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PERFORMANCE MEASUREMENT INSTRUMENTATION
FOR MULTIPROCESSOR COMPUTERS

Robert J. CarpentCT

The complexity of achieving near-optimum performance from multiprocessor

parallel computers demonstrates a need for performance measurement However,

when multiple processors are acting in concert on a single problem, perturbations

caused by measurement can be unacceptable. Additional hardware can reduce the per-

turbation caused by measurement and can be offered in several stages of refinement

and cost. The hardware can often be offered as an option; it is necessary to provide

access to the required signals in the system’s original design.

Key words: Performance measurement; Hardware instrumentation;

Measurement equipment; Multiprocessor computers.

INTRODUCTION

Multiprocessor computers have been built (or proposed) with a wide range of ar-

chitectures. When the goal of using multiple processors is speedup, getting a single

job done faster, there must be a reasonable match between the algorithms, the data set,

and both the architecture and its implementation. The quality of this match is hard to

determine a priori, even for specific instances of hardware and software. If the match
is poor, the result may be very poor performance, even slower than a uniprocessor.

While the machine is a given to the computer user, algorithms and programming para-

digms are not. Thus the user needs to be able to measure the response of the comput-
er to various paradigms, test programs, and the eventually chosen algorithmic solution.

The designer, configurer, and selector have more flexibility in tailoring the hardware
and system software, but there is a common thread of need to avoid performance-
destroying bottlenecks in the design, implementation and configuration. Almost all

multiprocessor parallel computers can be configured in a wide range of size and cost;

which configuration is best for a particular situation? The answer requires, of course,

that performance measurement techniques be made available to the user. However, the

comprehensive measurement of complex machines is extremely difficult, and in exist-

ing multiprocessor computers little or no effort has been made to facilitate the connec-
tion of measurement hardware to allow observation and measurement of the internal

operations which are critical to performance. Performance measurement is often an ad
hoc, one-time affair done during system design and debugging, but the necessary

"hooks” are taken out before manufacture.

There is a trade-off between cost, accuracy and completeness of measurement.

Cost can be monetary, physical size, or reduced performance caused by the mere pres-

ence of the measurement system, or the "hooks" for it. Accuracy includes both the er-

rors caused by perturbation of the process being measured and the degree to which the

(perturbed) operation is correctly quantified. Completeness is the degree to which the

measurer’s needs are met by the measurement process.
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This preliminary discussion surveys a range of approaches to performance meas-
urement, with examples of the machine connections needed for measurement without

incurring excessive perturbation. Other approaches are possible, for example the

SySM system from Harris for the Concert multiprocessor [MIT86][WHI86]. As will

be discussed later, attempts to measure multiprocessor parallel computers can create so

much perturbation to normal operation as to render the results useless. Data, once ob-

tained, must be analyzed and presented to the user. Though important, this is not dis-

cussed, nor is testing for fault-tolerance and maintenance purposes.

NUMBERS AND MEASUREMENT OF PERFORMANCE

The collection of numbers (bus occupancy, cache hits, instructions per second)

does not, alone, amount to measurement of a computer system. These numbers are

obtained while the system is executing programs (a stimulus). In parallel systems, the

numbers (results) can differ dramatically with different stimuli. A key aspect of meas-
urement is the provision of well-characterized test routines (benchmarks) for use as the

stimulus. The numbers obtained during measurement are useful only to the extent that

they can be related to expected performance on a real application. Thus some relation-

ship between the test routines and real applications must be known or developed.

Small, kernel test routines characteristic of operations central to parallel execution are

the most portable type of test stimuli. Results on these small routines can tell a lot

about the performance of a machine; these results are vital in revealing the best pro-

gramming style to use for the expensive task of moving much larger benchmarks to

the machine in question [LY087].

WHAT TO MEASURE?

"How long did it take?" is the most obvious question asked about the performance

of a computer system doing a specific task. But, once that question can be answered
without inducing significant experimental perturbations, there remains the question of

"How can this be improved?" So - the characterization of a computer system involves

- Measurement of the time required to execute the test software, and

- Measurement of the utilization of the computing resources of the system to dis-

cover bottlenecks which may be corrected by hardware redesign, system

reconfiguration, system expansion, use of another algorithm or a different

programming paradigm, ....

These measurements are most useful if they can resolve chosen segments of the test

software. Gross overall execution measurements give little insight on the best
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corrective action to take.

COST CONSIDERATIONS IN MEASUREMENT

A number of possible measurement approaches will be presented. An attractive

goal (for manufacturers) would be to offer the measurement hardware as an option,

with essentially no incremental hardware cost to purchasers who did not want the

measurement option. As will be seen, some measurement approaches can meet this

criterion, while others emphatically cannot. Measurement data analysis and presenta-

tion software is clearly not needed by owners who don’t buy the system measurement
features. There may also be a system software cost in providing for measurement.
System software such as compilers, linkers, and loaders may need to be modified to

handle measurement pseudo-instructions, and to generate control programs for the

measurement hardware.

MEASURING EXECUTION DURATION

There are two critical events to the measurement of execution duration; starting

time and ending time (actually the difference between them). If the execution duration

is long enough, the user may be able to use the timing service provided by the operat-

ing system without significantly perturbing the results. Unfortunately the requirement
for long execution duration usually means that either the test software is very large and
hard to characterize, or that a very unrealistic synthetic test routine has been created.

Prior state can have a large effect on computer performance. Continual looping can
result in most of the critical items being in cache memory, often an artificial situation.

On the other hand, addition of code to "precondition" the machine (cache) state will

grossly perturb overall execution time. Thus one needs to be able to insert time-

measurement events freely, and without significant perturbation to the system under
test. It is important to provide the user with a means to start and stop data taking

(perhaps by special events; see below) to avoid taking data while the desired starting

state is being recreated. Each time one resorts to the timing service of an operating

system, perhaps 500 extra instructions are executed. The tolerance of computations to

time-gathering perturbations of this sort can be divided into two classes: computations
with one instmction stream, and those with multiple (simultaneously executing) in-

struction streams or with time-critical external relationships.

