these profiles.

A parallelepiped in (x,y,z) space is divided into a uniform mesh that is fixed by input parameters. Den-

sity, the x, y and z components of velocity, and two flux variables are stored at every meshpoint for

three consecutive timepoints. In addition to 18 three-dimensional arrays for these quantities, BF3D has

3 three-dimensional arrays for the linear elliptic pressure solver and 9 two-dimensional arrays for boun-

dary conditions. The Lagrangian particle-tracking algorithm requires 7 memory locations for each



-3-

particle. These are the main sources of memory utilization in the program.

Figure 1 illustrates the logical structure of the program. After reading the input data and initializing the

Fortran arrays to account for the boundary and initial conditions, BF3D starts the computation by com-

puting the pressure at the first nonzero timepoint. The finite-difference scheme achieves second-order

accuracy in space and time by using an appropriately staggered grid. Thus density and velocity are

updated using their values from two timesteps back and pressure from one timestep back. This is shown

at the beginning of the loop in Figure 1. Since the mesh is never refined, numerical stability is main-

tained by reducing the timestep in accordance with a CFL type of stability criterion. If the criterion is

violated, the timestep is reduced and the computation is restarted. Otherwise the pressure at the new
timestep is computed, the particle trajectories are updated, the output files are written, and the cycle is

complete.

Read input data.

Initialize variables and data structures.

Set n = 1.

Start: Compute pressure at time t = nh,

where h is the current timestep.

Loop: Compute density at t = (n+l)h.

Compute velocity at t = (n+l)h.

Check CFL stability criterion;

if satisfied then continue,

else reduce h and go to Start.

Compute pressure at t = (n+l)h.

Update particle trajectories.

Write data to output files.

Increment n.

Go to Loop.

Figure 1. Logical structure of BF3D.

Benchmark Series

Benchmark runs of three different sizes make up the benchmark series.

The small benchmark models a fire in a room with a square plan form and a low ceiling using a

20x20x8 spatial mesh, 125 timesteps, and 1000 particles. These parameters are not representative of the

size or time needed for a physically meaningful calculation. We include it because it is an easy first test

for computers of all sizes. It uses about 1 megabyte of memory for 64-bit arithmetic and takes approxi-

mately 15 seconds of supercomputer processor time.

The large benchmark uses a 40x40x40 spatial mesh, 466 timesteps, and 12000 particles to model a fire

in a cubical room. About 12 megabytes of memory and 10 minutes of processor time are needed to run

this benchmark in 64-bit arithmetic on a supercomputer. It is the most representative of the three bench-

marks in our series of actual runs we have made.

The giant benchmark is also for a cubical room. It uses a 48x48x48 spatial mesh, 50 timesteps, and

10000 particles. About 3 minutes of processor time and 20 megabytes of memory are needed for a 64-

bit run on a supercomputer. The spatial mesh is typical of runs we will be making in the near future,

but they will run for many more timesteps.

3. COMPUTERS BENCHMARKED
We ran the benchmark series on the following computers:

Alliant FX/8

Alliant Computer Systems Corporation

Littleton, Massachusetts
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Convex Cl XP
Convex Computer Systems Corporation

Richardson, Texas

Cyber 205

Control Data Corporation

Minneapolis, Minnesota

SCS40
Scientific Computer Systems Corporation

San Diego, California

Sun 3/160

Sun Microsystems

Mountain View, California

Vax 11/785

Digital Equipment Corporation

Maynard, Massachusetts

Distinguishing characteristics of these different systems will be briefly described.

Non-Scalar Computers

The Alliant, Convex, Cyber and SCS machines are vector computers. This means that the processor can

execute vector (as well as scalar) instructions. A vector instruction applies a single operation, such as

floating-point add, to a sequence of operands. In contrast, a scalar instruction applies a single operation

to a single operand. A vector processor is a scalar processor with an added component called a pipe-

line. Each vector processor implements pipelining in a different way, but in each case the effect is to

enable execution of a vector instruction in less time than the same processor could execute an

equivalent sequence of scalar instructions. The speedup is achieved by a kind of micro-parallelism in

which different stages of the pipeline work simultaneously on different data. In general, performance

increases with vector length up to a limit that depends on the implementation of the pipeline.

