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ON THE MEASUREMENT OF FAULT-TOLERANT
PARALLEL PROCESSORS

John W. Roberts

Alan Mink

Robert J. Carpenter

A number of measurement techniques can be used to determine

how well computers detect and recover from faults. In addition to quali-

tative measures, quantitative measures can be obtained relating to frac-

tion of faults detected and corrected, recovery time, and degr^ation of

performance during and after recovery.

Key words: Computers; Fault detection effectiveness; Fault recovery

effectiveness; Fault tolerant; Performance measurement.

1. Background

Fault tolerance in a computer system is the ability to detect erroneous states in

computations or in hardware, and to deal with these errors so that "correct" operation

can continue. While limited capability for error detection and correction is common-
place, a much smaller set of computer systems detects and correctly handles errors

with a high degree of assurance. Tlus smdler set, known as fault-tolerant systems, ap-

plies various techniques to meet the specialized needs of a wide range of users.

1.1 The need for fault-tolerant processing

The principal need for fault tolerance arises in the areas of the solution of large

problems, control systems demanding high reliability, and applications demanding
availability.

Large Scale applications are those which use enormous amounts of computation (e.g.,

weatiier forecasting and three-dimensional fluid flows), and thus require long run times.

A fault-tolerant system which is good at both detecting and recovering from errors is

virtually a necessity for the solution of large-scale problems that have long running
times, with some assurance that the results are correct. As an example, consider a sys-

tem which has a normal error rate of one per billion operations. If an attempt is made
to run a program requiring one hundred billion operations on this machine, the results

are almost sure to be incorrect. Comparison of the results from multiple runs can
show errors, but can not be used to determine which are the correct results unless the

program is run many times. In this case, it is important not only that the system be
very good at detecting errors, but also that it be able to continue operation after the

detection of errors, without having to restart programs from the beginning.
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High-reliability applications are those for which it is important that the system remain
functional as long as possible in the presence of hardware failures. These applications

include manufacturing process controllers, and aircraft and spacecraft control systems.

For some of the functions of these systems, such as the processing of incoming sensor

information, a loss of small amounts of incoming data may not be harmful as long as

overall operation is able to continue. For these uses, mean time between system
failures (MTBF) and mean time to next failure (MTTF) are the parameters of greatest

importance.

High-availability systems, such as telephone switching centers, strive to compensate
for hardware failures in order to minimize the fraction of the time that the system is

unavailable because it is awaiting repairs or engaged in the fault recovery process. The
parameters of interest are mean time between failures and mean recovery/repair time.

Reduced-level performance may be available during recovery, and if so should be-

characterized. Such systems feature redundancy of many or all components, and may
allow on-line repair or replacement of failed components.

The original design of any particular fault-tolerant system determines to what degree it

incorporates error detection and recovery facilities. Since fault tolerance always exacts

a cost in price or performance, a potential user should search for a system that con-
forms adequately to the needs of the intended tasks. If applications that do not require

fault tolerance are also targeted for such an architecture, estimates should be made of
the penalties (cost, performance, etc.) that may be incurred. Development of measure-
ment techniques to determine the performance of fault-tolerant systems will aid users

in this search, and also help manufacturers to categorize their machines in a uniform
manner.

1.2 Approaches to achieve fault tolerance
^

Current approaches to fault-tolerant computing are based on redundancy. Redun-
dancy allows detection of malfunctions (physical errors), but usually cannot detect

design errors, which are replicated in each redundant component. Malfunctions are as-

sumed to occur in some random manner not affecting all copies. Redundancy is not a

viable approach to detection of software faults, since software logic faults will exist in

each of Ae duplicate units. Most software reliability efforts are directed toward fault

avoidance, concentrating on aspects of design and implementation (e.g., design re-

views, design specifications, testing, etc.). Detection and correction of software errors

at execution time doesn’t enter this fault avoidance model because machine operation

(at software design time) is assumed correct.

One approach to fault tolerance which does address design errors, and therefore in-

cludes software errors, is based on diversity [AVIZ84]. For diversity in software, in-

dependent organizations implement similar but distinct versions of the software from
the same specification. Both versions then execute simultaneously while their outputs

are compared. A software fault (in specification, design or implementation) is indicated

if the outputs differ. This approach does not guarantee that both versions will not pro-

duce identical erroneous results.
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At present, a major problem in fault-tolerant systems centers about the decision algo-

rithm which is responsible for the selection of the correct output (if any). In the space

shuttle [ZORP85], redundancy is used to detect malfunctions in the four primary pro-

cessing units, while diversity is used in the fifth, secondary processing unit (which has

the same hardware design, but a different software design), as a software consistency

check on the primaries.

1.2.1 The assumptions of this report. Henceforth in this paper, fault-tolerant com-
puting is understood to refer to the detection and correction of hardware faults (physi-

cal failures), rather than faults caused by mistakes in logical or software design. Our
baseline model of fault-free operation is a program (either correct or incorrect) and
computer hardware operating correctly to execute that program.

1.2.2 Loosely-coupled fault-tolerant architectures. Loosely-coupled fault-tolerant

chitectures are generally made by coupling a number of fairly conventional complete
computers into a system. Alternate communication paths must be provided between all

members of the systems, and the individual computer designs must be enhanced to in-

clude some means to detect erroneous operation and localize its effects. Communica-
tions between members of the system are handled by messages, with a protocol to

detect any errors in the exchange of messages. The responsibility for managing the

recovery from faults in the computers is assigned to the software system. Figure 1 il-

lustrates such a system.

Figure 1 - Loosely-coupled system.



1.2.3 Tightly-coupled fault-tolerant architectures. Tightly-coupled systems require

specially-designed computing subunits. Shared memory is used, and the hardware must
be designed to avoid erroneous transfers to memory. These systems frequently use

multiply redundant processors operating in a lock-step mode, with some sort of voting

or selection technique to assure real-time selection of the correct data. Dual mirrored
memory units are used with special schemes to assure that the correct data has been
transferred. A mirrored memory system uses two (or more) copies of each memory
location for redundancy. Data must be correctly altered in one instance of the memory
before the same change can be allowed in the other (mirror) instance(s). Error-

checking is again used when altering the second instance. Figure 2 illustrates such a

system.

TO THE OUTSIDE WORLD

Figure 2 - Tightly-coupled system.

1.2.4 Mixed systems. Some manufacturers choose tight coupling to detect faults, but

omit the greater redundancy required for hardware correction of the faults. These sys-

tems use recovery techniques similar to loosely-coupled systems. They therefore

represent a mixture of the architectures shown in Figures 1 and 2. (Doubly) redundant

units are used to detect faults. Additional sets of components are included to allow mi-

gration of tasks. This approach is illustrated in Figure 3.
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1.3 Stages of Fault-tolerant Operations

For the purposes of this report, we have divided fault-tolerant operations into two
stages: detection and recovery. Other taxonomies, such as [SIEW84], have chosen a

finer division:
- confinement - the system attempts to localize the effects of faults so that

recovery will be possible.

- detection - the faulty operation is detected.

- masking - operations are performed redundantly, to detect and mask erroneous

results.

- retry - errors are detected and operations retried until an error-free result is ob-

tained.

- diagnosis - the specific fault involved is diagnosed to allow reconfiguration or

repair.

- reconfiguration - required (automatic) reconfiguration is used to eliminate the

faulty portion of the hardware.
- recovery - the state of the machine is backed up to that most recently recorded

before the error, and the intervening operations are repeated. This may re-

quire the correction of erroneous intermediate results.

- restart - the system completely restarts the program from the beginning. This is

a drastic recovery technique suitable for batch or transaction systems.
- repair - since fault-tolerant machines can only tolerate a limited number of

simultaneously defective parts, any defective parts are repaired or replaced

automatically or by service personnel before the tolerance limit is exceed-

ed.
- reintegration - once a part in a high-availability system is repaired or replaced,

it must be reintegrated into the system without disturbing the jobs in pro-

gress.

- reporting - after a fault is detected, a report is made to the user both to help in

evaluation of the fault handling of the system and to alert the user to

losses of redundancy in the system.

1.4 I/O in Fault-tolerant Systems

The protection of I/O (input/output) operations poses several unique problems in

the design of fault-tolerant systems. These difficulties are due largely to the differences

between I/O and other types of data transfers.

The responsibilities of a fault-tolerant I/O system are related to what the designer con-

siders the nature and extent of such a system to be. Communications with other dev-

ices and the interface with the users would normally be considered part of I/O. If the

fault-tolerant system is made up of a group of loosely-coupled computers, however,
communications between the computers within the system would probably not be con-

sidered I/O. Similarly, some would consider disk and tape access as I/O, while others

would not. One possible working definition is that an interaction between two integrat-

ed, self-sufficient entities would be classified as I/O, while interactions within such an
entity would not. This definition fits well with the concepts of fault tolerance, since a

fault-tolerant system maintains control over a specific area in a community of compu-
tational devices, within which it is responsible for detection and correction of faults.

The fault-tolerant system is expected to interact with other systems in a correct
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manner, but it is not responsible for the actions of the other systems. Using this

definition, one may be able to visualize a machine designed as a hierarchy of fault-

tolerant systems within fault-tolerant systems, with the protected, internal communica-
tions at one level regarded as I/O interactions at a lower level.

In general, I/O operations are regarded as the transfer of information in the form of

messages in accordance with a specific protocol, which may be implemented chiefly in

hardware, but which is usually controlled by a fairly complex software structure. If

there is to be any assurance of reliable operation, some handshaking mechanism, which
uses attention and acknowledgement signals sent in both directions, must be employed.
The capabilities of the handshaking algorithm may vary greatly. A minimal algorithm

might simply indicate readiness to receive transfers, with little or no checking of the

correcmess of the data. A more complex algorithm might check for errors and require

retransmissions as needed, but not allow later revisions of transfers or provide highly-

reliable acknowledgements. Advanced algorithms might provide for the same degree of

controllability as is found for intrasystem transfers, at which point the device with

which communications are establish^ could be considered part of the fault-tolerant

domain.

Many potential problems with I/O transfers are associated with timing and synchroni-

zation. Depending on the transfer protocol and the output device, it may not be possi-

ble to reverse the effects of an erroneous output. An input which is lost because of an
error or because the receiving device is busy recovering from a fault when the signal

comes in may be lost permanently. In contention among several devices for a resource,

an accurate record of the current owner may be lost, resulting in overwrite errors or

blocking of access to the resource. Damage to software reference tables may cause er-

rors in connections. Consistency, which refers to the maintenance of correct records of
resource conditions from the viewpoint of all interested parties, is likely to be
compromised by such failures. In order to have reliable I/O operations, a fault-tolerant

system must have carefully chosen hardware and software structures that take these

problems into account. A sophisticated handshaking algorithm is necessary to insure

that data transfers can take place without causing errors in either communicating dev-

ice.

Other than the unique problems associated with timing and controllability, fault toler-

ance in I/O transfers bears many similarities to fault tolerance in other operations of

the system. Much of what is described for fault detection and recovery for internal

operations therefore applies to I/O as well. Issues specific to I/O are also mentioned
elsewhere, though a complete description of the issues in I/O fault tolerance is beyond
the scope of this paper.

2. Fault Detection Measurement Techniques

The first step in determining the capabilities of a fault-tolerant computing system
is to evaluate its fault detection processes. The measurement equipment should be able

to determine when faults are detected, and whether or not dl significant faults are
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detected. In order to fully evaluate the detection process, the measurement equipment

must independently detect the occurrence of all faults and also observe the detection of

faults by the system. Many of the details of the measurement techniques are depen-

dent on the architecture of the system under test.

2.1 Detection of errors

A fundamental problem in the design of fault-tolerant systems is to allow them to

detect errors while the system is performing useful work. Different error detection

techniques are required for the storage and transmission of data, and for the transfor-

mation of data.

2.1.1 Errors in the storage and.transmission of data. Since information is not in-

tentionally changed, detection of eirors in storage and transmission of data is usually

handled by information redundancy. This usually takes the form of error codes which
come in a large range of complexity, from simple parity and checksums to Hamming
codes, AN codes and polynomial codes (e.g., CRC). These codes can be used to allow

all errors of up to n bits to be detected, and all errors of up to k bits to be corrected,

where n > k and k >= 0. These techniques have been successfully applied to storage

devices (e.g., parity for detection or one-bit error correction in primary memories and
magnetic tape units) and data transmission mechanisms (e.g., checksums and CRC ap-

pended to data packets). While many systems use redundant information for (forward)

error correction, some system use the cheaper but slower approach of retransmission

for correction of data transmission errors.