Systems with a Single Instruction Stream. If there is but one instruction stream and
no machine state to upset (no pipelining, no fetch-ahead, no cache), and no external

time-critical interactions, execution can be suspended at any time by an operating sys-

tem call without great perturbation of execution characteristics. This implies no time-

critical user or mass-storage I/O. Thus measurement can be accomplished by recourse

to operating system services, and little hardware measurement support is required.

This observation applies to both single- and multiple-data-stream processors with a
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single instruction stream (SIMD as well as SISD).

Systems with Multiple Instruction Streams. All other computer systems (including

"single-instruction-stream" machines with real-time I/O or separate I/O processors) are

effectively multiple-instruction-stream machines, wherein the time relationships

between the various instruction paths must be maintained. Individual calls to an
operating system for measurement services would delay one processor, while allowing

the others to proceed - seriously perturbing execution. The amount of perturbation

which can be tolerated is related to the program granule size; how much computation
is done between times that processes must interact and measurements must be taken.

In general, the longer this time, the more perturbation that can be tolerated. One ap-

proach is to assign measurement as the sole task of one of the processors; surely a ma-
jor distortion of system resources. These MIMD and real-time systems require at least

some hardware support to obtain reliable measurement [SCH83]. This hardware for

the support of measurement, and the connections it requires will be discussed below.

For the person who wants to measure an architecture and configuration, but not a

particular implementation technology, timing results should be stated in terms of

elapsed computer system clock cycles, not microseconds. System selection and real-

time applications require results in terms of time.

Identifying Time Events in Test Program Execution

Events in the execution of a program can be identified in two ways: by inserting

extra instructions in the software to explicitly trigger data capture, or by recognizing

use of a specific instruction or data (address or vdue) by passive monitoring and pat-

tern matching. The recognition of a user-specified event during test program execution

generates a trigger to cause capture of the current time and other measurement data.

Inserted-Code Triggering. In some situations, the perturbation from extra measure-
ment instructions may be tolerable [SCH83]. On the other hand, the perturbation may
be insidious. Instruction fetch-ahead queues will be affected, caches will be perturbed,

and memory management translation look-aside buffer entries may be affected.

Inserted-code event triggering should only be considered for measurement events

separated by at least some dozens of instructions in the same instruction path.

The advantages of inserted-code triggering are substantial. Child processes can
easily identify themselves, as can processes sharing code. There is never false trigger-

ing such as might occur in an address-monitor trigger when instructions or data are

fetched but never used. It is relatively easy to identify processor-process association.

In tightly-coupled systems, hardware support which reduces the perturbation of meas-
urement can be accomplished centrally, at relatively low cost.

Pattern-Matching Triggering. Time-measurement events can be recognized without

any program perturbation by use of a pattern-sensitive monitoring system. This

relatively-complex trigger hardware is designed to recognize certain instruction or data

addresses or values and must usually be replicated for each processor in the system.

While this approach has the great advantage of being non-perturbing, it suffers practi-

cal operation^ problems in addition to high cost. The first problem is that the desired

signals may not be easy to reach; they may be buried inside a VLSI chip. One usually
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needs access to the logical address, but often only the physical address is available

outside the chip. Many processors prefetch instructions or data, but may not in fact

use all of the prefetched information. This can cause extraneous triggers. Additional-

ly, the addresses (of the type that can be accessed) of the instructions or data that are

to cause the triggers must be known. The association between virtual and physical ad-

dresses may change during execution. The same virtual or physical address used by
multiple processes will cause indistinguishable triggers. Moreover, one cannot distin-

guish between different entities which are sharing code. Of course processes can be
"locked" in place in memory during execution, but this is often a gross distortion of

normal operation. [RIL87]

To make pattern-matching triggering practical, details of determining patterns to

match must be done for the user. The user should be allowed to insert measurement
pseudo-instructions in the source code, with the system software such as compilers,

linkers, and loaders assembling the corresponding trigger patterns. These patterns

would then be down-loaded to Ae measurement hardware.

Triggering on a Sequence of Patterns. False triggers caused by use of the same vir-

tual addresses in multiple tasks can sometimes be reduced if triggering is based on a

required sequence of patterns. Some kinds of events can only be identified by a se-

quence of patterns. Sequences will require a substantial increase in the size of &e pat-

tern storage memory and its control hardware.

Both Event and Pattern Triggering. A hybrid system with triggering from both in-

serted measurement code and pattern-matching hardware has many of the advantages
of both systems; the easy correlation of data with program execution, association of
process and processor, and knowledge of the state of all processors at the time of each
measurement trigger.

Timed Trace Support Hardware

There exists a progression of time measurement hardware support techniques in

which additional difficulty or cost is rewarded by more accurate or more detailed infor-

mation.

No Measurement Hardware. If there is a single instruction stream, little machine
state, and no external real-time constraints, all measurement can be accomplished by
operating system services. Even resource utilization details such as cache-updating in-

formation can be captured, since they require operating system intervention. Low level

hardware resource information such as bus access latency and data-path occupancy will

not be available.

One should note that many SIMD machines fall into this class, wherein special

measurement hardware is not needed to obtain useful information. However, detailed

measurement of the communication characteristics of SIMD machines may require ex-

tensive instrumentation. The addition of another instruction stream, say by use of a

separate I/O processor, or use in a real-time application, may preclude use of this no-

hardware measurement approach.
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Central Time Counter Register. Measurement of MIMD machines requires that at

least a time counter be available to each processor. In a shared-memory architecture,

this could be a globally-accessible register as illustrated in Figure 1. Loosely-coupled
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FIGURE 1 - GLOBALLY READABLE TIME COUNTER

systems require some sort of time distribution systems to be discussed below. Each
processor could refer to the time register by a simple read instruction, greatly decreas-

ing the perturbation as compared to an operating system call. This technique only al-

lows elapsed-time and process-processor association measurements; data about utiliza-

tion of resources such as caches, buses, etc., requires the addition of some resource

measurement hardware to be discussed later. Once data is obtained by a processor, it

must be stored either in local or central memory. The obtaining of time data and the

storing of it demand processor cycles on the single processor where the time trigger

occurred, tie up the memory path for all processors and may perturb register, cache
and memory management state. We understand that this measurement facility is avail-

able on the Cray X-MP.

