
Annotated Bibliography on Reliable

System Design

Wayne McCoy, Kathleen Roessing, and Mary Ruhl

Si

U.S. DEPARTMENT OF COMMERCE
National Bureau of Stanoards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

May 1987

U.S. DEPARTMENT OF COMMERCE

-QC
100

. U 5 6

87-3559

1987

C.2

1EAU OF STANDARDS

• Research luioruiation Center
National Bureau of Standards
Gaithersburg, Maryland 20899

QC/OO

NBSIR 87-3559 ' 1

ANNOTATED BIBLIOGRAPHY ON RELIABLE

SYSTEM DESIGN

Wayne McCoy, Kathleen Roessing, and Mary Ruhl

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

May 1987

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

The difficulty in assuring some level of fault-tolerance,
reliability, safety, availability or survivability in large,
complex distributed systems has long been recognized. Techniques
are now emerging that try to address this issue in system design,
including formal description, design tools, automatic implementa-
tion and system simulations. This bibliography contains brief
summaries of 350 papers from various computer science and engi-
neering journals, books, dissertations and technical reports in
the years 1971-1987, on these and related topics.

KEY WORDS: Automatic implementation. Distributed computer
system. Fault-tolerance. Formal description. Reliability, System
design

.

ACKNOWLEDGEMENTS

Special thanks to Ted Zwiesler, Rick Kuhn, and Ken Dymond for
their assistance in compiling many articles included in this re-
port .

ii

INTRODUCTION

An accelerating trend toward large complex systems, con-
sisting of diverse collections of processors and hardware resources,
operating systems and applications software, and communications
fabric, portends difficulty in assuring some level of fault-tolerance,
reliability, safety, availability or survivability in particular
such systems. Eortunately, this difficulty has been recognized
and techniques are now emerging toward addressing it in the system
design at the outset. Formal specification techniques, analytical and
simulation studies, design tools and automatic implementation are all
intense areas of research into the problem. This bibliography
represents some of the work that has been done in these and other
related areas over the seventeen year span 1971-1987, containing 350
entries from various computer science and engineering journals, books,
dissertations, and technical reports. Complete coverage is not
claimed, nor is the inclusion of every seminal paper on a particular
topic. The intent was to give a broad range of thinking.

Some particular areas are not included. These are: fault-
tolerant designs for digital hardware, system maintenance, software
metrics and software maintenance, and validation testing. While these
areas are important, their focus is either too narrow or not
relevant to total system design issues. Another area not specifically
included, but for which a small number of entries do appear, is
security. These entries have a bearing on issues in reliability and
availability and are not as narrow in view as encryption techniques,
for example. Several papers on multiprocessor interconnection and
control issues are included as well, since some of these issues are
general enough to extend to systems with higher distributivity

.

The intended users of this bibliography are system designers,
system design researchers and design tool builders and users

.

iii

The following is a list: of the references and their associated key
words. It will aid in searching for an article on a specific topic. This

method was chosen because the sets of keywords nave ^insufficient overlap

for more topical cross referencing. Also, the key words indicate <_ne top^w

covered more readily than do the titles of the papers. The papers are or-

dered alphabetically by the author's name.

CROSS REFERENCE
[ABAD86]
Design for testability
Testing
Test scheme

[ADEL85]
"Artificial intelligence
Cognitive models
Cognitive science
Software design

[AGGA85]
"Network vulnerability
Network articulation level

[ALLC80]
"Concurrent languages
Modula
Multiprogramming
Real-time systems
Time dependencies

TANDE85a]
"Real-time systems
Software fault tolerance
Software reliability

[ANDE85b]
"Data communication protocols
Attribute grammars
Real-time constraints
Concurrent activities

[ANDR79]
"Concurrent systems
Message switching
Modula
Structured multiprogramming

'AVEN85]
'Multistate system
Multistate component
s-coherent system
Reliability bound

[AVIZ80]
"Computer reliability
Fault tolerance
Graceful degradation
Reliability estimation
Reliability modeling
Transient fault analysis

*AVIZ85]
"Design diversity
Fault tolerance
N-version software

Software reliability
Tolerance of design faults

[BABA85]
Byzantine agreement
Distributed computing
Ethernet
Fault-tolerance

[BABI79]
"Concurrent program
Correctness
Deadlock
Mutual exclusion
Finite delay and termination
Parallel program
Variant function
Verification

[BAKES 0]
Program complexity
Program control flow
Source program transformations
Structured programs

[BALL86]
Network reliability
Computational complexity

[BALZ85]
Automatic programming
Knowledge base
Maintenance
Prototyping
Speci fication
Trans formation

[3ANE86]
"Checks"
Errors
Fault detection
Fault location

[BARS85]
Automatic programming
Programming knowledge
Program transformations

[3ASI80]
"Axiomatic correctness
Functional correctness
Program deviation
Structured programming

- 2 -

[BASI86]
"Controlled experiment
Data collection and analysis
Experimental design
Software metrics
Software technology measurement
and evaluation

[BAST85]
Computational correctness possibility
Control flow correctness possibility
Evaluation of design decisions
Program correctness possibility

[BASU80a]
Accumulating programs
Linear data domain
Program verification

[BASU80b]
Functional specifications
Iterative programs
Linear data domain
Program development
Total correctness

[BEAU78]
Coinputer performance
Computer reliability
Graceful degradation

[BELK86]
"Abstract data types
Language translation
Prototyping
Speci fications
Specification testing
Transformation rules

[BEND84]
Classi fication
Queuing system
Reliability models

[BERN85]
Broadcast network
Markov analysis
Redundancy
Reliability
Stable storage

[BID085]
Abstract data types
Algebraic specification
Decomposition schemes
Error handling

[BIRM85]
Abstract data types
Availability
Concurrency
Consistency
Distributed systems

Fault tolerance
Recovery
Reliability

[BLIK81]
Assertion-specified programs
Bubblesort procedures
Program correctness
PROMET-1

[BL0079]
Synchronization
Concurrency
Modularity
Data abstractions
Programming methodology

[BL0086]
Speci fication
Analysis
Protection system

[BLUM86]
Authentication
Automated development tools
Communication protocols
Formal description technique
Protocol Implementation
Protocol specification
Protocol verification
State transition

[B0CH83]
Communication processes
Design verification
Distributed system design
Parallel processing
Specification consistency
Specification methods

[B0ES86]
Network reliability
Connectivity
Vulnerability

[BOOT80]
Abstract data types
Computation structures
Performance analysis
Software design

[BREM81]
Networks
Reliable communication
Graceful degradation protocols

[BYRN85]
Dependency model
System effectiveness
System degradation
Measure of effectiveness
Probability of system failure

3

'CARC86]
ComDuter communication standards
Formal specification
LAN
Multicast communication servicer
Protocol verification
Rapid prototyping
Temporal ordering

[CEVA85]
DOD applications
SDI
High confidence software
Software reliability measurement
methodology

[CHAN79]
'Concurrent processes
Distributed systems
Program proving

[CHAN81]
"Distributed systems
Message-passing systems
Communicating sequential processes
Deadlock
Recovery
Parallel algorithms

[CHAT78]
'Availability
Computer-aided algebra
Symbol manipulation programs
Markov and semi-Markov processes

[CHEA79]
'Automatic programming analysis
First-order recurrence relations
Program optimization
Program verification

[CHEN80]
Branch and bound methods
Distributed database
System design

'CHEN81]
Communication protocols network

'CHER85]
'Banyan'
Eail-softness
Multistage interconnection
Reliability prediction

[CHER86]
'Redundancy
Reliability optimization
Dynamic programming
Knapsack problem

"CHEU80]
'Self-metric software

Software reliability
Software reliability model

[CHI 85]
'Algebraic specifications
Formal specifications
Software design
Specification implementation

[CH0W79]
Job routing
Load balancing
Multiple processor system
Performance analysis

[CHWA81]
"Diagnosis algorithms
Fault diagnosis
System diagnosis
T-diagnosable system

[CLAR86]
Network reliability
All-terminal reliability
Series-parallel network

[C0LE81]
Attributed translations
Multiprocessing
Pipeline programs
Programming methodology

[C00K79]
Distributed programming
Modul

a

Processor module
Data abstraction

[C0ST78]
Availability
Hardware and software modeling
Hardware and software redundancy
Reliability

[C0UR85]
'Estelle
Protocols

[CRAL85]
"Modeling technique of protocol
service interfaces
Prolog
I SO/OS I transport layer
NBS Class 2 and Class 4 Transpor
layer
DoD TCP

"CREM78]
'Information structuring
Redundancy
Sequential and concurrent
pro'cessing

4

[CRIS85]
Availability
Correctness
Fault-tolerance
Programming logic
Reliability
Stochastic modeling

[CR0W84]
Software reliability
Software failure
Clustering
Cyclic trend
Fourier series
Spectral analysis

[CURR86]
Incremental development
Software reliability
certi fication
Statistical quality control
Statistical testing process

[DAHB86]
Diagnosis
Fault tolerance
Multiprocessor systems

[DALE86]
System reliability
Optimization
Resource allocation
Effort function

[DANN82]
Control constructs
Program proving
Program verification

[DAVI78]
Asynchronous networks
Fault-tolerant computers
NMR
TMR

[DECH86]
Access scheme
Broadcast
Complexity analysis
Distributed algorithm
Parallel algorithms

[DENN77]
Protection
Security
Program certification
Confinement

[DERS81]
Invariant assertions
Program annotation
Program correctness
Verification

[DES078]
Fault-tolerant computing
Modular redundancy*
Reliability
Responsive structure -

[DES086]
Availability distribution
Dependable computer systems
Reliability
Repairable computer systems

[DEVI77]
Multiprogramming
Time sharing
Resource allocation
Deadlock
Interlock
Deadlock avoidance

[DIAS81]
Crossbar switches
Delta networks
Multi-stage interconnection
networks

[DIJK74]
Multiprocessing
Networks
Synchronization
Self stabilization
Robustness
Error recovery
Self-repair

[D0WN85a]
Computer performance modeling
Reliability growth
Software reliability
So ftware testing
Stochastic models

[D0WN85b]
Software reliability
Fault-tolerance
Concurrent systems

[D0WN85C]
Software reliability
Mills error-seeding model
Jelinski-Moranda model

[D0WN86]
"Probability models
Reliability growth
Software reliability
Software testing

[DUNH86]
Life-critical software
Real-time software

- 5 -

Software modeling and measurement
Software reliability

“DUPU85]
"Mutual exclusion
Distributed algorithms
Synchronization
Time stamps

[ECKH85]
Coincident errors
Fault-tolerant software
Multiversion software
Reliability of redundant software

[EKAN79]
"Access" control
Keys
Locks
Protection

[ELLA81]
Invariant assertions
Loop predicates
Program validation

[ENGE86]
Mean time between failures
Nonhomogeneous Poisson process
Power-intensity process"
Log- linear process

[ESTR86]
Concurrent systems
Hierarchical design
Interactive simulation
Performance models
Queueing models
Reachability analysis

[FAGA86]
Defect" detection
Quality assurance
Software development
Software quality

[FAR081]
Networks
Communication protocols
Theory of colloquies
Automata
Petri nets

TAROS 3]
Specification Description Language
Calculus of Communicating Systems
Computer communications

TERN85]
Verification
Specifications
Communicating systems

Semi-automatic tools
Temporal logic

[FICK85]
"Knowledge-based software
development
Program transformation systems

[FINK80]
Computer networks
Distributed computing
Message routing
Multiprocessor architectures

[FL0N77]
Parallel programs
Nondeterminism
Verification
Mutual exclusion

[FLYN80]
Directly executed
Languages
Distributed systems
Parallelism

[FOST80]
Program correctness
Program testing
Software errors
Software reliability

[FRAN81]
Banyan networks
Crossbar networks
Smace-time product
VLSI

[FREE83]
Expert systems
Executable specifications
Logic programming systems

[FUJI 78]
Fault diagnosis
Polynomial time algorithm
Polynomially complete
Self-diagnosable* systems
Turing machines

[FUKU78]
"Clustering
Density estimation
Pattern recognition
Problem reduction or
localization

[GARC82]
"Crash recovery
Distributed computing systems
Failures
Mutual exclusion
Reorganization

6

[GARD80]
Distributed control
Deadlock
Locking
Recovery
Replicated databases

[GARM81]
Software life cycle reliability
Software development
Software maintenance

[GEHA85]
Verification
Speci fication
Concurrent

Software reliability
Times between failures

[G0LD86]
Knowledge-based software
deve1opment
Program optimization
Program synthesis
Program transformation

[G00DM81]
Communication networks
Hypercube
Message traffic
Routing algorithms
Tree structures

[GILB72]
Concurrent programming
Cooperating processes
Mutual exclusion
Parallel processes

[GLAS79]
Software reliability
Military/space applications

[GLAS81]
Complexity
Persistent software errors
Software problem report
Testing rigor

[GLIG79a]
Access privilege
Management policies
Capabilities
Shared objects
Selective revocation

[G00DW8-1]
Computer oriented language
Data abstraction
Dynamic defining of types
LISP
Programming environments

[G0PA81]
Broadcast routing
Packet switching networks
Queueing analysis
Source based forwarding

[G0UD81a]
Protocol correctness
Synchronization
Deadlock free

[G0UD81b]
Deadlock free
Communication protocols
Communicating processes
State deadlocks

[GLIG79b]
Authentication
Capabilities
Encryption
Hierarchical systems
Object migration
Redundancy

[GLIG80]
'Deadlock detection
Distributed systems
Ealse deadlocks
Ostensibly blocked transactions

[GOEL80]
'Software reliability models

[G0EL85]
'Failure count models
Fault seeding
Model fitting
NHPP

[G0UD85]
Synchronous protocol
Communicating finite state
machines
Reachability graph

[GREI77]
Formal specifications
Program correctness
Parallel processing
Synchronization

[GRIE77]
Garbage collection
Multiprocessing
Program correctness for
multiprocessing tasks

[GRIE81]
Verification
Sequential

7

[GRIE85]
Atomic actions
Concurrency control
Markov processes
Queueing models
Reliability
Transaction systems

[GUTT78]
Abstract data types
Software validation
Algebraic axioms

[GUTT80]
Abstract data type
Correctness proof
Speci fication
Software specification

[HAAS81]
Deadline scheduling
Guarded commands
’Parallel processes
Real-time programming

[HAC85]
Workload modeling .

System failure
System operating mode
Measurement data

[HAIL85]
Protocols for error-prone
channels
Einite state machine
Abstract program

[HALS78]
Message passing
Distributed computing
Actor semantics
Networks

[HANS78a]
'Concurrent programming
Distributed processes
Process communication and
scheduling
Microprocessor networks

[HANS78b]
"Concurrent programs
Mutual exclusion
Program specification
Program implementation
Program verification
Guarded regions

“HASS86]
'Binary" tree
Eault tolerant
Reconfiguration

Redundant
Reliability

[HAYE85]
CICS
Eormal specification
Large scale software

[HAYE86]
Abstract data types
Data type invariant
Software reliability
Specification language

[HECH86]
Computer failure models
Computer system reliability
Software management
Software reliability

[HEND86]
Functional programming
Software design
Specification
Validation

[HENI80]
Documentation techniques
Functional specifications
Real-time software
Requirement

s

Speci fications

[HENR81]
Design methodologies
Software metrics
UNIX

[HEWI77]
Parallel processes
Computational analysis
of systems

[H0AR71]
'Natural deduction
Axiomatic method
Program correctness

[H0AR85]
'Verification
Concurrent

[H0LL87]
Markov models
Multiprocessors
Performance comparison
and evaluation
Petri nets

“HOL080]
'Synchronization primitives
Synchronization problems

- 8 -

Synchronization parameters
and variations

[HOLT80]
Programming languages
Parallel programming
Abstract machines

[H0LZ81]
Message passing protocols
Algebraic method
Finite state machines

[H0R081]
Binary trees
Parallelism
VLSI
Multiprocessing
Networks

[HOWD80]
E f fectiveness
Reliability
Testing

[H0WD81]
Errors
Design properties
Functional program tests

[HUAN80]
Consistency
Decomposition
Invariant-relation theorem
Program verification

[HUNG85]
Concurrent processing
Correctness proof
APK
Communication tree
Invariants generation

[HUTC85]
Cluster
Coupling
Data binding
Measurement
System structure

[IBAR81]
Complexity
Network diagnosis
NP-complete

[IBAR82]
Algorithm complexity
Deadlock prevention

;IEEE85]
Metrics

[IGAR75]
Speci fications
Verification conditions

[IYER85]
Failure analysis
Software reliability
System workload
VM/SP

[IYER86]
Analysis
Markov chains
Moments
Reliability

[JAC086]
User interface
Specification techniques

[JAHA86]
Real-time logic
Safety analysis systems
specification
Time-critical system
Verification

[JAL086]
Atomic actions
Backward recovery
•Forward recovery
Software fault-tolerance

[JARD85]
Verification
Protocol specification
Formal description technique
Extended state transition
machines

[JEWE85]
Bayesian Analysis
Program testing
Software reliability

[J0HN86]
"Safety
Reconfigurable duplication
Standby sparing

[KANT81]
"Automatic programming
Program synthesis
Refinement
Stepwise refinement

[KANT85]
"Automatic programming
Automating algorithm design
Human problem solving
Protocol analysis

9

"KART79]
'Dynamic architecture
Dynamic computer group
Multicomputer

[KARU79]
'Digital systems
Optimal systems design
Sel f-diagnosis
System- level diagnosis
Single- loop systems

[KELL76]
Parallel program
Correctness
Verification
Deadlock
Mutual exclusion
Petri net

rKELL85]
'Relational databases
Incomplete information
Updates

[KEMM85]
Design and development
Eormal verification
Reliable software
Requirements
Speci fications

[KENE86]
'Failure rate
Sequential detection scheme
False detection rate

[KESS77]
Monitor
Mutual exclusion
Synchronization
Conditional critical region

[KESS81]
Concurrency
Message passing
Synchronization

[KIM84]
'Fault tolerance
Reliability
Database concurrency control
and recovery
Relational database

[KING80]
"Correctness assertions
Predicate transformers
Program correctness
Relational semantics
Subgoal induction

[KLIG86]
Exception handling
Guaranteed response time
Real-time systems
Software reliability

[KLUG32]
Channel processors
Memory access conflicts
Petri nets
Synchronic distance

[KNIG86]
Design diversity
Fault-tolerant software
Multiversion programming
Software reliability

[K0HL81]
Decentralized system
Access synchronization
Concurrency control
Crash recovery
Atomic action

[K0RE79]
Intermittent fault
Modular redundancy
Permanent fault
Reliability

[K0RN79]
Parallel processing
Distributed computation
Pattern-directed invocation
Problem solving

[KRAM78]
Distributed processing systems
Finite state machines
Resource sharing

[KRAM85]
Configuration process-
Configuration specification
Distributed systems
Flexibility
Reusability
System evolution

[KR0L86]
'Consistency
Error -correcting codes
Fault tolerance
Hardware redundancy

[KUMA80]
'Hierarchical modeling
Performance evaluation
System design
Optimization algorithms

10

[KUMA86]
Distributed program
Distributed system
Reliability
Spanning tree

[LADN79]
Parallelism
Lockout
Finite state processes
Deadlock
Critical section

[LAMP76]
Distributed systems
Computer networks
Clock synchronization
Multiprocess systems

[LAMP77]
Asynchronous multiprocessing
Multiprocess synchronization
Shared data

[LEE82]
Fault-tolerant
Rollback recovery
Cooperating processes
Reliability

[LEM080]
Standardization
Formalization methods

[LESS80]
Dynamic architecture
Powerful parallel system
Reconfigurable hardware
resource
Reconfigurable memory
processor

[LEUN80]
Concurrent processes
Invariant assertion
Control modules
Program specification

[LICH86]
Consistency checking
Program Design Language
Software development
Software quality assurance

[LIES86]
Real-time systems
Scheduling
Software fault tolerance
Software reliability

[LIN83]
Communication protocols
Completeness

Synchronization

[LIN86]
Parallel processing
Reconfigurable multiprocessors
Interconnection networks
Circuit switching
Connection conflicts

[LING79]
Verification
Sequential

[LIPT73]
Synchronization
Primitive process concept
PV
Interprocess communication

[LIPT75]
Deadlock free
Reduction
Interruptible parallel program
Verification method

[LISK81]
Integrated programming language
Distributed programs
Robust programs

[LITT80]
Program error*
Reliability growth
Software failure
Software life-cycle cost
Software reliability measurement

[L0CK85]
System reliability
Inclusion-exclusion
Topological reliability
m-out-of-n system
Source-to-multiple terminal
reliability

[LU78]
Character recognition
Error transformation
Pattern recognition
Syntactic pattern recognition

[LUCE79]
Correctness of data representation
Program derivation
Program schema
Program specification
Program synthesis

[MA82]
'Branch and bound
Distributed processing
Interprocess communication
Task allocation

11

;MALL78]
Incomplete diagnosis
Incorrect diagnosis
Intermittent faults
Self-diagnosable system
Syndrome

[MANC86]
Communicating sequential
processes
Fault tolerance
Guarded commands J

Nondeterminism
Replicated processing

[MA080]
Communicating sequential
processes
Communication ports
Concurrent programming
Distributed networks
Nondeterminism

[MART86]
"Distributed processing system
Graceful degradation
Operational survivability

[MARX81]
Reliable software
Specification language

[MCKE85]
"Abstract data types
Concurrency control
Distributed systems
Synchronization

[MCMI82]
"Large scale parallel distributed
processing systems
Redundancy
Fault tolerant

[MEDI81]
"Ada environments
Incremental compilation
Interactive debugging
Syntax-directed editing

~MEKL80]
"Abstract process
AP-net
Petri net
Process expression
Software design representation

'MENA7 9

]

"Data bases
Deadlock detection
Distributed data bases
Graph theory

[MERK78]
Security
Cryptography
Cryptology
Computer network security
Passive eavesdropping

[MEYE78]
Diagnosis algorithm
Fault syndromes
Modular networks

[MEYE80a]
Degradable computing systems
Fault-tolerant computing
Hierarchical modeling
Per formability evaluation
Performance evaluation
Reliability evaluation

[MEYE80b]
Fault-tolerant computing
Performance evaluation
Reliability evaluation

[MEYE81]
Connection assignment
Diagnosis algorithm
Modular architecture
Permanent fault

[MILI85]
Error recovery
Exception handling
Forward error recovery
Program fault-tolerance

[MILL86]
Complete monotonicity
Nonhomogeneous Poisson processes
Probability models
Software reliability

[MULA85]
Real-time systems
Reliability
Safety
Fault tolerant

[MURA80]
"Deadlock- freeness
Decision- free concurrent systems
Modular synthesis
Parallel computation model

[MUSS80]
"Abstract data types
Algebraic sped fications
Equational theories
Program verification

12

[NARA86]
Connection assignment
Diagnosable systems
Eault diagnosis
Sel f-diagnosis

[NASA85]
Metrics

[NATA85]
Atomic action
Communication failure
Computing agent
Distributed operating system
Distributed system

[NECH85]
Expert systems
Natural language generation
Software development
Software maintenance

[NEGR84]
Eault tolerance
Distributed processing
System level diagnosis
Error-confinement
Non-hierarchic system

[NEUM86]
Abstraction
Critical requirements
Hierarchical design
Reliability
Safety
Security
Trusted subsystems

[0KUM85]
Additional software test time
Logarithmic Poisson model
Software reliability model
Software quality control

[OSSF80]
Concurrent diagnosis
Diagnostic programs
Eault-tolerant computing
Maintainability
Intermittent fault
Self-checking

[0WIC79]
Structured multiprogramming
Correctness proofs
Program verification
Concurrent processes
Mutual exclusion
Deadlock

[0WIC76]
Parallel programming

[PAPA81]
Attribute grammar evaluator
Attribute grammars
Formal specifications
Semantics

[PARE85]
Algebraic operators
Completeness
Data manipulation language
Entity-relationship model

[PARN79]
Contractibility
Extensibi 1 ity
Modularity
Software engineering

[PARN85]
Abstract interfaces
Information hiding
Modular structure of software

[PEAC85]
Bradford-Zip f distribution
Clustering
Program behavior
Program restructuring

[PERL81]
Metrics

[PERL83]
Network
ARPANET
Routing broadcast scheme
Self-stabilization

[PERR86]
Byzantine agreement
Distributed computing
Early stopping
Eault tolerance

[PETE79]
Communicating asynchronous
processes
Synchronization

[PIAT80]
Distributed data processing
Speci fication
Validation
Data communications
Computer networking

[P0LA79]
Assertion language
Inductive assertions
Permutation
Theorem proving

13

[PRAD80]
Decoder logic
Error correction
and detection
Multiple errors
Multiple faults
Sel f-checking
Transient faults
Unidirectional errors

[PR0V86]
Network reliability

[RAGH86]
BPC Permutations
Fault-tolerant routing
Multiprocessor systems

[RAMA80]
Asynchronous
Concurrent
Petri net
Real-time

[RAMA81]
DCDS
Assertion
Dual -programming
Path analysis
Process control

[RAMA85]
Software complexity
Metrics
Specification language
Waterfall development model

[RAMA.86]
Information abstraction
Knowledge-based systems
Metrics
Reusability
Software life cycle

[RAND78]
Fault tolerance
Fault avoidance
Hardware reliability
Software reliability
System structure

[RA079]
Computer networks
Cutsets
Distributed computers
Lead balancing
NP-complete problems

[RAPP85]
Data flow
Program testing
Test data selection

[RAU79]
Analytical models
Interleaved memories
Memory bandwidth
Memory interference
Multiprocessors
Performance evaluation

[REDD78]
APL implementation
Architectural design
Parallel computation
Parallel languages
Reconstructible computers

[REED78]
Distributed computer systems
Reliability
Synchronization

[RICA.80]
Mutual exclusion
Message passing
Deadlock
Starvation

[RXCH85]
Software testing
Software, verification
Symbolic evaluation

[R0BI77]
Hierarchical structure
Program verification
Formal specification
Abstraction

[R0SE85]
Reliability
Recovery

[R0SEN81]
Network disturbances
ARPANET
Protocols

[R0SS85a]
Estimation
Reliability
Poisson process

[R0SS85b]
Failure rate
Software reliability
Stopping times

[RUBI82]
"Protocol validation
Communication systems
Interactions

[RUDI81]
'Reception errors

14

Static deadlocks
Dynamic deadlocks

[RUSS80]
Domino effect
Error recovery
Parallel back tracking
Process communication
State restoration

[RYPK79]
Allocation modes
Deadlock avoidance
Deadlock detection
Logical resource
Resource allocation
Resource sharing

[SAXE86]
Built-in test
Eault coverage
Testing

[SCHA78]
Computer architecture
Data-driven processing
Microprogramming
Multiprogramming
Radar signal processing
Real-time processing

[SCHL85]
Fail -stop processors
Eault-tolerant computing
Markov chains
Performance evaluations

[SCH086]
Conditional inference
Exponential order statistics
I dentiflability
Multinomial trials
Order restricted maximum
likelihood estimates

[SCHU79]
Concurrent programming
ILIAD
Multiprogramming
Multiprocessing
Real-time languages
Real-time programming

[SEAQ80]
Synchronization mechanism
Concurrency
Resource guardians
Event sequences

'SEDM80]
Availability
Eault detection
Eault recovery

Fault tolerance
Maintainability
Reliability
Sel f-checking

[SHAN82]
Abstract model specification
Data abstraction
Procedure abstraction
State machine
Verification

[SHEN85]
Defect density
Error-prone modules
Probability of errors
Software errors
Software metrics

[SHIN86]
"Detection time
Eault and error latency
Fault injection
Maximum likelihood estimator

[SHIN87]
Clock synchronization
Fault-tolerant real-time
multiprocessors
Malicious faults

[SH0084]
Software reliability
History

[SIDH81]
Communication protocols
Speci fication
Verification
Specification techniques
Protocol design

[SIDH82a]
Protocol synthesis
Design rules
Communication protocols
Completeness
Dea’dlock- freeness
Temporal logic

[SIDH82b]
’Communication protocols
Protocol properties
Design rules
Protocol synthesis

[SIDH83]
Communication protocols
Executable specification
Verification"
Horn clause logic
PROLOG

15

[SIDH86]
Transport protocol
Formal description techniques
Automated development tools

[SILB79]
Distributed systems
Guarded commands
Input/output commands
Synchronization

[SING85]
Dynamic linear and
nonlinear models
Kalman Filtering
Likelihood ratios
Predictable distributions
Prequential analysis
Reliability growth
Software reliability

[SING86]
Flow-network
Delta-star transformation
Maximum flow

[SMIT85]
Automatic programming
Knowledge-based system
Program synthesis

[SM0L81]
DCDS
Distributed processing
Fault tolerance
Real-time systems
Reliability

[SM0T86]
Fault coverage
Fault-tolerant computers
Reliability bounds
Sensitivity analysis

[SNYD81]
Capabilities
Grammatical protection systems
Security
Take/Grant models

[SOI 81]
Computer communication network
Network topology
Reliability indices

[SPEE79]
Interleaved memories
Interaction model
Performance analysis
Resource utilization

[SPIT75]
Verification

Automatic programming
Correctness

[SPIT78]
Program verification
Specification
Data abstraction
Hierarchical structures

[SPRE85]
Software reliability
Parameter estimation
s-confidence interval
Jelinski -Moranda model

[STAN85]
Bidding
Distributed computing
Stability
Stochastic learning automata

[STEI85]
"Algorithm design
Automatic programming
Developmental evaluation
Meta-evaluation

[STEM86]
Capabilities
Functional addressing
Interprocess communication
Port

[STR086]
Program analysis ’

Program verification
Security
Software reliability
Type checking

[SUMI86a]
Integrated hardware-software
reliability model
Multiple error generation
and removal
State-dependent general lifetimes
and repair times
Time-dependent compound
performance measures

[SUMI86b]
'Software reliability
Multiple-error introduction
Markov models
Performance evaluation

[SUZU86]
Verification
Concurrent
VLSI

[TAI80]
'Program testing

16

Testing complexity
Test criteria

[TAMI80]
Invariants
Partial correctness
Program verification
QLISP
Synthesis of invariants

[TANA78]
Context-sensitive parser
Error-correcting parser
Eormal languages
Maximum- likelihood parser

[TAYL80a]
Error correction
Error detection
Software fault tolerance
Software reliability

[TAYL80b]
Compound data structures
Error correction and detection
Robust data structures
Software fault tolerance
and reliability

[TAYL80C]
Concurrent software
Error detection
HAL/S
Process synchronization errors

[TAYL86a]
Atomic actions
Backward recovery
Exception handling
Forward recovery
Software reliability

[TAYL86b]
Crash recovery
Software fault tolerance
Global and local error correction

[THAY82]
Algorithmic state machine
Microprogrammed structures
Transformation of programs

[TJAD76]
Concurrency
Hierarchy of tasks

[TRAC85]
Software reliability model
Software testing
Je 1 inski -Moranda model
Shooman model
Musa model

[TR0Y85]
Model comparisons
Software reliability

[TRST84]
Telecommunication network
Network topology
System effectiveness

[TSUB86]
Ada
High level language architecture
Software reliability

[TYRR86]
Communicating sequential

.

processes
Concurrent processes
Distributed systems
Fault-tolerant software
Occam
Petri-nets

[UPAD86]
Error detection
Error latency
Recovery time
Rollback recovery
Transient errors

[VANC86]
Verification
Concurrent

[VANE79]
Control structure
Correctness-oriented programming
Invariant assertions
Veri fications

[VENK85]
Estelle
Specification techniques
Network systems
Petri nets
Temporal logic

[VISS85]
Protocol designers
Architecture
Speci fication
Verification
Service concepts

[VOGE80]
Automated test systems
Dynamic analysis
Program testing
Static analysis

[VOSS80]
Concurrency
Deadlock- free

4

- 17 -

Decentralized control
Distributed databases
Petri nets
Predicate/transition nets

[WALT81]
Decomposition for diagnosability
Design for diagnosability
Eault detection

[WASS85]
executable specifications
Interactive information systemsRapid prototyping
Software development methodology

[WASS86]
Interactive information systems
Software development methodology
Software reliability

[WE3E86]
Data abstraction
Informal and procedural and
algebraic specifications
So ftware deve 1opment
So ftware structuring

[WEIS80]
Formal specification languages
Structured programming
methodology

[WEST86]
Protocol validation
State exploration
Protocol specification
Session layer
Specification
Random exploration

;WEYU80]
Program testing
Software error detection
Software reliability
Theory of testing

WHIT80]
Control structure
Domain errors
Software reliability
Software testing

WITT81]
Bus topologies
Cube-connected cycles
Cual-bus hypercubes
Jlypercube spanning buses

VOOD801
M legations
infeasible paths
^ath testing

Test metrics

[WU81]
"interconnection network
Topological optimization

[WUU85]
Distributed system
False deadlock
Transaction wait- for-graph
Two-phase locking

[YAMA85]
Error detection rate
Maximum- likelihood estimation
Nonhomogeneous Poisson processes
Software reliability analysis

[YANN86]
"Distributed recovery
Fault tolerance
Fault-tolerant multiprocessor
systems
Reconfiguration

[YA079]
Distributive computing
Complexity
Probabilistic models

[YAU80]
Capabilities
Concurrency
Control errors
Control flow checking
Program design

[YAU81]
Codd relations
Graph grammar
Hierarchical graph
Recursive graph

[YAU85]
"Design stability measures
Program modifications
Software maintenance

[YAU86]
"Design methodologies
Design representation
Design verification and validation
Distributed software system design
Error-resistant software design
Software metrics

[Y0NE77]
"Multiprocessor information
processing systems
Distributed systems
Artificial intelligence
Modelling systems

[YUAS85]
'Data abstraction
Formal specification
Program verification

[ZAFI80]
Reliable communications
Error- free protocols
Error detection and correction

[ZAVE76]
Shared variables
Concurrent processes
Formalization
Synchronization

[ZAVE86]
Distributed systems
Executable specifications
Functional programming
Operational approach to
software development
Parallelism
Real-time systems

BIBLIOGRAPHY

[ABAD86] Abadir, Brever, "Test Schedules for VLSI Circuits Hav-
ing Built-In Test Hardware," IEEE Transactions on Computers .

pp. 361-367, April 1986.

