
U.S. DEPARTMENT OF COMMERCE

Institute for

Computer
Sciences and
Technoiogy

FILE COPY

COM

(XIIWPOTH^ iWEASUREMEhfr
RESEARCH FACUTY

FORHIGH PERFORMANCE
PARALLELCOMPUTATION

National Bureau of Standards

NBSIR 87-3580

On Parallel Processing
Benchmarks

Gordon E. Lyon

U. S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Advanced Systems Division

Gaithersburg, MD 20899

June 1987

Partially sponsored by the

Defense Advanced Research Projects Agency

under ARPA order number 5520,

July 23, 1985, and July 28, 1986.

On Parallel Processing Benchmarks

Gordon Lyon

Advanced Systems Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

Partially sponsored by the

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

ARPA Order No. 5520, July 23, 1985

U.S. Department of Commerce, Malcolm Baldrige, Secretary

National Bureau of Standards, Ernest Ambler, Director

June 1987

j3 X)jUC{^!10D i *«Uj;’ t1

^ ^ line 1 11

i

^
FM

TABLE OF CONTENTS

Page

1. Introduction 1

2. Focus and Role of Benchmarks 3

2.1 Programming Applications 3

2.2 Algorithmic Paradigms and Programming Techniques 4

2.3 Process Mechanisms 4

2.4 Higher-level Language Instruction and Machine Events 5

2.5 Establishing a Frame of Reference 6

2.5.1 The Utility of Each Layer 7

2.6 Timings 8

2.6.1 Algebraic Expressions, Random Variables 8

2.6.2 Timings Have Random Components 9

2.6.3 Importance of Measurement Models 9

2.6.4 Measurement Perturbation and Parallel Processes 10

3. Practical Aspects 11

3.1 Elements in Realistic Design 11

3.1.1 Functional Level 11

3.1.2 Collection Membership and Size 12

3.1.3 Specification Choice 12

3.1.4 Definition of Test, Scoring 13

3.1.5 Interpretation 13

3.2 Some Example Sets 13

3.2.1 NBS Ad-Hoc Parallel Collection 13

3.2.2 Dhrystones (uni-processor) 14

3.2.3 Vision Understanding 14

3.2.4 Yet Another Set—With Framework 15

4. An Example; Metrics for Process Communication 15

4.1

Communication 15

-iii-

4.1.1

A general framework 16

4.2 An Example within the Framework 17

4.2.1 A ring 17

4.3 Sample Results 19

4.3.1 Short messages 19

4.3.2 Interrupts, polling and busy-waiting 20

4.3.3 The sensitive nature of polling 20

4.4 The Ring and Framework in Perspective 21

5. Conclusions 22

5.1 Recommendations 22

6. References 23

-iv-

On Parallel Processing Benchmarks

Gordon Lyon

This is a summary of preliminary work and experiences at NBS on
benchmarks for parallel machines. Discussion covers the several roles that

benchmarks play, ideal and realistic settings, and quick reviews of several

types of benchmark sets. Several conclusions can be drawn, given the

rudimentary nature of parallel processor characterization: (i) That the

performance metrics be embedded in more comprehensive frameworks
that can be appraised and modified as needed; (ii) That one universal

framework is beyond reach, since distinct clusters of use are emerging
with separate emphases; (iii) That large application benchmarks are most
successf^ul when they run well on a machine, and thereby demonstrate

compatibility of job and architecture; (iv) That the value of smaller

metrics (fragments of code) is more diagnostic and preventive than
predictive; small metric sets should encourage the parametric study of

architectures and applications, and thus promote both economical

hardware enhancement and suitable program design.

Key words: benchmarks; computer performance; frameworks;
measurements; metrics; models.

1. Introduction

Applications of parallel processing place an emphasis upon performance which is

different than that commonly seen for serial processors in commercial use. Ignoring

the fault-tolerant aspect of parallel computation, the user of a concurrent processor

quite often wants his program to run faster [NRC86]. The implication here is that the

system must address, for this one user, his problem and provide a satisfactory

turnaround service. TTiere is less opportunity for the system to buffer its load among
jobs, as is so often assumed in mono-processor throughput characterization and
evaluation. This emphasis upon a single job or class of jobs, each running stand-

alone, means that variance in any general or overall characterization will be higher:

No single program can be characterized or predicted with confidence unless it has a

National Bureau of Standards Internal Report NBSIR 87-3580.

No recommendation or endorsement, express or otherwise, is given by the National Bureau of Standards

or any sponsor for any illustrative items in the text. Partially sponsored by the Defense Advanced

Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209 under ARPA Order No.

5520, July 23, 1985.

- 1 -

close fit to available metrics. This demands that one understand a program and
architecture very well, and implies that claims from tests or benchmarks be carefully

qualified.

A benchmark result for some machine is really a statement of confidence in both

one’s understanding of the application features that the benchmark represents and the

manner in which it exercises the machine. When a high degree of uncertainty exists

on the meaningfulness of a "measurement", it for practical purposes ceases to quantify

anything. It is this problem, the careful and deliberate framing of benchmark
questions, that burdens measurements on parallel processor machines. (As a point of

illustration, Huss and Pennline examine five illustrative benchmark sets and related

problems of interpretation on one machine [HUS 87].) While the structures for parallel

architectures have become more diverse [OMA85], understanding of the various

architectural tradeoffs has not maintained pace. In addition, the once popular and
relatively easy empirical technique of capturing instruction mix streams does not in

any useful way characterize salient features of parallel executions. In particular, there

is need to know communication patterns which are not captured in mixes [ETC83].
This failure of a relatively easy, if not always accurate, evaluation tool has forced a

closer analytic examination of application characteristics.

The question that arises as a thread through any parallel architecture effort is: for

a given application, what architectural features are necessary, and in what
combinations and strengths? When uniprocessors were dominant the underlying model
did not often differ substantially from one machine to another, at least not from the

user’s perspective. Nonetheless, from a micro-architectural view, at the instruction

level, there has always been a clash between, say, a compiler’s ideal target (application

virtual instructions) and a machine’s capabilities (real instruction architecture). This is,

and always has been, the difficult problem of code generation in compilers. Code
generation requires thorny structural reconciliations between the arrangement of
operations that is wanted and that which the hardware offers.

Parallel processing elevates the structural clash to a higher level. Thus an
application with a detailed set of interacting parallel pieces may or may not be
architecturally suited for a certain parallel machine. The clash is higher level because
it transcends instruction-order mismatches; the matching involves partitioning larger

application pieces, often process aggregates, among processors, memories, and
communication capabilities. It includes patterns of process fetching from memory,
communication modes among processes, and levels of the communication traffic.

Ideally, one would like benchmarks that are pertinent, accepted, and simple

[ETC83]. Achievement of this laudable goal does not lie in the immediate future, for

it demands that the field be in stable evolution. Such is hardly true for parallel

computation today. A predictive mechanism rests upon a thorough understanding of

the underlying parallel systems and their relation to applications. Prediction from a

benchmark set is harder than running actual programs, at least in the intellectual sense.

It is this fact that allows many machine "measurements" to consist of runs of large,

poorly characterized applications. More is said later on the issue.

-2-

2. Focus and Role of Benchmarks

There are layers of benchmark focus, with each layer addressing a distinct element

of performance. Overlapping does occur. Furthermore, as will be argued later about

frameworks for benchmarking, the layers are not independent of each other. Each can
reinforce or undermine confidence in other measurements in other layers. Four broad
strata are discussed here: applications, algorithms, process mechanisms, and
instruction/hardware events.

2.1 Programming Applications

There are usually applications that define clearly the objectives that drive an
architectural layout. Without these objectives, a machine has no economic reason for

being. Exceptions do occur; an experimental machine may represent an ad hoc
opportunity that has arisen because of components newly available. However, the

deliberate commercial design is more the rule.

An application runs, computes answers, and is fully representative of the

complexity of the problem it adi*esses. Unfortunately, application programs are often

very large, with organizations and detailed performances not easily understood. Minor
changes in data may yield large deviations in performance. Typically, an application

job becomes important enough to be used as a benchmark because it may:

1. Compute heavily, and deprive others of machine time.

2. Epitomize a whole class of problems that are important to an organization.

3. Represent an instance whose design elements generalize to other vital methods.
4. Match a test machine architecture, and exercise the machine well.