2.1.2 Errors in the transformation of data. Detection of errors in the portions of a

computer system which intentionally transform data is more difficult. This activity is

usually associated with the processing units. Since the data is being transformed, addi-

tion of redundant information in the form of error detection codes is not generally ap-

plicable. The transformation of the error code information does not produce the correct

new code to accompany the transformed data. A new error code must be computed
from the transformed data, after it is transformed (correctly or incorrectly). Error

detection for transformations is usually handled by redundancy (replication) of data

transformation devices. With the assumption that errors are caused by random and in-

dependent events, multiple components are highly unlikely to be affected in exactly the

same manner at the same time. Errors are detected by comparison, which requires

only two units (more can be used), whose outputs are compared. An error is detected

when there is a difference between the outputs of the the units. If only two units are

used, the correct output (if any) is not known and further action must be taken to

resolve the problem. If three i&r more units are compared, majority voting may be
used to determine the correct output, as discussed more fully below.

2.1.3 Detection of only major failures. If the fault detection is needed only to identi-

fy units which have been incapacitated by a catastrophic hard failure (rather than faults

which produce erroneous results but allow the unit to continue operation), a simplified

detection approach can be taken, based on timeouts [SERL84, ZORP85]. A common
technique is for each operating unit (or program) to periodically inform another unit

that it is still active. This other unit may be a backup unit or a dedicated monitoring

device. If an excessive interval elapses without receipt of this notification, it is as-

sumed that the unit (or program) has failed and a backup strategy is invoked.
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2.2 Induced Faults for Testing

In addition to being difficult to implement in a fairly general manner, techniques

that make use of only naturally-occurring faults are unsatisfactory as methods for

evaluation of the fault detection capabilities of a system. The main drawback lies in

the low probability of encountering an adequate number of natural faults of a specific

type during the course of the measurement process. Fault-detection tests would there-

fore take an unreasonably long time to complete if measurement depended on natural

faults. This can be avoided if the measurement system, under user supervision, is

somehow able to induce, inject, or emulate a comprehensive selection of faults in the

system under test. The frequency of occurrence of normally-rare faults can be made
high enough to allow the collection of reasonable data on detection and recovery.

Knowing when a fault is present is vital to permit the measurement equipment to

determine whether the fault is detected by the system being tested.

A drawback of the induced fault method compared to the use of naturally-occurring

faults is that there may be little correlation between the distribution and characteristics

of the induced faults and naturally occurring ones. This problem can be minimized if

an effort is made using theory and experiment to characterize natural faults, and to

emulate them with induced faults. Induced faults may also be used to force situations

that are considered extremely unlikely but extremely troublesome, to determine wheth-
er detection and recovery can take place in these circumstances.

A further difficulty with induced faults is the need to get access to a desired location

in the system under test and emulate the desired fault. The techniques available are

highly dependent on the architecture of the system tested, and it may not be possible

to induce a particular fault. Most of the fault injection techniques us^ to date involve

permanently or temporarily forcing one or a set of signal lines to a fixed logic level,

forcing switches open or closed, disabling logic elements or check bit generators, and
creating unpredictable faults by putting signal spikes on power supply lines, etc.

Faults induced using these methods may bear little resemblance in their characteristics

to naturally-occurring faults.

2.3 Simulation vs. Emulation of Faults

It is not always necessary to induce a real fault. If a false "fault-detected” signal

can be introduced into the system, many of the fault isolation and recovery mechan-
isms can be observed. Such signals may be injected, using hardware drivers, in the

control circuitry somewhere above the lowest level of system hardware. It may also be
possible to induce these signals using software techniques. High-level error reporting

should then occur as expected. Systems which recover by switching out suspected

components and later testing them for readmission can be thereby be observed in

operation. For the most realistic models of recovery from normal faults, however, it is

best to use real faults, whether natural or induced. Real faults must also be used to in-

vestigate fault detection and correction at the lowest hardware levels of the machine.

When a fault has been introduced, it is necessary to measure its exact extent and the

time of its detection. One must observe the faults and notifications of faults as they

appear.

-8-



2.4 Direct Observation of Faults and Fault Detection

Observation of the detection of faults is simplest if the system under test provides

notification to the outside world whenever a fault has been detected. Many systems,

however, are not set up to report faults from which the system recovers without loss of

performance (i.e. error correction in memories). Even rf notification is available, the

type and chronology of the fault may not be reported completely enough for certain

measurements, for example collection of statistics on address transformation errors. For
many measurements, more direct methods of observation of fault detection are desir-

able.

A more difficult technique for observing fault detection is to locate internal "fault

detected" signals within the system being measured. If the architecture of the particular

machine under test permits, probes can be connected to the lines on which tiiese sig-

nals are found, and the positive indications recorded. This has the advantage of allow-

ing one to learn of fault detections that would otherwise never be reported outside of

the system, and to be more selective in the types of faults reported. One major disad-

vantage is that intrusive examination of a system is highly dependent on its architec-

ture; thus certain observations may prove to be difficult or impossible. In addition, the

desired signal may not exist as such. For instance, a fault-tolerant memory controller

may algorithmically correct a single-bit read error without any indication that a fault

was detected.

Some types of induced signals, particularly noise on power supplies, create unpredict-

able faults. An inherent weakness of the above methods is that they rely on fault

detection in the system under test itself to identify the types of faults detected. This

detection facility may not be perfect, and is itself the subject of many important meas-
urements. The most direct way around this problem is to independently look for faults

within the system under test by probing address and data lines, looking at control sig-

nals, etc. With compact design and large-scale integration, this approach ranges from
difficult to impossible in the general case, but there are some some machines for which
it is practical. Increased concern over the importance of testing and measurement
could prompt designers of future systems to add features to facilitate direct observation

of internal system operation.

2.5 Indirect Methods of Observation

Often it is desirable to observe machine performance for a particular type of fault

detection, but no direct method is practical, because of the difficulty of gaining access

to the internal components of the system under test Fortunately, one may still be able

to obtain useful results using indirect methods that provide only partial information on
the internal functions of the system. These methods include diagnostics along with

knowledge of hardware failures, and mathematical modeling.

Diagnostics in this case are user-specified test programs run as jobs on the system be-

ing tested, for which the correct results are already known, and designed specifically to

isolate permanent hardware failures that result in faults. They may attempt to approxi-

mate the programming environment that would be encountered in normal use, or may
make heavy use of a specific system component being tested. A given diagnostic pro-

gram may be used, for instance, to test the arithmetic unit of a processor or the
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integrity of a local memory. If fault detection and correction are functioning as

specified, the only faults thus located may be those which are not detected or reported

to the user by the system being tested. In many systems, however, it may be possible

for the user to disable fault detection or recovery, thus allowing diagnostic programs to

identify nearly all transient and permanent hardware faults of a given type. With this

knowl^ge, the user may be able to run more common programs and obtain reasonable

measures for fault detection and correction parameters.

A major difficulty with the use of diagnostics both by system being tested and by the

measurement equipment is the response of the diagnostics to transient failures. >^ile
permanent failures can remain stable long enough to be detected and often located by
the diagnostic programs, this is often not the case for transient failures. A transient

failure may appear and cause an error, then disappear before it can be located by the

recovery diagnostics. It may appear or disappear during or after the running of a diag-'

nostic program, rendering its conclusions invalid. Since permanent failures do remain

to be detected, however, there are many situations in which it is reasonable for the sys-

tem or the measurement equipment to use diagnostic programs for the detection of

hardware failures, as long as the difficulties that can be caused by transient failures are

taken into account.

Where it is not possible to obtain complete information on a needed parameter, the ap-

plication of matiiematical models to the information at hand may make it possible to

produce a reasonable reconstruction of the data. For instance, suppose the measurement
equipment can detect faults of hypothetical type A but not of type B. Mathematical
analysis, taking into consideration the architecture of the system under test, suggests

that there should be a correlation between faults of types A and B. Tests may be run

in order to seek supporting evidence for the correctness of this model. One may then

observe the rate, grouping, etc. of faults of type A, and produce a reasonable estimate

of the characteristics of faults of type B. It is important to keep in mind that there may
be significant factors not taken into account by the model, and that this limits the accu-

racy or validity of the conclusions that may be drawn. A specific example is an ad-

dress bus for which faults can be detected only in the upper bits of the address. Since

all the address bit signals go through many identical processes, it may be reasonable to

assume that the bit error rate on the lower bits is not greatly different from the rate ob-

served on the upper bits. It is necessary to take into account, however, the facts that

permanent hardware failures are not necessarily evenly distributed and that there are

certain operations that the upper and lower address bits do not have in common, such

as cache control and memory management, which can reduce the error correlation

among the address signals.

If something is known about the timing of execution in the system under normal con-

ditions, it may be possible to put this information to use in the analysis of corrected

but unreported faults. While some fault-tolerant systems are designed with tightly-

coupled hardware control with the objective of avoiding any delays from fault-

correction procedures, many other hardware-based systems and all software-based

fault-tolerant systems will experience delays as recovery from a fault takes place, and
often exhibit a reduced level of performance during recovery. If the time to complete a

task with no errors present is well characterize, and if a good estimate for the

recovery time is available, then it may be possible from consistently increased execu-

tion time to deduce that a number of errors are being detected and corrected. The
practicality of this technique depends on the consistency of the normal speed of
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execution, the length of time required for recovery, and the knowledge that other fac-

tors are not interfering with execution. This approach seems precarious at best, but it

may be possible to apply it to a wider range of systems than other approaches. In cer-

tain systems, access to HALT or WATT signals that are associated with detection of an

error can make the correctness of interpretation of the measurements more certain.

The observations that can be made and the alternative mechanisms that may be avail-

able are highly dependent on the architecture of the specific machine under test. Sig-

nals that are buried inside the integrated circuits of one system may be available to the

outside world in another. Some machines allow the user to control or inhibit the

operation of certain internal functions in order to facilitate testing. Such capability can

be extremely useful in testing the various features of a fault-tolerant system indepen-

dently of one another.

2.6 Observation of Software Fault Detection Techniques

A number of fault-tolerant systems make use of software techniques to detect

faults. With this method, different tradeoffs are chosen than with hardware detection

systems. Hardware design time and hardware investment may be considerably reduced,

but software design is likely to be more complicated, and the time spent mnning fault

detection and recovery routines may cause execution to be slower than for systems

which use hardware fault detection. In addition, certain types of faults involving short-

term events or the correct execution of routines may be more difficult for the system to

detect. Different methods must also be employed to observe the performance of the

fault detection mechanisms.

As previously described, the techniques employed for software fault detection include

the interchange of signals indicating continued correct operation, periodic synchroniza-

tion and comparison of intermediate results and/or processor state, and comparison of
multiple copies of global variables. In many systems hardware for the detection of
faults is also under the control of supervisory processes, such as schedulers which as-

sign multiple copies of tasks to different processors. To varying degrees, these

software functions can be controlled by the user. The user may therefore have the op-

portunity to override the normal operations of the fault detection software in order to

better observe the performance of its individual parts.

Since the fault detection process in these systems proceeds at the speed of program ex-

ecution, observation may proceed at a similar pace. Reporting of faults may very well

be one of the functions of the software, or the user may be able to include red-time
notification or logging of faults with only a slight penalty to the rate of execution of
the fault-tolerant software. If hardware-level observation of software-detected faults is

desirable and practical, it is useful to note that fault detection is a major event from
the viewpoint of the processor, with signals on address, data, and control lines, which
in many systems can be monitored by measurement equipment.

As in the case of hardware fault-detection systems, it is necessary for the measurement
hardware to be made aware of faults as they occur, in some way that is independent of

system fault detection, in order to be able to evaluate the fault detection mechanism it-

self. Techniques that rely on hardware fault reporting will not work for software-based

systems, because the signals of interest do not exist. To obtain a reasonable estimate of
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the fault rate, it may be necessary to use the indirect methods previously described, or,

preferably, to carefully control the induced faults.

For systems with software-based fault detection, there are several software-oriented op-

tions available for induction of faults. It may be possible to make a change in the

value of a reference variable that will be interpreted as a fault. Forcing suspension or

termination of one of a set of redundant tasks would have a similar effect. It may also

be possible in such systems to insert error notices at a higher level in the control struc-

ture of the software, to test the upper levels of the fault detection and recovery

mechanisms.

3. Measurement of Fault Detection

An abstract model of a computing system might consider all activities of a com-
puter system to consist of logical manipulation of data, storage of data, transfer of data

within the computing system, and input/output. Fault detection can therefore be con-

sidered as it relates to each of these activities. The problems associated with fault

tolerance for I/O operations as compared to internal operations are mentioned here and
throughout the paper.

3.1 Explanation of measurement entries

This section of the paper is essentially a list of many of the faults to which a

fault-tolerant system may be subject, and a description of ways in which the detection

of these faults by the system under test might be evaluated. The faults that will be of
principal interest to a given user depend on the architecture of the system, the applica-

tions that are anticipated, and the user’s interpretation of fault tolerance. The tech-

niques to be employed are similarly a function of these factors. Other fault types and
ev^uation techniques may be added as needed. An attempt has been made to keep the

fault categories fairly general, so they can be applied in a wide range of situations.