Introduces a test scheme which describes how a test methodol-
ogy is to execute. A theory of test plan execution overlap is
presented, and is used as the basis for constructing test sched-
ules with optimal execution times

.

KEY WORDS: Design for testability. Testing, Test scheme.

[ADEL85] Adelson, Soloway, "The Role of Domain Experience in
Software Design, " IEEE Transactions on Software Engineering ,

pp . 1351-1360, November 1985.

Explains a designer's experience and skills in a domain and
what happens to his skills and knowledge when the domain
changes . Emphasis is placed on a expert designers creating a
design context, how familiar they are with it and the result
of their work.

KEY WORDS: Artificial intelligence. Cognitive models. Cognitive
science. Software design.

[AGGA85] Aggarwal, "Reliability Indices for Topological Design of
Computer Communication Networks, " IEEE Transactions on Reli-
ability

. p. 523, December 1985.

Corrects the definition of network articulation level from
[SOI 81] .

KEY WORDS: Network vulnerability. Network articulation level.

[ALLC80] Allchin, "Modula and a Question of Time, " IEEE Transac-
tions on Software Engineering . p. 390, July 1980.

Reviews the programming language Modula for its ability to
support the wide variety of time usages required in a process
control system. It is explained that in many instances con-
current languages supporting device control and multiprogram-
ming may need additional facilities for the support of time.

KEY WORDS: Concurrent languages, Modula, Multiprogramming,
Real-time systems. Time dependencies.

[ANDE85a] Anderson, Barrett, Halliwell, and Moulding, "Software
Fault Tolerance: An Evaluation," IEEE Transactions on
Software Engineering

, pp . 1502-1510, December 1985.

Provides an overview of a project conducted at the University
of Newcastle upon Tyne where techniques were developed for, and
applied to a realistic implementation of a real time system.

20

Results of three phases of experimentation are presented. An
analysis of these results shows that use of the software fault
tolerance approach yielded a substantial improvement in the
reliability of the real time system used.

KEY WORDS: Real-time systems. Software fault tolerance.
Software reliability.

[ANDE85b] Anderson, Landweber, "A Grammar-based Methodology for
Protocol Specification and Implementation, " Proceedings of
the Ninth Data Communications Symposium, pp. 63-70, IEEE
Computer Society Press, Whistler Mountain, BC, Canada, Sep-
tember 10-13, 1985.

Presents a new methodology for specifying and implementing
communication protocols, based on a formalism called 'Real-
Time Asynchronous Grammars' protocols to be specified at a
highly detailed level. As an example, an RTAG specification
is given for part of the Class 4 ISO Transport Protocol. RTAG
allows protocols to be specified at a highly detailed level,
and thus, major parts of an implementation can be automati-
cally generated from a specification.

KEY WORDS: Data communication protocols. Attribute grammars.
Real-time constraints. Concurrent activities.

[ANDR79] Andrews, "The Design of a Message Switching System: An
Application and Evaluation of Modula, " IEEE Transaction^ on
Saftacarg Engineering, pp. 138-147, March 1979.

Illustrates the use of Modula (programming language for im-
plementing parallel systems) for' the design of a message
switching communication system.* A message switching system
poses a number of interesting problems: 1) a high degree of
concurrent activity exists; 2) a variety of I/O devices need
to be controlled; 3) messages can have multiple destinations;
4) messages can be preempted. The strengths and weaknesses of
Modula with respect to these specific problems and its utility
as a general purpose language are evaluated.

KEY WORDS: Concurrent systems. Message switching, Modula,
Structured multiprogramming

.

[AVEN85] Aven, "Reliability Evaluation of Multistate Systems with
Multistate Components," IEEE Transactions gn Reliability ,

pp. 473-479, December 1985.

Presents two efficient algorithms for reliability evaluation
of monotone multistate systems with s -independent multistate
conponents . Computer programs for implementing the algorithms
are given. Computational -times are presented, and compared
with the 'Inclusion-Exclusion Method' and the 'State Enumera-
tion Method' . Results clearly demonstrate the superiority of
the algorithms to the two other methods

.

KEY WORDS: Multistate system. Multistate component, s-coherent
system. Reliability bound.

[AVIZ80] Avizienis, Ng, "A Unified Reliability Model for Fault-
Tolerant Computers," IEEE Transactions gn Computers . pp.
1002-1011, November 1980.

21

Summarizes the results of an extended effort to develop a
unified approach to the reliability modeling of fault-tolerant
computers which strikes a good compromise between generality
and practicality. The developed unified model encompasses
repairable and non-repairable systems and models, transient
as well as permanent faults and their recovery. Based on the
unified model, a powerful and efficient reliability estimation
program, ARIES, has been developed.

KEY WORDS: Computer reliability. Fault tolerance. Graceful
degradation. Reliability estimation. Reliability modeling.
Transient fault analysis

.

[AVIZ85] Avizienis, "The N-Version Approach to Fault-Tolerant
Software," IEEE Transactions on Software Engineering

, pp

.

• 1491-1501, December 1985.

Presents evolution of the N-version approach to the tolerance
of design faults. Principal requirements for implementation,
DEDIX distributed supervisor and testbed for execution, goals
of current research, and potential benefits are all discussed.

KEY WORDS: Design diversity. Fault tolerance, N-version soft-
ware, Software reliability. Tolerance of design faults.

[BABA85] Babaoglu, Drummond, "Streets of Byzantium: Network Ar-
chitectures for Fast, Reliable Broadcasts, " IEEE Transac-
tions on Software Engineering , pp. 546-554, June 1985.

Considers the reliable broadcast problem in distributed
systems with broadcast networks as the basic communication
architecture. It is shown' how properties of such network
architectures can be used” to effectively restrict the extei

—

nally visible behavior of faulty processors. These techniques
are used to derive simple protocols that implement reliable
broadcast in only two rounds, independent of the failure upper
bounds

.

KEY WORDS: Byzantine agreement. Distributed computing,
Ethernet, Fault-tolerance

.

[BABI79] Babich, "Proving Total Correctness of Parallel Pro-
grams, " IEEE Transactions on Software Engineering

, pp . 558-
574, November 1979.

Presents steps to proving parallel programs correct: 1) model
the parallel program; 2) prove partial correctness; 3) prove
absence of deadlock, livelock, and infinite loops. The main
contributions are techniques for proving the absence of dead-
lock and livelock. It is shown how variant functions may be
used to prove finite termination, and how finite termination
can be used to prove absence of livelock. Handling finite
delay is discussed. An example is included which occurred in
a commercial environment and a classic synchronization problem
is solved without the aid of special synchronization primitives.

KEY WORDS: Concurrent program. Correctness, Deadlock,
Mutual exclusion. Finite delay and termination. Parallel
program. Variant function. Verification.

22

[BAKE80] Baker, Zweben, "A Comparison of Measures of Control
Flow Complexity, " IEEE Transactions on S.Q.£3a£arQ Engineering ,

pp. 506-511, November 1980.

Focuses on three measures of control flow complexity:
McCabe's cyclomatic complexity, Halstead's software effort,
and Woodward's complexity measure based on the number of
crossings of arcs in a linearization of the flowgraph. Their
major properties as measures of control flow complexity are
established and particular attention is directed at the behav-
ior of these in structured programming environment. Weaknesses
of these measures are exposed individually.

KEY WORDS: Program complexity. Program control flow.
Source program transformations. Structured programs.

[BALL86] Ball, "Computational Complexity of Network Reliability
Analysis: An Overview," IEEE. Transactions on Reliability ,

pp. 230-239, August 1986.

Presents an overview of results related to the computational
complexity of network reliability analysis problems. It is
shown how these problems are related to the more familiar com-
putational network problems of recognizing certain subnetworks,
finding optimal subnetworks, and counting certain subnetworks.
These relationships are used to show that the k-terminal, the
2-terminal, and the all-terminal network reliability analysis
problems are at least as hard as the renowned set of computa-
tionally difficult problems, NP-Complete. The impact of these
results on how one should approach problem solving in this
area is discussed.

KEY WORDS: Network reliability. Computational complexity.

[BALZ85] Balzer, "A 15 Year Perspective of Automatic Program-
ming, " IDEE. Transag.ti.ons on Software Engineering, pp. 1257-
1267, November 1985.

Discusses an approach to the problem of acquiring and deter-
mining high-level specification and translating high-level
specifications to lower level for automatic compilation. The
success of automatic programming is shown. Emphasis is placed
on a paradigm for automated software and the Gist specification
language

.

KEY WORDS: Automatic programming. Knowledge base. Maintenance,
Prototyping, Specification, Transformation.

[BANE86] Banerjee, Abraham, "Bounds on Algorithm-Based Fault
Tolerance in Multiple Processor Systems, " IEEE Transactions
on Computers . p. 296, April 1986.

Presents a graph-theoretic model for determining upper and
lower bounds on the number of checks needed for achieving
concurrent fault detection and location. The objective to
estimate the overhead in time and the number of processors
required for such a scheme is indicated.

KEY WORDS: Checks, Errors, Fault detection. Fault location.

23

[BARS85] Barstow, "Domain-Specific Automatic Programming, " IEEE
Transactions on Software Engineering , pp . 1321-1336, No-
vember 1985.

Emphasizes the need for domain knowledge in an automatic
programming system. Investigation for the ONIX project
at Schlumberger-Doll Research has led to a framework for
specifying domain knowledge in automatic programming which
involves transformation in the description of programming
showing the interaction between programming and domain knowl-
edge .

KEY WORDS: Automatic programming. Programming knowledge.
Program transformations.

[BASI80] Basili, Noonan, "A Comparison of the Axiomatic and
Functional Models of Structured Programming, " IEEE Transac-
tions m Software Engineering , pp. 454-464, September 1980.

Discusses axiomatic and functional models of the semantics
of structured programming. The models are presented together
with their respective methodologies for proving program correct
ness and for deriving correct programs . Examples using these
methodologies are given. Finally, the models are compared and
contrasted.

KEY WORDS: Axiomatic correctness. Functional correctness.
Program deviation. Structured programming

.

[BASI86] Basili, Selby, and Hutchens, "Experimentation in
Software Engineering, " IEEE Transactions on Software En-
gineering

. pp. 733-743, July 1986.

Presents a framework for analyzing most of the experimental
work performed in software engineering over the past several
years. A variety of experiments in this framework and their
contributions are described.

KEY WORDS: Controlled experiment. Data collection and analy^
sis. Experimental design. Software metrics. Software technology
measurement and evaluation.

[BAST85] Bastani, "On the Uncertainty in the Correctness of Com-
puter Programs," IEEE Transactions on Software Engineering ,

pp. 857-864, September 1985.

Develops an approach to the correctness of a computer pro-
gram by viewing it as a set of hierarchically structured
fuzzy equivalence classes. This method is applicable during
the design phase and permits program proving whenever possible.
For each equivalence class, the computational correctness pos-
sibility and control flow correctness possibility is determined
This theory can be used to guide the design process

.

KEY WORDS: Computational correctness possibility. Control
flow correctness possibility. Evaluation of design deci-
sions, Program correctness possibility.

[BASU80a] Basu, "A Note on Synthesis of Inductive Assertions,

"

IEEE Transactions on Software Engineering , pp . 32-39, Janu-
ary 1980 .

24

Investigates a class of programs (accumulating programs)
for which inductive assertions can be mechanically generated
from I/O specifications. Accumulating programs are itera-
tive realizations of problems in which the required output
information is accumulated during successive passes over the
input data structures . Obtaining invariant assertions for
such programs is shown to be equivalent to the problem of
generalizations of specifications to that over an extended
closed data domain.

KEY WORDS: Accumulating programs. Linear data domain. Program
veri fication

.

[BASU80b] Basu, "On Development of Iterative Programs from Func-
tion Specifications, " IEEE Transactions on Software En-
gineering . pp. 170-182, March 1980.

Investigates a systematic approach to the development of
totally correct iterative programs for the class of accumula-
tion problems. The development of iterative programs for
accumulation problems is shown to involve successive general-
izations of the data domain and the corresponding function
specifications. The problem of locating these generalizations
is discussed. A linear data domain is defined in terms of
decomposition and finiteness axioms, and the property of a
loop body being well behaved over a linear data domain is
introduced. An abstract program for an accumulation problem
is developed using these considerations.

KEY WORDS: Functional specifications. Iterative programs.
Linear data domain. Program development. Total correctness.

[BEAU78] Beaudry, "Performance-Related Reliability Measures for
Computing Systems," IEEE Transactions an Computers . pp.
540-547, June 1978.

Discusses measures which reflect the interaction between
the reliability and performance characteristics of computing
systems . These measures can be used to evaluate traditional
computer architectures, such as uniprocessors and standby
redundant systems; gracefully degrading systems, such as
multiprocessors, which can react to a detected failure by
reconfiguring to a state with a decreased level of perfor-
mance; and distributed systems. The analysis method, which
provides quantitative information about the tradeoffs between
reliability and performance, is demonstrated in several ex-
amples .

KEY WORDS: Computer performance. Computer reliability.
Graceful degradation.

[BELK86] Belkhouche, Urban, "Direct Implementation of Abstract
Data Types From Abstract Specifications," IEEE Transactions
on So ftware Engineering , p. 649, May 1986.

Describes an alternative approach for the development of
specifications. Approach relies on a specification language
for abstract data types and a synthesis system. System is
capable of translating abstract data type specifications into
an executable program. This provides the necessary tools for
the early testing of the specifications and for the development
of prototypes and implementation models.

25

KEY WORDS: Abstract data types. Language translation. Pro-
totyping, Specifications, Specification testing. Transforma-
tion rules

.

[BEND84] Bendell, "A Classification System for Reliability
Models," IEEE Transactions on Reliability , pp . 160-164, June
1984.

Argues the case for a classification system analogous to
that in use for queues; identifies necessary features of
such a system; and proposes a partial classification system.
To be successful such a system must not only be a relatively
convenient summary of diverse models, but must have the gen-
eral support of the reliability community.

KEY WORDS: Classification, Queuing system. Reliability models.

[BERN85] Bernstein, "A Loosely Coupled Distributed System for Re-
liably Storing Data, " IEEE Transactions on S.Q.ft.waxg Engineer -

ing
. pp. 446-453, May 1985.

Proposes an algorithm for storing information redundantly on
the nodes of a broadcast network. A voting technique is used
to increase reliability. Since multiple votes are cast only
when copies of a data item disagree, the algorithm has the
property that communication overhead is minimal . Nodes storing
erroneous copies are automatically resynchronized. A Markov
analysis is performed which relates parameters of the algorithm
to the mean time to failure.

KEY WORDS: Broadcast network, Markov’ analysis. Redundancy,
Reliability, Stable storage.

[BID085] Bidoit, et al, "Exceptional Handling: Formal Specifica-
tion and Systematic Program Construction, " IEEE Transactions
on Software Engineering , pp. 242-251, March 1985.

Presents an algebraic specification language (PLUSS) and a
program construction method. Programs are built systematic-
ally from an algebraic specification of the data with which
they deal. The method was tested on a realistic problem and
in these experiments, it turned out that error handling was
the difficult part to specify and to program. It is shown how
to cope with this problem at the specification level and during
the program development process

.

KEY WORDS: Abstract data types. Algebraic specification.
Decomposition schemes. Error handling.

[BIRM85] Birman, Joseph, Raeuchle, and Abbadi, "Implementing
Fault-Tolerant Distributed Objects, " IEEE Transactions on
Software Engineering , pp. 502-508, June 1985.

Describes a technique for implementing k-resilent objects-

-

distributed objects that remain available, and whose opera-
tions are guaranteed to progress to completion, despite up to
k site failures. An implementation is derived from the object
specification automatically, and does not require any informa-
tion beyond what would be required for a nonresilient nondis-
tributed implementation.

26

KEY WORDS: Abstract data types. Availability, Concurrency,
Consistency, Distributed systems. Fault tolerance. Recovery,
Reliability.

[BLIK81] Blikle, "On the Development of Correct Specified Pro-
grams," IEEE Transactions an Software Engineering, pp. 519-
527, September 1981.

Describes a method of program development which guarantees
correctness. Programs consist of instruction and a specifi-
cation and a program is correct if: 1) the operational part
is totally correct; 2) the precondition guarantees nonabortion;
and 3) the local assertions are adequate for proof of 1) and
2) . The paper contains a description of an experimental pro-
gramming language PROMET-1. The method is illustrated by the
derivation of a bubblesort procedure.

KEY WORDS: Assertion-specified programs, Bubblesort procedures.
Program correctness, PROMET-1.

[BL0079] Bloom, Synchronization Mechanisms for Modular Program-
ming Languages . MIT, Laboratory for Computer Science, Janu-
ary 1979. Report # MIT/LCS/TR-211

.

Examines synchronization constructs from the standpoint of
language design for reliable software. The criteria a synchro-
nization mechanism must satisfy to support construction of
reliable, easily maintainable concurrent software are defined.
A definition of the range of problems considered to be synchro-
nization problems is provided by describing the possible types
of constraints that may be access to shared resources. This
taxonomy of synchronization constraints to develop techniques
for evaluating how well synchronization constructs meet the
discussed criteria. The techniques are applied to three exist-
ing synchronization mechanisms: monitors, path expressions, and
serializers. Evaluations are presented and the three mechan-
isms are compared.

KEY WORDS: Synchronization, Concurrency, Modularity, Data
abstractions. Programming methodology.

[BL0086] Bloomfield, Froome, "The Application of Formal Methods
to the Assessment of High Integrity Software, " IEEE Transac-
tions on So ftware Engineering , pp. 988-993, September 1986.

Presents a case study in which the Vienna development method
(VDM) , a formal specification and development methodology, was
used during the analysis phase of the assessment of a prototype
nuclear reactor protection system. VDM specification was trans-
lated into the logic language Prolog to animate the specifica-
tion and to provide a diverse implementation for use in back-
to-back testing. It is claimed that this technique provides a
visible and effective method of analysis which is superior to
the informal alternatives.

KEY WORDS: Specification, Analysis, Protection system.

[BLUM86] Blumer, Sidhu, "Mechanical Verification of Automatic
Implementation of Communication Protocols, " IEEE Transac-
tions an Software Engineering , pp. 827-843, August 1986.

27

Discusses an automated technique for protocol development and
its application to the specification, verification, and semi-
automatic implementation of an authentication protocol for
computer networks. An overview of the specification language,
implementation method, and software tools used with this
technique is given. The authentication protocol is described,
along with an example of its operation. The reachability-
analysis technique for the verification of some protocol pro-
perties is discussed, and protocol verification software that
uses this technique is described. The results of the mechani-
cal verification of some properties of the protocol and a par-
tial implementation generated automatically from the protocol
specification are presented.

KEY WORDS: Authentication, Automated development tools.
Communication protocols, Eormal description technique. Protocol
implementation. Protocol specification. Protocol verification.
State transition.

[B0CH83] Bochmann, Raynal, "Structured Specification of Communi-
cating Systems," IEEE Transactions sn Computers , pp. 120-
133, February 1983.

Discusses specification methods for distributed systems. A
model of communication processes with rendezvous interactions
is assumed as a basis for the discussion. The basic concepts
of the specification method are discussed and then applied to
some complex examples. The stepwise refinement of ports and
interactions is demonstrated by a hardware interface for which
an abstract specification and a more detailed implementation
is given. Proof rules for verifying the consistency of de-
tailed and more abstract specifications are also discussed.

KEY WORDS: Communication processes. Design verification.
Distributed system design. Parallel processing. Specification
consistency. Specification methods.

[B0ES86] Boesch, "Synthesis of Reliable Networks--A Survey,"
IEEE. Transactions on Reliability , pp. 240-246, August 1986.

Presents a deterministic model for network reliability called
network vulnerability. Many different vulnerability criteria
and the related synthesis results are examined. These synthe-
sis problems are all graph external questions. Certain reli-
ability synthesis problems can be converted to a vulnerability
question. Several open problems and conjectures are discussed.

KEY WORDS: Network reliability. Connectivity, Vulnerability.

[BOOT80] Booth, Wiecek, "Performance Abstract Data Types as a
Tool in Software Performance Analysis and Design, " IEEE
Transactions on Software Engineering , pp. 138-151, March
1980 .

Extends the concept of abstract data types to associate per-
formance information with each abstract data type representa-
tion. The resulting performance abstract data type contains
a functional part which describes the functional properties of
the data type and a performance part which describes the per-
formance characteristics of the data type. The methods for
determining the necessary information to specify the performance
part of the representation are discussed.

28

KEY WORDS: Abstract data types. Computation structures.
Performance analysis. Software design.

[BREM81] Bremer, Drobnik, "A New Approach to Protocol Design and
Validation," INWG Workshop "Protocol Testing-

-

Towards
Proof?" . National Physical Laboratory, Teddington, England,
May 1981.

Proposes a new approach for the integrated design and valid-
ation of protocols on the basis of formal service specifica-
tions. It extends the known concepts of abstract data types,
abstract machines, and stepwise refinement to a distributed
environment and uses the assertional technique of program
validation. Its basic features are illustrated by the valid-
ation of the I SO-standardized data link control procedure HDLC

.

KEY WORDS: Networks, Reliable communication. Graceful
degradation protocols.

[BYRN85] Byrnes, Angell, "The Dependency Model: A Tool for Cal-
culating System Effectiveness, " IEEE Transactions on Relia-
bility . pp. 17-24, April 1985.

The Dependency Model (DM) is a mathematically unsophisticated
but useful and practical tool for measuring the effectiveness
(reliability, availability, maintainability, efficiency, etc.)
of a complex system. Description, comparison to other models,
and benefits of DM are included. It has been successfully ap-
plied to performance evaluation of the TRIDENT Command and
Control System.

KEY WORDS: Dependency model. System effectiveness. System
degradation. Measure of effectiveness. Probability of system
failure.

[CARC86] Carchiolo, Faro, Mirabel la, Pappalardo, and Scollo, "A
LOTOS Specification of the PROWAY Highway Service, " IEEE
Transactions on Computers . pp. 949-968, November 1986.

Presents a LOTOS specification of the PROWAY interface for
process control applications, defined by IEC. LOTOS is shown
to be tailored for the specification of asynchronous systems.
In particular, it proves suitable for the specification both
of the services which define an interface and of the protocol
which implement it. It is shown how LOTOS supports formal
reasoning aimed at establishing consistency between service
and protocol specifications. Two examples of such a verifica-
tion are developed, and advantages and limitations of this
approach are outlined.

KEY WORDS: Computer communication standards, Eormal specifi-
cation, LAN, Multicast communication servicer. Protocol
verification. Rapid prototyping. Temporal ordering.

[CEVA85] Cevano, "Toward High Confidence Software, " IEEE Transac-
tions on Software Engineering , pp. 1449-1455, December 1985.

29

Shows how software measurements can affect the confidence and
trust the DoD places in its software. A management approach to
achieving high confidence software is presented, highlighting
software reliability as a key factor. A software reliability
measurement methodology is described that: 1) specifies soft-
ware reliability goals and processes needed to achieve these
goals; 2) predicts and tracks progress during development; 3)
estimates reliability based on testing effort and processes;
4) assesses achieved software reliability during operational
use. A concept for a workable set of software reliability
measures is discussed.

KEY WORDS: DOD applications, SDI , High confidence software.
Software reliability measurement methodology.

[CHAN79] Chandy, Misra, "Distributed Simulation: A Case Study of
Design and Verification of Distributed Programs," IEEE
Transactions on Software Engineering , pp. 440-452, September
1979.

Proposes a distributed solution where processes communicate
only through messages with their neighbors; there are no shared
variables and no central process for message routing or process
scheduling. Deadlock is avoided in this system despite the
absence of global control. The correctness of a distributed
system is verified by proving each of its component processes
and then using inductive arguments

.

KEY WORDS: Concurrent processes. Distributed systems. Program
proving.

[CHAN81] Chandy, Misra, "Asynchronous Distributed Simulation via
a Sequence of Parallel Computations, " Communications of the
ACM , pp. 198-206, April 1981.

Presents an approach to carrying out asynchronous, distributed
simulation on multiprocessor message-passing architectures

.

This scheme differs from other distributed simulation schemes
because: 1) the amount of memory required by all processors
together is bounded and is no more than the amount required
in sequential simulation; and 2) the multiprocessor network is
allowed to deadlock, the deadlock is detected, and then the
deadlock is broken. Proofs of correctness of this approach
are outlined.

KEY WORDS: Distributed systems. Message-passing systems.
Communicating sequential processes. Deadlock, Recovery,
Parallel algorithms.

[CHAT78] Chattergy, Pooch, "Analysis of Availability of Computer
Systems Using Computer-Aided Algebra, " Communications of
the ACM

, pp. 586-591, July 1978.

Presents analytical results related to the availability of
a computer system constructed of unreliable processors. Re-
sults are obtained by using various computer-aided algebraic
manipulation techniques . The purpose is to demonstrate that
the difficulties of obtaining analytical solutions to Markov
processes can be reduced by the application of symbol manip-
ulation programs. Since many physical systems can be modeled
by Markov and semi-Markov processes, the potential range of

30

application of these techniques is much wider than the problem
of availability analyzed here.

KEY WORDS: Availability, Computer-aided algebra. Symbol
manipulation programs, Markov and semi-Markov processes.

[CHEA79] Cheatham, Holloway, and Townley , "Symbolic Evaluation
and the Analysis of Programs, " IEEE Transactions on Software
Engineering , pp. 402-417, July 1979.

. Describes a symbolic evaluator for part of the ELI language,
with particular emphasis on techniques for handling conditional
data sharing patterns, the behavior of array variables, and the
behavior of variables in loops and during procedure calls. Sym-
bolic evaluation is a form of static program analysis in which
symbolic expressions are used to denote the values of program,
variables and computations. An expression simplifier, which
is the heart of the system, is described in some detail. Po-
tential applications of the symbolic evaluator to problems in
program validation, verification, and optimization are mentioned.

KEY WORDS: Automatic programming analysis. First-order
recurrence relations. Program optimization. Program veri-
fication.

[CHEN80] Chen, Akoka, "Optimal Design of Distributed Information
Systems (DIS) ,

" IEEE Transactions on Computers . pp. 1068-
1079, December 1980.

Develops a model for the optimization of distributed informa-
tion systems. This model considers simultaneously: 1) the
distribution of processing power; 2) the allocation of programs
and databases; and 3) the assignment of communication line ca-
pacities. It also considers the return flow of information,
and dependencies between programs and databases . An algorithm
has been developed to obtain the optimal solution of the model.
The model can be used for the allocation of resources in DIS
and to help managers decide whether to centralize or decentral-
ize their information systems. An example of the use of the
model in assisting a large bank to decide the optimal configur-
ation of a proposed DIS is included.

KEY WORDS: Branch and bound methods. Distributed database.
System design.

[CHEN81] Chen, Hoare, "Partial Correctness of Communication Pro-
tocols, " INWG Workshop "Protocol Testing-

-

Towards PrPQf?",
National Physical Laboratory, Teddington, England, May 1981.

Discusses a chain of linearly connected processes in which
each process can communicate only with its neighbour to the
left or to the right. These chains can be used in the design
of multi-level communications protocols, and an example of such
is given.

KEY WORDS: Communication protocols network.

[CHER85] Cherkassky, Malek, "Reliability and Eail -Softness
Analysis of Multistage Interconnection Networks, " IEEE
Transactions on Reliability , pp. 524-528, December 1985.

31

Presents a method for reliability analysis of multistage
interconnection networks implemented with crossbar switching
elements. Analytic estimates for the network reliability are
derived, and the existence of a switching element with op-
timal fanout ensuring maximal network reliability is shown.
General quantitative measure for fail -softness evaluation of
multistage interconnection networks is introduced. It is
shown that under single- fault assumption, the fail-softness
improves with an increase in network size.

KEY WORDS: Banyan, Fail -softness. Multistage interconnection.
Reliability prediction.

[CHER86] Chern, Jan, "Reliability Optimization Problems with
Multiple Constraints," IEEE Transactions on Reliability , pp.
431-436, October 1986.

