Approximate Procedures for Calculating Protection From Initial Nuclear Radiation From Weapons

C. Ni. Eisenhauer and L. V. Spencer
U.S. DEPAATMENT OF CCMMERCE

National Eureay of Standards
Center for Randation Researon
Gailhersturg, M.D 20899

February 1987

-ac	
100	ifor:
. 456	I Emergency Management Agency 1gton, DC 20472
87-3507	
1987	
c. 2	

APPROXIMATE PROCEDURES FOR CALCULATING PROTECTION FROM INITIAL NUCLEAR RADIATION FROM WEAPONS

C. M. Eisenhauer and L. V. Spencer

U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Center for Radiation Research
Gaithersburg, MD 20899

February 1987

Prepared for:
Federal Emergency Management Agency
Washington, DC 20472

U.S. DEPARTMENT OF COMMERCE, Malcolm Baidrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Page
I. Introduction 1
II. Source Distribution 2
III. Approach to Shielding Calculations 3
A. General Approach 3
B. Mutual Shielding Factor 5
C. Barrier Factor 6
D. Geometry Factor 8
E. Attenuation Factor 13
F. Overall Proctection Factors 14
IV. Discussion of INR Computer Codes 15
A. Limitations of Codes 15
B. Description of Subroutines 17
C. Listings of Computer Codes 2.7
V. Comparison with Monte Carlo Calculations 28
A. Monte Carlo Calculations on Benchmark Structures 28
B. Combined Components 29
C. AS and FP Secondary Gamma Rays 29
D. Neutrons and Secondary Gamma Rays 32
VI. Conclusions 35
References 36
Tables 37
List of Figures 55
Appendix A. Sources of Data for INR Computer Codes 79
B. Treatment of Mutual Shielding for Neutrons 80
C. FORTRAN Listing of Computer Codes 82
D. Sample Input Data 118
E. Sample Output Data 121

In this report we discuss procedures for routine evaluation of the protection of complex structures against the initial radiations from nuclear detonations. We describe procedures for evaluating and combining dose reduction factors for four radiation components: early fission product gamma rays, air secondary gamma rays generated by neutron interactions in the air, neutrons, and wall capture gamma rays generated by neutrons through interactions with nuclei in structural materials. We describe computer codes developed to evaluate reduction factors for each of these components. The radiation field in the vicinity of the structure was generated for a 30° elevation angle for the detonation, as well as a "ring source" averaging over the points of the compass. Comparisons are made with Monte Carlo calculations for a series of five benchmark structures.

I. INTRODUCTIUN

The purpose of developing approximate shielding procedures is to allow calculation of shielding in many structures with a simple method that can be proyrammed for fast operation on a personal or mainframe computer. In this paper, we report on approximate procedures developed at NBS to calculate protection afforded by structures against initial gamma and neutron radiation. 1 These procedures are modeled on earlier procedures $[1,2]^{2}$ for estimating protection from fallout radiation, which have proven very useful in evaluating the fallout shelter potential in the United States.

Calculation of shielding for initial radiation is more complicated than for fallout radiation because four components, namely, fission product gamma rays (FP), secondary gamma rays generated in air (AS), prompt neutrons (N), and gamma rays from neutrons captured in the structure (NG) must be considered. Under special circumstances other radiation such as prompt gammas or delayed neutrons may also be of interest. Much of the data base for procedures discussed here is given in an earlier paper by Spencer [3]; and the procedures have followed the pattern developed in that paper.

The role of neutrons is more complicated than that of gamma rays for at least three reasons: 1) neutron reflection from wall surfaces is a dominant, rather than perturbation effect; 2) neutrons give rise to capture gamma rays (NG) in the structure, and these are more penetrating than the neutrons themselves; and 3) the neutron source intensity relative to that of the initial gamma rays is a function of weapon design. Due to the importance of neutron reflections, additional procedures have been developed which are based

[^0]on the accumulated data and experience for enclosures and ducts. To take the secondary gamma rays produced in the structure into account, additional data for this component have been generated, on the general pattern of reference [3]. For relative source intensities we have utilized available data, beginning with that available in an important report by Auxier et al. [4]. Published and unpublished sources of shielding data used in INR computer codes are given in Appendix A.

II. SOURCE DISTRIBUTION

In order to compare various techniques for calculating shielding in structures, it is helpful to establish standard angular-energy distributions in the vicinity of the structure, for the different types of radiation. We have chosen $A S$ and N distributions from a study [4] requested by the Radiation Shielding Subcommittee of the Advisory Committee on Civil Defense, National Academy of Science. These are presented together with the FP angle-energy distributions [4,5] in Tables I-III. The polar angle in these tables is defined relative to the direction vector from source to detector.

We have also followed the recommendations of the same study to assume a ring source of bursts at a fixed angle of elevation. The rationale for choosing a ring source is that the direction of burst cannot be predicted beforehand - particularly if the building is likely to be exposed to more than one weapon. Therefore, a protection factor for a building is averaged over horizontal directions. The use of a ring source allows the averaging to be done before the protection factor is calculated. For buildings whose construction is similar on all sides, the protection is not likely to vary significantly from this average. An angle of elevation of 30° was chosen as typical of low air bursts. In order to calculate the protection factor in a
building, we start with the radiation dose in air. There is still some question as to whether the presence of the ground is important enough to be included in calculating this dose. Although the effect of the ground may be important in estimating the absolute dose, its impact on the protection factor, which is a ratio of doses, is small enough to ignore. The calculations reported here assume that the detector with reference to which the protection factor is estimated is located in a free air nedium with no groundair interface present.

In the calculations of reference [3], the asymmetry of the fission product source about the detonation point, due to cloud rise, was ignored. This aspect of those calculations has been criticized [6]; and there is general agreement that for barrier factors, at least, more precise calculations are required. These have been performed, and are routinely included below.

III. APPROACH TO SHIELDING CALCULATIONS

A. General Approach

The protection in a building against initial radiation is estimated in terms of a reduction factor $I R F$, which is defined as the ratio of the dose D from initial radiation at a point in the structure to the dose D_{0} from initial radiation at the reference point in free air. If the fraction of the free-air dose contributed by FP and AS gamma rays and by neutrons is denoted by fFP, $f_{A S}$, and f_{N}, respectively, then the reduction factor is calculated from

$$
\begin{equation*}
I R F=\frac{D}{D_{0}}=R_{F P} f_{F P}+R_{A S} f_{A S}+\left(R_{N}+R_{N G}\right) f_{N} \tag{1}
\end{equation*}
$$

where $R_{F P}$ and $R_{A S}$ are reduction factors for the FP and AS components of the gamma radiation, and R_{N} and $R_{N G}$ are reduction factors for the neutrons and the secondary gammas generated in the structure.

We now consider approximate procedures for estimating the component reduction factors $R_{F P}, R_{A S}, R_{N}$ and $R_{N G}$. Since the approach is the same for all components, we drop the subscript in the following discussion.

The general approach which we have taken in developing shielding procedures can be described as follows. We start with the free field dose for each of the radiation components. We then consider the dose at a position on the exterior surface of the roof or one of the walls of a building. The ratio of this dose to the free field dose we call the mutual shielding factor, M. Next, we consider the dose at a point on the interior surface of the roof or wall, immediately opposite the point on the exterior surface. We call the ratio of these two doses a barrier factor, $B(X)$. Next we consider the dose at some arbitrary point inside the building, with no internal structure. The ratio of the dose at this point to that on the interior surface of the wall or roof is called the geometry factor, G, for that wall or roof. Finally, we consider the dose with any internal partitions or floors in place and call the ratio of this dose to that in the empty structure the attenuation factor, A. The reduction factor for each component, i.e., the ratio of the dose at an arbitrary point in the structure to the free field dose, is then calculated from the product

$$
\begin{equation*}
R=M \cdot B\left(X_{e}\right) \cdot G\left(X_{e}, \omega\right) \cdot A\left(X_{i}\right) \tag{2}
\end{equation*}
$$

where X_{e} is the thickness of an exterior wall or roof and x_{i} is the thickness of an internal barrier. $A\left(X_{i}\right)$ may be the attenuation due to the combined
effect of several floors and walls for any radiation component. The reduction factor at a point in the structure for any radiation component is obtained by summing the expression of eq (2) over the roof and exterior wall surfaces. In programming calculations in the INR codes some modifications of this simple product of four factors were necessary. These modifications will be explained in section IV.B.

B. Mutual Shielding Factor, M

This factor evaluates the effect of moving the detector from a free-air situation to an exterior surface of the building. It may include reductions in exposure due to the presence of nearby buildings. In the simple case of an isolated building, it is approximated for gamma rays by the integral of the free-air distribution over the hemisphere from which radiation is incident divided by the integral over all directions. For a roof, the partial integral is taken over the upper hemisphere; for a ring source incident on a wall, the integral is exactly one-half. The roof factor 0.85 has been used for both FP and AS gamma ray components [3].

The case of neutrons is treated somewhat differently, although it appears formally the same. Because the contribution from neutrons is not as highly concentrated along the line of sight between source and detector as is that from high energy gamma rays, our approach is that of reducing the overall source strength entering roof or side in accordance with the solid angle subtended by nearby shielding. This means the introduction of a cosine factor into the relevant integrals. Calculated in this way, the dose current entering one side of a building turns out to be 0.47 that of the dose current entering the roof.

