
NBSIR 87-3624

Research Information Center

National Bureau of Standards

Gaithersburg, Maryland 20891

JAN 12 1939

The National Bureau of Standards
Programmers Guide for the Field

Materiel-Handling Robot (FMR)

S. Szabo

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Manufacturing Engineering

Robot Systems Division

Gaithersburg, Maryland 20899

September 1987

Sponsored by:

United States Army
Human Engineering Laboratory

Aberdeen Proving Ground, Maryland 21005-5001

NBSIR 87-3624

THE NATIONAL BUREAU OF STANDARDS
PROGRAMMERS GUIDE FOR THE FIELD

MATERIEL-HANDLING ROBOT (FMR)

S, Szabo

U.S, DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Manufacturing Engineering

Robot Systems Division

Gaithersburg, Maryland 20899

September 1987

Sponsored by:

United States Army
Human Engineering Laboratory

Aberdeen Proving Ground, Maryland 21005=5001

U.S. DEPARTMENT OF COMMERCE, Clarence J. Brown, Acting Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

'

.

-

October 4, 1987

1. Introduction _1
LI. Documentation Conventions 1

2. Sensor Modelling ,2

2.1. Sonar Modelling . 2

2.1.1. Model Data for the Sonar 2

2.1.2. Compiling the Sonar Model 2

2.1.3. Interpreting the Sonar Model 3

2.1.4. Calibrating the Sonar Model 3

2.2. Proximity Detector Modelling 3

2.2.1. Model Data for the Proximity Dectectors. 5

2.2.2. Compiling the Proximity Dectector Model. 5

2.2.3. Interpreting the Proximity Dectector Model. 5

2.2.4. Calibrating the Proximity Dectector Model 5

3.

Path Point Command for the FMR 8

3.1. Range Path Point Command. 9

3.2. Edge Path Point Command. 9

3.3. Equate Path Point Command. 9

3.4. Scan Path Point Command 10 .

3.5. Align-grip Path Point Command . 11

3.6. Approach-pallet Path Point Command. 12

3.7. Pickup-pallet Path Point Command 12

3.8. Goto-until-sw Path Point Command. 13

3.9. Return-pose Path Point Command. . 13

3.10. Delay Path Point Command 13

4. Programming the FMR Using RSL 14

4.1. Transfer of a Randomly Located 155mm Pallet 14

4.1.1. The RSL Plan for Random Pallet 14

4. 1 .2. The RSL Command to Transfer a Random Pallet 17

4.2. Transfer of a Randomly Located Array of 155mm Pallets. . . .- . .17

4.2.1. The RSL Plan to Transfer an Array of Pallets 17

4.2.2. The RSL Command to Transfer an Array of Pallets 21

5. The FMR PATH Level 22

5.1 PATH Commands 22

5.2. PATH Input Command Buffer 22

5.3. PATH Status Information 22

5.4. PATH Errors 23

October 4 S 1987

5.5. PATH Processing. 23

5.6. PATH Preprocessing. 23

5.6.1. SONAR-READ 23

5. 6.1.1. SELECT-SONAR. 23

5.6. 1.2. RESET-SONAR. . 24

5. 6.1. 3. OUTPUT-SONAR-SELECTION 24

5. 6.1.4. OUTPUT-SONAR-MODE. 24

5. 6.1. 5. READ-SONAR-DATA 24

5. 6.1. 6. GET-SONAR-STATUS 24

5. 6.1.7. SET-SONAR-RANGE 25

5.6.1. 8. GET-SONAR-DATA 25

5.6. 1.9. CLEAR-SONAR-REQUEST 25

5.6.1.10. SONAR-OFF 25

5.7. PATH Decision Processing 25

5.7.1. SEND-HALT 25

5.7.2. HALT 26

5.7.3. TRANSLATE 26

5.7.4. ROTATE 26

5.7.5. INIT-SONAR-MODEL-ARRAY 27

5.7.6. RANGE Path Point Routines 27

5.7.6. 1. RANGE-PPT 27

5.7.6.2. RANGE-PPT-INIT 27

5.7. 6.3. RANGE-SONAR-MODEL-INIT 27

5.7.6.4. RANGE 27

5.7.6.5. RANGE-GOAL 28

5.7.7. EDGE Path Point Routines 28

5.7.6. 1. EDGE-PPT . 28

5.7.6.2. EDGE-PPT-INIT 28

5.7.6.3. EDGE-SONAR-MODEL-INIT. 28

5.7. 6.4. EDGE. 28

5.7.6.5. 7EDGE 29

5.7.8. EQUATE Path Point Routines 29

5.7.8. 1. EQUATE-PPT 29

5. 7. 8.2. EQUATE-PPT-INIT. 29

5.7.8. 3. EQUATE-SONAR-MODEL-INIT. 29

October 4, 1987

5.7. 8.4. EQUATE. 30

5.7. 8.5. NOT-EQUATED 30

5.7.9. SCAN Path Point Routines. 31

5.7.9.1. SCAN-SONAR. 31

5.7.9.2. SCAN-ENTT 31

5.7.9. 3. SCAN-SONAR-MODEL-INIT. 31

5.7.9.4. SAVE-SCAN-READING. 31

5.7.9.5. ADD-TO-SONAR-REC. 31

5.7.9. 6. ADD-RECORD. 32

5.7.9.7. SET-PALLET-MIN-RANGE. 32

5.7.9.8. LEFT-EDGE-TEST. 32

5.7.9.9. LEFT-EDGE-ADJUST. 32

5.7.9.10. RIGHT-EDGE-TEST. 32

5.7.9.11. RIGHT-EDGE-ADJUST. 33

5.7.9.12. RETURN-SCAN-POSE 33

5.7.9.13. FIND-LEFT-CORNER-EDGE. 34

5.7.9.14. FIND-RIGHT-CORNER-EDGE. 34

5.7.9.15. SET-RETURN-POSE. 34

5.7.9.16. N1-N2-SET 34

5.7.10. ALIGN-GRIP Path Point Routines. 34

5.7.10.1. ALIGN-GRIP. 35

5.7.10.2. GRIP-RETRIEVE 35

5.7.10.3. TURN-ON-SONAR. 35

5.7.10.4. TEST-FOR-ALIGNMENT. 35

5.7.10.5. FIND-GRIP-SIDE-STATE 35

5.7.10.6. TILT-PROCESSING. 36

5.7.10.7. SHORT-SIDE-PROCESSING. 36

5.7.10.8. LONG-SIDE-PROCESSING. 36

5.7.10.9. SIDE-EQUATE. 37

5.7.10.10. SIDE-EQUATE-INIT. 37

5.7.10.11. SIDE-EDGE-INIT 37

5.7.10.12. SIDE-MOVE 37

5.7.10.13. SIDE-MOVE-INIT 37

5.7.10.14. -Z-DIRECTION. 37

5.7.10.15. +Z-DIRECTION 37

5.7.11. APPROACH-PALLET Path Point Routines. 38

October 4, 1987

5.7.11.1. APPROACH-PALLET 38

5.7.11.2. APPROACH-PALLET-INIT .38
5.7.11.3. APPROACH-PALLET-S-M-INIT. 38

5.7.11.4. CALC-Y-ROT. 38

5.7.11.5. CALC-X-ROT. 39

5.7.11.6. CALC-Y-TRANS 39

5.7.11.7. CALC-X-TRANS 39

5.7.12. PICKUP-PALLET Path Point Routines. 39

5.7.12.1. PICKUP-PALLET 39

5.7.12.2. PICKUP-PALLET-INIT 40

5.7.12.3. PICKUP-PALLET-SONAR-MODEL-INIT. 40

5.7.12.4. WAIT-RANGE-SET. 40

5.7.12.5. MOVE-TO-PALLET. . 40

5.7.12.6. Z-CORRECTION. 40

5.7.12.7. UPDATE-DISTANCE-TO-GOAL. 41

5.7.12.8. FORK-ALIGNMENT. 41

5.7.12.9. SWITCH-CORRECTION. 41

5.7.12.10. SWITCH-READ. 42

5.7.13. GOTO-UNTIL-SW Path Point Routines. 42

5.7.13.1. GOTO-UNTIL-SW 42

5.7.13.2. GOTO-UNTIL-SW-INIT. 42

5.7.14. RETURN-POSE Path Point Routine 42

5.7.14.1. RETURN-POSE. 42

5.7.15. DELAY Path Point Routine. 42

5.7.15.1. DELAY 42

5.7.15.2. DELAY-INIT. 43

5.8. PATH Postprocessing 43

5.9. Display and Debug Routines 43

5.9.1. DISPLAY-SONAR-SELECTION. 43

5.9.2. DISPLAY-PROXIMITY-SWITCHES. 43

Appendix A Flow Charts

RANGE
EDGE

EQUATE

SCAN

ALIGN-GRIP

October 4, 1987

APPROACH-PALLET

PICKUP-PALLET

gp

'

.

October 4, 1987

1. Introduction

The National Bureau of Standards is contracted by the United States Army's Human Engineering

Laboratory (HEL) to develop a high level sensory interactive robot controller based on the NBS
Real-Time Control System (RCS). The controller will be incorporated within the HEL Field

Material-Handling Robot (FMR). The primary task of the FMR is the handling of palletized loads;

the robot is equivalent to a sensor guided fork lift.

The basic RCS configuration is extensively documented in the NBS Real-Time Control System
User's Reference Manual. The following document is the supplement to the RCS Reference Manual.

It describes the extensions to RCS that are specific to the FMR. It is assumed that the audience has

read the RCS Manual before he or she attempts to read this manual. In any case references to the

RCS Manual are given and the RCS Manual table of contents and index should also provide some
assistance.

The Robot Sensor Language (RSL), developed at NBS for use with the FMR Real-Time Control

System, features sensory interactive off-line (pre-planned) programming. An in depth description of

RSL is also presented in the RCS Reference Manual. Several Path Point commands were developed

to make use of the FMR sensor package and to program the type of tasks NBS envisioned the FMR
would be expected to perform.

Four sections are covered in this document: the sensor modelling techniques used in conjunction

with the NBS sensor package, the FMR Path Point commands, two RSL programs used for

transferring 155mm pallets, and the real-time PATH level code that executes the Path Point

commands.

1.L Documentation Conventions

This document uses bold face text to distinguish between program (software), statements and text.

Program statements include names of routines, variables and commands that can be entered from a

terminal into the RCS. One exception is the bold face used to highlight section numbers and titles.

The syntax for the path point commands in Section 2 use the vertical bar to separate parameter fields.

The FORTH programming language supports some documentation conventions; primarily the left and
right parenthesis to bound comments and the percent sign to indicate the remaining portion of the line

is a comment.

1

September 23, 1987

2. Sensor Modelling

The NBS Real-Time Control System for the FMR utilizes two types of sensors: Acoustic sensors

(ultrasonic sonars) provide range data while optical emitter/detector pairs provide proximity

information. (Detail information on the sensors can be found in the NBS GFE Technical Data

Package for the FMR May 1986.) Two modelling schemes were developed which allow the RCS
controller to effectively use the sensors. One scheme models each of the ultrasonic ranging devices.

The second scheme models the relationships between the proximity detector configurations and the

pallets. The following sections describe the modelling and calibration techniques for each sensor.

2.1. Sonar Modelling

The ultrasonic sonars used in the FMR sensor package have been characterized through a process of

benchmark testing and live usage. The results of the characterization are embedded in a model used

by the control system. The model is stored as a data structure within the RCS file system. The
primary benefit of such a scheme is the separation of data from control procedures. Previously the

sonar characteristics were stored inside the control level or were entered by the user as parameters

within a Path Point command. Any changes to the sonars required modification of the control level

or having the user perform some calculation and entering the results through the command call. With
the sonar model, any changes only require modification of the model represented in the data structure.

The PATH control level interprets the model for data necessary in the execution of control functions

such as sensor guided translations and rotations.

2.1.1. Model Data for the Sonars

The model for each sonar consists of the following data stored as fields in a RCS record structure.

snr-name

snr-id

snr-type

snr-axis

snr-mtb

snr-angle

snr-min-range

The name of the sonar; one of the names contained in the variable owner
snr-names.

An identification number, 0 thru 15.

The sonar type; currently Polaroid (0) and Migatron (1) are supported.

The axis of the tool point frame (X,Y,Z) which is parallel to the sonar line of

sight axis.

Name of a sonar movetable previously defined which gives the position of a

sonar relative to the tool frame. The movetable does not require any rotations

since currently only the position of the transducer is used.

The sonar typically generates a field pattern similar to a cone. This record

field holds the full angle of the cone in degrees.

The minimum effective range of the sonar.

snr-max-range The maximum effective range of the sonar.

2.1.2.

