
The Use of Artificial Intelligence

Programming Techniques for

Communication between
Incompatible Building Information
Systems

William F. Danner

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Gaithersburg, MD 20899

April 1987

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

QC

100

.U56

NO. 87-3529

1987

NBSIR 87-3529

THE USE OF ARTIFICIAL INTELLIGENCE

PROGRAMMING TECHNIQUES FOR
COMMUNICATION BETWEEN
INCOMPATIBLE BUILDING INFORMATION

SYSTEMS

William F. Danner

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Gaithersburg, MD 20899

April 1987

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

.

Abstract

A communication capability between incompatible information

systems is presented. The purpose of the research reported here

has been to develop an interface based on (1) a format for the

exchange of knowledge needed by each system to understand the

other, and (2) a format for the exchange of information in the

context of that knowledge. Particular emphasis has been placed

on developing protocols supporting the transfer of analytical

data. These data are seen as comprising not only facts but also

the semantics associated with those facts.

Two artificial intelligence programming techniques have been

employed: (1) frame-based knowledge representation, and (2)

object-oriented programming capabilities as an integral part of

the frame-based representation. These techniques make

self-descriptive formats possible that provide for a virtual

extension of an information management system. Such an extension

provides access to information without requiring a detailed

understanding of specific system operations.

Keywords: artificial intelligence, buildings; communication;
data; database; database management; information; information
system; protocol.

ii

'

.

*

Table of Contents

Page

1. INTRODUCTION . . . 1

2. INCOMPATIBILITY BETWEEN INFORMATION SYSTEMS 5

2 . 1 The Underlying Theoretical Models 7

2.2 The Logical Organization of Information
and its Representation (Schema) . 8

2 . 3 The Operations used to Manipulate
Information 9

3. INTEGRATING HETEROGENEOUS INFORMATION SYSTEMS 10

3.1 The Global System Approach 10

3.2 Information Management and AI Efforts in
Global System Development 14

3.3 The Role of Application Layer Protocols 17

4. REPRESENTING SYSTEM SEMANTICS IN MODULES FOR
SELECTIVE NETWORK COMMUNICATION OF INFORMATION:
FRAMES 22

4.1 Meta Information Modules 24

4 . 2 Tables and Semantic-Networks for
Displaying Meta Information 32

4.3 Perspectives and the Resulting Views
of Information 40

4.4 Information Modules 44

iii

. Page

5= MS-ALPS APPROACH TO LOCAL COMMUNICATION INTERFACES:
OBJECT ORIENTED PROGRAMMING 50

5ol Translators and Interpreters for Obtaining
a Particular View of Information from a
Given Perspective 50

5.2

The Use of a Messenger to Deliver Requests
for Information and Transmit Replies 53

6. IMPLEMENTATION OF MS-ALPS

:

THE PERSPECTIVES AVAILABLE TO A MESSENGER AND
THE TRANSFER OF APPROPRIATE VIEWS 58

6.1 Integration of Declarative & Procedural
Semantics 58

6.2 The LISP Interpreter as Working Memory 63

6.3 The Meta-Information Format 64

6.4 The Information Format 70

6 o 5 The Messenger and its Messages 74

7. CONCLUSIONS 77

7.1 The Relations Implicit in MS-ALPs Formats 77

7.2 Current Implementation 80

REFERENCES 82

APPENDIX Demonstration Messenger, Translators,
and Interpreters 84

List of Tables

Table Page

1 The Entity-Type Module . . 26-27

2 Elements of an Entity-Type Module in Tabular Form . . 28

3 Common Relations and Roles used in Relationships ... 33

4 Example of an Entity-Type Module in Tabular Form ... 35

5 The MIR 41

6 The Perspective 42

7 The Entity Module 45

8 The View 47

9 Example Information 49

10 The Messenger 54

11 Static and Dynamic Elements of MS-ALPs 60

12 The Forms of the Meta Information Format ' 65

13 The Forms of the Information Format 71

14 Example Messages: Selectors and Arguments 76

15 The Relations and Roles Implicit in MS-ALPs 78

16 Example Messenger and Delegate-to Functions 86

17 Example Translators 89

18 Example Interpreter 90

v

List of Figures

Figure Page

1 Testbed Environment • 4

2 A Representation of the Levels of System
Architecture suggested by ANSI/SPARC . 6

3 An Integrated Global Schema 11

4 A Global Data Manager 13

5 Simplified Representation of Layers 1-7
of the ISO OSI Reference Model 18

6 The MS-ALPs Approach 19

7 Entity-Type Relationships in Semantic Network Form . . 30

8 Entity-Type Attributes in Semantic Network Form ... 31

9 Example Entity-Type Relationships
in Semantic Network Form 3 6

10 Example Entity-Type Attributes
in Semantic Network Form 37

11 Accessing Information Using a Messenger . 56

12 Sequence of Events in Accessing Information 57

vi

1. Introduction

Participants in the building process are not able to fully

integrate their efforts because of incompatibilities between the

computer systems they use to assist them in decision making. The

design and construction phases of a building involve many

interdependent processes and decisions among architects,

engineers, and contractors that could benefit from the ability to

communicate between dissimilar systems. Currently, the amount of

effort required to understand one another's systems in order to

share information and processing capabilities is prohibitive.

The scope of the research described in this report derives

directly from the particular needs of the building industry but

not limited to that industry. Participants in the building

process have at least two quite distinct but related interests

regarding communication between heterogeneous systems. One is

the development of comprehensive integrated building information

systems. This long term interest is exemplified by discussions

within the Architecture Engineering and Construction Committee of

the Initial Graphics Exchange Specification Organization

concerning the next generation of data exchange specifications

[1]. The second related interest is in the ability to establish

ad hoc communication to serve the immediate needs of particular

participants on a particular project.

1

Such ad hoc communication may involve, in the extreme case,

a pair of project participants that have never worked together

before nor have plans to work together on any future project*

The information they wish to exchange may be a very small subset

of the information contained in their respective systems. The

development of an interface capability for use in the building

industry must accommodate both short term needs for communication

as well as the needs for comprehensive integrated systems*

This report presents an initial step toward the integration

of incompatible systems. It provides a way to exchange essential

knowledge about how a computer system organizes its information.

It also provides a way to access information without knowing the

operational details of the system. The approach . taken employs

techniques available from the field of artificial intelligence

for representing and using knowledge. Protocols have been

developed that establish a modular interface capability between

incompatible systems. The modularity of the developed protocols

allows for an adaptive interface capability responsive to the

needs of the building community as well as to information systems

generally.

The testbed environment used during the course of the

research is shown in Figure 1. During the initial phase, a

multitasking workstation and a micro-computer were used employing

file transfer communications software over an RS/232 link.

2

Subsequent work has included a LISP machine network. Protocols

providing a transparent interface for the transfer of information

and cooperation between concurrently operating applications have

been implemented.

In order to provide a context for the discussion of the

interface protocols, this report begins with an assessment of

underlying causes of system incompatibility in Section 2. This

is followed by a discussion of approaches to developing

communication interfaces between incompatible systems in Section

3 . Section 4 presents the modular approach to representing how

information is organized within a system as well as representing

information consistent with that organization. The modular

representation is extended in Section 5 to include knowledge

about accessing information. Section 6 then describes the

implementation of a modular knowledge-based interface. The final

section presents conclusions drawn from experience with the

interface.

3

TESTBED ENVIRONMENT

Figure 1. Testbed Environment

4

2. Incompatibility between Information Systems

The American National Standards Institute (ANSI) Committee

on Computers and Information Processing (X3) Standards Planning

and Requirements Committee (SPARC) framework for database

management systems provides a useful context in which to discuss

incompatible information systems [2]. A system's architecture

can be thought of in terms of three levels. The external level

is concerned with those views of information resulting from

user-specific applications. The internal level is concerned with

the way information is actually stored. Between these two levels

is the conceptual level which corresponds to a common view of

information underlying all external level applications.

The conceptual view of information (Figure 2) reflects the

perspective provided by a specified logical organization, the

conceptual schema. It is accessed using conceptual level

operations in conjunction with mappings between levels.

Incompatibility between information systems results from

heterogeneity among the respective elements that provide the

conceptual views of the information (i.e., the conceptual

schemata and operations)

.

Conceptual level schemata and operations are developed in

accordance with a particular theoretical data model. The data

model specifies the structures used to develop the conceptual

schema, as well as the operations that are allowed on those

5

ANSI/SPARC ARCHITECTURE

EXTERNAL

INTERNAL
LEVEL

Figure 2. A Representation of the Levels of System Architecture
Suggested by ANSI/SPARC.

6

structures. Therefore, a discussion of heterogeneity between

information systems necessarily includes the topic of modeling.

2.1 The Underlying Theoretical Models

The field of information management, particularly in the

area of modern database systems, has changed radically in recent

years. Primitive file models first gave way to hierarchic,

network, and relational models. These classical models differ

predominantly in terms of the structures they use to model the

organization of information. The structures in turn have

implications for the ways in which information can be

manipulated. As database systems became more sophisticated and

knowledge-based systems began to appear, the classical models

were extended to include ever increasing amounts of information

about information (meta information) . This trend has resulted in

the development of what are often called semantic data models.

New models continue to appear, some representing

considerable departures from the three classical approaches [3].