In more complicated cases where neighboring buildings restrict the angles from which radiation can reach the detector point, the concept of cut-off angle is introduced. The source angular distribution for air-secondary gamma
radiation is peaked in the downward direction at an angle of 30° from the horizontal. For fission product gamma radiation the distribution is still peaked but somewhat more diffuse due to averaging over the cloud-rise time. Furthermore, the INR gamma-ray source energies are higher than for fallout, so that INR gamma radiation tends to preserve its original direction. The effect of this phenomenon is that the photon detector responds as if the walls of the building were being x rayed with the source radiation. Therefore, we assume that cut-off angles for the mutual shielding factor can be determined by a line between the detector point and an important change in a neighboring building (e.g., the roof line of the neighboring building). For neutrons the above arguments are not valid. Instead, neutron transport is less sensitive to the original direction of motion of the neutron. The effect of a neighboring building is evaluated in terms of the cut-off angle measured from that building to a point on the exterior surface of the building in which the detector is located rather than to the detector location, itself. Whenever there is a cut-off angle introduced by the presence of nearby building, the factor M in eq (2) is replaced by a difference of mutual shielding geometry factors which are functions of exterior cut-off angles. The use of figure 17 to determine these factors will be described under the Geometry Factor section.
C. Barrier Factor, $B\left(X_{e}\right)$

This factor is the ratio of dose at the inner surface of an exterior wall or roof to that at the outer surface of the same barrier. In order to generate the angular distribution of radiation from a ring source incident on a barrier, the distributions in tables I-III which are a function of the polar angle β (see fig. 1) were averaged over directions of the compass ϕ, rotated
to a system in which the new polar angle θ or x is relative to a line perpendicular to the barrier surface, and then weighted by the cosine of the new polar angle to obtain the current incident on the barrier surface.

Approximate barrier factors for initial gamma radiation were obtained by one-dimensional transport calculations for the rotated roof and wall sources in an infinite medium of concrete. In these calculations concrete is substituted for the air that is exterior to the barrier. This introduces an error of order 10% in the dose, but less in the reduction factor, which is a ratio. The error introduced by the substitution of a concrete backing for the interior of the structure, that is, behind the detector, is expected to be still smaller because gamma rays are reflected from other structural materials.

The barrier factors calculated for initial gamma radiation are shown in figure 2. As expected, the AS gamma rays are generally more penetrating than the FP gamma rays because they include higher energy photons. Furthermore, the two AS curves are rather similar. The two curves for $F P$ gammas would also be similar due largely to the choice of a 30° angle of elevation for the gamma ray sources. But cloud rise has the consequence of depressing the wall curve and raising significantly the roof curve, thus making the latter much less steep. The data from which these curves were derived were obtained using a gamma ray adjoint moments program written by G. L. Simmons [7], and a distribution construction program written by L. V. Spencer [.8].

Barrier factors for neutrons and for the capture gamma rays which they produce in the structure are shown in figure 3 . These data correspond to Snyder-Neufeld [9] dose weighting factors for the neutrons, and Henderson [9] weighting factors for the gamma rays. These were generated by ANISN calculations for the roof, and DOT calculations for the walls [9]. They are based on
calculations for slabs and therefore do not include any neutrons reflected from behind the detector. The contribution from reflected neutrons is evaluated by a reflection factor added to the geometry factors (see section D.2).
D. Geometry Factor, $G\left(X_{e}, \omega\right)$

1. Unreflected component. The geometry factor is the ratio of the exposure at an arbitrary distance from the inner surface of an exterior wall or roof to the exposure at the surface: A cumulative integral over the angular distribution of radiation emerging from the surface is required to estimate this factor. Calculations used to approximate this integral for gamma rays, however, give the cumulative angular distribution over the incident radiation. The two integrals are equal only for the radiation not scattered in the barrier. But, in view of the fact that unscattered and small-angle-scattered components dominate the dose for the source energies and barrier thicknesses of interest, we believe that the calculated integrals represent an adequate approximation for this application. For neutrons, integrals were taken over angular distributions of emerging neutrons.

A polar reference axis for specifying the cumulative angular distribution of the incident radiation must be selected. For a ring source incident on a horizontal roof, the vertical direction is the obvious choice. Cumulative angular distributions are expressed in terms of the solid angle fraction ω subtended by the roof. Figure 4 shows these geometry factors for the air secondary gammas. In this figure and in some of the following figures, as well as elsewhere in the text, thickness of barriers are given in units of pounds per square foot (psf) of concrete. The sharp rise in the curves for thin barriers shows the effect of the concentration of photons at 30° angle of elevation. The higher values of the curves for thick barriers and small solid angle fractions indicate the increased importance of radiation traveling more nearly perpendicular to the roof slab. Similar curves for FP gamma radiation
are shown in figure 5, and for neutrons and neutron-capture gamma rays (in the structure) in figures 6 and 7 , respectively. The single curve for neutrons is a good approximation for all thicknesses.

For radiation incident on a vertical wall, the choice of a reference direction is not so obvious. Figure 1 shows two possible directions: the vertical direction, normal to the roof, and the horizontal direction, normal to the wall slab. Since cumulative integrals over polar angles are correct only for circular source areas and cylindrical symmetry, one tries to choose the direction which most closely approximates this. We feel that most large buildings with story-heights small compared to wall-lengths can be better approximated by a cylindrical wall with a vertical reference axis rather than a series of four circular walls, each with a horizontal reference axis. The symmetry of the ring source about the vertical direction provides an additional reason for choosing a vertical axis as the reference direction.

Geometry factors for walls are approximated by the product of two functions. The first function $G_{1}(X e, \omega)$, given in figures $8-11$ is an integral over the region of polar angles subtended by the walls of the structure. The second function, $G_{2}\left(X e, \phi_{0}\right)$, varies with the limits on the azimuthal angle ϕ_{0} (see figs. 13-16) for each wall. The sum of values of this function for each of the walls of a structure is therefore dependent on the shape of the building.

Geometry factors $G_{l}(X e, \omega)$ are plotted as a function of the solid angle fraction ω subtended by the ceiling (or floor) rather than that subtended by the walls. Therefore, for increasing values of ω the geometry factors in figures 8-11 decrease. Note that the horizontal scales in figures 8-11 are semi-log scales in the quantity $(1-\omega)$. The curves for AS gammas show a steep slope near $\omega=0.5$, due to the concentration of photons at the 30°
angle of elevation. The corresponding curves for FP gammas are shown in figure 9, and for neutrons and capture gammas (in the structure) in figures 10 and 11 , respectively. Note again that figure 10 does not include reflected neutrons.

When the detector is on the same story as the radiating walls, a geometry factor for radiation from portions of the walls above the detector plane must be added to a geometry factor for portions of the wall below the detector plane (see fig. 12a). When the detector is on the story below, geometry factors must be estimated for the solid angle fractions subtended by the ceiling of the higher story, and the floor of the higher story, and the two subtracted (see fig. 12b). A similar subtraction is required when the detector is on the story above the radiating walls.

Geometry factors $G_{2}(X e, w)$ for $A S$ gamma rays and for a single wall are plotted as a function of $\sin \phi_{0}$ in figure 13. The curve for zero thickness in figure 13 is proportional to the angle ϕ_{0}. The line for 36 pounds per square foot (psf) of concrete is nearly proportional to $\sin \phi_{0}$ and is therefore equivalent to the prediction for thick walls in the fallout methodology. 3 The higher geometry factors for thickness greater than 36 psf show the effect of increased peaking in the angular distribution, relative to the direction perpendicular to the wall surface. The curves for FP gammas (fig. 14) are almost a duplicate of this set. Corresponding curves for unreflected neutrons and wall capture gammas are presented in figures 15 and 16 . The single curve that approximates the function G_{2} for neutrons for all wall thicknesses is proportional to the azimuthal angle subtended by the wall.

[^1]The expression of the geometric effect as a product of a polar and an azimuthal factor was made possible by a remarkably good approximation of separability evidenced by the data. The assumption of separability was made in the fallout methodology only because of the lack of data on the azimuthal dependence. It was later supported by Monte Carlo calculations [10]. Current evidence, still somewhat limited, also points to this approximation as justifiable in the cases of unreflected neutrons and wall-capture gammas.

When the incident gamma radiation field is limited by the geometry of both the building in which the detector is located and an exterior structure, the product $M \cdot G\left(X_{e}, \omega\right)$ in eq (2) is replaced by a difference of geometry factors. For example, figure 12 shows a detector position for which the incident field of radiation through the first story wall is limited by the solid angle fraction ω_{u}^{\prime} defined by the first floor of the ceiling of the first story and the solid angle fraction $\omega_{u}^{\prime \prime}$ defined by the presence of an exterior structure. The combined interior and exterior geometry effects in this case are approximated by the expression

$$
\begin{equation*}
\left[G\left(X_{e}, \omega_{u}^{\prime}\right)-G\left(X_{e}, \omega_{u}^{\prime \prime}\right)\right] \tag{3}
\end{equation*}
$$

This procedure is not applicable to neutrons and wall-capture gammas, however. For these radiations one simply applies a factor M obtained from figure 17 , which records the part of the upper hemisphere not blocked off, in terms of an upper hemisphere free-field geometry factor for neutrons. This factor is applied equally to upper and lower hemisphere reduction factors.
2. Reflected component. The contribution from yamma rays reflected from structural material behind the detector is of the order of 10% and is neglected in these calculations. However, the contribution from reflected neutrons is of the same order as that from unreflected neutrons and must be taken into account.