Compiling the Sonar Model

The RSL level word -snr- compiles the model. The first step is to edit a block from the RSL
level to include all the parameters associated with a sonar. For example:

2

September 23, 1987

-snr- snr-0

0
Polaroid
X
snrO-mtb

The next step is to load the block which compiles the parameters into the following record and file:

50 bytes VAR-0 snr-model-para
6 strv "snr-name"

20 rec FILE SONAR-MODEL-FILE

2.1.3. Interpreting the Sonar Model

Once the model is compiled into the RCS file system, the PATH level can interpret the

SONAR-MODEL-FILE file. To facilitate retrieving the record of a sonar the PATH level

maintains an array of pointers, snr-model-array, which maps a physical sonar number (0 thru 15)

into a record in the file SONAR-MODEL-FILE. The routine INIT-SNR-MODEL-ARRAY
maintains the array and is executed at power up. An element in snr-model-array that contains a 0#
indicates the sonar does not exist. The user can retrieve the record of a sonar from within a routine in

the following manner:

SONAR-MODEL-FILE % set fde

snr-model-array { sonar# } => record# % set record# with desired pointer

retrieve % retrieve model record

An example of how to use the sonar model can be found in the EQUATE Path Point command
routines located on the PATH level (section 5.7.8 . 3. EQUATE-SONAR-MODEL-INIT).

2.1.4. Calibrating the Sonar Model

The only calibration required for the sonar model is the position of the transducer. A movetable is

used to define the position of the sonar relative to the tool coordinate frame. The location of the tool

frame is specified by the wrist frame and an added tool movetable called TOOL-MTB. The tool

frame is specified by the programmer and typically only changes with the end-effector. If the tool

frame is changed, then an appropriate change must also be made in the sonar movetables.

2.2. Proximity Detector Modelling

The proximity detectors for the FMR are used to prevent the fork tines from colliding with the pallet

support structures (feet) during insertion. Eight detectors are positioned at the tip ofFMR fork tines

(see Figure 2.1.). Figure 2.1. shows the relationship between the fork and a 155mm pallet support

structure prior to insertion (perspective view). The top view shows the desired alignment between
the fork and the structure. An enlargement of that view illustrates the relationship between the left

10.0

12.5

128.0

iv

iv

iv

iv

fv

fv

fv

snr-id

snr-type

snr-axis

snr-mtb- A

snr-angle

snr-min-range
snr-max-range

3

September 23, 1987

tine with it’s proximity detectors and the pallet foot (right tine is a mirror image with detectors 4-7).

Note that the proximity detector's field of view is very narrow (1-3 degrees) and the sensitivity of the

detector allows them to pickup obstacles at approximately 4-6 inches (this is adjustable).

Figure 2.L The relationship between the fork proximity detectors and a 155mm pallet.

The proximity detector configuration allows the FMR to correct a misalignment (translation along the

Z axis of the tool frame) of approximately plus/minus six inches from the ideal insertion position.

Figure 2.2 shows an example of how the proximity sensors 1, 2 and 3 detect a misalignment in the -Z

direction.

4

September 23, 1987

Perspective View

Proximity Detectors

Figure 2.2. The Proximity sensors detecting a misalignment between the fork and pallet.

Detector 0 limits the worst case misalignment (6 inches) that the FMR can correct in the -Z direction.

The Path Point command pickup-pallet uses the proximity detector configuration to correct

misalignments (sections 3.7. and 5.7.12.).

The modelling for the detectors uses a simple technique which optimizes run-time execution by
compressing as much information as possible into the model in an off-line fashion. The technique is

to compile a look-up table which direcdy maps an active detector into the necessary motion to clear

the obstacle. For the case of the 155mm pallets the look-up table is generated by placing the pallet in

front of the fork tines to block a particular combination of detectors. The pallet is then moved until

the detectors are clear from the foot Finally the movement is measured and stored into the look-up

table. This is repeated for all combinations of detector blockages. At run-time the detectors are read

and the combination of the active detectors are used to directly access the lookup table and retrieve the

required movement to clear the blockage.

2.2.1. Model Data for the Proximity Detectors

Two floating point arrays are used to store the look-up tables for the left and right tine proximity

detector configurations: 1-tine-calib-table and r-tine-calib-table. Each element in the array

contains either a value indicating the translation motion for the associated active detectors or an error.

Currently the error value is the number 0.0 and the error condition indicates an impossible

combination of active detectors. As an example, in the case of the 155mm pallet it is impossible for

detectors 1 and 3 (see Figure 2.2.) to be active while detector 2 is not. If this does occur it indicates

one of the detectors are bad, misaligned or possibly obstructed by dirt. Another possibility is the

pallet foot does not measure up to expectations.

2.2.2. Compiling the Proximity Detector Model

The two tine calibration tables are edited into a power-up block on the PATH level. The blocks are

5

September 23, 1987

loaded each time the PATH level is brought up. If any modification is made to the table, the block

must be reloaded. It is not necessary to save the table (ie. MEM>DISK) since the table is always

loaded during power-up. An example of the load block for the left tine table follows. The comments
(within parentheses) serve two purposes: first they show the array element number and second they

illustrate the active detectors associated with the entry.

(0000) 0.0

(0001) 8.25

(0010) 6.0

(0011) 7.0

(0100) 4.0

(0101) 0.0

(0110) 4.875

(0111) 5.75

(10 0 0) 1.875

(

1

0 0 1) 0.0

(1010) 0.0

(1011) 0.0

(1 10 0) 3.625

(1101) 0.0

(1110) 3.875

(1111) 0.0 ==> 1-tine-calib-table

2.2.3. Interpreting the Proximity Detector Model

The Path Point command pickup-pallet is an example of how the proximity detector model is

interpreted. The NBS system currently only supports the model for the 155mm pallet. The system

can easily be extended to support a model for each different type of pallet. This would require the

development of a model compiler word similar to the sonar model compiler -snr-.

2.2.4. Calibrating the Proximity Detector Model

The look-up table is generated by positioning the pallet in front of each proximity sensor and moving
the pallet until it no longer detects the foot. This measures the field pattern, the position and the

orientation of the sensor (with relation to the pallet foot) while also measuring the reflective properties

of the pallet surface. The entry into the table is the measurement of the distance the pallet is moved.
A plus or minus sign is included to indicate the direction the fork needs to travel to clear the foot.

This process must be repeated for each combination of active detectors. The remaining combinations

of active detectors that cannot be achieved by positioning the pallet are flagged with a 0.0 indicating a

possible error condition.

Achieving each combination of sensors is not difficult. It is recommended that a pallet be placed on
wheels so that it can be slowly passed by the detector configuration until there is a change in the

combination of active sensors. The change can be seen by viewing the LED indicators on each

proximity board in the interface chassis or by using the DISPLAY-PROXIMITY-SWITCHES
routine (section 5.9.2.). A sheet of paper taped to the floor is used to mark each change in the

detector combination and the position where the change occurred. Once complete the paper is

removed and measurements are made from the point on the paper where each combination of

detectors were active to the common point where all detectors were inactive. Remember that the

measurement must reflect the motion and direction the fork needs to travel to guarantee the detectors

become inactive. Figure 2.3 shows a sample sheet generated during the calibration of the left tine

proximity detector configuration with a 155mm pallet foot. Each occurrence of a change in active

detector combinations is recorded while the pallet is moved from left to right. The active detectors are

shown starting with a 0000 to indicate all detectors are inactive. Detector 0 is the first to see the pallet

6

September 23, 1987

and detector 3 is the last.

Active Detectors 0000 1000 1100 1110 0110 0111 0011 0001 0000

Figure 2.3. Example calibration of left fork tine proximity detector configuration.

7

September 23, 1987

3. Path Point Commands for the FMR

The FMR Path Point commands give the programmer the capability to position and orient the FMR
fork end-effector using sensor feedback supplied by the FMR sensor package. Figure 3.1 shows a

fork mockup with the NBS sensor package. A coordinate frame is shown attached to the fork and is

useful for specifying tool based motions. For the purpose of this document, it is sufficient to

visualize the position of the frame as between and parallel with the tips of the tines. The package

currently consists of eight Polaroid and five Migatron ranging devices, and eight optical

emitter/detector proximity switches (the NBS FMR Technical Data Package, Section 5.6.1.

SONAR-READ and Section 2.Sensor Modelling give further information on the sensor package).

sO - s7 Proximity Switches

pO - p9 Polaroid Range Devices

mlO - ml5 Migatron Range Devices

Figure 3.1. The FMR Sensor Package with Tool Coordinate Frame

The Path Point commands can be combined in a logical sequence to perform such tasks as aligning

the fork with a truck bed, locating a randomly oriented pallet and transferring an array of pallets.

Briefly the range and edge commands provide translation and pallet recognition capabilities; equate
allows the fork to be rotated and aligned; scan, align-grip, approach-pallet, and
pickup-pallet are specialized commands for locating a 155mm pallet, determining the pallet entry

side, aligning and preparing the fork for insertion, and inserting the tines respectively. Some
additional commands are also included. A description of the Path Point commands and their syntax is

discussed next.

The parameters for a Path Point command vary but two types of parameters are supported by the base

RSL system: the Trajectory Phrase and the Location Phrase. In this section, the words traj phrase
and loc phrase are used for the Trajectory Phrase and the Location Phrase respectively. Their

specific format is explained in the RCS Manual (Appendix B-70). The reader can look ahead to

Section 4 for examples of the usage of Path Point commands in the context of an RSL program. The

8

September 23, 1987

specific commands are now examined.
3.1.

Range Path Point Command

range
|
r-sonar

|
r-range

|
r-threshold

|
r-axis

|
halt-enable

|

j

loc phrase
|

|
traj phrase

|

The range command is used to position the fork a specified range from a target. The parameters

specify a move along the r-axis axis of the cartesian frame specified by the loc phrase (only

tool nul frame is supported) to the range measured by the sonar r-sonar#, within

r-threshold. The commanded translation is positive if r-range - r-sonar#{range-value} > 0

({range-value} is the range returned by the sonar r-sonar#). A sonar-limit error is returned if

a range is reported below that of the the minimum sonar range detectable (the minimum is derived

from the model of the sonar). This can occur if the wrong sonar number is entered or if the

wrong sonar is selected (ie. Polaroid vs. Migatron).

r-sonar#
r-range

r-threshold

r-axis

halt-enable

{0-15 }
- Sonar to use at execution time.

{ floating point }
- Desired sonar range to achieve.

{ floating point }
- Acceptable threshold for desired range.

{ X, Y, Z }
- The axis of translation; one of the cartesian axes of the location

phrase.

{ true, false }
- The robot will come to a complete halt after this command if

the flag is true.

3.2.

Edge Path Point Command

edge
|
e-sonar#

|
e-range

|
e-delta

|
halt-enable

|

j

loc phrase
|

|
traj phrase

|

The edge command is used to locate edges. An edge is defined as a difference in range readings

of at least e-delta. The set of range readings bounded by e-delta must also include the value

specified in e-range. In other words e-delta describes the magnitude of the edge and e-range
declares at what distance to search for it (see Section 5.7.7.4. EDGE). If the halt-enable flag

is true the system initiates a halt when the sonars first satisfy the edge conditions. The command
does not servo to the sensor condition. If the sonar condition is not satisfied after the halt is

completed (due to overshoot, for example), the error sensor-cond is reported. If the robot

reaches the location before the sonar condition is satisfied the error point-reached is reported.

The loc phrase is the robot goal and is used to specify where to search for the edge. The traj

phrase is used to specify the type of motion. A joint trajectory allows fast searches of large

areas. A cartesian trajectory will force the fork to travel in a straight line.

e-sonar# { 0 - 15 }
- Sonar to use at execution time,

e-range { floating point }
- Desired range of edge,

e-delta { floating point }
- Desired magnitude of edge.

halt-enable { true, false }
- The robot will come to a complete halt after this command if

the flag is true.

3.3.

Equate Path Point Command

equate
|
e-lsonar#

|

e-2sonar#
|

|
e-threshold

|
spare

|
e-axis

|
halt-enable

|

|
loc phrase

|

9

September 23, 1987

|
traj phrase

|

The equate command is used to rotate the fork to achieve balanced range readings between the

two sonars, e-lsonar# and e-2sonar#. The parameters command a rotation about the e-axis

axis of the cartesian frame specified by the loc phrase (only the tool nul frame is supported)

until the two selected sonars read the same, within e-threshold. Since the rotation commanded
will be positive about an axis if sonar#l{ range-value) - sonar#2{range-value) > 0 it is

necessary to consider the order of the selected sonars. As an example if the programmer desired

to use a pair of down-looking sonars to align with the floor, sonars 0 and 3 are used to command
a rotation about the X axis (see Figure 3.1.). To achieve the proper direction parameter sonar#l
is set to 3 and sonar#2 is set to 0.

sonar#l
sonar#2
threshold

spare
axis

halt-enable

{0-15}
{ 0 - 15 }

- The two sonars to equate.