3.1.1 Sample measurement entry.

Description of fault: This is a collection of general background information concern-

ing a particular type of fault. Among the descriptions that may be included are the pre-

cise the nature of the fault, possible causes of the fault, ways in which the fault can
effect system operation, and methods that may be used by the fault-tolerant system to

detect this type of fault

Architectures affected: This is a brief summary or description of the system architec-

tures that are susceptible to this type of fault. In many cases a given architecture will

be inherently immune to certain faults, and no further consideration is needed for these

faults. The range of architectures considered to be affected by a given fault depends on
whether the description of the fault is broadly or strictly interpreted, so the user must
decide in advance how to define the set of faults, in order to accurately apply these

techniques.
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Test method: This is a collection of techniques relating to analysis by the measure-
ment equipment of the ability of the system under test to detect faults of this type. In

order to perform this function, the measurement equipment must encounter faults,

determine that faults of the appropriate type have occurred, derive the needed informa-

tion concerning the faults, and determine whether the system under test has correctly

detected and identified the faults. (Some of the identification activity may be con-

sidered part of the recovery process rather than the identification process.) To make
sure that errors are encountered, many of the entries include guidelines on possible

ways to induce faults. Many fault-injection techniques are not completely controllable,

and will produce a range of faults, not just the specific type desired. In any event, it is

often necessary for the measurement equipment to directly observe the faults as they

appear, in order to determine whether all such faults are detected by the system under
test. Where permanent hardware failures are involved, one approach is to run diagnos-

tics to locate the failures, so it is known that a fault will occur whenever a certain

operation is attempted. Techniques are given that allow the measurement equipment to

determine whether the system under test has detected a fault. If notification is not au-

tomatically provided to die outside world, intrusive techniques may be employed.

The principle measurement to be taken for most of these parameters is the incidence of
fault detections by the system under test, compared to the incidence of faults as deter-

mined by the measurement equipment This may be presented as a ratio, giving the

percentage of faults of this type which the system under test detects or fails to detect

(or falsely detects.) It may be more useful, though more complicated, to produce a log
describing each detection or failed detection, so that analysis can lead to discovery of
specific correctable problems.

There may be some interest in measuring the interval between the appearance of the

fault and detection. A useful measurement would be difficult for sever^ reasons. First,

the instant at which a fault "occurs" may be subject to considerable debate. Second,
the interval to detection will depend mostly on the detection technique employed. For
instance, lockstep hardware systems will detect the fault almost immediately if at all.

Checkpointing systems may not detect the fault until the next "full" comparison, which
may t^e place over a wide range of intervals from the appearance of the fault. The
time to detection may depend only slightly on the type of the fault. Interval measure-
ments are therefore useful mainly as a way of evaluating response characteristics of
various detection techniques, and not as a way to characterize performance relative to

specific faults.

Special apparatus: This section lists certain types of equipment, including passive

probes and various active devices, that may be useful for observation of faults and of
fault detection within the system under test.

Limitations of test: There are many situations in which a particular measurement
technique may not provide completely satisfactory results. There may be a small
known error in the results, or certain types of faults that can not be reliably detected
by the measurement equipment. It is important to know the limitations of the tests in

order to avoid drawing erroneous conclusions from the results.
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3.2 Detection of transmission errors

In the broadest sense, transmission refers to all operations which cause a transfer

of data from one location to another with no permanent transformation of the data.

This includes all in-system communications, transfers between registers, etc. Since er-

rors in the lowest-level transmissions may not be distinguishable from other circuit er-

rors, there is a tendency to look mainly at higher-level communications in this

category.

3.2.1 Inter-module communication errors.

Description of fault: This term refers to errors in the communications links among
resource modules and processors in a fault-tolerant system. Such links can be between
redundant components jointly performing a fault-tolerant task, or between groups of

components performing different parts of a job. If the fault is of a type that prevents

normal communications procedures, it should be detected quickly by hardware or

software checking. Address errors can often be detected by the handshaking pro-

cedure, though certain types of address errors are very difficult to handle, as described

in the next entry. Data transmission errors have been widely studied, and may be
detected by several means, including the transmission of redundant information.

Architectures affected: The modularity and the communications approach chosen in

the design of a particular system determines the types of intermodule communications
errors to which it is prone. Systems with separate processor and memory modules will

have to deal with memory ildressing errors. Module addressing errors can become
more of a problem in common-bus systems than in other systems. Links between
redundant modules performing identic^ tasks must allow the modules to compare
results effectively without introducing new errors.

Test method: Intermodule errors may be easier to observe than internal communica-
tions errors, because there is a better chance that the signal lines will be available for

the attachment of probes. In a shared bus or ring system, the signal lines can be
checked at several points, to determine whether any errors have b^n introduced. It

may also be possible to induce errors by forcing lines high or low, breaking connec-

tions, inverting signals, etc. Direct notification of errors by the system under test is the

simplest means of observing fault detections, though these signals may be hard to ac-

cess.

Special apparatus: Probes to observe communication paths and error signal lines (if

available) will be needed. To induce errors by driving the signal lines, appropriate

drivers will be required. Care must be taken to insure that the system line drivers are

not damaged. Signal modification devices may have to be inserted in series with signal

lines.

Limitations of test: Evaluation of the detection of all possible types of faults is not

practical, even using induced faults. Care must be taken in the selection of a suitable

subset of faults to be evaluated. The architecture of the system tested may limit the

range and accuracy of the tests that may be performed.
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3.2.2 Address errors.

Description of fault: Because of the heavy emphasis that is traditionally placed on er-

rors in storage and transmission of data, diere is a tendency in designing a computer

system to use extensive error detection and correction for the data, but to use less pro-

tection for the address lines and circuitry. This is unfortunate, since address errors can

cause a system failure at least as easily as can data errors. Because of the intricate

processes of address generation, translation, transmission, and recognition (many of

which transform the address information), it is much more difficult to fully protect the

address handling process than the data process. However, where there is sufficient

motive for reliability, it should be possible, though expensive, to create a reasonable

degree of protection from address errors.

Address errors may be caused by incorrect address generation in the processor, in-

correct translation in the memory management circuitry, errors in transmission, and in-

correct interpretation of the addresses in the addressed devices. This class of faults in-

cludes incorrect handling of addresses in cache memory.

The main types of addressing errors are: addressing the wrong resource, addressing

nonexistent resources, addressing the wrong page, and address errors within a page.

Among the in-page errors are: compensating errors, multiple addresses mapped to one
location, and one address mapped to multiple locations (unstable address bits). These
errors can be caused by faults in the processor or addressing logic, or in the address

signal lines.

Faults in resource selection could possibly be detected by fault-tolerant

resource/memory management devices, by general-purpose address monitors, or by
standard use of handshaking procedures in address and data transfers. Page faults,

where a "page" represents a set of addresses logically viewed as a group for purposes

of address or memory management, could be detect by memory management dev-

ices. Monitors looking at "sequential address" and other flag signals from the proces-

sors could detect the specific types of faults to which these signals are related, but

since a considerable fraction of the addresses sent out would not be thus protected,

such an approach might be considered only marginally helpful in making a system
highly fault-tolerant.

Compensating errors are those which cause parts of the system to perform outside of

specifications, but which produce no error in results. A common example would be
crossed address lines running to a homogeneous random access memory. Though data

would be written to and read from the wrong addresses, the results would be coirect as

seen from outside the memory. Such errors, while not directly causing system failures,

can complicate fault detection by producing readings inconsistent with system results

and dependent on where the readings are taken.

Failures in which several addresses map to one location cause faults when a value is

overwritten by a write to another address. Similar faults appear on reading. Such
failures can probably be detected by diagnostics. Faults caused by unstable address

lines can damage the contents of several locations, and make the fetching of needed
data unreliable.

For highly fault-tolerant designs, methods similar to those used to protect data can be
adapted to protect addresses. Two or more processors working in parallel can compare
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output addresses to detect/correct address errors caused by the processors, as described

in the section on processor errors. Address check bits can detect errors in transmission.

Redundant address detectors can be used at the intended locations to provide fault-

tolerant address decoding. Redundancy would therefore be employed in receivers rath-

er than transmitters, so there would have to be changes in the response algorithm. Such
an approach might not be considered worthwhile unless it were part of a complete sys-

tem of fully redundant resources, with the redundant parts of each resource comparing
actions several times in the process of serving the processor.

Architectures affected: Essentially all computer systems use addressing for low-level

internal data manipulation. Many systems also use explicit addressing in higher level

communications.

Test method: Other than by notification, addressing errors are most likely to be found
by incorrect system output, as when user diagnostics are run. Comparison of address

lines at source and destination can locate physical failures in the conductors. Induced
errors may be used only if the address lines are available for external manipulation

without damaging the system under test. Detection can be observed by fault signals or

by perceived operation of the recovery system.

Special apparatus: Probes to observe address and fault signal lines may be used. It

may be practical to design an address manager emulator and connect it to the proces-

sor and address lines, to evaluate the address management of the system. Error signal

drivers may be used if possible.

Limitations of test: Many address signals will not be available for outside observa-

tion, especially in systems with VLSI components. It may be necessary in some cases

to obtain approximate readings using indirect measurement techniques.

3.3 Detection of data storage errors

Storage of data in the interactive parts of the system involves registers as well as

local and shared memories. Since different techniques for storage, retrieval, and fault

detection are used for each, the different types of data storage are considered separate-

ly.

3.3.1 Faults in processor registers, transient.

Description of fault: With die wide range of architectures used in fault-tolerant sys-

tems, the term "processor register" can be used to apply to the data, address, and flag

registers closely associated with the processing circuitry, as in a microprocessor, or it

can be used in reference to flip-flops, state machine registers, and generally all of the

temporary storage used by the support circuitry in and around each processing element.

The fault-tolerant system can detect register faults (without necessarily identifying

them) by use of hardware redundancy. Repeated tests can determine whether or not a

given fault is transient.

If the transient fault is in a register of a conventional microprocessor, evaluation will

be very difficult. Incorrect results may be the only sign of such faults, and testing and
diagnostics will probably be unable to identify the register as the source of the fault.
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If, however, the fault is in a register with built-in fault detection or a register that is

directly accessible by the system designer, there is a good chance that such faults can

be isolated and specifically dealt with.

Architectures affected: In the general sense, all digital computing systems function as

state machines, and require temporary storage for the "machine state". All architectures

are therefore susceptible to register faults. Even with a narrowed interpretation of "pro-

cessor register", the vast majority of machines use registers that fit within the

definition.

Test method: For registers not directly accessible to the measurement equipment,

evaluation is probably not practical. For registers that are accessible, direct observation

will work, but will be awkward for looking at many registers simultaneously. Induced

errors can be used to make the pattern of faults more predictable. The error-detected

signals in the system under test will provide an indication that the error has been
detected.

Special apparatus: Probes into system, error signal drivers.

Limitations of test: It is not practical to individually evaluate many of the registers of

interest.

3.3.2 Faults in processor registers, permanent.
Description of fault: The registers of interest are the same as for the transient fault

parameter, and similar techniques are used, for the most part. Register faults within a

microprocessor are extremely difficult to observe directly. Observation is more practi-

cal for registers accessible from the outside. The presumed stability of the hardware
failure, however, allows an additional set of techniques for detection and identification.

The fault may be detected by physically redundant execution of a task. Temporal
redundancy is ineffective as a detection technique in the system under test because the

same error can appear each time, so redundancy of hardware is a necessity. Once a

fault has been detected, diagnostics should be able to detect consistently erroneous per-

formance of a given processor register, and thus determine the location of the fault.

Architectures affected: As is the case for transient register faults, essentially all

machine architectures are affected.

Test method: The techniques used for transient register faults are also applied for per-

manent faults. Induced errors must remain stable for the duration of the test. User-

supplied diagnostics may be used to verify that the faults are present.

Special apparatus: Same as for transient register faults, possibly with different drivers

to induce errors.

Limitations of test: Most of the same limitations apply as for transient register faults.

The indirect observation of faults internal to microprocessors, etc. is somewhat less

difficult.

- 17-



3.3.3 Errors in main memory and redundant copies.

Description of fault: Since memory elements make up a large percentage of the total

logic element count in most systems, there is a good chance that many of the faults

that occur in such systems will be in memory. For this reason, most systems have
methods to detect and deal with faults in memory. While faults in logic elements, once
detected, may be corrected by means of checkpointing or other methods, the permanent
loss of the contents of a memory location can result in system failure. It is therefore

vital not only to detect memory faults, but to recover from them.

Two major approaches to fault-tolerant memory design are the use of error detecting

codes with storage of multiple copies of all data, and the use of error correcting codes.