The weaknesses in a large benchmark lie in the cost of getting it onto a machine,

and in obtaining clear interpretations of its results. Outsiders are usually reluctant to

invest large blocks of time to learn about other fields of application. TTius outsiders

cannot readily extrapolate test results for impact in their field; indeed they may not

understand enough of the program to vary meaningfully the input. Similarly, the size

of a real application may discourage a detailed analysis of its instruction-level

demands. Yet this is often necessary to gain insight, especially when low-level

demands vary greatly with program parameter sets.

Thus production-size "codes" ask a lot of anyone who wants to use them to

investigate computer performance. To be sure, large application benchmarks are often

used to select service computers doing heavy, but fairly stable and well-defined,

workloads. However, this use is more of a service for an organization’s bureaucracy

than it is a contribution to understanding parallel computation.

-3 -

2.2 Algorithmic Paradigms and Programming Techniques

Algorithms in-the-large can be paradigms for solving whole subsystems. Often

they are templates which describe, outside-in, how solutions should be constituted.

That is, a description consists of outer layers of code, with the variable (substitution)

opportunities occuring within. Examples are given in Figures 1-3; there the user

defines the functions G (global), N (neighborhood), or I (independent). In contrast,

programming techniques are algorithms-in-the-small, and are usually inside-out in

orientation. A file access method is an example. That is, the code is wrapped with

the user’s application; the view is more of supplying isolated location sections. In any
event, neither is an entire solution to some application. Each is an abstracted

characteristic of the computation.

Algorithms and programming techniques are related to smaller benchmarks in a

very important way. AU strive to identify patterns of computation that are very

important to large classes of applications. Paradigms and techniques seek

improvements in software mechanisms. Benchmarks are similar, but emphasis is given

to performance of a fixed, representative method on various machines. In all cases, an
assumption is implicit that truly important software mechanisms can be improved or

measured independently of their uses, and yet still reflect upon programs in which they

are used. That is, pieces in the software are separable into building blocks.

Paradigms and techniques provide a benchmark focus for:

1. Ignoring programming language as long as it is adequate.

2. Focusing upon mechanistic details that are truly important, independent of a

given program. (Parallel prefix and its variations is an example from the

field of parallel programming.)
3. Studying mechanisms from an algorithmic viewpoint rather than from narrow

implementation improvements. However, one selects alternate approaches

on practical grounds. This step emphasizes actual performance as measured.

While structural soundness (e.g. proof-of-correctness) may be very

important, it is secondary to the main argument.

4. Supplying practical software design recommendations based upon actual

execution experiences. This may exclude certain elegant theoretical

approaches whose deficiences are clearly abundant once tried.

5. Remembering that new machinery technologies may redeem a technique that

was once unworkable.

2.3 Process Mechanisms

This level is peculiar to larger-grained MIMD systems which use process-level

parallelism. The focus of study at this level is how and at what costs do the various

cooperating processes start, run, synchronize and exchange data. Chapter 4 is devoted

to an example that explores communication costs. Generally the processes themselves

can be synthetic, which is to say, need not compute real answers, and so can be

simplified greatly. The aspects which must be real are:

-4-

1 . Synchronization

2. Process creation

3. Memory allocation

4. Context switching

5. Message transmission-reception

6. Shared memory accessing

7. Multiprocessor execution

2.4 Higher-level Language Instruction and Machine Events

The instruction level of performance characterization is very important in the

design of machines for commercial production. The approach often has been
empirical; large, representative work loads are characterized at the instruction-stream

level. Recording tapes store this information, and new designs for machines must
perform well against the archives. Now questionable for seriS machines, the stream

approach is of much diminished utility for parallel architecture. It conveys little sense

of the data movement that is of paramount importance in parallel computation
[ETCS3]. An alternate approach at the instruction-level of a programming language is

time-stamping various events and positions in a program. This has been pursued at a

number of laboratories, including our own project at NBS [MIN86]. A problem here

is the fine-grained nature of the events, their number, and the sensitivity of parallel

computation to perturbations. Two examples where instruction level instrumentation is

revealing are the shared memory actions LOCK and UNLOCK.

Machine event detail is also critical in verifying that performances characterized at

higher levels are accurately based upon actual resource utilizations. Here one may
isolate and document the causes of anomalies observed at other benchmark levels. For
instance, if a communication path is becoming saturated during some parallel

processing computation, then performance on a machine with significantly faster

communication should be much improved provided that the communication path in

question is a beneficiary. A weakness with many benchmarking "measurements" is

that they are not based upon a confirmed machine model. As a consequence, their

conjectural basis is often inaccurate when predicting changes from a major host

machine shift. The detail here depends heavily upon the architecture itself. A shared-

memory bus architecture will have concerns of processor cache hits, bus and memory-
bank contention, and load balancing, among others. A message-passing system’s

principal concern might be transmission latencies, bandwidth, error recovery and flow

control.

It is at the lower levels that full characterization of the machine begins to

dominate. Applying some of the insight of G. Amdahl, as interpreted by D. Hillis

[HIL85], there are things that should fit together in balanced capacities to define a

reasonable performance regime for a machine. The following questions address this

issue, and provide a basis for examination of a machine. It is possible, of course, that

the machine has some clever twist that renders the questions unsuited; in such cases

further explanation by the designer is in order. The questions ask: "What are..."

-5 -

1. Local and global memory sizes

2. Memory-to-processor bandwidths and significant latencies

3. Processor bandwidths
4. I/O capabilities

5. "Memory move-around" capability and need
6. Processor-to-processor bandwidth and latency

In terms of benchmarking a machine, the above are fundamental for parallel

architectures. Together they define dimensions of elementary capability and balance of

which no one feature is more important than another. For example, raw bandwidth
can be very misleading when accompanied by latencies; its usefulness may be
considerably less than gross capabilities would indicate, because information exchanges
are always delayed in starting. Parallel computations can be quite sensitive to delays

in synchronization and other perturbations of information exchange.

2.5 Establishing a Frame of Reference

The problem of a conceptual framework for benchmarking is well recognized.

Only through such intellectual simplification can any approach handle the vast horde of
application programs and the many machines that they can run on. NRC [86-NRC] has

proposed (after ideas of Joanne Martin [SAL86]) five stages in performance evaluation:

1. Determine major application areas and solution techniques

2. Select representative programs covering these

3. Define parameters for models of architecture and the application

4. Define metrics for environment and performance of the models
5. Assess relationship between the computational and architectural models

Of course, the above can be interpreted as "Go skin a bear," something
considerably easier to say than to accomplish. Discussing problems in image
understanding, certainly a subculture of the overall parallel community, Etchells and
Nudd remark:

The problem of selecting representative algorithms is itself complicated

by the breadth of the field [Image Understanding] , the wide range of
approaches to any given lU sub-task, and by the fact that there are

many areas in which there is not clear consensus as the best algorithm

for performing a given task. ..Ideally, what we would like to do is to

find the lowest level of program modules with the greatest degree of
applicability across the entire range oflU algorithms.

For a highest level of organization for their image understanding proposal they borrow
a six-dimension taxonomy. They also mention that "...we must be particularly careful

to not only represent ... application requirements... but to include as well the entire

range of processing requirements, as seen by the hardware." This can be read as a

requiring a solid grounding of the measurement work, conceptually at the high.

-6-

applications end, and physically at the machine itself.

Our own MBS work has proceeded to some extent along similar lines. The
lowest-level model for our investigations has been the forementioned Amdahl-Hillis

formulation. At the highest application level one can establish other dimensions of

interest: The example in Chapter 4 addresses process communication. Between the

extremes of application and hardware are select^ levels, as discussed earlier. Casting

the levels in a slightly different form:

Applications. This layer defines requirements, and clarifies need.

Algorithms. Here is the organization and detail, along with actual answers.

Parallel (process) Structure. This model of patterns and behavior provides
parallel computation abstraction. NB: This is, of course, for process-

oriented systems. Finer grained organizations will need this level relocated

as appropriate.

Instructions. The fine detail here provides isolation of anomalies. Special

hardware may be necessary to get convenient, accurate, non-disruptive

measurement results.