The pipeline can be used effectively only when data are supplied to it at a sufficiently high rate. Gen-

erally this means the data must be arranged consecutively in memory. If it is not so arranged, the data

may have to be moved about in memory to bring it into an arrangement that is acceptable for vector

arithmetic. If this rearrangement can be achieved "at vector speed", i.e. by the pipeline under the con-

trol of suitable vector instructions, then not much performance is lost If not, a "scalar bottleneck"

prevents effective use of the pipeline.

A program may be vectorized (written to take advantage of vector instructions) either manually by a

programmer or automatically by a compiler. Sometimes both approaches are used together to achieve an

optimal speedup. The most important program construct that is a candidate for automatic vectorization

is the innermost loop in a nest of (one or more) DO loops. To achieve a fair comparison of computer

systems, we have avoided using any programming technique that does not meet the Fortran 77 standard.

Consequently, the vectorizing performance of the compiler is critically important for the results of our

benchmark series, and we give in the next major section an analysis of inner-loop vectorization for each

vector computer we tested.

The Alliant differs from the Convex, Cyber and SCS computers in that it integrates multiple processors

whereas the others are unit processors. It can have up to 8 tightly-coupled high-performance processors,

and it provides compiler support for parallelizing the program so that the processors can operate in

parallel on a single job. That is, in addition to producing vector instructions for each processor, the

compiler analyzes the code to identify sections that are logically independent and therefore executable

in parallel. Such sections typically are DO-loops or DO-loop nests. Single DO-loops are subdivided and

distributed to all available processors, which run in vector mode if the loop is vectorizable. In the case

of a DO-loop nest for which the innermost loop is vectorizable, the next outer loop is subdivided and

distributed to all available processors. Of necessity, the Alliant compiler is able to create, synchronize

and delete independent processes. These and other task-scheduling functions are available for manually

parallelizing a Fortran program; we did not use them because the programming techniques are



nonstandard.

- 5 -

Scalar Computers

The Sun and Vax machines are scalar computers. We ran the benchmark series on these computers not

to imply that they are suitable for calculations of the size and complexity of a program like BF3D but

rather to afford an indication of the kind of speedups that can be expected from vector computers. In

our benchmark tests all the vector computers were run in 64-bit precision and all the scalar computers

were run in 32-bit precision. To run the scalar computers in 64-bit precision would require re-declaring

all REAL variables to be DOUBLE PRECISION. This would extend quite considerably the time

required to run the benchmarks. The real value of the Sun and Vax computers, in our opinion, is for

program development, debugging and auxiliary operations such as graphics.

4. COMPILER COMPARISON

In this section we measure the vectorizing performance of the Alliant, Convex, Cyber and SCS Fortran

compilers by determining the percentage of inner loops vectorized; see Table 1. The determination was

made by examining the output listings produced by the compilers. We present the measure separately

for four functional subdivisions of BF3D: the evolution code that advances the finite-difference solution

from one timestep to the next; the pressure code that solves the elliptic equation at a given timestep;

the particle code that advances the trajectories of the Lagrangian particles; and the output code that

writes the output files. The number of loops in each subdivision is given in parentheses.

Cyber SCS Alliant Convex

Evolution (66) 50% 98% 100% 100%

Pressure (63) 27% 65% 87% 90%
Particle (10) 20% 50% 70% 60%
Output (3) 67% 67% 67% 67%
Overall (141) 38% 80% 92% 93%

Table 1. Percentage of Inner Loops Vectorized.

The results reported here are for versions of the compilers that were available toward the end of 1986.

Specifically, we used the Alliant FX/Fortran Compiler V2.0.18 on 19 December 1986, the Convex For-

tran Compiler V2.1 on 4 November 1986, and the Cyber Fortran 200 Compiler (Cycle 661C) on 18

January 1987. The SCS compilation was done on 31 March 1987 using the Cray Fortran Compiler

VI. 13. Because the SCS-40 has a machine instruction set that is identical to the Cray X-MP, the com-

piler needed no alterations.