Built-in Hardware - A counter with adequate time resolution, yet a sufficiently

long epoch, must be provided somewhere in the address space and implemented as

a read-only I/O or memory location. A length of 32 bits is often a good comprom-
ise; four thousand seconds (2**32 microseconds) or 2**32 machine microcycles is

an adequate experimental epoch, but 16 bits (65 milliseconds - 64K microcycles) is

usually not enough. The counter must correctly handle the situation where it

should be incremented while it is being read without either losing counts or caus-

ing an erroneous reading. A central facilities board would seem to be a likely phy-

sical location for the central counter.

Optional Hardware - A time-counter board may be located in a globally-reachable

I/O basket. Reading data from I/O space may block the system bus until the read

is satisfied, causing extra perturbation. Since many modest systems use standard

I/O buses (Multibus (TM), VME (TM), etc.) this may be an especially attractive

approach. Alternately, a special time-counter card may be provided to attach to the

memory bus instead of a memory module. This method will often use less bus-

time, but the memory bus is usudly proprietary, and its interface is often expen-

sive. As yet another alternative, a defeated connector may be provided for
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attachment of a time counter.

Distributed Time Counters. Anything less than very tight coupling discourages use

of a single central time counter. The extra communication delay to read a centr^ regis-

ter in machines such as the Butterfly and RP3 may be excessive. Loosely-coupled sys-

tems certainly require a time counter local to each processor due to the long communi-
cation delays. All such counters in a system have to be synchronized. 'Die counters

could be internal to a VLSI microprocessor and would require only a time-base and a

synchronizing or reset signal from the outside, as illustrated in Figure 2. The syn-

chronization might be coded into the timebase signal, for the saving of one of these

pins. No additional pins would be needed should there be additional processors on
each chip.

In a loosely-coupled system, all measurement data would have to be collected lo-

cally at each node and reported after the experiment. This has the benefit that there

would be no extra load on the interconnection network to perturb the experiment. In a

tightly-coupled system, distributed time counters would result in reduced perturbation

since reading of the time register would not use the normally shared memory data

path. Local storage of the measurement data would further reduce perturbation other-

wise caused by writing of the event data to central memory during the experiment.

Built-in Hardware - This is a relatively low-cost addition, requiring only a time

counter register, and logic to slightly delay any read which might be attempted

while the register is incrementing (or vice versa). This register should be very

close, logically, to the processor, to avoid perturbing the cache and memory
management system.

Optional Hardware - Such a register could also be provided as a low-cost option.

The time-base for the time counter should be distributed by always-installed system
wiring, but the time-counter register could be on a small daughter board, and
mapped as a location in the local processor’s I/O or memory address space. It

should be connected by a path that avoids disturbing the cache and memory
management system.
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PERFORMANCE VIEASUREMENT APPROACHES
Event

Trigger

Hardware

Enhancement
Comment

Resource Utilization

Preprocessing

Inserted code.

No measurement

hardware.

Only appropriate for SISD

and SIMD non-real-time

systems.

Can be used. Started,

stopped, and read by

curating system routine.

Central time

counter register.

Requires globally-accessible

memory or input-ouq)uL Much
less perturbation than aboye.

Can be used, but causes

more perturbation since

counters must be read.

Synchronized local

time counters.

Suitable for both loosely-

and tightly-coupled systems.

Less perturbation.

Can be used; increased

perturbation. Should be

local to each processor.

Time counter and

global "report" interrupt

served by microcode.

Reduces amount of local

measurement memory needed.

Not for real-time systems.

Same as above.

As above with global

"capture" interrupt

served by microcode.

Allows c(»Telation of activity

of all processors. Even more

perturbation.

Same as above.

Single central off-

machine event data

collection system

including clock.

Reduced perturbation since

clock tags data automatically

Not for loosely-coupled

system.s.

Automatic collection

of resource utilization

data with no extra

perturbation.

As above with global

"c^ture" interrupt

served by microcode.

Much perturbation since

the captured state must be

written to central hardware.

Same as above.

Off-machine event

data collection

with head-end for

each processor.

Useful on both loosely- and

tightly-coupled systems.

Doesn’t use shared data

paths so less perturbation.

Automatic collection

of resource utilization

data with no extra

perturbation.

As above with global

"capture" intarupt

served by microcode.

Less added perturbation

since distributed data

collection.

Same as above.

Pattern monitor.

Patt^-matching

unit for each

processor.

No perturbation to execution.

Hard to set up. Requires many
internal connections. Activity

of all processors known at each

triggCT. Triggering on virtual

address often prevents process

identification.

Cause no pmurbation.

Same, except that a

sequence of patterns

required for trigger.

Same, except less

ambiguous triggsing.

Even harder to set up.

Same as above.

Hybrid trigger.

Trigger from both

inserted-code and

patterns.

Inserted-code trigger allows

process-address correlation.

Pattern trigger causes no

pmurbation.

Same as above.

Table 1 - Performance Measurement Approaches
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Distributed Time Counters and a Global REPORT Command. The above systems

suffer from either the perturbation of accessing a central measurement data memory
area, or the cost of providing substantial measurement data storage memory locally at

each processor. Much smaller local measurement data memory could be used (in

some cases) if a global REPORT signal (causing a local interrupt at every processor)

were used to cause all processors to simultaneously abandon their normal tasks and
dump their local measurement data memory to a central memory area. Execution
would continue, without distortion to inter-processor timing, when the REPORT signal

was removed. Since the processors are not executing user code when servicing the

REPORT interrupt, the time-stamp counters must be stopped during the the time the

REPORT signal is active. This approach would not be useful where external real-time

constraints exist; it does, however, maintain the interprocessor timing relationships. If

at all practical, the REPORT interrupt should be served by microcode internal to the

processing element in order to disturb the machine state (caches, instruction queues,

etc) as littie as possible, as illustrated in Figure 3.