{ floating point }
- Acceptable threshold for balanced sonars.

{ 0.0 }
- Not used.

{ X, Y, Z }
- The axis of rotation; one of the cartesian axes of the tool

frame.

{ true, false }
- The robot will come to a complete halt after this command if

the flag is true.

3c4c Scan Path Point Command

scan
|
s-select

|
skip-till

|
pallet-area

|

j
closest-point-delta

|
spare

|
scan-return-pose- A

|
halt-enable

|

j
loc phrase

|

|
traj phrase

|

This is a high level Path Point command used to determine the nominal location of a rectangular

object such as a 155mm pallet. The robot scans an area taking range readings starting from it’s

present position and ending at loc phrase. Each range reading is linked to the position of the

robot when the sonars are read and then stored into the file SONAR-FILE. The scan
command returns the nominal pose of the object in the record pointed to by
scan-return-pose- A (Section 5.7.9.12. RETURN-SCAN-POSE describes the nominal
pose of a pallet). If a pallet is not found the error no-pallet is returned.

s-select

skip-till

pallet-area

closest-point-delta

spare
scan-return-pose- A

{0-15)
- Sonar to use at execution time.

{ integer)
- Skip this number of valid sonar readings before

storing the value with the robot pose. This conserves the number
of readings taken but reduces the resolution of the scan.

{ floating point }
- Used as the maximum range where the pallet

can be from the sonar. The first and last readings of the scan less

then max-object-range determine the right and left edge of the

pallet respectively.

{ floating point }
- Sets the delta of range values that can be

grouped together with the closest range. This group then provides

information such as whether a side or a comer of the pallet is the

closest feature of the pallet to the robot (See 5.7.9.12.

RETURN-SCAN-POSE).
{ 0 }

- Not used.

{ Ascii string }
- Names a pose which scan sets to the nominal

pose of the pallet as derived from the search. The parameter is the

name of the pose, the compiler searches the POSE-FILE and

stores the record# of the pose in the parameter. An error will be

10

September 23, 1987

returned if the pose has not been previously defined,

halt-enable { true, false)
- The robot will come to a complete halt after this

command if the flag is true.

3.5. Align-grip Path Point Command

align-grip perm-edge-val
|

perm-equal-val
|

spare
|
side-equate-thresh

|

max-short-side
|
min-short-side

|

tilt-ratio
|
halt-enable

|

loc phrase
|

goto traj phrase
|

edge traj phrase
|

equate traj phrase
|

This is a high level Path Point command which utilizes information from scan and current sonar

data to determine if the long side of a 155mm pallet is facing the robot. It is assumed the fork is

within 25 inches of the pallet and the orientation of the YZ plane of the fork with respect to the

pallet falls into one of three cases: Long-case where the fork faces the pallet long side, Short-case

where the fork faces the pallet short side and Tilt-case where the fork faces a comer of the pallet.

Edge, equate and goto type commands are performed to roughly align the fork with the long

side of the pallet.

perm-edge-val

perm-equal-val

spare
side-equate-thresh

max-short-side

min-short-side

tilt-ratio

halt-enable

{floating point }
- This value is added to the current sonar range value

to set the range trigger for subsequent edge routine (See 5.7.10.7.

SHORT-SIDE-PROCESSING and 5.7.10.8.

LONG-SIDE-PROCESSING).
{floating point }

- Two sonar range values are considered equal if

their difference is less than this value. Used in Long-case to verify

that the fork is aligned with the pallet long side (See 5.7.10.8.

LONG-SIDE-PROCESSING).
{ 0.0 }

- Not used.

{ floating point)
- Sets the threshold value for equate commands (see

equate).

{ floating point)
- Maximum length of pallet short side. Used in

Long-case to test if short side of pallet is actually facing the fork (See

5.7.10.8. LONG-SIDE-PROCESSING).
{ floating point }

- This parameter is the minimum measurement of

the short side of a pallet. It is used if the pallet is not in Tilt-case to

determine if the pallet is in Long or Short-case. If the sonar readings

show that the measurement of the side perpendicular to the fork is

greater then min-short-side then that side is the long side, ie the

side parallel to the fork is the short side (See 5.7.10.4.

TEST-FOR-ALIGNMENT).
{ integer value between 3 and 5 }

- This is used to test if the pallet is

tilted with respect to the fork. The Path Point command scan returns

data regarding the left edge, the right edge and the closest feature of

the pallet. Two values indicating the distance between the edges and
the closest feature are compared and if their difference is greater then

tilt-ratio then the probability is high that the pallet is tilted with

respect to the fork (See 5.7.10.4. TEST-FOR-ALIGNMENT).
{ true, false)

- The robot will come to a complete halt after this

command if the flag is true.

11

September 23, 1987

3.6. Approach-pallet Path Point Command

approach-pallet
|
t-x-sonar#

|
t-x-range

|
t-x-threshold

|

j
t-y-sonar#

|
t-y-range

|
t-y4hreshold

j

|
r-x-sonar#l

|
r-x-sonar#2

|
spare

|

r-x-threshold
|

|
r-y-sonar#l

j
r-y-sonar#2

|
spare

j
r-y-threshold

j

|
loc phrase

|

j
traj phrase

|

This command handles the final approach to the 155mm pallet long side by achieving the proper

height and orientation of the fork prior to inserting the tines beneath the pallet. Four tool motions

are calculated in a manner similar to the range and equate Path Point commands. Ranges are

specified by the t-x- and t-y- parameters signifying translation along the X and Y axes. Equates

are specified by the r-x- and r-y- parameters signifying rotation about the X and Y axes. The
parameters are the same as the parameters for range and equate.

t-x-sonar#

t-x-range

t-x-threshold

t-y-sonar#

t-y-range

t-y-threshold

r-x-sonar#l

r-x-sonar#2
spare
r-x-threshold

r-y-sonar#l
r-y-sonar#2

spare
r-y-threshold

{0-15 }
- Desired sonar for X axis ranging (see range).

{ floating point }
- Desired sonar range to achieve.

{ floating point }
- Acceptable threshold for desired range.

{0-15 }
- Desired sonar for Y axis ranging (see range).

{ floating point }
- Desired sonar range to achieve.

{ floating point j
- Acceptable threshold for desired range.

{0-15}
{ 0 - 15 }

- Desired sonars for X axis rotation (see equate).

{ 0.Q }
- Not used.

{ floating point }
- Acceptable threshold for balanced sonars.

{ 0 - 15 }

{ 0 - 15 }
- Desired sonars for Y axis rotation (see equate).

{ OoO }
- Not used.

{ floating point }
- Acceptable threshold for balanced sonars.

3.7. Pickup-pallet Path Point Command

pickup-pallet
|
p-p-sonar

|
p-p-sonar-offset

|
p-p-z-correction

|

j
spare

|
halt-enable

|

j
loc phrase

|

j
traj phrase

|

This command insures that the robot fork tines do not hit the 155mm pallet feet as the fork is

inserted. Optical proximity sensors (see Figure 3.1) detect when the tines are too close to the

pallet feet. The p-p-sonar sonar is used to initially obtain the distance the fork must travel

before stopping the robot. The programmer can use the parameter p-p-sonar-offset to modify
the distance the fork will travel to the pallet in the following manner: p-p-sonar#{value} -

p-p-sonar-offset = distance to pallet. For example if p-p-sonar-offset equals 4.0, the fork

will stop four inches from the pallet. When a proximity sensor senses a pallet foot the robot

translates in the appropriate Z axis direction until the sensor is no longer active. Because of the

sensor characteristics an additional translation can be specified in p-p-z-correction which
forces the fork to travel further after the sensor has cleared the pallet foot.

p-p-sonar {0-15 }
- Desired sonar for determining distance to pallet load,

p-p-sonar-offset { floating point }
- Desired sonar range to achieve,

p-p-z-correction { floating point j
- Desired Z axis motion to be travelled after sensor

clears the pallet foot. This parameter can be used to help center the fork

12

September 23, 1987

since there may be a large dead-band where none of the fork tine

proximity sensors can detect the pallet feet,

spare { 0.0 }
- Not used.

3.8. Goto-until-sw Path Point Command

goto-until-sw
|
desired-sw

|
desired-sw-status

|

j
loc phrase

|

j
traj phrase

|

The goto-until-sw command operates similarly to the goto Path Point command except the

motion is terminated if the selected switch specified by desired-sw achieves the desired

condition as indicated by desired-sw-status. The error point-reached is returned if the

robot reaches the goal specified by loc phrase prior to satisfying the switch condition.

switch { 0 - 7 }
- The desired switch. Currently eight switches on the fork

tines can be used. Additional switches can be integrated, up to sixteen

total.

switch condition { open, closed }
- The desired switch condition.

3.9.. Return-pose Path Point Command

return-pose
|

return-pose-para- A
|

This command sets the pose record specified by return-pose-para- A (defined in the data

dictionary) to the current pose of the robot. This command is used to dynamically store a pose

after the robot has moved to a position (usually under sensor control).

return-pose-para- A
{ ASCII string }

- The name of the desired pose to initialize

(must have been previously defined). The compiler searches the

POSE-FILE and stores the record# of the pose in the

parameter. An error will be returned at compile time if the pose
has not been previously defined.

3.9.. Delay Path Point Command

delay
|
delay-#-cycles

|

This command is used to introduce delays between the execution of other Path Point commands.
An example of it's usage is to allow the fork to stabilize during complete halts. delay-#-cycles

specifies the number of control cycles to delay before terminating the command.

delay-#-cycles { integer }
- The number of control cycles to delay.

13

September 24, 1987

4. Programming the FMR Using RSL

The primary command for the FMR is TRANSFER. The TRANSFER command is decomposed
by the TASK level into six steps which specify the paths for the pickup and release of an object. All

six paths must be defined and compiled from the RSL level (RCS Manual Chapter 10 pages 10-8 thru

10-10) before the TRANSFER command is executed. The six paths are:

1) move-to
2) approach-pickup

3) depart-pickup

4) move-to

5) approach-release

6) depart-release

Two examples of RSL programs (consisting of the six paths) are now given. The first is a plan to

locate and transfer a randomly oriented pallet from a truck bed to a conveyor. The second example is

a plan to locate and transfer an array of pallets from a truck bed to a conveyor. A randomly oriented

pallet has no constraints on which side of the pallet faces the robot and therefore the controller must
determine the proper entry side. The array of pallets is constrained such that it's orientation does not

vary from a predefined orientation by greater then 10 degrees and the entry side of each pallet within

the array is known apriori.

4.1. Transfer of a Randomly Located 155mm Pallet

4.1.1. The RSL Plan for Random Pallet

The plan to transfer a 155mm pallet assumes a pallet is randomly positioned on a truck bed and the

location of the truck and the conveyor have been taught before hand. Briefly the plan commands the

robot controller to: align the fork with the truck bed, search for a 155mm pallet, determine the entry

side of the pallet, insert the fork tines and finally place the pallet on the conveyor. Figure 4.1. shows
a truck loaded with several pallets; the random pallet scenario handles only one pallet on the truck.

(This path moves the robot to a starting position before scanning the truck.)

-path- move-to PALLET 1 Soc HOME loc TRUCK

(Go to a predefined location where the truck bed will be using a fast joint

trajectory motion.)

-ppt- goto goal nul

joint 30.0 30.0 5.0

(Achieve proper roll orientation.)

-ppt- equate 0 2 .5 .0 X true

tool nul

cart .2 .15 .25 .3 .2 .25

(Achieve proper pitch orientation.)

-ppt- equate 3 0 .5 20.0 Z true

tool nul

cart .2 .15 .25 .3 .2 .25

(Achieve proper elevation from truck bed.)

-ppt- range 0 18.00 .50 Y true

tool nul

14

September 24, 1987

cart .2 .15 .25 .3 .2 .25

(This path scans the truck from left to right searching for a single pallet,

aligns the fork with long side of pallet, and engages the fork.)

-path- approach-pickup PALLET 1 loc TRUCK

(Search for the pallet using a joint trajectory with SCAN-MTB defining the

destination of the search.)

-ppt- scan 0 0 50.0 .5 0 PALLET-POSE true

tool SCAN-MTB
joint 25.0 25.0 5.0

(Scan has returned the nominal position of the pallet in PALLET-POSE.
Now go to the location PALLET-LOC which is defined as the pose
PALLET-POSE with an offset to safely position the fork in front of the

pallet.)

-ppt- goto loc PALLET-LOC
joint 25.0 25.0 1.0

(Make sure fork is within 25 inches of pallet before executing align-grip.)