Presents a class of reliability optimization problems with
multiple-choice constraints. A two-phase solution method is
presented for solving these problems. In phase 1, the problem
is decomposed into n subproblems . These subproblems can be
solved by dynamic programming, independently (parallelism) .

In phase 2, a 0-1 multiple-choice knapsack problem, which is
generated from phase 1, is solved. A combinatorial tree which
always satisfies the multiple-choice constraints is used. The
method is illustrated with a numerical example.

KEY WORDS: Redundancy, Reliability optimization. Dynamic
programming. Knapsack problem.

[CHEU80] Cheung, "A User-Oriented Software Reliability Model,"
IEEE Transactions on Software Engineering , pp . 118-125,
March 1980

.

Defines a user-oriented software reliability figure of merit
to measure the reliability of a software system with respect
to a user environment. The effects of the user profile, which
summarizes the characteristics of the users of a system, on
system reliability are discussed. A simple Markov model is
formulated to determine reliability of a software system based
on the reliability of each individual module and the measured
intermodular transition probabilities as the user profile.
Sensitivity analysis techniques are developed to determine
modules most critical to system reliability. The applications
of this model to develop cost-effective testing strategies and
to determine the expected penalty cost of failures are also
discussed. Some future refinements and extensions of the model
are presented.

KEY WORDS: Self-metric software. Software reliability. Soft-
ware reliability model

.

[CHI85] Chi, "Formal Specification of User Interfaces: A Com-
parison and Evaluation of Four Axiomatic Approaches, " IEEE
Transactions on Software Engineering , pp. 671-685, August
1985.

Presents a comparison for four axiomatic approaches which
have been applied to the specification of a commercial user
inter face--the line editor for the Tandy PC-1 Pocket Computer.

32

Techniques are shown to result in complete and relatively con-
cise descriptions. A number of useful and non-trivial proper-
ties of the interface are formally deduced from one of the
specifications. A direct implementation of the interface is
constructed from a formal specification.

KEY WORDS: Algebraic specifications, Eormal specifications.
Software design. Specification implementation.

[CH0W79] Chow, "Models for Dynamic Load Balancing in a Hetero-
geneous Multiple Processor System, " IEEE Transactions on
Computers . pp. 354-361, May 1979.

Presents, analyzes, and compares queueing models for a simple
heterogeneous multiple processor system. Each model is distin-
guished by a job routing strategy which is designed to reduce'
the average job turn around time by balancing the total load
among the processors. The job routing strategies are divided
into two classes: deterministic and nondeterministic . The
nondeterministic policies are described by state independent
branching probabilities. For the deterministic policies, the
next processor is chosen to minimize or maximize the expected
value of a performance related criterion function. The models
with nondeterministic policies are analyzed using standard
queueing network techniques . An approximate numerical method
is introduced for analyzing two -processor heterogeneous models
with deterministic routing policies and the performance of sam-
ple two-processor systems is compared.

KEY WORDS : Job routing. Load balancing. Multiple processor
system. Performance analysis.

[CHWA81] Chwa, Hakimi, "On Fault Identification in Diagnosable
Systems," IEEE Transactions on Computers, pp- 414-422, June
1981

.

Gives a characterization of tl/tl -diagnosable systems. Class
of tO diagnosable systems is considered. It is shown for any
member of this class that: 1) necessary and sufficient condi-
tions for tl/tl -diagnosability are greatly simplified, 2) op-
timal diagnosis algorithms of time complexity 0 (ntO) exist,
and most importantly, 3) given the test results, any set F of
faults with | F |

<= tl can be identified to within a set F',
with F a subset of F', and F' <= min{tl, |F| +1}-.

KEY WORDS: Diagnosis algorithms. Fault diagnosis. System
diagnosis, T-diagnosable system.

[CLAR86] Clark, Neufeld, and Colbourn, "Maximizing the Mean
Number of Communicating Vertex Pairs in Series -Parallel
Networks," IEEE Transactions on Reliability, pp. 247-251,
August 1986

.

Indicates that a communication network can be modeled as a
'probabilistic graph' where each of 'b' edges represents a
communication line and each of 'n' vertices represents a com-
munication processor. Each edge 'e' (vertex 'v') functions
with probability pe (p sub e) . If edges fail independently
with uniform probability 'p' and vertices do not fail, the
probability that the network is connected is the 'probabilistic
connectedness' and is a standard measure of network reliability.

It is shown that for large 'p', the most reliable series-paral-
lel network must have the fewest minimum edge cutsets and for
small 'p', the most reliable network must have maximum pairs
of adjacent edges. A construction is presented which incre-
mentally improves the communicating vertex pair mean for many
networks and demonstrates that a ' fan ' maximizes this measure
over maximal series parallel networks with exactly two edge
cutsets of size two.

KEY WORDS: Network reliability. All-terminal reliability.
Series-parallel network.

[C0LE81] Coleman, MA Method for the Syntax Directed Design of
Multiprograms," IEEE Transactions on Software Engineering ,

pp. 189-196, March 1981.

Describes a method of program design which leads to the
expression of a program as a pipeline network of simple
processes . Starting from the problem statement the valid
inputs and outputs are specified by grammars, which can be
combined to define the requisite translation. A notation for
translation grammars is described informally which allow a
translation to take into account semantic as well as syntactic
information. The notation is capable of direct compilation
but it is shown how it may be used to derive a program into a

, conventional high level language. It is shown that more com-
plex problems can be solved by simple pipeline structures of
simple translations. The method is illustrated by examples
from data processing.

KEY WORDS: Attributed translations. Multiprocessing, Pipeline
programs. Programming methodology.

[C00K79] Cook, 1MQD--A Language for Distributed Programm ing .

University of Wisconsin-Madison, Mathematics Research Center,
October 1979. Technical Summary Report #2008.

Discusses a high level language called *M0D. *M0D is a high-
level language system which attempts to address the problems
of high communications costs and the absence of shared vari-
ables and procedures as synchronization tools, by creating an
environment conducive to efficient and reliable network soft-
ware construction. The concept of a processor module is
introduced as well as a methodology for distributed data
abstraction and process communication. In addition, a VHLN
(virtual, high-level language network) is proposed for system
development.

KEY WORDS: Distributed programming, Modula, Processor module.
Data abstraction.

[C0ST78] Costes, "Reliability and Availability Models for Main-
tained Systems Featuring Hardware Eai lures and Design
Faults," IEEE Transactions on Computers . pp. 548-559, June
1978.

Studies the modeling of systems featuring hardware and soft-
ware faults as a means of evaluating the availability and re-
liability characteristics. Case of a nonredundant computer
is studied and it is shown that the unavailability presents an
overshoot with respect to its asymptotic value whose height
and length are functions of the failure rates associated with

34

the different design errors. Fault-tolerant systems that in-
clude protective redundancies both at the hardware level and
at the software level are studied; the importance of homogeneous
solutions on both levels is shown.

KEY WORDS: Availability, Hardware and software modeling.
Hardware and software redundancy. Reliability.

[C0UR85] Courtiat, "A Simulation Environment for Protocol Specif-
ications Described in Estelle, " Proceedings of the IFIP WG
6..1 Fifth Internationa l Workshop on Protocol Specification .

Testing and Verification . North-Holiand Publishing, Amster-
dam, Holland, May 1985.

Presents the design of a dedicated simulation environment for
protocols and services specified by using the Estelle formal •

description technique. The definition of the simulator global
underlying model and the derivation of this model from an Es-
telle description are particularly emphasized.

KEY WORDS: Estelle, Protocols.

[CRAL85] Crall, Sidhu, "Executable Logic Specifications for
Protocol Service Interfaces," Proceedings of the IFIP WG £.1
Filth International Workshop on Protocol Specification .

Testing and Verification . North-Holiand Publishing, Amster-
dam, Holland, May 1985.

Discusses a general, formal modeling technique for protocol
service interfaces. An executable description of the model
using a logic programming based language, Prolog, is presented.
The model is applied to the service interfaces of protocol
standards developed for the transport layer of the ISO/OSI ar-
chitecture. Protocols studied are NBS Class 2 and Class 4 and
DoD TCP. The author suggests that Prolog is a useful formal
language for specifying protocol interfaces.

KEY WORDS: Modeling technique of protocol service interfaces,
Prolog, ISO/OSI transport layer, NBS Class 2 and Class 4
Transport layer, DoD TCP.

[CREM78] Cremers, Hibbard, "Orthogonal Information Structures,"
Proceeding? of e Conference on Theoretical Computer Science ,

pp. 182-190, University of Waterloo, Waterloo, Ontario,
Canada, 1978.

Develops, in the mathematical framework of data spaces, some
important general principles of information structuring. The
principles are related to the notions of redundancy of inform-
ation, completeness of a set of access paths, information shar-
ing and compounding, and virtual access to information. The
results are relevant to both sequential and concurrent process-
ing.

KEY WORDS : Information structuring. Redundancy, Sequential
and concurrent processing.

[CRIS85] Cristian, "A Rigorous Approach to Fault-Tolerant Pro-
gramming, " IEEE Transactions on So ftware Engineering, pp.
23-31, January 1985.

35

Investigates the design of programs that are tolerant of hard-
ware fault occurrences and processor crashes . Using a stable
storage management system as a running example, a new approach
for specifying, understanding, and verifying the correctness
of fault-tolerant software is suggested. The approach extends
previously developed axiomatic reasoning methods to the design
of fault-tolerant systems by modeling faults as being operations
that are performed at random time intervals on an computing
system by the system's adverse environment. A clear separation
is made between software correctness and system reliability.
The combined correctness and reliability verifications estab-
lish that under given fault and reliability hypothesis, a system
behaves according to its functional specifications with a prob-
ability greater than that required by its reliability specifi-
cations .

KEY WORDS: Availability, Correctness, Fault-tolerance. Program-
ming logic. Reliability, Stochastic modeling.

[CR0W84] Crow, Singpurwalla, "An Empirically Developed Fourier
Series Model for Describing Software Failures, ' IEEE Trans-
actions On Reliability , pp. 176-183, June 1984.

Proposes an empirically developed Fourier series model which
can adequately describe data, and which under certain cir-
cumstances can be used to predict future failures . Analysis
is informal, and the key tool used to develop the approach
is a spectrogram of data. Emphasis is placed on data analysis
rather than statistical inference.

KEY WORDS: Software reliability. Software failure. Clustering,
Cyclic trend, Fourier series. Spectral analysis.

[CURR86] Currit, Dyer, and Mills, "Certifying the Reliability of
Software," IEEE Transactions on Software Engineering, pp.
3-11, January 1986.

Presents a procedure for certifying the reliability of software
before its release to users. Development of certified software
products and the derivation of a statistical model used for
reliability projection is discussed.

KEY WORDS: Incremental development. Software reliability
certification. Statistical quality control. Statistical testing
process

.

[DAHB86] Dahbura, "An Efficient Algorithm for Identifying the
Most Likely Fault Set in a Probabilistically Diagnosable
Systems," IEEE Transactions on Computers . pp. 354-356, April
1986.

Gives an 0(n**3) algorithm for determining the most likely
set of faulty processors in a class of systems introduced by
Maheshwari and Hakimi, known as probabilistically diagnosable
systems. This technique uses the a priori probability of each
unit combined with the results of tests which the processors
administer to one another to perform diagnosis. The algorithm
uses the well-known results on network flow and minimum weight
vertex cover sets

.

KEY WORDS: Diagnosis, Fault tolerance. Multiprocessor systems.

36

[DALE86] Dale, Winterbottom, "Optimal Allocation of Effort to
Improve System Reliability, " IEEE Transactions on Reliabili-
ty

. pp. 188-191, June 1986.

Discusses optimal allocation of development effort to improve
reliability for systems of general, but fixed, structure from
a deterministic standpoint also when there is uncertainty in
component reliabilities at various stages of development. A
computation algorithm is given for implementing the optimal
allocation, called the optimal policy, and the form of solution
is related to the special case of a series system when develop-
ment effort functions are the same for all components. It is
suggested that this methodology is a useful aid to decision-
making about reliability improvements.

KEY WORDS: System reliability. Optimization, Resource alloca-.
tion. Effort function.

[DANN82] Dannehberg, "Formal Program Verification Using Symbolic
Execution," IEEE Transactions on Software Engineering , pp.
43-51, January 1982.

Introduces a notation which allows a concise presentation of
rules of inference based on Symbolic execution. Symbolic exe-
cution provides a mechanism for formally proving programs cor-
rect. This notation is used to develop rules of inference to
handle a number of language features and an attribute grammar
is used to formally describe symbolic expression evaluation. '

KEY WORDS: Control constructs. Program proving. Program ve-
rification.

[DAVI78] Davies, "Synchronization and Matching in Redundant Sys-
tems, " IEEE Transactions on Computers . pp. 531-539, June
1978.

Introduces a novel mutual feedback technique, called from
vulnerability to common-point failures. Application of a
fault-tolerant crystal -control led clock is described. It is
shown in the presence of certain sensor failure, there is no
signal selection rule that can pick a common input value, and
it is also shown how this problem can be circumvented by using
multiple levels of voters.

KEY WORDS: Asynchronous networks. Fault-tolerant computers,
NMR, TMR.

[DECH86] Dechter, Kleinrock, "Broadcast Communication and Dis-
tributed Algorithms," IEEE TransactiQns on Computers, pp.
210-219, March 1986.

Addresses ways in which one can use 'broadcast communication'
in distributed algorithms and the relevant issues of design
and complexity. An algorithm is presented for merging 'k r

sorted lists of n/k elements using 'k' processors and proving
its worst case complexity to be 2n. In a variation of the
algorithm, it is shown that by using an extra local memory of
0 (k) the number of broadcasts is reduced to 'n'

.

The cost
incurred by the channel access scheme is discussed and it is
proved that resolving conflicts whenever 'k' processors are
involved introduces a cost factor of at least log k.

37

KEY WORDS: Access scheme. Broadcast:, Complexity analysis.
Distributed algorithm. Parallel algorithms.

[DENN77] Denning, Denning, "Certification of Programs for Secure
Information Flow," Communications &£ the ACM , pp. 504-513,
July 1977

.

Presents a certification mechanism for verifying the secure
flow of information through a program. Appropriate semantics
are presented and proved correct. The mechanism can prove that
a program cannot cause supposedly noneonfidential results to
depend on confidential input data.

KEY WORDS: Protection, Security, Program certification.
Confinement

.

[DERS81] Dershowitz, "Interference Rules for Program Annotation,"
IEEE Transactions on Software Engineering , pp . 207-222,
March 1981

.

Presents methods whereby an Algol -like program given together
with its specifications can be documented automatically. The
program is incrementally annotated with invariant relations
that hold between program variables at intermediate points in
the program test and explain the actual working of the program
regardless of whether it is correct. Thus, this documentation
can be used for proving correctness or as an aid for debugging.
The annotation techniques are formulated as Hoare-like inference
rules that derive invariants from the assignment statements,
from the control structure of the program, or, heuristically,
from suggested invariants. The application of these rules is‘
demonstrated by examples that have run on an experimental im-
p 1ementation

.

KEY WORDS: Invariant assertions. Program annotation. Program
correctness. Verification.

[DES078] de Sousa, "Sift-Out Modular Redundancy," IEEE Transac-
tions on Computers . pp. 624-628, July 1978.

Proposes and designs a fault tolerance technique for digital
systems. An appropriate number of identical channels are
provided for each module. The number of channels depend upon
the particular application, and all channels are active as
long as they are fault- free. Upon the failure of a channel,
its contribution to the module output ceases . The configura-
tion tolerates up to (L - 2) channel failures, if L is the
initial number of channels.

KEY WORDS: Fault-tolerant computing. Modular redundancy.
Reliability, Responsive structure.

[DES086] de Souza e Silva, Gail, "Calculating Cumulative Opera-
tional Time Distributions of Repairable Computer Systems,

"

IEEE Transactions on Computers
, pp . 322-332, April 1986.

Considers computer systems for which repair can be performed
to put the system back in operation. Behavior is assumed to
be modeled as a homogeneous Markov process . The distribution
of cumulative operational time is calculated numerically. The
main advantages include the ability to specify error tolerances

38

in advance, numerical stability, and simplicity of implementa-
tion .

KEY WORDS: Availability distribution. Dependable computer
systems. Reliability, Repairable computer systems.

[DEVI 77] Devil lers, "Game Interpretation of the Deadlock
Avoidance Problem," Communications of the ACM , pp . 741-745,
October 1977

.

Suggests that when each process specifies its future needs by
a flowchart of need-defined steps, a global approach to the
phenomenon and its interpretation as a game between the opera-
ting system and the processes allows formalization of risk and
safety concepts. The bipartite graph representation of this
game may then be used to construct explicitly the set of safe*
states and to study their properties

.

KEY WORDS: Multiprogramming, Time sharing. Resource allocation.
Deadlock, Interlock, Deadlock avoidance.

[DIAS81] Dias, Jump, "Analysis and Simulation of Buffered Delta
Networks," IEEE Transactions on Computers , pp. 273-282,
April 1981

.

Presents analytic and simulation results for the performance
of delta networks in a packet communication environment. The
performance of buffered delta networks is compared with unbuf-
fered delta networks and crossbar switches. It is demonstrated

• that buffering produces considerable improvement in the perform-
ance of these networks, making their performance comparable to
that of crossbar switches.

KEY WORDS: Crossbar switches. Delta networks. Multi-stage
interconnection networks

.

[DIJK74] Dijkstra, "Self-stabilizing Systems in Spite of Distri-
buted Control," Communications of the ACM , pp. 643-644, No-
vember 1974.

The synchronization task between loosely coupled cyclic
sequential processes can be viewed as keeping the relation
'the system is in a legitimate state' invariant. As a result,
each individual process step that could possibly cause viola-
tion of that relation has to be preceded by a test deciding
whether the process in question is allowed to proceed or has
to be delayed. A system is presented that is kept in a legit-
imate state and is distributed over processes . Problems are
discussed and solutions with 'k'

,

four, and three-state ma-
chines are given.

KEY WORDS: Multiprocessing, Networks, Synchronization,
Self-stabilization, Robustness, Error recovery. Self-repair.

[D0WN85a] Downs, "An Approach to the Modeling of Software Testing
with Some Applications," IEEE Transactions on $Q ftwars En-
gineering , pp. 375-386, April 1985.

39

Allows the assessment of the effects of different testing
(and debugging) strategies in different situations. Tech-
niques developed can be used to estimate, prior to the com-
mencement of testing, the optimum allocation of test effort
for software which is to be nonuni formly executed in its
operational phase. Applications of statistical models where
the data environment undergoes changes are discussed. Two
models for the assessment of the effects of imperfections in
the debugging process are investigated.

KEY WORDS: Computer performance modeling. Reliability growth.
Software reliability. Software testing. Stochastic models.

[D0WN85b] Downs, "A Review of Some of the Reliability Issues in
Software Engineering, " Journal of Electrical and Electronics
Engineering . Australia , pp. 36-48, March 1985.

Examines problems with software testing, statistical models
of errors in software, Littlewood's and Sukert ' s models of the
software failure process, formal methods of proving programs,
operational reliability of software, fault tolerant software,
concurrent systems, and complexity measures. Software vs.
hardware reliability is investigated through an example from
Musa of how having redundant processors does not increase re-
liability if operating systems are not redundant.

KEY WORDS: Software reliability. Fault-tolerance, Concurrent
systems

.

[D0WN85c] Downs, "Software Unreliability and Some Engineering Im-
plications,". Conference on Computers end Engineering 1985 ,

pp. 95-100, Hobart, Tasmania, Australia, September 1985.

Reviews efficacy of testing by executing every statement at
least once (doesn't execute all logic paths) and every logic
path (finding paths very complex, may reduce to finding arbi-
trary input subset) . The following statistical models are
reviewed: Mills error-seeding model (can't insert pseudo-ran-
dom errors randomly) ; Je1inski -Moranda model (assumes failure
rate is proportional to the number of errors; bad because of
heavily-used, lightly-used sections of code) ; white box model
(desirable but not in existence yet) and formal methods are
suggested to be bad when program is already coded and good
when used as a development aid.

KEY WORDS: Software reliability. Mills error-seeding model,
Jelinski -Moranda model.

[D0WN86] Downs, "Extensions to an Approach to the Modeling of
Software Testing with Some Performance Comparisons, " IEEE
Transactions on Software Engineering , pp. 979-987, September
1986.

Shows how a major assumption underlying a previously reported
approach to the modeling of software testing can be relaxed in
order to provide a more realistic model . Under the assumption
of uniform execution the new model is found to perform only
marginally better than the previous model, indicating that the
uniform execution assumption is a poor one. The results ob-
tained point the way to further developments which are likely
to lead to models whose performance is superior to that of the

40

nonuni form execution models presented. Some attention is de-
voted to the problem of comparison of performance of different
models and some difficulties in this area are pointed out.

KEY WORDS: Probability models. Reliability growth. Software
reliability. Software testing.

[DUNH86] Dunham, "Experiments in Software Reliability: Life-
Critical Applications," IEEE Transactions an Software En-
ginsgr.ing, pp. no-123, January 1986.

Discusses four reliability data .gathering experiments which
were conducted using a small sample of programs for two problems
having ultrareliability requirements, n-version programming for
fault detection, and repetitive run modeling for failure and
fault rate estimation.

KEY WORDS: Life-critical software. Real-time software.
Software modeling and measurement. Software reliability.

[DUPU85] Dupuis, Hebuterne, "On the Use of Quantitative Evalua-
tion To Assess and Study Distributed Algorithms Properties,

"

Proceedings ol the IPIP WG £-1 Elfth International Workshop
on Protocol Specification, Testing and Verification . North-
Holland Publishing Company, May 1985.

Compares the quantitative performances of mutual exclusion
distributed algorithms. Emphasis is placed on the importance
of synchronization mechanisms provided by time stamps. A bad
synchronization lengthens waiting times, provokes asymmetrical
and non-EIEO ordering. These considerations lead naturally to.
the need of stronger concepts for fairness and symmetry, neces-
sarily defined from an user point of view, and based on quan-
tifiable and measurable parameters.

KEY WORDS: Mutual exclusion. Distributed algorithms.
Synchronization, Time stamps.

[ECKH85] Eckhardt, Lee, "A Theoretical Basis for the Analysis of
Multiversion Software Subject to Coincident Errors, " IEEE
Transactions on Software Engineering , pp. 1511-1516, De-
cember 1985

.

Develops a theoretical basis for the study of redundant soft-
ware which: 1) provides a probabilistic framework for empiric-
ally evaluating the effectiveness of a general multiversion
strategy when component versions are subject to coincident
errors and 2) permits an analytical study of the effects of
these errors . A condition under which a multiversion system
is a better strategy than relying on a single version is given
and some differences between the coincident errors model devel-
oped here and the model that assumes independent failures of
component versions are studied.

KEY WORDS: Coincident errors. Fault-tolerant software. Multi-
version software. Reliability of redundant software.

[EKAN79] Ekanadham, Bernstein, "Conditional Capabilities, " IEEE
Transactions on Software Engineering , pp. 458-464, September
1979.

Considers protection in capability-based operating systems

.

The concept of conditional capability which is a generalization

41

of conventional capability is proposed. The conditional capa-
bility can only be exercised when certain conditions relating
to the context of its use are satisfied. It is shown that such
capabilities form a basis upon which features domains of pro-
tection, revocation, and type extension can be built. The
implementation of these features can be isolated into separate
modules thus leaving the basic protection module uncluttered
and sinplifying the overall structure of the system.

KEY WORDS: Access control. Keys, Locks, Protection.

[ELLA81] El lazy, '"The Determination of Loop Invariants for Pro-
grams with Arrays, " IEEE Transactions on Software Engineer

-

ing . pp. 197-206, March 1981.

Describes a method for the generation of 'loop predicates'
or ' invariant assertions ' for programs operating on arrays

.

The technique described is an application of difference equa-
tions .

KEY WORDS: Invariant assertions. Loop predicates. Program
validation.

[ENGE86] Engelhardt, Bain, "On the Mean Time Between Eailures
Eor Repairable Systems," IEEE Transactions on Reliability ,

pp. 419-422, October 1986.

Investigates the relationship between two of the most fre-
quently considered alternatives in assessing the reliability
of a repairable system: the reciprocal of the intensity
function, and the mean waiting time from 't' until the next
failure. The theorem states a necessary and sufficient condi-
tion for the mean time until the next failure to be asymp-
totically proportional to the reciprocal of the intensity
function. A monotonicity property is also established between
these two concepts which could be used to obtain conservative
statistical confidence limits for the mean time until the next
failure. The author suggests that until more is known about
the mean time from 't' until the next failure, it would be
advisable to use the reciprocal of the intensity function,
which has been studied more extensively, as the basis of re-
liability assessment for a repairable system.

KEY WORDS: Mean time between failures. Nonhomogeneous Poisson
process. Power-intensity process. Log-linear process.

[ESTR86] Estrin, Eenchel, Razouk, and Vernon, "SARA (Systems AR-
chitects Apprentice) : Modeling, Analysis, and Simulation
Support for Design of Concurrent Systems, " IEEE Transactions

Software Engineering , pp. 293-311, February 1986.

Describes an environment to support designers in the modeling,
analysis, and simulation of concurrent systems. It is shown
how a fully nested structure model supports multilevel design
and focuses attention on the interfaces between the modules
which serve to encapsulate behaviour. The effectiveness of
the explicit environment model in SARA is discussed and the
capability to analyze correctness and evaluate performance of
a system model are demonstrated.

42

KEY WORDS: Concurrent systems. Hierarchical design. Inter-
active simulation. Performance models. Queueing models.
Reachability analysis.

[FAGA86] Eagan, "Advances in Software Inspections," IEEE Transac-
tions on Software Engineering, pp. 744-751, July 1986.

Presents new studies and experiences that enhance the use
of the inspection process and improves its contribution to
development of defect- free software at lower costs. Examples
of benefits are cited, followed by a description of the process
and some methods of obtaining the enhanced results.

KEY WORDS: Defect detection. Quality assurance. Software
development. Software quality.

[FAR081] Faro, "Specifications and Validation of Protocols and
Interfaces," INWG Workshop "Protocol Toting-

-

Towards
Proof?" . National Physical Laboratory, Teddington, England,
May 1981.

Discusses sets of rules about communications. Problems in
developing protocols which involve establishing interactions
between processes and interfacing the interaction are presented
Emphasis is placed on methods for formalizing and validating
protocols for communication.

KEY WORDS: Networks, Communication protocols. Theory of collo-
quies, Automata, Petri nets.

[FAR083] Faro, Scollo, "SDL and CCS Based Description of Commun-
icating Entities," Eraceedings o£ the IFIP wq £.1 Third
International Workshop on Protocol Specification, Testing
and Verification . North-Holland Publishing Company, June
1983.

Explores some aspects of the application of two formal tech-
niques, namely the Specification Description Language (SDL)
and the Calculus of Communicating Systems (CCS) , to a model
of architecture for communicating entities. The worths and
limits of both are discussed and illustrated by examples.

KEY WORDS: Specification Description Language, Calculus of
Communicating Systems, Computer communications.

[FERN85] Fernandez, Richier, and Voiron, "Verification of Proto-
col Specifications Using the Cesar System," IFIP Workshop on
Protocols ' 85 . pp . 1-28, June 13-15, 1985.

Presents a static analysis tool for the verification of speci-
fications of communicating systems. The method consists of
verifying, on the description of the behavior of the system,
its specifications given by a set of properties expressed in a
formalism based on logic. The interest of this approach is
illustrated with an example of a real-life, time-dependent
communication protocol

.

KEY WORDS: Verification, Specifications, Communicating systems.
Semi-automatic tools. Temporal logic.

43

[FICK85] Fickas, "Automating the Transformational Development of
Software," IEEE Transactions on Software Engineering , pp

.

1268-1277, November 1985.

Presents a report on implementing transformations in software
development. The work has established goals, strategies, rea-
sonable selection and user transformations which are presented.
Emphasis is placed on problem solving and interactions between
user and system.

KEY WORDS: Knowledge-based software development. Program
transformation systems.

[FINK80] Finkel, Solomon, "Processor Interconnection Stra-
tegies," IEEE Transactions on Computers , pp . 360-370, May
1980 .

Describes four families of topologies for interconnecting many
identical processors into a computer network. Each family ex-
tends to arbitrarily many processors while keeping the number
of neighbors of any one processor fixed. These families are
investigated with respect to bus load, routing algorithms, and
the relation between the average interprocessor distance and
the size of the network.

KEY WORDS: Computer networks. Distributed computing. Message
routing. Multiprocessor architectures

.

[FL0N77] Flon, et al, "Nondeterminism and the Correctness of Parallel
Programs, " IFIP Working Conference on the Formal Description
of Programming Concepts . St Andrews, New Brunswick, Nova Scotia,
August 1-5, 1977.

Presents weakest pre-conditions which describe weak correct-
ness, blocking, deadlock, and starvation for nondeterminiStic
programs. A procedure for converting parallel programs to non-
deterministic programs is described, and the correctness of
various example parallel programs is treated in this manner.
A busy-wait mutual exclusion scheme, and the problem of the
Five Dining Philosophers are included.

KEY WORDS: Parallel programs. Nondeterminism, Verification,
Mutua1 exc1usion

.

[FLYN80] Flynn, Hennessy, "Parallelism and Representation Prob-
lems in Distributed Systems, " IEEE Transactions on Comput-
ers . pp . 1080-1086, December 1980.

Uses a hierarchical view of program representation to explain
the problems of matching various representations to underlying
distributed architectures. Methods of detecting parallelism
and their limitations are presented. The concept of an ideal
machine leads to a representation employing a directly executed
language. The issue of suitable initial representation for
distributed hardware is approached employing a functional lan-
guage basis

.

KEY WORDS: Directly executed. Languages, Distributed systems.
Parallelism.

44

[FOST80] Foster, "Error Sensitive Test Cases Analysis (ESTCA) ,

"

IEEE Transactions on Software Engineering, pp. 258-264, May
1980 .

Presents a hardware failure analysis technique adapted to
software which yielded three rules for generating test cases
sensitive to code errors. These rules, and a procedure for
generating these cases, are given with examples.

KEY WORDS: Program correctness. Program testing. Software
errors. Software reliability.

[FRAN81] Franklin, "VLSI Performance Comparison of Banyan and
Crossbar Communications Networks," IEEE Transactions gn
Computers , pp. 283-290, April 1981.

Compares performance characteristics of Banyan and crossbar
communications networks in a VLSI Environment, where it is
assumed that the entire network resides on a single VLSI chip
and operates in a circuit switched mode. A high-level model
of the space (area) and time (delay) requirements for these
networks is developed and relative performance comparisons
are made based on a space-time product measure.

KEY WORDS: Banyan networks. Crossbar networks. Space-time pro-
duct, VLSI

.

[FREE83] Freeman, Hirschman, McKay, Miller, and Sidhu, "Logic
Programming Applied to Knowledge-Based Systems, Modeling, &
Simulation, " Conference on Artificial Intel ligence, Oakland
University, .Rochester, MI, April 26-27, 1983.