FIGURE 3 - ADDING A ’’REPORT" OR
"CAPTURE" COMMAND

The REPORT command is only meaningful if the individual processors keep their

collected data locally, rather than immediately send it to a central location as it is col-

lected. This means, of course, that a small section of very local RAM needs to be
provided at each processor.

Built-in Hardware - The REPORT interrupt service routine must be executed

from very local memory at each processor to minimize perturbation to instruction

and data paths, including memory management and cache systems. The service

routine might best be in microcode. While violating the goal of simplicity, the

data writes caused by the REPORT command should bypass the cache, memory

- 10-



management, etc., thus avoiding some perturbation to the processing element state.

Optional Hardware - To allow the REPORT facilities to be offered as an option,

a fair amount of extra hardware, including means to add redirection of instruction

and data accesses to the added local instruction and data memory, would have to

be included in all systems manufactured. This might not be an acceptable cost.

Distributed Time Counters and a Global CAPTURE Command. Inserted-code

event triggering has the deficiency that only the state of the processor executing the

event inserted code is captured. A CAPTURE system can be added to overcome this

deficiency. If a global CAPTURE interrupt line is provided in the computer system,

any processor serving an inserted-code measurement data taking event can command
all other processors to cease normal activity and save their current process progress

and time information. This must be accomplished by "intemal" code at each processor

to avoid modification of cache contents, etc., as illustrated in Figure 3. One should

note that the hardware implementation of the REPORT and CAPTURE commands is

identical, only the interrupt service routines would differ. Both commands can exist in

the same system, requiring only the second global special interrupt line and interrupt

service software, but they can share the added RAM and ROM.

The CAPTURE command wire should be "open collector". Once asserted by any
processor, all processors should hold the signal in the asserted state until finished with
their capture routine. When the last processor finishes, the CAPTURE line would re-

turn to the quiescent state, and all processors would then resume their normal opera-

tion. The global capture signal would add one more pin to a VLSI processor package,
independent of the number of processors in the package. Since the processor is not

executing user code when servicing the CAPTURE interrupt, the time counters must
pause the entire time the CAPTUfe interrupt line is asserted. For the same reason,

the CAPTURE command may be inappropriate in some real-time systems. The pertur-

bation of a CAPTURE command causing all the processors to simultaneously store a
single data point locally would be much less than that caused by the REPORT com-
mand, where all processors would have to sequentially transfer their full data collec-

tion to the central data storage area.

Built-in Hardware - The interrupt service routine must be executed from very lo-

cal memory to minimize perturbation to instruction and data paths, including

memory management and cache systems. The service routine might best be in mi-
crocode. The CAPTURE command causes data to be captured in every processor

in the system; a rather substantial collection. Since all processors have already

ceased their normal processing operation, it may be sensible to immediately
transfer the data to a central collection point before resuming normal processing, if

there are no external real-time constraints. In loosely-coupled systems one may
choose to collect all of the data locally for central collection after the experiment.

Optional Hardware - As for the REPORT command, a fair amount of extra

hardware may have to be included in all systems manufactured in order to allow

the CAPTURE facilities to be offered as an option. This might not be an accept-

able cost.
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Off-Machine Timing Event Data Collection. The code which must be inserted for a

time measurement event may be further reduced if each timing measurement event

consists solely of writing to special data collection hardware addressed as a "memory"
or "I/O" location. This external hardware contains the time counter; the mere act of

writing data to the collection hardware causes the current time to be captured, along

with the written data and other information such as the identification of the writing

processor. It is important that the identification of the writing processor be made
available to the collection hardware. It must be possible to start and stop data collec-

tion and the time counter (to ignore execution of non-user software). Either additional

addresses or certain data bits may be used for these functions.

Central Off-Machine Timing Event Data Collection. In a shared-memory architec-

ture, a single central location can be the target of all the system’s event data writes.

This approach is only suitable for machines with an easily-accessible global memory
or I/O area. The factor-of-three-or-more time penalty to reach a global location in

switch machines (Butterfly, Ultra, RP3, ....) would make this central-collection ap-

proach fairly perturbing. Placing the data collection address in memory space (instead

of I/O) usually results in less system perturbation because of more efficient transfer

protocols. Each process should identify itself in the data it writes. There should be
hardware identification of the processor at each event data write. In a bus-oriented

machine, the writing processor should be identified on the machine’s bus so that the

experimenter will not have to make special internal connections to the machine. User
design of processor identification circuitry is usually impractical, given the proprietary

FIGURE 4 - CENTRAL OFF-MACHINE DATA COLLECTION

nature of the details of present-day computer hardware. The NBS Trace Measurement
System (TRAMS) [MIN86] [MIN87] is an example of off-machine timing event data

collection applied to a commercial multiprocessor. We required very detailed
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proprietary hardware information about the multiprocessor computer in order to design

the processor identification hardware.

A more integrated revision to TRAMS is under construction. This will incorporate

all measurement data storage on the TRAMSII card, which will be readable and
configurable firom the system under test after the experiment, as illustrated in Figure 4.

Thus a single added board serves an entire tightly-coupled shared-memory system.

This hardware measurement support requires access to most of the processor-to-

memory or I/O signals, or to a system-wide bus.

Built-in Hardware - There is little to be gained by building-in this feature, as long

as the writing processor is identified on an accessible high-speed bus.

Optional Hardware - In a bus-oriented machine, it is relatively simple to provide

a central data collection system as an option. Providing identification of the writ-

ing processor on the system bus is the major expense that would be borne by non-

purchasers of the measurement option.