-ppt- range 1 20.00 1.0 X true

tool nul

cart .2 .15 .25 .3 .2 .25

(Align with the pallet long side.)

-ppt- align-grip

4.0 8.0 0.0 .75 15.0 14.0 5
true tool nul

cart .3 .15 .25 .3 .15 .25

cart .3 .15 .25 .3 .15 .25

cart .3 .15 .25 .3 .15 .25

(Lower fork so that the lower base of the pallet acts as the sonar target.)

-ppt- range 15 2.0 0.25 Y true tool nul
cart .2 .15 .25 .3 .2 .25

(Achieve fine alignment with pallet entry side)

-ppt- approach-pallet
7 17.75 .5

15 28.5 .25

10 15 .0 .25

7 6 .0 .5 true

cart .3 .07 .25 .3 .07 .25

(Guide fork underneath the pallet until within range of sonar 12.)

-ppt- pickup-pallet 7 4.0 0.5 true

cart .3 .3 .25 .3 .15 .25

(Use sonar to achieve precise servoed distance.)

-ppt- range 12 3.0 .25 X true

tool nul
cart .2 .15 .25 .3 .2 .25

15

September 24, 1987

(Move in the final distance to engage pallet.)

-ppt- goto tool PALLET-ENGAGE
cart .3 .3 .25 .3 .3 .25

(This path departs the from the truck by picking up the pallet and tilting it

back)
-path- depart-pickup PALLET 1 loc TRUCK

(Goto PALLET-UP1 which is an offset up from current position under
pallet.)

-ppt- goto tool PALLET-UP1
cart .3 .3 .25 .3 .3 .25

(PALLET-UP2 tilts pallet back.)

-ppt- goto tool PALLET-UP2
cart .3 .3 .25 .3 .3 .25

(The second move-to path describes a movement to an intermediate safe

position.)

-path- move-to PALLET 1 loc TRUCK loc CONVEYOR

(CONV-SAVE is predefined safe position near the conveyor which can be
approached using a high joint velocity.)

-ppt- goto loc CONV-SAFE
joint 10.0 30.0 5.0

(This path describes the approach to the conveyor and the release of the

pallet. CONVEYOR location has been taught beforehand.)
-path- approach-release PALLET 1 loc CONVEYOR

(CONV-UP1 is an offset up from CONVEYOR goal. Remember the goal

type takes the movetable, CONV-UP1, and adds it to the path goal,

CONVEYOR.)
-ppt- goto goal CONV-UP1

joint 10.0 30.0 5.0

(CONV-UP2 removes the tilt of the pallet with respect to the CONVEYOR.)
-ppt- goto goal CONV-UP1

cart .3 .3 .25 .3 .3 .25

(Place the pallet at the goal: CONVEYOR.)
-ppt- goto goal nul

cart .3 .3 .25 .3 .3 .25

(Extract the fork tines.)

-path- depart-release PALLET 1 loc CONVEYOR

(CONV-BACK extracts the fork from the CONVEYOR.)
-ppt- goto goal CONV-BACK

joint 10.0 30.0 5.0

16

September 24, 1987

4.1.2. The RSL Command to Transfer a Random Pallet

The command to transfer the pallet based on the plan described in Section 4.1.1. has the following

syntax:

TRANSFER PALLET 1 loc TRUCK loc CONVEYOR

The command is entered from the TASK level (RCS Manual Chapter 9.4, page 9-7). The robot must
currently be at the location HOME or a nul-path error will be generated (unless another path is

mistakenly found).

4.2. Transfer of a Randomly Located Array of 155mm Pallets

4.2.1. RSL Plan to Transfer an Array of Pallets

The RSL plan to transfer an array of pallets illustrates some concepts of the NBS controller. The first

concept is that of the array. The array is a data structure defined by the programmer from the RSL
level (RCS Manual Chapter 10). For the FMR the array allows a collection of pallets to be organized

as sectors in a structured manner.

The second concept is how the TASK level interprets the array structure during the execution of the

TRANSFER command. The TRANSFER command syntax includes a field (the sector list) that

allows the programmer to specify which pallets (sectors) and in what order the pallets (sectors) are to

be transferred. If more than one pallet is to be transferred the Task level will step through the array.

Each step through the array consists of using the array movetables, which give the dimensions of

each sector, to re-position the fork between the transfer of each pallet.

Figure 4.1. depicts the scenario associated with the array transfer plan. A partially filled 2x3 array

(sectors 1 and 5 are empty) is randomly situated on a truck bed. The FMR searches for sector 0 of

the array. This sector is used to define the position and the orientation of the array. As stated earlier,

all other sectors are related to the array defining sector by the array movetables. The plan takes into

account minor deviations in position (plus/minus six inches) and orientation (plus/minus five degrees)

in the placement of a pallet withing a sector. A more sophisticated plan would handle worse
alignments but this results in increased sensor processing and consequently longer transfer cycle

times.

17

September 24, 1987

Figure 4.1. FMR searching for an array of 155mm pallets randomly situated on a truck.

Because the source of the TRANSFER command is an array (section 4.1.2. addresses the syntax of

the TRANSFER command) all six paths are executed for each sector of the array to be transferred.

There is one exception. Since the position of the array is not known beforehand the first iteration of

the TRANSFER command must include a search for the array, or in other words, the search for

sector 0 is different from the search for the remaining sectors. Two differing move-to paths are

used to accommodate the initial array search from the subsequent pallet search operations. The
TRANSFER command reconciles which path to choose using parameters from the command and
the paths. In the example plan, the move-to which describes the path from the location HOME to

the array TRUCK is executed the first time to search for the array. Each remaining sector uses the

move-to which describes the path from the location CONVEYOR back to the array TRUCK.
Note that this path takes advantage of the array structure to execute a minimum search in acquiring the

pallet.

(Scan the truck from left to right searching for the left edge of the array,

align with the pallet in sector 1, engage the fork tines, and return the

location of the array)
-path- move-to PALLET 1 loc HOME arr TRUCK

(Go to a predefined location where the truck bed will be using a fast joint

trajectory motion.)

-ppt- goto goal nul

joint 30.0 30.0 5.0

(Achieve proper roll orientation.)

-ppt- equate 0 2 .5 .0 X true

tool nul

cart .2 .15 .25 .3 .2 .25

18

September 24, 1987

(Achieve proper pitch orientation.)

-ppt- equate 3 0 .5 20.0 Z true

tool nul

cart .2 .15 .25 .3 .2 .25

(Achieve proper elevation from truck bed.)

-ppt- range 0 18.00 .50 Y true

tool nul

cart .2 .15 .25 .3 .2 .25

(Now look for the edge of the array.)

-ppt- edge 1 50.0 .0 false

tool SCAN-MTB
joint 25.0 25.0 5.0

(Guarantee sonar 1 is on the first pallet.)

-ppt- goto loc tool -CONE
joint 25.0 25.0 1.0

(Since two sonars, 1 and 5, are on pallet align with pallet.)

-ppt- equate 1 5 .5 0.0 Y true

tool nul

cart .2 .15 .25 .3 .2 .25

(Make sure fork is within 25 inches of pallet.)

-ppt- range 1 20.00 1.0 X true

tool nul

cart .2 .15 .25 .3 .2 .25

(Bring sonar 8 onto the pallet.)

-ppt- edge 8 28.0 .0 false

tool -TOOL
cart .2 .15 .25 .3 .2 .25

(Lower fork so that the lower base of the pallet acts as the sonar target.)

-ppt- range 15 2.0 0.25 Y true

tool nul

cart 2 .15 .25 .3 .2 .25

(Achieve fine alignment with pallet entry side)

-ppt- approach-pallet
7 17.75 .5

15 28.5 .25

10 15 .0 .25

7 6 .0 .5 true

cart .3 .07 .25 .3 .07 .25

(Guide fork underneath the pallet until within range of sonar 12.)

-ppt- pickup-pallet 7 4.0 0.5 true

cart .3 .3 .25 .3 .15 .25

(Use sonar to achieve precise servoed distance.)

-ppt- range 12 3.0 .25 X true

19

tool nul

cart .2 .15 .25 .3 .2 .25

September 24, 1987

(Move in the final distance to engage pallet.)

-ppt- goto tool PALLET-ENGAGE
cart o3 .3 .25 .3 .3 .25

(Now return pose which defines the location of the array.)

-ppt- return-pose TRUCK

(This path is used to engage the fork with all remaining pallets in each
sector of the array TRUCK. It is executed after the first pallet is transferred

to the conveyor.)

-path- move-to PALLET 1 loc CONVEYOR arr TRUCK

(Move to a position in front of next sector of array. Note that the TASK
level will automatically index to the next sector because 1, the path
destination is an array and 2, the path point location type is goal.)

-ppt- goto goal SECTOR-SAFE
joint 25.0 25.0 5.0

(Lower fork so that the lower base of the pallet acts as the sonar target.)

-ppt- range 15 2.0 0.25 Y true

tool nul

cart .2 .15 .25 .3 .2 .25

(Achieve fine alignment with pallet entry side)

-ppt- approach-pallet
7 17.75 .5

15 28.5 .25

10 15 .0 .25

7 6 .0 .5 true

cart .3 .07 .25 .3 .07 .25

(Guide fork underneath the pallet until within range of sonar 12.)

-ppt- pickup-pallet 7 4.0 0.5 true

cart .3 .3 .25 .3 .15 .25

(Use sonar to achieve precise servoed distance.)

-ppt- range 12 3.0 .25 X true

tool nul

cart .2 .15 .25 .3 .2 .25

(Move in the final distance to engage pallet.)

-ppt- goto tool PALLET-ENGAGE
cart .3 .3 .25 .3 .3 .25

(The approach to the pallet is handled by the initial move-to, thus this path
is empty.)
-path- approach-pickup PALLET 1 arr TRUCK

(All paths require at least one path point command, in this case a goto tool

20

September 24, 1987

nul.)

-ppt- goto tool nul

cart .3 .3 .25 .3 .3 .25

The depart-pickup, move-to, approach-release and depart-release are identical to the

corresponding paths for the randomly oriented pallet in Section 4.1.1.

4.2.2. The RSL Command to Transfer an Array of Pallets

The command to transfer an array of pallets based on the plan described in Section 4.2.1. has the

following syntax:

TRANSFER PALLET 1 arr TRUCK 0 2 4 3; loc CONVEYOR

The command is entered from the TASK level (RCS Manual Chapter 9.4, page 9-7). The robot must
currently be at the location HOME or a nul-path error will be generated (unless another path is

mistakenly found). The sector list for the array TRUCK in the above command shows how
individual pallets are selected for transfer and in what order. The commanded transfer sequence for

the array is sectors 0, 2, 4 and 3.

21

September 24, 1987

5. The FMR PATH Level

This section serves as an augmentation to The NBS Real-time Control System User's Reference

Manual section on the PATH level (section 10.5) and closely follows the format of that section.

5oL PATH Commands

FMR conforms to this section.

5.2. PATH Input Command Buffer

FMR conforms to this section.

5.3. PATH Status Information

The status-arg-out values have been extended for the FMR. The status values are now centrally

located in the VAR-0 error-list (located in block 10 of the RSL level). This can be viewed in

show mode from any level. The complete list of the status values and their meaning follow.

System errors

0 noerror
-I programmer - Programming error. Check last piece of code compiled.
-2 command-error - invalid command.

TASK errors

101 task-cmd - invalid argument in command.
102 nul-path - path can't be found. Hasn't been loaded or defined by the user.

103 path-error - error reported by PATH level.

PATH errors

200 path-cmd - invalid argument in command.
201 ppt-para - invalid Path Point command or parameter.

202 prim-error - error reported by PRIM level.

203 sensor-cond - robot paused because some sensor condition was not met. The PATH
level variable ppt-command will show the current Path Point command which reported

the error.

204 point-reached - reached goal before sensor condition met. Usually means an edge
condition was not met before the goal was reached. Look at the VAR-0 edge-var and
edge-para to determine which edge conditions were not met

205 no-echo-sonar - sonar reading shows no object detected.

206 sonar-limit - object is closer then lower limit of the selected sonar.

207 no-pallet - the scan routine did not detect a pallet. This is normally caused by the

pallet being outside the pallet-area parameter (set when the scan path point is

compiled; try raising the limit) or by the pallet right edge not being detected (move pallet

closer to the beginning of the scan not towards the goal destination of the scan or

increase the rotation of the scan destination movetable).

208 sw-bad - indicates a faulty switch. In theory the switches cannot detect both pallet feet

simultaneously. Thus, if switches on both tines are active, one switch must be faulty.

There may be dirt on the lens, or worse the switches are actually seeing both pallet feet

because of a misalignment of the switches, the sensitivity of a switch has increased or

the pallet feet are not the expected distance apart.

209 no-sonar - a sonar has been selected but the model for the sonar has not been compiled.