For many enclosures an adequate rule for this is simply to calculate the unreflected neutron reduction factor, including all contributing walls and roof, and multiply by a (total/unreflected) factor ($1+\rho_{0}$) which we take here to be 3. This assigns to the reflected neutrons twice the dose contributed by the unreflected components, a value obtained by several rather different calculations using Snyder-Neufeld dose weights. Problems arise when an important wall surface subtends a rather small solid angle fraction, as shown by w in the sketch in figure 18. The sidewalls and endwall then act as in a closed duct, to contribute a dose attenuated by geometry and by one or more albedo factors. We then multiply the unreflected component G_{u} directly from the given wall surface by a factor $\left(1+\rho+\rho_{e}\right)$. Here ρ and ρ_{e}, the contributions from sidewalls and endwalls, respectively, are evaluated for ω and ω_{e}, as presented on figure 18. We should note that this approach ignores variations in the length-to-width ratio of a source wall; but calculations have indicated that these reflection factors vary only weakly with this ratio.

In a building with many windows the reflected neutrons will not make such a large contribution. To account for this effect we have made the reflected contribution dependent on the relative window area on the story in which the detector is located. One then multiplies the reflected neutron components ρ and ρ_{e} by ($1-w$) and ($1-w_{e}$), respectively, where w_{e} is the fraction of endwall solid angle subtended by windows, and w is the fraction of sidewall solid angle subtended by windows, so that the detector does not receive reflected neutrons from a window. The INR codes assume a central detector location. Furthermore, for wall sources, w is assumed to be zero, since the floor and ceiling are two of the "side walls," and $w e$ is approximated by FW, the fraction of wall perimeter occupied by windows. For roof sources or contributions from upper (or lower) stories, where the floor (or ceiling) is
the "end wall," w_{e} is assumed to be zero and w is approximated by FW. However, in basements below grade, the full reflected contribution is assumed, regardless of the window configuration on higher stories.
E. Attenuation Factor, $A\left(X_{i}\right)$

This factor is a ratio of the exposure with interior structure in place to the exposure in an empty building. In the INR calculations it often does not appear as an explicit factor. 'For all types of roof radiation the thicknesses of all horizontal barriers above the detector, including the roof, are added to obtain a total thickness X_{0}. The product of the barrier factor $B\left(X_{e}\right)$ and the attenuation factor $A\left(X_{j}\right)$ in eq (2) is replaced in the calculations by a table-lookup of the roof barrier factor $B\left(X_{0}\right)$. The variables of the geometry factor are X_{0} and ω, the solid angle fraction subtended by the roof. Similarly, for all types of wall radiation, the thickness of all vertical interior partitions is added to the exterior thickness to obtain a total thickness X_{T}. A single table-lookup is then used to obtain a wall barrier factor.

For gamma rays, the attenuation of radiation from walls of the next higher story through a ceiling to a detector, say, in the basement, is evaluated by an attenuation factor $A\left(X_{0}^{\prime}\right)$. Figures 19 and 20 give the attenuation of AS gamma and FP yammas, respectively, from a ring source for different incident polar anyles θ_{0}. Each curve contains information for the energy spectrum at that angle. In order to apply these curves to a basement detector, we could estimate the average angle to the upper story walls and interpolate for the corresponding value of $\cos \theta_{0}$ and the thickness of the ceiling. However, these curves were approximated in the INR codes by the two roof curves from figure 2. The adequacy of this approximation is discussed in section V.C.

For neutrons and secondary gammas the attenuation is accounted for by adding the thickness of the ceiling (or floor) barrier to the thickness of the interior and exterior walls of the upper (or lower) story to obtain the argument for the wall barrier factor.

F. Overall Protection Factors

A much-used concept in fallout shielding studies is that of the Protection Factor (PF). To apply this to initial radiations, one must choose one or more standard mixtures of the different source components. The difficulty of this is quickly seen in the variety exibited in figures 10-13 of Auxier et al. [4]. Nevertheless some patterns do emerge which may provide useful reference for this purpose.

Very high megaton (MT) detonations are apt to be based on energies provided largely by the fission process; and shielding at greater distances from the detonation becomes important. These aspects, together with the 1 MT data of reference [4], figure 12 , suggest using a high MT reference reduction factor such as the following:

$$
\begin{equation*}
I R F_{G}=0.5 R_{F P}+0.2 R_{A S}+0.3\left(R_{N}+R_{N G}\right) \tag{4}
\end{equation*}
$$

Where it is understood that R_{N} always includes the wail capture gamma-ray component.

Similarly, low kiloton (kT) detonations can feature neutrons generated by fusion reactions, with only a limited fission component. The neutrons generate a substantial air secondary component, however. This is illustrated in figure 10 of reference 41 , and suggests a representative combination such as the following, for low kT cases:

$$
\begin{equation*}
I R F_{N}=0.6\left(R_{N}+R_{N G}\right)+0.2 R_{A S}+0.2 R_{F P} \tag{5}
\end{equation*}
$$

The more general problem of mixed cases should not be ignored, and hence we tentatively suggest even-balancing for an intermediate, or "other" reduction factor representation:

$$
\begin{equation*}
I R F_{0}=\frac{R_{A S}}{3}+\frac{\left(R_{N}+R_{N G}\right)}{3}+\frac{R_{F P}}{3} \tag{6}
\end{equation*}
$$

This is consistent, more or less, with figures 11 and 13 of reference [4].
These three combinations, translated into reciprocals, can perhaps serve to cover any possible requirements for "IPF's." Note that by choosing three such representations, a full set of values can be used in combination, without loss of information about the three radiation components.
IV. DISCUSSION OF INR COMPUTER CODES
A. Limitations of Codes

The present version of the INR codes (INRG6 for gamma rays and INRN6 for neutrons) has several limitations, some of which may have to be modified in the future.

1. Codes calculate contribution from roof and from walls of the same story, story above, and story below the detector location. Contributions from walls of stories more than once-removed from the detector are assumed to be negligible.
2. Codes calculate protection at a central location of each story. The concepts used for the central detector can be extended to off-center detectors, as is done in the PFCOMP code. The extension requires significant increase in coding because four solid angles are required for every solid angle calculated for the central detector. Unless more experimental data or Monte Carlo calculations become available for comparison, this refinement does not seem justified.
3. A limited number of configurations of interior partitions are included. Interior partition configurations are limited to a rectangular central core or a central corridor, extending the length of the building.
4. Each story of a building must be approximated by a square or rectangle.
5. Windows are assumed to have the same configuration on opposite sides of a building.
6. Linear interpolation between tabulated points on linear or \log scales is used. The number of tabulated points for barrier and geometry factors should be increased so that interpolation is more accurate.
7. The ceiling attenuation factor for AS and FP gamma rays is approximated by the roof barrier factor. The ceiling attenuation factor for AS and FP gamina rays should be made dependent on the average angle of incidence of radiation rather than approximating it by the roof barrier factor.
8. The contribution from windows of the story above is overestimated. A better calculation may require more input parameters.
B. Description of Subroutines

INTRPB Calculates barrier factors for four walls and overhead barriers by interpolating on tabulated values

Input:
XTAB(11) tabulated values of barrier thickness
$X(5) \quad$ array of barrier thicknesses for four walls and overhead, in units of pounds per square foot (psf) of concrete
$\operatorname{BTAB}(11,4)$ tabulated barrier factors for roof and walls for two types of radiation

Output
$B(5,2) \quad$ barrier factors for air secondaries and fission product gammas (INRG) or neutrons and capture gammas (INRN) for four walls and overhead

Remark:
The number of tabulated values of barrier thickness is currently assumed to be 6 in the neutron code and 11 in the gamma-ray code.

INTRPG Calculates geometry factors G_{1} and G_{2} for four walls, and geometry factor G for overhead, by interpolating on tabulated values.

For roof geometry factors linear interpolation on $\log G \underline{v s} . \log \omega$ is used. However, for side-wall G_{1} geometry factors, linear interpolation on $\log G$ vs. $\log (1-\omega)$ is used. For side-wall G_{2} geometry factors, linear interpolation on $\log G \operatorname{vs} . \log \sin \phi$ is used.

Common:
ZTAB(6) tabulated value of barrier thickness
$\operatorname{YTAB}(11,2)$ tabulated array of values of ω and $\sin \phi$
$\operatorname{GTAB}(6,11,6)$ tabulated array of geometry factors for walls and overhead.

Input:
$X(9) \quad$ array of barrier thicknesses with $X(n+5)=X(n)$, psf
$Y(18,2)$ array of values of ω and $\sin \phi$ defining each surface

Output:
$G(9,2) \quad$ geometry factors for air-secondary and fission product gammas (INRG) or neutrons and capture gammas (INRN) with four values of G_{1}, one value of G, and four values of G_{2}.

Remark:
The number of tabulated values of barrier thickness is currently assumed to be 6 in both neutron and gamma codes.

GEOM Calculates values of ω and $\sin \phi$ for four walls from input linear dimensions for story.

Input:
HI height of portion of wall above detector plane, ft
XL length of story, ft
W width of story, ft

Output:
OM(4) solid angle fraction subtended by equivalent circular ceiling associated with each wall
SPHI(4) value of $\sin \phi$ for each wall

SECTOR Calculates values of the array Y (see INTRPG) for the upper and lower portions of a partial story (sector)

Input:
IL parameter indicating whether to neglect ($I L=0$) or calculate ($I L=1$) values of Y for the lower portion of the wall.
HU height of portion of wall above detector plane, ft
HUR height of roof above detector plane, ft
HL height of portion of wall below detector plane, ft
XL length of story, ft
W width of story, ft

Output:
$Y(18,2)$ array containing values of ω in the first column and sinф in the second column. The first 9 entries are for surfaces above the detector plane; the remainder are for surfaces below the detector plane.