Central Off-Machine Event Data Collection with CAPTURE Command. As men-
tioned before, measurement systems based on user-inserted events do not normally

captvu*e the state of other processors in the system at the time of the event. A CAP-
TURE command can be added to off-machine data collection of event time trace meas-
urement data. Operation would be the same as with the on-machine implementation of

the CAPTURE command, except that the data would be immediately written to the

central off-machine address - by all processors. One would have to suspend all normal
operation until all of the state inSformation from all of the processors had been
transferred, probably a lengthy operation. This would not perturb the interprocessor

timing relationships, but would be intolerable if external time constraints existed.

The addition of a CAPTURE command to central off-machine data collection

would not seem to be generally satisfactory. The perturbation would probably be
worse than in the case of on-machine data collection with the use of a local time

counter and local data storage memory as described above. Use of distributed off-

machine collection with the CAPTURE command is a much better approach.

Distributed Off-Machine Timing Event Data Collection. In loosely-coupled sys-

tems (and in many switch-connected "tightiy"-coupled systems), the collection of tim-

ing event data must be distributed throughout the system being measured to avoid seri-

ous perturbation. A common notion of time must be available to all processors. The
communication speed and bandwidth available over the normal loosely-coupled inter-

connection network to a central point is too low to permit its use for real-time time

distribution and performance data collection. One could add a special parallel time

and data network. However, it would require at least 33 to 64 interconnection wires to

conduct time and measurement information. This network would connect a central

counter and data collector and each processor in the system. A more attractive solu-

tion involves replication of at least some of the data capture hardware (including a

synchronized time counter) at each processor. Each such measurement "headend"
should include a FIFO buffer to smooth out the peak rate of the collected measurement
data and allow serial transmission of the captured data back to a central collector.

This approach is illustrated in Figure 5. As in other distributed-counter systems dis-

cussed above, only one or two global wires are sufficient to synchronize and operate
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the time counters. Another global wire is needed for the serial data transmission back
to the central collector. Access to this common serial return path must be arbitrated

by a suitable local area network medium access algorithm, (perhaps the simple

collision-free algorithm proposed for ANSI X3T9.5 LDDI [CAR84] and used in the

Digital Equipment Corporation VAX Cluster(TM) network).

The headend portion of the system which must be replicated for each processor is

not large. It could either be an application specific integrated circuit (ASIC) - perhaps

gate array - or might be incorporated within a VLSI processor itself. Only one central

collection system is required in each system. One should note, however, that there is

substantial traffic over the serial link whereby data is returned to the central collector.

At 64 bits per measurement event, and a transmission rate of 32 megabits per second,

events could not be accepted more often than each two or three microseconds any-

where within the processors feeding a single central front-end shift register and dui-
port memory. An additional central front-end shift register and dui-port memory
would thus have to be provided for each 10 to 50 processors, depending on the size of

program "granules" being time traced.

Distributed off-machine data collection can also reduce measurement perturbation

in tightly coupled machines, since it avoids use of the computer’s shared data path for

collection of measurement data.

Built-in Hardware - The measurement headend associated with each processor re-

quires only two or three external signal leads, if it is incorporated on the VLSI
chip with the processor. This same number of connections can serve several pro-

cessors located on a single VLSI chip. Much of the headend would not have to be
replicated for the individual processors on a VLSI chip containing multiple proces-

sors.

Optional Hardware - It is practical to offer this type of measurement hardware as

a piggy-back option at each processor. At least die clock, synchronization, and
seriad returned data wires (3 total) should be prewired to every processor site. The
processor’s memory or I/O bus must be made available for writing of data to the

associated measurement headend. The headend should be an ASIC for size and
cost reasons.

Distributed Off-Machine Data Collection with CAPTURE Command. The pertur-

bation caused by a CAPTURE command would be reduced by distributed event data

collection (compared with central data collection) since the FIFOs in the return paths

would allow the processors to write their state data without having to wait for the

shared data path. The upper left hand comer of Figure 5 illustrates the additions need-

ed to add the CAPTURE command to a distributed off-machine collection system. Of
course the time-stamp counters must be stopped during the the time the CAPTURE
signal is active. Again, the CAPTURE command might cause too much perturbation

to be used in systems with external timing constraints.

Built-in Hardware - The addition of a CAPTURE command always involves ma-
jor modification of the data paths in or near the the processor itself, as illustrated at

the upper left in Figure 5. A special interrupt must be added, and it is desirable to

be able to bypass the normal instmction and data paths. There would be much less

impact on the design of the central off-machine collection hardware, except that
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much more data would be collected. This substantially-increased traffic over the

serial data link to the central collector reduces the number of processors which
could be served by each central front-end shift register and dual-port memory.

Optional Hardware - The CAPTURE command has litde effect on the add-on dis-

tributed measurement hardware, except that the timing clock must be stopped dur-

ing CAPTURE interrupt service. Since it has such a major impact on the proces-

sor itself or the close-by data paths, either it would have to be included in all pro-

cessors, or as a special processor version.

Non-Perturbing Triggering. All of the above time event triggering systems require

execution of "measurement code" which perturbs the operation of the system being

measured. On the other hand, recognition of time trigger events can be based on pas-

sive monitoring of the addresses or values of instructions and data, along with the state

of the processors.

Non-Perturbing Pattern-Matching Timing Event Triggering. The trigger addresses

or values can be detected by matching the information on the address or data lines

with stored patterns. Because of at-processor caching, or lack of a single central moni-
toring point, this trigger hardware must usually be replicated for each processor in the

system. A number of different patterns, one for each event, must be matched. In a

system with 32-bit matching, one cannot afford to be able to match all possible combi-
nations (some four billion), nor would one need to. Breaking the 32 bits into groups

the size of the address space of high speed static random access memories (RAM) al-

lows a fully-programmable matcher that can match any desired subset containing many
combinations; more can be matched if there are a number of common subterms. What
results is effectively the recoding of a sparsely populated state space into a small,

manageable state space.