Check to see if the entry exists for the sonar by showing snr-model-array on the

22

September 24, 1987

PATH level. A 0 in an element indicates there is no entry for the particular sonar.

5.4. PATH Errors

FMR conforms to this section.

5.5. PATH Processing

FMR conforms to this section.

5.6. PATH Preprocessing

The routine that reads the sonars has been added to the preprocess portion of the PATH control cycle.

The sonars have several modes of operation which are described in Section 5.6. 1.2. The
programmer selects the desired sonar to read and waits for the range data to arrive. This process is

described in section 5.6.1.

5.6.1. SONAR-READ
Input: sonar-request

Output: sonar-range, sonar-valid, echo-valid, low-lim

A routine that wishes to read a particular sonar(s) need only set the element of the

sonar-request array corresponding to the desired sonar to true. The smacro statement to

select sonar 0 is:

true => sonar-request { 0# }

would enable the sonar. The variable sonar-valid will return the value true when the sonar's

range data has been set. The data is stored in the array sonar-range and can be accessed from
within a routine in the following manner (again for sonar 0);

sonar-range { 0# } .=>. temporary-storage

or from the terminal in show mode as such.

:S sonar-range

SONAR-READ tests status, which if equal to error, will not over-write the sonar values

during the error cycle. Physically, the desired sonars are enabled by SELECT-SONAR which
also sets the bits in the variable curr-sel-sonar to one for each sonar selected. If a sonar is

selected, the routine READ-SONAR-DATA is called.

The following routines are associated with the sonar sensors.

5.6.1.1. SELECT-SONAR
Input: prev-sel-sonar, prev-sel-mode
Output: curr-sel-sonar, curr-sel-mode

The primary responsibility of this routine is to physically control the sonar sensors.

GET-SONAR-SELECTION is called to set curr-sel-sonar. If curr-sel-sonar is not

equal to prev-sel-sonar then the user has changed the selection of the sonar. This logic is also

tested against curr-sel-mode which determines in what mode the user desires the sensors to be
run (see 5. 6. 1.2. RESET-SONAR). RESET-SONAR is called if the same sonar needs to

be fired again (by having its status cleared) or if the user's sensor requirements have changed.

23

September 24, 1987

5.6.L2. RESET-SONAR
Input: flood-sonar

Output: sonar selection and mode

This routine calls the routines that write to the sensor electronics and initializes key variables. If

the sonars are operating in flood fashion, that is all sonars fire continuously but the ones selected

via sonar-request are the only ones read, then there is no need to call

OUTPUT-SONAR-SELECTION. In this case, the sonars are turned on once by the routine

FLOOD-SONAR.

The two modes the sonars operate in are free-run (sonars are fired continuously via external

clock) and one-shot (sonars are fired once via user software). The modes can run in either flood

fashion where all sonars are physically fired, or non-flood fashion where only the sonars selected

via sonar-request are physically fired. The sonars are typically used in a flood fashion which
increases the probability that a signal from one of the sonars (not necessarily a sonar-request

sonar) will reflect off a surface and be processed by a selected sonar. Note that the reading may
not be exact but it will allow the robot to proceed and possibly extract more accurate information.

The mode is set using OUTPUT-SONAR-MODE. The variable sonar-on, when written to

port jl-c, resets all the sonar status bits. This is needed before the next echo can be received.

5.6.I.3. OUTPUT-SONAR-SELECTION
Input: curr-sel-sonar

Output: sonar selection

Writes the low byte of curr-sel-sonar out to port jLa and then the high byte.

5.6.

L4. OUTPUT-SONAR-MODE
Input: curr-sel-mode
Output: mode

Writes the variables which contains the code for the desired sonar mode to port jl-c.

5.6.1.5c READ-SONAR-DATA
Input: sonar-rdy-status, #of-cyde-waiting
Output: sonar-valid, need-one-shot

This routine keeps track of when to read the sonars. The status of each sonar currently selected

is set from GET-SONAR-STATUS, sonar-rdy-status has each bit set to one for the

appropriate sonar having valid range data. This is compared to curr-sel-sonar (since they both

keep track of the desired sonar in a bit map fashion) to find out when all the sonars are ready to

be read. Some sonars may not return a ready status ever (the echo is never received). To prevent

an endless loop situation, #of-cyc!e-waiting keeps track of how many cycles have passed. If

it exceeds #of-cycle-allowed then the waiting stops and the sonars that have valid readings as

well as the errant sonars are all set using SET-SONAR-RANGE. Finally sonar-valid is set

true to indicate that the sonar values in sonar-range are now valid, and need-one-shot is set

true which allows SELECT-SONAR to clear the status bit for the next range reading.

5.6.1.6. GET-SONAR-STATUS
Input: curr-sel-sonar

Output: sonar-rdy-status

24

September 24, 1987

The status of sonars 0 thru 7 are read in and then sonars 8 thru 15. They are masked with

curr-sel-sonar to remove status information from sonars that have not been selected by the

user. Status will arrive from unwanted sonars when they are operated in a flood fashion since all

sonars are fired in this case. The correct status is returned in sonar-rdy-status.

5.6.1.7. SET-SONAR-RANGE
Input: curr-sel-sonar, sonar-rdy-status, snr-model-array

Output: sonar-range

This routine sets the range values of all sonars selected by the user regardless if an echo has

arrived or not. Each sonar is tested to see if it has been selected. If so the sonar model is

retrieved. If a status has arrived for the sonar then the raw range data is retrieved using

GET-SONAR-DATA. The raw value is then converted and stored into sonar-range. If the

converted range is less then the minimum detectable range then the flag min-limit is set true. If

the status bit indicates no echo from the sonar then the maximum range of the sonar,

snr-max-range, is stored in sonar-range.

5.6. 1.8. GET-SONAR-DATA
Input: sonar-index
Output: J2-A

This routine reads one sonar range value from the sonar interface box. sonar-index selects

which sonar to read, jj is set according to sonar-index, a 0 if sonar-index is between 0 and
7 or a 1 if between 8 and 15. Jl-B is set to select the sonar within the two groups (0-7 or

8-15). If the low group is chosen, the high byte is selected and read in, then the low byte is

selected, read in and added to the high byte. If the high group is chosen, the high byte is selected

and read in, then the low byte is selected, read in and added to the high byte. TTie raw range data

is returned in J2-A.

5.6.1.9. CLEAR-SONAR-REQUEST

This routine sets all elements of the sonar-request array to false, clearing any requests.

5.6.1.10. SONAR-OFF

This routine clears all sonar requests and shuts off all the sonars.

5.7. PATH Decision Processing

The bulk of the FMR application resides in the routines that execute the path points. These routines

which are an extension to the routines listed in the RCS Manual are covered in this section.

5.7.1. SEND-HALT
Input: halt-enable, halt-request, prim-status
Output: ppt-done

This routine is used by other Path Point commands to halt the robot and is highly tailored for this

purpose. A HALT will be executed if the halt-enable flag equals true (this is done when the

path point parameter is compiled). The halt-request variable is primarily used to ensure that

only one HALT is executed. HALT selects the desired halt pose. PRIM will report done when
it has reached the halt pose. Since this routine is used quite often by other path point routines the

flag ppt-done is set true (if the halt pose is reached while the sensor condition is still met) at the

termination of this routine.

25

September 24, 1987

5.7.2.

HALT
Input: tool-pose- A , traj-type

Output: prim-com-pose, traj-para

This routine commands PRIM to halt at the current position as defined by the pose stored in

prim-com-pose. The halt pose is dependent on the commanded trajectory since PRIM will

place the tool pose at the commanded PRIM pose for a cartesian trajectory and will place the

sensor at the commanded PRIM pose for a servo trajectory.

The current pose of the tool frame is first retrieved. If the trajectory type is servo then the sensor

movetable is added to the tool pose and stored in prim-com-pose, else the tool pose is stored in

prim-com-pose.
5.7.3.

TRANSLATE
Input: tool-pose- A , delta, axis

Output: prim-com-pose

This routine constructs a pose in prim-com-pose that is a translation of delta along the tool

frame axis.

5.7.4.

ROTATE
Input: tool-pose- A , delta, axis

Output: prim-com-pose

This routine constructs a pose in prim-com-pose which is a rotation of delta about the pallet

frame axis. An attempt has been made to modify the rotation such that the positional relationship

between the pallet and the fork does not change. Figure 5.1a shows a rotation motion about the

tool frame. Figure 5.1b shows a more desirable motion taking place about the pallet frame by
preceding the rotation by a translation (derived from sensor range data). This maintains the

proper relationship between the fork mounted sensors and the pallet.

26

September 24, 1987

5.7.5. INIT-SONAR-MODEL-ARRAY
Input: SONAR-MODEL-FILE
Output: snr-model-array

This routine retrieves the record numbers of the sonar model entries in the file

SONAR-MODEL-FILE and stores them in the array snr-model-array. The sonar model
variable snr-id is used to index into the sonar-model-array such that the pointer to the sonar

model record for sonar number 1 is found in element 1 of snr-model-array. For information

on the sonar model itself see section 2.1. Sonar Modelling.

5.7.6. Range Path Point Routines

The following routines are associated with the RANGE Path Point command (section 3.1.).

5.7.6.I. RANGE-PPT
Input: new-ppt
Output: RANGE routines

This is the high level routine called during the execution of the RANGE Path Point command.
The first time executed it initializes all variables, all remaining executions call RANGE.

5J.6.2. RANGE-PPT-INIT
Input: RANGE-FILE
Output: range-para, TRAJ-PHRASE, halt-enable, halt-request, sonar-request

This routine retrieves the parameters compiled in the Path. It uses these parameters to turn on the

needed sonars and to retrieve the trajectory parameters.

5.7.6.3. RANGE-SONAR-MODEL-INIT
Input: snr-model-array
Output: snr-model-para

This routine retrieves the sonar model for the chosen range sonar.

5.7.6.4. RANGE
Input: sonar-valid, min-limit, range-para
Output: delta, axis, halt-request, TRANSLATE, RANGE-GOAL, PRIM-TRAJ,
SEND-HALT

This routine generates an error value, delta, as the difference (in inches) between the sonar range

reading and the desired range reading (r-range).. If min-limit equals true then this routine

will not function properly and therefore reports an error. This can happen, for example, if a

Polaroid sensor is chosen instead of a Migatron sensor to range to a value of 2 inches. If the

sensor is at 5 inches, a forward motion is commanded. But since the value does not change
(because the Polaroid sensor will not operate at 5 inches) this routine continues to command
forward motion.

If delta is less then r-thresh then SEND-HALT is called to bring the robot to a halt. If delta

exceeds r-thresh then depending on the trajectory type RANGE-GOAL or TRANSLATE is

called to calculate a new goal pose which will minimize the difference between the desired range

and the actual range. Because the robot can overshoot the goal which will cause the sonar

readings to again generate an error value greater then r-thresh, this routine may be called several

times. In this case halt-request is set false which clears any previous calls to SEND-HALT.

27

September 24, 1987

5o7.6.5. RANGE-GOAL
Input: tool-pose- A , snr-mtb-

A
,
axis, delta

Output: prim-com-pose

This routine constructs a pose in prim-com-pose that is a translation of delta along the sonar

frame axis. It is used to position the sonar at the goal pose as opposed to TRANSLATE
which positions the tool frame at the goal pose.

5.7.7. EDGE Path Point Routines

The following routines are associated with the EDGE Path Point command (section 3.2.).

5.7.7.I. EDGE-PPT
Input: new-ppt
Output: EDGE routines

This is the high level routine called during the execution of the EDGE Path Point command. The
first time executed it initializes all variables, all remaining executions call EDGE.

5.7J.2. EDGE-PPT-INIT
Input: EDGE-FILE
Output: edge-para, TRAJ-PHRASE, LOC-PHRASE, halt-enable, halt-request,

sonar-request

This routine retrieves the parameters compiled in the Path. It uses these parameters to turn on the

needed sonars and to retrieve the trajectory and location parameters.
7

5.7.73, EDGE-SONAR-MODEL-INIT
Input: snr-model-array
Output: snr-model-para

This routine retrieves the sonar model for the chosen edge sonar.

5.7.7A EDGE
Input: sonar-valid, range-set, range-para
Output: current-range, initial-range, ?EDGE, SEND-HALT

This routine tests for the conditions that satisfy a perceived edge. The first valid sonar reading is

saved in initial-range. This is required to satisfy the first edge condition that a change in range

between the first reading and the current reading must exceed e-delta. Once the value is saved

PRXM-TRAJ is called to start the robot moving to the goal pose (a parameter of EDGE). The
second edge condition requires that the range values, starting with initial-range and ending at

the current-range, must cross the value given in the parameter e-range. This allows the user

to specify at what range to look for the edge. Figure 5.2 shows an example of an edge observed

at a range of 50 inches. This edge was distinguished from the other edges by selecting an

e-delta of 30 inches and an e-range of 60 inches. Both conditions are tested and if they are

true SEND-HALT is called to bring the robot to a halt. If they are not true then ?EDGE is

called to determine if an error has occurred.