All however, are attempting to provide tools for dealing with the

organization of information. Though they may differ greatly in

their approaches, a common element remains, the underlying

discipline-specific logical organization of information they are

used to represent. Translation between models entails developing

alternative representations of the same logical organization.

7

The incompatibility between information systems which

results from dissimilar data models can be addressed by providing

mappings between alternative representations. Translation must

therefore include not only the information itself but also the

semantics associated with that information if the logical

organization of the information is to be understood.

2 e 2 The Logical Organization of Information and its

Representation (Schema)

The logical organization of information derives

predominantly from the discipline using the information. The

tool (i.e., theoretical data model) used to model the information

is selected on the basis of the appropriateness of the tool for

the particular information, the ease with which the tool can

implement an adequate representation, and the data manipulation

capabilities that are to be provided.

The result of using a given theoretical data model is a

conceptual schema of the system. It is a representation of the

logical organization of information in terms of the structures

that are provided by the modeling tool. A major impediment to

integrating dissimilar information systems results from the fact

that each system can operate only in the context of its own

schema. For meaningful communication to take place, an interface

8

must be developed between schemata. The interface must also be

able to deal with differences in the way each system manipulates

information.

2.3 The Operations used to Manipulate Information

The operations used to manipulate information within a

computer system may adhere in varying degrees to manipulation

languages that have developed in conjunction with theoretical

data models. The Standard Query Language (SQL) developed for use

with relational databases [4] is an example of attempts at

conformity. However, differences between implementations of SQL

have appeared even within the limited context of relational

databases. Being- faced with totally different data manipulation

languages makes integration of systems even more problematic.

An interface between incompatible systems must therefore

include a means of translating requests into the language being

used by the system supplying information. It must also provide

for translation of the response into a form that is meaningful to

the requesting system. Two approaches to these requirements, as

well as the resolution of incompatibilities between schemata will

be discussed in the following section.

9

3. Integrating Heterogeneous Information Systems

In order for communication to take place between

incompatible information systems, there must be a resolution of

schematic and operational differences. The resolution of these

differences is often subsumed under technology for distributed

heterogeneous information management. As the name implies, one

function of this technology is to provide an interface that not

only allows communication but also manages information at various

locations.- The most common approach to such an interface views

each system as an independent local component of an all

encompassing global system.

3 . 1 The- Global System Approach

Global system interfaces have been described as requiring

three major elements [5]: a global data manager, a distributed

transaction manager, and structured-data transfer protocols.

Though the names of such elements are different among the various

interfaces in the literature, the concepts are quite similar.

The global data manager is responsible for input and output

operations. In this capacity it makes use of an integrated

global schema (Figure 3) . The integrated global schema is

analogous to the conceptual schema of the ANSI/SPARC framework

10

A va/JabJe to
GJobaJ

Data Afazia^ej-

Figure 3. An Integrated Global Schema.

11

with the local schemata being analogous to external schemata.

The global data manager also has access to mappings between

global and local views analogous to mappings between conceptual

and external views. Actual implementations, make use of

intermediary standardized local schemata that use the same

theoretical data model as the global schema. These elements

facilitate the "global understanding" of the local conceptual

schemata

.

In its capacity to handle input and output, the global data

manager also makes use of global operations (Figure 4)

.

Translation of queries (operations) and local system responses

are performed by the global data manager using capabilities that

provide the equivalent of mappings between operations. This

translation capability facilitates the "global understanding" of

the local conceptual operations.

The data transaction manager, is responsible for consistency

maintenance, including concurrency and recovery control. It is a

necessary interface element for extending a distributed system

from one capable of communication to one that is integrated.

This element of global system interfaces is still largely at a

research stage.

The structured-data transfer protocols are responsible, in

combination with the global data manager, for the preservation of

12

In tegrated
GlobaJ Schema

A vaj’JabJe

Figure 4. A Global Data Manager

13

data semantics. These protocols address issues of query and data

transfer between components of the integrated global system.

Data transfer protocols have not received much direct attention

to date, largely due to the fact that each effort to develop a

global system interface has proceeded as a comprehensive package,

with its own internally consistent methods for passing

information between its constituent parts and maintaining system

semantics

.

3 c 2 Information Management and Artificial Intelligence Efforts

in Global System Development

One of the first efforts to develop a global interface

between heterogeneous information systems appeared in 1978 [6].

Adiba and Portal proposed COSYS (cooperative systems) that used a

binary relational model. In 1980 Cardenas and Pirahesh [7]

presented their Distributed Database Testbed based on Chen's

Entity-Relationship Model [8]. Smith et. al. [9] developed

Multibase in 1981 using Shipman's Functional Model [10]. Later

research into the use of global systems was carried out for the

United States Air Force using a representation developed

specifically for their Integrated Computer Aided Manufacturing

projects [11]. More recently the Integrated Manufacturing

Distributed Database Administration System [12] developed for the

Automated Manufacturing Research Facility at the National Bureau

of Standards has used Su's Semantic Association Model [13]. And

14

in a departure from the other efforts, Rehak and Howard [14] have

proposed a knowledge-based global interface that is a current

topic of research at Carnegie-Mellon University.

The global interfaces listed above constitute a great deal

of research and development effort. Most have achieved some

success at providing a communication link between heterogeneous

systems. Providing integration of those systems has been more

elusive however. One striking aspect of the above list is that

each has chosen a different theoretical data model to develop its

global schema. Each information system being connected to such a

global interface must also have its local schema translated into

a standardized local schema that uses the theoretical data model

chosen for that interface. The global interface* must then

incorporate all the meta information of each of its constituent

systems into its single global schema.

A similar situation exits for the operations aspect of the

global system interface. Global operations are developed which

act as an intermediary between requests and local operations.

The knowledge about each new local system must be incorporated

into global subsystems that perform such functions as schema

analysis, query decomposition, translation, plan generation, and

results integration [5] in order for communication to take place

at the operations level.

15

Complex global system interfaces will undoubtedly one day

provide not only communication between incompatible systems but

also integration. Research on such systems is a continuing

process. However, two observations can be made. The first is

that though the potential for a global system having complete

understanding of, access to, and ultimately control over all the

information in distributed local systems is desirable, most needs

for communication between incompatible systems are much less

demanding. This is particularly true in the building industry.

The second is that since each of the described global system

interfaces uses a different theoretical data model and a

different global operations capability, the problem of

heterogeneity has not necessarily been solved. Rather it has

been shifted to a higher, more complex level.

These observations have quite different implications

depending on the purpose for which the interface is being used.

In the case of a permanent fully integrated system a global

approach is desirable. This is particularly true when demands

for communication outside the global environment are relatively

limited and of a predictable nature. However, if needs for

communication are continually changing or if the required

information is a limited subset of the total information

available, a more adaptable approach is suggested.

16

3.3 The Role of Application Layer Protocols

Application layer protocols as used here refer to protocols

that serve to establish a virtual communication path between

heterogeneous distributed systems (Figure 5) . They are at the

seventh layer of the Open Systems Reference Model [15] of the

International Organization for Standardization (ISO OSI Reference

Model) . Application layer protocols can be used to define

standard canonical formats for representing both the schemata and

the operations necessary for information access. They can also

be used to define formats for transmitting requests and the

information that constitutes a reply. A modular approach to

representing system semantics both in terms of meta information

and information has led to the development of Modular Semantic

Application Layer Protocols (MS-ALPs)

.

The format that is used to represent the schematic and

operational knowledge is the Meta Information Format,

Application of this format to a given system results in a

standardized Meta Information Representation (MIR) as depicted in

Figure 6. An MIR is comprised of modules each of which contains

knowledge about particular information stored in an information

system. Knowledge about the information, how it fits into the

overall organization of information, and methods for accessing

that particular information are present. Knowledge about system

operations is not, however, represented in a form that is

17

ISO OSI REFERENCE MODEL

A B

Figure 5. Simplified Representation of Layers 1-7 of
the ISO OSI Reference Model.

18

Messages MS“ALPS

Figure 6. The MS-ALPs Approach.

19

necessarily understandable by remote users. Rather, methods are

present for accessing specific information in response to a

particular set of MIR supported messages. Requests for

information are made in terms of these messages . Once the

representation of needed information is understood, the methods

stored in an appropriate module can be used to retrieve the

information without the user understanding the details of how

this is accomplished.

Information retrieval makes use of an information format

that provides for the transmission of messages between MIRs.

These messages are used in transmitting requests to an MIR and

subsequently returning the information which constitutes a reply.

This process is also referred to as message passing. For message

passing to occur automatically, additional methods are developed

on a remote system that are responsible for making requests in

response to needs for information. Such needs are initiated

either by a user making requests in terms of a local query

language or more directly by applications. These methods make

use of the messages supported by the MIR modules with which they

are communicating. Methods are also developed for entering

information into the requesting information system upon receiving

a reply. Once these methods are in place, requests and replies

for information between systems are exchanged in an automatic and

transparent fashion.

20

An interface capability based on application layer protocols

as described above makes it relatively easy for systems to be

connected to one another. Requirements include local MIRs and

the ability to develop the additional methods for making specific

requests and entering the information that is received in reply.

The perspectives and additional methods are developed between

systems that respond precisely to actual needs for specific

information transfer. This characteristic provides for a highly

adaptive communication capability.

Application layer protocols are also of use in those

situations that suggest a global information management system

approach. Since meta information is available in an MIR, a

global system interface can make use of the knowledge it

contains. Expectations as to the format of this knowledge is

useful when adding systems to a global system interface. The

development of automated processes for the addition of new

systems is possible in this context.