Earlier versions of the Cyber compiler had a restriction that prevented vectorization of inner DO loops

unless the upper and lower limits of the DO loop were fixed at compile time. This restriction was very

severe. It meant that any loop headed, for example, by DO 10 1=1 ,N was not a candidate for automatic

vectorization if N depended on the input data. The reason was that Cyber vector instructions allow for

a maximum vector length of 65536, and the compiler did not generate code to check the size of N. The

restriction could be overcome by specifying the "unsafe vectorization" option on the Fortran command,

the effect of which was to shift responsibility to the programmer for ensuring that all vector lengths

were within the limit. This undesirable and unnecessary burden on Fortran programmers was finally

relieved in Cycle 661C of the compiler.

The Alliant, Convex and SCS (Cray) compilers accept directives in the form of special Fortran com-

ment statements for aid in vectorizing a program. The pressure subdivision of BF3D contains 20 Cray

compiler directives because this part of BF3D originated on a Cray 1. The directives were deactivated

for the comparisons given in Table 1 because they are not applicable to other compilers. When
activated, they increase the percentage of inner loops vectorized by the SCS (Cray) compiler to 89% for

the pressure subdivision and 91% overall.

When the Alliant and Convex compilers meet an inner loop that they cannot vectorize fully, they

attempt to rearrange code so that they can vectorize part of the loop. In Table 1 we counted a loop as

vectorized if it was either fully or partially vectorized. The pressure subdivision was the only part of
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BF3D that turned out to have partially vectorized loops. For the Alliant, the percentage of inner loops

vectorized drops to 59% for the pressure subdivision and to 79% overall if only fully vectorized loops

are counted. For the Convex, the percentages drop to 67% and 82%, respectively.

5. PERFORMANCE COMPARISONS

Detailed information for each benchmark run is given in the Appendix. Three similarly formatted

tables are given for each computer, plus explanatory comments. In this section we draw some conclu-

sions from the data.

Speed

The first table for each computer in the Appendix gives timing information in seconds for the pressure,

evolution and particle subdivisions of BF3D; the sum of these, identified as PEP time; and total time for

the execution of the benchmark, regarded as the sum of PEP time plus overhead within BF3D itself.

We see that the Cyber 205 is the fastest of the computers benchmarked. Table 2 exhibits the perfor-

mance of the other computers relative to the Cyber. The performance ratios are obtained by dividing

the PEP time for each computer by the PEP time for the Cyber. The Cyber, SCS, Convex and Alliant

results are for 64-bit arithmetic; the Vax and Sun results are for 32-bit arithmetic.

Small Large Giant Dongarra

Cyber 205 1 1 1 1

SCS-40 1.3 1.4 1.6 2.1

Convex Cl XP 3.6 4.2 5.5 5.9

Alliant FX/8 (4 procs) 2.6 4.4 5.0

Vax 11/785 25 36 41 44

Sun 3/160 (fpa) 34 49 67 29

Sun 3/160 (68881) 82 133 162 160

Table 2. Benchmark times relative to the Cyber 205.

Dongarra’s ratios [8], normalized to the Cyber 205, are included for comparison. His benchmarks are

for the problem of solving a dense linear system of order 100 by Gaussian elimination using Linpack

[7] with Fortran versions of the Basic Linear Algebra subroutines. The precision of the arithmetic for

the ratios cited is 32 bits for the Vax and Sun systems and 64 bits for the others. Dongarra does not

give a benchmark result for a 4-processor Alliant system; for 8 processors and 1 processor the Dongarra

ratio is 2.3 and 11, respectively.

Efficiency

The second table for each computer in the Appendix is derived from accounting data supplied by the

operating systems: VSOS for the Cyber, CTSS for the SCS, VMS for the Vax, and implementations of

Berkeley 4.2 Unix" for the Convex, Alliant and Sun computers. We have tried to extract comparable

information from these different systems:

User Time The time used by the processor(s) in executing the benchmark program.

System Time The time used by the processor(s) for system overhead such as page faulting. For the

Vax, system time is not reported separately from user time.

The elapsed time from start of execution to end of execution.

The number of times a nonresident page had to be retrieved.

The ratio of user time plus system time to wallclock time.