28

September 24, 1987

Edge crossing value - 60 inches

110
"

50

"

" 111
Figure 5.2. An edge threshold of 60 inches "filters" the edge from 1 10 inches to 80 inches but

passes the edge from 80 inches to 50 inches during the sensor scan.

5.7.7.5. 7EDGE
Input: prim-status, halt-request

Output: PRIM-PAUSE, status, status-arg

This routine tests the status from the PRIM level to determine if the robot has reached the goal

pose without the edge conditions being satisfied. If this occurs the error sensor-cond is

returned in status-arg.

5.7.8. EQUATE Path Point Routines

The following routines are associated with the EQUATE Path Point command (section 3.3.).

5.7.8.1. EQUATE-PPT
Input: new-ppt
Output: EQUATE routines

This is the high level routine called during the execution of the EQUATE Path Point command.
The first time executed it initializes all variables, all remaining executions call EQUATE.

5.7.8.2. EQUATE-PPT-INIT
Input: EQUATE-FILE
Output: equate-para, axis, TRAJ-PHRASE, halt-enable, halt-request,

sonar-request

This routine retrieves the parameters compiled in the Path. It uses these parameters to turn on the

needed sonars, set the axis of rotation and retrieve the trajectory parameters.

5.7.8.3. EQUATE-SONAR-MODEL-INIT
Input: snr-model-array, snr-model-para, e-axis

29

September 24, 1987

Output: snr-model-para, snr-sprtn, snr-offst

This routine retrieves the models for both sonars. The data from the model along with the

EQUATE parameters are used to determine the geometry required for rotation using the range

data from two sonars. Figure 5.3 shows the geometry for two sonar rotation (the axis of rotation

is perpendicular to the page).

6 = Rotation angle for equate

a = Sonar separation

b = Sonar offset

c = si - s2 + b
si = Range of Sonar 1

s2 = Range of Sonar 2

Sonar 1 Sonar 2

Figure 5.3. Geometry for EQUATE rotation.

After the sonar models have been retrieved, the position of each sonar is extracted and stored in

the vectors el-xyz and e2-xyz. The vectors are to extract the rotation parameters: sonar

separation (snr-sprtn) and sonar offset (snr-offst).

5.7.8.4. EQUATE
Input: sonar-valid, equate-para
Output: SEND-HALT, NOT-EQUATED

This routine generates an error value, eq-delta, as the difference (in inches) between the sonar

readings. If eq-delta is less then e-threshold then SEND-HALT is called to bring the robot

to a halt. If eq-delta exceeds e-threshold then NOT-EQUATED is called to calculate a new
goal pose which will minimize the difference between the sonars.

5.7.8.5. NOT-EQUATED
Input: eq-delta, snr-sprtn

Output: delta, ROTATE, PRIM-TRAJ

This routine calculates the angle delta which is the arctangent of the quotient eq-delta and
snr-sprtn. The delta is clipped to within plus or minus eq-max. Because the robot can
overshoot the goal which will cause the sonar readings to again generate an error value greater

then e-threshold, this routine may be called several times. Thus, halt-request is set false

30

September 24, 1987

which clears any previous calls to SEND-HALT.

5.7.9. SCAN Path Point Routines

The following routines are associated with the SCAN Path Point Command (section 3.4.).

5.7.9.1. SCAN-SONAR
Input: new-ppt, prim-status, more-records, right-edge- A

Output: SCAN routines, ppt-done

This routine commands the robot to search the work volume for a pallet load. The search path is

selected by the user but the direction must be from left to right (although this can be easily

changed). Sonar readings and positions of the robot during the read are stored for analysis. The
first time the routine is called all necessary variables are initialized and the robot is started in

motion. The scan terminates when the robot reaches the goal or when the right edge of the pallet

is found. If the right edge is not found and the goal is reached a no-pallet error is returned in

status-arg (pallet may be to close to the start or the end of the search path). The pointer

right-edge- A
is set to the record containing the range value and position of the robot when the

edge was observed. It remains a 0# (nul) until the SAVE-SCAN-ROUTINE detects the right

edge.

Once the right edge has been detected RETURN-SCAN-POSE is called to write out the pose
indicating the closest feature of the pallet to the robot. N1-N2-SET is called to return values

needed by the ALIGN-GRIP Path Point command.

5.7.9.2. SCAN-INIT
Input: SCAN-FILE
Output: scan-para, LOC-PHRASE, TRAJ-PHRASE, halt-enable, sonar-request,

pallet-min-range, SONAR-FILE-INIT, PRIM-TRAJ

This routine retrieves the parameters compiled in the Path. It uses these parameters to turn on the

selected sonar and to retrieve the trajectory and location parameters. SCAN-VAR-INIT is

called to initialize pertinent variables. SONAR-FILE-INIT initializes the file that stores the

scan readings.

5.7.9.3. SCAN-SONAR-MODEL-INIT
Input: snr-model-array
Output: snr-model-para

This routine retrieves the sonar model for the chosen scan sonar.

5.7.9.4. SAVE-SCAN-READING
Input: sonar-valid, skip-reading, skip-till

Output: skip-reading, ADD-TO-SONAR-REC

This routines saves the scan reading by calling ADD-TO-SONAR-REC to store the sonar
reading and actual robot pose to file SONAR-REC. Variable skip-till allows valid sonar
readings to be skipped to conserve memory.

5.7.9.5. ADD-TO-SONAR-REC
Input: left-edge- A

, right-edge-
A

, ass/rec, max/rec
Output: ADD-RECORD, SET-PALLET-MIN-RANGE, LEFT-EDGE-TEST,
RIGHT-EDGE-TEST

31

September 24, 1987

This routine is responsible for storing the scan data and determining an estimate of the position of

the pallet. ADD-RECORD stores the sonar range value and the pose of the robot into the file

SONAR-FILE. SET-PALLET-MIN-RANGE ensures that the minimum range reading

during the scan is stored in pallet-min-range and temp-min-pose- A points to the record that

contains the scan reading. LEFT-EDGE-TEST tests for the left edge of the pallet and returns

the number of the scan record associated with the edge in left-edge- A .

RIGHT-EDGE-TEST performs the same function for the pallet right edge, the scan record is

returned in right-edge- A
.

5o7o9c6« ADD-RECORD
Input: sonar-range, tool-pose- A

, s-ptr

Output: save-sonar-var, save-range

This routine stores the sonar range and the tool pose into the save-sonar-var record of file

SONAR-FILE. The pointer s-ptr keeps track of the next available record in the file. This

prevents the routine add-record from searching the file for a new record. Each record includes

a field called back-link which is used to link the file backwards. This assists in file

manipulations in later routines.
5.7.9.7.

SET-PALLET-MIN-RANGE
Input: save-range, pallet-min-range, s-ptr

Output: pallet-min-range, temp-min-pose

This routine ensures that pallet-min-range contains the minimum range reading during the

scan and that temp-min-pose- A points to the associated SONAR-FILE record. The initial

value of pallet-min-range is initialized to the parameter pallet-area in SCAN-INIT.

50709.8. LEFT-EDGE-TEST
Input: save-range, pallet-area, left-edge- A

, 1-e-cnt, I-e-thresh, s-ptr

Output: 1-e-cnt, left-edge- A , LEFT-EDGE-ADJUST

This routine tests for the left edge of the pallet. A sonar range less then pallet-area indicates the

possibility of the pallet edge. To filter out any noise typically generated from the sonar side lobes

several valid reading are required before the edge is accepted. A count of the edge readings is

kept in I-e-cnt. If the count exceeds the threshold in 1-e-thresh then left-edge- A
is set to the

current record associated with the edge reading. Since the reading is actually the last in a

sequence of valid edge readings LEFT-EDGE-ADJUST is called to reset left-edge- A
to the

first valid reading. 1-e-cnt is reset to 0# whenever a value greater then pallet-area is

encountered to ensure that the sequence of edge values are all valid (ie. one false reading starts

the edge filtering algorithm over).

5.7.9.9. LEFT-EDGE-ADJUST
Input: left-edge- A

,
1-e-cnt, pallet-area

Output: left-edge- A , dOl

This routine resets left-edge- A to the first valid reading of the pallet left edge. Left-edge- A

initially contains the last reading of the edge and is used to start the backwards search in

SONAR-FILE. The search terminates when a range reading greater then pallet-area is

encountered. The record which has the first valid edge reading is stored into left-edge- A
. The

range value of the edge is stored into dOl. The coordinates of the edge can be obtained by
transforming the pose in the field scan-pose a distance of dOl in the plus X direction.

5.7.9.10. RIGHT-EDGE-TEST

32

September 24, 1987

Input: save-range, pallet-area, left-edge- A , right-edge-
A

, r-e-cnt, r-e-thresh,

s-ptr

Output: r-e-cnt, left-edge- A , RIGHT-EDGE-ADJUST

This routine tests for the right edge of the pallet. It operates in a manner similar to

LEFT-EDGE-TEST except it test for range values greater then pallet-area.

5.7.9.11. RIGHT-EDGE-ADJUST
Input: right-edge- A

,
r-e-cnt, pallet-area

Output: right-edge- A
, dOr

This routine resets right-edge- A to the last valid reading of the pallet left edge. It operates in a

manner similar to LEFT-EDGE-ADJUST except the terminating condition of the edge search

is a range value less then pallet-area.

5.7.9.12. RETURN-SCAN-POSE
Input: temp-min-pose- A

Output: FIND-LEFT-CORNER, FIND-RIGHT-CORNER, SET-RETURN-POSE

This routine is responsible for refining the position of the pallet and returning the pallet pose.

The pallet pose is derived from the scan information. The scan routine was not intended to be the

final routine used for determining the entry side of the pallet. It has not been investigated to see if

this determination can be made in all cases. Therefore the pallet pose is the pose of die scan

where the closest feature of the pallet was observed plus a few adjustments.

One adjustment is made to accommodate the three types of possible orientations that can exist

between the pallet and the robot; tilt, long side and short side. The closest feature of the pallet

when it is tilted (a comer) can be accurately derived but for the long and short side cases it is

desirable to attain the center of the pallet side. Since the pose defining the side may not be the

center an algorithm is used to derive the center. Figure 5.4a-c shows three examples of pallet

orientation with all the features labeled. The short side case looks similar to the long side case

shown in Figure 5.4b-c and therefore is not shown. The pose pointed to by min-pose- A
is the

actual pallet pose returned.

Pallet

right-edge-A- right-edge-A- right-edge-A -

T-comer-A

4nin-pose-A

4-comer-A

r-comer-A

L min-pose-A

u
left-edge-A

^l-comer^

“ left-edge-A left-edge-A

33

September 24, 1987

Figure 5.4a. Pallet Tilt Case. 4b. Pallet Long Case
with slight tilt.

4c. Pallet Long Case
with no tilt.

The first step of the center detection algorithm is to group together a set of scan values that are

within a user selectable threshold (closest-point-delta) of die closest range observed. The end
points of the group are stored in r-corner- A and 1-corner- A (Figure 5.4a-c). The routines

FIND-LEFT-CORNER-EDGE and FIND-RIGHT-CORNER-EDGE calculate these

values.

The only remaining step in the algorithm is to find the middle entry in the group of scan values.

The routine SET-RETURN-POSE locates the middle entry (min-pose- A
) and retrieves the

scan pose. The scan pose is translated out along the X axis of the tool frame a distance specified

by the parameter pallet-min-range and then written out to the pose record pointed to by the

parameter scan-return-pose- A
.

5/7.9.13. FIND-LEFT-CORNER-EDGE
Input: temp-min-pose- A

,
pallet-min-range, save-sonar-var, scan-para

Output: 1-corner- A

This routine searches SONAR-FILE from temp-min-pose- A (points to record containing

pallet-min-range) backwards finding the last pallet reading that is within the parameter

closest-point-delta of pallet-min-range. This left edge of the closest point is pointed to by
1-corner- A

.

5.7.9.14. FIND-RIGHT-CORNER-EDGE
Input: temp-min-pose- A

,
pallet-min-range, save-sonar-var, scan-para

Output: r-corner- A

This routine searches forward from temp-min-pose- A using the same scheme as

FIND-LEFT-CORNER-EDGE to set r-corner- A to the right edge of closest point.

5.7.9.15. SET-RETURN-POSE
Input: r-corner- A

, 1-corner-
A

, bytes/record, pallet-min-range,

scan-return-pose- A

Output: min-pose- A

This routine bisects the group of records to isolate the center of the closest pallet feature.

min-pose- A points to this record. The pose is also written out to the pose pointed to by the

parameter scan-return-pose- A
.