Application layer protocols therefore can provide

communication capabilities that address both short and long term

needs of the building industry. The sections which follow

present meta information and information formats for application

layer protocols and an implementation of an interface based on

their use.

21

4. Representing System Semantics in Modules for Selective

Network Communication of Information: Frames

Information system semantics that constitute the meta

information of a system can be divided into three categories:

declarative, compositional, and procedural [16,17,18].

Declarative semantics derive from the definition of a conceptual

schema. This is typically accomplished through the use of a data

definition language that embodies a particular underlying

approach to the organization of information (the theoretical data

model) . Declarative semantics often become a major part of a

system's data dictionary.

Compositional semantics derive from syntactic conventions of

an information system. The meaning resulting from the position of

symbols in specifying a particular operation or query is an

example.

Procedural semantics derive directly from the conceptual

level operations that are provided by a system. That is, the

meaning of the system content (stored values) is established by

the operations of that system. Stated another way, values have

meaning as a result of the operations which serve to assign,

retrieve, or manipulate those values.

The specification of application layer protocols for meta

22

information involves first the identification of the semantic

concepts that can serve to encapsulate the desired knowledge, and

second, the selection of symbolic elements that serve to identify

those concepts. The protocols must be eclectic in the sense that

the fundamental concepts of the various theoretical data models

should be accommodated to allow for translation between what are

to be essentially alternative representations. The

identification of semantic concepts should also consider the

nature of the discipline in which a protocol is to be used to

determine if there are unique requirements or characteristics

specific to that discipline.

The frame-based knowledge representation developed in the

field of artificial intelligence [19,20] provides a means of

.storing the declarative, compositional, and procedural semantics

that constitute the meta information of a system. Simply stated,

a frame is a collection of properties, applicable to all

instances of an identified class of objects. (An "object" in

this context refers to a uniquely identifiable thing, event, or

concept.) A frame can be thought of as a template or stereotype

reflecting certain expectations regarding properties of an object

based on the class to which it belongs.

A frame-based knowledge representation is essentially

modular in nature. Each frame captures knowledge about a

particular object class. This may include a description of the

23

object class, the characteristics of the object class, and the

relations that exist between this and other object classes.

These constitute necessary declarative semantic concepts for

encoding a conceptual schema. A frame-based representation can

also capture knowledge concerning operations that are of

relevance to a given object class (compositional and procedural

semantics)

.

The use of a frame-based knowledge representation reflects

an orientation considered appropriate to the building industry.

That is object classes like doors, windows, hallways, or, for

that matter, buildings serve as an intuitive basis for organizing

building information. Further, the modularity that a frame-based

representation provides is well suited for the establishment of

communications capabilities that address the particular needs of

the participants that wish to communicate.

The symbolic elements used to describe the Modular Semantic

Application Layer Protocols are described in the sections that

follow.

4.1 Meta Information Modules

The entity-type module has been chosen as the basic unit of

the Meta Information Format. An entity-type module is a

24

collection of properties (i.e., a frame) applicable to all object

class identifiers of a conceptual schema (i.e., of the class

"entity-type") . That portion of the meta information directly

related to a given entity-type is represented as the contents of

its module properties.

Table 1 presents definitions of the properties comprising an

entity-type module. They include a description of the

entity-type, the relationships involving the module entity-type

and other related entity-types, key-attributes of the module

entity-type, non-key attributes, and interpreters which capture

compositional and procedural semantics unique to the module

entity-type.

An entity-type module in tabular form is presented as Table

2. The module entitv-tvpe is the identifier for which the

entity-type module is established. The description property

contains text that defines or otherwise describes the entity-type

of a given module. (This as well as all other module properties

are optional.)

The relationships property is used to represent the logical

connections between object classes of a conceptual schema. A

relationship includes the module entity-type, a pair of roles

that define a relation, and one or more related entity-types.

The first role is assigned to the module entity-type, while

25

Table 1. The Entity-Type Module.

entity-type A collection of properties applicable to
module all entity-types of a conceptual schema

(i.e. , to all instances of the class
"entity-type")

.

Module Entity-
Type (MET)

The conceptual schema object class
for which an entity-type module is
created.

description A property containing Description of the
module entity-type.

Description Text which specifies the conceptual schema
object class represented by the module
entity-type.

relationships A property comprising a Relation, an
ordered pair of Roles, and Related
Entity-Types

.

Relation A logical connection between entity-types.

Role A term used to identify the part played
by an entity-type in a Relationship.

Related Entity-
Type (RET)

A conceptual schema object class related
to the MET by a given Relation

26

Table 1 . (continued)

attributes A property comprising an Attribute,
Domain, and Domain-Values, (or
Constraints)

.

Attribute A conceptual schema identifier used to
represent a characteristic of the
conceptual schema object class
represented by the MET.

Domain A schema identifier which represents the
set of possible values of an Attribute.

Constraint A list of values or one or more rules
governing allowable values that make up
the Domain (i.e., that defines the
acceptable Attribute-Values.

kev-attributes A property comprising a Key-Attribute,
Domain, Domain-Values and Constraints.

Key-Attribute A conceptual schema identifier used to
represent a key characteristic of a
conceptual schema object class, the value *

of which serves to identify an instance
of that object class.

interpreters A property containing Selectors to which
an interpreter can respond and the
associated methods which represent
compositional and procedural semantics
specific to the entity-type for which
the module is established.

Selector A message identifier used to communicate
the type of information desired.

Method An expression which initiates a conceptual
level operation.

27

Table 2. Elements of an Entity-Type Module
in Tabular Form.

Module Entity“Type (MET) Description

relationshiDs

MET Role (RET Role) s Related Entity-Type . .

.

kev-attributes

Key-Attribute s Domain
Constraint

attributes

Attribute : Domain
Constraint

28

the second (the inverse) is assigned to the one or more related

entity-types. A relationship establishes the place of the module

entity-type within the organizational "structure" of the

conceptual schema

.

This is more easily visualized when the

entity-type module is portrayed in a semantic network form

(Figures 7 and 8)

.

Only those other entity-types directly related to the module

entity-type are visible from a given module. Therefore , no

assumptions are made about the overall structure of a conceptual

schema. The schema structure is revealed layer-by-layer from an

arbitrary starting point (the module entity-type) as the modules

of successive related entity-types are accessed.

It should be noted that the term "relationship" in the Meta

Information Format can be defined on more than two entity-types.

Further, relations are used exclusively to represent logical

interconnections between entity-types. That is, relations are

not allowed to have attributes. Further, relations that may

exist conceptually between attributes are represented by

establishing a module for those attributes. That is, they are

represented as entity-types.

A pair of roles that define a relation capture semantics

associated with the conceptual schema structure. Examples of

relations and the corresponding roles useful in the

29

Figure 7. Entity-Type Relationships in Semantic Network Form.

30

Figure 8. Entity-Type Attributes in Semantic Network Form.

31

Meta Information Format are presented in Table 3. The use of

relations defined by an ordered pair of roles provides a flexible

and extensible system for the representation of semantic concepts

that are the hallmark of many "semantic" data models (e.g., the

Semantic Association Model and the Semantic Hierarchical Model)

.

Discussions of the semantic concepts embodied in the relations of

Table 3 can be found elsewhere (21,22,23).

The kev-attributes and attributes properties (Table 2 and

Figure 8) of an entity-type module are used to represent the

characteristics of conceptual schema object classes. Each

key-attribute and attribute has a domain from which values can be

drawn

.

The interpreters property of an entity-type module is used

to capture compositional and procedural semantics of an

information system that are unique to the entity-type for which

the entity-type module is established. This is to be contrasted

with compositional and procedural semantics that are of relevance

to all entity-type modules, to be discussed later.

4 o 2 Tables and Semantic Networks for Displaying Meta Information

Tables and semantic networks displaying meta information are

often essential for understanding the schema of an information

system* The previous section gave examples of how meta

32

Table 3. Common Relations and Roles used in Relationships.

RELATIONS

:

ROLES:

Generalization

Aggregation

Association

Set Association

"relation"

type-of has-type

part-of has-part

member-of has-member

subset-of has-subset

(schema defined roles)

33

information can be represented using the abstract symbolic

elements . Tabular and semantic network forms were presented in

Table 2 and Figures 7 and 8

.

An example entity-type module in both the tabular and

semantic network form is presented in Table 4 and Figures 9 and

10 c This module is from a schema used by a hypothetical

application program that assists a mechanical engineer in the

design of heating, ventilating, and air conditioning (HVAC)

systems
«

(This example will be followed throughout subsequent

sections to illustrate the substitution of information system

elements for abstract elements in the formats used to communicate

selected information.)

A hypothetical building economics application is to carry

out a life cycle cost analysis of two alternative heating systems

that have been determined to be capable of providing essentially

equivalent performance by the HVAC application. The building

economics application requests certain specific information about

the alternatives from the information system used by the HVAC

application. The example begins with the task of understanding

the schema of the information system supporting the HVAC

application. For the purpose of an example the schema has been

limited to a single entity-type module.

The entity-type is HS (heating system) . HS has all five

34

Table 4. Examp
in Tal

)le of an Entity-Type Module
aular Form.