Defends the application of logic programming. Specifications
have the advantage of being a prototype of a system, being in-
teractive and assurance of verification. Implementation of the
rules of KNET has made a framework for specifications and helps
form expressions for relations among models . The framework also
has libraries of component types and interrelationships and it
can also check itself for integrity. An approach to modeling
performance characteristics of a system is the construction of
model -based maintenance assistants is investigated.

KEY WORDS: Expert systems. Executable specifications. Logic
programming systems

.

[FUJI 78] Fujiwara, "On the Computational Complexity of System Di-
agnosis, " IEEE Transactions on Computers, pp. 881-885, Oc-
tober 1978

.

Analyzes the computer complexity of system diagnosis. It is
shown that several problems for instantaneous and sequential
fault diagnosis of systems are polynomial ly complete and that
for single- loop systems these problems are solvable in poly-
nomial time

.

KEY WORDS: Fault diagnosis. Polynomial time algorithm,
Polynomially complete, Self-diagnosable systems, Turing
machines

.

[FUKU78] Fukunaga, Short, "Generalized Clustering for Problem
Localization," IEEE Transactions on Computers, PP- 176-180,
February 1978.

45

Describes a modification of conventional clustering for
problem localization. The concept of clustering criteria
which is used for partitioning a training set, and dependent
on prior information in regards to the training set is intro-
duced. A procedure is discussed for applications of piecewise
linear classifier design and piecewise linear density esti-
mation .

KEY WORDS: Clustering, Density estimation. Pattern recognition.
Problem reduction or localization.

[GARC82] Garcia-Molina, "Elections in a Distributed Computing
Systems," I£EE Transactions on Computers , pp. 48-59, January
1982.

Explains that after a failure occurs in a distributed computing
system, it is often necessary to reorganize the active nodes so
that they can continue to perform a useful task. The first
step in such a reorganization of reconfiguration is to elect
a coordinator node to manage the operation. Such elections,
and reorganization are discussed. Two types of reasonable
failure environments are studied. For each environment asser-
tions which define the meaning of an election are presented.
An election algorithm which satisfies the assertions is pre-
sented for each environment.

KEY WORDS: Crash recovery. Distributed computing systems.
Failures, Mutual exclusion. Reorganization.

[GARD80] Gardarin, Chu, "A Distributed Control Algorithm for Re-
liably and Consistently Updating Replicated Databases, " IEEE
Transactions on Computers . pp. 1060-1067, December 1980.

Presents a deadlock- free distributed control algorithm for
robustly and consistently updating replicated databases . This
algorithm is based on local locking and time stamps on lock
tables which permit detection of conflicts among transactions
executed at different sites. Messages are exchanged in the
network whenever a transaction commitment occurs, that is, at
the end of every consistent step of local processing. Conflicts
among remote transactions are resolved by a roll back procedure.
Local restart is based on a journal of locks which provides
backup facilities. Performance in terms of the number of mes-
sages and volume of control messages of the proposed algorithm
is compared with that of the voting and centralized locking
algorithms . These results reveal that the proposed distributed
control algorithm performs, in most cases, comparably to the
centralized locking algorithm and better than the voting algo-
rithm.

KEY WORDS: Distributed control. Deadlock, Locking, Recovery,
Replicated databases.

[GARM81] Garman, "The 'Bug' Heard 'Round the World," ACM SIGSOFT
SoX.tvare Engineering Notes , pp. 3-10, October 1981.

Discusses, in detail, the software problem that delayed the
first shuttle orbital flight. The problem was the Backup Flight
System was not in synch with the control computers. The devel-
opment schedule which forces development to be iterative and
incremental, not in an orderly life cycle, is blamed.

46

KEY WORDS: Software life cycle reliability. Software
development , So ftware maintenance

.

[GEHA85] Gehani, McGettrick, Software Specification Techniques .

Addison-Wesley, Reading, MA, 1985

.

Presents a collection of most of the important papers on form-
al specification published over the past 15 years. Several
case studies are included that show the value of using formal
techniques in requirements and design.

KEY WORDS: Verification, Specification, Concurrent.

[GILB72] Gilbert, "Interference Between Communicating Parallel
Processes," Communications of the ACM , pp. 427-437, 1972.

Reports on interference in communication. Solutions and
informal proofs are given for the mutual exclusion problem.
System behavior is described by rules giving the transitions
processes make from one state to another . The rules formu-
late the problem while the proofs verify or discredit a
solution

.

KEY WORDS: Concurrent programming. Cooperating processes.
Mutual exclusion. Parallel processes.

[GLAS79] Glass, Software Reliability Guidebook, Prentice-Hall,
1979.

Surveys technological and management techniques that are in-
tended to be useful for all application areas and sizes of
software projects. Special emphasis is placed on the problems
of large projects (eg. military/space applications, massive
interrelated data bases)

.

KEY WORDS: Software reliability. Military/space applications.

[GLAS81] Glass, "Persistent Software Errors," IEEE Transactions
on So ftware Engineering, pp. 162-168, March 1981.

Describes persistent software errors- -those which are not dis-
covered until late in development, such as when the software
becomes operational --as by far the most expensive kind of error.
Via analysis of software problem reports, it is discovered that
the predominant number of persistent errors in large-scale soft-
ware efforts are errors of omitted logic..., that is, the code
is not as complex as required by the problem to be solved. Peer
design and code review, desk checking, and ultra-rigorous test-
ing may be the most helpful of the currently available technol-
ogies in attacking this problem. The author states that new
and better methodologies are needed.

KEY WORDS: Complexicy, Persistent software errors. Software
problem report. Testing rigor.

[GLIG79a] Gligor, "Review and Revocation of Access Privileges
Distributed Through Capabilities," IEEE Transactions
SQ £tware Engineering, pp. 575-585, November 1979.

Presents an approach to solving the problem of review and rev-
ocation of access privileges distributed through capabilities.

47

The approach requires that a capability propagation graph be
maintained in memory spaces associated with subjects (e.g.
domains, processes, etc.) that make copies of the respective
capability; the graph remains inaccessible to those subjects,
however. Advantages and disadvantages of this approach are
examined

.

KEY WORDS: Access privilege. Management policies. Capabilities,
Shared objects. Selective revocation.

[GLIG79b] Gligor, Lindsay, "Object Migration and Authentica-
tion, " IEEE Transactions on Software Engineering , pp. 607-
611, November 1979.

Describes a mechanism to allow a type manager to authenticate
and reinstate migrated objects. Problems stemming from the
hierarchical structure of the system itself are solved. The
mechanisn is based on combination of cryptographic techniques
using (nondistributable) centralized, secret keys, and data
redundancy

.

KEY WORDS: Authentication, Capabilities, Encryption, Hierarchi-
cal systems. Object migration. Redundancy.

[GLIG80] Gligor, Shattuck, "On Deadlock Detection in Distributed
Systems," IEEE Transitions on Software Engineering , pp.
435-439, September 1980.

*>

Refers to a hierarchically organized and distributed pro-
tocol for deadlock detection in distributed databases in
JMENA79] . It is shown that the distributed protocol it is
incorrect and' possible remedies are presented. The author
maintains that the distributed protocol remains impractical
because "condensations" of "transaction-wait- for" graphs make
graph updates difficult to perform. Delayed graph updates
cause the occurrence of false deadlocks in this as well as in
some other deadlock detection protocols for distributed
systems. The performance degradation that results from false
deadlocks depends on the characteristics of each protocol.

KEY WORDS: Deadlock detection. Distributed systems. False
deadlocks. Ostensibly blocked transactions.

[GOEL80] Goel, "A Summary of the Discussion on 'An Analysis of
Competing Software Reliability Models'," IEEE Transactions
on Software Engineering , pp. 501-502, September 1980.

Summarizes a technical dialogue on software reliability models.
Strengths and weaknesses of several software reliability models
are evaluated

.

KEY WORDS: Software reliability models.

[GOEL85] Goel, "Software Reliability Models: Assumptions, Limi-
tations, and Applicability, " IEEE Transactions on Software
Engineering , pp. 1411-1424, December 1985.

Discusses a number of analytical models for assessing the
reliability of a software system. An overview of the key
modeling approaches is presented, and a critical analysis of
the underlying assumptions is provided, and the limitations

48

and applicability of the models during the software development
cycle are assessed. Also, a step-by-step procedure for fitting
a model is proposed and illustrated via an analysis of failure
data from a medium sized real-time command and control software
system

.

KEY WORDS: Eailure count models, Eault seeding. Model
fitting, NHPP, Software reliability. Times between failures.

[G0LD86] Goldberg, "Knowledge-Based Programming : A Survey of Pro-
gram Design and Construction Techniques, " IEEE Transactions
on Software Engineering, pp. 752-768, July 1986.

Discusses an approach for improving the efficiency of soft-
ware development which is the construction of a knowledge-based
software assistant. This approach provides the medium of in-
teraction for the development process and enforces the semantic
consistency of the evolving program. The knowledge and formal-
ization of how to represent problem-domain objects with the
data structure facilities of the language, how to implement
various search techniques and others, and the efficiency of
various programming constructions, etc. are surveyed. This
is presented from the point of view of algorithm design and
high-level program optimization. Techniques for data structure
selection, procedural representation of logic assertions store-
versus-compute, finite differencing, loop fusion, and algorithm
design methods are discussed.

KEY WORDS: Knowledge-based software development. Program
optimization. Program synthesis. Program transformation.

[G00DM81] Goodman, Sequin, "Hypertree: A Multiprocessor Inter-
connection Topology," IEEE lr.ansactions on Computers , pp.
923-933, December 1981.

Describes a new interconnection topology for incrementally
expansible multicomputer systems which combines expansibility
of tree structures with the compactness of n-dimensional hyper-
cube. The derivations of a family of such Hypertree structures
are outlined and the basic properties (average path length,
uniformity of distribution of message traffic and routing algo-
rithms) are analyzed.

KEY WORDS: Communication networks. Hypercube, Message traffic.
Routing algorithms. Tree structures.

[G00DW81] Goodwin, "Why Programming Environments Need Dynamic
Data Types," IEEE Transactions on Software Engineering, pp.
451-457, September 1981.

Discusses a programming environments (PE ' s) need to use data
types dynamically since it is their function to support the
programmer in all phases of work with a program. If the
language in which the PE is written permits types to be de-
fined at runtime, the PE can accurately model the supported
program ' s types as its own . Language ELI shows how to com-
bine strong typing and an emphasis on efficient compilation
with the necessary dynamic properties to support good PE's.

KEY WORDS: Computer oriented language. Data abstraction.
Dynamic defining of types, LISP, Programming environments.

49

[G0PA81] Gopal, Wong, "Delay Analysis of Broadcast Routing
Packet-Switching Networks, " IEEE Transactions on Computers .

pp. 915-922, December 1981.

Defines broadcast addressing as the capability to send a
packet from a source node to all other nodes and suggests
broadcasting has to be implemented by a routing algorithm in
in store-and- forward and packet-switching networks. A source
based forwarding algorithm is considered. With this algorithm,
a spanning tree is defined for each node, and broadcast packets
are sent along the branches of these trees. Approximation meth-
ods are presented to obtain a lower bound and estimates of the
mean broadcast time. The accuracy of these methods is evaluated
by comparison with simulation.

KEY WORDS: Broadcast routing. Packet switching networks.
Queueing analysis. Source based forwarding.

[G0UD81a] Gouda, "How to Design a Communication Protocol and not
Worry About Synchronization, " INWG Workshop "Protocol Test-
ing- -Towards Proof?" . National Physical Laboratory, Ted-
dington, England, May 1981.

Outlines three approaches: 1) an abstract specification
approach; 2) a partial design approach; and 3) a complete
design/error detection approach to help a designer to design
correct communication protocols. In particular, these ap-
proaches help the designer to deal with the problems and
issues of synchronization in any protocol he designs so that
the resulting communication is both deadlock- free and bounded.

KEY WORDS: Protocol correctness. Synchronization, Deadlock
free

.

[G0UD81b] Gouda, Yu, "A Methodology to Design Deadlock-Eree and
Bounded Communication Protocols, " INWG Workshop "Protocol
Testing -

-

Towards Proof?" . National Physical Laboratory,
Teddington, England, May 1981.'

Presents a methodology to design deadlock- free and bounded
communication protocols. The methodology consists of a model
to specify communicating processes and two algorithms, one for
generating processes from a process and the other for generating
channels between the processes

.

KEY WORDS: Deadlock free. Communication protocols. Communi-
cating processes. State deadlocks.

[G0UD85] Gouda, "On 'A Simple Protocol Whose Proof Isn't'

:

The
State Machine Approach, " IEEE Transactions on Communica-
tions . pp. 380-381, April 1985.

Discusses how to model a synchronous protocol using communi-
cation finite state machines, and presents a proof for its
safety and liveness properties. The proof is based on con-
structing a labeled finite reachability graph for the proto-
col . This reachability graph can be viewed as a sequential
program whose safety and liveness properties can be stated
and verified in a straightforward fashion.

KEY WORDS: Synchronous protocol. Communicating finite state
machines. Reachability graph.

50

[GREI77] Greif , "A Language for Formal Problem Specification,

"

Communications q£ the ACM, pp. 931-935, December 1977.

Introduces a language for specifying the intended behavior of
communicating parallel processes. The language is used to
write specifications of the readers/writers problem, and the
writer priority of the second readers/writers problem.

KEY WORDS: Formal specifications. Program correctness.
Parallel processing. Synchronization.

[GRIE77] Gries, "An Exercise in Proving Parallel Programs
Correct," Communications of the ACM , pp. 921-930, December
1977

.

Proves Dijkstra’s on-the- fly garbage collector, a parallel
program, correct using a proof method developed by Owicki

.

Difficulties with proving such parallel programs correct are
described.

KEY WORDS: Garbage collection. Multiprocessing, Program
correctness for multiprocessing tasks

.

[GRIE81] Gries, XhQ Science Programming . Springer-Verlag,
New York, 1981.

Provides major text on formal verification using Dijkstra's
notation and predicate transformer formalism. Many interesting
examples and exercises are included. Only sequential processes
are covered, although non-determinism is handled.

KEY WORDS: Verification, Sequential.

[GRIF85] Griffeth, Miller, "Performance Modeling of Database
Recovery Protocols," IEEE. Transactions on Software Engineer-
ing

. pp. 564-571, June 1985.

Describes performance modeling which compares several protocols
that ensure a database can be recovered to a consistent state
after a transaction failure or system crash. A collection of
simple analytic models, based on Markov processes, for these
protocols and some surprising results on the relative perform-
ance of these protocols are included. Results of systems obey-
ing the assumptions are outlined, the policy of holding write
locks to commit points is shown to be considerably less effi-
cient than the policy which allows reading of uncommitted data,
but risks cascading aborts. A multiversion policy is also
studied

.

KEY WORDS: Atomic actions. Concurrency control, Markov
processes. Queueing models. Reliability, Transaction systems.

[GUTT78] Guttag, Horowitz, and Musser, "Abstract Data Types and
Software Validation," Communications of the ACM , pp. 1048-
1063, December 1978.

Suggests that a data abstraction can be naturally specified
using algebraic axioms . These axioms permit a representation-
independent formal specification of a data type. Algebraic
axioms are employed at successive levels of implementation.
Algebraic axiomatizations are used to simplify the process of

51

proving the correctness of an implementation of an abstract
data type. Semi-automatic tools to automate these proofs of
correctness and to derive an immediate implementation from the
axioms are described.

KEY WORDS: Abstract data types. Software validation. Alge-
braic axioms

.

[GUTT80] Guttag, "Notes on Type Abstraction, " IEEE Transactions
on Software Engineering

, pp . 13-23, January 1980.

Discusses, in general, the role of type abstraction and the
need for formal specifications of types abstractions. Two ap-
proaches to the construction of such specifications (Hoare
approach and a version of algebraic specifications) are
examined

.

KEY WORDS: Abstract data type. Correctness proof. Specifi-
cation, Software specification.

[HAAS81] Haase, "Real-Time Behavior of Programs, " IEEE Transac-
tions on Software Engineering , pp. 494-501, September 1981.

Develops a method of checking the fulfillment of real-time
constraints based on the concepts of 'guarded commands' and
PARC's, and using formal means of predicate transformers, a
method of checking the fulfillment of real-time constraints is
developed. The method allows the calculation of execution
times of both sequential and parallel programs, both in single
and multiprocessor systems . The key issue is the introduction
of real time as a variable into the data space of the program.
Manipulation of this time variable during the execution of a
program is determined by the program structure, input data,
and by the hardware properties of processors and memories.

KEY WORDS: Deadline scheduling. Guarded commands. Parallel
processes. Real-time programming

.

[HAC85] Hac, "A System Reliability Model with Classes of
Failures," IEEE Transactions on Reliability

, pp . 29-33,
April 1985.

Presents an approach to system reliability involving s-depend-
ence of the workload as well as the system configuration. Four
classes of failures are described and then incorporated into
the workload model. Model allows multiple classes of users and
priority requests to be represented. The model is validated
using measurement data collected in an IBM installation.

KEY WORDS: Workload modeling. System failure. System
operating mode. Measurement data.

[HAIL85] Hailpern, "A Simple Protocol Whose Proof Isn't," IEEE
Transactions on Communications

. pp . 330-337, April 1985.

Presents proofs of one of the protocols proposed by Aho,
Ullman, and Yannakakis that ensure reliable transmission of
data across an error -prone channel . The finite-state-machine
approach and the abstract-program approach are used in the
proofs. It is shown that the abstract-program approach gives
insight into the operation of the protocol.

52

KEY WORDS: Protocols for error-prone channels. Finite state
machine. Abstract program.

[HALS78] Halstead, Multiple-Processor Implementations of Message -

Passing Systems , pp. 1-172, MIT, Laboratory for Computer
Science, Cambridge, MA, April 1978. Report # MIT/LCS/TR-198

.

Develops a methodology for building networks of small computers
capable of the same tasks now performed by single larger comp-
uters . The author states that such networks promise to be both
easier to scale and more economical in many instances . The mu
calculus, a simple syntactic formalism for representing message-
passing computations, is presented and augmented to serve as the
semantic basis for programs running on the network. The network
implementation presented supports object references, keeping
track them by using a new concept, the reference tree. A ref-
erence tree is a group of neighboring processors in the network
that share knowledge of a common object. Also discussed are
mechanisms for handling side effects on objects and strategy
issues involved in allocating computations to processors.

KEY WORDS: Message passing. Distributed computing. Actor
semantics , Networks

.

[HANS78a] Hansen, "Distributed Processes: A Concurrent Program-
ming Concept," Communications Ol the ACM , pp. 934-941, No-
vember 1978.

Introduces a language concept for concurrent processes without
common variables . These processes communicate and synchronize
by means of procedure calls and guarded regions. This concept
is proposed for real-time applications controlled by microcom-
puter networks with distributed storage. Several example's of
distributed processes are given and it is shown that they in-
clude procedures, coroutines, classes, monitors, processes,
semaphores, buffers, path expressions, and input/output as
special cases

.

KEY WORDS: Concurrent programming. Distributed processes.
Process communication and scheduling. Microprocessor networks.

[HANS78b] Hansen, Staunstrup, Specification and Implementation
of Mutual Exclusion . Computer Science Department, USC, March
1978. Report 78-55.

Presents a constructive approach to the problem of specify-
ing, implementing, and verifying operations that will give
concurrent processes exclusive access to a resource . The need
for auxiliary variable is eliminated and the correctness of a
whole class of solutions to the same problem is established.
Solutions are derived directly from the specifications using a
language construct called guarded regions. Several new solu-
tions to well-known exclusion problems are presented.

KEY WORDS: Concurrent programs. Mutual exclusion. Program
specification. Program implementation. Program verification.
Guarded regions

.

[HASS86] Hassan, Agarwal, "A Fault-Tolerant Modular Architecture
for Binary Trees," IEEE Transactions on Computers, pp. 356-
361, April 1986.

53

Proposes a new modular, fault-tolerant scheme for the binary
tree architecture. The approach uses redundant modular fault-
tolerant building blocks to construct the complete binary tree.
The scheme is shown to be more reliable and easier to implement
than existing fault-tolerant schemes

.

KEY WORDS: Binary tree. Fault tolerant. Reconfiguration,
Redundant, Reliability.

[HAYE85] Hayes, "Applying Formal Specification to Software
Development in Industry, " IEEE Transactions on Software En-
gineering . pp. 169-178, February 1985.

Reports experience gained in applying formal specification
techniques to an existing transaction processing system (CICS)

.

The work has concentrated on specifying a number of modules of
CICS application programmer's interface. Uses of formal spec-
ification techniques with particular reference to their appli-
cation to an existing piece of software are outlined. Problems
dealing with questions about the system design and documentation
during the specification process are discussed. Also problems
with the specification techniques themselves when applied to a
commercial transaction processing system are discussed.

KEY WORDS: CICS, Formal specification. Large scale software.

[HAYE86] Hayes, "Specification Directed Module Testing,

"

IEEE Transactions; on Software Engineering ,

pp. 124-133, January 1986.

Describes testing techniques that apply to the testing of
abstract data types. These techniques are illustrated by
application to the implementation of a symbol table as an
ordered list and as a height balanced tree.

KEY WORDS: Abstract data types. Data type invariant.
Software reliability. Specification language.

[HECH86] Hecht, Hecht, "Software Reliability in the System Con-
text, " IEEE Transactions on So ftware Engineering , pp. 51-58,
January 1986 .

Reviews software reliability experience during the Operations
and Maintenance (O&M) phase of the life cycle. A basic failure
model that supports a unified approach to software and hardware
reliability is presented and the effect of management activities
on reliability is discussed. A combined hardware/software re-
liability model is outlined.

KEY WORDS: Computer failure models. Computer system relia-
bility, Software management. Software reliability.

[HEND86] Henderson, "Functional Programming, Formal Specifica-
tion, and Rapid Prototyping, " IEEE Transactions on Software
Engineering

, pp . 241-250, February 1986.

Argues that functional programs combine the clarity re-
quired for the formal specification of software design with
the ability to validate the design by execution. As such,
they are ideal for rapidly prototyping a design as it is
developed. An example is given which is larger than those
traditionally used to explain functional programming. A method

54

of software design which efficiently and reliably turns an in-
formal description of requirements into an executable formal
specification is illustrated.

KEY WORDS: Functional programming. Software design.
Specification, Validation.

[HENI80] Heninger, "Specifying Software Requirements for Complex
Systems: New Techniques and Their Applications," IEEE Trans-
actions on Saftraars Engineering, pp. 2 - 12 , January 1980.

Concerns new techniques for making requirements specifications
precise, concise, unambiguous, and easy to check for complete-
ness and consistency. These new techniques are well-suited for
complex real-time software systems; they were developed to doc-
ument the requirements of existing flight software for the Navy's
A-7 aircraft. The information that belongs in a requirements
document is outlined and the objectives behind the techniques
are discussed. Each technique is described and illustrated
with examples. The purpose is to introduce the A-7 document
as a model of a disciplined approach to requirements specific-
ation .

KEY WORDS: Documentation techniques. Functional specifications.
Real-time software. Requirements, Specifications.

[HENR81] Henry, Kafura, "Software Structure Metric Based on In-
formation Overflow, " IDEE Transactions on Software Engineer-
ing . pp. 510-518, September 1981.

Defines and validates a set of software metrics which are
appropriate for evaluating the structure of large-scale sys-
tems. The metrics are based on the measurement of information
flow between system components. The validation, using the
source code for the UNIX operating system, shows that the
complexity measure are strongly correlated with the occurrence
of changes. Further, the metrics for procedures and modules
can be interpreted to reveal various types of structural flaws
in the design and implementation.

KEY WORDS: Design methodologies. Software metrics, UNIX.

[HEWI77] Hewitt, Baker, Actors and Continuous Functionals, MIT
Artificial Intelligence Laboratory, Cambridge, MA, 1977.

Reports on 'laws' that govern communicating parallel processes.
These laws are used to analyze mechanisms used by processes to
communicate . Partial orders are used to express casualties
involved in parallel computations and the laws for distributed
computation

.

KEY WORDS: Parallel processes. Computational analysis of
systems

.

[H0AR71] Hoare, "Procedures and Parameters: An Axiomatic Ap-
proach, " Symposium on SQmsntics ol Algorithmic Languages,
Lecture Notes in Mathematics 188, pp. 102-116, Berlin-
Heidelberg-New York: Springer, 1971.

Presents an example of the application of the axiomatic method
to the definition of procedure and parameter passing features

55

of a high-level programming language. The ease of demonstrating
program correctness and high-efficiency of implementation may
be achieved simultaneously, provided that the programmer is
willing to observe a certain familiar and natural discipline
in his rise of parameters.

KEY WORDS: Natural deduction. Axiomatic method. Program
correctness

.

[H0AR85] Hoare, Communicating Sequential Processes . Prentice-
Hall, Englewood Cliffs, NJ, 1985.

Provides major text on formal verification of concurrent pro-
cesses. Event-based descriptions of process behavior are used.
The synchronous message-passing model is assumed.

KEY WORDS: Verification, Concurrent.

[H0LL87] Holliday, Vernon, "Exact Performance Estimates for
Multiprocessor Memory and Bus Interference, " IEEE Transactions
on Computers . pp . 76-85, January 1987.

Gives exact results for the processing power in a multibus
multiprocessor with constant memory cycle times and geometric
interrequest times. Both uniform and nonuniform memory accesses
are considered and Generalized Timed Petri Nets are introduced .

KEY WORDS: Markov models. Multiprocessors, Performance
comparison and evaluation, Petri nets.

[HOL080] Holober , A S.uiiY.sy oJL Syiishr.Qnization Prob lems, pp. 1-50,
Yale University, Department of Computer Science, New Haven,
CT, September 1980 . Technical Report # 181

.

States that decreased hardware costs will facilitate the use
of parallel computation in the near future. Synchronization
primitives will be needed to implement concurrent algorithms.
Many such primitives have been proposed to date. Unfortunately,
their power can only be accurately measured in terms of their
ability to solve a particular set of synchronization problems.
A correspondingly large number of such problems have been pro-
posed along with the primitives. Some of these synchronization
problems are presented and their parameters, variations, and
histories are outlined.

KEY WORDS: Synchronization primitives. Synchronization prob-
lems, Synchronization parameters and variations.

[HOLT80] Holt, £CSR: A Small Language for Parallel Processing ,

pp. 1-42, Office of Naval Research, Arlington, VA, February
1980. Report N00014-79-G-0041

.

Describes BCSP which is based on Hoare ' s Communicating Sequen-
tial Processes, but uses tail recursion for loops and linked
ports for communication. An abstract parallel machine is
described that can be used to implement BCSP; the machine
description assumes an arbitrary number of processors.

KEY WORDS: Programming languages. Parallel programming.
Abstract machines

.

56

[H0LZ81] Holzmann, "An Algebra for Protocol Validation, " INWG
Workshop "Protocol Testing- -Towards Proof?", National Phy-
sical Laboratory, Teddington, England, May 1981.

Uses an algebraic method for an extended type of regular
expressions to analyze message passing protocols on various
kinds of design errors. The steps involve modeling the behav-
ior of processes sending and receiving messages. The operations
used are division for analyzing output behaviors and multipli-
cation for combining expressions representing interactions . Ey
using these, an algebra for the validation of message passing
systems is built. Much of the analysis method can be automated.
The method has been applied successfully to a number of life-
size protocols, including two Data Switch protocols for respec-
tively five and seven interacting processes

.

KEY WORDS: Message passing protocols. Algebraic method,
Finite state machines

.

[H0R081] Horowitz, Zorat, "The Binary Tree as an Interconnection
Network: Applications to Multiprocessor Systems and VLSI,"
IEEE Transactions on Computers, pp. 247-253, April 1981.

Examines several aspects of the binary tree structure as it
relates to both multiprocessor systems and to VLSI circuit
design. An algorithm for mapping an arbitrary binary tree
onto the plane is presented. The problem of routing messages
within a binary tree under the assumption that certain nodes
may be faulty is considered. The binary trees capacity to
transfer information between nodes is analyzed and compared
to the capacity of the linear array and the grid.

KEY WORDS: Binary trees. Parallelism, VLSI, Multiprocessing,
Networks

.

[HOWD80] Howden, "Functional Program Testing, " IEEE Transactions
on So.f~t.warQ Engineering , pp. 162-169, March 1980.

Describes an approach to functional testing in which the de-
sign of the program is viewed as an integrated collection of
functions. The selection of test data depends on the functions
used in the design and on the value spaces over which the func-
tions are defined. The basic ideas in the method were developed
during the study of a collection of scientific programs con-
taining errors. It was found to be significantly more reliable
than structural testing. The techniques are compared and their
relative advantages and limitations are discussed.

KEY WORDS: Effectiveness, Reliability, Testing.

[H0WD81] Howden, "Errors, Design Properties and Functional Pro-
gram Tests," in Computer Program Testing . North-Holland Pub-
lishing Company, 1981

.

Describes errors, design properties, and functional testing
in detail . Both the traditional approach to functional testing
as well as recent work which is aimed at making the method more
methodical are discussed.

KEY WORDS: Errors, Design properties. Functional program tests.

57

[HUAN80] Huang, "A New Verification Rule and its Application, "

IEEE Transactions on Software Engineering, pp~. 480-484, Sep-
tember 1980 .

Describes a verification rule for loop programs and shows how
it can be used in conjunction with the invariant relation the-
orem to facilitate verification of programs.

KEY WORDS: Consistency, Decomposition, Invariant-relation
theorem. Program verification.

[HUNG85] Hung, "CCS Used As a Proof-Assistant Tool," Proceedings
of the IFIP WG 6.1 Fifth International Workshop on Protocol
Spec! fication . Testing and Verification . North-Holland Pub-
lishing Company, May 1985

.

Uses a non-trivial arbitration protocol (APK) as an example
to demonstrate how the CCS (Calculus of Communicating Systems)
can be used as a possible theoretical background for finding
invariants in proving some types of concurrent programs.

KEY WORDS: Concurrent processing. Correctness proof, APK,
Communication tree. Invariants generation.

[HUTC85] Hutchens, Basili, "System Structure Analysis: Cluster-
ing with Data Bindings," IEEE Transactions on Software En-
gineering

. pp. 749-757, August 1985.
*

Examines the use of cluster analysis as a tool for system
modularization. Several clustering techniques are discussed
and used on two medium-size systems and a group of small
projects. Data bindings between the routines of the system
provide the basis’ for the bindings. It appears that the clus-
tering of data bindings provides a meaningful view of system
modularization

.

KEY WORDS: Cluster, Coupling, Data binding. Measurement,
System structure

.

[IBAR81] Ibaraki, Kameda, and Toida, "On Minimal Test Sets for
Locating Single Link Failures in Networks, " IEEE Transac-
tions OR Computers . pp. 182-189, March 1981.

Considers a network which can be represented by an acyclic
directed graph such that the links represented by the edges
are subject to fail. Under the assumption that at most one
link can fail at any time, the desire is to locate a failed
link, if any, by means of certain tests. A test is performed
by injecting a signal at a vertex and monitoring it at another
vertex and can reveal if there is a failed link on any path
between the two vertices. The objective is to find a minimal
set of tests that can uniquely locate a single fault. Since
this problem is, in general, NP-complete, a "special case is
investigated where the given network has a tree structure

.