5.7.9.16. N1-N2-SET
Input: r-corner- A

, 1-corner-
A

, left-edge-
A

, right-edge-
A

, min-pose-
A

Output: nl, n2, n3, nl+n2

This routine performs further analysis of the pallet scan, nl equals the number of readings taken

from the left edge to the closest feature of the pallet, n2 the number of readings from the right

edge to closest feature and n3 is the number of readings associated with the closest feature of the

pallet. The values are used in later routines.

5.7.10. ALIGN-GRIP Path Point Routines

The following routines are associated with the ALIGN-GRIP Path Point command (section 3.5.).

34

j

September 24, 1987

5.7.10.1. ALIGN-GREP
Input: new-ppt, I-done-flag, test-called, sonar-valid

Output: GRIP-RETRIEVE, TURN-ON-SONAR, TEST-FOR-ALIGNMENT,
FIND-GRIP-SIDE-STATE, ppt-done

This is the high level routine called during the execution of the ALXGN-GRIP Path Point

command. The first time executed it initializes all variables and turns on the required sonars.

The terminating condition for this routine is when 1-done-flag equals true which means the

fork is aligned with the long side of the pallet. TEST-FOR-ALIGNMENT is called one time

to estimate the initial orientation of the pallet. The remaining executions wait for valid sonar data

and then call FIND-GRIP-STATE to determine if a robot motion is required to align the fork

with the pallet.

5.7.10.2. GRIP-RETRIEVE
Input: ALIGN-GRIP-FILE
Output: align-grip-para, halt-enable, halt-request

This routine retrieves the parameters compiled in the Path.

5.7.10.3. TURN-ON-SONAR
Input:

Output: sonar-request

This routine turns on sonars 1, 5 and 8.

5.7.10.4. TEST-FOR-ALIGNMENT
Input: nl, n2, dOl, dOr, pallet-min-range

Output: align-grip-para, s-done-flag, t-done-flag, 1-done-flag, 1-flag, s-flag,

t-flag, step-state, first-time, test-called

This routine is called one time to calculate the nominal orientation of the pallet. The pallet

orientation which describes what the robot saw during the most recent scan falls into three

categories; short side, long side and tilted. In the short and long side cases the closest pallet

feature (pallet-min-pose) is the center of the side facing the robot; in the tilt case it is the comer
of the pallet facing the robot, nl and n2 (the number of sonar readings between the edges and
the closest point) is used to separate the tilt case from the short/long side cases. If the difference

between nl and n2 is greater then the parameter tilt-ratio then the tilt case exists. To
distinguish between the short and long side cases the distance between the closest pallet feature

(pallet-min-range) is subtracted from the maximum range reading between dOr and dOl

(distance to edges) which effectively calculates the side of the pallet perpendicular to the robot.

This is then compared to the parameter min-short-side. If the side is larger than

min-short-side then the short side case exists, else the long side of the pallet is facing the

robot.

5.7.10.5. FIND-GRIP-SIDE-STATE
Input: s-done-flag, t-done-flag, I-done-flag

Output: SHORT-SIDE-PROCESSING, TILT-PROCESSING,
LONG-SIDE-PROCESSING

This routine uses 1-done-flag, s-done-flag and t-done-flag to call the three processing
routines. The processing routines are set up as a sequence of steps which read sonars, make
decisions and move the robot. SHORT-SIDE-PROCESSING and
TILT-SIDE-PROCESSING move the robot to the long side of the pallet.

35

September 24, 1987

LONG-SIDE-PROCESSING then aligns the robot with the pallet

5.7.10.6. TILT-PROCESSING
Input: nl, n2, step-state, ppt-done
Output: SIDE-MOVE, SIDE-EQUATE, sonar-request, ppt-done, t-done-flag,

t-flag

This routine assumes that sonar 1 (the center of the fork) is facing the closest comer of the pallet

and the angle of the pallet is such that the larger of nl and n2 represents the long side. 0-step

tests nl and n2 and sets the +zdirection true if the long side is in the positive Z direction of the

tool frame and false otherwise. The parameters are set for the proceeding steps. 1-step moves
to clear the comer so that SIDE-EQUATE in step 2 will be facing a side. 2-step then equates

with the long side. Now the robot is in a position to execute LONG-SIDE-PROCESSING.

5.7.10.7. SHORT-SIDE-PROCESSING
Input: dOl, dOr, step-state, sonar-range, align-grip-para

Output: SIDE-MOVE, SIDE-EQUATE, sonar-request, ppt-done, s-done-flag,

s-flag

This routine assumes that sonar 1 is centered on the short side of the pallet. The greater range

reading between dOl and dOr is assumed to be directly related to the long side of the pallet.

0-

step tests this and set the parameters and +zdirection. 1-step takes sonar 1 to the edge
(comer) adjacent to the chosen long side. When done it sets movtab- A to the necessary

movetable needed to rotate the fork around so that it is roughly parallel to the long side. A larger

rotation movetable is used if the process flow has come from LONG-SIDE-PROCESSING
because it has mistaken the short side as a long side. Experience has shown this occurs most
often when the side is nearly parallel to the fork and thus the need for a larger rotation. A
SIDE-EQUATE had been used initially to rotate about the comer but it's execution was not

reliable. 2-step executes the rotation move. 3-step then aligns the fork with the long side.

Now the robot is in a position to execute LONG-SIDE-PROCESSING.

5.7.10.8. LONG-SIDE-PROCESSING
Input: dOl, dOr, step-state, sonar-range, align-grip-para

Output: SIDE-EDGE, SIDE-EQUATE, sonar-request, ppt-done, I-done-flag,

1-

flag

This routine accomplishes the final alignment with the long side of the pallet. It has been
extended to handle the error case of a short side being mistaken for a long side, step-0 starts by
determining where the processing flow has come from. If it came directly from
TEST-FOR-ALIGNMENT as a long side case it tests the sonars against the parameter

perm-equal-val to determine if any alignment is necessary. If one of the sonars is off the

pallet then further alignment is needed. Also since it is possible that a short side case could exist

a move is set up to align the outer sonars with what should be the long side edge of the pallet. If

after aligning one sonar on the pallet edge the other sonar is off the pallet then the short side case

actually exists. If processing came from tilt or short case then it is not necessary to test for this

error (1-step is not called).

1-

step forces the previously selected sonar off the pallet. When done it sets the parameters

needed to bring the sonar back on to the pallet.

2-

step uses SIDE-EDGE to bring the sonar on to the pallet. Further alignment is not required

if the tilt or short case existed. If long side exists then the possibility of a short case error needs

to be tested by turning on the necessary sonars (which takes an additional cycle) and calling

3-

step.

36

i

September 24, 1987

3-step tests the differences between sonars 1 and 2 against parameter max-short-side. If the

difference is greater (a sonar is off the pallet) then a short side pallet case exists and
SHORT-SIDE-PROCESSING must be executed, else the fork is aligned with the long side

and processing is done.

5.7.10.9. SIDE-EQUATE
Input: first-time

Output: EQUATE routines

This routine is similar in execution to the EQUATE Path Point command. The first time executed

it initializes all variables, all remaining executions call EQUATE.

5.7.10.10. SIDE-EQUATE-INIT
Input: align-grip-para

Output: e-threshold, e-axis, axis, TRAJ-PHRASE

This routine initializes the parameters needed for the EQUATE routine.

5.7.10.11. SIDE-EDGE
Input: first-time

Output: EDGE routines

This routine is similar in execution to the EDGE Path Point command. The first time executed it

initializes all variables, all remaining executions call EDGE.

5.7.10.11. SIDE-EDGE-INIT
Input: align-grip-para, a!ign-mtb- A

Output: e-delta, range-set, halt-request, LOC-PHRASE, TRAJ-PHRASE

This routine initializes the parameters needed for the EDGE routine.

5.7.10.12. SIDE-MOVE
Input: first-time

Output: SIDE-MOVE-INIT, ppt-done

This routine is similar in execution to the GOTO Path Point command. The first time executed it

initializes all variables. It then waits for PRIM to report done.

5.7.10.13. SIDE-MOVE-INIT
Input: align-grip-para, align-mtb- A

Output: e-delta, range-set, halt-request, LOC-PHRASE, TRAJ-PHRASE

This routine initializes the parameters and calls PRIM-TRAJ.

5.7.10.14. -Z-DIRECTION
Input:

Output: e-lsonar#, e-2sonar#, e-sonar, sonar-request, align-mtb- A
, +zdirection

- This routine sets up the SIDE-EDGE move for motion in the minus Z direction in step 1 of
SHORT-SIDE-PROCESSING.

5.7.10.15. +Z-DIRECTION
Input:

37

September 24, 1987

Output: e-lsonar#, e-2sonar#, e-sonar, sonar-request, align-mtb- A
, +zdirection

This routine sets up the SIDE-EDGE move for motion in the plus Z direction in step 1 of

SHORT-SIDE-PROCESSING.

5.7,11. APPROACH-PALLET Path Point Routines

The following routines are associated with the APPROACH-PALLET Path Point command (section

3.6.).

5.7.11.1. APPROACH-PALLET
Input: new-ppt, sonar-valid, y-r-done, x-r-done, y-t-done, x-t-done

Output: APPROACH-PALLET routines, SEND-HALT, PRIM-TRAJ

This is the high level routine called during the execution of the APPROACH-PALLET Path Point

command. The first time executed it initializes all variables. The remaining executions wait for

valid sonar data to determine if a robot motion is required to correct the fork position.

Four degrees of freedom are tested to determine if the fork is in the proper position and

orientation with respect to the pallet. CALC-Y-ROT and CALC-X-ROT determine if there

are deviations in orientation about the Y and X axes respectively (see Figure 3.1). With the

addition of the Migatron sensors a test for orientation about the Z axis can also be incorporated.

Care must be taken though that the sensors will always have a target to view (ie. a sensor isn’t

looking off the edge of the truck bed for instance). Position deviation along the Y and X axes are

handled by CALC-Y-TRANS and CALC-X-TRANS. If the status from these routines

report done then SEND-HALT is called. If any of the routines report not done then

PRIM-TRAJ is called to move the robot.

5.7.11.2. APPROACH-PALLET-INIT
Input: APPROACH-PALLET-FILE
Output: approach-pallet-para, TRAJ-PHRASE, halt-enable, halt-request,

sonar-request

This routine retrieves the parameters compiled in the Path. It uses these parameters to turn on the

needed sonars and to retrieve the trajectory parameters.

5.7.11.3. APPROACH-PALLET-S-M-INIT
Input: snr-model-array
Output: snr-model-para, x-r-sprtn, x-r-offst, y-r-sprtn, y-r-offst, y-t-offst,

x-t-offst

This routine retrieves the sonar model for the chosen sonars. Note that the routines

EQUATE-SONAR-MODEL-INIT and RANGE-SONAR-MODEL-INIT are used since

APPROACH-PALLET basically duplicates the EQUATE and RANGE commands.

5.7.11.4. CALC-Y-ROT
Input: approach-pallet-para, sonar-range, y-r-offst, y-r-sprtn, prim-com-pose
Output: y-r-done, prim-com-pose

This routine sets y-r-done true if the difference between the two selected sonars is less then the

parameter y-r-thresh. If the difference is greater, the correction rotation is calculated as the

arctangent of the quotient delta and y-r-sprtn. The correction is applied as a rotation to

prim-com-pose. Note that the routine terminates after it is successful once. This will sacrifice

accuracy for speed.

38

September 24, 1987

5.7.11.5. CALC-X-ROT
Input: approach-pallet-para, sonar-range, x-r-offst, x-r-sprtn, prim-com-pose
Output: x-r-done, prim-com-pose

This routine sets x-r-done true if the difference between the two selected sonars is less then the

parameter x-r-thresh. If the difference is greater, the correction rotation is calculated as the

arctangent of the quotient delta and x-r-sprtn. The correction is applied as a rotation to

prim-com-pose. Note that the routine terminates after it is successful once. This will sacrifice

accuracy for speed.

5.7.11.6. CALC-Y-TRANS
Input: approach-pallet-para, sonar-range, y-t-offst, prim-com-pose
Output: y-t-done, prim-com-pose

This routine sets y-t-done true if the difference between the actual sonar range and the desired

sonar range is less then the parameter y-t-thresh. If the difference is greater, the correction

translation is calculated as the difference between the two ranges. The correction is applied as a

translation to prim-com-pose. Note that the routine terminates after it is successful once. This

will sacrifice accuracy for speed.