Subroutines called:
GEOM

INPUTT Input routine data storage for tabulated barrier and geometry factors

Input/Output:

IPR	print index: (IPR $>0)$, print all tabulated barrier
	and geometry factors
OMTAB	tabulated values of solid angle fractions
SPTAB	tabulated values of $\sin \phi$

Common:

XTAB	tabulated values of barrier thickness
BTAB	tabulated values of barrier factors
ZTAB	barrier thicknesses for which geometry factors are tabulated
GTAB	tabulated values of geometry factors
$\operatorname{OMRTAB(17)}$	tabulated values of solid angle fraction for duct data
	(INRN,only)
$\operatorname{RTAB}(17,2)$	tabulated values of duct attenuation (INRN,only)
$\operatorname{OMSTAB(17)}$	tabulated values of solid angle fraction for mutual shielding (INRN,only)
$X M S T A B(17,2)$	tabulated values of mutual shielding (INRN,only)

TEST Calls in input data for building parameters*

Input:
TITLE (20A4) Descriptive title for building

IW, ID, IPR, IMS, IP, HI, HS(>0), HT, HD, HR, FW, HIU, HIL, XL, W (5I5, 5F10.2/5F10.2)

Indices
IW Window index $I W=0$ No windows IW $=1$ Windows on all four sides IW $=2$ Windows on two long sides
ID Detector index $I D=0$ Sub basement ID $=1$ Basement below grade $I D=2$ Basement - partly above grade* ID $=3$ First story of multistory building $I D=4$ Second or higher story ID $=5$ Second or higher story, but immediately below roof. $I D=6$ First story, immediately below roof.
IPR Print index
$I P R=0$ Suppress printout of input tabulations and some geometry factors
IPR > 0 Print this information
*TEST is replaced by CETE1 (for neutrons and secondary gammas) and CETE2 (for AS and FP gamma rays) in program written by R. Lyday for FEMA. His subroutines CHARLI and CECARD are used to relate input data in the SANDINR system to input parameters required by the INR codes.
** Code will overestimate contribution in this case if detector is below grade. For calculating geometry factor, code assumes grade level is at detector level. If detector is above grade, code does not calculate contribution from below detector plane and contribution will be slightly underestimated.

IMS Mutual shielding index IMS $=0$ Set mutual shielding equal to 0.5 for walls, 0.85 for roof gamma rays, and 0.58 for roof neutrons. IMS > 0 Determine mutual shielding from heights of neighboring buildings.
IP Index for configuration of interior partitions $I P=0$ No interior partitions $I P=1$ Four-sided core configuration of interior partitions
$I P=2$ Central corridor extending the length of the building

Linear dimensions (Relative to floor of this story, in units of ft)
HI Ceiling height
HS(>0) Sill height
HT Height of top of window
HD Detector height (Not actually used in INRG code, where test is made on HL. Used for mutual shielding test in INRN code

HR Roof height
FW Fraction of perimeter occupied by windows
HIU Height of story above
HIL Height of story below
XL Length of building
W Width of building

XLM(4F10.3) Length of first plane along each wall of building (not used in INRG code)
WM(4F10.3) Width of first plane in direction perpendicular to each wall of building
HM(4F10.3) Height of SECOND plane on each side of building

After reading in these data, codes call subroutine INPUTT to read in tabulated shielding data. Codes then read in:

Wall Thicknesses (psf)
XE(5E10.3) Thickness of each exterior wall ($L=1,4$) and of roof plus intervening ceilings ($L=5$)
XI(5E10.3) Thickness of each interior wall ($L=1,4$)
XUE(5E10.3) Thickness of each exterior wall of story above ($L=1,4$)
XUI(5E10.3) Thickness of each interior wall of story above ($L=1,4$) and of ceiling ($L=5$)
XXLE(510.3) Thickness of each exterior wall of story below ($L=1,4$)
XXLI(510.3) Thickness of each interior wall of story below ($L=1,4$) and of floor ($L=5$)

RFSTOR Calculates the reduction factor for the four walls and overhead of a story

Input: (Barrier thicknesses in psf, linear dimensions in ft)
IW index to indicate configuration of windows
HI story height
HIU height of story above
HIL height of story below
HS average height of window sills above floor
HT average height of top of windows above floor (HT>HS)
XL length of story
$W \quad$ width of story
X(9) array containing values of four wall thicknesses and overhead thickness, with $x(n+5)=x(n)$. Thickness includes that of intervening interior partitions.
XU(9) array for thicknesses of four walls of story above and total overhead thickness $(X U(5))$, with $X(n+5)=X(n)$
XXL(9) array for thicknesses of four walls of story below, with $x(n+5)=x(n)$
FW fraction of the length of the wall that is occupied by windows

XMS $(5,2)$ mutual shielding factor (INRN only)
ID detector index, indicating basement, first story, etc.
IPR print index
IMS mutual shielding index (INRG only)
IP index for configuration of interior partitions
WM(4) width of area at grade level perpendicular to each wall (INRG only)
HM(4) height of building nearest to each wall (INRG only)
HD detector height (absolute or relative to floor of this story; but definition must be consistent with that of $H R$ and $H M$)
HR roof height (absolute or relative to floor of this story; but definition must be consistent with that of HD and $H M$)
XI(5) thicknesses of interior partitions
XUI(5) thicknesses of interior partitions of story above and of ceiling (XUI(5))
XXLI(5) thicknesses of interior partitions of story below and of floor (XXLI(5))

Output:
$\operatorname{RF}(5,2)$ reduction factor array for four walls and overhead, for air-secondary and fission product gammas (INRG) or neutrons and capture gammas (INRN)

Subroutines called:
INTRPB
SECTOR
INTRPG
GMSHLD (INRG only)
INTRPR (INRN only)

INTRPR Interpolates on tabulated reflection factors for neutrons to obtain a reflection factor for the "side" and "end" walls of the room. Here "end" refers to the surface opposite the one through which the radiation enters and "side" refers to the remaining four surfaces.

Input:
OMRTAB(17) list of solid anyle fractions at which reflection factors are tabulated
$\operatorname{RTAB}(17,2)$ reflection factors for 17 solid angle fractions for "side" walls ($K=1$) and "end" walls ($K=2$)
$\operatorname{TAUR}(5)$ solid angle fraction subtended by the four walls ($I=1,4$) and ceiling ($I=5$). Values of TAUR are calculated in RFSTOR, assuming detector is centrally located, vertically as well as horizontally. Thus the solid angle fraction subtended by the "end" wall is always equal to that subtended by the source wall, and the same value is used for each of the two reflection factors.

Output:
RHO $(5,2)$ reflection factor for four walls ($I=1,4$) and ceiling ($I=5$), for "side"walls ($K=1$) and "end" wall ($K=2$).

NMSHLD (INRN only) Calculates the mutual shielding factor for neutrons incident on the roof and walls of a building. The solid angle fraction of open sky is calculated at the center of the roof and at exterior points at detector height at the center of each of the four walls. (For a detector below grade the exterior points are also below grade, although, physically, they should be at grade level or higher.) Mutual shielding factors are then interpolated from curves for either the roof or walls. A factor of 0.5 for the walls and 0.58 for the roof is included in the mutual shielding factor for neutrons. Reduction factors are multiplied by mutual shielding factors in the RFSTOR subroutine.

```
Input: (in units of ft)
    XLM(4) length of area at grade level parallel to each wall
    WM(4) width of area at grade level perpendicular to each wall
        (INRG only)
    XL length of building
    HM(4) height of building nearest to each wall (INRG only)
    W width of building
    HD detector height (absolute or relative to floor of this
        story; but definition must be consistent with that of HR
        and HM)
        roof height (absolute or relative to floor of this
        story; but definition must be consistent with that of HD
        and HM)
```

Internal Variables:
TAUM(5) Solid angle fraction of open sky for each wall. Areas for calculating solid angle fractions are projected on to the horizontal plane at the height of the building nearest to each wall.

TAUMRF(5) Solid angle fraction of open sky for each quadrant of roof. Areas for calculating solid angle fractions are projected on to the horizontal plane at the height (HMAX) of the highest nearby building.

Output:
XMS $(5,2)$ Mutual shielding factor for walls $(J=1,4)$ and roof ($J=5$), for neutrons $(I=1)$ and neutron capture gammas ($I=2$). Mutual shielding factors for neutron capture gammas are assumed to be equal to those for neutrons in the current version of NMSHLD.

Subroutines called:
INTRPR

Remark: See Appendix B for more detailed description of mutual shielding for neutrons.

GMSHLD (INRG only) Calculates mutual shielding factors for gamma rays through roof and walls of building. As viewed from the detector, the nearest building limits the amount of open sky. For each side of the building the intersection on the wall of the plane formed by the nearer edge of the roof of a nearby building and the detector is determined (i.e., the edge of the "shadow"). Mutual shielding factors for sections of the walls below this intersection are set equal to zero. For example, if this intersection (shadow edge) is at a height halfway between the window sill and top, a ratio is formed of the contributions from above that intersection and from the whole window. This ratio -- the mutual shielding factor -- is applied as a correction to the window contribution. If the shadow intersects the roof, rather than the wall, then the intersection (instead of the real roof edge), determines the size of the effective roof on that side. A factor of 0.5 for the walls and 0.85 for the roof is included in the mutual shielding factor for both types of gamma rays. Corrections for mutual shielding are applied in the RFSTOR subroutine.