Hardware Resource Utilization. The stress, balance, and overall envelope
seen here serve to define gross capacities and limitations of a machine.

2.5.1 The Utility of Each Layer. Discussion has skirted around the issue of where in

the layering one should select a benchmark set. There is no pat answer, of course, the

focus depending upon need. If the user-community is an applications group with
principal interests apart from parallel computing, then it mostly wants a suitably faster

machine for bigger jobs. There is a strong hint of this view in the NRC
recommendation of "select representative programs.." The common terminology in the

computational physics community for these programs is "codes", which are here

designated large codes. These large codes demonstrate whether a new parallel

machine can service some application.

A second view, expounded by Etchells and Nudd, seeks more fundamental
building blocks, much as the earlier discussion emphasized the role of programming
techniques or code fragments, here designated small metrics. These fragments, like a

test for blood pressure, are narrow indicators that highlight potential threats. The view
with metrics is that of understanding parallel computation via fundamental capabilities.

Metrics provide looser estimates (if acceptable at all) on expected production

performances.

Both large codes and small metrics have strengths (and weaknesses) that provide

instructive contrasts. Ineffectiveness of a parallel host can be difficult to interpret for a

large code of ten to twenty thousand lines. While the host machine may be

incompatible, it can also be that the program is trying to do something in a particularly

unsuitable way that could be changed if one could identify the problem. Similarly, a

series of good showings on small metrics (e.g., the LFK set [MCM86]) indicates that a

-7-

machine enjoys isolated strengths, but without reliable rules of synthesis for

extrapolating the results, predictions for complex computations are uncomfortably

loose and conjectural. A small table, below, summarizes some differences in utility

given two outcomes from running:

Nice Speedup Little Improvement

Large
Code

(+) Indicates

application/

architecture

comnatibilitv

(-) Identifying

reasons often

bothersome,

difficult

(-) Rules of (+) Isolates

Small extrapolation deficiencies

Metric not general quickly and
at this time clearly

The larger and smaller benchmarks serve complementary roles. If things go well,

then the best way to be sure is to run a very representative job. However, if

performance is inferior, then metrics are far more convenient as diagnostics. The
current state of parallel computing is far too chaotic to place great faith in any general

synthesis from metric results, since to do so assumes that one knows how something
truly works. With classes of machines emerging, it not clear there is a simple "thing."

As for large codes, the best way to handle complications of any magnitude may be
simply to set them aside. This recommendation is especially true for "dusty-deck"

codes that hardly ever move to different architectures, and whose structures antedate

most modem software engineering practices.

2.6 Timings

Almost every benchmark set involves some performance against a clock, the

exception being something like a test for accuracy. This section briefly reviews some
technical problems in using a clock. Beginning with a naive "calling" and correction

for timer overhead, discussion expands to timings that have a random component. The
importance of a measurement model is underscored. While sometimes correctable, the

perturbing nature of some timing measurements can severely limit applicability:

parallel processes are especially sensitive to measurement overhead. Sometimes there

are software corrections that are available to resolve at fine detail through indirect

means. Under other circumstances, only special hardware instrumentation can resolve

with the speed, explicitness or lack of perturbation that is demanded.

2.6.1 Algebraic Expressions, Random Variables. It is sometimes suggested that the

following fragment works for calling internal program timer:

(i) { tO=time(); tl=time(); ... <code> ...; t2=time();)

If the differences t2 - tl and tl - tO were fixed quantities (t2 - tl for a given instance

of <code>, of course), the time captured by (i) would be

time = t2 -2*tl + tO.

-8 -

The simple algebra subtracts out a fixed overhead. However, for reasons given in the

next paragraph, the differences t2 - tl and tl - tO dut not algebraic expressions, but

rather, random variables. That is to say, they are defined on any given reference not

by fixed values (e.g., 5 - 3), but by probabilities on a range of vines, a sample space.

An algebraic quantity is invariant with each reference unless its constituents are

reassigned; a random variable, which is really a function, assumes a new value within

its range upon each reference.

2.6.2 Timings Have Random Components. The first point is that computer
instructions on modem machines take varying lengths of time. The same fetch and
add instmction may on one execution suffer from memory contention and delay, or on
another execution retrieve its operand from the fast cache memory. The time depends
upon what has gone before. Similarly, a multiply time varies depending upon the

significant digits in the operands. The whole complexion of the machine is

probabilistic in time; while this variation is hardly noticeable in normal practice, it is

there. The law of large numbers simply smooths out macro-level observations.

Resolution, Asynchrony, and More Randomness. A call to time() does not start the

clock running at the point of call. The clock ticks asynchronously and independently

of any readings of its time. This renders the call of time() a random variable;

depending upon where in the interval between ticks the call starts, the read time will

vary. If time() executes slowly relative to the clock ticking, possibilities of variance

between imme^ate calls, as in ri - tO, are fewer. However, on many systems quite the

opposite holds. The tick is infrequent (e.g., 20 ms, 50ms, 1 s...) and clock reading can
be fast (5-15 microseconds). Here individual differences tl - tO will be either 0 or 1,

with a mean value depending upon the disparity of speeds. The faster clock reading is

relative to the ticking, the harder it will be to "catch" a tick with tl - tO and get a

non-zero difference. A single sample of tl - tO will certainly not suffice.

2.6.3 Importance of Measurement Models. The establishment of the circumstances

of timing is not a distillate from collected data. There is no magical effect to be
gained in collecting vast quantities of somewhat-organized measurement data. Proper

experiment design requires that one establish as well as possible the stmctural details,

the mechanism, of the measurement apparatus. Only in ^s way can the measurement
model avoid confounding its own mechanism overhead with that of the observed.

Without proper planning and structural details the measurements become much
diminished in value. Conversely, if measurements as outlined in (ii), below, fail to

show any variance, one is alerted to programming error (defective methodology) or

circuitry failure (malfunction). The whole idea is to represent major known
measurement circumstances in a tight model that accounts for them. This leaves fewer
uncontrolled factors, and thereby enhances measurement accuracy and precision.

A More Complex Measurement Model. Once simple algebra is abandoned, the

approach of (i) is misleading—it provides but one sample point whose value may be
totally unrepresentative of the average of a number of such samples fi*om the space of

values. Consequently, (i), above, must be enclosed in some iterative sampling

mechanism, as

-9-

(ii)

ntest = <appropriate value>;

time_sum = 0;

for (i from 0 while i < ntest step 1)

{

t0=time(); tl=time(); ... <code> ...; t2=time();

time_sum = time_sum + t2 - 2*tl + tO;

)

time_ave = time_sum / ntest;

This fragment is still incomplete from a statistical standpoint. The question arises as

to what ntest (the number of sampling tests) should be. This value depends upon the

variance of the timed segments of code and the confidence and tolerance limits one
wants for the final time_ave [NAT63]. For example, a high degree of confidence

requires more samples, as does a tighter interval range. That is to say, measuring
time_ave±c to 50% confidence is easier than claiming a 95% confidence (that the true

distribution mean falls into the established interval).

Some extra code or preliminary estimate runs outside of (ii) must be included to

establish a suitable value for ntest. While not difficult, the careful determination of the

number of sampling trials can be tedious. This determination is also part of the

measurement method, whether it is explicit code or simply trial runs prior to the true

measurement. See [NAT63] for details on such estimates. In addition, the statistical

model in [NAT63] used is good, but only approximate. It assumes many factors that

yield normal distributions. Modem "distribution-independent" methods of

computational statistics could be employed at some greater effort [EFR78]. This

seems unnecessary.

An assumption in all of this is that the sampling is from one distribution. Such is

not true if the first execution takes longer than subsequent passes because an
appropriate machine state (cache, etc.) must be established. An F-ratio test can often

be used to separate bimodalities (or worse).

In conclusion, the fragment of (i) is wholly inadequate. There can be a

considerable amount of computation and thought beyond what one sees in the

instrumentation.

2.6.4 Measurement Perturbation and Parallel Processes. Supervisor calls, SVCs,
often mentioned in timing examples, are very slow methods of time collection. Usually

two decimal orders of magnitude can be saved with some more direct approach if this

is available. Direct methods may include a user-accessible direct clock-to-register

instruction, or special incorporation of independent run-time collection hardware

[MIN86].