HS Heating System: An HVAC subsystem providing
heat to one or more zones of a building

relationships

PART-OF (HAS-PART) : HVAC

HAS-PART (PART-OF) : COMPONENT
CONTROL
PATH

kev-attributes

HS-ID : BUILDING-NUMBER
n B-integer&-character"

attributes

TYPE : FUEL
ELECTRIC
GAS
OIL
SOLAR

EFFICIENCY : PERCENT
"integer"

INITIAL-COST : DOLLARS
"integer"

LOAD : MMBTU
"real"

35

Figure 9. Example Entity-Type Relationships
in Semantic Network Form.

36

Figure 10. Example Entity-Type Attributes in Semantic Network Form.

37

properties of an entity-type module. They are its description,

relationships, key-attributes, attributes, and interpreters.

However, in both the tabular and semantic network forms only the

first four of these properties are displayed since they are the

properties that serve to specify the schema.

The description of the module entity-type states that HS

represents "... an HVAC subsystem providing heat to a building."

(The description of a module entity-type is typically omitted

when in the semantic network form.)

The module in Table 4 and Figure 9 shows two relationships

for HS. The first involves the relation aggregation. It has the

roles part-of and has-part and the related entity-type HVAC. The

first role is associated with the module entity-type. Therefore,

"HS [is a] part-of HVAC." The second role is associated with the

related entity-type. Therefore, "HVAC has-part HS." Note that

the HVAC aggregate has other parts but they are not displayed in

the HS module since they are not directly related to HS. The

module for HVAC would include all the parts since they are

directly related to the HVAC entity-type.

The second relationship in the HS module also involves the

relation aggregation. However, in this case the roles are

reversed: has-part and part-of. The related entity-types are

component, control, and path. Therefore, the relationship is

38

understood to be that "HS has-part component, control, path" or

conversely that each part "component, control, path [is a] part-

of HS."

The HS module has the single key-attribute HS-ID. Its

domain is building-number. The domain values are limited to

integers preceded by "B" and optionally followed by a letter

representing alternatives for a given building. Additional

attributes of HS include its type, efficiency, initial-cost, and

load. The domain of the HS type is fuel. The acceptable domain

values are electric, gas, oil, and solar. The domain of the HS

efficiency is percent with values limited to integers. The

domain of the initial-cost is dollars with values limited to

integers. The domain of the HS load is mmBTU (millions of BTU's)

with values limited to real numbers.

The HS module displayed in either a tabular or semantic

network form allows for the decision as to whether this

particular entity-type is of importance to a remote user and

therefore should be included in that user's perspective. The

perspective can include or omit this module either in whole or in

part. Therefore, if only the initial-cost attribute is of

importance to a given user, the perspective for that user can

exclude the other attributes. Similarly, selection among the

relationships is also possible.

39

4.3 Perspectives and the Resulting Views of Information

The entire conceptual schema in the Meta Information Format

constitutes the most comprehensive perspective that can be taken

regarding an information system . It is in fact the Meta

Information Representation (MIR) of the information system (Table

5) . Subschemata comprise the alternative perspectives that are

listed in the MIR perspectives property. A subschema is a

subset of the conceptual schema. The subset includes only

entity-type modules and elements of those entity-type modules

that are of interest to a particular user or set of users.

Perspectives provide a means of grouping together a number

of entity-type modules including the compositional and procedural

semantics of an information system that are of relevance to those

entity-type modules. Table 6 presents the definitions of the

elements of a perspective. A perspective is a collection of

properties applicable to all instances of the class

"perspective, " each of which is identified by a perspective-ID .

The entity-types property of a perspective identifies those

entity-types whose entity-type modules are included in the

perspective. The messages property identifies those messages to

which a perspective can respond. The translators property of a

perspective is used to capture compositional and procedural

semantics of an information system that are relevant to

40

Table 5. The MIR

Meta-Information
Reoresentation
(MIR}

A collection of properties applicable to
a MS-ALP representation (i.e., instances
of the class "MIR")

.

System-ID An identifier used to designate an
instance of the class "MIR."

Dersoectives A property of an MIR which identifies
its constituent perspectives.

41

Table 6. The Perspective

Dersoective A collection of properties applicable to
the conceptual schema and all subschemata
that are a subset of the conceptual
schema (i,e. , to all instances of the
class "perspective")

.

Perspective-ID An identifier used to designate an
instance of the class "perspective."

entitv-tvoes A property of a perspective which
identifies its constituent entity-types.

messages A property containing the Selector which
will be used to activate methods and the
arguments that are required.

translators A property containing Selectors to which
a translator can respond and associated
methods .which represent compositional
and procedural semantics that are of
relevance to all entity-types of a given
perspective.

42

the included entity-type modules.

In the HVAC example, a remote user identifies his or her

perspective by assigning a perspective-ID such as building-

economist-perspective. The hypothetical application needs access

to the attributes of the HS module and only the relationship

indicating the hvac system of which the heating system is a part.

A view is a representation of the contents of an information

system accessed via the selected perspective. Access is provided

by the perspective translators in combination with entity-type

interpreters as needed. The action of these properties is

essentially transparent to the user or application communicating

with the system. The amount of information that can be accessed

is limited by the scope of the perspective through which an

authorized user or application is viewing the system contents.

Therefore, in the example of the building-economist-perspective,

a building-economist-view will be limited to information

concerning HS type, efficiency, initial-cost, and load.

43

4 . 4 Information Modules

The basic conceptual unit of the Information Format (though

not transfer protocol unit, see section 6»3) is the entity

module. Table 7 presents the definition of the elements of an

entity module. The entity module is a collection of properties

applicable to the objects of an information system (i.e., of the

class "entity") . An entity is represented by following the

entity-type with the one or more keys (i.e., values of key

attributes) necessary to uniquely identify an information system

object (e.g„, entity-type (key)). It represents an instance of a

given entity-type.

In the HVAC example, there are three HS systems with HS-IDs

from the domain building-number -of B1A, BIB and B2 . The

building-numbers containing the "A" and "B" are alternative HS

systems that are being considered for the same building (Bl) .

The corresponding entities are HS (B1A) , HS (BIB) and HS (B2)

.

Since an entity represents an instance of an entity-type, an

entity module can be thought of as an instance of an entity-type

module. The properties of the entity module are limited however

to relationships and attributes. The relationships and

attributes of the entity-type modules included in a given

perspective define the scope of the information that may be

viewed.

44

Table 7. The Entity Module.

entitv module A collection of properties applicable to
all objects of an information system
(i.e., to all instances of the class
"entity")

.

Module Entity An instance of the conceptual schema
object class (entity-type_key) for which
an entity module is created.

Key A member of the set specified by the
Key-Attribute Domain used to identify an
instance of an entity-type (entity)

.

relationshiD

Entity-Role A term used to identify the part played
by an Entity in a Relationship.

Related-Entity An information system object related to
the Module Entity.

attribute

Attribute An identifier used to represent a
characteristic of an Entity which is
defined by an attribute of the Entity-
Type of which the Entity is an instance.

Domain An identifier which represents the set
of possible values of an Attribute as
defined by the Entity-Type of which .the

Entity is an instance.

Value A member of the set specified by the
Attribute Domain of the corresponding
entity-type.

45

Information system contents are represented within the

entity module properties. The elements of the entity module

properties emphasize the role of the entity in a relationship.

Therefore, the elements of the Information Format concerning

relationships includes the entity, its role in the relationship

and the related entities (instances of the related

entity-types) . Correspondingly the elements concerning

attributes include the attribute, its domain, and value.

For the example HS entity-type module, there are three

entity modules? HS (B1A) , HS (BIB) , and HS (B2) . An example

relationship would be that an entity such as HS (B1A) is part-of

the HVAC system for building one (HVAC (Bl)) . As for the

attributes, an entity like HS (B1A) may have an oil fuel type.

The inclusion of these modules and their contents depends

upon the perspective from which the information is viewed. One

or more entity modules or parts thereof, accessed via a given

perspective, make up a view. Table 8 presents the definition of

the elements of a view. A view is a collection of properties

applicable to all instances of the class "view,” each of which is

identified by the perspective-ID which identifies the perspective

from which the view is derived.

The entities HS (B1A) and HS (BIB) viewed from the building-

economist-perspective constitute the building-economist view.

46

Table 8. The View

view A collection of properties applicable to
the conceptual view and all " subviews

"

that are a subset of the conceptual view
(i.e., to all instances of the class
"view")

.

Perspective-ID An identifier indicating the perspective
from which the view is derived.

47

This perspective omits the second relationship involving

aggregation but includes the first relationship and all four

attributes of the HS entity-type module. The entity modules are

also similarly limited. Therefore, hypothetical information such

as that shown in Table 9 can be accessed for each entity.

A view of an information system is obtained via a

perspective by using the message passing capabilities of the Meta

Information and Information Formats. Messages are provided for

•accessing individual relationships or attributes of an entity

module or for accessing entire modules. Therefore, a message can

ask that the type of HS (B1A) be supplied so long as that

information is part of the authorized perspective.

Alternatively, everything that is known about the HS (B1A) entity

module from a given perspective may be requested.

A list of supported messages is a part of the Meta

Information Representation. The context in which these messages

act includes the perspective translators and entity-type module

interpreters. The translators and interpreters contain the

knowledge necessary to retrieve requested information. Object-

oriented programming is the technique by which messages are

passed among appropriate translators and interpreters of the Meta

Information Format.