Input: (Linear dimensions in units of ft, barrier thicknesses in psf)
WM(4) width of area at grade level perpendicular to each wall
HM(4) height of nearest building to each wall
XL length of building
$W \quad$ width of building
HD detector height. (Absolute or relative to floor of this story; but definition must be consistent with that of $H R$ and HM.)
height of the story
height of portion of wall below detector plane
HIU
HT height of story above this one
height of top of window
HUR distance from detector to roof. HUR is set equal to HR-HD in the RFSTOR subroutine.

XW(9) thickness of walls
$Y(18,2)$ solid angle fraction and $\sin \phi$ arrays
$\operatorname{GP}(7,18,2)$ yeometry factor for up to 7 different contributing sections of wall, different sides -- upper and lower --, and 2 types of gamma radiation.

IW window index: IW = 0 no windows; IW = 1 windows on four sides; $I W=2$ windows on two long sides.

Output:
XMSW $(4,5,2)$ mutuai shielding factor for four walls and roof for air secondary gammas ($M=1$) or fission product gammas ($M=2$). Corrections for walls of same story ($J=1$), windows of same story ($J=2$), walls of story above $(J=3)$, and windows of story above $(J=4)$.

Subroutines called:
SECTOR
INTRPG
C. Listing of Computer Codes.

FORTRAN listing of subroutines of the INRG6 and INRN6 computer codes are shown in Appendix C. Data input for sample neutron and gamma programs are shown in Appendix D. Finally, output for the same sample programs are shown in Appendix E.

v. COMPARISON WITH MONTE CARLO CALCULATIONS

A. Monte Carlo Calculations on Benchmark Structures

Since several approximations have been made in the derivation of eq (2) and in the determination of the component functions, it is necessary to check the results either with experiments or with more rigorous calculations. Experimental checks of approximate procedures for predicting fallout shielding were extensive. However, there have been no systematic experinents developed to either predict or check theoretical procedures for estimating protection from initial nuclear radiation. Therefore comparisons must be made with independent calculations.

The approximate procedures of eq (2) will be applied mainly to three dimensional structures with rectangular roofs and walls. Monte Carlo calculations probably offer the most promising approach for obtaining accurate and independent results for a small number of configurations.

Unfortunately we have available only one set of Monte Carlo calculations with which we can compare our calculated reduction factors. The Monte Carlo calculations considered here were performed by Beer and Cohen of MAGI [11,12] under subcontract to NBS and FEMA. Although the Monte Carlo method is a rigorous one, its application to any particular problem may contain errors due to poor sampling techniques or inadequate modeling of the geometry of the problem. Therefore, discrepancies between NBS approximate procedures and MAGI Monte Carlo calculations do not necessarily imply that the procedures are inadequate.

A series of structures of increasing complexity were selected as benchmark structures to test the adequacy of the approximate procedures. They were designed to approach in complexity a typical multi-story dormitory building. Cross section and elevation sketches of these structures are shown in
figures 21 and 22. Figure 21 indicates a structure that contains a basement ceiling (elevation view), and windows on two sides (plan view). These structural details are given in table IV.
B. Combined Components

First we present a comparison of the overall protection factors calculated by NBS and MAGI for the high and low yield combination of components discussed in Section III.E. This comparison can be made only for structures 4 and 5 since MAGI did not calculate reduction factors for neutrons in structures 1 through 3.

Table VI shows reduction factors for the four radiation components and for overall reduction factors according to the weighting factors shown in eqs. (4) and (5) of Section III.F. Comparisons are made for structures 4 and 5 at central positions in the first story and basement. The first fact to note is that the first story provides protection factors of 2 to 4 , while basements provide protection factors of 6 to 20. Secondly, the NBS estimates of reduction factors are up to 40% higher than those of MAGI and are therefore conservative, in that they estimate less protection. The computer codes yenerated by NBS therefore seem to predict reasonable estimates of reduction factors. Reasons for discrepancies with the MAGI Monte Carlo calculations and possible improvements in the NBS computer codes are discussed in the following sections.
C. AS and FP Gamma Rays

Monte Carlo calculations were made by Beer and Cohen [11] to determine reduction factors for AS and FP gamma rays incident on the five benchmark structures. In a preliminary exercise the roof barrier for air-secondary and
fission-product gammas was determined. Comparison of these results with those estimated from figure 2 is shown in table V. The agreement between the two methods for this simple configuration is within 10%.

Now we turn to comparisons for the benchmark structures. Tables VII through XII give comparisons of reduction factors for AS and FP gamma radiations calculated by MAGI and NBS for centrally-located detectors ($x=y=0$) in the five benchmark structures. We consider first, structure \#1. The comparisons shown in table VII indicate reasonably good agreement for the AS gamma radiation, but the NBS calculations for the FP gamma radiation are as much as 46% higher than the MAGI calculations. The discrepancy is probably due to the calculation of geometry factors, since the calculated barrier factors for the roof show only a few percent discrepancy. The NBS geometry factors may be high because of the approximation, discussed earlier, of integrating over the incident angular distribution rather than the emergent angular distribution.

Structure $\# 2$ includes windows. Since the contribution from windows involves merely an integral over portions of the source angular distribution, the two methods ought to agree well. The observed discrepancies for the basement are due to insufficient characterization by the computer codes of the geometry of the windows on upper stories. The code assumes erroneously that the windows of the upper story extend from the tops of the windows of the detector story to the top of the upper story, thus accounting for a larger window area than intended from the input data. Comparison of the contributions from the walls shows the same discrepancies as observed in Structure \#1.

The approximate procedures do not predict any differences in roof dose between structures $\# 1$ and $\neq 2$, because of the presence of windows in structure \#2. The Monte Carlo calculations, on the other hand, seem to show about a 5% decrease in reduction factor because of leakage of gamma rays through the windows.

In structure \#3, the main effect of the basement ceiling is to reduce the dose in the basement. Table IX shows that NBS calculation for the roof is still high, but that the wall results also differ by about 35%. To examine the effect of the ceiling barrier we take ratios of the contributions calculated by MAGI for structures $\# 3$ and $\# 1$. We then compare these values with the NBS attenuation factors interpolated from figures 19 and 20. Table X shows the results. The agreement for the component from the roof is reasonably good. The agreement for radiation from the wall, however, is not as good. The main reason for this is that the barrier factor of the ceiling was originally made dependent on the average angle of incidence of the photons on the upper surface of the barrier. When the computer code was written, the roof barrier was substituted as a simplification. Table IX shows that the approximation results in a reduction factor from the walls that is lower by a factor of 1.9 for air secondaries and by a factor of 3.2 for fission product gammas. The approximation made in the INR code is conservative and tends to overestimate reduction factors or underestimate protection.

Structure \#4 is similar to structure \#3 except that it contains windows. Comparisons of the contributions to a basement detector from the walls and windows of the first story calculated by the two methods are shown in table XI. Both calculations predict a lower wall contribution in structure \#4 than in \#3 because of reduced wall area. The window contribution calculated by NBS for the air secondaries and the fission product gammas is much larger than that calculated by Monte Carlo. This is the largest discrepancy in the comparisons we have considered. The attenuation in the basement ceiling as calculated from ratios of entries in tables VIII and XI is in reasonable agreement for the wall sources. Furthermore, the attenuation for window sources calculated for air secondaries by MAGI is (.0098/.0693) $=.141$, not
too different from the value of .165 calculated by MAGI for wall sources. However, the attenuation predicted for fission product gammas is $(.0010 / .0409)=.024$, considerably lower than the value of .065 calculated by MAGI for wall sources. Therefore, the MAGI results for windows are believed to be about a factor of 2.5 too low, reducing the discrepancy from a factor of 13 to 5.2.

Figure 21 shows multistory structure \#5. Because of the many stories, the roof source is not expected to contribute to the dose on the first story or in the basement. However, since the ambient source radiation is directed downward, walls above the first story may be expected to contribute to the dose at these points. Table XII shows a comparison of the contributions from the first, second, and third story walls to detectors on the first story and in the basement. Both calculations indicate that for ceiling thicknesses of 57 psf, the first story is the major contributor. Contributions from higher stories increase the dose by about $1 / 3$ for AS gamma rays and are almost negligible for FP gamma rays. These increments would vary with the geometry of the building and the thickness of the ceilings. Agreement between the two types of calculations is good for the first story and, for the basement, a factor of 2 to 3 better than for structure \#4. This reinforces the argument that the MAGI calculations of the window contribution to the basement of structure \#4 may be low by a factor of 2.5 .
D. Neutrons and Secondary Gamma Rays

Under a later subcontract with NBS (March 1981) MAGI also made Monte Carlo calculations of reduction factors for neutrons incident on benchmark structure \#4. They tabulated reduction factors for both neutrons and for yamma rays produced by neutron interaction in the structure. These calculations were reported in MAGI-7072 [12]. Table XII shows comparisons for source neutrons entering through the roof and windows.

MAGI also distinguished between reflected and unreflected components. Although there is some question of the MAGI's operational definition of the two terms, unreflected is intended to mean the contribution from neutrons (or gammas) which enter the room through the floor, ceiling or exterior walls and reach the detector before being reflected from a room surface. All others are reflected, including ganmas which were generated in a surface by neutrons entering the room.