Perturbation becomes an especially sensitive issue with concurrent processes. A
slow clock call made for instrumentation may inadvertently serve as a point for

synchronization. (Printout statements for debugging are also gross perturbations.)

Hazardous conditions may thereby vanish during program testing and timing [GAI86],

only to surface again upon removal of timer invocations. This problem is the focus of

the "Trace" and "Resource" measurement systems that are being developed within our

facilities [CAR86]. An eventual objective is to support unperturbed programs that can

-10-

be nonetheless measured in parallel execution. As an improvement to parallel

performance methodology, this goal is very attractive.

3. Practical Aspects

Discussion has covered how the principal role for many benchmark metric

collections is to show weaknesses. Such an approach is not deliberately chosen, but

rather reflects the fragmentary nature of the understanding of parallel processing; it is

an ad hoc adaptation to realities of the moment. Thus passing a test well cannot show
definitively that an architecture is tmly suitable for an application, since there are

many, many factors to be considered, but failure of a test certainly indicates where
caution must be employed. Again, the converse, that of passing easily, is more
meaningful (without synthesis rules) if the benchmark is as close to the real program
as can be.

Returning to the case of poor performance, suppose for example a host machine
cannot handle many short messages, but it can handle fewer ones of medium length.

Then all "fine-grained" algorithms are going to be likely sources of problems or

impossibilities on the host. Certain applications may have characteristic sets of

solution techniques that are dependent upon specific programming features—these

applications will be easier to test for than others with complex sets of interactions. In

short, if there are well-defined dimensions to the computational needs, the benchmarks
can at least check for some minimal capability, without which feasibility is much in

doubt. The popularity of LFK, the Livermore FORTRAN Kernels (or "Loops"), a set

of twenty-four short but representative computations from physics, owes much to this

observation. While much abused in interpretation, the "Loops" are nonetheless

extremely useful. The report on the LFK does an excellent job of explaining their

designed role [MCM86].

Larger benchmark codes test production capabilities well enough, but for reasons

already discussed can be unattractive. The very number of applications is one reason

why a full repertoire of larger codes is simply hard to attain. A collection will lack

economy of size and thought, and because of this, entail a maintenance burden. And
since parallel processing is by definition not "doing the same old thing", there is

always a lurking suspicion with old programs that things might be better if only they

were rewritten in a more contemporary manner.

3.1 Elements in Realistic Design

3.1.1 Functional Level. The level of design that a benchmark addresses will affect its

overall utility to various people. A low-level benchmark is simpler to interpret, gives

reproducible results and is easy to code. It may, unfortunately, tell one little about

germane parallel interactions. Another weakness in low level benchmarks is that they

may reflect either that structure visible to the programmer or that necessarily

understood for the target machine to run well; that is, they are close to hardware.

- 11 -

However, discussion has also shown how a full application code is somewhat less than

ideal. As Etchells and Nudd have indicated, some middle ground is often a most
attractive target.

3.1.2 Collection Membership and Size. Membership selection for benchmark sets

varies considerably. Nonetheless, two common and diametric poles exert an influence:

(i) The empirical—culling from real application codes those program figurations which
arise frequently, and (ii) The axiomatic-working within known organizational

relationships which must be satisfied. The Livermore FORTRAN Kernels [MCM86]
convey a strong feeling of (i), whereas the example in Chapter 4 is more (ii).

Circumstance and choice will always determine some proportional mix of the two.

Ideally, one would like somehow to isolate all important programming and
algorithmic factors and test for them with measurement benchmarks. This is not

possible, of course, since a general set will be very large. Eventually, a method of

synthesis from important benchmark "bases" may solve some of the size-of-set

limitation. In this ideal case, a set of metrics would cover all pertinent dimensions,

with more complex cases being built up from the basis-set. However, at this time,

accurate predictions of interaction results are likely to be more difficult than simply
writing an ad hoc benchmark to measure interactions of interest directly. Parallel

processing is simply not that well understood; exactly which facets are major and
which are minor is not clear.

3.1.3 Specification Choice. Benchmark design, as with any other design, involves

tradeoffs. There is considerable latitude in the description of a benchmark. It may be
the most simply-stated question, such as "Is ^-1 prime?" or it can be as detailed

as loadable machine code. The first question, on primality, is a quite portable

benchmark, whereas the machine code version is very easily run, provided that a
suitable system is under test, A narrow target of use allows simplifications and
assumptions that must otherwise be accounted for. An example of this accounting is

the library system used with a collection of coded benchmarks. If the benchmarks will

not always be run with the same support library, then arguments can be made that the

library support should be bound to the benchmark set itself. This is laudable, but it

means that someone will have to trouble themselves to get or write the library

routines, and to maintain them. Furthermore, the library will be inferior for some
architectures and implementations.

The question of specifying the benchmark can be resolved at several levels. An
English description will provide the most portable, applications-oriented possibility. It

is closest to application requirements, and leaves miles of latitude for implementation.

Pseudo-code is noticeably more concrete. The opportunity for misinterpretation is

much diminished, and the portability of the benchmark is not greatly degraded on
machines similar to the virtual machine assumed in the pseudo-code. Real code is

even more pronounced in its immediacy, the principal variabilities being the quality of

the compilation and libraries, yet even here the range of performance is a factor of

ten-a whole decimal magnitude. And once again, machine-loadable code removes all

compiler uncertainties, but it also precludes opportunities for running on other

machines. Such are specification tradeoffs.

- 12-

3.1.4 Definition of Test, Scoring. Another important facet in benchmarking is in data

for benchmark results, and the scoring of the run. More precisely, are all machines
asked the same question, and must they give the same answers? What does this

question mean? Without standard input data, one is never quite sure that a result is

comparable. Many algorithms have wide changes in their execution from what seem
to be minor parameter changes. The problem with output is not quite so bad. Here
comparabilities are more safely made, so that 1.55556 may be close to 1.6 provided
that all the other numbers are similarly related. However, if such discrepancies are not

acceptable, then an "question and answer sheet" must be prepared for scoring a

benchmark performance.

The allowed parametric range for a metric set is quite dependent upon the use the

results must serve. For example, when checking a machine for service suitability in

some application, the application determines the range. But this may or may not

"stress" the machine in a manner interesting to an architect trying to broaden the

regime of performance; from his view, which is naturally more bottom-up, the

parameter ranges should uncover interesting and significant transitions in execution

performance. Without the points of transition, he has little idea whether there is

balanced—uniform- extra capacity in the machine for the task (capability, job, feature)

that the metric represents.

3.1.5 Interpretation. Overall interpretations of a benchmark score are sometimes hard

to make. This is one reason that a fuller framework has been proposed. It forces the

user to either tacitly agree with the framework setting, or to supply arguments on his

reinterpretation of a benchmark’s significance. In either case, the results are certainly

much more valuable when explained; provision should be made for interpretations of
all scores. Otherwise laymen and rascals will draw their own conclusions, and these

may occasionally be correct! The report on the LFK set is an excellent example of
interpretation, although it does follow introduction of the set by roughly seventeen

years.

3.2 Some Example Sets

A set of benchmarks can grow in any number of ways: as a random collection; a

deliberate design with specialized architectural focus and wide application; an attempt

to codify a field of endeavor. Several contemporary sets illustrate these possibilities.

3.2.1 NBS Ad-Hoc Parallel Collection. Over the last year or two, NBS has been the

host of a collection of contributed benchmarks. The set is largely in FORTRAN, and
is scientific code. As one might imagine, the organization of tiie set, other than being

in an electronic mail system, is not deep. Contributed benchmarks can simply

overwhelm a host organization if it must to check and explain all contributions. So a

genuine weakness of the set is the lack of any interpretations that might be supplied.

The strength of the set seems to be that it is something of substance that can be run.

The mail system has sustained a good traffic as interest has picked up. Generally, one
can venture that running a variety of applications makes vendors and experimenters

feel better. When nothing bad happens, they at least have increased their Bayesian
confidence in their architecture. Benchmarks in the set that do not perform well may
be ignored, or an expert in the field can be called in. This service, then, is a rough-

- 13-

and-ready means to sample crudely and easily some representative programs from
scientific computing.