The general oudine of a pattern-matching event trigger detection system is illus-

trated in Figure 6. Instead of basing the match on a single logical product of all 32 in-

puts, a multistage approach with simpler products to generate intermediate terms is

sufficiently flexible and more economical. The 32 input signals (where the input pat-

terns appear) are first separated into groups of 10, 11, and 11 bits. These groups of

bits are used to address random access memories (RAMs). The contents of locations

corresponding to trigger events contain unique 7- or 8-bit codes (a minimum of 127

unique event codes). These codes are further combined to address the second rank of

RAMs. The uniquely encoded locations in this second rank produce two 8-bit event

codes. The sixteen bits from the second rank of RAMs address the last rank. There is

one RAM in the last rank for each type of trigger (global trigger, selective trigger 1,

selective trigger 2, ....). Ones are loaded in the last rank of RAMs at addresses

corresponding to trigger events. The accumulated RAM access delay may become ex-

cessive at some point in the above process. One must then insert a pipelining register

at this point - for example between the second and last ranks of RAMs in Figure 6.

System software must be provided to allow the experimenter to define trigger

points as pseudo-instructions; these would eventually generate the patterns to be

down-loaded to the matching RAMs. This measurement setup software must select

non-colliding intermediate terms for the matching process. More details can be ob-

tained from the report on the NBS REMS system by Nacht [NAC87].
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Once the timing event trigger has been created, both the trigger pattern (or the en-

coded event identification) and a time counter value must be captured. This trigger

can be used with on- and off-machine data collection in most of the same ways as

inserted-code triggers. The REMS system captures data in a distributed, off-machine

manner. The global trigger from any pattern matcher causes data to be captured at all

processors. Actual "trigger" patterns are captured, rather than encoded events, since

the full patterns present the easiest way of determining the execution progress at the

processors which did not cause the trigger event. Only a single time-stamp is needed
in the REMS systems since data from all processors is captured at the same time. Use
of the "selective" triggers will be covered in the discussion of resource utilization

measurement using preprocessors.

TYPICAL PROCESSOR
IN A SYSTEM

PROCESSOR

SELECTIVE
TRIGGERS

MEMORY.
INTERCOM H/W, ETC.

DETAIL

FIGURE 6 - PATTERN-MATCHING TRIGGERING

Because of the cost and the difficulty in obtaining unambiguous event
identification, pattern-matching triggering will probably never be attractive alone.

Built-in Hardware - While a pattern-matching trigger mechanism could be incor-

porated with each processor, this may require more external connections than

would an off-board implementation. Not only would all of the resulting trigger

signals need to lead out, but the pattern itself would have to be available for cap-

ture in order to identify the trigger cause. In addition some means would have to

be provided to load the matcher RAMs. This system is quite complex and would
occupy a lot of real estate.

Optional Hardware - All of the address (or other) lines of interest, along with

timing signals, have to be made available to add-on hardware. This requires a sub-

stantial interconnect path. Some way must be provided to load the patterns into

match storage RAMs from the measurement control computer. Logical address are

often not visible from outside VLSI processors. One possible answer to the
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problem of inaccessible signals in VLSI circuits is to provide an additional connec-
tor on the top of the IC package, and to bring out the extra measurement signals to

it. This is a variant of an idea used by Zilog. They provided a version of their Z8
single-chip microprocessor with a top socket for an industry-standard EPROM. The
EPROM took the place of the normal internal mask-programmed ROM during the

software development process and the processor would still mount in the normal
Z8 socket.

FIGURE 7 - SEQUENCE MATCHING TRIGGERING SYSTEM
(SEQUENCE LENGTH OF 4, BRANCHING FACTOR OF 1 )

Triggering on a Sequence of Patterns. Some additional selectivity in triggering can

be o&ain^ by requiring a specific sequence of patterns. The general case of recogniz-

ing a sequence of patterns is very expensive to implement Any "first" match would
be followed by a tree of state machines of arbitrary branching width at each layer. A
great simplification results if the branch width is limited to one; no branching is al-

lowed beyond the first match, as illustrated in Figure 7. In this case each "first" match
may only lead to a single correct sequence of patterns. The resulting loss in flexibility

may be acceptable.

If M different sequences of length N (or less) were allowed, then an added se-

quence matching memory of M*(N-1) locations would be required. Each location in

sequence RAM would need a word-width equal to the matching word length - say 32
bits. A pattern-matching system like that in Figure 7 is used to detect the first trigger.

Its output is a pointer to the remaining sequence which must be followed exactly in

order to recognize and event. Each of these following steps in the sequence merely re-

quires comparison of the incoming pattern with a single correct pattern from the "se-

quence" RAM. This is a state machine which must be traversed in the proper order to

create a trigger.

Built-in Hardware - As in the case of matching simple patterns, incorporating the

matching system on the processor board may actually increase the number of

external connections required by the measurement system. This system would oc-

cupy even more real estate than the simple pattern matching system, but might be

well worth it.
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Optional Hardware - All of the address (or other) lines of interest, along with

timing signals, have to be made available to add-on hardware. This requires a sub-

stantial interconnect path, but no more than the simple matcher.

Both Event and Pattern Triggering. A hybrid system with triggering from both in-

serted event code and passive pattern-matching hardware has many of the advantages

of both systems: the easy correlation of data with program execution, association of

process and processor, etc. Since the execution address of all processors can be cap-

tured at each trigger in a passive monitoring system, the state of all processors at the

time of each measurement trigger is captured, even when the triggers come from the

inserted-code route.

MEASURING RESOURCE UTILIZATION

Once one learns the time required for execution, one wants to know the reasons

that execution required this duration. One must measure the utilization loading of

many of the component resources of the computer system in order to identify the

bottlenecks. Duty cycles must be measured, for example the degree to which the

processor-memory path is busy. Pulse widths must be measured, for example the

duration that processors have to wait for data or instruction fetches. What fraction of
the memory accesses are satisfied by the caching system? Learning these answers re-

quires the addition of resource measurement "preprocessing" hardware, otherwise data

would have to be captured for each system microcycle, which is clearly impractical,

Roberts [ROB85] has discussed a wide range of possible resource utilization measure-
ments.