For the roof source in Table XIII we find reasonable agreement for the sum of reflected and unreflected and for individual components. The agreement is also reasonable for basement detectors.

For the window source and first-story detector however, the NBS results are generally higher by a factor of 2 . In this case, we believe that the unreflected neutron component may have been underestimated by MAGI. For example, they calculated . 034 and .048 for the air-secondary and fission product source in structure 72 (See Table VIII). Since the neutrons are even more isotropic than the FP gamma rays we would expect a greater contribution from neutrons. Therefore the unreflected contribution of . 0566 calculated by NBS seems more reasonable than the contribution of .0266 calculated by MAGI. Furthermore, the reflected contribution calculated by MAGI is almost three times that of the unreflected - too high a ratio, in our opinion. We therefore believe that the MAGI calculation of the unreflected contribution is low by at least a factor of 2.

For the window source and basement detectors the same problem exists. In this case, however, the problems is complicated by the attenuation in the ceiling barrier. But the attenuation factor for neutrons is less sensitive to the incident angle than for gamma rays. Therefore, even though the ceiling barrier factor for neutrons and secondary gammas is treated by "folding" the ceiling up against the outer wall and calculating the barrier factor for a roof source, the approximation is expected to be a good one.

For the wall source and first-story detector the same comments apply as for the window source. For the wall source and basement detector the NBS unreflected neutron contribution is even more than a factor of 2 greater than that calculated by MAGI, but the reflected contribution is lower. The result is fortuitously close agreement for the sum of the two contributions both for neutrons and secondary gammas.

The combined contributions of all three sources are also shown in Table XIII. Since the contribution from the roof source dominates, the ratio of NBS results for all sources are similar to those for the roof source alone.

Table XIII shows a similar comparison for Benchmark structure \#5. For the first story source and the first-story detector, we believe that the NBS reflected neutron contribution may be somewhat high because the code does not take into account the decreased reflection when the two walls adjacent to the source wall are replaced by windows. It does, however, account for the decreased reflection from windows in the wall opposite to the source wall. On the other hand, just as for the other structures, we believe that the MAGI calculation of the unreflected neutron component is too small. This can be demonstrated for the detector on the first story, in which case the estimate is particularly simple. The INR code gives a reasonably rigorous estimate for the unreflected neutrons, namely:

$$
R_{f}=0.58 \mathrm{G}\left(\omega_{w}\right)
$$

where $G\left(\omega_{w}\right)$ is the geometry factor for the solid angle opening ω_{w} of the windows. This yields $R_{f}=0.196$, almost a factor of 2 greater than the MAGI value of . 106 .

For the basement, the MAGI values for the unreflected component are probably again too low, but the MAGI values for the reflected component are high, so that the sum of the contributions is consistent with those of NBS.

The contributions from stories 2-9 are also shown in Table XIV. For the first story detector the $N B S$ values are consistently lower, probably because contributions from the third and higher stories are neglected in the INR code. The : AAGI values for the basement detector give an idea of the underestimate of the NBS calculation.

Finally, the contribution from all sources are shown in Table XIV. The "bottom line" is that the NBS values for the reduction factors for neutrons and secondary gammas in a detector above grade are higher than the MAGI values by a factor of about 1.5 but probably more correct. For detectors in the basement the NBS value for the sum of the components is 0.8 times that of MAGI, that is, in rough agreement because of compensating estimates of reflected and unreflected contributions.
Vi. CONCLUSIONS

In summary, the approximate procedures developed for calculating protection from initial gamma radiation appear to be promisiny. Estimates of protection with a single ceiling slab in place have been compared with those from Monte Carlo calculations. Procedures for more complicated interior structure such as interior walls are available, but have not yet been compared with more accurate calculations.

The two areas in which the INR codes could be improved are the ceiling attenuation for AS and FP gamma rays, and the calculation of the contribution from windows in the story above the detector.

References

[1] L. V. Spencer, Structure Shielding Against Fallout Radiation from Nuclear Weapons, NBS Monograph 42, U.S. Government Printing Office (June 1962).
[2] C. Eisenhauer, An Engineering Method for Calculating Protection Afforded by Structures Against Fallout Radiation, NBS Monograph 76, J.S. Government Printing Office (July 1964).
[3] L. V. Spencer, Structure Shielding Against Initial Radiation from Nuclear Explosions, I. Attenuation of Air Secondary and Fission Product Gamma Rays, Nucl. Sci. Eng. 57, 129-154 (June 1975).
[4] J. A. Auxier, Z. G. Burson, R. L. French, F. F. Haywood, L. G. Mooney, 'and E. A. Straker, Nuclear Weapons Free-Field Environment Recommended for Initial Radiation Shielding Calculations, ORNL TM 3396, Oak Ridge National Laboratory (Feb. 1972).
[5] L. G. Mooney and R. L. Swanson, Initial Nuclear Radiation Support Studies, RRA T7411, Radiation Research Associates, Inc., Ft. Worth, Texas (1974).
[6] M. Beer and M. 0. Cohen, Effects of Ambient Field Specification on Initial Radiation Dose in Concrete Structures, Trans. Am. Nuc. Soc. 2l, 545 (1975).
[7] G. L. Simmons, An Adjoint Gamma-Ray Moments Computer Code, ADJM/M I, NBS Technical Note 748, National Bureau of Standards (Feb. 1973).
[8] L. V. Spencer, "Plural-Series" Approximations of Functions, NBS J. Res., 76B, 91 (1972).
[9] G. L. Simmons and W. K. Hagan, Initial Nuclear Radiation Penetration Study, SAI01381 052LJ, Science Applications, La Jolla, California (1981).
[10] C. Eisenhauer and A. B. Chilton, Angular Distribution of Scattered Gamma Rays from a Fan Source, Trans. Am. Nuc. Soc. 14, 1 (June 1971).
[11] M. Beer and M. O. Cohen, Adjoint Monte Carlo Calculations of Initial Gamma Radiation Doses in Structures, Trans. Am. Nuc. Soc. 18, 377 (1974). (See also: M. Beer and M. O. Cohen, Initial Gamma Radiation Dose in Five Concrete Structures, Report Mr 7037, Mathematical Applications Group, Inc., Elmsford, N.Y., Nov. 1973).
[12] M. Beer, Monte Carlo Studies of the Shielding of Blockhouse Structures Against Initial Neutron Radiation, Mathematical Applications Group, Inc. Report No. MAGI-7072, Elmsford, New York (March 1981).
Table I．Relative Energy and Angle Distribution of Infinite Air．（Reference［4］）
Angle 9 1．303E 05 2．491E 05 9
\vdots
$\stackrel{1}{0}$
$\stackrel{\rightharpoonup}{m}$
\cdots

0
0
\sim
∞
∞

 0
0
0
0
0
0
0 농
ω
$\underset{\sim}{\infty}$

$\stackrel{1}{\circ}$ | \circ |
| :--- |
| |
| |
| |
| |
| |

 \circ
$\stackrel{1}{0}$
$\stackrel{1}{0}$
0
0
0
 -
0
0
0
0
0
-

－
$\stackrel{W}{0}$
$\underset{\sim}{\circ}$

 Angle 8 9．393E 04

 $\stackrel{\text { ® }}{\stackrel{\text { a }}{\sim}}$ $\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\sim}{3}}$
 $\stackrel{L}{8}$
$\stackrel{\mu}{\mu}$
$\stackrel{\mu}{\circ}$
$\dot{\sigma}$

 $\stackrel{\leftrightarrow}{\stackrel{~}{2}}$ $\stackrel{\Omega}{\stackrel{8}{\square}}$ \circ
$\stackrel{\circ}{\circ}$
$\stackrel{\sim}{0}$
$\stackrel{1}{*}$ $\stackrel{\circ}{\circ}$

 $\stackrel{\text { à }}{\stackrel{a}{o}}$ $\stackrel{\rightharpoonup}{u}$
$\stackrel{\rightharpoonup}{~}$
$\underset{-}{-}$ Angle 7
$M J=-0.4580$ $\begin{array}{lll}8.509 E & 04 \\ 1.705 E & 05 \\ 1.535 E & 06 \\ 1.433 E & 05 \\ 3.277 E & 05 \\ 1.950 E & 05 \\ 3.064 E & 05\end{array}$ \sim
0
ω_{0}
0
\sim
\sim

\sim | $\stackrel{1}{0}$ |
| :---: |
| $\stackrel{1}{2}$ |
| |
| | | $\stackrel{1}{\circ}$ |
| :--- |
| $\stackrel{1}{8}$ |
| $\stackrel{\circ}{\circ}$ |

 ： | 0 |
| :--- |
| |
| |
| |

 tose）
Angle 6
$M U=-0.6179$ t0 $3 \rightarrow \angle \varepsilon \cdot 8$ $\stackrel{\circ}{\circ}$
$\stackrel{\circ}{0}$
$\stackrel{\omega}{0}$
$\stackrel{\sim}{0}$
\sim

 $\stackrel{\circ}{0}$
$\stackrel{3}{0}$
\sim
\sim
$~$ 2．046E 05

 $\stackrel{\Perp}{\stackrel{\mu}{\sim}}$

 3． 348 E 05 | \circ |
| :--- |
| 山 |
| 号 |
| i |
| i |

 9．309E 06 Angle 5 6．944E 04 1．814E 05 1．297E 06 6．297E 05 6．747E 05 2．522E 05 1．605E 05 5.669 E 03 $-2.798 \mathrm{E} 04$