We call the ratio of U+S to W the job processing time ratio (JPTR). The JPTR is not particularly

revealing when other jobs coexist with the benchmark because it depends so strongly on characteristics

of the workload. JPTRs for all the Convex and SCS benchmarks, the small and large Cyber

Wallclock Time

Page Faults

U+S to W

'UNIX is a registered trademark of AT&T Bell Laboratories.
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benchmarks, and the small Vax benchmark fall into this category. When a job is run by itself, the

JPTR becomes an approximate measure of the overall efficiency of the computer system for that job.

JPTRs for all the Alliant and Sun benchmarks, the large and giant Vax benchmarks, and the giant

Cyber benchmark fall into this category. In the Appendix, we identify the benchmarks that were run by

themselves as standalone benchmarks.

For the standalone benchmarks, low JPTRs indicate bottlenecks in the system and/or network

configuration. For example, not having a local disk on a Sun caused a noticeable drop in the efficiency

for the giant benchmark: 55% for the Sun with floating-point accelerator and no local disk versus 79%
for the Sun with local disk and the slower 68881 floating-point arithmetic, even though much more

page faulting occurred on the latter system due to its smaller memory size.

Except for the SCS-40, which uses swapped memory management, all the systems use paged virtual

memory management. The amount of I/O wait time associated with disk activity could have a

significant impact on the JPTR, so a strong correlation between page faulting and the JPTR might be

expected. However, we were unable to distinguish the number of page faults that actually resulted in

disk reads or writes from the total number reported by the operating systems. In the case of the Sun

benchmarks showing many page faults, the virtual size exceeded available physical memory and so disk

activity was inevitable. In the case of the large Vax benchmark, enough physical memory was available

so we suspect many of the page faults did not result in I/O activity. A similar conclusion is probably

true for the giant Vax benchmark.

Effect of Vectorization

The third table for each computer in the Appendix shows a percentage breakdown of the PEP time into

its three components, and also compares PEP time to total time. The particle code is quite insignificant

compared to either the pressure or evolution codes. We observe that the pressure code is the most

time-consuming, in general, on the vector computers, and as the problem size increases it becomes

more dominant. However, on the scalar computers the situation is reversed. In fact, the evolution code

dominates the pressure code for the scalar computers even more strongly than the opposite for the vec-

tor computers. We conclude that the evolution code is more effectively vectorized than the pressure

code, resulting in a greater speedup. This is consistent with Table 1 which shows a higher percentage of

the inner loops were vectorized in the evolution code regardless of compiler.

6. CONCLUSIONS

Four general conclusions are suggested by the results of our performance study.

First, the capability of compilers to vectorize Fortran loops automatically has achieved a high degree of

success. It is interesting to observe that newer compilers (Alliant and Convex) outperform older com-

pilers (Cyber and Cray) rather consistently. It follows from this observation that compiler directives will

not be as important in the future as they have been in the past.

Second, the capability of compilers to parallelize code automatically shows promise for the future. The

Alliant FX/8 multiplies the power of its vector processor, which is considerably slower than the Convex

Cl XP processor, by effectively employing several of them to work simultaneously on a single task.

Third, Unix is becoming the standard operating system for supercomputers as well as scientific worksta-

tions and other types of computers. This is important because it provides a suitable basis on which to

build advanced computing environments in which non-numerical processes can be integrated with very

arithmetic-intensive processes. For example, 3D fluid calculations are typical of supercomputing appli-

cations in that appropriate graphical display becomes imperative for understanding. Graphics has been

an afterthought, coming to mind only when the hopelessness of assimilating masses of printed numbers

becomes apparent Older operating systems, which configure the computing environment with the super-

computer accessible only in remote batch mode, will not be able to compete with newer, more powerful

operating systems.

Fourth, the mini-supercomputers (SCS, Convex and Alliant) are impressive performers as compared to a

representative mid-range mainframe (Vax), when utilized on problems that benefit from a vector archi-

tecture. They cannot match the processor speed of a full-fledged supercomputer (Cyber) but this is not



the only measure of utility. For example, if an individual research project could afford a dedicated

mini-supercomputer then it would be free of competition for computer time from other projects. Runs

could be scheduled according to the needs of the project rather than the priorities of a central comput-

ing facility.