Often one is satisfied to learn average values taken over short sections of the test

program. Many parameters are actually the ratio of two counts. Real-time calculation

of Sie ratio, on-the-fly, would seem to be too expensive. As a compromise, average

values can be obtain^ by collecting both the numerator and denominator counts and
later doing the division during the measurement data analysis processing.

To obtain average values, one counter (A) counts "all" of a class of events, while

the other counter (B) counts a subset of the events. For example, the loading on a

backplane is measur^ by counting all backplane time slots in counter A and just the

occupied time slots in counter B. For another example, average backplane access de-

lay (at a given processor) can be measured by counting all access attempts in counter

B and summing (in counter A) the backplane time slots or processor cycles that oc-

curred during all the waits for access. The ratio A/B is the average access delay. The
values in counters A and B can be read at timing events triggers. If the preprocessor

ratio counters are reset after reading, the measurement of the resource can be resolved

to different periods in the test routine execution without reduced precision. Certain

measurement events should generate selective triggers which cause preprocessor

counter resetting.
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While accumulation of average values of these parameters may be sufficient, cap-

turing the distribution of the individual data items in ’buckets’ by ranges of values

may be much more useful. One may also wish to characterize memory activity ac-

cording to selected address regions (hot spots).

Resource utilization measurement hardware can be used in conjunction with nearly

any method of detecting the user-specified events to be time-tagged and captured.

There is a roughly linear relationship between cost and the number of resources that

can be measured simultaneously. A number of pairs of counters would be required to

measure all of the items of interest in a multiprocessor system. Since resource meas-
urement hardware is generally non-perturbing, in many cases it can be reconnected to

measure other resources and the test stimulus software can then be rerun.

It is vital that all preprocessors be disabled when the system under test is not exe-

cuting test code. No data should be taken when the system is executing the overhead
of "measurement" calls to the operating system, etc. Special measurement events can

be used to start and stop the data accumulation.

Resource Monitoring with Inserted-Code Triggering. The means of generating data

collection triggers is relatively unimportant. Even operating-system measurement calls

can be used. The operating system would then manage the preprocessor counters - al-

beit with considerable extraneous effect on their values due to the operating system’s

own code. Inserted-code event triggering, using off-machine data collection hardware,

can use resource measurement preprocessing very effectively. Specific event codes, or

bits, can be used to reset certain preprocessors, giving all the resource-measurement
flexibility of the NBS REMS system mentioned below.

Resource Monitoring with Non-Perturbing Triggering. The global triggers from a a

pattern-matching trigger system cause collection of the current state of all of the

resource utilization counter data. In addition, any global trigger can be accompanied
by one or more selective triggers, which reset certain preprocessor counter pairs after

their data has been captured. The NBS Resource Monitoring System (REMS)
[NAC87], in its basic form, is an example of this class of system.

Preprocessor Implementation

Present computer systems pay scant attention to providing access to the "test

points" needed for resource utilization measurement. One of the greatest problems that

has been observed at NBS in using external measurement systems is that vital status

signals are not explicitly and simultaneously present because the designer has chosen
logical minimization or reduced pinouts to reduce costs. It then becomes necessary for

the measurement hardware to collect a numbef of signals and perform combinational

and sequential logical operations to derive the signal to be measured. The signals to

be combined often occur at different times. This makes the measurement hardware
very special-purpose, and requires a lot of costly study of usually-proprietary system
details before the measurement apparatus can be modified and attached.
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The computer designer should consider the types of signals which are likely to be

of interest for resource measurement, and arrange logic so that these signals are expli-

citly present. Status signals are most useful if they are continually present and only

unstable at specified times, or always present in a certain relation to the clock phase or

system state. The signals should either be present at the time the event recognition

system produces its output, or a clearly stated number of clock periods earlier or later -

allowing simple pipelining. If the needed signals are thus made available, the interface

with the measurement equipment is extremely straightforward, and can be the same for

many systems. This could allow performance measurement equipment to become a

commoity product, usable by people with a wide range of technical skills.

Ratio Counter Preprocessors. The ratio counters are conceptionally numerator (A)

and denominator (B) counters. For some parameters such as duty cycles, the B
counter will count every bus cycle; once each 5 to 500 ns. In order to allow a reason-

able interval before the counters overflow (between places where measurement data

capture events must be inserted), a counter of perhaps 32 bits will be needed. Since

the value of the ratio is never exactly known before an experiment, the two counters

should be of the same size. Capturing data with this precision would require a great

deal of measurement data memory. Much of this memory, demanded by the measure-
ment precision, is essentially wasted since experimental accuracy in the computer
measurement field is rather poor due to all of the unquantifiable perturbations. Why
store 32-bit data with 6-bit accuracy?

FIGURE 8 - RATIO COUNTER PREPROCESSOR

One is certainly justified in compressing the ratio counter data by use of a

reduced-precision floating point format, by employing a self-normalizing ratio counter

technique as illustrated in Figure 8. If the measurement is properly designed, the con-

tents of the B counter will always be greater than the A counter, so that both counters

can be normalized by the same factor as the B counter, use of one common exponent
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is sufficient. The main question is whether to compress into 16 or 32 bits.

A counter - 5 bits
|

B counter - 6 MSB
|

Exponent - 5 bits

32-bit Ratio Counters Compressed into 16 bits

A counter - 14 bits
|

B counter - 14 MSB
|

Exponent - 4 bits

32-bit Ratio Counters Compressed into 32 bits

Compressing into 16 bits limits precision to about three percent of full scale.

Compressing into 32 bits allows a precision of about 0.01 percent of full scale. The
ratio counter preprocessor of the NBS Resource Monitoring System (REMS), in its

basic form, is an example of compression into 16 bits [NAC87].