 \circ
$\stackrel{\text { ö }}{\circ}$
$\stackrel{-}{-}$ 2．543E 06
 $\stackrel{\rightharpoonup}{3}$
$\stackrel{H}{3}$
$\underset{子}{+}$
 Angle 4
$M U=-0.8656$ 4．193E 04 1．054E 05 7．997E 05 2．433E 05 4．042E 05 $\stackrel{\circ}{\circ}$ 1．342E 05

 $\stackrel{\stackrel{\circ}{\circ}}{\stackrel{0}{\circ}}$ $\stackrel{\circ}{\stackrel{\circ}{\stackrel{~}{+}}}$ $\stackrel{8}{\circ}$
$\stackrel{\text { en }}{\sim}$
7.760 E 06
 $\stackrel{\circ}{0}$
$\stackrel{0}{o}$
$\stackrel{0}{0}$
in Angle 3
$M U=-0.9446$ 1．606E 04 1．923E 04 3.085 E 05 3．754E 03 2．427E 04 3．155E 04 9.735 E 04 9．128E 04 1．140E 05 7．651E 04 6．265E 03 2．868E 03 8．701E 05 6．607E 05 5．055E 06 $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\sim}}$
 $\stackrel{\circ}{\stackrel{\circ}{\text { a }}}$
 เ686．0 0 ＝กW £0 $3 孔 \angle 0^{\circ} \varepsilon$ $-5.686 \mathrm{E} 03$ 5．848E 04 －9．176E 04 $-6.227 E 04$ －8．974E 03 4．485E 04 to $3691^{\circ} \mathrm{L}$ 1.060 E 05 $\stackrel{ \pm}{\stackrel{\rightharpoonup}{\underset{~}{~}}}$ －8．096E 03 $-4.887 \mathrm{E} 04$ ！ 2．457E 05

8.8
$山$
0
∞
∞
∞

${ }_{0}$
0
\vdots
\vdots
\vdots
\vdots
\vdots
0
0
0 5．00E 00－－－6．50E 00
 $00 \exists 00^{\circ} \boldsymbol{v}^{--00} 300{ }^{\circ} \varepsilon$ 2．50E 00－－－3．00E 00

 \begin{tabular}{c}
8

$\stackrel{3}{\mu}$

\vdots

\vdots

\vdots

\vdots

\vdots

\hline

8

$\stackrel{3}{0}$

\vdots

\vdots

\vdots

\vdots

\vdots

\vdots

\hline

 $6.00 \mathrm{E}-01---8.00 \mathrm{E}-01$

$\overline{3}$

\vdots

\hline

$\overline{3}$

\vdots

\hline
\end{tabular} $\overline{3}$

\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

 2．00E－02－－－5．00E－02

$$
8.183 \mathrm{E} 05
$$

$$
1.967 \mathrm{E} 06
$$

$$
\text { 4.612E } 06
$$

$$
\text { 1.04IE } 07
$$

Angle 15 $M U=0.8656$	Angle 16 $M U=0.9446$	Angle 17 $M U=0.9894$
l.666E 06	3.591 E 06	7.047 E 06
3.743 E 06	8.503 E 06	1.828 E 07
2.200 E 07	4.204 E 07	6.277 E 07
9.795 E 06	1.984 E 07	2.687 E 07
1.354 E 07	2.372 E 07	2.574 E 07
8.555 E 06	1.334 E 07	1.378 E 07
1.079 E 07	1.446 E 07	1.229 E 07
9.083 E 06	1.047 E 07	7.727 E 06
1.086 E 07	1.076 E 07	6.888 E 06
1.272 E 07	1.057 E 07	5.518 E 06
8.410 E 06	6.174 E 06	2.846 E 06
8.683 E 06	6.214 E 06	2.928 E 06
1.242 E 07	9.140 E 06	4.434 E 06
7.294 E 06	5.057 E 06	2.252 E 06
1.033 E 07	7.147 E 06	3.244 E 06
3.474 E 07	2.368 E 07	1.059 E 07
4.807 E 07	3.235 E 07	1.435 E 07
6.914 E 06	4.571 E 06	2.006 E 06

$$
\begin{aligned}
& \dot{O} \\
& 山 \\
& \dot{O} \\
& \infty \\
& \dot{\infty}
\end{aligned}
$$2.779 E 05

6.623 E 05
4.836 E 064.112E 06
(ganmas/group/angle bin/incident dose)

$$
\begin{gathered}
\text { Angle } 13 \\
M U=0.6179
\end{gathered}
$$

$$
1.023 \mathrm{E} 06
$$

$$
\text { 7.507E } 06
$$

$$
\text { 1.996R } 06
$$

$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{w} \\
& \stackrel{N}{o} \\
& \underset{\sim}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\circ}{\circ} \\
& \stackrel{\rightharpoonup}{\circ} \\
& \stackrel{\sim}{m}
\end{aligned}
$$

$$
\begin{aligned}
& 8 \\
& \stackrel{\rightharpoonup}{\omega} \\
& = \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\stackrel{\sim}{0}} \\
& \stackrel{\sim}{0}
\end{aligned}
$$

$$
\begin{gathered}
\circ \\
\stackrel{\rightharpoonup}{N} \\
\underset{\sim}{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \stackrel{8}{8} \\
& \stackrel{\rightharpoonup}{\underset{2}{c}} \\
& \underset{\sim}{c}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\circ}{8} \\
& \stackrel{\rightharpoonup}{\sigma} \\
& \underset{\sim}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\mathrm{u}} \\
& \stackrel{\ddot{\infty}}{\stackrel{\rightharpoonup}{\omega}}
\end{aligned}
$$1.899E 062.291E 069.794E 059.168E 058.026E 051.902E 063.090 E 066.832E 061.634E 071.536E 075.261E 07

$$
1.337 \mathrm{E} 06
$$81.237E 07

$$
3.632 E 05
$$

$$
4.951 E 05
$$.7.792E 051. 397 E 07

$$
\begin{gathered}
\text { Angle } 12 \\
M U=0.4580
\end{gathered}
$$

$$
\begin{aligned}
& 9.207 \mathrm{E} 06 \\
& 1.719 \mathrm{E} 07
\end{aligned}
$$

$$
9.547 \mathrm{E} 06
$$

$$
\begin{aligned}
& 1.516 \mathrm{E} 07 \\
& 5 \\
& 5
\end{aligned}
$$

$$
8.372 \mathrm{E} 06
$$

$$
\text { 7.666E } 06
$$

\[
1.431 \mathrm{E} 07

\]| $\stackrel{\rightharpoonup}{0}$ |
| :---: |
| $\stackrel{\rightharpoonup}{w}$ |
| $\stackrel{0}{i}$ |

Energy (MeV)	Gamma-Ray Fluence/Steradian							
	Angle(deg)	Angle(deg)	Angle(deg)	Angle (deg)	Angle(deg)	Angle(deg)	Angle(deg)	Angle(deg)
	0.0-13.4	13.4-24.4	24.4-35.4	35.4-46.3	46.3-57.2	57.2-68.1	68.1-79.1	79.1-90.0
6.5-5.0	2.502E-03	8.158E-04	3.407E-04	1.955E-04	$1.066 \mathrm{E}-04$	4.887E-05	2.374E-05	1.437E-05
5.0-4.0	$6.381 \mathrm{E}-03$	$2.528 \mathrm{E}-03$	1.198E-03	6.989E-04	3.815E-04	1.768E-04	8.724E-05	$5.280 \mathrm{E}-05$
4.0-3.0	1.273E-02	$6.559 \mathrm{E}-03$	3.503E-03	$2.063 \mathrm{E}-03$	1.126E-03	5.270E-04	2.591E-04	1.521E-04
3.0-2.5	8.273E-03	5.149E-03	2.954E-03	$1.756 \mathrm{E}-03$	$9.638 \mathrm{E}-04$	$4.595 \mathrm{E}-04$	2.281E-04	1.307E-04
2.5-2.0	1.133E-02	$7.510 \mathrm{E}-03$	4.478E-03	2.697E-03	1.505E-03	$7.382 \mathrm{E}-04$	3.782E-04	2.187E-04
2.0-1.6	$9.930 \mathrm{E}-03$	$7.415 \mathrm{E}-03$	$4.699 \mathrm{E}-03$	2.903E-03	1.660E-03	8.443E-04	4.473E-04	$2.609 \mathrm{E}-04$
1.6-1.3	1.183E-02	$9.784 \mathrm{E}-03$	$6.546 \mathrm{E}-03$	4.171E-03	$2.462 \mathrm{E}-03$	$1.308 \mathrm{E}-03$	7.183E-04	$4.240 \mathrm{E}-04$
1.3-1.0	1.317E-62	1.309E-02	$9.999 \mathrm{E}-03$	$6.923 \mathrm{E}-03$	$4.393 \mathrm{E}-03$	$2.536 \mathrm{E}-03$	1.476E-03	8.834E-04
1.0-0.8	7.594E-03	8.878E-03	7.600E-03	5.702E-03	$3.935 \mathrm{E}-03$	$2.491 \mathrm{E}-03$	1.546E-03	$9.566 \mathrm{E}-04$
0.8-0.6	$6.717 \mathrm{E}-03$	$9.454 \mathrm{E}-03$	9.226E-03	7.643E-03	$5.830 \mathrm{E}-03$	4.086E-03	2.720E-03	$1.751 \mathrm{E}-03$
0.6-0.4	7.202E-03	1.057E-02	1.128E-02	$1.045 \mathrm{E}-02$	$9.033 \mathrm{E}-03$	7.220E-03	5.390E-03	$3.840 \mathrm{E}-03$
0.4-0.3	$3.324 \mathrm{E}-03$	$5.451 \mathrm{E}-03$	$6.225 \mathrm{E}-03$	6.043E-03	$5.454 \mathrm{E}-03$	$4.677 \mathrm{E}-03$	4.026E-03	$3.525 \mathrm{E}-03$
0.3-0.2	3.822E-03	$6.489 \mathrm{E}-03$	7.799E-03	$8.036 \mathrm{E}-03$	$7.745 \mathrm{E}-03$	7.147E-03	6.621E-03	$6.204 \mathrm{E}-03$
0.2-0.1	7.387E-03	1.257E-02	1.586E-02	$1.715 \mathrm{E}-02$	$1.733 \mathrm{E}-02$	$1.680 \mathrm{E}-02$	1.628E-02	$1.586 \mathrm{E}-02$
0.1-0.05	1.008E-02	1.749E-02	$2.286 \mathrm{E}-02$	$2.543 \mathrm{E}-02$	$2.640 \mathrm{E}-02$	$2.629 \mathrm{E}-02$	2.601E-02	$2.576 \mathrm{E}-02$
0.05-0.02	3.879E-03	$6.848 \mathrm{E}-03$	9.158E-03	$1.036 \mathrm{E}-02$	1.094E-02	1.108E-02	1.111E-02	1.111E-02