We close with the observation that an extraordinary variety of computer hardware is available today

compared with just a few years ago. The challenge, as always, is to select from it with wisdom and

foresight.
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APPENDIX

The information given in this appendix is taken from the output produced by the benchmark programs

and operating systems for each computer that we tested. Conclusions drawn from the data presented

here are stated in Section 5 of this report.
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Alliant System

An Alliant FX/8 computer system located at the office of Alliant Computer Systems Corporation in Lit-

tleton, Massachusetts, was used to execute the benchmark series in March 1987. The system had 192

megabytes of main memory, four vector processors, and 512 kilobytes of cache memory. The operating

system for Alliant computers is Concentrix, an enhanced implementation of Berkeley 4.2 Unix. Fortran

REAL arithmetic is normally 32-bit arithmetic on Alliant computers but the compiler has an option for

specifying 64-bit REAL arithmetic without altering the source code. The data presented in the tables

below are for 64-bit REAL arithmetic. The program was compiled with full optimization (-Ogvc)

specified.

Small Large Giant

Pressure (Pr) 19.6s 1902s 343s

Evolution (Ev) 11.2s 811s 143s

Particle (Pa) 3.9s 43s Is

PEP (Pr+Ev+Pa) 34.7s 2756s 487s

Total (PEP+Overhead) 46.0s 2912s 494s

Table 3.1. Timing data from BF3D internal calls.

Small Large Giant

User Time (U) 36.7s 2822s 490s

System Time (S) 9.6s 91s 5s

Wallclock Time (W) 56s 3098s 516s

Page Faults 26 71 26

U+S to W 83%" 94%" 96%~

"Standalone Benchmark.

Table 3.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 75% 95% 99%
Pr to PEP 57% 69% 71%
Ev to PEP 32% 29% 29%
Pa to PEP 11% 2%

Table 3.3. Breakdown by major BF3D component.

The data in Table 3.1 were obtained by calling the Unix timing function ETIME. The data in Table 3.2

were obtained by using the Unix command time. The data in Table 3.3 were derived from the data in

Table 3.1.

We remark that the benchmark series was run also on a smaller FX/8 having 32 megabytes of main

memory and 128 kilobytes of cache memory. The two systems were similar in other respects. We
observed a slowdown in PEP time of 10% or less for each benchmark. This slowdown was due, in all

likelihood, to the smaller cache memory, which probably restricted the flow of data to the processors.
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Convex System

A Convex Cl XP computer system located at the office of Convex Computer Corporation in Greenbelt,

Maryland, was used to execute the benchmark series in December 1986. The system had 32 megabytes

of main memory and one vector processor. The operating system for Convex computers is Convex

Unix, an enhanced version of Berkeley 4.2 Unix. Fortran REAL arithmetic is normally 32-bit arithmetic

on the Convex but the compiler has an option for specifying 64-bit REAL arithmetic without altering

the source code. The data presented in the tables below are for 64-bit REAL arithmetic. The program

was compiled with full optimization (-02) specified.

Small Large Giant

Pressure (Pr) 20.6s 1556s 361s

Evolution (Ev) 17.4s 948s 170s

Particle (Pa) 8.9s 139s 2s

PEP (Pr+Ev+Pa) 46.9s 2643s 533s

Total (PEP+Overhead) 50.9s 2705s 542s

Table 4.1. Timing data from BF3D internal calls.

Small Large Giant

User Time (U) 48.2s 2679s 522s

System Time (S) 2.8s 26s 21s

Wallclock Time (W) 103s 6177s 2152s

Page Faults 74 77 12

U+S to W 50% 44% 25%

Table 4.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 92% 98% 98%
Pr to PEP 44% 59% 68%
Ev to PEP 37% 36% 32%
Pa to PEP 19% 5%

Table 4.3. Breakdown by major BF3D component.

The data in Table 4.1 were obtained by calling the Unix timing function ETIME. The data in Table 4.2

were obtained by using the Unix command time. The data in Table 4.3 were derived from the data in

Table 4.1.