3.2.2 Dhrystones (uni-processor). The Dhrystones focus narrowly upon language for

systems programming. This may be secondary to parallel architecture, but almost any
calculation uses enumeration, records and pointer types, if but indirectly through a

compiler. With such a narrow focus, the set can run on just about anything. It is a

contemporary set of language statement-level metrics. The set certainly has a broad

audience. It measures processor+compiler efficiency for a typical systems program,

which is defined by a statement-mix characterization [RIC87]. Both statement type

and data type are accounted for. There is neither floating point nor i/o, and the code,

which is synthetic, cannot be optimized well by vector processors. The operating

system is not called.

R. Richardson [WEI84,RIC87], commenting over arpa-net "info-micro" on the

Dhrystones, suggests their use as follows in selecting a machine:

1. Use Dhrystones to establish processor+compiler speed.

2. Run other benchmarks for disk bandwidth, multiuser response time, and
floating point performance (Whetstone). Add vector and matrix

computations if germane.
3. Examine costs ofpurchase, operation, maintenance, and depreciation.

4. Try appropriate application benchmarks (large codes) on the narrowed set of
machines.

Note that Richardson’s advice is a practical application of the entries in the table-of-

utility discussed earlier. He uses the kernel benchmarks to winnow a field, and then

suggests larger, fully realistic benchmarks to ensure the soundness of a machine
selection.

3.2.3 Vision Understanding. Our NBS effort has only had a mild exposure to the

many problems of vision understanding. While the original intent was to comment
upon fiiese experiences and impressions here, the effort is being extended into a

somewhat longer and distinct study. Hence these notes are in passing, and highly

provisional.

A major problem in vision is that the field is very poorly characterized relative to

the more mature computational areas such as numerical analysis. One has difficulty

getting workers to concur as to just what is necessary, or good, or fully wrong.

Furthermore, there seem to be at least three layers: a low-level pixel oriented, frame

processing stage; a middle range, object-oriented simplification; a top level with

knowledge-based methods. In some versions, data flows up, and control flows down
the layers. Unfortunately, there are no available machines to test an elaborate layered

benchmark, so most researchers evaluate within a given layer. Even then, the

tendency is to gravitate toward the pixel layer. Additionally, i/o is a major problem in

vision, and has not been addressed very well in benchmarks; one does not just do one

- 14-

frame—there can be 1-50 frames per second!

3.2.4 Yet Another Set--With Framework. The NBS explorations have led to a

framework for benchmarking which has initially been built around process

communication. This is expanded in the next chapter, and is given as an example of

how some of the ideas discussed in the first three chapter might be put to use. The
framework ranges from an application level to very low level, hardware-dependent
events.

4. An Example: Metrics for Process Communication

This chapter demonstrates the embedding of benchmarks in a framework for

clearer interpretation. The subject is process communication. The brief preliminary

study provides good evidence that no single mode of implementation is completely
satisfactory over broad ranges of circumstance, while at the same time demonstrating

the utility of an organized, parametric approach to benchmark design.

To illustrate, a logical ring pipeline test routine has been run with communication
variations that include three types of synchronization, two modes of value

transmission, and a spectrum of datum lengths. A sampling of runs on one shared

memory machine shows that: (i) with one processor available for each ring node,

busy-waiting supports a broad range of message lengths, (ii) interrupts work well for

medium to long messages, but context-switching limits short message applications, (iii)

polling is sensitive to problem size— a millisecond misjudgement in polling frequency
can be disastrous.

Similar results when interpreted from a fuller collection of benchmarks should

assist in establishing con^atible matchings of algorithm, programming technique, and
architecture, perhaps identifying where extra software design care should be exercised,

or highlighting special architectural strengths. A framework and its related

benchmarks would provide a quick summary of communication on new parallel MIMD
machines.

4.1 Communication

Process communication is absolutely necessary in parallel processing. Without
mutual exchanges of data, cooperative computations are precluded. A system’s

capabilities in this communication exchange have important implications in algorithm

design and techniques of programming. The communications programming should

match logical needs of algorithms to physical hardware capabilities. Otherwise less

than satisfactory performance will be realized.

- 15-

There are of several aspects of process communication granularity on parallel

machines. The term is used here very informally as an indication of size or resolution.

It conveys a sense of relative scale. Thus a fast synchronization method is fine-

grained, and a slower one, say five-second polling, coarse. Similarly, fine-grained

transmissions have but a few bytes, whereas coarse messages are long. Granularity is

important because it relates both to the cost of writing software and to the cost of the

underlying hardware. Generally, coarse-grained MIMD hardware is less expensive.

Opposing this, fine-grained software communication is more flexible in accommodating
various algorithmic choices. (See [KRU87] for a more ambitious attack on the

problem of computational grain.)

The investigations pursue process communication granularity within and across

various architectures, although shared memory architecture has been given greatest

initial emphasis. However, both shared memory and message passing paradigms are

considered overall. Shared memory denotes storage mutually accessible by all

processors at approximately the same cost; it supports communication by-reference, i.e.

through pointers. Shared memory is often called tightly coupled. Message passing
systems have memory attached privately to each processor (at least conceptually), so

that processors communicate only through explicit transmissions of whole messages.
The coupling in this latter case is then referred to as loose. From a programming
view, messages are a by-value form of communication.

Accommodating both architectures within the same test routine requires advance
planning. The code for message passing is designed first. Translation--in an informal

sense—is then made to a shared memory version. This direction of designing from
message passing to shared memory is very important. It can be quite difficult to cast

some shared memory codes into a suitable message passing equivalent [HIK85].

4.1.1 A general framework. The overall effort is lent cohesion through a two
dimensional general framework (see Figure 4) which has been chosen to emphasize
communication. The abscissa delineates several broad application modes by
communication dependencies, e.g.: computational objects that can be scheduled

independently { a la radiation transport), locally-dependent calculations (fluids),

scattered global dependencies (circuit simulation), and many interdependent globd
calculations (molecular dynamics). While these modes are vast simplifications, they do
present a serviceable organization of application communication ne^s.

The ordinate depicts a degree of abstraction away from the physical machine.

Three or four approximate layers have been identified, although the exact resolution

may vary to suit measurement purposes. At the highest level are the applications,

classified by their component dependencies. This top level is more of a requirements

specification than anything else. Next is an algori^mic layer which establishes the

functionality of the serial process code and yields the application’s detailed

communication requirements. Lower yet is a (parallel) process level in which
computation loads, communication patterns, and transmission protocols dominate. And
beneath this, instruction or machine event measurements should ensure that what is

measured by software benchmarks is really the pattern of machine resource utilization

that one thinks it is.

- 16-

The general framework of Figure 4 shows a machine at the bottom. The machine
should be well-balanced in its support of the software at higher levels. That is,

memory size, memory move-around, and the other machine aspects discussed earlier

should be equally stressed for an application [fHL85]. This balance-of-stress is an
ideal which is never fully achieved, but one aim of performance measurement is to

discover economical approximations.

4.2 An Example within the Framework

The scope just described is very large. To explore sections of the framework,
various examples should be tried. Emphasis here will be upon the process

communication mechanisms.

Within each of the application modes at the process mechanism level, one can
define a logical (but hardly unique) process communications structure. The role of the

logical structure is to provide an abstract model of communication divorced from fine

details of (i) the original problem, or (ii) algorithmic and coding features not related to

process communication. (Communication here denotes both synchronization and data

transmission.) Certainly there may be numerous acceptable models for a given
application. However, to study process communications, specific examples must be
chosen and tested.

One synthetic test might be an example of a parallel computation with little

interdependency. For this, a form of distributed event scheduling may be appropriate,

the model being a collection of nodes with random communication needs. (A parallel

garbage collection might use this organization [LY086].) Such a benchmark would
explore general routing performance and (perhaps) load balancing. A rudimentary
version of this routine has been run.

At the other end of the interdependencies spectrum are globally interdependent,

homogeneous objects. Here routing can be simple and fixed. The computational loads

are similarly less variable. Illustrative results that follow focus upon an example
chosen here, using interdependent processes to study communication granularity.