48

Table 9. Example Information.

Entities:

HS (B1A) HS (BIB)

Relationships

:

PART-OF HVAC (Bl) HVAC (Bl)

Attributes

:

TYPE (FUEL)

EFFICIENCY (PERCENT)

INITIAL-COST (DOLLARS)

LOAD (mmBTU)

OIL

75

3500

50.155

ELECTRIC

100

2000

50.155

49

So MS-ALPs Approach to Local Communication Interfaces:

Object Oriented Programing

Object-oriented programing provides a technique for making

use of the compositional and procedural semantics captured within

perspective translators and entity-type module interpreters of

the Meta Information Format. These properties have as their

contents a number of message identifiers (selectors) to which

they are able to respond and associated procedures called

methods. When a recognizable message is passed to a translator

or interpreter, the corresponding method is initiated.

The translators and interpreters of the Meta Information

Format provide a self contained access capability to a local

information* system or application. -Such a capability makes

communication between incompatible information systems possible.

It can also be of use to global system interfaces. The process

of passing messages and information is essentially the same

whether a local system is connected to a remote terminal, another

information system, an application, or a global system interface.

5 . 1 Translators and Interpreters for Obtaining a Particular

View of Information from a Given Perspective

Passing a message to a translator or an interpreter is

50

equivalent to delegating control over what is done with that

message. If a message contains a request for information from

outside an information system the message can be passed between

various translators and interpreters that contain the necessary

knowledge to respond to the request. Appropriate system

operations are initiated and entity modules or parts thereof

making up a view can be obtained.

In the case of the HVAC example, the building economics

application is to perform a life-cycle cost comparison between

two alternative heating systems for building one. The values of

the HS type, its efficiency, initial-cost, and load can be

retrieved for each alternative by sending a message requesting

the entity modules for HS (B1A). and HS (BIB) from the building-

economist-perspective .

The request in the form of a message supported by the

perspective is delegated to the appropriate translator for

analysis. Methods are used to consult entity-type modules for

relevant schema information. This is accomplished by delegating

control to the entity-type interpreter.

The entity-type interpreter contains knowledge concerning

operations that may be specific to the particular entity-type.

If a response unique to that entity-type is required, the

interpreter will initiate local information system operations

51

either directly or indirectly through perspective translators.

Alternatively, if a response generally applicable to entity-types

of the perspective is sufficient the interpreter will delegate

the message to an appropriate perspective translator.

In the case of unique requirements for the requested

information, the interpreter can take appropriate action not only

in terms of initiating information system operations but also in

terms of analyzing the response it receives from the information

system. The result of such an analysis determines the content of

the reply subsequently passed to perspective translators. The

translators are then responsible for encoding the reply in the

correct form for transmission over the communication channel.

In the case of an acceptable general solution, the entity-

type interpreter delegates the message to appropriate perspective

translators that initiate information system operations to

retrieve the requested information. These translators then pass

the reply on to other translators that provide for transmission

of the reply.

In the case of the building-economist-perspective, a

perspective translator receives a message requesting the entity

modules for HS (B1A) and HS (BIB) . This translator passes the

message on to the HS entity-type module. The HS module

determines whether a specialized or general approach to

52

fulfilling the message is appropriate.

The entity-type module knows that the HS type, efficiency,

and initial cost are contained in an HVAC-database of the

engineering information system. The message is therefore

delegated to a translator of the building-economist perspective

with the name of the appropriate database added. The load

however is contained in a thermal-analysis database. The message

in this case is delegated to the translator with this database

name (see Appendix)

.

Once the view of the HS type, efficiency, initial-cost, and

load has been obtained for HS (Bl) and HS (B2) , it is passed to a

perspective translator that prepares the view for transmission in

standard form. The actual transmission of the view as well as

the initial delivery of the request to the building-economist-

perspective is the function of a messenger.

5.2 The Use of a Messenger to Deliver Requests for

Information and Transmit Replies

The messenger is responsible for initiating the process that

ultimately makes a current view of the information available to

the user or application. Table 10 presents the definition of the

messenger. The messenger is sent with a message to a

53

Table 10. The Messenger

messenger The means by which a request for a view
from an available perspective is
delivered and a reply is returned.

54

perspective. It delegates the message to the appropriate

perspective translator, and later receives a view as a reply.

The view can then be transmitted to the message origination

point.

The message passing process is diagrammed in Figure 11. A

flowchart of the delegation of the message at each stage in the

process, keyed to that diagram, is presented in Figure 12.

55

ACCESSING INFORMATION

H

Local
System

* Messenger

J
LZemote
System

Perspective
4

— Translators 4

¥ Entity-Type Module 4

Interpreters

Entity-Type Module 4

Relationships
Key Attributes

Attributes 4

D

Figure 11, Accessing Information Using a Messenger

56

Figure 12. Sequence of Events in Accessing Information.

57

6. Implementation of MS-ALPs: The Perspectives Available to

a Messenger and the Transfer of Appropriate Views

An implementation of the Meta Information and Information

Formats has been undertaken within the Computer Integrated

Construction Group of CBT. Though the frame elements of the

developed formats are not limited to a LISP implementation, they

were in fact developed within that context during the course of

research reported here. The formats are therefore most easily

amenable to programming environments such as LISP and Prolog that

provide for symbolic manipulation. Other languages, such as C,

would require additional development including a parser for the

forms used by MS-ALPs.

6.1 Integration of Declarative & Procedural Semantics

The field of artificial intelligence has long found LISP to

be a useful language for the representation of knowledge. Its

capabilities for the manipulation of symbols and groups of

symbols (lists) have been used extensively in efforts to make

computers perform intelligently. Of particular interest is the

fact that List Programming (LISP) provides an environment in

which both data and procedures are represented as lists.

Therefore, an integration of declarative, compositional, and

procedural semantics is possible.

58

The LISP environment also provides the capabilities

necessary to implement many of the programming concepts currently

used in artificial intelligence including property lists,

structures, methods, objects, and others. These features are

directly applicable to the use of a frame-based knowledge

representation as discussed in the previous sections.

The implementation of formats for meta information and

information makes use of four basic programming concepts:

(1) Developing frames (structures) using the Meta
Information and Information Formats to encode meta
information and information respectively.

(2) Developing methods (lambda forms, i.e., procedures
as lists) that capture compositional and procedural
semantics of a given information system and provide for
an object-oriented programming capability that can
interact with the information system.

(3) Defining a messenger (a function) which can
deliver messages to an available perspective and return
an appropriate view.

(4) Developing a message-passing capability that
delegates control over what is done with a message
between translators and interpreters.

The development of a frame-based information protocol

provides for the representation of static elements of both the

Meta Information and Information Formats (Table 11) . The formats

are used to encode the conceptual schema of an information system

(Meta Information Format) and views of information (Information

Format) . The dynamic elements of the Meta Information and

Information Formats are encoded using methods, a messenger, and a

59

Table 11. Static and Dynamic Elements of MS-ALPs.

META INFORMATION FORMAT INFORMATION FORMAT

STATIC

MIR
System-ID
perspectives

Perspective
Perspective-ID
description
entity-types
messages

Entitv-Tvoe Module
Entity-Type

description
relationships
attributes
key-attributes

View
Perspective-ID

Entity

entity-roles
attributes

DYNAMIC

Perspective
Perspective-ID

translators

Entitv-Tvoe Module
Entity-Type-

interpreters

Messenaer
View-ID

messages

60

means of delegating responsibility for messages. Methods

retrieve views from an information system or application in

response to messages. The messenger in conjunction with a

message-passing capability provides the means by which messages

and views are handled.

Providing for a communication capability using MS-ALPs

begins ideally during the initial development of an information

system or application. A system MIR is developed which captures

the knowledge required to establish an understanding of the

system. A messenger is also developed that is capable of

performing system input and output as well as delegating

responsibility for messages.

The system MIR comprises both the static and dynamic

elements of the Meta Information Format. This requires first a

translation of the conceptual schema from the data model used by

the system to the Meta Information Format. It then requires

decisions regarding what system operations are to be made

available through methods and the subsequent development of those

methods. Implicit in this process is a selection of the messages

for which methods are to be provided. Messages involving both

access and input are possible. For the purpose of this

discussion only access will be considered.

Once an MIR is developed, the static elements and the

61

messenger can be transmitted to any number of external users. An

external user (most likely a system or network developer)

determines that part of the MIR that is of interest. A user

perspective is thereby established. The user perspective is

returned to the information system and becomes a resident feature

of the system.

Once a user perspective has been established, the messenger

can be used to pass messages from the external user to the

resident user perspective. The translators of that user

perspective in combination with its entity-type module

interpreters then provide a view in accordance with the received

messages. The messenger makes this view available to the

external user. The user must provide for translation between the

Information Format representation and a form suitable for local

applications

.

Establishing communication between two incompatible

information systems requires that the above process be completed

for each system. Communication employing Meta Information and

Information Formats has been established to date within the

context of distributed information systems operating within LISP

environments. This reflects both the preliminary phase of this

research, in which a homogeneous programming environment is

desirable, and the recognition of the increasing importance of

knowledge-based systems within the building industry.

62

6 . 2 The LISP Interpreter as Working Memory

Within a LISP environment, the interpreter serves as a

working memory into which both data and functions (procedures)

can be entered. LISP functions provide a means of manipulating

the contents of working memory. Meta information can be loaded

into this environment and subsequently consulted interactively.