An algorithm whose worst case running time can be bounded by
a linear function of the input size is presented.

KEY WORDS: Complexity, Network diagnosis, NP-complete.

58

[IBAR82] Ibaraki, Kameda, "Deadlock-Free Systems for a Bounded
Number of Processes," IEEE TransactiQns on Computers / PP-
188-193, March 1982.

Considers a computer system in which different types of seri-
ally reusable resources are shared by several classes of pro-
cesses. It is assumed that each process in a process class has
the same known maximum claim but actual sequence of requests
is unknown. The resource manager uses the 'expediency policy'
in granting requests for resources where at most 'k' processes
can be in the system at any time. It is shown for such a system
that: 1) whether this can deadlock with the given number of
resource units can be tested in polynomial time; 2) the problem
of designing a deadlock free system with minimum resource cost
is NP-complete; and 3) the largest k for which it is deadlock-
free for the given number of resource units can be found in .

polynomial time. It is also shown that problems 1) and 3)
become NP-complete if a certain additional constraint is to be
satisfied.

KEY WORDS: Algorithm complexity. Deadlock prevention.

[IEEE85] Draft IEEE. Standard 2222. Sflfjarars Reliability Measurement . IEEE,
June 1, 1985.

Describes the major reliability metrics and the phases of the
software life cycle in which they can be used. Both design
metrics for source code complexity and statistical models for
use with error data are included.

KEY WORDS: Metrics.

[IGAR75] Igarashi, "Automatic Program Verification I: A Logical
Basis and its Implementation, " Acta Informatica

. pp . 145-
182, Springei—Verlag, 1975.

Reports on proving that a program meets its specifications by
using axioms and rules of inference. This deduction system is
consistent with one developed by Hoare. The input is a subset
of Pascal programs and the output gives verifications conditions
to be proved.

KEY WORDS: Specifications, Verification conditions.

[IYER85] Iyer, Rossetti, "Effect of System Workload on Operating
System Reliability: A Study on IBM 3081," IEEE Transactions
on So ftware Engineering

, pp. 1438-1448, December 1985.

Presents an analysis of operating system failures on the IBM
3081 running VM/SP. Three categories of software failures:
error handling; program control or logic; hardware related are
discussed. Possible reasons for the observed workload failure
dependency based on detailed investigations of the failure data
are given.

KEY WORDS: Failure analysis. Software reliability. System
workload, VM/SP.

59

[IYER86] Iyer, Donatiello, and Heidelberger , "Analysis of Per form-
ability for Stochastic Models of Eault-Tolerant Systems,

"

IEEE Transaction on Computers . pp . 902-906, October 1986.

Suggests performability, a composite measure for the perform-
ance and reliability, may be interpreted as the probability
density function of the aggregate reward obtained from a system
during its mission time. For large mission times it is shown
that known limit theorems lead to "an asymptotic normal distrib-
ution for the aggregate reward. Eor finite mission times and
Markovian models the expressions for all moments of performa-
bility are obtained and recursions to compute coefficients in-
volved in the expressions are given. The use of the results is
illustrated through an example of a multiple processor computer
system

.

KEY WORDS: Analysis, Markov chains. Moments, Reliability.

[JAC086] Jacob, Survey arid Examples of Speci fication Techniques
for User -Computer Interfaces . Computer Science and System
Branch, Naval Research Lab, Washington, D.C., April 1986.
Report # NRL-8948.

Provides a survey of techniques suitable for specifying the
user interface of a system and a detailed discussion of rele-
vant literature. A collection of examples of the application
of several representative specification techniques to a common
set of examples in order to compare the relative merits of the
technique is presented.

KEY WORDS: User interface. Specification techniques.

[JAHA86] Jahanian, Mok, "Safety Analysis of Timing Properties in
Real-Time Systems," IEEE Transactions on Software Engineer-
ing . pp. 890-904, September 1986.

Formalizes the safety analysis of timing properties in real-
time systems. Analysis is based on RTL (Real-Time Logic) .

Given the formal specification of a system and a safety
assertion to be analyzed, the goal is to relate the safety
assertion to the system's specification. There are three
cases: 1) safety assertion is a theorem derivable from the
system specification; 2) safety assertion is unsatisfiable
with respect to the system's specification; 3) the negation
of the safety assertion is satis fiable under certain condi-
tions. A systematic method for performing safety analysis is
presented

.

KEY WORDS: Real-time logic. Safety analysis systems
specification. Time-critical system. Verification.

[JAL086] Jalote, Campbell, "Atomic Actions for Fault-Tolerance
Using CSP (Communicating Sequential Processes) ,

" IEEE Trans-
actions on So ftware Engineering , pp . 59-68, January 1986.

Proposes a mechanism for supporting an atomic action in a
system of CSP. The atomic action is used as the basic unit
for providing fault-tolerance. The atomic action is called
an FT-Action and both forward and backward error recovery are
performed in the context of an FT-Action. An implementation
for the FT-action is proposed, which employs a distributed
control, uses CSP primitives, and supports local compile and

60

run-time checking of the forward and backward error recovery
schemes

.

KEY WORDS: Atomic actions. Backward recovery. Forward
recovery. Software fault-tolerance

.

[JARD85] Jard, Monin, and Groz, "Experience in Implementing X.250
(a CCITT subset of Estelle) in Veda, " Proceedings of the
IFIP WQ h-1 Fifth International Workshop on Protocol Specifi-
cation , Testing and Verification , North-Holland Publishing
Company, May 1985

.

Describes Veda as a tool for the verification of protocol
specifications by simulation. Protocols described in a Formal
Description Technique (FDT) based on extended State Transi-
tion Machines are compiled into a code oriented towards
simulation and verification. After a brief summary of Veda
and its environment, the concentration is on problems solved
in implementing that kind of FDT.

KEY WORDS: Verification, Protocol specification. Formal
description technique. Extended state transition machines.

[JEWE85] Jewell, "Bayesian Extensions to a Basic Model of
Software Reliability, " IEEE Transactions on Software En-
gineering

. pp. 1465-1471, December 1985.

Gives a Bayesian Analysis of the software reliability model
of Jelinski and Moranda, based on Meinhold and Singpurwalla

.

Important extensions are provided to the stopping rule and
prior distribution of the number of defects,’ as well as pei

—

mitting uncertainty in the failure rate. The author considers
it easy to calculate the predictive distribution of unfound
errors at the end of software testing, and to see the relative
effects of uncertainty in the number of errors in the detection
efficiency. The behavior of the predictive mode and mean over
time are examined as possible point estimators, but are clearly
inferior to calculating the full predictive distribution.

KEY WORDS: Bayesian Analysis, Program testing. Software
reliability.

[J0HN86] Johnson, Aylor, "Reliability and Safety Analysis of a
Fault-Tolerant Controller," IEEE Transactions on Reliabili-
ty . pp. 355-362, October 1986.

Analyzes a fault-tolerant, microprocessor-based controller
for an electric wheelchair . Two candidate architectures are
considered, including reconfigurable duplication and standby
sparing. The difference in the reliability and safety is
determined through the use of Markov models. Safety is para-
mount in the wheelchair application because of the need to
protect the physically disabled wheelchair user; reliability
by itself is insufficient for selecting an appropriate archi-
tecture in this application. Results show that reconfigurable
duplication is sa'fer than standby sparing even though standby
sparing is more reliable.

KEY WORDS: Safety, Reconfigurable duplication. Standby sparing.

61

[KANT81] Kant, Barstow, "The Refinement Paradigm: The Interac-
tion of Coding and Efficiency Knowledge in’ Program Syn-
thesis, " IEEE Transactions on Software Engineering

, pp

.

458-471, September 1981.

Discusses a refinement paradigm for implementing a high-level
specification in a low-level target language. Coding and an-
alysis knowledge work together to produce an efficient program
in the target language. A particular implementation of this
program synthesis (PSI/SYN) that has automatically implemented
a number of programs in the domain of symbolic processing is
described.

KEY WORDS: Automatic programming. Program synthesis. Refine-
ment, Stepwise refinement.

[KANT85] Kant, "Understanding and Automating Algorithm Design,

"

IEEE Transactions on SQftwar.Q Engineering , pp. 1361-1374,
November 1985

.

Reports on human and automatic design forming a theory on
algorithm design. The amount of space used, problem solving
capabilities, and relationships between methods of algorithm
design and between it and automatic programming are elaborated
on.

KEY WORDS : Automatic programming. Automating algorithm
design. Human problem solving. Protocol analysis.

[KART79] Kartashev, Kartashev, "A Multicomputer System with
Dynamic Architecture," IEEE. Transactions on Computers . pp.
704-720, October 1979.

Considers the organization of certain multicomputer systems
with a particular type of dynamic architecture. The system
allows one to reconfigure via software available hardware
resources, forming computers with different word sizes. A
multicomputer system is formed from identical dynamic com-
puter groups. Basic principles of dynamic computer group
implementation are discussed.

KEY WORDS: Dynamic architecture. Dynamic computer group.
Multicomputer

.

[KARU79] Karunanithi, "Analysis of Digital Systems Using a New
Measure of System Diagnosis, " IEEE Transactions on Comput-
ers . pp. 121-132, February 1979.

Uses a new measure of system diagnosis, t/s diagnosability,
to study the diagnosability of digital systems. This new
measure incorporates the concept of possible replacement of
fault- free units in system repair, whereas the previous meas-
ures have only considered the replacement of faulty units. Two
categories of the new measure, one-step t/s diagnosability and
sequential t/s diagnosability, are investigated. Finally", all
the diagnosis strategies are compared and the tradeoff between
the number of units replaced and the number of test iterations
performed is discussed.

KEY WORDS: Digital systems. Optimal systems design.
Self-diagnosis, System-level diagnosis. Single-loop systems.

62

[KELL76] Keller, "Eormal Verification of Parallel Programs," Com-
munications of the ACM

, p. 371, July 1976.

Presents two formal models for parallel computation: an
abstract conceptual model and a parallel -program model. An
induction principle is described which treats the control and
data state sets on the same ground. Examples are presented
in which the inductive principle is used to demonstrate proofs
of mutual exclusion. An extension of the program model which
allows each process to have its own local variables and permits
shared global variables, and correctness of certain forms of
implementation are discussed.

KEY WORDS: Parallel program. Correctness, Verification,
Deadlock, Mutual exclusion, Petri net.

[KELL85] Keller, Wilkins, "On the Use of an Extended Relational
Model to Handle Changing Incomplete Information, " IEEE Trans-
actions on Sq ftMars Engineering, pp. 620-633, July 1985.

Considers approaches to updating databases containing null
values and incomplete information and distinguishes between
modeling incompletely known worlds and modeling changes in
these worlds . The expanded closed world assumption is proposed
and how to perform updates on databases containing set nulls,
marked nulls, and simple conditional tuples are discussed.
Some issues of refining incompletely specified information
are addressed.

KEY WORDS: Relational databases. Incomplete information.
Updates

.

[KEMM85] Kemmerer, "Testing Formal Specifications to Detect
Design Errors," IEEE Transactions, on Software Engineering ,

pp. 32-42, January 1985.

Discusses why it is necessary to test specifications early
in the software life cycle to guarantee a system that meets
its critical requirements and also provides the desired func-
tionality. Definitions to provide the framework for classi-
fying the validity of a functional requirement with respect
to a formal specification and the design of two tools for
testing formal specifications are included.

KEY WORDS: Design and development. Formal verification.
Reliable software. Requirements, Specifications.

[KENE86] Kenett, Poliak, "A Semi -Parametric Approach to Testing
for Reliability Growth, with Application to Software Sys-
tems, " IEEE Transactions on Reliability, pp- 304-311, August
1986.

Considers the following general model for reliability growth:
the distribution of times between failures belongs to a known
parametric family, and the parameter corresponding to the dis-
tribution of a particular time between failures is either an
unknown constant or an unobservable random variable with a
(possibly unknown) distribution which can depend on past ob-
servations. It is proposed that acceptable reliability can
sometimes be formalized as a state in which the value of the
parameters is lower than a level set before testing begins.

63

Sequential detection methodology is applied to the problem of
ascertaining that an acceptable state of reliability has been
attained and the approach is illustrated by applying it to
testing for reliability growth of a software system, using
actual data

.

KEY WORDS: Failure rate. Sequential detection scheme. False
detection rate.

[KESS77] Kessels, "An Alternative to Event Queues for Synchroni-
zation in Monitors," Communications q_£ the ACM , pp. 500-503,
July 1977.

Describes a synchronizing primitive which is nearly as ex-
pressive as the conditional wait, but can be implemented more
efficiently. An implementation of this primitive in terms of
P and V operations is given together with a correctness proof.
Two examples are presented: the readers and writers problem
and the problem of information streams sharing a finite buffer
pool

.

KEY WORDS: Monitor, Mutual exclusion. Synchronization,
Conditional critical region.

[KESS81] Kessels, "The Soma: A Programming Construct for Distrib-
uted Processing, " IEEE Transaction on Software Engineering ,

pp. 502-509, September 1981.
•

Proposes for parallel programming a Soma (Software Machine)
which is a sequential process that communicates with other
somas by exchanging messages via mailboxes. It is well-suited
for implementation on conventional as well as on distributed
computer architectures. A rationale is given for its communi-
cation characteristics and comparison and examples are included.

KEY WORDS: Concurrency, Message passing. Synchronization.

[KIM84] Kim, "Highly Available Systems for Database Applications,

"

ACM Computing Surveys . pp. 71-98, March 1984.

Presents an overview of fault tolerant database systems, in-
cluding discussion of the major commercial f/t systems (Tandem,
Synapse, and others) . Emphasis is placed on architectural
issues. A description of IBM's Highly Available Systems re-
search project is included.

KEY WORDS: Fault tolerance. Reliability, Database concurrency
control and recovery. Relational database.

[KING80] King, "Program Correctness: On Inductive Assertion
Methods," IEEE Transactions sn Software Engineering , pp.
465-479, September 1980.

Studies several of the proof of correctness methods. In
particular, the form of induction used is explored in detail.
A relational semantic model for programming languages is intro-
duced and its relation to predicate transformers is explored.
A rather elementary viewpoint is taken in order to expose, as
simply as possible, the basic differences of the methods and
the underlying principles involved. These results were obtained
by attempting to thoroughly understand the "subgoal induction"
method

.

64

KEY WORDS: Correctness assertions. Predicate transformers.
Program correctness. Relational semantics. Subgoal induction.

[KLIG86] Kligerman, Stoyenko, "Real-Time Euclid: A Language for
Reliable Real-Time Systems," IEEE Transactions on Software
Engineer,ing, pp. 941-949, September 1986.

Introduces Real-Time Euclid, a language designed specifically
to address reliability and guaranteed schedulability issues in
real-time systems. Real-Time Euclid employs exception handlers
and import/export lists to provide comprehensive error detec-
tion, isolation, and recovery. Philosophy of the language is
that every exception detectable by the hardware or the software
must have an exception handler clause with it. The language
definition forces every construct in the language to be time-*
and space-bounded

.

KEY WORDS: Exception handling. Guaranteed response time.
Real-time systems. Software reliability.

[KLUG82] Kluge, Lautenbach, "The Orderly Resolution of Memory
Access Conflicts Among Competing Channel Processes, " IEEE
Transactions sn Computers . pp. 194-207, March 1982.

Presents an abstract regulation scheme for the orderly reso-
lution of multiple conflicts in dynamic systems, in which the
comparable 'claims' of the conflicting parties can precisely be
formulated. The scheme is applied to resolve multiple memory
access conflicts among several concurrently operating high
speed channel processors

.

KEY WORDS: Channel processors. Memory access conflicts,
Petri nets. Synchronic distance.

[KNIG86] Knight, Leveson, "An Experimental Evaluation of the As-
sumption of Independence in Multiversion Programming, " IEEE
Transactions on Sa.£tyar.Q Engineering , pp. 96-109, January
1986.

Presents hypothesis that programs that have been developed in-
dependently will fail independently. The experiment to test
this and the results of the test are included. The conclusion
is that N-version programming must be used with care and anal-
ysis of its reliability must include the effect of dependent
errors

.

KEY WORDS: Design diversity. Fault-tolerant software.
Multiversion programming. Software reliability.

[K0HL81] Kohler, "A Survey of Techniques for Synchronization and
Recovery in Decentralized Computer Systems," ACM Computing
Surveys

. pp. 149-184, June 1981.

Surveys two related and fundamental problems in designing
decentralized systems which support an object model of com-
putation and proposed solution techniques. The first problem
is synchronizing access to shared objects while allowing a
high degree of concurrency. The second problem is the recov-
ery of objects in spite of user errors, application errors, or
partial system failure. Requirements and techniques for

65

implementing atomic actions in a decentralized environment are
discussed

.

KEY WORDS: Decentralized system. Access synchronization.
Concurrency control. Crash recovery. Atomic action.

[K0RE79] Koren, Su, "Reliability Analysis of N-Modular Redundan-
cy (NMR) Systems with Intermittent and Permanent Faults,"
IEEE Transactions on Computers . pp. 514-520, July 1979.

Presents a statistical model for intermittent faults and uses
it to analyze the reliability of NMR systems in mixed inter-
mittent and permanent fault environments

.

KEY WORDS: Intermittent fault. Modular redundancy. Permanent
fault. Reliability.

[K0RN79] Kornfeld, Using Parallel Processing for Problem Solving .

Artificial Intelligence Laboratory, 545 Technology Square,
Cambridge, MA, December 1979. A. I. Memo No. 561.

Develops parallel processing as a conceptual aid in the design
of programs for problem solving applications. A pattern-directed
invocation language known as Ether is introduced. Ether embod-
ies two notions in language design: activities and view-points.
Activities are used for different goals of the system. View-
points are used for representing multiple world models . A
number of problem solving schemes are developed making use of
viewpoints and activities. The use of Ether helps eliminate
deadlock and race condition.

KEY WORDS: Parallel processing. Distributed computation.
Pattern-directed invocation. Problem solving.

[KRAM78] Kramer, Cummingham, "Towards A Notation for the Func-
tional Design of Distributed Systems, " Proceedings of the
1979 International Cmferenca. 2D Parallel Processing , pp.
69-76, IEEE, August 22-25, 1978.

Suggests an approach to the design of distributed processing
systems . The design process promotes structural decomposition
of the system corresponding to a factorisation of its specifi-
cation. Designs include consistency checks at the system and
module levels. The approach is based on the informal use of
verifying assertions in a programming notation. The assertions
provide a useful mechanism for the description and analysis of
system properties

.

KEY WORDS: Distributed processing systems. Finite state
machines. Resource sharing.

[KRAM85] Kramer, Magee, "Dynamic Configuration for Distributed
Systems," IEEE Transactions on So ftware Engineering , pp.
424-436, April 1985.

Introduces a model of the configuration process which permits
dynamic incremental modification and extension. This model is
used to determine the properties required by languages and
their execution environments to support dynamic configuration.
CONIC, the distributed system with has been developed at Imper-
ial College with the specific objective of supporting dynamic

66

configuration is described to illustrate the feasibility of
the model

.

KEY WORDS: Configuration process. Configuration specification.
Distributed systems. Flexibility, Reusability, System evolution.

[KR0L86] Krol, " (N,K) Concept Eault Tolerance," IEEE Transactions
on Computers , pp. 339-349, April 1986.

Describes a new fault-tolerant computer architecture based on
a 'distributed implementation' of a symbol-error correcting
code. The (N,K) concept is described in detail for N = 4 and
K = 2. In order to cope with unreliable input devices, the
interactive consistence problem is defined and an algorithm
that solves the problem is presented. Practical implementa-
tion of this algorithm is the (4,2) concept described.

KEY WORDS: Consistency, Error-correcting codes. Fault
tolerance. Hardware redundancy.

[KUMA80] Kumar, Davidson, "Computer System Design Using Hier-
archical Approach to Performance Evaluation, " Communications
of the ACM , pp. 511-521, September 1980.

Introduces a hierarchy of performance models. In order for
hierarchy to be a cost-effective tool in the design of computer
systems, it should consist of models spanning a wide range of
accuracy and cost. Judicious use of the hierarchy can satisfy
the conflicting needs of high accuracy and low cost of perform-
ance evaluation. A system design procedure that uses such a
hierarchy is developed and illustrated by applying concepts to
a case study of system design. Results of optimizations and a
simple cost model are discussed. The optimization procedure
converges to a region very close to a locally optimum system.
The efficiency of this procedure is considerably greater than
the brute force approach.

KEY WORDS: Hierarchical modeling. Performance evaluation.
System design. Optimization algorithms.

[KUMA86] Kumar, Hariri, and Raghavendra, "Distributed Program Re-
liability Analysis," IDEE Transactions on Software Engineer-
ing . pp. 42-50, January 1986.

Uses two reliability measures: 1) distributed program reli-
ability; and 2) distributed system reliability to accurately
model the reliability of distributed systems. Graph theory
techniques are applied to systematically generate file spanning
trees that provide all required connections.

KEY WORDS: Distributed program. Distributed system. Reliability,
Spanning tree.

[LADN79] Ladner, "The Complexities of Problems in Systems of Com-
municating Sequential Processes, " Proceedings q_f the Eleventh
Annual ACM Symposium on Theory of Computing , pp. 214-223,
Atlanta, GA, 1979.

Investigates the belief that systems of communicating sequen-
tial processes are harder to analyze than purely sequential
processes. The belief is largely based on the observation
that the parallelism in such systems leads to a large number

67

of possible interleavings of the actions of the different pro-
cesses. This report supports the idea that the properties of
communicating processes are intrinsically complex. Specific-
ally / the concepts of potential deadlock and lockout are ex-
plained.

KEY WORDS: Parallelism, Lockout, Einite state processes.
Deadlock, Critical section.

[LAMP76] Lamport, "Time, Clocks, and the Ordering of Events in a
Distributed System," Communications ol the ACM , pp. 558-
564, July 1976.

Examines the concept of one event happening before another in
a distributed system and shows how to define a partial ordering
of events. A distributing algorithm is given for synchronizing
a system of logical clocks which can be used to totally order
the events. The algorithm is specialized for synchronizing
physical clocks and a bound is derived on how far out of syn-
chrony clocks can become.

KEY WORDS: Distributed systems. Computer networks. Clock
synchronization. Multiprocess systems.

[LAMP77] Lamport, "Concurrent Reading and Writing, " Communica-
tions of the ACM

, pp. 806-811, November 1977.

Investigates sharing data among asynchronous processes

.

Emphasis is placed on theorems and algorithms including re-
peated reads and techniques for transmitting messages between
processes

.

KEY WORDS : Asynchronous multiprocessing. Multiprocess synchron-
ization, Shared data.

[LEE82] Lee, Shin, "Rollback Propagation Detection and Perfor-
mance Evaluation of FTMR2M- -A Fault-Tolerant Multiproces-
sor, " PrQCQ^dings on the. 9t.h Annual on Computer
Architecture, p. 171, April 1982.

Considers the rollback propagation and the performance of a
fault-tolerant multiprocessor with a callback recovery mech-
anism (FTMR2M) , which was designed to be tolerant of hardware
failure with minimum time overhead. Approaches for evaluating
the recovery overhead and analyzing the performances of FTMR2M
are presented. Two methods for detecting rollback propagations
and multi-step rollbacks between cooperating processes are also
proposed

.

KEY WORDS: Fault-tolerant , Rollback recovery. Cooperating
processes. Reliability.

[LEMO80] Le Moli, "A Model for the Formal Description of Entities
Which Perform Protocols," Compunet . CREI -Politecnico di
Mialano, Piazza Leonardo Da Vinci, 7 Milano, Italy, 1980.

Presents a model of entities that performs protocols. This
report is part of a series of papers on the same subject. The
steps used in developing the model are standardizing, formal-
izing and implementing.

KEY WORDS: Standardization, Formalization methods.

68

[LESS80] Lesser, Erman, "Problems of Designing Supersystems with
Dynamic Architectures, " IEEE Transactions on Computers

. pp

.

1114-1126, December 1980.

Considers basic concepts of designing a Supersystem with
dynamic architecture . The system is provided with two new
sources of throughput increase: 1) by redistributing hardware
resources it may maximize the number of parallel information
streams handled by the available sources; 2) by reconfiguring
resources into different types of architecture it may minimize
the idle time and complexities of resources. System is assem-
bled from dynamic computer groups with memory-processor bus
that introduces minimal delay in communication between any two
modules . The system reconfiguration from one architecture to
another is studied and how such reconfiguration may be con-
trolled by a system monitor is described.

KEY WORDS: Dynamic architecture. Powerful parallel system.
Reconfigurable hardware resource. Reconfigurable memory
processor

.

[LEUN80] Leung, Ramamoorthy, "An Approach to Formal Specifica-
tion of Control Modules, " IEEE Transactions on Software En-
gineering

. pp. 485-488, September 1980.

Discusses formal specification of program modules which
control access to resources shared among concurrent processes

.

The concept of state space is defined for such program'modules
and the formal specification is given in terms of a program
module invariant and input- output assertions defined on the
state space. Examples are provided to illustrate the construc-
tion of specifications with this approach.

KEY WORDS: Concurrent processes. Invariant assertion. Control
modules. Program specification.

[LICH86] Lichtman, "Generation and Consistency Checking of Design
and Program Structures," IEEE Transactions, on Software En-
gineering . pp. 172-181, January 1986.

Describes a mini methodology for generation and representa-
tion of design and program structures, and structural con-
sistency checking between two successive designs or between a
design and a program.

KEY WORDS: Consistency checking. Program Design Language,
Software development. Software quality assurance.

[LIES86] Liestman, Campbell, "A Fault-Tolerant Scheduling Prob-
lem," IEEE Transactions on Software Engineering, pp. 1089-
1095, November 1986.

Discusses a deadline mechanism which has been proposed to
provide fault tolerance in real-time software systems. The
mechanism trades the accuracy of the results of a service for
timing precision. Two independent algorithms are provided for
each service subject to a deadline. An algorithm to generate
an optimal schedule for the deadline mechanism is introduced
and a simple and efficient implementation is discussed. The
schedule ensures the timely completion of the alternate algo-
rithm despite a failure to complete the primary algorithm
within real time

.

69

KEY WORDS: Real-time systems. Scheduling, Software fault
tolerance. Software reliability.

[LIN83] Lin, Liu, and Graff, "Verification of a Methodology for
Designing Reliable Communication Protocols, " Proceedings of
the Eighth Data Communications Symposium, pp. 141-149, IEEE
Computer Society Press, Silver Spring, MD, October 3-6,
1983.

Presents a new methodology for designing reliable communica-
tion protocols . This methodology enhances communicating
processes with a synchronization mechanism so that they can
detect and resolve the errors caused by collisions automatic-
ally. Also the application of a program verification technique
to this methodology is discussed.

KEY WORDS: Communication protocols. Completeness, Synchron-
ization .

[LIN86] Lin, Wu, "Reconfiguration Procedures for a Polymorphic
and Partitionable Multiprocessor, " IEEE Transactions on Com-
puters . pp. 910-916, October 1986.

Presents a collection of reconfiguration procedures for a
multiprocessor which employs multistage interconnection net-
works. These procedures are used to dynamically partition
the multiprocessor into many subsystems, and reconfigure them
to form a variety of commonly used topologies to match task
graphs. With these procedures, a subsystem can be reconfigured
in -the form of the desired topologies without interfering with
other subsystems. In addition, the reconfiguration of a sub-
system can be accomplished in constant time, independently of
subsystem size

.

KEY WORDS: Parallel processing, Reconfigurable multiprocess-
ors, Interconnection networks. Circuit switching. Connection
conflicts

.

[LING79] Linger, Mills, and Witt, Stxug.tLuned Erp.gr.ainiiu.rig, Thetry
and Practice . Addison-Wesley, 1979.

Describes functional semantics approach to formal verifica-
tion of sequential deterministic processes. Many examples
are included. The approach described in this text has been
used as the basis of IBM's Software Engineering Institute
training program.

KEY WORDS: Verification, Sequential.

[LIPT73] Lipton, Qn Synchronization Primitive Systems , Carnegie-
Mellon University, 1973. Doctoral Thesis.

Presents a formal model of a process concept. The model is
used to implement four synchronization primitives and the re-
sults are compared. Tne model includes conditional branches
and a scheduler in order to better see the differences of the
primitives

.

KEY WORDS: Synchronization, Primitive process concept, PV,
Interprocess communication

.

70

[LIPT75] Lipton, "Reduction: A Method of Proving Properties of
Parallel Programs," CQ^upjQat iQns ol the ACM pp. 717-721,
ACM, December 1975

.

Indicates that when proving a parallel program has a given
property, it is often convenient to assume that a statement is
indivisible, i.e., the statement cannot be interleaved with the
rest of the program. Sufficient conditions are obtained to
show that the assumption that a statement is indivisible can
be relaxed and still preserve properties such as halting.

KEY WORDS: Deadlock free. Reduction, Interruptible parallel
program. Verification method.

[LISK81] Liskov, Guardi ans and Actions : Linguistic Support for
Robust . Distributed Programs , pp. 1-30, Computation Struc-
tures Group, MIT, Cambridge, MA, November 1981. Memo 210-1.

Presents an overview of an integrated programming language
and system designed to support the construction and maintenance
of distributed programs --programs in which modules reside and
execute at communicating, but geographically distinct nodes.
The language addresses the writing of robust programs that
survive hardware failures without loss of distributed informa-
tion and that provide highly concurrent access to that informa-
tion while preserving consistency. Several new linguistic
constructs are provided; among them are atomic actions, and
modules called guardians that survive node failures.

KEY WORDS: Integrated programming language. Distributed
programs. Robust programs.

[LITT80] Littlewood, "Theories of Software Reliability: How Good
Are They and How Can They Be Improved, " IEEE Transactions on
So.££wars Engineering , PP- 489-500, September 1980.

Suggests ways to improve modeling assumptions with examples
of mathematical implementations. Model verification via real-
life data is discussed and minimum requirements are presented.
An example shows how these requirements may be satisfied in
practice

.

KEY WORDS: Program error. Reliability growth. Software
failure. Software life-cycle cost. Software reliability
measurement

.

[L0CK85] Locks, "Recent Developments in Computing of System-
Reliability," IEEE Transactions on Reliability , pp . 425-436,
December 1985.

Presents the following: 1) The inclusion-exclusion (IE) , sum
of disjoint products (SDP) , and topological reliability (TR)
algorithms all have the exponential -time property. 2) IE or
SDP results in a system reliability formula which is a sum of
products of the probabilities of the components. 3) In an m-
out-of-n system, by ordering the paths so that each path dif-
fers from its predecessor by exactly one component, the SDP
probability formula has the same number of terms as there are
paths. 4) Certain proofs are provided for SDP. 5) Direct
relationship between the IE and TR formulas is described.

71

KEY WORDS: System reliability. Inclusion-exclusion, Topo-
logical reliability, m-out-of-n system, Source-to-multiple
terminal reliability.

[LU78] Lu, "Error-Correcting Tree Automata for Syntactic Pattern
Recognition," IEEE Transactions on Qpmp..Utsns, pp. 1040-1053,
November 1978

.