Built-in Hardware - The cost of providing ratio counters for a vast array of
parameters would be great even if they were reduced to VLSI; the cost might be
silicon or board area. A more likely approach would be to accept the incremental

costs of combining and retiming the signals needed for resource measurement, and
to provide logic in the computer-under-test to route selected subsets of the resource

signals to a small number of ratio counters. The user could then set up the desired

measurements by programming the routing logic to select the subset of interest.

Optional Hardware - One could just as well include, in all systems, the hardware
to combine and retime the signals, and to provide logic to route selected subsets of

the resource signals to "standardized" interface connectors. This would allow per-

formance measurement equipment to become a commodity product, usable on a

number of systems by ordinary people.

Distribution Bucket Preprocessors. Short-term average value of resource utilization

parameters may not be enough. The distribution of the individual values may also be
important for parameters which are pulse widths (access latency, etc.) or memory ad-

dresses. This may be accomplished by providing an incrementable register (or meas-
urement memory location) for each possible range-of-values of the variable (for exam-
ple: <3, 3-5, 5-7, ..., 11-15, >15), as illustrated in Figure 9. At the end of each pulse

or upon each memory reference of the type in question (eg. write, instruction read,....),

the appropriate register is incremented. When the time comes to capture the distribu-

tion information, the current value of all of the distribution bucket registers must be

captured. This information is considerably more detailed than the average ratio data

captured in a two-counter system, and correspondingly increases the storage and
transfer requirements. One should note that resource utilization data only need be cap-

ture just before the counters are to reset, not at every time-capture trigger. The collec-

tion of data from a number of bucket register, and their resetting, would be time-

consuming if done sequentially, and expensive if done in parallel. Since "memory is

cheap", one could provide a number of banks of registers by using a large RAM.
"Resetting" would be accomplished by moving to a new bank (new area on the

memory) to collect data. The experiment would have to terminate when all of the

available banks had been used.
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The traditional "hardware monitor" as made by Testdata and others provides a

mode in which memory activity can be resolved into address ranges. In this case a

number of address ranges are established and an incrementable "bucket" register as-

signed to each range. Additional logic is provided to select only certain types of

accesses (instruction reads, data writes, etc., etc.). The same hardware discussed in the

previous section can easily be used to provide this function.

ADDRESS INPUT

FIGURE 9 - BUCKETS FOR CAPTURING DISTRIBUTION
VALUES OF A PARAMETER

A quite different set of attachment points is needed to capture address utilization

with a ^stribution bucket data collection system. Of course all (or nearly all) of the

address lines are needed. In addition various status lines must be made available to al-

low instruction, data, read, write, cache load, memory management table load, etc. ac-

tions to be distinguished.

A number of possible preprocessors have been discussed; their applications are

summarized in Table 2.
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PREPROCESSOR USE

Parameter
Counters to Obtain Averages Distribution

Numerator Denominator Value Buckets

Event duration Number of events Total duration Each event’s duration

Access latency Number of accesses
Total duration

of all waits
Latency on each access

Memory access

distribution
Not Used Not Used

For each range

of addresses

Event ratio Special events All events

Cache hit ratio Cache hits All accesses

Bus occupancy Occupied time elements All time elements

Percent time writing
Time spent in write

instructions

Total elapsed

time Not applicable

Percent time writing Time spent in write- Total elapsed

data data instructions time

Processor idle
Clock cycles where

processor idles
All clock cycles

Number of events Not used Count all events Not Applicable

Translation look-
Count misses

aside misses Not used Not Applicable

Transactions Count transactions

Table 2 - Preprocessor Use

SYSTEM SOFTWARE ASPECTS

Measurement events must be placed at all entries and exits from the operating sys-

tem so that user code and operating system characteristics may be separated (cf.

[MIT86]). The system software must assure that data collection addresses are always
present in the page tables; the delay and perturbation of a page fault caused by meas-
urement reading or writing is unacceptable. As stated above, in order to make use of

pattern-matching triggering practical, the details of determining the patterns to match
must be done for the user. The user should be allowed to insert measurement pseudo-
instructions in the source code, and the system software such as compilers, linkers, and
loaders should assemble the corresponding trigger patterns. These patterns would then

be written in a file for down-loading for setting up the measurement hardware, and to

be used in the data interpretation process. It will be impossible for most computer
purchasers to make any required measurement changes to the operating system and
other system software because of the highly proprietary nature of parallel system

source code, and the level of understanding and skill required to make the changes. In

any case it makes more economic sense for the measurement "hooks" to be inserted in

the system software its supplier.
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SUMMARY

The advent of multiprocessor computers has gready increased the difficulty of

designing, choosing, and using computers. Some of these architectures are particularly

unsuited to certain algorithms and programming styles. Only through the use of per-

formance measurement can the designer and user obtain the best results (or even ac-

ceptable results, in some cases). Performance may vary greatly depending on ap-

parently minor changes in the program or data set, so measurement and tuning are

pivotal. Performance measurement of multiprocessor computers can be accomplished
over a wide range of cost, accuracy and completeness. While some measurement tech-

niques require hardware support to be built-in by the manufacturer, others can be
offered as options with little cost to customers not requiring them, provided that the

hardware design provides access to the required signals. Accuracy of measurement
can be drastically impaired by perturbations caused by the measurement process.

Reduction in perturbation increases the cost and complexity of the measurement equip-

ment and process.

Measurement is accomplished in two parts; the establishment and recognition of

events in program execution, and the collection of facts about the operation of the

computer at and between events. As a practical matter, non-perturbing event detection

is either ambiguous or very complex and costly; it appears that one must tolerate a

minimal level of perturbation at each event to achieve an affordable system. This im-

plies that there is a minimum practical granularity in measurement In MIMD
machines, accurate timing and resource utilization collection requires hardware support.

There is a roughly linear relationship between cost and the number of resources that

can be measur^ (in detail) simultaneously. In many cases the test stimulus software

can be rerun while other resources are be measured, since resource measurement can
be non-perturbing.
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