A combination of these methods may also be used. Error detecting codes and error

correcting codes add a number of "check bits" to a group of data bits. There may also

be a transformation of the data bits, but the net effect is that a certain number of bits

are added to each item of data. These additional bits represent a function of the numer-
ic value of the data bits. For error-detecting systems, the device which reads the data

repeats the checking calculation, and compares the result to the stored check bits. For
some of the currently used algorithms, this approach will fail to detect at worst about

one in 2**N of all possible combinations of errors, where N is the number of check
bits. Some methods also guarantee to detect all errors of up to a certain number of

bits. Reliability of detection increases with the number of check bits but the overhead
associated with handling the additional information also increases. A tradeoff between
reliability and overhead must therefore be chosen. With larger blocks of data, this tra-

deoff is less severe, but memory systems generally restrict the size of the protected

blocks to that of the largest blocks transferr^ to and from memory in a single transfer,

both to simplify writing and to maintain a reasonable memory bandwidth. In most
current fault-tolerant systems such transfers are of 64 bits or less. If errors are detected

but not corrected, it is necessary to maintain multiple copies of each value stored,

preferably in physically separate memory devices to i^uce the risk that all copies will

be damaged by a single fault. The alternate locations should also be protected by
check bits.

Error correcting codes contain sufficient redundant information in the added bits to al-

low reconstruction of partially damaged data. The usual claim is that all errors of up to

a certain number of bits can be corrected. As an additional service, the error handling

circuitry may be able to detect and report a much larger set of errors than can be
corrected. The overhead for a given degree of error correction is greater than for a

corresponding degree of error detection, but one may be able to reduce the level of

backup protection and still maintain the same level of reliability. Error correction

schemes usually work best when bit errors are evenly distributed. Since this is not al-

ways the case, and since too many errors in one data block can prevent recovery, at

least one redundant backup copy is still important for highly reliable systems.

Architectures affected: Most systems have large storage areas available to the proces-

sors, to which these considerations apply. Systems which use a single large shared

memory are particularly susceptible to memory faults, since such faults can affect all

the processors by preventing successful use of their memory space, or by garbling

processor-to-processor communications handled through common memory.

Test method: Error detection systems, upon perceiving an error, will generally send

out a hardware or software error notice, which may be readily available to outside
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devices, or which may be reachable by probes into the system. Error correcting sys-

tems sometimes send out error notices, but usually refrain from signaling when a

correctable error has been detected. In fact, the error recovery mechanism may be im-

plemented at a very low level in the hardware, and the higher levels of hardware may
not be aware that a correctable error has occurred. Unreported error correction, in ad-

dition to making measurement more difficult, can leave a user uninformed in the event

that the system has a large number of hidden permanent faults which effectively

reduce system redundancy. Some sort of reporting is therefore desirable even for errors

which are corrected.

Unless the system under test has specific hardware features that make it possible, in-

ducing errors of only a few bits in a few memory locations may prove to be difficult.

Blocking out entire memory locations can be accomplished by tampering with the ad-

dress signals. Similarly, bit errors that are the same for all locations can be induced by
driving the data lines. If the system features modular construction with removable,

standard memory devices, it may be useful to temporarily replace one or more of the

devices with units known to be defective, in order to observe the detection and
recovery process.

Special apparatus: Probes into system, error signal drivers. Defective memory
modules could be useful, as described above. If this test is sufficiently important, spe-

cial hardware could be built that would recognize specific memory adi*esses and inject

errors when these addresses are accessed. In a system with a simple addressing proto-

col, there is a good chance that such a device could be implemented using a single

programmable array logic (PAL) device.

Limitations of test: It may be difficult to induce or observe the response to certain

patterns of errors that are of importance in evaluating fault tolerance. Though memory
is more likely to be accessible to the outside world than many other system com-
ponents, some systems have memory that is not accessible because it is on-chip or be-

cause of space limitations.

3.3.4 Errors in local cache.

Description of fault: In order to reduce average memory latency and the loading on
shared resources, systems with a large globd memory often have a local cache
memory associated with each processor. Copies of values from main memory are tem-

porarily stored in the cache for fast access, in accordance with the particular cache
control algorithm used. When the appropriate type of access is attempted, the memory
controller looks in the cache before starting an access of main memory. Because of the

close relation between cache and the memory access controller, problems with the

cache can seriously affect all memory accesses. A cache that always reports a "miss"

will slow the processor considerably, and the controller will waste time trying to up-

date the cache. A cache that falsely reports a "hit" or stores a value incorrectiy will

cause an incorrect value to be received by the processor. While caches often use parity

checksums on the data contents, there may be a tendency to leave cache address han-

dling without proper protection. It is therefore important that cache controllers in

fault-tolerant systems be designed with the ability to detect faults in the address and
control functions of caches. This protection is made more difficult when transformation

of addresses is employed.

The cache controller must keep track of the main memory addresses of all the values
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stored in cache, and handle updates to or from main memory. In a typical set associa-

tive caching scheme, part of the address of a value is correlated with its location in the

cache. The remainder of the address bits are stored in a table in a dedicated fast ran-

dom access memory. This memory has one entry for each block of locations in the

cache. Along with each entry in this table may be a bit specifying whether or not the

corresponding location holds a currently valid item from memory. The contents of this

table can be protected by check bits. The cache control mechanism can also be made
fault-tolerant. For most caching schemes, detection of cache faults is far more impor-

tant than local recovery of cache data, since in the event of a fault the "entry valid" bit

may be cleared, a cache miss indicated, the cache disabled, and a main memory access

initiated, with loss only of performance, not complete failure.

The most obvious approach to fault detection in the cache controller is redundancy. It

may be practical to place several copies with comparison circuitry in each controller. •

Diagnostics could help in the identification of permanent failures. Fault notification

would be very useful in the recovery of the rest of the system.

Architectures affected: The systems affected by this parameter are those which use

cache memory.

Test method: User diagnostic programs can be used to detect permanent failures, but

transient faults are likely to be interpreted as memory faults. If the signal lines are

available for probes, faults can be recorded directly, or additional devices can be con-

nected in parallel with the cache controller and the outputs compared. (A large

number of systems use the TMS 2150 set of integrated circuits to implement cache
control.) It may be possible to induce faults by driving data and address lines, or signal

lines such as the "entry valid" line. Some systems allow the cache to be disabled, part-

ly to facilitate the testing of other parts of the memory system. Fault notification lines

may often be found for simple cache faults such as parity errors. Notifications for

more complex cache faults, rare in current systems, would be specific to the particular

system being evaluated.

Special apparatus: Probes into system, error signal drivers, possibly duplicate

hardware.

Limitations of test: Because certain failure modes merely slow down operation of the

processor, rather than causing overt errors, complete characterization of faults and fault

detection may not be practical.

3A Faults in data transformation elements

Data transformation brings about permanent changes in the data, with the possible

incidence of consistent (permanent failures) or inconsistent (transient failures) errors in

the output. Some form of redundant execution using different individual devices is

necessary for reliable detection of errors.
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3.4.1 Detection of faults within operating processors.

Description of fault: This parameter refers to the central portion of a system process-

ing element, which is directly responsible for managing data stored in registers, mani-

pulating and sending out data, fetching data and instructions, and controlling the se-

quence of execution of the program. In many modem systems, these functions are im-

plemented on a single integrated circuit, a notable exception being bit slice processors,

which are implemented using a small set of specialize integrated circuits. Memory
management and mathematical operations, if performed outside the central processor,

are considered separately.

Most current systems use extremely complex processors, with built-in features such as

pipelines and internal cache to enhance performance. A complex microprocessor can
have up to several hundred thousand logic elements, with more expected in future pro-

cessors. At the same time, the number of signals available for interface with outside

circuitry is extremely limited, almost always less than 200. (Simpler processors gen-

erally have far fewer pins or numerous processors on one integrated circuit, so the

problem is essentially the same.) With the tremendous premium on signal lines,

mechanisms allowing the user to monitor the detailed inner operations of the processor

are usually neglected. (Bit slice processors and processors built from small- and
medium-scale components, having more of their "internal" signals available to outside

circuitry, can usually be retrofitted with additional circuitry more easily than can other

types of integrated circuit processors.)

Because of the relative isolation from surrounding circuitry, any checking for processor

errors in any system without redundant processors is generally the responsibility of the

processors themselves. Some processors make use of on-chip fault detection and
recovery mechanisms, but the extreme complexity of a processor and its even more
complex state space make it impractical to provide really satisfactory coverage for all

possible faults. Faults which are detected and corrected generally do not result in any
notification outside of the processor, while faults that are detected but not corrected

usually cause the processor to send out a specific error signal (which indicates error

type, but not necessarily exact location), and halt normal operation so software fault

recovery efforts can begin. Without external control mechanisms, a fault that causes a

processor to lock up or run wild is likely to cause a system failure.

A method frequently used to check the internal operations of a processor is to execute

a job on two or more processors and compare the results. If the results do not agree,

then fault recovery operations are started. This method is effective for fault detection

because, barring design flaws, two processors are unlikely to develop exactly the same
set of transient or permanent hardware failures. A complex result on which two or

more processors agree is therefore much more likely to be correct than a result pro-

duced by a single processor. The risk of common errors due to errors in input is

minimized if memory, buses, etc. are also redundant. The comparison mechanism
must also be highly reliable, or comparisons will not be valid.

The techniques used for fault recovery in redundant-processor systems depend on the

interval between comparisons. Lockstep machines, which compare results in hardware
every machine cycle, can suppress each fault as it appears, as previously described.

Systems which check results only at the end of the task must repeat the entire task

whenever an error appears. Some systems use a timer or program instructions and
software comparison algorithms to compare results periodically throughout execution
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of the task. This is called barrier checkpointing, because a synchronization mechanism
must be used to make sure that the processors have all reached the same point in the

execution of the task, by blocking execution until the checking has been completed. A
copy of the intermediate results and the processor state is stored in a safe place. In the

event that an error is detected in a system with only two-way redundancy, execution
is started on backup hardware at the most recently completed checkpoint. Comparisons
of intermediate results may be made more often than checkpoint storage, with execu-
tion after fault detection always returning to the nearest true checkpoint. Checkpoint-
ing increases the complexity of the software, but is able to protect running tasks, usu-
ally with less hardware than a system having enough redundant hardware to suppress

errors. Checkpoints must be used before operations where recovery from an error may
be impractical, such as a write to global memory or disk, or an I/O access.

Without checkpointing, a system with only two processors running a given task faces

great difficulties when a fault is detected, since it is difficult to teU which processor is

at fault. As an alternative to checkpointing, some fault-tolerant systems use more than

two processors to a task, with voting on tiie correct result. Such systems, if operating

in lockstep mode, can be designed to recover from faults with no additional delay,

which is useful for some time-critical applications. To a certain extent, an increase in

the level of redundancy increases the fault tolerance of the task being executed. In

theory, one can allocate different numbers of processors to tasks for different levels of
security.

Use of three or more processors for recovery is sometimes combined with checkpoint-

ing to create two levels of recovery mechanisms. A variant of this approach is the use
of a "warm backup". This is a set of one or more processors not specifically allocated

to the task at hand. Error detection is performed using two processors with checkpoint-

ing. When an error is detected, the backup is used along with the original processors

from the last checkpoint to determine which processor is in error, and what the correct

result should be. The backup may be assigned to replace the erroneous processor until

diagnostics can demonstrate that it is working correctly. Possible benefits of this ap-

proach are continued reliability in the event of the permanent failure of a processor,

and less hardware overhead required for a given level of reliability, since several ac-

tive processor pairs may share a common pool of backup processors.

As previously stated, the effectiveness of redundant processor techniques depends on
the accuracy of the comparisons, and the correct handling of error signals. Checkpoint-
ing approaches also depend on the accuracy and reliability of storage, and complete-

ness of intermediate results. While lockstep systems can generally get by with compar-
ing the outputs of the processors, checkpoint systems should record the point of execu-

tion in the program, and the values of all registers, flags, and storage local to the pro-

cessor that are relevant to the execution of tiie program. Storing all these variables in

memory can take a considerable number of machine cycles, which can considerably

slow down execution when there are numerous access to external devices. Custom pro-

cessors with additional ports for comparison and checkpoint storage could help to

reduce this overhead. Systems which use more than two processors on a task to im-

plement fault recovery can lose recovery capability or even operability as a result of
permanent failures in the processors. >^en there are as few as three processors, the

loss of one processor will allow the system to detect faults, but not necessarily to re-

cover from them. When there are two processors, the loss of one processor makes
comparison fault detection impossible, though successful completion of diagnostic
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programs may indicate which one still functions correctly. The ability to reconfigure

spare processors to replace damaged ones can help to alleviate the problem of proces-

sor loss. In theory, one could design a system which uses comparisons among proces-

sors to recover from faults, until the number of processors drops to two, at which point

software checkpointing is used to maintain recovery capability.

Architectures affected: All digital computer systems use processors in some form.

Commercial processors may have a certain amount of built-in ability to detect faults,

but recovery is usually the responsibility of the user/programmer. Commercial mul-

tiprocessor systems employing lock-step fault detection and correction are available.