Defines the syntax error on trees in terms of five types of
error transformations: substitution, stretch, split, branch
and deletion. The distance between two trees is the least
cost sequence of error transformations needed to transform one
to the other. Based on this, a class of error-correcting tree
automata (ECTA) is proposed. The proposal is illustrated by a
character recognition example.

KEY WORDS: Character recognition. Error transformation. Pattern
recognition. Syntactic pattern recognition.

[LUCE79] Lucena, Pequeno, "Program Derivation Using Data Types:
A Case Study, " IEEE Transactions on Software Engineering ,

pp. 586-592, November 1979.

Discusses some issues in program synthesis by relating the
idea of systematic program derivation with the concepts of
data type and correctness of data representation. The notion
of an incomplete definition of a data type at a high level of
abstraction is introduced. The ideas are illustrated through
an example

.

KEY WORDS: Correctness of data representation. Program
derivation. Program schema. Program specification. Program
synthesis

.

[MA82] Ma, Lee, and Tsuchiya, "A Task Allocation Model for Dis-
tributed Computing Systems," IEEE TransaC-ticns on Computers .

pp. 41-47, January 1982.

Presents a task allocation model that allocates application
task among processors in distributed computing systems satis-
fying: 1) minimum interprocessor communication cost; 2) bal-
anced utilization; 3) all engineering application requirements.
A cost function is formulated to measure the interprocessor
communication and processing costs. Model was applied to an
Air Defense case study. Results indicate the allocation model
is applicable to large practical problems.

KEY WORDS : Branch and bound. Distributed processing.
Interprocess communication. Task allocation.

[MALL78] Mallela, "Diagnosable Systems for Intermittent Faults,

"

IEEE Transactions sn Computers . pp. 560-566, June 1978.

Studies the intermittent fault diagnosis capabilities of
systems composed of interconnected units which are capable
of testing each other. Necessary and sufficient conditions
are derived and bounds are established for some well-known
systems. In contrast to permanent fault diagnosable sys-
tems, there exists only a single type on intermittent fault
diagnosable system. A procedure is given to determine the
intermittent fault diagnosability of any given system.

72

KEY WORDS: Incomplete diagnosis. Incorrect diagnosis.
Intermittent faults, Self-diagnosable system. Syndrome.

[MANC86] Mancini, "Modular Redundancy in a Message Passing Sys-
tem, " IEEE Transactions on Software Engineering , pp. 79-86,
January 1986 .

Presents modular redundancy in the form of replicated
computations in a concurrent programming model consisting
of communicating sequential processes. Conditions which must
always be verified to ensure correctness in the presence of
nondeterminism are presented. Implementations which satisfy
the given conditions are discussed.

KEY WORDS: Communicating sequential processes. Fault toler-
ance, Guarded commands. Nondeterminism, Replicated process- •

ing.

[MAO80] Mao, Yeh, "Communication Port: A Language Concept for
Concurrent Programming, " IEEE Transactions on Software En-
gineering . pp. 194-204, March 1980.

Introduces a new language concept- -Communication Port (CP)

,

for programming on distributed processor networks . These net-
works can contain an arbitrary number of processors each with
its own private storage but with no memory sharing. Processors
communicate via explicit message passing. CP is an encapsula-
tion of two language properties: communication nondeterminism"
and "communication disconnect time." CP provides a tool to
write well -structured modular, and efficient concurrent pro-
grams. A number of examples are given to demonstrate the power
of the new concepts.

KEY WORDS: Communicating sequential processes. Communication
ports. Concurrent programming. Distributed networks, Nondeter-
minisni

.

[MART86] Martin, De Millo, "Operational Survivability in Grace-
fully Degrading Distributed Processing Systems, ' IEEE Trans-
actions on Software Engineering , pp. 693-704, June 1986.

Discusses the use of experimental methods and statistical
analysis techniques to study factors influencing operational
survivability in gracefully degrading systems. Survivability-
data generated using a statistically designed experiment in
conjunction with a simulation model of network survivability
are presented. Models that are acceptable from both an estim-
ation and prediction viewpoint are also presented. Possible
commercial and military applications are suggested.

KEY WORDS: Distributed processing system. Graceful degrada-
tion, Operational survivability.

[MARX81] Marxen, Muller-Zimmerman, and Schindler, "The OSA Project:
The RSPL-Z Compiler," International Computer Conference

1 81 . Denver, CO, 1981.

Explains that RSPL stands for "Reliable Software Production
Language" and should support producing reliable software, at
least in the area of communications software. There are two

73

main reasons for this: 1) RSPL is a formal specification lang-
uage for which the pragmatic, semantic and syntactic elements
are designed such as to make RSPL protocol/service specifica-
tions concise and clear; and 2) RSPL bridges the gap between
formal specification and implementation: As far as protocol
specifications are concerned, it is automatically compilable
into executable code and therefore it is an implementation
1anguage , as we1 1

.

KEY WORDS: Reliable software. Specification language.

[MCKE85] McKendry, "Ordering Actions for Visibility, " IEEE Trans-
actions on Software Engineering , pp. 509-519, June 1985.

Explains that when concerned with synchronization to control
ordering, a function is often associated with objects. An
example to illustrate requirements for the ordering mechanism
is presented. A model of nest actions is used as a basis for
categorizing visibility requirements. Several expediencies
that result from ordering requirements are established and
the difficulty and potential cost of providing generalized
mechanisms are illustrated. In many situations, a single
synchronization variable can be used to control blocking,
and recovery for nested actions can be implemented with a
single backup copy of each item. These savings appear to be
fundamental to making the object-action approach viable for
OS construction

.

•

KEY WORDS: Abstract data types. Concurrency control.
Distributed systems. Synchronization.

[MCMI82] McMillen, Siegel, "Performance and Fault Tolerance. Im-
provements in the Inverse Augmented Data Manipulator Net-
work, " Erg-geedings on the 9th Annual Symposium on Computer
Architecture . p. 63, April 1982.

Discusses two aspects of the Inverse Augmented Data Manipula-
tor (IADM) network design: performance and fault tolerance. A
single stage look-ahead scheme for predicting blockage is pre-
sented to enhance performance. One method of adding some links
to the network to enable it to tolerate one link failure is
described. A different method of adding links is shown that
both improves performance and allows the network to tolerate
two switching element or two link failures. Also, a new rout-
ing tag scheme that accommodates the new links is discussed.

KEY WORDS: Large scale parallel distributed processing
systems. Redundancy, Eault tolerant.

[MEDI81] Medina-Mora, Eeiler, "An Incremental Programming En-
vironment," IEEE Transactions an So ftware Engineering , pp.
472-481, September 1981.

Describes an incremental programming environment (IPE)
based on compilation technology, but providing facilities
traditionally found only in interpretive systems. In IPE
the programmer has a uniform view of the program in terms of
the programming language. The program is manipulated through
a syntax-directed editor and execution is controlled by a de-
bugging facility. Translator, linker, loader are automati-
cally applied and are not visible to the programmer.

74. -

KEY WORDS: Ada environments. Incremental compilation. Inter-
active debugging. Syntax-directed editing.

[MEKL80] Mekly, Yau, "Software Design Representation Using
Abstract Process Networks, " IEEE Transactions on Software
Engineering

, pp . 420-434, September 1980.

Presents an approach to software design representation which
is consistent with the concept of engineering blueprints. The
main criteria for software engineering blueprints are defined
and a network scheme of graphical representation is considered
through an overview of Petri net techniques. The concept of
an abstract process (AP) -basic element is introduced as the
basic element of system representation. Methods of AP-net
construction are presented and illustrated by examples.

KEY WORDS: Abstract process, AP-net, Petri net. Process ex-
pression, Software design representation.

[MENA79] Menasce, Muntz, "Locking and Deadlock Detection in
Distributed Data Bases, " IEEE Transactions on Software
Engineering, pp. 195-202, May 1979.

Describes two protocols for the detection of deadlocks in
distributed data bases- -a hierarchically organized one and a
distributed one. A graph model which depicts the state of
execution of all transactions in the system is used by both
protocols. * A cycle in this graph is a necessary and suffi-
cient condition for deadlock to exist. Nevertheless, neither
protocol requires that the global graph be built and maintained
in order for deadlocks to be detected. In the case of the
hierarchical protocol, the communications cost can be optimized
if the topology of the hierarchy is appropriately chosen.

KEY WORDS: Data bases. Deadlock detection. Distributed data
bases , Graph theory

.

[MERK78] Merkle, "Secure Communications Over Insecure Channels,

"

Communications of the ACM
, pp. 294-299, April 1978.

States that, according to traditional conceptions of crypto-
graphic security, it is necessary to transmit a key, by secret
means, before encrypted messages can be sent securely. It is
shown that it is possible to select a key over open communica-
tion channels so communications security is maintained. A
method is described which forces any enemy to expend an amount
of work which increases as the square of the work required of
the two communicants to select a key.

KEY WORDS: Security, Cryptography, Cryptology, Computer
network security. Passive eavesdropping.

[MEYE78] Meyer, "An Efficient Eault Diagnosis Algorithm for Sym-
metric Multiple Processor Architectures, " IEEE Transactions
on Computers

. pp . 1059-1063, November 1978.

Describes a new diagnosis algorithm for determining the ex-
isting fault situation in a symmetric multiple processor ar-
chitecture. The algorithm assumes that there are n processors
(each of which is tested by at least '

t' other processors)

,

75

and at most '
t* of which are faulty. The existing fault sit-

uation is always diagnosed if n >= 2t+l and, in some cases,
can still be diagnosed in n < 2t+l . Implementation is
straightforward and suitable for microprocessor applications.

KEY WORDS: Diagnosis algorithm. Fault syndromes. Modular
networks

.

[MEYE80a] Meyer, "On Evaluating the Performability of Degradable
Computing Systems," IEEE Transactions sn Computers , pp.
720-731, August 1980.

Introduces a unified measure, called 'performability' , and
establishes the foundations of performability modeling and
evaluation. A critical step in the modeling process is the
introduction of a user-oriented performance levels. A hier-
archical modeling scheme is used to formulate the capability
function and capability is used to evaluate performability.
These techniques are then illustrated for a specific applica-
tion: the performability of an aircraft computer in the envi-
ronment of an air transport mission.

KEY WORDS: Degradable computing systems. Fault-tolerant
computing. Hierarchical modeling, Performability evaluation.
Performance evaluation. Reliability evaluation.

[MEYE80b] Meyer, Furchtgott, and Wu, "Performability Evaluation
of the SIFT Computer," IEEE Transactions on Computers . pp.
501-510, June 1980.

Discusses performability modeling and evaluation methods
applied the SIFT Computer in an air transport mission envi-
ronment. User-visible performance of the 'total system' is
modeled as a random variable taking values in a set of 'accom-
plishment levels' . Base-model is a stochastic process whose
states describe the internal structure of SIFT as well as
relevant conditions of its environment.

KEY WORDS: Fault-tolerant computing. Performance evaluation.
Reliability evaluation.

[MEYE81] Meyer, "A Fault Diagnosis Algorithm for Asymmetric Modu-
lar Architectures," IEEE Tran?actions on Csrobrs , pp- 81-
82, January 1981.

Emphasizes the analysis of an algorithm for the automatic
fault diagnosis of asymmetric modular networks. The network
model used is the one proposed by Preparata, the faults are
assumed to be solid, and the Hakimi -Amin t-diagnosability hy-
pothesis is supposed to be satisfied.

KEY WORDS: Connection assignment. Diagnosis algorithm. Modular
architecture. Permanent fault.

[MILI85] Mili, "Towards a Theory of Forward Error Recovery, " IEEE
Transactions on So ftware Engineering , pp. 735-748, Auqust
1985.

Defines forward recovery as that which consists of generating
a sufficiently correct state from the current (not too) con-
taminated state. A tentative framework is presented for the

76

study of forward error recovery and then some preliminary re-
sults and some future research within the proposed framework
are discussed.

KEY WORDS: Error recovery. Exception handling. Forward error
recovery. Program fault-tolerance.

[MILL86] Miller, "Exponential Order Statistic Models of Software
Reliability Growth, " IEEE Transactions on So ftware Engineer-
ing

. pp. 12-24, January 1986.

Explains that failure times of a software reliability growth
process are modeled as order statistics of independent noniden
tically distributed exponential random variables. Various
characterizations, properties, and examples of this class of
models: Jelinski-Moranda, Goel-Okumoto, Littlewood, Musa-Okumo
to logarithmic and more are discussed.

KEY WORDS: Complete monotonicity, Nonhomogeneous Poisson
processes. Probability models. Software reliability.

[MULA85] Mulazzani, "Reliability Versus Safety," Proceedings
SAFCQMP ' 85

. pp . 141-146, Pergamon Press, 1985.

Indicates reliability and safety are not identical and must
be traded off against each other in computer-based, real time
systems. A quantitative model for effect of computer control
on reliability and safety of a system is derived. Reliability
vs safety tradeoff under various fault tolerant techniques ("2
out of 2 ,

"2 out of 3" (or N-version programming), and recov-
ery block) are considered.

KEY WORDS: Real-time systems. Reliability, Safety, Fault
tolerant

.

[MURA80] Murata, "Synthesis of Decision-Free Concurrent Systems
for Prescribed Resources and Performance, " IEEE Transactions
on Software Engineering

, pp . 525-530, November 1980.

Presents a method for synthesizing or growing live and safe
marked graph models of decision- free concurrent computations.
The approach is modular in the sense that subsystems represent
ed by arcs (and nodes) are added one by one without the need
of redesigning the entire system. The following properties of
marked graph models can be prescribed in the synthesis : 1)
liveness (absence of deadlocks) ; 2) safeness (absence of over-
flows) ; 3) the number of reachability classes; 4) the maximum
resource (temporary storage) requirement; 5) computation rate
(performance); and 6) numbers of arcs and states.

KEY WORDS: Deadlock- freeness. Decision- free concurrent sys-
tems, Modular synthesis. Parallel computation model.

[MUSS80] Musser, "Abstract Data Type Specification in the AFFIRM
System," IEEE Transactions on Software Engineering, pp . 24-
31, January 1980.

Describes the data type definition facilities of the AFFIRM
system for specification and verification. The rewrite rule
concepts that form the theoretical basis for its data type

77

facilities are reviewed. Methods of ensuring convergence (fi-
nite and unique termination) of sets of rewrite rules and on
the relation of this property to the equational and inductive
proof theories of data types are emphasized.

KEY WORDS: Abstract data types. Algebraic specifications,
Equational theories. Program verification.

[NARA86] Narasimhan, Nakajima, "An Algorithm for Determining the
Fault Diagnosability of a System, " IEEE Transactions on Com-
puters . pp. 1004-1008, November 1986.

Discusses the fault diagnosability problem which is the problem
of computing the maximum number of faulty units which a system
can tolerate without losing its capability of identifying all
such faulty units . The problem for the model introduced by
Barsi, Grandoni, and Maestrini is studied. A new characteriza-
tion of the model is presented, and an efficient diagnosability
algorithm for a system in this model is developed.

KEY WORDS: Connection assignment, Diagnosable systems. Fault
diagnosis. Self-diagnosis.

[NASA85] Annotated Bibliography of S-Qffcwar.S Engineering Laboratory
Literature . NASA Goddard, Greenbelt, MD, November 1985.

Describes all SEL literature published up to November 1985.

KEY WORDS: Metrics.

[NATA85] Natarajan, "Communication and Synchronization Primitives
for Distributed Programs," IEEE Transactions on Software En-
gineering, pp. 396-416, April 1985.

Presents a design of communication and synchronization
primitives for distributed programs. Different kinds of com-
munications failures are identified, and distinct mechanisms
for handling them are provided. To enable the construction of
atomic actions two new program components, atomic agent and
manager are introduced. Notion of 'conflicts relation' is
introduced in which a designer can construct either an 'opti-
mistic' or 'pessimistic' concurrency control scheme. The
design also incorporates primitives for constructing 'nested'
atomic actions

.

KEY WORDS: Atomic action. Communication failure. Computing
agent. Distributed operating system. Distributed system.

[NECH85] Neches, Swartout, and Moore, "Enhanced Maintenance and
Explanation of Expert Systems Through Explicit Models of
Their Development, " IEEE Transactions on Software EngiDSSEt.
ing

. pp. 1337-1350, November 1985.

Describes a paradigm for constructing expert systems which
attempts to identify that tacit knowledge, provides means for
capturing it in the knowledge bases of expert systems, and
applies it towards more perspicuous machine-generated explan-
ations and more consistent and maintainable system organization.

KEY WORDS: Expert systems. Natural language generation.
Software development. Software maintenance.

78

[NEGR84] Negrini, Sami, and Scarabottolo, "Policies for System-
level Diagnosis in a Non-Hierarchic Distributed System,

"

IEEE Transactions an Reliability , pp. 333-342, October 1984.

Presents a policy for system- level diagnosis and error con-
finement in distributed systems. The class of architectures
to which the policy applies is defined, and the physical
supports needed are described. It is proven that mechanisms
presented permit reaching deterministic results of diagnosis
in finite time and that system- level error confinement is
effectively obtained. Mechanisms are implemented by means
of software.

KEY WORDS: Fault tolerance. Distributed processing. System-
level diagnosis. Error -confinement , Non-hierarchie system.

[NEUM86] Neumann, "On Hierarchical Design of Computer Systems for
Critical Applications," IEEE Transactions on Software En-
gineering . pp. 905-920, September 1986.

Considers the design of computer systems that must be trusted
to satisfy simultaneously a variety of critical requirements
such as human safety, fault tolerance, high availability, se-
curity, privacy, integrity, and timely responsiveness --and to
continue to do so throughout maintenance and long-term evolu-
tion. Hierarchical abstraction provides the basis for success-
ive layers of trust with respect to the full set of critical
requirements, explicitly reflecting differing degrees of crit-
icality.

KEY WORDS: Abstraction, Critical requirements. Hierarchical
design. Reliability, Safety, Security, Trusted subsystems.

[0KUM85] Okumoto, "A Statistical Method for Software Quality Con-
trol," IEEE Transactions on Software Engineering , pp. 1424-
1430, December 1985.

Proposes a statistical method that can be used to monitor,
control, and predict the quality (measured in terms of failure
intensity) of a software system being tested. The proposed
estimation method is validated through a simulation study. A
method for predicting the additional execution time required
to achieve a failure intensity objective is discussed. A set
of failure data collected from a real-time command and control
system is used to demonstrate the proposed method.

KEY WORDS: Additional software test time. Logarithmic Pois-
son model. Software reliability model. Software quality con-
trol .

[OSSF80] Ossfeldt, Jonsson, "Recovery and Diagnostics in the
Central Control of the AXE Switching System, " IEEE Transac-
tions on Computers . pp. 482-491, June 1980.

Investigates AXE which is a stored program controlled (SPC)
telephone exchange system. AXE consists of a duplicated cen-
tral processor and a number of regional processors. It has
secure fault detection and recovery, and efficient diagnosis
of permanent and temporary faults (verified by physical fault
simulations and field experience)

.

79

KEY WORDS: Concurrent diagnosis. Diagnostic programs.
Fault-tolerant computing. Maintainability, Intermittent fault,
Sel f-checking

.

[0WIC79] Owicki, Gries, "Verifying Properties of Parallel Pro-
grams : An Axiomatic Approach, " Communications qJl the ACM ,

pp. 279-285, May 1979.

Presents a method of proving properties of parallel programs
by the use of axioms. This deductive system is more powerful
than the one developed by Hoare because of the use of auxiliary
variables. Properties proved include mutual exclusion, freedom
from deadlock and program termination.

KEY WORDS: Structured multiprogramming. Correctness proofs.
Program verification. Concurrent processes. Mutual exclusion.
Deadlock

.

[0WIC76] Owicki, "A Consistent and Complete Deductive System for the
Verification of Parallel Programs, " Proceedings of the 8th
Annual ACM Symposium on Theory Computing , pp. 73-86, Hershey,
PA, 1976.

Presents the semantics of a simple parallel programming lan-
guage in two ways: 1) deductively, by a set of Hoare- like
axioms and inference rules; and 2) operationally, by means of
an interpreter. It is shown that the deductive system is
consistent with the interpreter. It is proved that the de-
ductive system is complete relative to a complete proof system
for the. natural numbers; this result is similiar to Cook's
relative completeness for sequential programs

.

KEY WORDS: Parallel programming.

[PAPA81] Papakonstantinou, "An Interpreter of Attribute Grammars
and its Application to Waveform Analysis," IEEE Transactions
on So ftware Engineering , pp. 279-283, May 1981.

Presents a simple portable interpreter for testing the speci-
fications of problems. These specifications are supposed to
be expressed in the formalism of attribute grammars. Parsing
and semantics are done simultaneously. Increased power of the
grammars and context sensitive characteristics of a language
can be described.

KEY WORDS: Attribute grammar evaluator. Attribute grammars.
Formal specifications. Semantics.

[PARE85] Parent, Spaccapietra, "An Algebra for a General
Entity-Relationship Model," IEEE Transactions on So ftware
Engineering , pp. 634-643, July 1985.

Proposes a definition of a set of algebraic operators to be
applied on a general entity-relationship (ER) database. The
algebra is said to be complete through equivalence with the
usual definition of completeness for relational data manipu-
lation languages . The work is intended to provide a sound
basis for the definition of complete entity-relationship data
manipulation languages (DML's), an essential feature to make
the ER model fully operational.

80

KEY WORDS: Algebraic operators. Completeness, Data manipula-
tion language. Entity-relationship model.

[PARN79] Parnas, "Designing Software for Ease of Extension and
Contraction," IEEE Transactions on Software Engineering , pp.
128-137, March 1979.

Discusses designing software to be extensible and easily
contracted. A number of ways that extension and contraction
problems manifest themselves in current software is explained.
Steps in making software more flexible are discussed. It is
shown that the identification of minimal subsets and minimal
extensions can lead to software that can be tailored to the
needs of a broad variety of users.

KEY WORDS: Contractibility, Extensibility, Modularity,
Software engineering.

[PARN85] Parnas, Clements, and Weiss, "The Modular Structure of
Complex Systems," IEEE Transactions on Software Engineering ,

pp. 259-266, March 1985.

Discusses the organization of software that is inherently
complex because of many arbitrary details that must be pre-
cisely right for the software to be correct. It is shown how
the software design technique known as information hiding or
abstraction, can be supplemented by a hierarchically structured
document, which is called a module guide. The guide is intended
to allow both designers and maintainers to identify easily the
parts of the software that they must understand, without reading
irrelevant details about other parts of the software. An ex-
tract from a software module guide is included to illustrate
the proposals

.

KEY WORDS: Abstract interfaces. Information hiding. Modular
structure of software.

[PEAC85] Peachey, Bunt, and Colbourn, "Some Empirical Observation
on Program Behavior with Applications to Program Restructur-
ing, " IEEE Transact!Qns on SQftware Engineering, pp. 188-
193, Eebruary 1985.

Discusses program restructuring attempts to improve the
behavior of programs by reorganizing their object codes to
account for the characteristics of the VM environment. Part
of the restructuring process involves a restructuring graph.
An analysis of restructuring graphs of typical programs found
edge weights to be distributed in a Bradford- Zip f fashion,
implying that a large fraction of total edge weight is con-
centrated in relatively few edges. This observation can be
used to improve the clustering phase of program restructur-
ing.

KEY WORDS: Bradford-Zipf distribution. Clustering, Program
behavior. Program restructuring.

[PERL81] Perl is, Sayward, and Shaw, Software Metrics : An Analysis
and Evaluation . MIT Press, Cambridge, MA, 1981.

81

Includes papers presented at a workshop on metrics, as well
as some discussion among participants . Metrics for resource
and manpower estimation, complexity and quality, reliability,
and performance are also indicated.

KEY WORDS: Metrics.

[PERL83] Perlman, "Eault-Tolerant Broadcast of Routing Informa-
tion, " Proceedings IEEE Infocom ' Q2., pp. 93-102, IEEE,
April 18-21, 1983.

Presents an algorithm for the reliable broadcast of routing
information throughout a network. The algorithm anticipates
the possibility of long-delayed packets, line and node outages,
network partitions, hardware failures, and a history of arbi-
trarily corrupted databases throughout the network. A compar-
ison to ARPANET is included.

KEY WORDS: Network, ARPANET, Routing broadcast scheme, Self-
stabilization

.

[PERR86] Perry, Toueg, "Distributed Agreement in the Presence of
Processor and Communication Faults, " IEEE Transactions on
Software Engineering , pp. 477-482, March 1986.

Proposes a model of distributed computation in which pro-
cesses may fail by not sending or receiving the messages
specified by a protocol. Solution to the Byzantine Generals
Problem for this model is presented. The algorithm exhibits
early stopping under conditions of less than maximum failure
and is as efficient as the algorithms developed for the more
restrictive crash- fault model in terms of time, message and
bit complexity. Extant models to underestimate resilency
when faults in the communication medium are considered.

KEY WORDS: Byzantine agreement. Distributed computing. Early
stopping. Fault tolerance.

[PETE79] Peterson, "Time-Space Trade-Offs for Asynchronous Parallel
Models", ErQ.QQedj.ngs Ql the Eleventh .Annual ACM Symposium on
Theory of Computing

, pp . 224-230, Atlanta, 1979.

Studies the question of relative efficiencies in the context
of a simple model of communicating asynchronous processes. The
fundamental problem is whether a simple distributed system, with
arbitrary size variables, is any more powerful than a system
where only binary valued variables are permitted. The answer
was found to be negative, with an intuitive definition of the
power of systems. The development of these notions required
formalization of concepts such as equivalence of models, and
the reduction of systems between models. It was discovered
that requiring a strong definition of equivalence which de-
creased time apparently results in an increase in space

.

KEY WORDS: Communicating asynchronous processes. Synchroniza-
tion.

[PIAT80] Piatkowski, "An Engineering Discipline for Distributed
Protocol Systems," Proceedings of the NATO Advanced Study
Institute : New Concepts in Multi -user Communication .

Norwich, 1980

.

82

Provides an in-depth report on engineering a protocol . The
total design process, general features of an engineering dis-
cipline and the role of the computer aids are explained. Also
included are features a specification method should have, as-
pects of state-architecture and an example of such an archi-
tecture .

KEY WORDS: Distributed data processing. Specification,
Validation, Data communications. Computer networking.

.[P0LA79] Polak, "An Exercise in Automatic Program Verification,"
IEEE Transactions on So f.tvar.e Engineering, pp. 453-457, Sep-
tember 1979.

Describes the computer-aided proof of a permutation program
obtained using the Stanford Pascal verifier. The systematic'
way in which a proof can be developed from an intuitive under-
standing of the program is emphasized. The current state of
the art in automatic program verification is illustrated.

KEY WORDS: Assertion language. Inductive assertions. Permu-
tation, Theorem proving.

[PRAD80] Pradhan, "A New Class of Error-Correcting/Detecting
Codes for Fault-Tolerant Computer Applications, " IEEE Trans

-

actions on Computers, pp. 471-481, June 1980.

Develops separable error-correcting/detecting codes that pro-
vide protection against combinations of both unidirectional
•and random errors . Codes are presented which can both correct
(detect) some 't' random- errors and detect any number of uni-
directional errors which may also contain '

t
' or fewer errors

.

Necessary and sufficient conditions for the existence of these
codes are also developed. Decoding algorithms, and implement-
ation of these algorithms are discussed. These codes are ef-
fective against both transient and solid faults . These codes
are specifically suited for fault tolerant logic built out of
memory, read-only memories, certain mass memories, etc.

KEY WORDS: Decoder logic. Error correction and detection.
Multiple errors. Multiple faults. Self-checking. Transient
faults. Unidirectional errors.

[PR0V86] Provan, "Bounds on the Reliability of Networks, " IEEE
Transactions on Re l iability, pp- 260-268, August 1986.

Describes criteria for acceptable schemes to approximate
system reliability and investigates such schemes for a special
class of network reliability problems. In this framework, we
are able to use powerful combinatorial theory to obtain strong
bounds for network reliability which can be computed by effi-
cient algorithms. These bounds are demonstrated on a small
example, and some computational experience is given.

KEY WORDS: Network reliability.

[RAGH86] Raghavendra, Varma, "Fault-Tolerant Multiprocessors
with Redundant-Path Interconnection Networks, ' IEEE Transac-
tions on Computers , p. 307, April 1986.

83

Studies fault-tolerant multiprocessor systems employing
redundant-path multistage interconnection networks . The
graph-theoretic techniques are used to study the problem of
routing permutations in extra-stage delta networks when faults
are present in the network. The problem of performing an ar-
bitrary permutation on the fault- free network is formulated as
a vertex-coloring problem and is extended later to networks
with noncritical faults. Although the general problem of
realizing a permutation in the minimum number of passes is
intractable, classes of permutation with some regularity can
be routed optimally. The class of BPC (bit permute-complement)
permutation is considered: algorithms for performing arbitrary
permutations in this class on the extra-stage delta network
are given, both for the fault- free network and for a network
with noncritical faults

.

KEY WORDS: BPC Permutations, Eault-tolerant routing.
Multiprocessor systems

.

[RAMA80] Ramamoorthy, Ho, "Performance Evaluation of Asynchro-
nous Concurrent Systems Using Petri Nets," IEEE Transactions
on So ftware Engineering , pp . 440-449, September 1980.

Presents some analysis techniques for real-time asynchronous
concurrent systems. A system is classified, based on the Petri
Net model, as either consistent or inconsistent. Procedures
for predicting and verifying the system performance are pre-
sented'.

KEY WORDS: Asynchronous, Concurrent, Petri net. Real-time.

[RAMA81] Ramamoorthy, Mok, Bastini, Chin, and Suzuki, "Applica-
tion of a Methodology for the Development and Validation of
Reliable Process Control Software, " IEEE Transactions on
Software Engineering

, pp. 537-555, November 1981.

Discusses the necessity of a good methodology for the
development of reliable software, especially with respect to
final software validation and testing activities. A formal
specification development and validation methodology is pro-
posed. The methodology has been applied to the development
and validation of a pilot software, incorporating features of
critical software for nuclear power plant safety. This ex-
perience and the impact on quality of software are discussed.

KEY WORDS: DCDS, Assertion, Dual -programming. Path analysis.
Process control

.

[RAMA85] Ramamoorthy, et al, "Metrics Guided Methodology," Pro -

ceedings COMPSAC 'fiS, pp. 111-120, IEEE, 1985.

Proposes requirement level metrics for the specification
language RSL and discusses techniques to use metrics at the
requirement phase for the waterfall development model. It is
expected that the techniques could be modified for use in other
development approaches. The techniques are applied to a moder-
ately complex example

.

KEY WORDS: Software complexity. Metrics, Specification
language. Waterfall development model.

84

[RAMA86] Ramamoorthy, Garg, and Prakash, "Programming in the
Large," IEEE Transactions on Software Engineering, pp. 769-
783, July 1986.