5.7.11.7. CALC-X-TRANS
Input: approach-pallet-para, sonar-range, x-t-offst, prim-com-pose
Output: x-t-done, prim-com-pose

This routine sets x-t-done true if the difference between the actual sonar range and the desired

sonar range is less then the parameter x-t-thresh. If the difference is greater, the correction

translation is calculated as the difference between the two ranges. The correction is applied as a

translation to prim-com-pose. Note that the routine terminates after it is successful once. This

will sacrifice accuracy for speed.

5.7.12. PICKUP-PALLET Path Point Routines

The following routines are associated with the PICKUP-PALLET Path Point command (section

3.7.

).

5.7.12.1. PICKUP-PALLET
Input: new-ppt, range-set, switches, z-correcting, step-state

Output: PICKUP-PALLET routines, step-state

This is the high level routine called during the execution of the PICKUP-PALLET Path Point

command. The first time executed it initializes all variables and retrieves the sonar model. All

remaining executions guide the robot fork beneath the pallet using a sonar to initially determine
the distance to travel and the proximity sensors to determine if any corrective translations are

required. The algorithm to insert the tines requires that a goal pose is calculated first. If a switch

indicates an obstruction (closed) then the fork is moved sideways until the switch is clear (open).

After the switch is clear an additional sideways motion can be user specified to accommodate
variations in the sensitivity and orientation of the proximity sensors. Before the fork is moved
sideways though the distance the fork has travelled since the last starting pose, and the remaining
distance to travel is calculated. The remaining distance to travel is then used to generate the new
goal pose after the sideways correction has been made. The algorithm terminates when a forward
motion is completed (no more travel distance to the pallet) without a switch detecting an
obstruction.

39

September 24, 1987

The routine WAIT-RANGE-SET sets range-set to true when the sonar has returned a range

reading indicating the distance the sensor must travel to complete the command. Once the range

has been determined SWITCH-READ is called to return the condition of the proximity

switches.

Two tool frame motions are executed during this routine; forward translation in the X direction,

and sideways translation in the Z direction. If a switch is closed (indicating proximity to an
obstacle) then UPDATE-DISTANCE-TO-GOAL is called (only once according to

step-state) to determine the distance the fork has travelled and how much distance remains.

FORK-ALIGNMENT then handles the sideways motion until the switch opens indicating the

obstacle has been cleared. With no obstacles the fork can now be moved forward towards the

new goal by calling MOVE-TO-PALLET, but first the user specified offset in the Z direction

is executed by Z-CORRECTION (again the process flow is handled by step-state).

5.7.12.2. PICKUP- PALLET-INIT
Input: PICKUP-PALLET-FILE
Output: pickup-pallet-para, axis, TRAJ-PHRASE, halt-enable, halt-request,

sonar-request, first-time, range-set, z-correcting, step-state, distance-traveled,

distance-to-goal

This routine retrieves the parameters compiled in the Path. It uses these parameters to turn on the

needed sonars and to retrieve the trajectory parameters.

5.7.12.3. PICKUP-PALLET-SONAR-MODEL-INIT
Input: snr-model-array
Output: snr-model-para

This routine retrieves the sonar model for the chosen pickup-pallet sonar.

5.7.12.4. WAIT-RANGE-SET
Input: pickup-pallet-para, sonar-valid, min-limit, sonar-range
Output: distance-to-goal, range-set

This routine initializes the value of distance-to-goal using a parameter selected sonar sensor.

The sonar-valid flag indicates when valid range data is available. If the flag min-limit equals

true then the selected sonar will not work (either because it points in the wrong direction or it is

operating outside it's intended range). The parameter p-p-sonar-offset is added to the sonar

range so that the fork can be offset from the range calculated goal, range-set is set to true when
the distance has been determined.

5.7.12.5. MOVE-TO-PALLET
Input: first-time, tool-pose- A

, distance-to-goal, prim-status

Output: TRANSLATE, PRIM-TRAJ, SEND-HALT

This routine commands the robot to move the fork towards the pallet The goal is calculated as

the current tool frame translated a distance equal to distance-to-goal in the plus X direction.

PRIM-TRAJ is called to command the robot to move the fork. If prim-status reports done
then the goal has been reached and SEND-HALT is called to stop the robot. Note that the

process flow will not reach this routine whenever a switch detects an obstacle during the move to

the goal.

5.7.12.6. Z-CORRECTION
Input: first-time, delta, p-p-z-correction

Output: TRANSLATE, PRIM-TRAJ, SEND-HALT, first-time, z-correcting

40

September 24, 1987

This routine commands the robot to move the fork in a sideways manner after the proximity

switches have cleared an obstacle. The goal is calculated using the parameter p-p-z-correction

as the offset to be traveled. The direction is determined from the sign of delta. TRANSLATE
is called to generate the goal pose and PRIM-TRAJ is called to command the robot to move the

fork, prim-status reports done when the goal has been reached.

5.7.12.7. UPDATE-DISTANCE-TO-GOAL
Input: tool-pose- A , t-pose, distance-to-goal

Output: distance-traveled, distance-to-goal

This routine calculates the remaining distance to the goal. The current tool pose is compared to a

saved tool pose stored in t-pose. The distance between the poses is calculated and stored in

distance-traveled. That value is subtracted from the old distance-to-goal to formulate the

new distance-to-goal.

5.7.12.8. FORK-ALIGNMENT
Input: switches, 1-tine-mask, r-tine-mask, 1-tine-offset

Output: delta, SWITCH-CORRECTION

This routine is called when a proximity switch detects an obstacle. The switch input is masked to

decouple the left and right tine proximity data. Because of the geometry of the switches and the

pallet, both tines cannot simultaneously detect a pallet. If this situation arises the sw-bad error

is reported in status-arg (check if there is dirt covering the detector or examine the appropriate

LED in the Proximity Interface Box to determine if the sensor is working).

Two tine calibration tables (1-tine-calib-table and r-tine-calib-table) are used to model the

155mm pallet foot (see section 2.2. Proximity Detector Modelling). The tables are calibrated to

deliver the proper motion to clear the pallet feet dependent on which switches are active. The
tables are organized such that the switch data can be used as the index into the table. There are

several impossible switch active combinations that are flagged in the tables using a 0# in the

elements. As an example if the current left tine combination equaled 1001, (the outside switches

are active), element 17 (1001) would have a 0# indicating this is impossible. But if the tine

combination equaled 0011 (the two right side switches are active) then element 3 (0011) would
have a value indicating a translation direction and distance (-0.75 for example) needed to clear the

switches. Thus the routine is divided to test the individual tine switches. The appropriate table

signals an error or provides the motion value. An additional offset is provided to allow

correction of all the calibration table values, r-tine-offset and 1-tine-offset serve this

function. They are initialized in the power-up block. SWITCH-CORRECTION is called to

command the robot to move the fork and thereby clear the obstacle.

5.7.12.9. SWITCH-CORRECTION
Input: switches, prev-switches, delta

Output: TRANSLATE, PRIM-TRAJ, prev-delta, z-correcting, first-time

This routine commands the robot to move the fork to clear a proximity detected obstacle. The
variables switches and prev-switches ensure that the same move isn't commanded every

cycle, only with the occurrence of a new combination of switches, delta provides the translation

direction and distance. Since this routine is only called when the switches are active, if the goal

is reached (when prim-status reports done) an error of point-reached is returned. Typically

this means that the table value given for clearing the obstacle (dependent on the combination
stored in switches) is incorrect. The value or the offset value (r-tine-offset and
1-tine-offset) can be made larger but care must be taken not to drive the fork too far such that

the opposite tine proximity sensors detect the opposite pallet foot If this happens the robot can

41

September 24, 1987

become unstable, oscillating between both pallet feet.

5.7.12.9. SWITCH-READ
Input: switches

Output: switches, prev-switches

This routine reads in the physical state of the proximity switches. The value of the old switch

readings is saved in the variable prev-switches. The low byte and the high byte is read in and
stored into switches. The value is complemented since the port uses an inverter.

5.7.13. The following routines are associated with the GOTO-UNTIL-SW Path Point command
(section 3.8.).

5.7.13.1. GOTO-UNTIL-SW
Input: new-ppt, switches, desired-sw-status

Output: EDGE routines

This is the high level routine called during the execution of the GOTO-UNTIL-SW Path Point

command. The first time executed it initializes all variables. During all remaining executions it

monitors the desired-sw until it matches the desired-sw-status. If the PRIM level reports

that the robot has reached the goal pose and the desired switch condition hasn't occurred then an

error of no-pallet is reported in status-arg. If the desired switch condition occurs then

SEND-HALT is called.

5.7.13.2. GOTO-UNTIL-SW-XNIT
Input: GOTO-UNTIL-SW-FELE
Output: sw-para, TRAJ-PHRASE, LOC-PHRASE, PRIM-TRAJ, halt-enable

This routine retrieves the parameters compiled in the Path. It uses these parameters to retrieve the

trajectory and location parameters. Finally PRIM-TRAJ is called to command the robot to

move to the goal pose.

5.7.14. RETURN-POSE Path Point Routines

The following routine is associated with the RETURN-POSE Path Point command (section 3.9.).

5.7.14.1. RETURN-POSE
Input: RETURN-POSE-FILE
Output: ppt-done

This is the high level routine called during the execution of the RETURN-POSE Path Point

command. It retrieves the parameter compiled in the Path, return-pose-para- A
,
which is a

pointer to a pose record. The current tool frame is then written into the pose record.

5.7.15. DELAY Path Point Routines

The following routines are associated with the DELAY Path Point command (section 3.10.).

5.7.15.1. DELAY
Input: delay-#-cyc!es

Output: delay-ctr, ppt-done

This is the high level routine called during the execution of the DELAY Path Point command.
The first time executed it initializes all variables. During the remaining executions it increments

42

September 24, 1987

delay-ctr until the variable equals deIay-#-cycles. This introduces a delay between the

execution of path point commands.

5.7.15.2. DELAY-INIT
Input: DELAY-FILE
Output: delay-para, delay-ctr

This routine retrieves the parameter compiled in the Path.

5.8. PATH Postprocessing

FMR conforms to this section.

5.9. Display and Debug Routines

This section does not appear in the RCS User's Manual. The purpose of the section is to present

routines that are helpful in diagnosing problems with the NBS Sensor Package.

5.9.1. DISPLAY-SONAR-SELECTION
Input: sonar-valid

Output: sonar-range

This routine displays all sonars range values that have been requested (ie. the sonar-request

array element for a sonar has been set to true). It should not be compiled into the background
control loop for two reasons: First, ~PRINT does not work in a background task and second,

the routine polls on sonar-valid and will stall the control loop until the sonar echo arrives. This

routine is primarily used for user verification of working sonars and can be executed directly

from the terminal.

5.9.2. DISPLAY-PROXIMITY-SWITCHES
Input:

Output: switches

This routine calls SWITCH-READ to update the status of the proximity switches. The value is

printed if there is a change in the status of the switches. The routine runs in a loop until it is

aborted from the RSL level by typing ABT PATH. Like
DISPLAY-SONAR-SELECTION (section 5.9.1.), this routine should not be compiled into

the background task.

43

'

| || d. ::ed with the OQTP ®

'

RANGE Command

EDGE Command

EQUATE Command

SCAN Command
SCAN-SONAR Routine

ALIGN-GRIP Command

APPROACH-PALLET Command

PICKUP-PALLET Command

NBS-1T4A (rev. 2»8C

)

U.S. DEPT. OF COMM.U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NBSIR 87-3624 OCTOBER 1987

4. TITLE AND SUBTITLE

The National Bureau of Standards Programmers Guide for the Field Material Handling

Robot

.

5. AUTHOR(S)

Sandor Szabo

6. PERFORMING ORGANIZATION (If joint or other than N BS, see instructions) 7. Con tract/ Grant No.

national bureau of standards
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

Sc SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State. ZIP)

U.S . Army Laboratory
Human Engineerina laboratory
Bldg. 459
Aberdeen Proving Ground, JMD 21005-5001

10o SUPPLEMENTARY NOTES

T Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information . I f document includes a si gn i fi cant
bi bl iography or literature survey, mention it here)

The document is a programmers guide for the MBS Peal -Time Control System (PCS)

used in the Field Material Hand! ing Robot (FMR) . The FMR is sponsored by the
U.S. ‘Army Human Engineering laboratory. The PCS (version 2) is a high level,

sensory interactive controller which enables the robot to perform automaticly
as a stationary fork lift. The Robot Sensor language (RSL) provides the PCS a

mechanism for sensor integration and task planning.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

13. AVAILABILITY 14. NO. OF

U n 1 i mi ted

PRINTED PAGES

i
For Official Distribution. Do Not Release to NTIS

[_ ;

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
58

15. Price20402.

X Order From National Technical Information Service (NTIS), Springfield, VA. 22161
$13.95

USCOMM-DC 6043-P8C

/