4.2.1 A ring. As mentioned, the selected application mode places interdependent

global constraints on calculations. In the sketch of the framework. Figure 4, this

corresponds to the right side of the "applications" dimension. Under actual

circumstances, not all global constraints are of equal importance, so that certain

"regions" can be defined to give approximations. This aspect is ignored here, the

results providing measurements for an extreme case.

Ring pipelines are a commonly accepted method of communicating globally

among processes that share mutual constraints. A systolic ring is also similar,

although an SIMD architecture may be implied. However, the target architectures

discussed here are MIMD, with process control proceeding more or less independently.

(Whether MIMD is truly suited for such ring problems is a point not discussed,

although experiments with SIMD architectures might prove eye-opening.)

- 17-

The ring communication structure is implemented with parameter variations as

follows:

A. Synchronization (busy-wait; polling; interrupts)

B. Mode of transmission (by-value; by-reference)

C. Message length (short to long)

Further variation is necessary within the gross parameter selections. For example,
polling introduces the notion of frequency which must be explored. Computation per

datum should be adjustable. In addition, the variance of processing each datum can be
set by another parameter.

The synthetic ring benchmark for global dependencies (Figure 5) functions as

follows:

1. Each of n nodes will originate x messages, and additionally, process all other

messages passing by. The number x of messages and their length y are

parameters.

2. Each message travels around the ring, it being “processed" synthetically by
each node in turn.

3. A message that returns to its origination node is removed from the ring traffic.

A new message is sent unless all x have been sent.

4. When all nodes have sent and received all of their messages, the ring of
processes is dissolved, and the results are reported.

Communication is asynchronous, with message traffic controlled by a simple form
of flow control. This keeps slower nodes from being overrun with messages. Such
control is essential on systems that cannot control buffer overflows. Messages are,

again for this preliminary study, acknowledged on a one-to-one basis. Thus at most a

process (node) will have one waiting message. The acknowledgment parameter is,

however, adjustable.

The general arrangement of the ring runs in 0(n^) on a serial machine. This can
be seen by doubling the ring size: each message must go twice as far around the ring

and hence cause twice as much processing; there are also twice as many messages.

Now, an architecture such as hypercube can assign a physical processor to each ring

node (process). Here one expects running in 0(n), based upon the number of

messages each node will see. The distance around the ring is not a major factor for

the hypercube because each node corresponds to a real processor.

Actual observation bears out the above. Ignoring startup, hypercube performance

holds fairly close to a straight line, whereas a processor-limited shared memory
machine begins to slow in a nonlinear fashion. For p processors in a shared memory
machine, the deviation from linear appears when the ring size reaches p nodes,

assuming that interconnect and memory remain unsaturated, but that the computational

load is heavy. Prior to this, each ring node has a processor and the system still has a

processor to do its chores. At n=p the ring needs all p processors, but the system also

needs one occasionally too. Here time-to-complete begins to take longer than linear,

and each additional virtual ring node merely worsens processor contention.

- 18 -

4.3 Sample Results

There are three sets of illustrative data from the ring benchmark. (Most of the

discussion concerns a shared memory machine with six processors.) The data plots

include (1) observations on handling very short messages, (2) a comparison of

interrupts, polling, and busy-waiting on long messages, and (3) an example of the

influence of polling frequency. No claim is made that these sets are fundamental to all

or any other parallel programming applications. What the results do show is that even
so simple a program as the synthetic ring benchmark is quite capable of extracting

widely differing performances on the same machine. Thus it and others similar in

philosophy may be quite useful in quickly characterizing salient parallel performance
features. This can only shorten the task of writing programs for a new machine.

4.3.1 Short messages. Message granularity is an important aspect of process

communication. Short messages are especially useful if they are well supported, since

they ease programming at the algorithmic level. Failure to support very short

messages weU means that algorithms should compute for longer times before sending

(longer) messages. This is not always easy or even possible.

Experiments were conducted sending the same amount of information throughout
the ring in varying degrees of "chunking". Long messages were then fewer in number.
The times-to-complete in Figure 6 are plotted (log-log scales) against the message
length. The overall constraint is

(message length)*(number of messages)=CONSTANT

The results in Figure 6 are for shared memory, by-reference transmission. Essentially,

a pointer is passed around. As to be expected, whenever there is a real processor to

assign to each node process in the ring, busy-waiting works very well. In Figure 6
one sees numerous time-to-completion curves for rings of two to seven nodes run on a

six-processor shared-memory machine. For six or fewer nodes, variation in message
length is not nearly as critical for busy-waiting as it is for interrupts. This is because
busy-waiting does not incur the latencies of context- switching and system service that

interrupts and polling have. Hence very fine grained communication is feasible. But
busy-waiting squanders processor capacity, and one expects that once processes exceed
processors in number, busy-waiting will be definitely inferior. Indeed, the line BW(7)
in Figure 6 (a seven node ring) depicts a much worst performance than that for

interrupts, INT(7). Even when Ae number of processors and ring (node) processes are

equal, a slight degradation has set in, for reasons (mentioned earlier) of processor

contention. The ring routine can do by-value message transmissions as well as by-

reference. However, for very short messages this difference is not so crucial.

Some systems do not perform weU on the test of Figure 6. Figure 6-a depicts the

performance of an older by-value (message-passing) architecture in which the system’s

frame size for messages was fairly long. Any attempt to send short messages mostly

swamped the commuitications network: Whole message frames were sent no matter

how few bytes were used. If too short transmissions were attempted, the system
would crash from communications overload. The sawtooth pattern of Figure 6-a

reflects the influence of the message frame, and in fact fits the simple equation

time = a * [x/1024]/x 4- b/(x-230) + c, where

- 19-

a=system message-frame constant

b=component for algorithmic message actions,

e.g. wait for free buffer, send ACK,...

c=useful computational time, invariant for

amount of information overall

x=message length

The divisor "x-230" represents an unreachably small "grain". Attempts to send
messages of lengths just above 230 bytes brought the system down.

Drawing from the above experience, one can conclude that the ring benchmark is

useful in establishing quickly which message lengths need extra concern in designing

algorithms for a system. In addition, the robustness of system communications
software is put to test.

4.3.2 Interrupts, polling and busy-waiting. The next example shows variations with

several implementations of synchronization. To simplify, messages are very long (8

kilobytes). This removes many of the problems with short messages.

In a practical sense, interrupts probably work best. That is, for larger,

computationally heavier applications with medium to long messages (both common),
interrupts give the fastest executions. The primary message grain limitation arises

from system overheads; interrupt handling requires operating system service, and this

places a practical limit on shorter messages. The comment is especially true if briefer

communications also imply more transactions. However, when messages are longer,

as in Figure 7, interrupts (denoted INT) outperform busy-waiting (BW), and are not

nearly as sensitive to tuning as polling (POLL). Note again, that these are for a

specific shared-memory machine.

Figure 7 also displays time-to-completion curves for by-value modes of

transmission. This corresponds closely to message-passing, in that no permanent
storage of a message is allowed in shared memory. A message must be copied totally

into a processor’s private memory area, processed, and copied back to shared memory
for transmission. While this mode is considerably more secure, it is understandably

slower for longer messages. Milde, et. al., [MIL86] commenting on their experiences

with the Aachen M^PS cluster machine, remark that, "The comparison reveals a

significant overhead of transparent message passing as against synchronized

communication via shared variables." The point is worth noting because shared

memory performance declines considerably when using a by-value paradigm. Lx)osely

and tightly coupled systems are more comparable, however, on a by-value basis. (By
nature of difference, by-value offers security, whereas by-reference gives access-

bandwidth.)

4.3.3 The sensitive nature of polling. For larger applications with medium to long

messages, polling offers performances ranging from excellent to inferior (Figure 7).

The sensitive nature of the ring benchmark regarding polling is clear from the shape of

the curves in Figure 8, with their abrupt transitions. Figure 8 depicts relative time-

to-completion against polling frequency in milliseconds. While a good polling

frequency for the ring structure is easy to identify, the curve changes with problem

parameters, especially ring size. Thus each distinct set of problem parameters may
need a new tuning. This tuning can be very sensitive, with a millisecond change in

-20-

polling frequency resulting in a nearly three-fold increase in time-to-complete. As the

ring grows larger, it amplifies performance differences that result from polling

frequency. Thus 20 ms polling may run ten percent faster than 19 ms polling for a

ring of ten nodes, but yield a factor of two or three times faster for a ring of thirty

nodes. Figure 8 shows two runs, each normalized within their own time-scale for

time-to-completion, and plotted against polling frequency in milliseconds. The obvious

"steps" are at system clock "tick" multiples. Polling at more than one but less than

three clock "ticks" seems an especially poor choice on this specific shared-memory
system.