Investigates the problems faced in developing large software
which include starting from fuzzy and incomplete requirements,
enforcing a methodology on the developers, coordinating multiple
programmers and managers, achieving desired reliability and
performance in a system, managing a multitude of resources in
a meaningful way, and completing the system within a limited
time frame. Some of the trends in requirement specification,
life cycle modeling, programming environments, design tools,
and other software engineering areas for tackling the above
problems are discussed. Several phase-independent and phase-
dependent techniques for programming in the large are suggested.
It is shown how research in automatic programming, knowledge-
based systems, metrics, and programming environments can make
a significant difference in developing large systems.

KEY WORDS: Information abstraction. Knowledge-based systems.
Metrics, Reusability, Software life cycle.

[RAND78] Randell, Lee, and Treleaven, "Reliability Issues in Com-
puting System Design," ACM Computing Surveys , pp. 123-166,
June 1978.

Surveys the various problems involved in achieving very high
reliability from complex computing systems, and discusses the
relationship between system structuring techniques of fault
tolerance. Topics covered include: 1) protective redundancy
in hardware and software; 2) the use of atomic actions to
structure the activity of a system to limit information flow;
3) error detection techniques; 4) strategies for locating and
dealing with faults and for accessing the damage they have
caused; and 5) forward and backward error recovery techniques,
based on the concepts of recovery line, commitment, exception,
and compensation. Three systems are discussed: JPL-STAR, the
Bell Laboratories ESS No. 1A processor, and the PLURIBUS.

KEY WORDS: Fault tolerance. Fault avoidance. Hardware relia-
bility, Software reliability. System structure.

[RA079] Rao, "Assignment of Tasks in a Distributed Processor Sys-
tem with Limited Memory, " IEEE Transactions on Computers

,

pp. 291-299, April 1979.

Shows how to assign modules to a two -processor computer
system (one processor has limited memory capacity) with the
distributed execution so as to minimize execution costs and
interprocessor communication costs . Although this problem
is NP -complete, techniques based on the Gomory-Hu tree from
network- flow theory can be applied to instances of the prob-
lem to obtain a reduction in complexity. A new technique
based on the graph called the inclusive cut graph is shown
to be an even more powerful tool. These two techniques can
solve some instances of the problem completely while others
are reduced sufficiently to be susceptible to enumerative
techniques. In the worst case, the techniques yield no
reduction in problem size

.

85

KEY WORDS: Computer networks. Cutsets, Distributed computers.
Load balancing, NP-complete problems.

[RAPP85] Rapps, Weyuker, "Selecting Software Test Data Using
Data Elow Information, " IEEE Transactions on Software En-
gineering

. pp. 367-374, April 1985.

Defines a family of program test data selection criteria
derived from data flow analysis techniques . This procedure
associates with each point in a program at which a variable
is defined, those points at which the value is used. Several
test data selection criteria, differing in type and number of
these associations are defined and compared.

KEY WORDS: Data flow. Program testing. Test data selection.

[RAU79] Rau, "Interleaved Memory Bandwidth in a Model of a Mul-
tiprocessor Computer System, " IEEE Transactions on Comput-
ers . pp. 678-681, September 1979.

Performs an approximate analysis of an often studied model of
an interleaved memory, multiprocessor system consisting of 'M'
memory modules and 'N' processors. A closed- form solution is
obtained and the one approximation used is found to result in
negligible error. This solution is shown to be about an order
of magnitude more accurate than the best previous result.

KEY WORDS: Analytical models. Interleaved memories. Memory
bandwidth. Memory interference. Multiprocessors, Performance
evaluation

.

[REDD78] Reddi, Fenstel, "A Restructurable Computer System," IEEE
Transactions on Computers . pp. 1-20, January 1978.

Presents an architecture for a reconstructurable computer
system which reconfigures its resources according to the
problem environment for efficient performance. The architec-
ture converts the user ' s program into an intermediate level
language, 'Realist', capable of specifying arbitrary resource
structures and the computation to be performed upon these
structures . An architectural design for the system is pre-
sented with special attention to bus units. It is shown how
APL, a vector processing language, can be implemented on the
system. Storage schemes for organizing vectors and matrices
to facilitate efficient retrieval and manipulation are given.
A comparison of the proposed system to existing high speed
architectures is included.

KEY WORDS: APL implementation. Architectural design. Parallel
computation. Parallel languages, Reconstructible computers.

[REED78] Reed, Naming and Synchronization in a Decentralized,

Computer System
. pp . 1-182, MIT, Cambridge, MA, September 15,

1978. Ph.D . Thesis, Report # MIT/LCS/TR-205

.

Develops a new approach to the synchronization of accesses to
shared data objects. An object that is modifiable is regarded
as a sequence of immutable versions, each version is the state
of the object after an update is made to the object. Synchron-
ization can then be treated as a mechanism for naming versions
to be read and for defining where in the sequence of versions
the version resulting from some update should be placed.

86

KEY WORDS: Distributed computer systems. Reliability,
Synchronization

.

[RICA80] Ricart, Agrawala, to Algorithm For Mutual Exclusion In
Computer Networks

. pp . 1-29, Air Force Office of Scientific
Research, February 1980. Technical Report TR-869.

Proposes an algorithm which creates mutual exclusion in a
computer network whose nodes can communicate only by messages
and do not share memory. The "readers and writers" problem
is solved by a simple modification of the algorithm. The
modifications necessary to make the algorithm robust are
described.

KEY WORDS: Mutual exclusion. Message passing. Deadlock,
Starvation

.

[RICH85] Richardson, Clarke, "Partition Analysis: A Method Com-
bining Testing and Verification, " IEEE Transactions on
SoJLtyane Engineering, pp. 1477-1490, December 1985.

Presents a partition analysis method which compares a proce-
dures implementation to its specification both to verify
consistency between the two and to derive test data. It is
applicable to a number of different types of specification
languages both procedural and nonprocedural and to high level
descriptions and low level design. The partition analysis
method is described and the results obtained from an evalua-
tion of its effectiveness is reported.

KEY WORDS: Software testing. Software verification. Symbolic
evaluation.

[R0BI77] Robinson, Levitt, "Proof Techniques for Hierarchically
Structured Programs," CoimmjmiGatiQHS Ql the ACM, pp • 271-
283, April 1977.

Proposes a method for describing and structuring programs
that simplifies proofs of their correctness. The method
formally represents a program in terms of levels of abstrac-
tion, each level of which can be described by a self-contained
nonprocedural specification. This method is applicable to
semiautomatic and automatic proofs as well as manual.

KEY WORDS: Hierarchical structure. Program verification.
Formal specification. Abstraction.

[R0SE85] Rosenthal, Guidance on Planning and Implementing Com -

puter System Reliability , pp. 1-42, NBS, Gaithersburg, MD,
January 1985. NBS Special Publication 500-121.

Presents an overview of the fundamental concepts and concerns
associated with system reliability, and identifies elements
and activities involved in planning and implementing a reliab-
ility program. The underlying theme is that a knowledge of
reliability is important in the development of new system
specifications as well as in the continual assessment of exist-
ing computer systems

.

KEY WORDS: Reliability, Recovery.

87

[R0SEN81] Rosen, Vulnerabi 1 ities q£ Network Control Protocols : to
Example . Bolt Beranck and Newman Inc, 1981.

Discusses ways in which unusual circumstances can bring out
vulnerabilities in network control protocols. The network-
wide disturbance on the ARPANET are described.

KEY WORDS: Network disturbances, ARPANET, Protocols.

[R0SS85a] Ross, "Statistical Estimation of Software Reliability,

"

IEEE on Software Engineering , pp. 479-483, May 1985.

Discusses when a new computer software package is developed,
a testing procedure is often put into effect to eliminate the
faults in the package. One common procedure is to try the
package on a set of well-known problems to see if errors
result, and once stopped, the package is checked to determine
the bugs and then altered to remove the bugs . This procedure
is modeled, the error rate for the revised package is deter-
mined, and how to estimate this quantity under a variety of
assumptions as to what is learned when the debugging occurs is
shown.

KEY WORDS: Estimation, Reliability, Poisson process.

[R0SS85b] Ross, "Software Reliability: The Stopping Rule Prob-
lem," IEEE Transactions on Software Engineering , pp. 1472-
1476, December 1985.

Discusses two problems of interest: 1) how to estimate the
error rate of the software at a given time 't'; and 2) how to
develop a stopping rule for determining when to discontinue
the testing and declare the software ready to use. A model
for the above is proposed as an estimation and stopping rule
procedure

.

KEY WORDS: Failure rate. Software reliability. Stopping times.

[RUBI82] Rubin, West, "An Improved Protocol Validation Technique,

"

Computer Networks £, pp. 65-73, North-Holiand Publishing
Company, 1982

.

Discusses the nature of message exchanges between components
of a communication system. The primary concern is with systems
in which the transmission delay is not negligible and cannot
be ignored. It is shown for a system of two processes that
sequences of exchanged messages can be expressed in canonical
form by decomposing them into interactions that may, in their
simplest form, contain several concurrent message exchanges

.

Expressing the communication between processes in this way
permits a clearer understanding of the limits of applicability
of the validation technique and of the role of the more complex
types of interactions in communication systems. The nature of
interactions in systems containing more than two processes is
also discussed.

KEY WORDS: Protocol validation. Communication systems. In-
teractions .

[RUDI81] Rudin, West, Validation of Protocols Using State Enumera-
tion : A Summary of Some Experience . IBM Zurich Research La-
boratory, 8803 Rueschlikon, Switzerland, March 1981.

88

Records experience of an effort with the goal of developing
automated techniques for validating protocols. The validation
method used consists first, of defining an intial global system
state, including states of all communication system components.
All system states accessible from this initial state are then
iteratively generated, each being checked for the occurrence
of a number of well-defined syntactical error conditions.

KEY WORDS: Reception errors. Static deadlocks. Dynamic
deadlocks

.

[RUSS80] Russell, "State Restoration in Systems of Communicating
Processes," IEEE Transactions on So ftware Engineering , pp.
183-193, March 1980.

Indicates that in systems of asynchronous processes using
message lists with SEND-RECEIVE primitives for interprocess
communication, 'recovery primitives' are defined to perform
state restoration: 1) MARK saves a particular point in the
execution of the program; 2) RESTORE resets the system state
to an earlier point (saved by mark) ; 3) PURGE discards redun-
dant information. Errors may be propagated through the system,
requiring state restoration also to be propagated. Different
types of propagation of state restoration are identified. Data
structures and procedures are sketched that implement the re-
covery primitives. In ill -structured systems the 'domino ef-
fect' can occur, resulting in a catastrophic avalanche of backup
activity and causing many messagelist operations to be undone

.

Sufficient conditions are developed for a system to be domino

-

free. Explicit bounds on the amount of unnecessary restoration
are determined for certain classes of systems.

KEY WORDS: Domino effect. Error recovery. Parallel back-
tracking, Process communication. State restoration.

[RYPK79] Rypka, Lucido, "Deadlock Detection and Avoidance for
Shared Logical Resources, " IEEE Transactions on Software En-
gineering

. pp. 465-471, September 1979.

Defines logical resources as shared passive entities that can
be concurrently accessed by multiple processes . Concurrency
restrictions depend upon the manner in which a process may
manipulate a resource. Models incorporating these single unit
resources can be used to analyze information locking for con-
sistency and integrity purposes. Mode compatibility is used
to derive deadlock detection and avoidance methods . These
methods permit greater concurrency while guaranteeing data
consistency. This model is applicable to the standard shared
and exclusive access modes

.

KEY WORDS: Allocation modes. Deadlock avoidance. Deadlock
detection. Logical resource. Resource allocation. Resource
sharing.

[SAXE86] Saxena, Robinson, "Accumulator Compression Testing, "

IEEE Transactions on Comput.grS , pp. 317-321, April 1986.

Proposes a new test data reduction technique call accumulator
compression testing (ACT) . It is shown that the enumeration
of errors missed by ACT for a unit under test is equivalent to
the number of restricted partitions of a number. A comparison

89

is made between signature analysis (SA) and ACT. Theoretical
and experimental results indicate that with ACT a better con-
trol over fault coverage can be obtained than with SA. Built-
in self tests for processor environments may be feasible with
ACT. For general VLSI circuits the complexity of ACT may be a
problem as an adder is necessary.

KEY WORDS: Built-in test, Eault coverage. Testing.

[SCHA78] Schaffner, "Processing by Data and Program Blocks," IEEE
Transactions on Computers , pp. 1015-1027, November 1978.

Presents a processing system that implements simultaneously
the efficiency of the special-purpose and the total applica-
bility of the general-purpose computer. This is achieved
through specializing the machine by programming the hardware
structure, rather than by adding software systems to it. Data
are organized in circulating pages which form a multiplicity
of local dynamic memories for each process. Programs are made
up of modules, each describing a transient special-purpose
machine. A characteristic of this approach is that processes
are data-driven rather than program-driven . The language pre-
sents flexibility and efficiency in modeling certain classes
of problems, and it may be of interest as an implementation
model in a broader context. Applications of real-time pro-
cessing of radar signals are reported. The relevance of char-
acteristics of this system to problems in multiprogramming and
multiprocessing systems is discussed.

KEY WORDS: Computer architecture. Data-driven processing.
Microprogramming, Multiprogramming, Radar signal processing.
Real-time processing.

[SCHL85] Schlichting, "A Technique for Estimating Performance of
Eault-Tolerant Programs, " IEEE Transactions on Software En-
gineering . pp. 555-563, June 1985.

Presents a technique for estimating the performance of a
program written for execution on fail-stop processors. This
technique is based on modeling the program as a discrete-time
Markov chain and then using z-transforms to derive a probabil-
ity distribution for time to completion.

KEY WORDS: Fail-stop processors. Fault-tolerant computing,
Markov chains. Performance evaluations.

[SCH086] Scholz, "Software Reliability Modeling and Analysis,"
IEEE Transactions on So ftwara Engineering , pp* 25-31, Janu-
ary 1986 .

Examines a discrete and a continuous model for the software
reliability growth process. The discrete model is based on
independent multinomial trials and concerns itself with joint
distribution of the first occurrence of its underlying events
(bugs) . The continuous model is based on the order statistics
of N independent nonidentical ly distributed exponential random
variables . Estimated upper bounds and confidence bounds for
the residual program error content are given based on the
spacings of the first 'k' bugs removed.

90

KEY WORDS: Conditional inference. Exponential order statistics,
Identifiability, Multinomial trials. Order restricted maximum
likelihood estimates.

[SCHU79] Schutz, "On the Design of a Language for Programming
Real-Time Concurrent Processes," IEEE Transactions on
Software Engineering , pp. 248-255, May 1979.

Describes ILIAD- -a high-level language for programming real-
time applications which involve concurrent processing. It was
designed to help write reliable programs that can be read and
maintained. An ILIAD program consists of a group of concurrent
tasks that are autonomous, and must share memory and devices in
the execution environment. A programming example illustrates
how ILIAD might be applied.

KEY WORDS: Concurrent programming, ILIAD, Multiprogramming,
Multiprocessing, Real-time languages. Real-time programming.

[SEAQ80] Seaquist, A Semantics q_f Synchronization . pp. 1-111,
MIT, Cambridge, MA, August 1980. M.S. Thesis, Report #
MIT/LCS/TM-176

.

Presents a rigorous framework in which to discuss the syn-
chronization necessary to coordinate accesses to a resource.
The framework provides a method for specifying concurrency and
forms the semantic basis of a synchronization mechanism which
avoids certain unfortunate characteristics of monitors and
serializers. Many examples of uses of the mechanism are given
and its advantages are discussed.

KEY WORDS: Synchronization mechanism. Concurrency, Resource
guardians. Event sequences.

[SEDM80] Sedmak, Liebergot, "Fault-Tolerance of a General Pur-
pose Computer Implemented by Very Large Scale Integration
(VLSI)," IEEE Transactions on Computers . pp. 492-500, June
1980 .

Describes preliminary results of a research effort to design
a general purpose computer with VLSI components which will
achieve a level of fault detection, recovery, and failure
isolation far exceeding non-VLSI implementations . The funda-
mental approach is to design and partition the logical elements
in such a way that effective fault detection can be done by a
novel method which replaces the detection responsibility inside
the VLSI chip. There is a high level of fault tolerance and
tolerance of most transient and many solid features. The ra-
tionale for the design tradeoffs which must be made in the
development of a general purpose computer is also explored.

KEY WORDS: Availability, Fault detection. Fault recovery.
Fault tolerance. Maintainability, Reliability, Self-checking.

[SHAN82] Shankar, "A Functional Approach to Module Verification,

"

IEEE Transactions on Software Engineering, pp- 147-159,
March 1982

.

Develops a method for designing and verifying data abstrac-
tions using the fundamental approach. These techniques are

91

then modified and extended to verify data abstractions. By
using the concept of a mathematical function, one can model
the behavior of a procedure abstraction and give a more
uniform and clearer meaning to the stepwise refinement and
verification of procedure abstractions. Using state machine
specification, a technique for expressing the design of a
data abstraction is given. A method is developed to verify
the design of a data abstraction with respect to its specifi-
cations .

KEY WORDS: Abstract model specification. Data abstraction.
Procedure abstraction. State machine. Verification.

[SHEN85] Shen, Yu, Thebaut, and Paulsen, "Identifying Error-
Prone Software- -An Empirical Study," IEEE Transactions on
Software Engineering , pp. 317-323, April 1985.

Discusses a study undertaken to assess the potential useful-
ness of various product- and process- related measures in
identifying error-prone software. An empirical basis is es-
tablished for the efficient utilization of limited testing
resources using objective, measurable criteria.

KEY WORDS: Defect density. Error-prone modules. Probability
of errors. Software errors. Software metrics.

[SHIN86] Shin, Lee, "Measurement and Application of Fault Laten-
cy, " IEEE Transactions on Computers . pp. 370-375, April
1986.

Presents a new methodology for indirectly measuring fault
latency, derives the distribution of fault latency from the
methodology and applies the knowledge of fault latency to the
analysis of two important examples. The new methodology has
been implemented for measuring fault latency in the Fault-Tol-
erant Multiprocessor (FTMP) at the NASA Airlab.

KEY WORDS: Detection time. Fault and error latency. Fault
injection. Maximum likelihood estimator.

[SHIN87] Shin, Ramanathan, "Clock Synchronization of a Large
Multiprocessor System in the Presence of Malicious Faults,"
IEEE Transactions on Computers . pp. 2-12, January 1987.

Presents a new method to remedy the problem of clock synchro-
nization in the presence of malicious faults that: 1) requires
little time overhead by using phase- locked clock synchroniza-
tion; 2) needs a clock network very similiar to the processor
network; and 3) uses only 20-30 percent of the total number of
interconnections required by a fully connected network for
almost no loss in the synchronizing capabilities. An example
hardware implementation is given to show the feasibility of
this method

.

KEY WORDS: Clock synchronization. Fault-tolerant real-time
multiprocessors. Malicious faults.

[SH0084] Shooman, "Software Reliability: A Historical Perspec-
tive, " IEEE Transactions on Reliability , pp . 48-55, April
1984.

92

Discusses progress since 1970 in software reliability func-
tions and mean time between software error metrics. The author
states that future progress requires a database of software
reliability information.

KEY WORDS: Software reliability. History.

[SIDH81] Sidhu, "Toward Constructing Verifiable Communication
Protocols, " INWG/NPL Workshop . National Physical Laboratory,
Teddington, England, May 27-29, 1981.

Presents an in-depth review of progress made in producing
protocols. Emphasis is placed on specification and verifica-
tion and a formal description is given. Formal specification
languages are discussed in term of syntax, style and automated
tools. There are also discussions on verification techniques
and two approaches for syntactically correct protocols.

KEY WORDS: Communication protocols. Specification, Verifi-
cation, Specification techniques. Protocol design.

[SIDH82a] Sidhu, "Protocol Design Rules, " Protocol Specification .

Testing and Verification , pp. 283-298, North-Holland Pub-
lishing Company, 1982. IFIP.

Suggests that the design rules approach to protocol synthesis
is a promising method for constructing reliable protocols.
Three approaches to communication protocols synthesis are com-
pared'. Extensions of synthesis approaches to formal systems
based on temporal logic are also discussed for proving seman-
tic properties of protocols.

KEY WORDS: Protocol synthesis. Design rules. Communication
protocols. Completeness, Deadlock- freeness. Temporal logic.

[SIDH82b] Sidhu, "Synthesis of Communication Protocols, " Interna-
tional Computer Conference ’£2, Philadelphia, PA, June 13-
17, 1982.

Presents an approach to communication protocols synthesis
which permits the development of general (FIFO and non-FIFO
channels) , N-party (N >= 2) protocols with the following
properties: completeness, deadlock freeness, termination or
cyclic behavior, liveness, boundedness and absence of non-
executable interactions

.

KEY WORDS: Communication protocols. Protocol properties.
Design rules. Protocol synthesis.

[SIDH83] Sidhu, "Protocol Verification via Executable Logic
Specifications," Proceedings of the 3rd International Workshop
on Protocol Specification . Testing, and Verification, Zurich,
Switzerland, May 31 - June 2, 1983.

Discusses the use of logic programming techniques in the
specification and verification of communication protocols.
Protocol specifications discussed are formal and directly
executable. Horn clause logic is discussed, which has a
procedural interpretation, and the predicate logic programming
language, PROLOG, is used to specify and verify the functional
correctness of protocols.

93

KEY WORDS: Communication protocols. Executable specification.
Verification, Horn clause logic, PROLOG.

[SIDH86] Sidhu, Blumer, "Verification of NBS Class 4 Transport
Protocol," IEEE Transactions on Communications . pp. 781-789,
August 1986

.

Discusses the verification of the connection management
aspects of a transport layer protocol available from National
Bureau of Standards. An automated protocol development
technique is used to verify a subset of the protocol with
respect to the protocol properties of completeness, deadlock
freeness, boundedness, and termination. An overview of the
protocol development technique used in specification and
verification of the protocol is given. The transport layer
protocol is described and the results obtained by applying
the automated verification technique to this protocol are
presented

.

KEY WORDS: Transport protocol. Formal description techniques.
Automated development tools

.

[SILB79] Silberschatz, "Communication and Synchronization in Dis-
tributed Systems," IEEE Transactions on Software Engineering ,

pp. 542-546, November 1979.

Examines Hoare's suggestion of using input and output con-
structs for handling of communication ^nd synchronization in
greater detail by concentrating on the following two issues:
1) allowing both input and output commands to appear in guards;
and 2) simple abstract implementation of the I/O constructs.
In the process of examining these two issues a framework is
developed for the design of appropriate communication and syn-
chronization facilities for distributed systems

.

KEY WORDS: Distributed systems. Guarded commands. Input/output
commands. Synchronization.

[SING85] Singpurwalla, Soyer, "Assessing (Software) Reliability
Growth Using a Random Coefficient Autoregressive Process and
its Ramifications," IEEE Transactions on Software Engineering ,

pp. 1456-1464, December 1985.

Motivates a random coefficient autoregressive process of
order 1 for describing reliability growth or decay. Several
ramifications of this process are introduced, some of which
reduce it to a Kalman Eilter model. The usefulness of the
approach is illustrated by applying these processes to some
real life data on software failures. Pairwise comparison is
made of the models in terms of the ratio of likelihoods of
their predictive distributions

.

KEY WORDS: Dynamic linear and nonlinear models, Kalman
Entering, Likelihood ratios. Predictable distributions,
Prequential analysis. Reliability growth. Software relia-
bility.

[SING86] Singh, Asgarpoor, "Reliability Evaluation of Flow Net-
works Using Delta-Star Transformations, " IEEE Transactions
on Reliability , pp. 472-477, October 1986.

94

Presents a new approach based on delta-star and/or star-delta
transformations for calculating the maximum network flow between
a pair of nodes. Procedure consists of simplifying complex
structures by converting them into equivalent series parallel
configurations and successively reducing the network until a
single arc is obtained. The system reliability can be deter-
mined .

KEY WORDS: Flow-network, Delta-star transformation. Maximum flow.

[SMIT85] Smith, Kotik, and Westfold, "Research on Knowledge-Based
Software Environments ac Kestrel Institute, " IEEE Transactions
fin Software Engineering/ pp- 1278-1295, November 1985.

Presents a summary of the CHI project highlighting prototypes
that commenced the research on knowledge-based software envi-
ronments. The objective of this project was to perform research
on knowledge-based software environments. Two major results of
the project are: 1) development of a wide-spectrum language
that could be used to express all stages of the program devel-
opment in the system; 2) the prototype compiler was used to
synthesize itself from very-high-level description of itself.
Overall nature of the work is described, highlights of imple-
mented prototypes are given, and implications that this work
suggests for the future of software engineering are described.

KEY WORDS : Automatic programming. Knowledge-based system.
Program synthesis

.

[SM0L81] Smoliar, "Operation Requirements Accommodation in Dis-
tributed System Design, " IEEE Transactions on Software En-
gineering

. pp. 531-536, November 1981.

Concentrates on three important operation requirements : re-
liability via fault tolerance, growth, and availability. Ac-
commodation of these requirements is based on an approach to
functional decomposition involving representation in terms of
virtual machines. Functional requirement may be accommodated
through hierarchal decomposition of virtual machines, while
performance requirements may be associated with individual
virtual machines . Virtual machines may then be mapped to a
representation of a configuration of physical resources, so
that performance requirements may be reconciled with available
performance characteristics.

KEY WORDS: DCDS, Distributed processing. Fault tolerance.
Real-time systems. Reliability.

[SM0T86] Smotherman, Geist, and Trivedi, "Provably Conservative
Approximations to Complex Reliability Models, " IEEE Transac-
tions on Computers

, pp . 333-338, April 1986.

Suggests provably conservative reliability models can be sys-
tematically derived from the complex model. These derived
models incorporate a reduced state space and fewer transitions,
and therefore, have solutions that are more cost-effective than
those of the original complex models. The designer can exten-
sively explore the design space without incurring the expense
of solving multiple complex models. A conservative-optimistic
pair derived models produces a band that includes the solution
of the complex model. Sensitivity analysis can be performed on

95

this pair of models to determine those parameters of the orig-
inal model that are most sensitive to change and hence warrant
further expense in obtaining tighter specifications.

KEY WORDS: Fault coverage. Fault-tolerant computers. Relia-
bility bounds. Sensitivity analysis.

[SNYD81] Snyder, "Formal Models of Capability-Based Protections
Systems," IEEE Transactions on Computers . pp . 172-181, March
1981.

Explains the role of formal modeling in the study of capabil-
ity-based protection systems . Historical background and a
model of a computer science department computer system is
presented. A survey of several important capability-based
models is given including the Harrison, Ruzzo, Ullman model,
the Take-Grant model, and grammatical models. The results of
the models are compared, contrasted and interpreted in the con-
text of numerous examples.

KEY WORDS: Capabilities, Grammatical protection systems.
Security, Take/Grant models

.

[SOI 81] Soi, Aggarwal "Reliability Indices for Topological
Design of Computer Communication Networks", IEEE Transactions on Reliabi
pp. 438-443, December 1981.

Explains that incorporating network reliability parameters
in the design of reliable computer communication networks makes
the computations prohibitive . Interdependence among network
topological parameters does not permit the design of maximally
reliable networks using any one of the parameters and thus,
there arises a real need for a composite reliability index
which gives a more realistic assessment of network reliability.
After experimental results regarding the effects of various
topological parameters on network reliability are discussed,
two heuristic reliability indices which give a fair indication
of overall reliability are presented. A design procedure for
reliable computer communication networks based on local search
technique incorporating these reliability indices is suggested.
Having only one composite reliability index, which is very simple
to evaluate, saves computation while designing maximally reliable
computer networks as compared to the existing techniques based
on several reliability measures.

KEY WORDS: Computer communication network. Network topology.
Reliability indices.

[SPEE79] Speelpenning, Nievergelt, "A Simple Model of Processor-
Resource Utilization in Networks of Communicating Modules,

"

IEEE Transactions on Computers . pp. 927-929, December 1979.

Presents a simple model of a system of processors competing
for resources. The model permits the derivation of upper
bounds for the utilization of the system components that are
surprisingly close to those obtained for more complicated anal-
yses or simulations

.

KEY WORDS: Interleaved memories. Interaction model. Perform-
ance analysis. Resource utilization.

96

[SPIT75] Spitzen, Wegbreit, "The Verification and Synthesis of
Data Structures, " Acta Informatica ±, pp . 127-144, Springer-
Verlag, 1975.

Presents the concept of machine extension used for implementing
complex software. The technique is applied to automatic program-
ming. Specifying data structures, verification by a programming
language, and proving data structures in programs correct are
all discussed.

KEY WORDS: Verification, Automatic programming. Correctness.

[SPIT78] Spitzen, Levitt, and Robinson, "An Example of Hierarchi-
cal Design and Proof," Communications the ACM , pp. 1064-
1075, December 1978.

Describes a formal method for hierarchical program specifica-
tion, implementation and proof. This method is applied to a
significant list processing problem and a number of extensions
to current programming languages that ease hierarchical program
design and proof are also discussed.

KEY WORDS: Program verification. Specification, Data abstrac-
tion, Hierarchical structures.

[SPRE85] Spreij, "Parameter Estimation for a Specific Software
Reliability Model," IEEE. Transactions on Reliability , pp.
323-328, October 1985.

Studies problems of maximum likelihood estimation in the
Jelinski-Moranda software reliability model. Distribution
of the stochastic variable that completely determines the
maximum likelihood estimate is obtained. s-confidence in-
tervals for the parameter of interest can be constructed by
using the same stochastic variable. An example is given.

KEY WORDS: Software reliability. Parameter estimation, s-
confidence interval, Jel inski -Moranda model.

[STAN85] Stankovic, "Stability and Distributed Scheduling Algo-
rithms, " IEEE Transactions on Software Engineering, pp.
1141-1152, October 1985.

Discusses stability issues for distributed scheduling algo-
rithms in general terms. Two different distributed scheduling
algorithms which contain explicit mechanisms for stability
are presented and evaluated with respect to individual specific
stability issues. One is based on stochastic learning automata
and the other on bidding. Results indicate how very specific
the treatment of stability is to the algorithm and environment
under consideration.

KEY WORDS: Bidding, Distributed computing. Stability, Stochas-
tic learning automata

.

[STEI85] Steier, Kant, "The Roles of Execution and Analysis in
Algorithm Design, " IEEE Transactions on Software Engineer-
ing

. pp. 1375-1385, November 1985.

97

Reports on research in artificial intelligence. Emphasis is
placed on a language for practical design algorithms and a
process to help design algorithms. A new system developed as
a result of research is discussed, and a comparison between
evaluations and execution techniques is given.

KEY WORDS: Algorithm design. Automatic programming. Develop-
mental evaluation. Meta-evaluation.

[STEM86] Stemple, Vinter, and Ramamritham, "Functional Addressing
in Gutenberg: Interprocess Communication without Process
Identifiers," IEEE Transactions on Software Engineering , pp.
1056-1065, November 1986.

Presents an interprocess communication facility provided by
the kernel of the Gutenberg experimental operating system. In
Gutenberg all interprocess communication is via channels which
are typed by the service which can be requested on them. Ports
are created by reference to their service without using the
identifier of the process providing the service, a technique
referred to as functional addressing. By using functional ad-
dressing, interprocess transfer of port use privileges, and a
new concept of cooperation class, arbitrary process intercon-
nection topologies can be achieved without any explicit use of
process identifiers by processes. Examples of object sharing
with abstract data type managers and data-driven protocol of
database query execution are presented to illustrate the meth-
ods of constructing systems of cooperating processes using the
Gutenberg system.