A user can gain an understanding of an information system schema

and in the context of that understanding access information

through the use of appropriate message passing capabilities.

The Meta Information Format as implemented at CBT uses LISP

functions to include meta information in an MIR and subsequently

display the meta information on request. Customized functions

can be developed within a particular programming environment

which make use of the unique input and output characteristics of

that environment. This is in fact necessary in the case of the

methods used to access information. Functions may also be

desirable to provide report generation in an end user oriented

form. These specialized functions, however, are not part of the

Meta Information Format.

63

6 o 3 The Meta Information Format

The Meta Information Format is presented in Table 12 . The

basic unit of meta information is a property of a frame. A set

of properties serve to define the frame. The properties that

define an entity-type module include its description,

relationships, key-attributes, attributes, and interpreters.

Similarly, a perspective is encoded in terms of its properties.

These include the entity-types, messages, and translators. The

general form applicable to the properties of the perspective and

entity-type modules is:

(<property> <frame-identifier>
<property-information)

Enclosure in "o'* indicates that an appropriate element or

list of elements is to be substituted. The property-information

consists of one or more elements that capture the meta

information relevant to the given property.

In the case of the example building-economist-perspective,

the entity-type property-information is a single element, the

entity-type that is being included in the perspective. An

example entity type follows: (Note: For portability, the use of

upper case characters is advisable.)

(ENTITY-TYPE BUILDING-ECONOMIST-PERSPECTIVE HS)

64

Table 12. The Forms of the Meta Information Format.

MIR Module: System-ID

(MIR System-ID)

(PERSPECTIVE System-ID Perspective-ID)

Perspective Module: Perspective-ID

(ENTITY-TYPE Perspective-ID Entity-Type)

(MESSAGE Perspective-ID (Selector (Argument ...)))

(TRANSLATOR Perspective-ID (Selector (Method))

)

Entitv-Tvpe Module: Module-Entity-Type (MET)

(DESCRIPTION Module-Entity-Type ("Description" ...)

(RELATIONSHIP Module-Entity-Type
(MET-Role (RET-Role (Related-ET ...))))

(KEY-ATTRIBUTE Module-Entity-Type
(Key-Attribute (Domain (Constraint ...))))

(ATTRIBUTE Module-Entity-Type
(Attribute (Domain (Constraint ...))))

(INTERPRETER Module-Entity-Type
(Selector (Method))

)

65

The property-information of the message property is in the

form of an association list. That is, the property-information

is in the form of a list that contains two associated elements.

The first element is the message identifier or selector. The

second is a list of arguments that are to be supplied when

sending a message with that selector. The following is an

example:

(MESSAGE BUILDING-ECONOMIST-PERSPECTIVE
(RETRIEVE-ATTRIBUTE
((ENTITY-TYPE (KEYS)) ATTRIBUTE)))

The property-information of the translator property is also

in the form of an association list. The first element is the

message identifier to which the translator responds (the

selector) . The second is a list containing a Lambda form, that

is, a LISP function that can be evaluated directly without the

need for a function name (see Appendix) . The Lambda form is the

method used to respond to a message containing an element that

matches a translator selector. The translator property takes the

form:

(TRANSLATOR BUILDING-ECONOMIST-PERSPECTIVE
(SEND-ATTRIBUTE (<method>)

)

(TRANSLATOR BUILDING-ECONOMIST-PERSPECTIVE
(RETRIEVE-ATTRIBUTE (<method>)

)

Selectors beginning with SEND are used to respond to

66

J

J

requests from an external user while those beginning with

RETRIEVE are used by translators and interpreters to obtain

information from the resident information system or application.

The general form for the properties of a frame also applies

to the entity-type modules of a given perspective. The precise

nature of the property-information depends upon the property of

which it is a part. The description property has property-

information in the form of a simple list of strings (i.e.,

phrase-like structures enclosed in double quotation marks that

taken together constitute sentences)

.

(DESCRIPTION HS
("Heating System: An HVAC subsystem providing "

"heat to a building."))

Relationships, key-attributes, and attributes of an entity-

type module have property-information in the form of nested

lists. The top level in the case of a relationship contains the

module entity-type role. The second level contains the related

entity-type role. The third contains a list of one or more

related entity types.

(RELATIONSHIP HS
(PART-OF (HAS-PART (HVAC)))

(RELATIONSHIP HS
(HAS-PART (PART-OF (COMPONENT CONTROL PATH)))

67

In the case of the key-attributes and the attributes, the

top level contains the key-attribute or attribute. The second

level contains the domain. The third contains a list of

acceptable domain values or other constraints that apply to

domain values. (Notes The values of a key attribute, i.e., the

keys, begin with a letter since they are used as symbols to

represent entities. A constraint in double quotation marks

indicates a proper form for a value. Anything listed after

is optional.)

(KEY-ATTRIBUTE HS
(HS-ID (BUILDING-NUMBER ("B-integer&-character"))

)

(ATTRIBUTE HS
(TYPE (FUEL (ELECTRIC GAS OIL SOLAR)))

(ATTRIBUTE HS
(EFFICIENCY (PERCENT ("integer"))))

The form for an entity-type interpreter is similar to that

of a perspective translator. That is, an association list made

up of a selector and a list containing a method.

(INTERPRETER HS
(SEND-ATTRIBUTE (<method>))

)

(INTERPRETER HS
(RETRIEVE-ATTRIBUTE (<method>))

)

Displaying the meta information once the properties have

been entered into working memory involves the use of display

functions

.

68

The general form of a display function is:

(MIR-DISPLAY <system-ID>
<property> <frame-identifier>)

The LISP interpreter returns the available meta information

for the requested property. This approach to obtaining meta

information applies to both perspectives and entity-type modules.

An example using the attributes property follows:

(MIR-DISPLAY ENGINEERING-INFORMATION-SYSTEM
ATTRIBUTES HS)

This form upon evaluation returns:

(TYPE (FUEL (ELECTRIC GAS OIL SOLAR))

)

(EFFICIENCY (PERCENT ("integer")))
(INITIAL-COST (DOLLARS (" integer"))

)

(LOAD (MMBTU ("real")))

By successively querying the working memory, an

understanding of an information system schema is achieved. As

described previously, customized functions within a given

programming environment are highly desirable. The Information

Format for encoding information also makes use of functions that

manipulate properties.

69

6.4 The Information Format

The Information Format is presented in Table 13 . The

Information Format is centered around a single frame of interest

to the external user, the view. It is at a level conceptually

that corresponds to a perspective in the Meta Information Formate

A view is identified by the view property. The view

property contains the perspective-id which indicates the

perspective from which the view has been derived. The use of

this property in transfering information between systems is not

compulsory. The following shows the general case for the view:

(VIEW <perspective-ID>)

The example building-economist view therefore begins with

the following forms:

(VIEW BUILDING-ECONOMIST-PERSPECTIVE)

The properties that contain information about an entity

are its relationships with other entities and its attributes that

have values. Unlike entity-type modules of a perspective, entity

information is not represented in frames identified by the entity

but rather as individual constituent parts therof referenced by

the view to which they belong. The entity information is

70

Table 13. The Forms of the Information Format.

View Module: Perspective-ID

(VIEW Perspective-ID)

(VIEW-RELATIONSHIP Perspective-ID
((Module-Entity-Type (Key . . .)

)

Module-Entity-Role
(Related-Entity-Type (Key . . .))))

(VIEW-ATTRIBUTE Perspective-ID
((Entity-Type (Key . . .)

)

Attribute
(Domain (Value ...))))

Messenger: Messenger

(Messenger Perspective-ID
(Selector
(Argument ...)))

71

entity, an

The data

represented as a data triplet containing the

information identifier, and an information list,

triplet provides for flexible manipulation of information and

translation to other representations. The grouping of

information by entity can be accomplished by a given information

system in the context of the perspective from which it is viewed

or its own internal represention as appropriate. The general

form is:

(VIEW-<property> <frame-identifier>
(<entity>
<information-identifier
<information-1ist>)

)

The form for a relationship is:

(VIEW-RELATIONSHIP Perspective-ID
((Entity-Type (Key . . .)

)

Entity-Role
((Related-Entity-Type (Key . . .)) «..)))

The form for an attribute is:

(VIEW-ATTRIBUTE Perspective-ID
((Entity-Type (Key . . .)

)

Attribute
(Domain (Value ...))))

The forms differ in terms of the elements that are supplied

in the positions of the data triplet. The entity is the first

element. It is represented as a nested list containing an

72

entity-type at the top level and one or more keys at the second

level. Either an attribute of the entity or the roles played by

the entities of a relationship constitute the second element.

The third element is a nested list containing information about

either the attribute or the related entities of the referenced

relationship.

In the case of an attribute, the third element contains the

domain in the top level of nesting and the attribute value (or

values) in the second. An example follows:

(VIEW-ATTRIBUTE BUILDING-ECONOMIST-PERSPECTIVE
((HS (B1A)

)

TYPE
(FUEL (OIL))))

. In the case of a relationship, the third element consists of

a list of the related entities. The entities are stored in terms

of their constituent parts. Therefore, the top level of the list

contains the entity type while the second level contains a list

of the one or more keys that when considered in conjunction with

the entity type identify an entity. An example for the building-

economist-view takes the form:

(VIEW-RELATIONSHIP BUILDING-ECONOMIST-PERSPECTIVE
((HS (B1A)

)

PART-OF
((HVAC (Bl)))))

73

It is the messenger that provides information in the

Information Format to a remote user. The messenger uses

available methods in response to messages requesting information

to construct the appropriate view.