Test method: Processors that have many of the internal signals externally available,

such as bit slice processors, may be fitted with probes to directly observe and induce

faults. All other t^es of processors must be observed from the outside by their perfor-

mance, using whatever signals are available. The options that may be available to the

measurement equipment to detect faults are essenti^ly the same as those of the fault-

tolerant systems themselves: diagnostics, and temporal and hardware redundancy. The
measurement equipment may carry out these fault detection procedures much more ex-

tensively than does the system under test in its own processor fault detection. This al-

lows more effective detection of the induced faults, as a reference for comparison to

the fault detection of the tested processors. The system comparison circuitry may be
available for the attachment of probes. Faults may be induced by tampering with sig-

nals coming into or going out of the system comparison circuitry, which should cause

the system to react as though one of the processors is at fault. The processors them-
selves can be made to operate incorrectly by such methods as modifying their instruc-

tion or data inputs, placing them in a HOLD state, and changing the power supply. It

may be possible to substitute devices known to be defective for die corresponding ones
in die system.

Special apparatus: Probes into the system and injected error drivers are desirable

when practical. Depending on the degree of testing to be conducted, special equipment
may range all the way up to external emulators for the processors and comparison dev-

ices. Microprocessor manufacturers can make test emulators available for their proces-

sors. Such emulators could be implemented using the target processors themselves,

with many internal signal lines which can not be accessed in the commercial versions

made available to the outside world.

Limitations of test: The chief limitation of these tests is the inability to directly access

the inner workings of the processors. All of the methods described are ways of work-
ing around this problem. The extremely complex state space of a typical processor in-

creases the difficulty. As for other measurements, what can be done depends on the

particular system in question.

3.4.2 Detection of faults within coprocessors and controllers.

Description of fault: Most computer systems use processors which are designed for

general-purpose use. In a given application, one often encounters functions which are

to be performed many times, and which the processor could perform using lengthy

routines. These operations were not built into tiie hardware because implementation of

the functions would have exceeded available space or caused loss of generality. An ex-

ample is floating point mathematics, which is used in many applications, but which re-

quires a large, complex circuit for hardware implementation. If these functions can be
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completed using specialized hardware, or even run in parallel with execution of other

parts of the program, overall speed of execution may be improved considerably. A
common method of implementing these features is to use specialized processing dev-

ices called coprocessors and controllers, coupled to the general-purpose processors.

They are generally subservient to the general processors, though they may generate in-

terrupt signals to pass messages. Communications with the general processors may go
through special buses, or through the normal processor and address/data lines. Com-
mands from the general processors may be purely memory-mapped, or they may pass

through additional control lines. Coprocessors and controllers are similar in the ways
that they assist the general processors. The distinction between the two is that copro-

cessors, once initially instructed by the general processor, take over operations to exe-

cute instructions as they appear in the instruction stream, while controllers are repeat-

edly supervised by simple routines executed in the general processor. External devices

for mathematical computation are commonly implemented as coprocessors, while con-
trollers include processors to handle disk memory access and input/output for commun-
ications. Discrete memory managers, since they perform many of the same functions,

probably should also be considered in this category.

Because of the importance of mathematics in a wide range of applications, many sys-

tems use mathematics coprocessors. These often contain more logic circuitry than the

processors they assist, and are separate from the processors largely due to size limita-

tions.

Receiver/transmitters for communications and disk controllers are included in many
systems. Operation in parallel with operation of the general processor is a major incen-

tive for the use of I/O controllers. These devices allow the system to handle slow com-
munications without the need for continual supervision and consequent slowdown of

the general processor.

External memory managers are used when the features of memory page protection and
hardware translation of virtual addresses to physical addresses are desired, but the

designer has chosen to use the circuit space in the general processor for other features.

A memory manager is controlled by instructions from the general processor, and acts

as an interface between the general processor and the memory address space.

Coprocessor/controller faults that can interfere with proper operation of the system in-

clude addressing errors, handshaking errors, failure to provide an output, errors in out-

put, and unauthorized output Because the devices are closely associated with the gen-

eral processors, these faults can be particularly drastic and hard to detect. Addressing
errors are discussed in another section. Handshaking provides an indication of whether
or not interchanges are taking place in a proper manner. Failures thus indicated or

failures in the handshaking mechanism itself should be detected by the processor and
result in error messages. A failure in an output may cause failures in the general pro-

cessor or external memory devices, or lead directly to incorrect outputs to the "outside

world". Without having another source for reference, it is unlikely that the general pro-

cessor will be able to detect such faults. For fault-tolerant applications, the most work-
able approach is to use redundant coprocessors and controllers, with checking of

results before anything is sent outside of the protected area. If one tries to assign

several coprocessors to each general processor, however, the timing problems caused

by the delay for comparison could cause processor errors. In many systems, further-

more, the processors themselves need to be redundant to allow error checking, causing
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either a need for a large number of coprocessors, or the problems associated with com-
bining the outputs of several parallel devices into one signal by voting, then running it

to several other parallel devices. A more reasonable approach for checking coproces-

sors in such redundant-processor systems is to regard each processor/coprocessor set as

a single processing unit, then combine several of these units using the redundancy
techniques describe for fault detection in processors. For controllers, which are likely

to be shared among processors in a multiprocessor system, putting several together for

error detection is probably the best method.

Architectures affected: A large percentage of systems use coprocessors or controllers,

and are therefore susceptible to faults in these devices.

Test method: Since coprocessors and controllers are separate from the general proces-

sors, there are connections between them that may be accessible to probes from the

measurement equipment. This may make it possible for the measurement equipment

to pick up signals and directly observe faults and indications of faults. If all the sig-

nals can be reached, the user can attach one or more coprocessors/controllers in par^-
lel and compare the outputs to that of the unit being tested. Emulators may also be
used, as for general processors. Comparison circuitry may be checked in the same
manner as for general processors. For an indirect approach, devices with easily predict-

able outputs, such as math coprocessors, can be tested using diagnostic programs. Di-

agnostics can sonietimes be used with controllers, by keeping a log of the results of

their outputs, and comparing to other systems. Errors may be injected by driving the

data and control lines, removing devices, or substituting defective devices. Once errors

are determined to be present using these techniques, the effectiveness with which the

system detects faults can be evaluated.

Special apparatus: Probes into system, additional coprocessors/emulators, error signal

drivers.

Limitations of test: If the signals and components are not readily accessible, direct

observation of faults and induction of faults will probably be impractical. Because of
their unique interactions with processor and memory, memory managers may prove
very difficult to evaluate, other than by comparison of duplicates.

3.4.3 Detection of faults at the processor-board level.

Description of fault: There are several important ways in which evaluation of faults at

the processor-board level differs from evaluation of faults within an enclosed proces-

sor, such as a microprocessor. These differences pertain to the design features that may
be implemented, the number of signals available, and the complexity of the system.

Since the circuitry to support the operations of the processor is chosen during the

design process, the designer can put in whatever hardware is considered desirable to

aid in detection of faults and fault recovery. Even when commercial processors are

used, with a careful design one may include a high level of fault checking and explicit

notification of faults. Depending on the design goals of the particular fault-tolerant sys-

tem, fault detection may involve the cooperation of a set of boards. For instance, if a

triply redundant system, designed to keep running at all times with a high degree of

refiabnity, is built with aU three processors on a single board, then a failure in power
supply, board circuitry, etc. that affects one processor is likely to affect the others as

well. Furthermore, the user cannot remove one processor for replacement without
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disabling the others. In such a system, therefore, one might find the multiply redundant

components spread out over several boards, with local links between the boards and
distributed circuitry to check for inconsistencies. On the other hand, the triply redun-

dant processor may be placed on a single board and considered as a single highly-

reliable system element.

In contrast to the internal signals of a microprocessor, a board-level design may have
hundreds of signal lines to which probes may be attached, including important signals

for control, timing, and fault notification. For a given type of physical system layout,

availability of signals for observation of faults and fault notification and for injection

of errors is likely to be much better at board level than at processor level. (If what is

considered the "processor" takes up the entire board, then Ae board-level descriptions

apply.)

A setback to fault detection at board level is the greater number of logic elements in-

volved than at processor level, and the extreme complexity of operation that is often

encountered, with multiple clock phases, state machines, and complex handshaking
procedures. While commercial mass-produced processors are likely to have a large per-

centage of their operational states and error conditions well described, this is much less

likely to be the case for the custom-designed processor board containing them. It is

also more likely that there will be design errors, which can hamper both operation of

the system and observation of fault detection.

When there are several processors per board, either coupled together or independent of

one another, observation of the interactions between the processors can be important

for detection of faults, though these interactions can be more difficult to deal with than

the signals on single-processor boards.

Architectures affected: Though this approach is not universal, many current systems
are built with one or a small number of processors per circuit board, with at least some
possibility of probe access to the board-level signals.

Test method: As described above, the relatively open coupling between components
on the board can often make access to the needed signals fairly straightforward. It is

of course necessary for those making the measurements to have sufficient knowledge
of the design of the boards to be able to identify and locate the signals that will allow

the measurement equipment to directly observe both faults and fault notifications.

(This usually implies the necessity for good communication with the designers of the

system and often involves proprietary design descriptive material.) The test equipment
can then be set to look for faults caused by failures in signal lines, logic devices, etc.

If resources, line loading, and timing considerations permit, it may be useful to con-

nect an identical board in parallel (all inputs and outputs on the board) to the board be-

ing observed, in order to check all the signals on that board. (Some boards may have
components, such as autonomous polyphase clocks, that do not initialize to a single

defined state. This method would then be unworkable without disabling die

corresponding components on the comparison board.) Errors can be induced as for oth-

er tests, with the distinction that the more open architecture at this hardware level can
make placement of the induced errors more precise than at the processor level.

Special apparatus: Probes into system, error signal drivers. As described above, it

may be possible to make use of a duplicate board, with the necessary signals brought
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out to make a parallel connection.

Limitations of test: The chief limitation is the extreme complexity of operation of a

typical processor board as a whole, and the degree to which those conducting the tests

must understand it before certain measurements may be made. This is in contrast to

the situation for commercial microprocessors, which are widely known and well docu-

mented. The physical layout of the system, including board placement, method of in-

tegrated circuit mounting, and conductor layout (such as multilayer boards) can inter-

fere with the attachment of probes. It may not be practical to attach another board in

parallel to enhance fault detection in the measurement equipment.

3.5 Faults in computers in loosely-coupled systems

These may include internal two-way redundancy for fault detection, or may merely
rely on failure to produce output or 'Tm alive" messages in a timely manner.

3.5.1 Detection of faults at the component-computer level.

Description of fault: When a number of distinct computers are connected together in

a network in such a way as to form a single fault-tolerant system, it is evident that

messages passed between the component computers will play a significant role in the

operation of the system, and that equipment to measure the occurrence of faults should

pay attention to these communications. If the component computers are highly fault-

tolerant in themselves, then the only issues of interest in the message passing pertain

to faults in the communications system itself. Evaluation of such faults is described in

the section on data transmission. If, however, the system performs processor fault-

checking by means of interprocessor communications, then observing these messages
is the key to observing fault tolerance in the component computers and in the system
as a whole.

In redundant-processor loosely-coupled systems, all information used for comparison,
and many of the fault detection notices, pass fiirough the communications links. For
the overil system to be fault-tolerant, these links and the comparison mechanisms
must also be fault-tolerant. A possible performance problem arises fi*om the fact that

the links generally can not transfer data as rapidly as can be done between tightly-

coupled processors. A comprehensive comparison of the states of two processors can
therefore be a lengthy task. In order to maintain good system performance, the

designer will probably seek to make the interprocessor state comparisons as infrequent

as possible while meeting the requirements for recoverability. Checkpointing, as

described in the section on processor faults, is a likely approach. It may also be possi-

ble to reduce the length of time required for each interchange by somehow reducing
the data to be sent. As an example, a simple algorithm implemented in hardware or

software could take in the pertinent state information of the component computer, and
produce a much shorter check or signature. These check bits would then be transmit-

ted, and compared to comparable check bits for another component computer. If a

discrepancy were detected, the machines could compare states in much more detail.

Architectures affected: The architectures affected are the ones which are made up of
loosely-coupled processors which use message passing as part of the fault detection

process.
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Test method: The fault detection techniques used by these systems present a number
of opportunities for the evaluation of both faults and fault detection. In loosely-

coupM multiprocessors, it is highly likely that the signals sent between processors are

available for interception by outside equipment These signals, if properly interpreted,

contain the complete information used by the system under test for fault detection and
notification among processors. Fault recovery procedures are likely to be largely

software-based, and may be observable if probes can be attached to the internal signd
lines of the component computers. It may be possible to use a spare component com-
puter in the system to parallel the efforts of the processor being observed, in order to

aid the measurement equipment in its observations. Faults may be induced by forcing

errors in the component computers, or by disrupting communications between comput-
ers, in either a random or a systematic manner. Random disruptions would produce
unpredictable, spurious fault notifications. Systematic disruptions could be used to test

specific features of the fault detection mechanism.