KEY WORDS: Capabilities, Functional addressing. Interprocess
communication. Port.

[STR086] Strom, Yemini, "Typestate: A Programming Language Con-
cept for Enhancing Software Reliability, " IEEE Transactions
on SQ £tware Engineering , pp. 157-171, January 1986.

Introduces 'Typestate ' --a new programming language concept
which is a refinement of 'type' . Whereas the type of a data
object determines the set of operation ever permitted on the
object, typestate determines the subset of those operations
which is permitted in a particular context. A definition of
typestate is given along with examples of its execution, and
it is shown how typestate checking may be embedded into a com-
piler. Consequences of typestate checking for software reli-
ability and software structure are discussed, and experience
using a high level language incorporating typestate checking
is reported

.

KEY WORDS: Program analysis. Program verification. Security,
Software reliability. Type checking.

[SUMI86a] Sumita, Masuda, "Analysis of Software Availability/
Reliability Under the Influence of Hardware Failures,

"

IEEE Transactions m Software Engineering , pp. 32-41,
January 1986.

Presents a new hardware-software reliability model where
lifetimes and repair times of the software subsystem have
general system state-dependent distributions. A numerical

98

example is given which demonstrates speed, accuracy, and
stability of the procedures.

KEY WORDS: Integrated hardware-software reliability model.
Multiple error generation and removal, State-dependent general
lifetimes and repair times. Time-dependent compound performance
measures

.

[SUMI86b] Sumita, Shanthikumar , "A Software Reliability Model
with Multiple-Error Introduction and Removal," IEEE Transac-
tions on Re l iability , pp. 459-462, October 1986.

Considers a stochastic model for a software system where
multiple errors can be introduced and removed from the soft- •

ware system during repairs. It assumes that the software
failure rate is proportional to the number of software errors
present in the system. A general Markov model is developed.
Expressions for software reliability measures are derived and
corresponding computation procedures are developed. A numer-
ical example is given.

KEY WORDS: Software reliability. Multiple-error introduction,
Markov models. Performance evaluation.

[SUZU86] Suzuki, "Experience with Specification and Validation
of a C.omplex Computer Using Prolog, " Logic Programming and
Its Applications . Apex Publishing Co., Norwood, NJ, 1986.

Describes use of Prolog for validation of a VLSI design.

KEY WORDS: Verification, Concurrent, VLSI.

[TAI80] Tai, "Program Testing Complexity and Test Criteria," IEEE
Transactions on Software Engineering , pp. 531-539, November
1980 .

Explores 'Testing Complexity' of several classes of programs
which is measured in terms of the number of test data required
for demonstrating program correctness by testing. Two new
test criteria are proposed, one for testing a path and the
other for testing a program. These suggest how to select test
data to obtain confidence in program correctness beyond the
requirement of having each statement, branch, or path tested
at least once

.

KEY WORDS: Program testing. Testing complexity. Test criteria.

[TAMI80] Tamir, "ADI: Automatic Derivation of Invariants," IEEE
Transactions, on Software Engineering , pp. 40-48, January
1980 .

Describes an interactive computer program (ADI) which automa-
tically generates the needed inductive assertions for mechanical
program verification. ADI is also able to extend partial loop
assertions supplied by the user to form complete assertions.
Implementation is in QLISP and INTERLISP. ADI is a small step
toward interactive, practical program verification.

KEY WORDS: Invariants, Partial correctness. Program verifi-
cation, QLISP, Synthesis of invariants.

99

[TANA78] Tanaka, "Error-Correcting Parsers for Formal Languages,

"

IEEE Transactions on Computers , pp.. 605-616, July 1978.

Describes erroi—correcting parsers for context-free and
context-sensitive languages with substitution, insertion, and
deletion errors. It is shown that the ability of the pro-
posed parsers can be expressed in terms of the weighted
Levenshtein metric.

KEY WORDS: Context-sensitive parser, Erroi—correcting parser.
Formal languages. Maximum- likelihood parser.

[TAYL80a] Taylor, Morgan, and Black, "Redundancy in Data Struc-
tures: Improving Software Fault Tolerance," IEEE Transac-
tions on Software Engineering , pp. 585-594, November 1980.

Discusses one way to improve software reliability- -by adding
redundant structural data to data structures . This is used to
detect and correct (structural) errors in instances of a data
structure. The intuitive approach of this paper, which makes
heavy use of examples, is complemented by the more formal de-
velopment of the companion paper "Redundancy in Data Structures
Some Theoretical Results"

.

KEY WORDS: Error correction. Error detection. Software fault
tolerance. Software reliability.

[TAYL80b] Taylor, Morgan, and Black, "Redundancy in Data Struc-
tures: Some Theoretical Results," IEEE Transactions on
Software Engineering , pp. 595-601, November 1980.

Presents the underlying theory for robust data structures
and uses it to discuss the synthesis and cost effectiveness
of robust data structures.

KEY WORDS: Compound data structures. Error correction and
detection. Robust data structures. Software fault tolerance
and reliability.

[TAYL80c] Taylor, Osterweil, "Anomaly Detection in Concurrent
Software by Static Data Flow Analysis, " IEEE Transactions on
S.CL

f

£warg Engineering , pp. 265-277, May 1980.

Presents algorithms for detecting errors and anomalies in
programs which use synchronization constructs to implement
concurrency. Data flow analysis techniques are employed.
Important classes of errors unique to concurrent process
programs are described, and algorithms for their detection
are presented.

KEY WORDS: Concurrent software. Error detection, HAL/S,
Process synchronization errors.

[TAYL86a] Taylor, "Concurrency and Forward Recovery in Atomic Ac-
tions, " IEEE Transactions on Software Engineering , pp. 69-
78, January 1986.

Presents an analysis of the following problems: 1) some
difficulties and complexities occur only when the concept of
atomic actions is extended to allow concurrency within atomic
actions and to allow a single atomic action to execute at a

100

number of different sites; 2) providing facilities for both
forward and backward recovery. A general structure for a
solution is proposed, syntax to specify this structure is
given and illustrated with examples. The practicality of the
scheme is justified by sketching one possible implementation.

KEY WORDS: Atomic actions. Backward recovery. Exception
handling. Forward recovery. Software reliability.

[TAYL86b] Taylor, Seger, "Robust Storage Structures of Crash
Recovery," IEEE Transactions on Computers . pp. 288-295,
April 1986.

Discusses a robust storage structure which is intended to
provide the ability to detect and possibly correct damage to.
the structure. Some of the general principles of using robust
storage structures for crash recovery are examined. A partic-
ular class of linked list structures which can be made arbi-
trarily robust, and which are suitable for crash recovery are
described

.

KEY WORDS: Crash recovery. Software fault tolerance. Global
and local error correction.

[THAY82] Thayse, "Synthesis and Optimization of Programs of Means
of P-Eunctions, " IEEE Transactions on Computers . pp. 34-40,
January 1982

.

Defines a program as an indexed sequence of instructions;
each of these instructions is formed by an interconnection
of branching instructions followed by an interconnection of
execution instructions. A program is an efficient tool,
allowing the digital system designer to describe the micro-
programs of discrete systems and to synthesize their control
automation. This paper deals with a method of transformation
and of optimization of programs. The presented algorithm
obtains, for any given program, an equivalent one with a
minimum number of conditional vertices.

KEY WORDS: Algorithmic state machine. Microprogrammed struc-
tures, Transformation of programs.

[TJAD76] Tjaden, "Hierarchical Properties of Concurrency,

"

Proceedings slL the 1976 International CQnf.grence, on Parallel
Processing , pp. 55-64, 1976.

States that for any given machine language program, a request
hierarchy can be constructed which has interesting applications
to the problem of the dynamic hardware detection and control of
execution of concurrency. Starting with a binary vector-pair
model of instructions and knowledge of the destinations and
branch instructions, a hierarchy of tasks is constructed which
allows a global dynamic analysis of large programs to be made
by the hardware during the execution of the program. This
approach can lead to detectable program execution speed-ups

.

KEY WORDS: Concurrency, Hierarchy of tasks.

[TRAC85] Trachtenberg, "The Linear Software Reliability Model and
Uniform Testing," IEEE Transactions on Reliabil ity, PP- 8-16,
April 1985.

101

Discusses the Jelinski -Moranda, Shooman, and Musa software
reliability models which all predict that the software error
detection rate is a linear function of the detected errors.
Studies show that error rates during system testing correlate
best with the Musa model, and progressively less with the
Shooman, and Jelinski -Moranda models. Simulation shows: 1)
testing the functions of a software system in a random order
gives linearly decaying system-error rates; 2) testing each
function exhaustively one at a time gives flat system-error
rates; 3) testing different functions at widely different
frequencies gives exponentially decaying system-error rates;
and 4) testing strategies which result in linear decaying
error rates tend to require the fewest tests to detect a
given number o f errors

.

KEY WORDS: Software reliability model. Software testing,
Jelinski -Moranda model, Shooman model, Musa model.

[TR0Y85] Troy, Moawad, "Assessment of Software Reliability
Models/' IEEE Transactions on Software Engineering , pp.
839-848, September 1985.

Proposes a method for assessing software reliability models
and its application to the Musa and Littlewood-Verrall models.
A taxonomy of the criteria to be considered for assessing a
software reliability model and a method for application are
presented. Results of an assessment of the Musa and Littlewood-
Verrall models are given.

KEY WORDS: Model comparisons. Software reliability.

[TRST84] Trstensky, "An Alternative Index for the Reliability of
Telecommunication Networks," IEEE Transactions on Reliabili-
£y, pp. 343-346, October 1984.

Discusses a new index for evaluating the reliability of tele-
communication networks which compares the effectiveness of the
modelled actual system with that for an ideal system. The new
index is not only general, but the procedure for its calculation
allows more consistent choice of the special indexes of relia-
bility. It is suggested that some previous indexes can be de-
rived from this as special cases

.

KEY WORDS: Telecommunication network. Network topology.
System effectiveness.

[TSUB86] Tsubotani, Monden, Tanaka, and Ichikawa, "A High Level
Language Based Computing Environment to Support Production
and Execution of Reliable Programs, " IEEE Transactions on
Software Engineering , pp. 134-146, January 1986.

Presents an environment which involves a debugging tool to
help detect logic errors and remove them efficiently. The
debugging tool is supported by a special architecture named
SPRING which was originally developed for reliable execution
of Ada or Pascal programs. The details of SPRING architecture
are described, and the implementation of high level debugging
on the SPRING architecture is discussed.

KEY WORDS: Ada, High level language architecture. Software
reliability.

102

[TYRR86] Tyrrell, Holding, "Design of Reliable Software in Dis-
tributed Systems Using the Conversation Scheme, " IEEE Trans-
actions on Software Engineering , pp. 921-928, September
1986.

Examines the problems of error detection and recovery in a
number of concurrent processes expressed as a set of commun-
icating sequential processes (CSP) . A method is proposed
which uses a Petri net model to identify formally both the
state and the state reachability tree of a distributed system.
These are used to define systematically the boundaries of a
conversation including the recovery and test lines which are
essential parts of the fault-tolerant mechanism. Techniques
described are implemented using the occam programming language.
Application of this method is shown by a control example.

KEY WORDS: Communicating sequential processes. Concurrent
processes. Distributed systems. Fault-tolerant software, Occam,
Petri-nets

.

[UPAD86] Upadhyaya, Saluja, "A Watchdog Processor Based General
Rollback Technique with Multiple Retries, " IEEE Transactions
on Software Engineering, pp- 87-95, January 1986.

Discusses a general rollback strategy with 'n' (n >= 2) retries
which takes into consideration multiple transient failures as
well as transients of long duration. Ways to derive practical
values of 'n' for a given program are discussed. The use of a
watchdog processor as an error detection tool to initiate re-
covery action through rollback- -low error latency are proposed.
Merging watchdog processor with rollback recovery technique are
described for enhancing the overall system reliability.

KEY WORDS: Error detection. Error latency. Recovery time.
Rollback recovery. Transient errors.

[VANC86] van Caneghem, Warren, Logic Programming and Its
Applications . Apex Publishing Co., Norwood, NJ, 1986.

Presents a collection of papers on logic programming and Prolog.
Some papers on the use of Prolog for verifying designs in VLSI
or software are included.

KEY WORDS: Verification, Concurrent.

[VANE79] van Emden, "Programming with Verification Conditions,

"

IEEE Transactions on Software Engineering, pp. 148-159, March
1979.

Contains an exposition of the method of programming with
verification conditions. It is shown that the method has the
advantage of simplicity and flexibility over one proposed by
Dijkstra. The method is directly based on Floyd’s inductive
assertions . Although the method has no use for the sequencing
primitives of 'structured programming', it is highly secure
and systematic.

KEY WORDS: Control structure. Correctness -oriented program-
ming, Invariant assertions. Verifications.

103

[VENK85] Venkatraman, Piatkowski, "A Formal Comparison of Eormal
Protocol Specification Techniques, " Proceedings &£ the IFIP WG
6.1 Fifth International Workshop
on Protocol Specification . Testing end VeriXlQatio.n, pp. 1 - 20 ,

North-Holland Publishing Company, May 1985.

Describes the principal attributes which will be used to
characterize and compare the protocol specification techniques.
State models, sequence models, temporal logic models are exam-
ined. A comparison of all previously detailed techniques is
presented

.

KEY WORDS: Estelle, Specification techniques. Network sys-
terns, Petri nets. Temporal logic.

[VISS85] Vissers, Logrippo, The Importance of the Service Concept
in the Design of Data Communications Protocols, pp. 1-15,
Proceedings ol the IFIP WQ 6.1 Fi fth International Workshop
on Protocol Specification . Testing and Verification . North-
Holland Publishing Company, May 1985.

Analyzes the level of recognition that the service concept
has acquired in the world of protocol designers. Opposition
against the concept and some significant cases of misuse are
expounded and refuted. The authors argue for an increased role
of the service, and its underlying architectural concepts, as
the proper bases for designing protocol systems as well as
suitable specification, verification, and testing techniques.

KEY WORDS: Protocol designers. Architecture, Specification,
Verification, Service concepts.

[VOGE80] Voges, Gmeiner, and von Mayrhauser, "SADAT- -An Automated
Testing Tool," IEEE Transactions on Software Engineering ,

pp. 286-290, May 1980.

Describes the automated testing tool SADAT, which supports
the testing of single Fortran modules. The different func-
tions which are integrated in this system are explained, the
usage of the tool is demonstrated, and some output results
discussed. Summary of the special benefits of the SADAT
system are presented. The history and present status of the
system are outlined.

KEY WORDS: Automated test systems. Dynamic analysis. Program
testing. Static analysis

.

[VOSS80] Voss, "Using Predicate/Transition - Nets to Model and
Analyze Distributed Database Systems, " IEEE Transactions on
SqLXmarc Engineering , pp. 539-544, November 1980.

Proposes a net model for decentralized control of user accesses
to a distributed database. It is developed in detail for the
case of updating distributed copies of a single database. Pred-
icate/Transition - Nets provide suitable means for concise
representation of complex decentralized systems and their rig-
orous formal analysis. It is demonstrated how net models can
be constructed and interpreted in a natural manner . The modeled
Distributed Database system is deadlock- free and guarantees a
consistent database as well as a fair and effective service to
the user

.

104

KEY WORDS: Concurrency, Deadlock- free. Decentralized control.
Distributed databases, Petri nets. Predicate/transition nets.

[WALT81] Walters, Gray, and Thompson, MSel f-Diagnosing Cellular
Implementations of Finite-State Machines, " IEEE Transactions
on Computers

. pp . 953-959, December 1981.

Shows that cellular spaces possess properties favorable to
reconfiguration. The implementation of arbitrary finite-state
machine in self-diagnosing cellular spaces is demonstrated.
The results cover single cell failures caused by erroneous
state transitions or by erroneous outputs . Results demonstrate
that the control structure of any computing device can be
implemented as a sel f-diagnosing entity without hard core.

KEY WORDS: Decomposition for diagnosability. Design for di-
agnosability. Fault detection.

[WASS85] Wasserman, "Extending State Transition Diagrams for the
Specification of Human-Computer Interaction, " IEEE Transac-
tions on Software Engineering

. pp . 699-713, August 1985.

Shows the derivation of the USE (User Software Engineering)
transition diagrams based on perceived shortcomings of the
’pure' state . transitions diagram approach. In this way, the
features of the USE specification notation are presented and
illustrated. The automated tools that support direct execution
of the specification are described. Specification is easily
encoded in a machine-processable form to create an executable
form of the computer -human interaction.

KEY WORDS: Executable specifications. Interactive information
systems. Rapid prototyping. Software development methodology

[WASS86] Wasserman, Pircher, and Shewmake, "Building Reliable In-
teractive Information Systems, " IEEE Transactions on Software
Engineering , pp . 147-156, January 1986.

Presents User Software Engineering (USE) --a methodology with
supporting tools, for the specification, design, and implemen-
tation of interactive information systems. The USE transition
diagrams and the formal specification approach are described.
It is shown how these tools and techniques aid in the creation
of reliable interactive information systems.

KEY WORDS: Interactive information systems. Software develop-
ment methodology. Software reliability.

[WEBE86] Weber, Ehrig, "Specification of Modular Systems, " IEEE
Transactions on Sq ftware Engineering, pp. 784-798, July
1986.

Presents a modularity concept for structuring large software
systems. The concept enforces an extreme modularity discipline
which is meant to be applied to tightly control side-effects
in the execution of systems constructed of independently deve-
loped modules. A family of specification languages is intro-
duced whose members are based on the modularity concept. The
construction of large software systems as interconnections of
modules is shown to lead to manageable system structures and
to new degrees of freedom in the structuring of the software

105

development process. The suitability of the modularity concept
has been evaluated in a large software project for the deve-
lopment of a database management system.

KEY WORDS: Data abstraction. Informal and procedural and
algebraic specifications. Software development. Software
structuring

.

[WEIS80] Weischedel, Practical Suggestions £qd Writing Up.d_Q.r-
standable . Correct Formal Specifications , pp. 1-57, Department
of Computer and Information Sciences, University of Delaware,
Newark, DE, August 1980.

Describes the three major classes of formal specification
languages and argues that understandability is critical for
formal specifications. Reasons why they are difficult to
understand, and practical suggestions for making them more
understandable are given. The suggestions are illustrated
by the specification of a pattern-matching facility. Three
practical suggestions for checking the correctness of formal
specifications are presented.

KEY WORDS: Formal specification languages. Structured pro-
gramming methodology.

[WEST86] West, BrQ.tQC .Ql Validation by Random State Exploration ,

pp. 1-26, IBM Zurich Research Laboratory, 8803 Rueschlikon,
Switzerland, March 7, 1986.

States that the availability 'of the validated, executable
Session Layer definition, together with the validation results
has made it possible to evaluate an alternative methodology
for automated protocol validation whereby a systematic state
exploration is performed by executing a random sequence of
interaction sequences between protocol machines rather than a
systematic, exhaustive state exploration. The exhaustive state-
exploration validation technique and the problems that have
led to evaluation of random state exploration are discussed.
The random exploration technique is outlined and the results
of applying it to the validation of the OSI Session layer are
presented. The paper concludes with a discussion of the effec-
tiveness of the random state exploration, and of the implica-
tions of the results to protocol testing.

KEY WORDS: Protocol validation. State exploration. Protocol
specification. Session layer. Specification, Random exploration.

[WEYU80] Weyuker, Ostrand, "Theories of Program Testing and the
Application of Revealing Subdomains, " IEEE Transactions on
Software Engineering , pp. 236-246, May 1980.

Examines the theory of test data selection proposed by Good-
enough and Gerhart. Concepts of a revealing test criterion
and a revealing subdomain are proposed, which provide a basis
for constructing program test. Three programs are discussed
and tested using the notions discussed.

KEY WORDS: Program testing. Software error detection. Software
reliability. Theory of testing.

106

[WHIT80] White, Cohen, "A Domain Strategy for Computer Program
Testing, " IEEE. TransacEiaoa on Software Engineering , pp

•

247-257, May 1980.

Presents a testing strategy designed to detect errors in
the control flow of a computer program, and the conditions
under which this strategy is reliable. The input space is
partitioned into a set of domains. The testing strategy
generates test points to examine the boundaries of a domain
to detect whether a domain error has occurred.

KEY WORDS: Control structure. Domain errors. Software
reliability. Software testing.

[WITT81] Wittie, "Communications Structures for Large Networks of.
Microcomputers," IEEE Transactions on Computers, pp. 264-
272, April 1981.

Compares nine network interconnection schemes and introduces
'dual -bus hypercubes

' , a cost effective method of connecting
thousands of dual -port single-chip microcomputers into a room-
sized information processing system, a 'network computer'

.

Each network node is a chip containing memory and a pair of
processors for tasks and input/output . Nodes are linked by
shared communication buses

.

KEY WORDS: Bus topologies. Cube-connected cycles. Dual-bus
hypercubes , Hypercube spanning buses

.

[WOOD80] Woodward, Hedley, and Hennell, "Experience with Path
Analysis and Testing of Programs, " IEEE Transactions on
So.ffcMara Engineering , pp. 278-285, May 1980.

Suggests a hierarchy of structural test metrics to direct the
choice of a path to use as test cases, and to monitor the cov-
erage of test paths. Experience with the use of 'allegations'
to circumvent the problem that many of the chosen paths may be
infeasible in the sense that no test data can ever execute them
is reported.

KEY WORDS: Allegations, Infeasible paths. Path testing. Test
metrics

.

[WU81] Wu, Liu, "A Cluster Structure as an Interconnection Net-
work for Large Multimicrocomputer Systems, " IEEE Transac-
tions on Computers, pp. 254-263, April 1981.

Presents a cluster structure, characterized by a set of
structure parameters and a set of interconnection functions,
used as a conceptual interconnection scheme for large multi

-

microcomputer systems. It is shown that three popular inter-
connection structures (hypercube, hierarchy, and tree structures)
are examples of the cluster structure. Two communication
problems (traffic congestion and message delay) are analyzed.
The analysis provides a way to understand structural properties
such as complexity, capacity, and limitation. Topological
optimization is presented to show how interconnection limitation
can be minimized.

KEY WORDS: Interconnection network. Topological optimization.

107

[WUU85] Wuu, Bernstein, "False Deadlock Detection in Distributed
Systems," IEEE Transactions on Software Engineering

, pp

.

820-821, August 1985.

Refers to detecting a nonexistent deadlock in distributed
systems as false deadlock detection. It is shown that false
deadlock will never occur in a system of two-phase locking
transactions. Also, an algorithm to avoid false deadlock
detection when transactions are not two-phase locking is
described

.

KEY WORDS: Distributed system. False deadlock. Transaction-
wait- for-graph, Two-phase locking.

[YAMA85] Yamada, Osaki, "Software Reliability Growth Modeling
(SRGM) : Models and Applications," IEEE Transactions on
Software Engineering

, pp . 1431-1437, December 1985.

Summarizes existing SRGM's described by the nonhomogeneous
Poisson processes. The maximum- likelihood estimations based
on SRGM's for software reliability data analysis and software
reliability evaluation are examined. Application examples
using actual software error data are presented.

KEY WORDS: Error detection rate. Maximum- likelihood estimation,
Nonhomogeneous Poisson processes. Software reliability analysis.

[YANN86] Yanney, Hayes, "Distributed Recovery in Fault-Tolerant
Multiprocessor Networks, " IEEE Transactions on Computers .

pp . 871-879, October 1986.

Develops a methodology for characterizing dynamic distributed
recovery in fault-tolerant multiprocessor systems using graph
theory. Distributed recovery, which is intended with no central
supervisor, depends on the cooperation of a set of processors
to execute the recovery function, since each processor is assumed
to have only a limited amount of information about the system
as a whole. Facility graphs, whose nodes denote the system
components and whose edges denote interconnection between
components, are used to represent multiprocessor systems and
error conditions. A general distributed recovery strategy 'R',
which allows global recovery to be achieved via a sequence of
local actions, is given. 'R' recovers the system in several
steps in which different nodes successively act as the local
supervisor. 'R' is specialized for two classes of systems:
loop networks and tree networks. For each of these cases,
fault-tolerant designs and their associated distributed recovery
strategies are presented

.

KEY WORDS: Distributed recovery. Fault tolerance. Fault-tolerant
multiprocessor systems. Reconfiguration.

[YA079] Yao, "Some Complexity Questions Related to Distributive
Computing, " Proceedings q£ the Eleventh Annual ACM Symposium
on Theory of Computing , pp . 209-213, Atlanta, GA, 1979.

Presents an evaluation of a problem of minimizing information
transfer. Variations of Abelson's are used to help solve the
problems by calculating the bounds for the minimal exchange of
information

.

108

KEY WORDS: Distributive computing. Complexity, Probabilistic
models

.

[YAU80] Yau, Chen, "An Approach to Concurrent Control Elow Checking, "

IEEE Transactions on Software Engineering , pp. 126-137, March 1980.

Proposes a control flow checking scheme capable of detecting
control flow errors of programs resulting from software coding
errors, hardware malfunctions, or memory mutilation during
execution of program. Capabilities, limitations, implementa-
tions and over-head of this approach are presented.

KEY WORDS: Capabilities, Concurrency, Control errors. Control
flow checking. Program design.

[YAU81] Yau, Grabow, "A Model for Representing Programs Using
Hierarchical Graphs," IEEE Transactions on Software En-
gineering

. pp. 556-573, November 1981.

Presents a hierarchical graph model for programs based on the
concepts of recursive graphs (RG's) and Codd relations. Pur-
pose is to clearly represent the structure of a program imple-
mented in a structured language so that the program can be
analyzed and modifications can be clearly specified. Model for
an example Pascal program is given.

KEY WORDS: Codd relations. Graph grammar. Hierarchical
graph. Recursive graph.

[YAU85] Yau, Collofello, "Design Stability Measures for Software
Maintenance," IEEE Transactions on Software Engineering , pp.
849-856, September 1985.

Presents design stability measures which indicate the poten-
tial ripple effect characteristic due to modifications of the
program at the design level . Measures that can be generated
at any point in the design phase of the software life cycle
are examined. Validation of these measures and future research
efforts which incorporates the design stability measures as
well as other measures are discussed.

KEY WORDS: Design stability measures. Program modifications.
Software maintenance.

[YAU86] Yau, Tsai, "A Survey of Software Design Techniques,"
IEEE Transactions on So ftware Engineering, pp. 713-721, June
1986.

Surveys important techniques for software design, including
architectural and detailed design stages. Recent advances in
distributed software system design methodologies are investi-
gated. Various design verification and validation techniques
are examined. Current software metrics and error-resistant
software design methodologies are discussed.

KEY WORDS: Design methodologies. Design representation. Design
verification and validation. Distributed software system design.
Error-resistant software design. Software metrics.

[Y0NE77] Yonezawa, Modelling Distributed Systems . Artificial
Intelligence Laboratory, 545 Technology Square, Cambridge,
MA, 1977.

109

Presents ideas and techniques used in modelling distributed
systems and its application to Artificial Intelligence. A
model of distributed systems and its specification and verifi-
cation techniques are discussed. An example of an airline
reservation system is introduced to illustrate specification
and verification techniques.

KEY WORDS: Multiprocessor information processing systems.
Distributed systems. Artificial intelligence. Modelling systems.

[YUAS85] Yuasa, Nakajima, "IOTA: A Modular Programming System,"
IEEE Transactions on So flarara Engineering, pp. 179-187,
Eebruary 1985.

Presents a highly interactive programming system which
supports hierarchical and modular program development with
abstraction mechanisms. By taking advantage of abstraction
mechanisms, the system provides a "truly modular" environment,
in which modules are constructed, debugged, verified, and
compiled in a module-by-module fashion. Such an environment
naturally requires system management of the information con-
cerning ongoing program development, in the form of module
databases. As a result, further problems arise as to how to
modify the information in efficient and consistent ways. De-
sign objectives for modular programming systems are described
by focusing on such issues as information management, inter-
active construction and modification of modules, separate
processing, specification and verification, and support for
cooperative program development.

KEY WORDS: Data abstraction. Formal specification. Program
verification.

[ZAEI80] Zafiropulo, West, Rudin, Cowan, and Brand, "Towards
Analyzing and Synthesizing Protocols," IEEE Transactions on
Communications . pp. 651-660, April 1980.

Presents techniques for both the detection of errors in
protocols and for prevention of errors in their design. The
methods have been used successfully to detect and correct
errors in existing protocols . A technique based on a reach-
ability analysis is described which detects errors in a design.
The types of errors handled are state deadlocks, unspecified
receptions, nonexecutable interactions, and state ambiguities.
An interactive design technique is described that prevents
design errors

.

KEY WORDS: Reliable communications, Erroi— free protocols.
Error detection and correction.

[ZAVE76] Zave, "On the Formal Definition of Processes, " Proceed-
ings QJL the 1976 International Conference on Paralle l Pro-
cessing . pp. 35-42, 1976.

Presents a comparison between two models of logically concur-
rent asynchronous interacting processes, one that communicates
through shared variables which cannot be formalized and one
based on message communication which can. Results show that
the second is better in offering computational structures.

KEY WORDS: Shared variables. Concurrent processes. Formali-
zation, Synchronization.

110

[ZAVE86] Zave, Schell, "Salient Features of an Executable
Specification Language and Its Environment, " IEEE Transac-
tions on Software Engineering , pp . 312-325, February 1986.

Presents the executable specification language PAISLey and
its environment as a case study in the design of computer
languages. Conclusions are drawn concerning the differences
between executable specification languages and programming
languages, and potential uses for PAISLey are given.

KEY WORDS: Distributed systems. Executable specifications.
Functional programming. Operational approach to software
development. Parallelism, Real-time systems.

NBS-114A (rev. 2-80

U.S. DEPT. OF COMM. 1 .

BIBLIOGRAPHIC DATA
SHEET (See fnstructions)

4. TITLE AND SUBTITLE

PUBLICATION OR 2

REPORT NO.
. Performing Organ. Report No. 3.

NBSIR 87-3559

Publication Date

MAY 1987

Annotated Bibliography on Reliable System Design

5. AUTHOR(S)
Wayne H. McCoy, Kathleen M. Roessing, Mary K. Ruhl

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP

)

10.

SUPPLEMENTARY NOTES

|

I Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most si gnificant information. If document includes a significant
bi bliography or literature survey, mention it here)

The difficulty in assuring some level of fault-tolerance, reliability, safety,

availability or survivability in large, complex distributed system has long

been recognized. Techniques are now emerging that try to address this issue

in system design, including formal description, design tools, automatic

implementation and system simulation. This bibliography contains brief

summaries of 350 papers from various computer science and engineering journals,

books, dissertations and technical report in the years 1972-1987, on these

and related topics.
12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

automatic implementation; distributed computer systems; fault-tolerance;
formal description; reliability, system design

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

| y 1

Uni imited

| j

For Official Distribution. Do Not Release to NTIS 115
' Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

l~)cl Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $18.95

USCOMM-DC 6043-P80