6 o 5 The Messenger and its Messages

Each MIR has a messenger developed to work specifically with

the information system of which it is a part. The messenger is a

function written to provide input and output for messages and

subsequent views. It also provides for the initial delegation of

responsibility for a message to an appropriate perspective

translator. The actual code used for a messenger is specific not

only to the information system of which it is a part but also the

particular programming environment used (see Appendix)

.

The general form by which a message is sent via a messenger

is as follows:

(<messenger-ID> <perspective-ID>
(<selector>
(<argument> ...)))

The messenger-ID is the name of the function which usually

identifies the information system of which it is a part (e.g.,

74

engineering-system-messenger) . The second element is the

perspective-ID which identifies the perspective from which the

information is being sought. This is followed by a message. The

message in the form of an association list has as its first

element the selector which specifies the kind of information

being sought. The associated element is a list of arguments

required by the selector. The following is an example of a

request for information from the building-economist-perspective

that is part of the engineering system MIR:

(ENGINEERING-SYSTEM-MESSENGER
BUILDING-ECONOMIST-PERSPECTIVE
(SEND-ATTRIBUTE
((HS (B1A)) TYPE)))

Table 14 presents four example messages (selectors and the

corresponding arguments) that can be used in writing messages.

The first is a message that requests the keys (key-attribute

values) that exist for a given entity-type. Once the keys are

known, information concerning a given entity can be requested.

The other two messages request information regarding

relationships and attributes. Selectors and the associated

methods can be developed to be responsive to the way a given

information system is to be used.

75

Table 14. Example Messages: Selectors and Arguments.

Selector Arguments

(SEND-KEYS Entity-Type)

(SEND—RELATIONSHIP ((Entity-Type (Key . .
.)

)

Entity-Role)

)

(SEND-ATTRIBUTE ((Entity-Type (Key . . .)

)

Attribute)

)

76

7. Conclusions

Modular Semantic Application Layer Protocols have been

presented as a means of transmitting both meta information and

information between incompatible information management systems.

As a first step toward the development of such protocols, Meta

Information and Information Formats have been presented which (1)

make use of modular frame-based knowledge representations to

capture declarative, compositional, and procedural semantics of

an information system, and (2) provide an object-oriented

programing capability for intercommunication with the information

system or application.

7.1 The Relations Implicit in MS-ALPs Formats

The use of a frame-based representation for meta information

includes two implicit relations (Table 15) . The first is

classification with the roles instance-of and has-instance

.

Classification is essentially the relation upon which the concept

of a frame is based. Therefore in the MS-ALPs Format, an entity-

type identifies a class of which an entity is an instance.

(Entity-type has-instance entity and entity [is-an] instance-of

entity-type.) The fact that knowledge about a class is

applicable to all instances of that class is to say that

classification is a relation that involves inheritance.

77

Table 15. The Relations and Roles Implicit in MS-ALPs.

RELATIONS

;

ROLES:

Glassification

Characterization

instance-of has-=instance

attribute-of has-attribute

78

The MS-ALPs approach to representing meta information

includes inheritance only in its frame-based representation

(i.e., the relation of classification implicit in frames).

Generalization often involves inheritance between one entity-type

and another as well. And, of course, user defined relations may

also be employed that involve inheritance. MS-ALPs supports

inheritance only in terms of its use of frames. Where

inheritance is used by an information system for relations other

than classification, each MS-ALP module involved must repeat

explicitly the relationships and attributes without reference to

any other module (i.e., the modules are completely self

contained) . This approach maintains the modularity of the system

such that perspectives and views can be constructed without

regard to the issue of inheritance. This decision will need

review as MS-ALPs is subjected to further testing and use.

The second relation implicit in the modular approach of MS-

ALPs can be referred to as characterization. Characterization

has the roles attribute-of and has-attribute . Since attributes

and key attributes are properties of both meta information and

information modules there is typically no need to include this

relation in the relationships property of the modules. The

possible exception to this rule is in those cases where

relationships may exist between attributes, the attributes would

themselves need to appear as entity-types and therefore would be

explicitly listed using the characterization relation.

79

The implicit inclusion of the relations classification and

characterization in the frame-based representation used by MS-

ALPs appears to be reasonable within the context of the building

industry,, Alternative representations, notably the Semantic

Association Model [13], require explicit use of the

characterization relation. MS-ALPs, however, has been developed

as a frame-based approach to information modelling which

implicitly includes characterization to provide a convenient

mechanism for not only the representation of declarative

semantics in a way that is intuitively familiar to the user but

also compositional and procedural semantics through its use of

object oriented programming.

7 . 2 Current Implementation

Intercommunication between incompatible information systems

and applications using MS-ALPs makes use of message passing

capabilities that initiate sytem operations without the necessity

of a detailed understanding of those operations. This

constitutes a knowledge-based approach to a "virtual extension"

of the system operations. This extension occurs within the

context of the Meta Information and Information Formats. Users

that do not have a detailed understanding of system operations

are able to make use of these "self-descriptive" formats to

access information required by their applications and to further

adapt the contents of these formats to their particular needs.

80

This type of intercommunication between incompatible systems

has been accomplished within LISP environments. Interest within

the building industry in knowledge-based systems, such as

information systems having deductive capabilities and expert

systems, will continue to focus the development of MS-ALPs within

this environment.

The current implementation of MS-ALPs within the Computer

Integrated Construction Group demonstrates communications

capabilities operating simultaneously (in background) with

knowledge-based systems on both multitasking workstations and

LISP machines. The implementation provides for concurrent and

cooperative operation of applications interacting directly via

MS-ALPs in order to accomplish joint goals. It provides a

prototype for the development of MS-ALPs capabilities on other

systems as well as a demonstration of a complete working

implementation of an interface using MS-ALPs.

81

References

[1] Palmer, M.E. ; The Current Ability of the Architecture,
Engineering, and Construction Industry to Exchange CAD
Data Sets Digitally, NBSIR 86-3476, National Bureau of
Standards, U.S. Dept, of Commerce, Gaithersburg, MD,
1986.

[2] Tsichritzis, D.C. and Lochovsky, F.H. ? Data Base
Management Systems, Academic Press, NY, 1977.

[3] Brodie, M. , Mylopoulos, J., and Schmidt, J. ; On
Conceptual Modeling, Springer-Verlag, NY, 1984.

[4] Date, C. J. ; An Introduction to Database Systems, Vols..
I & II, Addison-Wesely Publishing Comapany, Reading,
Mass, 1986.

[5] Gligor, V.D. and Luckenbaugh, G.L.; Interconnecting
heterogeneous database management systems, in Tutorial:
Distributed Database Management, J.A. Larson and S.
Rahimi (eds) , IEEE Computer Society EH0222-0, IEEE, NY,
13-23, 1985.

[6] Adiba, M. and Portal, D. ; A cooperation system for
heterogeneous data base management systems, Inform.
Systems, 3, 209-215, 1978.

[7] Cardenas, A. F . and Pirahesh, M.H. ; Data base
communication in a heterogeneous data base management
system network, Inform. Systems, 5, 55-79, 1980.

[8] Chen, P.P.; The entity-relationship model - Toward a
unified view of data, in Tutorial: Centralized and
Distributed Data Base Systems, W.W. Chen and P.P. Chen
(eds), IEEE Computer Society #EHO 154-5, IEEE, NY,
166-193, 1979.

[9] Smith, J.M., Bernstein, P.A. , Dayal, U. , Goodman, N. ,

Landers, T. , Lin K.W.T., and Wong, E. ; Multibase —
Integrating heterogeneous distributed database systems,
National Computer Conference, 487-499, 1981.

[10] Shipman, D.W. ? The Functional Data Model and the data
language Daplex, ACM Transactions on Database Systems,
6(1), 140-173, 1981.

[11] Integrated Computer-Aided Manufacturing (ICAM)
Information Modeling Manual (IDEF1) , UM 110231200, Air
Force Wright Aeronautical Laboratories, Wright-
Patterson Air Force Basce, OH, 1981.

82

[12] Alashqur, A. and Su S.Y.W.; An Interactive Data
Dictionary System for Computer Integrated Manufacturing
Applications, DBRDC-NBS-84-04 , Database Systems
Research and Development Center, Univ. of Florida, FL,
1984.

[13] Su, S.Y.W.; Modeling integrated manufacturing data with
SAM*, Computer, 34-49, Jan. 1986.

[14] Rehak, D.R. and Howard H.C.; Interfacing expert systems
with design databases in integrated CAD systems,
Computer-Aided Design, 7(9), 443-454, 1985.

[15] Tanenbaum, A.S.; Network Protocols, in Tutorial:
Distributed Database Management, J.A. Larson and S.
Rahimi (eds) , IEEE Computer Society EH0222-0, IEEE, NY,
433-469, 1985.

[16] Barr, A. and Feigenbaum, E.A.; The Handbook of
Artificial Intelligence, Vol. 1, HeurisTech Press,
Stanford, CA. , 1981.

[17] Charniak, E. and McDermott, D. ; Introduction to
Artificial Intelligence, Addison-Wesley Publishing
Company, Reading, MA, 1985.