Special apparatus: Probes for communications links, error signal drivers, possibly

probes into component computers.

Limitations of test: The comparison messages may be sent in a format that is not

readily interpreted by the measurement equipment The data may be reduced, as previ-

ously described, and require another processor for interpretation. It may be possible to

access only one half of a "conversation", and both parts may be needed to properly in-

terpret the transaction.

3.6 Faults in I/O systems

The detection of faults in I/O systems is very similar in principle to detection of

faults in internal transmissions and ^ta storage, though the actual implementations are

different. Completion of data transfers is assured by handshaking mechanisms, and
correcmess may be verified by redundant transmissions, inclusion of check bits, etc.

Consistency could be checked by comparison among state models of the various dev-

ices. In any long-term operations, faults in I/O operations would be likely to eventual-

ly cause faults in the internal operations of the systems, which could be detected by
the means previously described.

Measurement equipment may have an advantage over the system under test in the

detection of faults, since it may be able to directiy observe the devices at both ends of

the communication path, allowing it to detect both errors in transmission and errors

that occur at each end. Evaluation of fault recovery also benefits from this situation.

I/O pathways are usually the most accessible part of any system, so connection of the

measurement equipment should not be too difficult. Similarly, injection of errors

should be straightforward.
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4. Fault Recovery Techniques

Central to the objectives of many fault recovery mechanisms is the containment of

faults. A processor or other device that puts out erroneous results can cause inappropri-

ate response in other devices, corrupt databases, and ultimately lead to system failures.

This propagation of errors must therefore be kept under control before repair of the

damage can begin. The optimum form of containment depends on the source and type

of the original fault, and the areas to which it is likely to spread. Several techniques

call for precautionary measures that must be taken ahead of time.

As is the case for fault detection, which can use hardware or software techniques, fault

recovery mechanisms can be implemented in hardware, software, or a combination of

the two. Systems which use hardware recovery techniques generally also use hardware

detection, and include such measures as choosing the correct answer by voting among
three or more devices. (Such systems are the only ones that may be able to recover

from faults with no additional delay in operation, though the delay for comparing
results is always present) Software recovery techniques may be used with either

hardware or software fault detection. Software recovery will generally take longer than

a comparable level of hardware recovery, but software techniques are much more
adaptable to the needs of different situations, and a considerably wider range of opera-

tions may be performed. Software recovery may be limited to investigation of machine
state, and analysis and correction of data. Performance of the recovery mechanism may
be substantially enhanced, however, if the system allows the software to control the

hardware at a lower level than is traditionally allowed in major systems. This low-level

control may include the ability to switch processors and other components on and off,

to reconfigure the system, and to conduct tightly-controlled tests of system com-
ponents. In order to dlow for such control by the software, appropriate hardware dev-

ices must be built into the system. Such an approach might best be considered a mix-
ture of hardware and software fault recovery techniques.

4.1 Views of Fault Recovery

Because the users of fault-tolerant systems have many different requirements, there

are many definitions or specifications for satisfactory fault recovery. An "ideal" form
of fault recovery would ^low the system to completely repair the damage caused by
the fault and continue normal operation, with no resulting delays. This type of

recovery is possible for certain systems experiencing certain types of faults, but can
not be assured in the general case. For all other situations, some sort of tradeoff must
be established, in accordance with the needs of the user. The factors involved in the

tradeoff include correctness of result, volume of output, time to recovery, survival of
specific processes, integrity of data structures, performance degradation during

recovery, near-term and permanent degradation in system performance and redundancy,
and system cost and complexity.

A traditional view of fault recovery is that avoidance of errors in output has absolute

priority over all other considerations, with successful completion of the proposed job
as a second priority. A single incorrect output is considered a failure of the program or

even of the system. Emphasis is placed on fault detection and reliable response to

detected faults. When a fault is detected, the system may suspend or cut back on
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normal operations in order to divert resources for recovery from the fault. Measures
taken may include a number of approaches to reconstruct the previous fault-free state,

and test and reconfigure the hardware. Efforts are made to "contain" the damage
caused by a fault to the smallest possible architectural and data storage regions in the

system, by such methods as checkpointing and checking for faults before any major
activity such as an update to a database. If damage occurs from which recovery is not

possible, then a failure of program or system is considered to have taken place, and
execution is halted.

Emphasis on continued execution of specific processes, with secondary priority on
correctness of results, is another view of fault recovery. There are processes such as

machine controllers, for which continued operation is vital, as long as the output

remains correct to within specified limits. Operating with minor damage to data struc-

tures, etc. can sometimes be less damaging than halting operations. It therefore be-

comes the responsibility of the fault recovery mechanism to provide for the best possi-

ble operation, and to determine whether d^age is of such a degree that operation

must be halted. There may be a need to minimize recovery time by such measures as

immediately switching suspected components out of use, leaving any analysis for per-

manent failures for later. Continued output with reduced throughput may be accept-

able in some cases. In some applications, a damaged database is "self-repairing" over

time, as damaged elements are replaced or overwritten by new values.

A third view of fault recovery addresses the long-term ability of the system to main-
tain at least a minimum level of performance and redundancy. When a processor or

other component suspected of being faulty is switched out of normal operation, there is

a reduction in performance, redundancy for detection and handling of faults, or both.

Studies appear to indicate that for most systems, the great majority of hardware
failures are based on transient conditions [SIEW86]. Though a component that has just

produced a faulty output can not be considered a satisfactory reference for the detec-

tion of new faults, a later test may show that the suspected component is now working
properly, and may be added to the pool of usable components. Systems which em-
phasize optimized performance over long periods of time should have the ability to re-

certify faulty components. In order to minimize execution time of the affected process,

execution will often be continued immediately using substitute components, while the

testing process is put off until a more convenient time.

4.2 Fault Recovery Methods

After an error has been detected, there must be a choice of what action to take.

The general approach is to somehow use or create an error-free version of the data.

Alternative actions may be to terminate operations until repairs are made (e.g., a home
computer with a faulty memory) or even to continue operation and ignore the error

(e.g., a bad pixel in a graphics display). The action t^en is usually based on the

operational environment as envisioned at design time.

If the errors are assumed to be transient (rather than permanent or "hard"), then retry is

a reasonable strategy (e.g., reread disk memory, or retransmit data). However, this ap-

proach is time-consuming and may not work. If hard errors are expected, use of error

correcting codes (ECC) or a backup copy are reasonable strategies. Both require addi-

tional data and components. If a backup copy is to be used, a number of different
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steps are required for correction, such as diagnosis of the error source, disconnection,

and switching to a backup data source.

Errors in data transformation can not be corrected by the use of ECC, since a correct

ECC passed through the transformation stages will no longer be valid. It is often as-

sumed that data transformation errors are not transient. For this reason retry is not the

usual solution. Multiply redundant voting systems and recalculation in another portion

of the system are commonly used.

4.2.1 Recovery in loosely coupled systems. Software recovery procedures, invoked
after a fault is detected, include one or more of the following steps:

Fault location: Determine the unit that caused the fault. This may be self-evident

from the fault, as when a processor fails to respond within a time limit, or when the

detection mechanism is hardware voting and the result of the vote indicates the proces-

ses^ that is faulty. At the very least, the error itself will provide some indication of the

level, if not the general identity, of the faulty unit. Some combination of hardware
and software diagnostics can then be used to locate the source of the fault. Transient

faults are almost impossible to locate by this delayed testing procedure, since they may
not remain stable long enough to permit analysis. The application will dictate the im-

portance of identifying the source of the fault and thus the method used to locate it.

Fault isolation: Isolate the unit that caused the fault from the rest of the system, either

by reconfiguration (hardware switching) or reorientation (logical switching). This may
be accomplished by the failure itself, as when a failed processor no longer participates

in the system and therefore does not appear to exist. If the failure does not cause

self-isolation, then the remaining system must, through some combination of hardware
and software, switch out faulty units and utilize bacloip units, either ordinary operating

units or standby units, to handle the failed workload.

Fault diagnosis: Hardware tests and software diagnostics can be used to determine

whether the error is hard or transient, and if it is hard, to locate the faulty unit and re-

place it with a standby. Standby units can be "hot" (powered up and available for im-
mediate use), or "cold" (not powered up or not immediately usable). A cold standby

can be used when the perceived failure mode of the unit is due to deterioration with
time, as opposed to time-independent events. If the fault is transient, the unit is placed

back into available service. Depending on the type of fault and the complexity of the

system, this step may or may not be included.

Workload rollback: Distribute the job that was interrupted onto standby units or

among the remaining non-faulty units, and re-execute some portion of that workload,
starting from a previously knovWsaved state.

Workload rollback is usually handled by checkpointings in which a periodic "snapshot"

is taken of the current program location and the current value of its variables. The
checkpoint information (either complete or incremental) is passed to a backup version

of the process (either on common secondary storage or to a designated processor).

When a failure is detected, the backup copy is invoked and initialized to the state of
the last checkpoint information set. Checl^oints are taken both periodically and at

critical junctures of the program, such as an action which is irrevocable from the

viewpoint of the fault control system (e.g., a write to a database or I/O device). If a
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fault is detected, execution is backed up to the most recently checkpointed state for

which all was well.

The backup unit which picks up the operation of the faulty unit incurs two time de-

lays. The first delay is the time required to detect the error and invoke the recovery

mechanism so that the backup can begin execution from the last checkpoint. The
second delay is the time required to repeat the computations that were performed
between the time the last checkpoint state was saved and the time the fault occurred

[SERL84, ZORP85, MARK85, lfeST85]. The backup unit must be able to "backout",

or avoid repetition of critical operations (e.g., database updates and communicating
messages) which have occurred during this repeated computation period. This back-

tracking may be complex and time-consuming.

If the remaining non-faulty units, rather than standby units, are used as backup devT

ices, then failures will result in a net reduction in system computing power. This hap-

pens because the recovery process uses part of the computational capacity, and because
the backup versions, which now execute on some of the remaining non-faulty units,

also use part of the computational capacity. If this reduction in computing power can-

not be tolerated, special standby units must be provided for backup.

Systems with continuous data updates, such as certain signal processors and controll-

ers, may be able to continue operations with incomplete information, as new informa-

tion is gradually added to the system state. Continuous service programs may require

only some reasonable point in their cycles at which to begin. Programs which are sen-

sitive to existing machine state and for which no adequate recoids are preserved will

have to be discontinued, or restarted at the beginning.

Some side effects may result from use of these checkpointing techniques, since it is

likely that the process has executed for a period between the time the last checkpoint

state was saved and the time the fault occurred. Operational features which may be
affected include:

Data base consistency: Any modifications made to a data base by the failed process

since the last checkpoint must be undone or otherwise accounted for, so as not to

create an error in the database when that portion of the code is re-executed.

Communication consistency: Primary communications (messages sent or received

from other processes to or from the failed process since the last checkpoint) must be
"properly handled and accounted for". This may be more difficult than it sounds since

primary communications can create a "domino effect" [KUHL86] among cooperating

processes, affecting secondary communications (messages sent between other

processes, that were caused by or would cause a primary communication). Complica-
tions arise because the secondary communications could have taken place at any time,

not just since the last checkpoint.

In certain architectures and applications, parallel processor systems complicate fault

tolerance [RENN86] because:

(1) One of the purposes of parallel processing is to apply many processors to a prob-

lem in order to solve it more quickly than can be done using fewer processors or only

one processor. An optimum realization of this goal requires that fault tolerance be
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achieved through standby spare processors to replace those that fail, rather than distri-

buting the workload among the remaining non-faulty processors. Thus, the level of

processor redundancy is significantly higher in these t^es of systems.

(2) The topology of the parallel processing systems may be important in the solution

of the problem. Therefore, not only must a processor be replaced with a standby

spare, but the spare must also be inserted (by some reconfiguration mechanism) into

Ae same location in the structure with the same communications topology in the sys-

tem. For tightly coupled systems (i.e., shared memory, usually via a common bus) the

topology is not significant. In other parallel processor configurations such as trees, n-

cubes, and grids, which may contain hundr^s or thousands of processors, topology

can be a significant part of the solution design.

4.2.2 Recovery in tightly-coupled systems. Tightly-coupled systems can use the

same backup schemes as loosely-coupled systems. They can, however, employ other

techniques which allow instantaneous recovery without the overhead of checkpointing

and backtracking after faults. One implementation approach is to provide a duplicate

backup system running in lock-step with the system that may become faulty. The out-

put from a faulty system is then replaced by fiiat from the duplicate system; operation

continues immediately with little or no time delay [SERL84, ZORP85].