Variations in polling benchmark performance may require investigation at a lower
level of measurement. The randomness of each message’s computation at a node does

affect the time-to-completion (as expected, more variance implies longer runs), but the

abrupt points of transition in Figure 8 remain whether the computations are fixed or

uniforrnly random. Similarly, varying the ring size modifies the steps, but they remain.

Initial instruction level measurements on the poUing request (SELECT in Unix) show a

very high variance in its service times. However, the results are inconclusive at this

point. The equipment to perform these lower level characterizations is special-built at

NBS for the shared-memory machine; time-stamp perturbations are only 3-5

microseconds, about two decimal orders of magnitude less than otherwise available

from the system clock.

4.4 The Ring and Framework in Perspective

Preliminary studies provide evidence that no single mode of communication
implementation is completely satisfactory over broad ranges of circumstance.

Variations in implementation, host, or problem size can profoundly affect performance,

even with essentially the same program code.

The very structured framework and the shared core of code for the ring

benchmark (and others to foUow) represents an effort to promote easy parametric

studies of various architectures. A core benchmark and its conditional compilation

features have a simple structure that can be understood weU. That the performance
can get interesting is encouraging, indicating that a simple approach may have utility.

Certainly more experience is needed, botJi running the ring structure on various

machines, and with other related benchmarks, as sketched earlier.

The framework and its related routines appears promising as a structure for

organizing debate on what certain communication aspects imply. For example,

elements of synchronous versus asynchronous communication, of versus MIMD,
are not now addressed direcdy. As evidence is acquired, the framework and its

routines can be changed and modified to suit circumstances.

-21 -

5. Conclusions

This completes the summary of preliminary work and experiences at NBS on
benchmarks for parallel machines. Discussion has covered several roles, ideal and
realistic settings, and quick summaries for several types of benchmark sets. A detailed

example demonstrates some of the observations of earlier chapters.

5.1 Recommendations

Several observations can be forwarded, given the rudimentary nature of parallel

processor characterization:

1. That performance metrics should be embedded in more comprehensive
frameworks that can be evaluated and modified as needed, and

2. That one universal framework is beyond reach, since distinct clusters of use

are emerging with separate emphases, and

3. That large application benchmarks are most successful when they run well on
an architecture, thereby demonstrating compatibility of job and machine, and

4. That the value of smaller metrics (fragments of code) is more diagnostic and
preventive than predictive. At this time, the variety of uses and architectures

render tight predictions unlikely in any simple system of metrics. Small
metrics should promote easy parametric stupes which can isolate system
anomalies and encourage directions of enhancement.

Small metrics and the large codes can take quite useful roles that complement
each other. Codes fulfill a present need to evaluate the use of parallel processing in

real applications. They assure purchasers of radical architectures that, while the full

envelope of performance is not understood, the new machine does demonstrate powers
that are judged an advance over services otherwise available. In contrast, the metrics

reflect a piecemeal basic understanding that is progressing in parallel processing. A
metric is an element of a model, a useful simplification of a complex endeavor. As
the metrics and their parameters become more agreed upon, the field of parallel

processing itself will have become more orderly, and vice versa.

-22-

6. References

[86-NRC] "An Agenda for Improved Evaluation of Supercomputer
Performance." Report prepared by the Committee on Supercomputer
Performance and Development, National Research Council (Washington,

D.C.,1986), 58pp.

[CAR86] Carpenter, RJ. "Proposed computer performance measurement
hardware." Parallel Processing Lab. Note No. 20, ICST, NBS, March, 1986.

[EFR78] Efron, J. "Computers and theory of statistics: thinking the

unthinkable." SIAM Review 21, 4(C>ctober, 1978), 460-480.

[ETC83] Etchells, R. David and Nudd, Graham R. "Softw'are metrics for

performance analysis of parallel hardware," Hughes Research Laboratory
(Malibu, CA.) Report, circa 1983, under Darpa Order No. 3119. Reported at

Alvery-DARPA Workshop on Benchmarking Parallel Architectures, October
10-11, 1984, London.

[FER86] Ferrari, D. "Considerations on the insularity of performance
evaluation," IEEE Trans, on Software Eng., SE-12, 6(June 1986), 678-683.

[GAI86] Gait, J. "A probe effect on concurrent programs." SOFTWARE—
Practice and Experience 16, 3(March, 1986), 225-233.

[HIK85] Hikita, T. and Ishihata, K. "A method of program transformation

betw'een variable sharing and message passing," Software—Practice and
Experience, 15(7), 677-692(July 1985).

[HIL85] HiOis, D. Remarks on parallel architectural similarity, 12th Annual Inn

Symp. on Computer Architecture, Boston, June, 1985.

[HUS 87] Huss, J.E. and Penhline, J.A. "A comparison of five benchmarks,"
NASA Technical Memorandum 88956, February, 1987, 13pp.

[KRU87] Kruskal, C.P. and Smith, C.H "On the notion of granularity,"

Internal report. Parallel Processing Group, NBS, circa Januaiys 1987, 15pp.

[LY086] Lyon, G. "A fast, message-based, tagless marking," Proc., Second
Hypercube Multiprocessor Conference, Knoxville, Sept. 1986.

[MCM86] McMahon, Frank H. "The Livermore FORTRAN Kernels: A
computer test of the numerical performance range." Draft repon UCRL-
53745, October 1986. In preparation at Lawrence Livermore National

Laboratory, and to be available at a later date from: National Technical

Information Service, Springfield, VA 221611.

-23 -

[MIL86] Milde, J., Plueckebaum, T., and Ameling, W. "Synchronous
communication of cooperating processes in the M^SP multiprocessor," Proc.,
CONPAR 86, Lecture Notes in Computer Science 237, Springer-Verlag,

1986.

[MIN86] Mink, A. et al. "Simple multiprocessor measurements techniques and
preliminary measurements using them." Parallel Processing Lab. Note No.

23, ICST, NBS, March, 1986.

[NAT63] Natrella, M.G. Experimental Statistics. NBS Handbook 91, August
1963.

[OMA85] O’Malley, S.W. and Gilmer, J.B. Jr. Survey of High Performance
Parallel Architectures, Report BDM/ROS-85-0988-TR, BDM Corp., Dec.

1985, 55pp.

[ORG85] Organick, E. and Asbury, R. "The iPSC stress tester (Organick

Rasberry)," Proc., First Conf. on Hypercube Multiprocessors, Knoxville,

Tenn., Aug. 1985. SIAM, Philadelphia, 1986.

[PAV84] Pavelin, C. "Notes on Alvey-DARPA Workshop on Benchmarking
Parallel Architectures, October 10-11, 1984, Millbank Tower, London."
Rutherford Appleton Laboratory, Chilton, 1984.

[RIC87] Richardson, R. Arpa-mail, "info-micro," 2 Feb. 1987. Subject: 1/31/87

Dhrystone Results and Source. 9 pp.

[SAL86] Salazar, S.B. and Smith, C.H. "National Bureau of Standards

Workshop on Performance Evaluation of Parallel Computers," NBSIR86-
3395, July, 1986, 50pp. Available through National Technical Information

Service (hTOS), Springfield, VA. 22161.

[WEI84] Weicker, Reinhold P. "Dhrystone: A synthetic systems programming
benchmark," Comm. ACM 27, 10(October, 1984), 1013-1030.

-24-

Three Common Communication Paradigms

adapted to parallel execution

Initialize time, all local_domains;

REPEAT

FOR ALL local_domains DO

local_domain(time+l) = G[all other local_domains (time)];

INCREMENT(time); GLOBAL_SYNCHRONIZE;

UNTIL done

Figure 1. Global Interdependency

Among the local domains, which might be particles in a physical model, say molecular dynamics, each depends

upon all others in the ensemble. Thus any "next step" in time requires that each and every domain propagate its

state to the rest. A ring architecture (systolic or otherwise) is suited for this.