[18] Rich, E. ? Artificial Intelligence, McGraw-Hill Book
Company, NY, 1983.

[19] Minsky, M.A.

;

A framework for representing knowledge.
In P. Winston (ed.), The Psychology of Computer Vision,
McGraw-Hill Book Company, NY, 1975.

[20] Winston, P.H. and Horn, B.K.P.; LISP, Second Edition,
Addison-Wesley Publishing Company, Reading, MA, 1984.

[21] Smith, J.M. and Smith, D.C.; Database Abstraction:
Aggregation and Generalization, ACM Trans. Database
Systems, 2(2), 105-133, 1977.

[22] Borkin, S.A.; Data Models: A Semantic Approach for
Datbase Systems, The MIT Press, Cambridge, MA, 1980.

[23] Brodie, M.L. and Mylopoulos, J. ? On Knowledge Base
Management Systems, Springer-Verlag, NY, 1986.

[24] Wilensky, R. ; LISPcraft, W.W. Norton & Company, NY,
1984.

83

Appendix

Demonstration Messenger , Translators, and Interpreters

ENGINEERING-SYSTEM-MESSENGER

A messenger function that delivers a message requesting the
value of a specific attribute of an entity.

DELEGATE-TO

A function that transfers control of program execution from
one object to another (i.e., translators or interpreters).

BUILDING-ECONOMIST-PERSPECTIVE TRANSLATORS

Perspective translators that receive messages and delegate
them to module interpreters, access the local information
system, and send replies to a requesting system.

HS INTERPRETERS

Module interpreters that supply entity type specific meta
information of use in accessing information.

84

This appendix presents messenger and delegate-to functions

as well as several translators and an interpreter. These

constitute examples of the dynamic elements of the MS-ALPs

Formats. Since the dynamic elements of MS-ALPs necessarily

involve code that is system as well as programmer specific, their

presentation serves to demonstrate the principles rather than to

recommend a particular approach to their implementation. The

dialect of LISP used in these examples is a version of Standard

Portable LISP. The demonstration continues the example used

throughout the document involving an engineering information

system and a building-economist-perspective that has been

developed as an extension to that system.

For communication to be possible using MS-ALPs, an

information system must provide a messenger, in this case the

engineering-system-messenger. Table 16 presents a simplified

LISP function for this purpose. The function takes two

arguments, the perspective-ID which identifies the perspective

being used to view the data and a message. The message is in

turn comprised of a selector and its arguments. An example using

this messenger function to access the value of an attribute

follows

:

(ENGINEERING-SYSTEM-MESSENGER
BUILDING-ECONOMIST-PERSPECTIVE
((SEND-ATTRIBUTE

(((HS (B1A)) TYPE))))

85

Table 16. Example Messenger and Delegate-to Functions.

(de ENGINEERING-SYSTEM-MESSENGER (perspective-id message)

(open " output/reply . lsp" 'output)
(let ((selector (caar message))

(arguments (cadar message))

)

(delegate-to perspective-id 'translators
selector arguments)

)

(close 7)

)

(de DELEGATE-TO (frame property selector arguments)

(apply
(cadr

(assoc selector
(retrieve property frame)

)

)

arguments)

)

86

The communication requests that the engineering-system-

messenger send the type of the B1A heating system using the

building-economist-perspective. The process by which the request

is fulfilled is initiated by the messenger. First, the

engineering-system-messenger (Table 16) opens a file in the first

line. (To demonstrate the basic principles involved, the

messenger writes a reply to file but does not transfer the file

to requesting system translators.) In the second and third

lines, the messenger identifies salient aspects of the message

(the selector and its arguments) . These are then delegated-to

the translators of the appropriate perspective as specified by

the perspective-ID. After a reply has been generated by

perspective translators and module interpreters, the messenger

will close the output file.

Delegating responsibility for a message is performed by the

delegate-to function (Table 16) . This function is used to

advance the object-oriented program. It causes the method

associated with a given selector to be evaluated. Lines 2-4 are f

used to return the associated method. The method is applied

using the list of arguments supplied.

In the case of the first use of the delegate-to function by

the messenger, the selector and its arguments are delegated to

the perspective-ID (the frame) translators (the property)

.

Therefore, the method associated with the send-attribute selector

87

will be returned from the translators of the building-economist-

perspective. The send-attribute method will then be applied

using the arguments for the entity-type , key, and attribute

specified (HS, B1A, and type)

.

Table 17 presents example translators for the building-

economist-perspective. The first translator has a selector which

matches that of the request, and therefore it is the method

associated with this selector that is applied. The lambda form

(i.e., the method) first identifies the salient elements of the

arguments. It then concatenates the entity-type and key to form

the entity for which an attribute value is sought (HS (B1A))

.

The delegate-to function is then used to transfer control to the

appropriate interpreters (those of the HS module)

.

Table 18 presents the interpreters property. The example

interpreter has a selector which matches that of the message

delegated to the interpreters. There the associated method is

applied. The interpreter proceeds differently depending on the

exact nature of the request. In those cases where the attribute

being accessed is either the type, efficiency, or the initial-

cost, the message is delegated to the retrieve-attribute method

with an added argument indicating that retrieval should be from

an hvac-database. If the attribute being accessed is the load,

retrieval must be from a thermal-analysis-database and the

message is delegated with that knowledge supplied. If the

88

Table 17. Example Translators.

(TRANSLATORS IN BUILDING-ECONOMIST-PERSPECTIVE

((SEND—ATTRIBUTE % Selector

(lambda (arguments) % Lambda Form
(let*

(entity-type (car arguments)

)

(key (car (cadr arguments)
)

)

(attribute (car (cadadr arguments))

)

(entity (implode (append (explode entity-type)
(append (explode '_)

(explode key))))

)

(value nil)

)

(delegate-to entity-type
' interpreters
' send-attribute
(list entity attribute value))))

(RETRIEVE-ATTRIBUTE % Selector

(lambda (database % Lambda Form
entity attribute)

(let* ((value (cadaar
(backward-chain

' (, attribute , entity ?x)
database)))

)

(delegate-to 'building-economist-perspective
' translators
' print-attribute-to-file
(list entity attribute value)))))

(PRINT-ATTRIBUTE~TO-FILE % Selector

(lambda (entity attribute value) % Lambda Form
(channelprintf 7

"%n (VIEW-ATTRIBUTE (%w %w %w) %n"
entity attribute value))))

)

89

Table 18. Example Interpreter.

(INTERPRETERS IN HS

((SEND—ATTRIBUTE % Selector

(lambda (entity attribute) % Lambda Form
(cond

((or (equal attribute 'type)
(equal attribute 'efficiency)
(equal attribute 'initial-cost))

(delegate-to ' building-economist-perspective
' translators
' retrieve-attribute
(list ' hvac-database

entity attribute))

)

((equal attribute 'load)
(delegate-to ' building-economist-perspective

'translators
' retrieve-attribute
(list 'thermal-analysis-database

entity attribute))

)

(t
(delegate-to ' building-economist-perspective

' translators
'print-attribute-to-file
(list entity attribute
"Not in perspective! "))))))))

90

attribute is not any of the four listed, the message is delegated

to the translator of the building-economist-perspective with a

print-attribute-to-file selector with a value of "Not in

perspective!" added to the argument list.

The delegation of control to the retrieve-attribute

translator of the building-economist-perspective causes the

associated method to be applied to the message. The lambda form

invokes the backward chaining mechanism of a deductive retriever

[24] within the specified database of the engineering-

information-system. Once the value has been retrieved control is

delegated to the lambda form responsible for printing the

attribute value to the output file. Upon completion, the

messenger closes the file. Transmission of the file to

appropriate MIR translators at the requesting site would then

perform necessary conversions from MS-ALPs format to that

appropriate to the remote information system.

1

i

91

NBS°1 14A (REV. 2»8C)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

4o TITLE AND SUBTITLE

. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report NoJ 3. Publication Date

The Use of Artificial Intelligence Programming Techniques for Communication Between

Incompatible Building Information Systems

5c AUTHOR(S)

William F. Danner

Sc PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

national bureau of standards
DEPARTMENT OF COMMERCE 8. Type of Report & Period Covered

WASHINGTON, D.C. 20234

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City . State, ZIP)

10. SUPPLEMENTARY NOTES

|~H Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most si gnificant information . If document includes a significant
bi bliography or literature survey , mention it here)

A communication capability between incompatible information systems is presented.

. The purpose of the research reported here has been to develop an interface based on

(1) a format for the exchange of knowledge needed by each system to understand the

other, and (2) a format for the exchange of information in the context of that

knowledge. Particular emphasis has been placed on developing protocols supporting

the transfer of analytical data. These data are seen as comprising not only facts

but also the semantics associated with those facts.

Two artificial intelligence programming techniques have been employed: (1) frame-

based knowledge representation, and (2) object-oriented programming capabilities as

an integral part of the frame-based representation . These techniques make self-

descriptive formats possible that provide for a virtual extension of an information

management system. Such an extension provides access to information without

requiring a detailed understanding of specific system operations.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

artificial intelligence; building; communication? data? database? database management
system? information? information system? protocol

13. AVAILABILITY

|

'

|

Unlimited

| 1
For Official Distribution, Do Not Release to NTIS

\

|
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

I |

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

15. Price

U SCOMM-OC 0043-P80