In another approach, three or more identical components are used to perform the same
operation, and majority voting is used to derive a correct result when there are errors.

More simultaneous errors can be tolerated if more replicated units participate in the

voting.

Comparison of outputs and voting can be performed directly by hardware, or by the

use of software. Using hardware, the result of each instmction can be compared at the

board level or at the outputs of chip level components such as processors, arithmetic

units, memory chips, etc. If the error is corrected by combinatorial circuits without

significant delay, operation continues unperturbed. A drawback to the hardware ap-

proach is that it requires cycle-by-cycle synchronization among the hardware com-
ponents being compared, so a slight delay may be added to the execution time of each

instruction. The hardware employed also represents an added expense above the

design cost of a standard system. These drawbacks are balanced by the capability for

instantaneous recovery.

4.2.3 Isolating faulty devices. Removing a device within a fault-tolerant system from
active use may be accomplished by any of several methods. The faulty device must no
longer affect system operation, but it may be desirable to have the ability to switch the

device back in later for testing or for normal use. The simplest approach is for the

device in question to be sent a signal which will place it in a WAIT state, after which
it will not participate in system activities until it receives a reactivation signal. The
most obvious difficulty with this technique is that the faulty device, being faulty, may
not properly shut down. One may therefore be inclined to place a switch between each

device and the rest of the system, in order to have more positive control. The switches,

however, may also fail to shut off, may shut off when they are not supposed to, and
add to complexity and propagation delays within the system. In order to be worthwhile

for fault recovery, any such switches used must be highly reliable in comparison to the

devices to which they are connected. It may be desirable to apply the known physical

properties of electronic switches in the design of redundant switch systems that will
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meet this requirement.

For many fault-tolerant systems, the switching out of a faulty device or the switching

in of a recertified or replacement device makes it necessary for the system to be
reconfigured, meaning that changes are made in the logical or physical interconnec-

tions among the devices. Processors or memories may be assigned new addresses, and
interconnecting signal paths may be rerouted by control of switching centers. When a

device is intr^uced, any of a number of protocols of various complexities may be
used to initialize the device and inform it of its new name or address. The major sys-

tem components may all keep records of the names and the configuration of all other

devices, and these records must be updated. When a device is removed, the

corresponding entry in these records must be deleted or replaced, and the other

configuration information changed appropriately.

When the hardware has been deemed sufficiently operational, efforts may begin to re-

cover the functionality of the program that was being executed when the fault was
detected. In lockstep machines, the appropriate machine state is still present in the

working processors, and if there is a sufficient number of processors, operation can

continue immediately. In machines which employ checkpointing, the most recent

fault-free state can be loaded into the appropriate processors, and operations can

resume.

4.2.4 I/O recovery techniques. I/O recovery procedures differ from the corresponding

internal communication and memory recovery procedures in that much of the recovery

process must be carried out by transfers through the I/O channels, in a context of

negotiation among the communicating devices. The source of the fault must be deter-

mined, and corrective action appropriate to the devices and operations involved initiat-

ed. For a simple data transfer, a reasonable response would be the deletion and re-

transmission of the faulty data. A correction signal to a mechanical controlling device

would have to be chosen according to the exact nature of the actions involved, since a

correct but late signal might be worse than no signal at all. A fault resulting in dam-
age to the software controlling structures for I/O transactions might necessitate the

complete removal and reinitialization of these structures.

4.3 Evaluation of Fault Recovery

There are a number of measurements which can be useful in the evaluation of the

recovery mechanisms of a fault-tolerant system. The parameters measured fall general-

ly into the categories of ability to recover from faults and performance degradation in-

curred during and after the recovery process. Interpretation of these parameters is

closely tied to the needs of the user and the design goals of the system being tested.

As is the case for investigation of fault detection capabilities, measurement is most
simply done when induced errors or induced notifications of errors are used, because

of time constraints and controllability of the experiment.

For most systems, it is not practical to attempt to produce a specific rating that will

describe the ability of the system to recover from any possible combination of faults,

given the size of the system state space and the many ways in which faults can appear.

It may be possible, however, to characterize the ability to recover from the general

types of faults that are most likely to appear. Knowledge of the type of fault recovery
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mechanism used can help considerably in this process. As an example, a system

without fault recovery will be unable to recover from any of a large set of faults. A
fault recovery system is then added to deal with faults that seem most likely to appear

and cause failures. However, there are usually certain types of faults that can defeat

the purpose of the recovery mechanism and cause system failure. To counteract these

faults, the designer may implement additional measures to deal with the most common
and the most troublesome of these faults. This process may be reiterated until the

designer feels that the fault coverage is adequate to satisfy the needs of the users.

Knowing the characteristics of the recovery mechanism, one can make a reasonable es-

timate of the types of faults that will be easily handled, and the types which should re-

ceive special attention in the measurement process to determine whether they are ade-

quately covered. These faults can possibly induced, and the results observ^.

Faults which can be especially troublesome for fault recovery systems include those

which occur during the recovery procedure, and those which directly affect the opera-

tion of the fault detection and recovery mechanisms. To have a chance of counteract-

ing these faults, fault detection must continue during the recovery process. Detection

and recovery devices must have some sort of redundancy, and the ability to bring

themselves to recovery. These improved mechanisms are in turn subject to still more
subtle faults. In addition to the limits imposed by the developer in choosing an ade-

quate level of fault coverage, the nature of the system may be such that beyond a cer-

tain point, additional complexity actually decreases the rehability of the system.

In investigating faults from which recovery may not be possible, some form of data

logging by the measurement equipment can be very useful, since the system being

measured may crash and be unavailable to help in the diagnosis. Any sequence of

faults which leads to system failure should be recorded if possible, and analyzed later

to obtain an estimate of the probability that this or related faults will appear during

normal operation. It would similarly be useful to record faults which bring about an

unusually long recovery time.

There are several ways in which performance degradation associated with the fault

recovery process may be evaluated. One way is to measure the output of the system

being tested as a function of time, while the detection and recovery process is under-

way. Depending on the number of processors, etc., this parameter may drop slightly, or

drop all the way to zero during the recovery process. Another method is to measure
the intervals between outputs, and to take the difference between an expected interval

time and the observed time to be the recovery service time. A more difficult but

theoretically more accurate approach is to keep records of the resources used and the

intervals in which they are used. This measure prevents idle time on the system from
being considered part of the recovery time.

Since recovery time can be affected by the types of faults detected, the choice of faults

induced during a test period can significantly affect the observed level of performance
of the recovery system. It is therefore important in making such measurements to

make sure that the set of faults induced is of a type that will lead to useful results,

whether the parameter of interest is "worst-case" recovery time or "typical" recovery

time. Section 3 includes a more complete discussion on the methods of inducing

faults.
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5. Measurement of Fault Recovery

Upon detection of a fault condition, the fault-tolerant system will undertake a

series of actions designed to limit the resultant effects, and restore the system to partial

or full operation. The nature of the expected field of application determines whether
the recovery scheme places emphasis on full recovery, or quick but possibly partial

recovery. In the extreme case, where no interruption can be tolerated, instantaneous

fault suppression hardware recovery techniques must be employed.

The recovery parameters of interest include useful system throughput for each process,

response time, availability of each data set, ability of the system to handle additional

faults, and loss of input data. Some users, particularly system designers, may need to

know details of the utilization of system resources as well. Each of these parameters

should be expressed as a function of time during the recovery period.

One should recognize that the measurement result may be that the supposedly fault-

tolerant system never fully recovers fi'om some particular faults. Some functions may
be completely lost until repairs are made. Some data may vanish. The importance of

these losses depends on the application. In systems continuously processing a stream

of data, the loss may be of minor importance since old data could become uselessly

stale by the time it could be recovered. These applications would not attempt to recov-

er the lost input data.

The measurement of throughput and use of system resources can be accomplished us-

ing techniques such as those mentioned in reports by Roberts [ROB86] and Mink, et

al. [MIN86]. A necessary adjunct to this measurement is the software running on the

system under test.

The measurements proposed here are mostly directed toward the reduction in system
performance caused by a fault. They do not, in general, concern themselves (except for

5.1.1) with the reduction in performance one must suffer in order to be prepared for a

fault, should one occur. In the case of software recovery systems, the execution cost

of checkpointing can be measured. In systems where hardware redundancy is used to

suppress the effects of faults, it is generally impossible to measure the performance
which could have been attained if this extra hardware had been used to add the capaci-

ty to handle additional instruction or data streams.

It will be particularly difficult to measure the availability of each data set during

recovery. Special test code or careful synchronization of the time of fault injection or

simulation with the progress of test routine execution will be necessary in this evalua-

tion.

In most situations detailed measurement of resource utilization should only be attempt-

ed under steady-state operating conditions: before a fault or after recovery. Measure-
ments during recovery will have to be limited to more gross parameters such as

throughput or response-time or results-per-unit-time, unless the application justifies

substantial expenditures for testing.

The results obtained when testing recovery performance may be greatly influenced by
the type and location of the fault(s), and the functions that the fault-tolerant machine is
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performing (i.e. the software which is currently running). The results will thus be
multidimensional.

Because the concerns and techniques of measurement of fault recovery are often simi-

lar to those of measurement of fault detection, this section repeats a certain amount of

the material from section three.

As in detection of faults, recovery can be classified as being based on either hardware
or software techniques. The common combinations are hidware detection, hardware
recovery; software detection, software recovery; and sometimes hardware detection,

software recovery. The fourth possibility - software detection, hardware recovery - is

essentially unknown in practice.

5.1 Systems Using Software Recovery

Whether the faults are detected by hardware or software techniques, software

recovery begins when the fault is detected. Thus elapsed times should be measured
from the internal notification of fault detection (if possible), not firom when the fault is

injected into the system under test. Unavailability time is the sum of fault detection

time and fault recovery time.

The interaction between the system hardware, system software, and the use to which
the user’s code puts them, is vital to the success and performance of the software fault

recovery approach. The system will have to be tested with software which uses its

fault-tolerant features suitably. The test software may have to be specifically designed
for fault tolerance. In gener^ this will be difficult and time-consuming. (Creation of
special test software is necessary to evaluate the system’s fault-tolerant features di-

vorced from user application code, in accordance with the general concept of synthetic

benchmarking. On the other hand, this approach may be undesirable because it will not
make the same use of the fault-tolerant features as any particular eventual application

code.

5.1.1 Overhead in normal operation. There is a reduction in performance of fault-

fi*ee fault-tolerant systems (with software recovery schemes) caused by checkpointing.

At points chosen by the applications programmer, or automatically chosen by the com-
piler or operating system, critical information about each process must be transferred

to each backup copy of the process and/or to "safe" places in the memory hierarchy.

This overhead is clearly a function of the process and machine state which must be
transferred. In any given implementation there will likely be a fixed portion which is

characteristic of the machine and its software system, and a variable portion which is a
function of the size of the application data set which must also be transferred.

Test method: "Interesting" sections of application code and special test code should be
instrumented to allow timing of the code both with and wifiiout checkpointing code.

Resource utilization can also be observed. The effect on both the "sending" process(or)

and the "receiving" process(or) must be measured. The overhead of each checkpoint
should be resolved into its basic and data-dependent parts. The special test code should
provide for a range of data set sizes to allow measurement of this dependency. Partic-

ular attention ne^s to be placed on measurement of possible bottlenecks in interpro-

cessor communication paths. No faults are induced or simulated for this test.
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Apparatus Required: Measurement apparatus must be provided to quantify the

throughput of the system, by process. At a minimum, this would use the system’s tim-

ing service to measure execution times. Because of the serious overhead of this service

in most systems, it is recommended that use be made of a time-stamping execution

trace monitor such as that described by Mink, et al [MIN86]. For more detailed infor-

mation about resource utilization bottlenecks caused by the checkpointing process, one
could use a resource monitor such as that under construction at NBS [CAR86].

Limitations of test: This measurement may be impossible if checkpointing is an au-

tomatic function of the compiler or operating system. In these cases the most one can
hope for is that an option of operation without checkpointing is provided. Then one
can measure overall operation with and without checkpointing.

5.1.2 Faults in intermodule data transmission.

Description of fault: Faults may occur in the communication paths between proces-

sors. These faults are described in more detail in Section 3.2.1 of this report. The
result of the fault is that the system must take some recovery action to correct the er-

roneous data or obtain correct data by using an alternate communication path. If the

error is transient, retry will suffice. TTie system must either ignore the erroneous data,

or have some recovery scheme to undo any effects of its use.

Test method: The best technique is to actually inject faults in the paths by the tech-

niques described in Section 3.2.1. A lesser test metiiod is to simulate the fault-detected

signal, but this prevents measurement of the success in eliminating the errors caused
by the fault. After the fault is induced or its detection simulated, throughput of the

system is measured as a function of time for each process. Carefully contrived test

routines can assist in revealing loss of data.