We remark that the benchmark series was run also in 32-bit REAL arithmetic, for which we observed

an approximate 25% reduction in PEP time. Also, the benchmarks were rerun in May 1987 with a new

version of the Fortran compiler. Nearly a 10% speedup was observed for the large benchmark, and

nearly 5% for the small and giant benchmarks.
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Cyber System

The CDC Cyber 200 Model 205 Series 600 computer system at the National Bureau of Standards in

Gaithersburg, Maryland, has 4 million 64-bit words of main memory (32 megabytes) and 2 vector pipe-

lines for floating-point arithmetic (Cyber 205 systems have only one processor; the effect of the second

pipeline is to double the pipeline speed). The computer runs in batch mode under VSOS (Virtual

Storage Operating System). Jobs are submitted via NOS (Network Operating System) from a Cyber

180/855. The benchmark series was run in February 1987 to obtain the data given in the tables below.

Fortran REAL arithmetic, i.e. 64-bit arithmetic on the Cyber, was used. The program was compiled

using full optimization (OPT=DPRSV).

Small Large Giant

Pressure (Pr) 5.4s 358s 57.1s

Evolution (Ev) 5.9s 247s 40.3s

Particle (Pa) 1.8s 18s 0.2s

PEP (Pr+Ev+Pa) 13.1s 623s 97.6s

Total (PEP+Overhead) 13.6s 628s 99.0s

Table 5.1. Timing data from BF3D internal calls.

Small Large Giant

User Time (U) 15.2s 630s 101s

System Time (S) 2.1s 2s 2s

Wallclock Time (W) 119s 1458s 107s

Page Faults 16 39 53

U+S to W 15% 43% 96%"

"Standalone Benchmark.

Table 5.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 96% 99% 99%
Pr to PEP 41% 57% 59%
Ev to PEP 45% 40% 41%
Pa to PEP 14% 3%

Table 5.3. Breakdown by major BF3D component.

The data in Table 5.1 were obtained by calling the system timing function SECOND. The data in Table

5.2 were obtained by using the VSOS command SUMMARY; the number of virtual system requests is

identified here as the number of page faults. The data in Table 5.3 were derived from the data in Table

5.1.
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SCS System

An SCS-40 computer system in San Diego was used to execute the benchmark series in March 1987.

The system had 32 megabytes of main memory and one vector processor. The system was run as a

batch processor with a Vax for terminal access. The operating system was CTSS (Cray Time Sharing

System). The company is developing a version of Unix as well as COS (Cray Operating System) for

their computers, and also is developing the SCS-40 to obviate the need for a frontend. The SCS-40 is

designed to be highly compatible with the Cray X-MP architecture, in fact sharing the same instruction

set and Fortran compiler. The data presented in the tables below are for 64-bit REAL arithmetic.

Small Large Giant

Pressure (Pr) 7.4s 439s 87s

Evolution (Ev) 7.3s 372s 65s

Particle (Pa) 2.5s 39s

PEP (Pr+Ev+Pa) 17.2s 850s 152s

Total (PEP+Overhead) 19.6s 905s 156s

Table 6.1. Timing data from BF3D internal calls.

Small Large Giant

User Time (U) 19.7s 903s 157s

System Time (S) 0.1s 3s

Wallclock Time (W) 77s 2358s 392s

U+S to W 26% 38% 40%

Table 6.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 88% 94% 97%
Pr to PEP 43% 51% 57%
Ev to PEP 42% 44% 43%
Pa to PEP 15% 5%

Table 6.3. Breakdown by major BF3D component.

The data in Table 6.1 were obtained by calling the system timing function SECOND. The data in Table

6.2 were obtained from the CTSS accounting log. The data in Table 6.3 were derived from the data in

Table 6.1.
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Sun System With FPA

The benchmark series was run in March 1987 on a diskless Sun 3/160 computer at the National Bureau

of Standards. The fileserver was a Sun 3/180S with Fujitsu Eagle disk, connected via an Ethernet local

area network. The system had 8 megabytes of main memory and a floating-point accelerator (fpa).

The fpa uses a Weitek floating-point chip set for enhanced performance. The operating system was Sun

Unix 4.2, release 3.1, an enhanced version of Berkeley 4.2 Unix. Fortran REAL arithmetic uses a 32-

bit wordlength, and the data presented in the tables below are for 32-bit arithmetic. The program was

compiled with full optimization (-0) specified.