Initialize time, all local_domains;

REPEAT

FOR ALL local_domains DO

local_domain(time+l) = N[neighboring local_domains(time)]

INCREMENT(time); IF(SIMD) GLOBAL_SYNCHRONIZE;

UNTIL done

Figure 2. Neighboring Data Dependency

Models in fluid flow, such as weather prediction, often have computations in which each domain is influenced by

some local set, its neighbors in the topology. These computations may fit upon a grid with node-points each

performing mostly the same calculations. An SIMD machine can be appropriate, but some algorithms will

converge asynchronously (chaotically) and can use MIMD. The code reflects either option.

-25 -

FOR ALL locaLdomains DO

Initialize local^time, local_domain;

REPEAT

local_domain(local_time+1)= I[local_domain(local_time)]

;

INCREMENT(local_time);

IJNTIL don^;

Figure 3. Computationally Independent Events

Some applications admit calculations that can proceed independently of any additional calculations that accompany

them. Radiation transport is an example; each particle has more or less a life of its own. This makes load-

balancing for a MIMD machine easier, since some variation of a "self-serve" paradigm (large-grain dataflow) can

be used. In the dataflow context, the "FOR ALL" may imply more than just a single startup: as new local domains

arise they too must be scheduled for processing.

-26-

Interdependencies of a parallel computation

None Few(local) Few(global) Many Global

radiation

transport

fluid

dynamics

circuit

simulation

molecular

dynamics

u
Algorithmic paradigms

Process mechanisms

t
Instruction-level events

Figure 4. Framework

Figure 5. Ring Pipeline

Time-to-Complete,

s

1000 —I

Figure 6. Time versus Message Lengths, Shared Memory

OU 30

0

Message Length, bytes

Figure 6-a. Time versus Message Lengths,

BW(2)on Hypercube Variant

o
«n 8

s
‘9j9^dui03-oj-9raix

Figure

7.

Time-to-Completion

versus

Ring

Size,

Shared-memory

Parameters

plus

Hypercube

800

-byte

msgs.

3PlduiOQ-01-9UIlX 3ApBp>J

Figure

8.

Typical

Polling

Results

(30

nodes)

NBS-114A (REV. 2«ao)

U.S. DEPT. OF COMM.U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No, 3. Publication Date

SHEET (See instructions) NBSIR 87-3580 JULY 1987

4. TITLE AND SUBTITLE

On Parallel Processing Benchmarks

5. AUTHOR(S)

Gordon Lyon

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7 . Contract/Grant No.

NATIONAL BUREAU OF STANDARDS r
U.S. DEPARTMENT OF COMMERCE
GAITHERSBURG, MD 20899

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

. Type of Report & Period Covered

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

10.

SUPPLEMENTARY NOTES

r I
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This is a summary of preliminary work and experiences at NBS on benchmarks for

parallel machines. Discussion covers the several roles that benchmarks play, ideal

and realistic settings, and quick reviews of several types of benchmark sets.

Several recommendations can be forwarded, given the rudimentary nature of parallel

processor characterization; (i) That the performance metrics be embedded in more

comprehensive frameworks that can be appraised and modified as needed; (ii) That one

universal framework is beyond reach, since distinct clusters of use are emerging with

separate emphases; (iii) That large application benchmarks are most successful when

they run well on a machine“—and thus demonstrate success for a narrow class; (iv) That

to programmers, the value of smaller metrics (fragments of code) is more diagnostic

and preventive than predictive. Small metric sets should encourage the parametric

study of architectures and applications, and thereby promote both economical hardware

enhancement and suitable program design.

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

benchmarks; computer performance; frameworks; measurements; metrics; models

13. AVAILABILITY 14. NO. OF

1 y| Unlimited

1 1
For Official Distribution. Do Not Release to NTIS

PRINTED PAGES

35

1 1
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

Order From National Technical Information Service (NTIS), Springfield, VA. 22161
$11.95

USCOMM'DC 6043-P80

ssei vm
O HWASHJiU^ .1 i

(ia»» -r:»»* ill:-

u^40s -«<» t7">ea «i«v

A7^ OlH^APSOLm
•«« T3t3)IS

»jTtra^jf a a 3Jt^t

jf . -^ ' ^
giiia«39fcTt lAllAifi^ cO

(P^jflOHTUA ^

4JOV V robioO

*T*7-vO li ti«^^ lo <T .1

»•« .tff ftaii \»iU,« \o)»^oV HOITAllHAiiaO aHiflA03;?3<l .«

^QilAaKAT^ «0 OKAmn JAKOOTAH
znsrmuoo to tKSDimutac

^4TJ c?.JI3HTllil
^

^ac-jA a3Det<^ vbA 9{ na’tiid
r

b7BT«^^ aD«^*^jW OOAl

*
‘ r M c J.

1
1

'ifefc^.vaAT'

i(V>»t\<<r|)t » *fclH»l3fii fi^^r^v

.b*' -«tHk il y«i»WM3 «*^x34»t> ir«®»a3<iOf^
J . . .—- . — aMK<«M«Aiai43MaMii4M •

%nn»A

M

‘ »V^
1 ^‘4>4 }

»»•» 19Vl0W*CO^ ^

DC,

jrt “T^iMt "a h

-g -cSli

'to^ «3#Tfm^HI ’OiBcf 40 8^’W c »om> 1 to^ ^aolieii»iq lo^afiiaaae fticfT

• alsB Ja 4*1 >*o iii^vse 5a niroi7%t Jloliip ba» .e^tpt>« rql^jiAi' toa
£»lXeT«q « uWn jitifloiln. T %rf^ aevtA tbsbiB^rfo^ o4 (Txa ii.no-f ikbastwa^a^^i-isv^S
»7o« ijl : cf ytii .lnr:T (1)

9rto tRft? f 1 1 ^ j bofu ‘
1 -t*M- liiu *» ' f^e b: iiri ^*ja tiU njii> larCj avi^iS^ . qjwoa

djJJ ' g-Tl^T*(. i. . »• "^' ^rT * e*lC 4ftU,t3 J^H 'lb Juttll. ba05»d ft) i taWO*tB1f5 0^1^ .1013

o^riM Xi.tl^tB3 ' ua -t^riof 0';.VJa I.qqo b37»I Safn* (in’) «a&(u^<^s uib&i#q£»a
)iiit (v>) ^ Ai l 9Jj.x^i‘<xao«s^ c:urt3 fans

—

^nldtj^nm i u» Tisv ^7 Vi^di

OllAotr^sli/ a V ? f ao^73o#? isils#in io suisv ai!7 , o3 .

oi73^6'TBq f»d7 j: 'itSpT ..
' om<- .svt^Dlbo^q flirr$l avljosyaiaf-bcsJ ja . fl«» ,SVt7D3&07q C«T|3 »Vl30Wa

r'X&'t’fyuai laaJ^aOat* djod •3f>4nnq ,i*rrol3s*>}f4|qB fans At*’>is % ^S)*r3«
"

>j

,agiBSb SttTJOTq &lds3liB fans ^41® *

"'T'—"V^ T

^dfi3li)

m ^ wir-^4aJ

.•0!

V J

#'Vi
>9.

«7Sr^)mcci«7 cns •,%lfiwf' 4wj .t*Vv» ;t»h*rn •vU«'j >a »iZliS<^OW Y3JP

•
^ '

1

Blsioffl j 5 i«ansmol7-w^ TaJoqmop ;i4l7fc.3fd3ft#rf^

— - ... - - - - - -
I

I

- — - II tfcjBliMM

r rrtJiC'MAMAJil
' 30 ,OVi >l

, 23I>A3 OiirWfiq

ee

-ii

Up
aq.ut

tbu fmMoU

^*TH <0 •« Mit*B i0M oQ ,n«ii'.<dunl0 I* >a»'^ ^03

•3X1 # /<chl it.U «*f 4n«iM>si --

.3JS9«
* q

(SIfir J*>V ,al«>i^r)lve)f df «ai(Ti02 «v3«t«^'o40i l#oU»(ltv®r tKindlUd m»*3 [jjp
-