Special apparatus: The special apparatus mentioned in 3.2.1 is needed to inject errors,

or to simulate a hardware signal indicating detection of a fault. This apparatus is not

needed if the fault detection is simulated in software. Throughput and resource utiliza-

tion are measured as in Section 5.1.1, above.

Limitations of test: Measurement of data loss, especially during recovery, is difficult.

Measurement of the degree of success in preventing use or recovering from use of er-

roneous data is difficult.

5.1.3 Faults in addressing. This type of fault requires essentially the same testing ap-

proach as the above fault type. The most significant difference is that the likelihood of

data or program damage in widely different areas of storage is much greater, increas-

ing the need to exhaustively test for these effects through choice of test routines.

5.1.4 Faults in processor registers.

Description of fault: Processor registers are small, dedicated-purpose memory
domains internal to a processor. They may develop either permanent or transient

faults, as described in Sections 3.3.1 and 3.3.2.

Test method: Faults can be injected into the registers by the techniques used in Sec-

tions 3.3.1 and 3.3.2. A lesser test method is to simulate the fault-detected signal, but

this prevents measurement of the success in eliminating the errors caused by the fault.

After the fault is induced or its detection simulated, throughput of the system is
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measured as a function of time for each process. Again, success in discovering data

loss is tied to careful design of test routines.

Special apparatus: The special apparatus mentioned in 3.3.1 and 3.3.2 is needed to

inject errors, or to simulate a hardware signal indicating detection of a fault. This ap-

paratus is not needed if the fault detection is simulated in software. Throughput and
reKHirce utilization are measured as in Section 5.1.1, above.

Limitations of test: Measurement of data loss, especially during recovery, is difficult

hfeasurement of the degree of success in preventing use or recovering from use of er-

rc®e<^s data is difficult.

5.1.5 Faults in main memory.
Description of fault: As described more fully in Section 3.3.3, the major memory as-

sembties of a computer system are prone to a number of types of errors. Recovery
frcmi these errors will at least temporarily reduce system performance. Some of the

memory may become temporarily or permanently unavailable. This may result in the

loss of some data (to some processes), or a reduction in system performance.

Test method: Faults can be injected into the memory system by the techniques used in

Sections 3.3.3. A lesser test method is to simulate the fault-detected signal, but this

prevems measm*ement of the success in eliminating the errors caused by the fault.

After the fault is induced or its detection simulated, throughput of the system is meas-
ured as a function of time for each process. It is especially important to measure data

loss or corruption. Using special test routines, evaluate any changes in the availability

erf memory to processes.

Special apparatus: The special apparatus mentioned in 3.3.3 is needed to inject errors,

or to simulate a hardware signal indicating detection of a fault Only part of the ap-

paratus is needed if the fault detection is simulated in software. Throughput and
resource utilization are measured as in Section 5.1.1, above.

Liimtations of test: Measurement of data loss or corruption, especially during
recovery, is very difficult.

5.1.6 Faults in cache memory.
Description of fault: Temporary copies of values from main memory are stored in the

cache for fast access. The memory controller looks in the cache before starting an ac-

cess of main memory. Because of the close relation between cache and the memory
access controller, problems with the cache can seriously affect aU memory accesses. A
cache controller that always reports a "miss" wlU slow the processor considerably, and
the controller wiU waste time trying to update the cache. A cache controller that false-

ly reports a "hit" or stores a value incorrectly will cause an incorrect value to be re-

ceived by the processor. Caches are subject to the data errors common to any type of

memory.

Test method: Faults can be injected into the cache memory system by the techniques

used in Section 3.3.4. A lesser test method is to simulate the fault-detected signal, but
this prevents measurement of the success in eliminating the errors caused by tiie fault.

After the fault is induced or its detection simulated, throughput of the system is meas-
ured as a function of time for each process. It is important to attempt to measure the
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degree of data loss or corruption caused by the cache fault. The failure of cache

memory will cause additional traffic on the path to main memory; utilization of this

resource should certainly be measured.

Special apparatus: The special apparatus mentioned in 3.3.4 is needed to inject errors,

or to simulate a hardware signal indicating detection of a fault. This apparatus is not

needed if the fault detection is simulated in software. Throughput and resource utiliza-

tion are measured as in Section 5.1.1, above. Special test routines must be used to

evaluate data loss and corruption.

Limitations of test: Measurement of data loss or corruption, especially during

recovery, is difficult. It is hard to predict just what data will be affected.

5.1.7 Faults within processors.

Description of fault: The central processors of a system are where most data transfor-

mations take place. Most current processors are extremely complex, and are often im-

plemented as VLSI microprocessors with up to several hundred thousand logic ele-

ments. The number of signals available for interface with outside circuitry is almost

always less than 200. (Simpler processors generally have far fewer pins or numerous
processors on one integrated circuit) Means to allow monitoring of the inner opera-

tions of the processor are usually neglected. Processors built from bit slices or small-

and medium-scale components have more of their "internal" signals available for prob-

ing.

Test method: Faults can be injected into the processors or at their terminals by the

techniques used in Section 3.4.1. A lesser test method is to simulate the fault-detected

signal, but this prevents measurement of the success in eliminating the errors caused

by the fault. Since this test involves data transformation elements, where detection of

errors is difficult, the test method should pay special attention to the correctness of the

processor outputs. The measurement equipment should carry out these fault detection

procedures much more extensively than the system under test uses in its own processor

fault detection. This allows more effective detection of the induced faults, as a refer-

ence for comparison to the fault detection of the tested processors. The measurement
system may have to contain an error-free replication of the processor being tested for

use in the comparison.

After the fault is induced or its detection simulated, throughput of the system is meas-

ured as a function of time for each process. It is important to attempt to measure the

degree of data loss or corruption caused by the processor fault.

Special apparatus: The special apparatus mentioned in 3.4.1 is needed to inject errors,

or to simulate a hardware signal indicating detection of a fault. The equipment men-
tioned above is needed to closely follow the correctness of processor output. This ap-

paratus is not needed if the fault detection is simulated in software, though the test is

inferior. Throughput and resource utilization are measured as in Section 5.1.1, above.

Special test routines must be used to evaluate data loss and corruption.

Limitations of test: Measurement of data loss or corruption, especially during

recovery, is difficult.
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5.1.8 Faults within coprocessors and controllers.

Description of fault: Coprocessors and controllers are subservient to the general pro-

cessors. Communications with the general processors may go through special buses,

or through the normal processor and address data lines.

Receiver/transmitters for communications and disk controllers are included in many
systems. Operation in parallel with operation of the general processor is a major incen-

tive for the use of I/O controllers. These devices allow the system to handle slow com-
munications without the need for continual supervision and consequent slowdown of

the general processor. These processors may perform tasks which are logically part of

the central processor or may perform some other task such as input or output process-

ing.

Test method: The test methods of Section 3.4.2 are appropriate. There are generally

connections from coprocessors and controllers and the general processors with which
they are associated which may be accessible to probes from the measurement equip-

ment. This may make it possible for the measurement equipment to pick up signis

and directly observe faults and indications of faults. Emulators and simulators may be

used, as for general processors. In addition to measurement of throughput as a func-

tion of time, special attention must be paid to discovery of missing or cormpted data.

Special apparatus: Probes into system, additional coprocessors/emulators, error signal

drivers.

5.1.9 Faults at the (processor) board level.

Description of fault: Evaluation of fault recovery at the processor-board level differs

from evaluation of faults within a microprocessor. The designer is more likely to have
included hardware which is desirable to aid in detection of faults and fault recovery.

Fault detection may involve the coordination of a set of boards. For instance, a triply

redundant system, may be designed with the processors on separate boards to allow re-

placement without system shut-down. On the other hand, the triply redundant proces-

sor may be placed on a single board and considered as a single highly-reliable system
element.

A board-level design will have hundreds of signal lines to which probes may be at-

tached. Availability of points for observation of faults and fault notification and for

injection of errOTS are likely to be much better at board level than at processor level.

(If what is considered the "processor" takes up the entire board, then the board-level

descriptions apply.)

While commercial mass-produced (micro)processors are likely to be very well and ac-

curately analyzed and documented, this is much less likely to be the case for a board-

level processor. There are also more likely to be errors in design, which can result in

unexpected responses to faults.

If there are several processors per board, either coupled together or independent of one
another, measurement of the interactions between the processors can be important in

searching for side effects.

Test method: The test methods of Section 3.4.3 are appropriate. Measurement of

throughput, data loss and data corruption versus time are important.
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Special apparatus: Probes into system, error signal drivers. As described in Section

3.3.3. All of the normal throughput and error detection apparatus will be needed.

Limitations of test: The chief limitation is the extreme complexity of operation of a

typical processor board as a whole, and the degree to which those conducting the tests

must come to understand it before certain measurements may be made.

5.1.10 Computer faults in loosely-coupled systems.

Description of fault: In a loosely-coupled system each processor may be multiply

redundant and thus be a highly reliable component, may include internal two-way
redundancy for fault detection, or may be nonredundant and the system may merely
rely on failure to produce output or 'Tm alive" messages in a timely manner as an in-

dication of failure.

In these systems the messages that pass between the component computers are very

important in the operation of the system, and equipment to measure the recovery from
faults must pay attention to these communications. Evaluation of communication
faults is describe in the section on data transmission.

Reduction of performance arises from the fact that the links generally can not transfer

data as rapidly as can be done between tightly-coupled processors. In order to main-
tain good system performance, the designer will probably seek to make the interpro-

cessor state comparisons and checkpointing as infrequent as possible while meeting the

requirements for recoverability. Loose coupling of processors increases the likelihood

that some of the function or information in the system will be completely lost due to a

fault.

Test method: The test methods of Section 3.5.1 form the basis of this measurement.
Fault recovery procedures are likely to be largely software-based, and may be observ-

able if probes can be attached to the internal signal lines of the component computers.

Special attention must be paid to loss or corruption of data. There is likely to be a

dramatic reduction in performance on at least some of the processes in the system dur-

ing recovery. One should pay special attention that output which occurred after the last

checkpoint, but before the fault occurred, is not repeated during the recovery process.

Special apparatus: Probes into system, and error signal drivers, as described in Sec-

tion 3.5.1. All of the normal throughput and error detection apparams will be needed.

Limitations of test: The messages between processors may not be readily interpreted

by the measurement equipment. The data may require another processor for interpreta-

tion.

5.2 Hardware Recovery from Faults

Hardware recovery techniques are generally applied using redundant units that are

tightly coupled. The outputs of these units are continually or frequently compared, with

the immediate suppression of errors through switching or voting. This approach sub-

stitutes the expense of additional hardware for the more complex and time-consuming
software recovery process. If the fault-tolerant system relies entirely on hardware
recovery techniques, the software may the identical to that which would run on a
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conventional computer system. For testing, one still needs special test software which
will exercise the system so as to allow detection of imperfect fault recovery.

The tests of Sections 5.1.2 through 5.1.9 can be applied to systems with hardware fault

recovery. One would expect that there would be no detectable performance or data-

availabUity reduction resulting from the fault, but detailed resource measurements

could give interesting insight on system functioning. Some systems may choose to

handle the "first" fault by hardware redundancy methods, but resort to software

recovery techniques if additional faults take place before sufficient faulty components
have been replaced to permit hardware recovery from additional faults. As in any
fault-tolerant system, one possible measurement result is that the system is not fault-

tolerant.

6. Summary

The performance of fault-tolerant computer systems, in the absence of faults, can
be measured using the hardware techniques discussed earlier by Roberts[ROB86]. Our
interest here has been the degradation of performance (throughput, response time, data

loss, etc.) which results from hardware faults. This degradation is generally a function

of time after the fault occurs. Recovery may be full or partial. In most architectures,

the detection of the fault is critical to fault tolerance. Fault containment and recovery

cannot begin until the fault has been detected. Thus we have separated measurements
designed to evaluate the detection of faults from the techniques which evaluate the

overall ability of the of the system to continue useful output during and after recovery

from the fault(s).

The test methods employed involve the artificial injection of errors into the system
under test so that the nature of the fault (or at least its cause), and the time of its onset

can be well known to the experimenter. Injection of faults is vital in order to have a

fault rate which is high enough to allow evaluation to be accomplished in a reasonable

time. Large scale integrated circuits limit the detail at which systems can be probed
by the injection of faults, unless fault-injection provisions are made in the integrated

circuits themselves. This restriction is not considered to be serious, since the result of

the internal fault can usually be simulated by carefully planned forced modification of

signals at the package pins.

By considering faults at the scale of large system elements, the scale at which faults

will be detect^, diagnosed and isolated by the recovery system, highly reliable results

can be obtained at an expense which can be tolerated for important applications. No
evaluation of a fault-tolerant system is likely to be exhaustive if attempted at the minor
component level. The full range of combinations of faults in minor components can-

not be induced in realistic detail and most evaluators cannot afford the equipment and
time required to experimentally investigate all the combinations.
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