Small Large Giant

Pressure (Pr) 94s 7753s 1399s

Evolution (Ev) 314s 22259s 5149s

Particle (Pa) 36s 659s 26s

PEP (Pr+Ev+Pa) 444s 30671s 6574s

Total (PEP+Overhead) 461s 31320s 6651s

Table 7.1. Timing data from BF3D internal calls.

Small Large Giant

User Time (U) 438s 29818s 5331s

System Time (S) 24s 1503s 1320s

Wailclock Time (W) 488s 33955s 12086s

Page Faults 0 259 81334

U+S to W 95%“ 92%“ 55%“

“Standalone Benchmark.

Table 7.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 96% 98% 99%
Pr to PEP 21% 25% 22%
Ev to PEP 71% 73% 78%
Pa to PEP 8% 2%

Table 7.3. Breakdown by major BF3D component.

The data in Table 7.1 were obtained by calling the Unix timing function ETIME. The data in Table 7.2

were obtained by using the Unix command time. The data in Table 7.3 were derived from the data in

Table 7.1.
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Sun System With 68881

The benchmark series was run in March 1987 on a Sun 3/160 computer at the National Bureau of Stan-

dards. The system had 4 megabytes of main memory, a Motorola 68881 floating-point chip, and a local

Fujitsu Eagle disk. The operating system was Sun Unix 4.2, release 3.1, an enhanced version of Berke-

ley 4.2 Unix. Fortran REAL arithmetic uses a 32-bit wordlength, and the data presented in the tables

below are for 32-bit arithmetic. The program was compiled with full optimization (-O) specified.

Small Large Giant

Pressure (Pr) 281s 23172s 4207s

Evolution (Ev) 695s 57966s 11513s

Particle (Pa) 100s 2002s 45s

PEP (Pr+Ev+Pa) 1076s 83140s 15765s

Total (PEP+Overhead) 1094s 83900s 15935s

Table 8.1. Timing data from BF3D internal calls.

Small Large Giant

User Time (U) 1090s 79733s 14293s

System Time (S) 5s 4167s 1642s

Wallclock Time (W) 1136s 101361s 20148s

Page Faults 0 645061 157112

U+S to W 96%" 83%" 79%"

"Standalone Benchmark.

Table 8.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 98% 99% 99%
Pr to PEP 26% 28% 27%
Ev to PEP 65% 70% 73%
Pa to PEP 9% 2%

Table 8.3. Breakdown by major BF3D component.

The data in Table 8.1 were obtained by calling the Unix timing function ETIME. The data in Table 8.2

were obtained by using the Unix command time. The data in Table 8.3 were derived from the data in

Table 8.1.
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Vax System

A Vax 11/785 computer system with 16 megabytes of main memory, running under the VMS operating

system at the National Bureau of Standards, was used to execute the benchmark series in April 1987.

Fortran REAL arithmetic is executed in 32-bit words on the Vax, and the results given in the tables

below are for 32-bit arithmetic. The program was compiled with full optimization, i.e. the default

option for the Vax Fortran compiler.

Small Large Giant

Pressure (Pr) 112s 9133s 1672s

Evolution (Ev) 178s 12731s 2365s

Particle (Pa) 40s 719s 7s

PEP (Pr+Ev+Pa) 330s 22583s 4044s

Total (PEP+Overhead) 342s 22770s 4087s

Table 9.1. Timing data from BF3D internal calls.

Small Large Giant

User+System Time (U+S) 346s 22778s 4096s

Wallclock Time (W) 514s 24659s 4347s

Page Faults 2126 21724 72330

U+S to W 67% 92%" 94%"

"Standalone Benchmark.

Table 9.2. Accounting data from the operating system.

Small Large Giant

PEP to Total 96% 99% 99%
Pr to PEP 34% 40% 41%
Ev to PEP 54% 57% 59%
Pa to PEP 12% 3%

Table 9.3. Breakdown by major BF3D component.

The data in Table 9.1 were obtained by calling the VMS timing function LIBSSTAT_TIMER. The data

in Table 9.2 were obtained from the VMS log file. The data in Table 9.3 were derived from the data in

Table 9.1. The operating system was configured so as to allow working sets of up to 10.24 megabytes,

which is nearly enough for the giant benchmark to reside fully in memory.
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