$$
\begin{aligned}
& \stackrel{\unrhd}{0} \\
& \stackrel{1}{山} \\
& \underset{\sim}{\circ} \\
& \stackrel{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{0}{0} \\
& \stackrel{1}{山} \\
& \stackrel{\sim}{\sim} \\
& \underset{\sim}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\sim}{0} \\
& \stackrel{\rightharpoonup}{\sim} \\
& \stackrel{\sim}{0} \\
& \infty
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\delta} \\
& \stackrel{1}{\mathbf{m}} \\
& \stackrel{\sim}{m} \\
& -
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{1} \\
& \stackrel{\rightharpoonup}{\sim} \\
& \stackrel{\sim}{\sim} \\
& -
\end{aligned}
$$ 4．972E－05 n

\vdots
\vdots
\vdots
\vdots
\vdots

$$
1.0-0.8
$$ $9.943 \mathrm{E}-05$ 6．513E－04 2．529E－03 1．181E－02 $6.646 \mathrm{E}-06$ 2．349E－05 $6.021 \mathrm{E}-05$

\[
1.609 \mathrm{E}-02

\] | n |
| :--- |
| $\stackrel{1}{山}$ |
| $\stackrel{\sim}{0}$ |
| 0 |
| 0 | カ0－38Lt•1 $\stackrel{+}{\stackrel{+}{4}} \stackrel{+}{\stackrel{1}{4}}$ $2.554 \mathrm{E}-03$ $5.294 \mathrm{E}-03$ 1．492E－02 $7.401 \mathrm{E}-06$ 2． $633 \mathrm{E}-05$

 か0－3ャ02・て 2．283E－04 4．239E－04 1．245E－03 2．670E－03 6．829E－04 $1.816 \mathrm{E}-03$ $2.866 \mathrm{E}-03$ $1.112 \mathrm{E}-02$

$$
5.195 \mathrm{E}-05
$$

$$
4.537 \mathrm{E}-05
$$

$$
5.744 \mathrm{E}-05
$$

$$
5.217 \mathrm{E}-04
$$

$$
2.600 \mathrm{E}-03
$$

$$
6.928 \mathrm{E}-05
$$

$$
6.093 \mathrm{E}-05
$$

$$
\begin{aligned}
& \stackrel{\circ}{0} \\
& \stackrel{1}{山} \\
& \stackrel{\sim}{\aleph} \\
& \dot{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\sim}{0} \\
& \stackrel{1}{\omega} \\
& \underset{\sim}{\sim} \\
& \underset{\sim}{2}
\end{aligned}
$$ 5．463E－05 $3.700 \mathrm{E}-05$ 5．107E－05 5．339E－03 1．526E－02 $2.635 \mathrm{E}-02$ Angle（deg）

$123-134$ $4.256 \mathrm{E}-05$ $6.112 \mathrm{E}-05$ Angle（deg）
$112-123$ ع0－3965•与 $2.533 \mathrm{E}-02$

$$
5.562 \mathrm{E}-03
$$ 90－3901．9 8．215E－05 1．232E－04 5．395E－03 $1.494 \mathrm{E}-02$ 3．401E－04

$$
\begin{aligned}
& \text { Angle (deg) } \\
& 145-156
\end{aligned}
$$

$$
2.801 \mathrm{E}-02
$$

$$
1.766 \mathrm{E}-02
$$

$$
\begin{aligned}
& \frac{0}{0} \\
& \frac{0}{0} \\
& \frac{0}{\pi} \\
& \frac{\pi}{4}
\end{aligned}
$$ 90－36 $6_{6}^{\circ} 8$

 เ0－3ャ69•2
 90－3 $368 \cdot 9$

 $1.517 \mathrm{E}-02$

$$
6.180 \mathrm{E}-06
$$

$$
2.173 \mathrm{E}-05
$$

$$
7.322 \mathrm{E}-05
$$

Angle(deg)

$$
\begin{aligned}
& 1.081 \mathrm{E}-04 \\
& 4.630 \mathrm{E}-04
\end{aligned}
$$

$$
\begin{gathered}
6.043 \mathrm{E}-03 \\
1.766 \mathrm{E}-02
\end{gathered}
$$

$$
\begin{aligned}
& 3.100 \mathrm{E}-02 \\
& 1.405 \mathrm{E}-02
\end{aligned}
$$ $70-3879^{\circ} \varepsilon$

$$
\begin{array}{ll}
\infty & 0 \\
\hline & 0 \\
1 & 1 \\
1 & 1 \\
\hline-0 & 0
\end{array}
$$$\stackrel{\vdots}{\stackrel{\rightharpoonup}{\mathrm{a}}}$合o8

$\stackrel{1}{2}$

$\stackrel{\rightharpoonup}{9}$Angle 5£0 $3662^{\circ} \varepsilon$1.834 E 042.836 E 048．234E 041.842 E 052．561E 05$\stackrel{\llcorner }{\circ}$$\stackrel{8}{\stackrel{8}{3}}$9．442E 04$\stackrel{8}{\stackrel{\rightharpoonup}{\omega}} \stackrel{+}{\stackrel{1}{*}}$| 8 |
| :--- |
| 山 |
| 山 |
| i |8

$\dot{4}$
$\stackrel{\rightharpoonup}{⿺}$
$\dot{-}$Angle 4
$M U=-0.8656$1．743E 031．366E 042．039E 04$\stackrel{\stackrel{\circ}{\stackrel{~}{\sim}}}{\stackrel{\sim}{\sim}}$1．863E 052．242E 056．739E 04$\stackrel{\circ}{\stackrel{1}{\star}}$1.488 E 07
064．498E 06\＆
$\stackrel{\mu}{\sim}$
$\underset{\sim}{3}$
Angle
$M U=-0.9446$$103910^{\circ} 2$عо $320 \mathrm{~s} \cdot 8$t0 $309 \mathrm{z}^{\circ} \mathrm{I}$so $3 \angle L L^{\circ} 1$$\stackrel{\text { 응 }}{\stackrel{2}{ㄹ}}$$\stackrel{\llcorner }{\stackrel{\circ}{\circ}}$Angle 2
$M U=-0.9894$20 30 $\angle 6^{\circ} \varepsilon$－5． 173 E 03to $3 \angle 89 \cdot 1$5.036 E 041．792E 04$\stackrel{\circ}{\circ}$2．135E 064． 158 E 06$\stackrel{8}{\stackrel{\rightharpoonup}{\mu}}$1．803E 06品$\stackrel{\leftrightarrow}{\circ}$
－III วlqeI
$4 \pi R^{2}$（Reference［4］）
Energy
$10309 \cdot 1--1032 z \cdot 1$
1.00E 01---l.22E 01
8.19E 00---1.00E 01
4.97E 00---6.36E 00
4.07E 00---4.97E 00
3.01E 00---4.07E 00
2.46E 00---3.01E 00
2.35E 00---2.46E 00
1.83E 00---2.35E 00
1.11E 00---1.83E 00
$5.50 \mathrm{E}-01--\mathrm{l}$. 11 E 00
1.11E-01---5.50E-01
3.35E-03---1.11E-01
$5.83 \mathrm{E}-04---3.35 \mathrm{E}-03$
1.01E-04---5.83E-04
O
\vdots
\vdots
0
\vdots
\vdots
\vdots
0
\vdots
\vdots
\vdots
\vdots
\vdots
$1.07 \mathrm{E}-05---2.90 \mathrm{E}-05$
3. $06 \mathrm{E}-06---1.07 \mathrm{E}-05$

4.14E-07---1.12E-06
0.0
Table III．Continued

Angle 17
$M U=0.9894$
$\stackrel{5}{0}$
$\stackrel{N}{\sim}$
$\stackrel{0}{\leftrightharpoons}$
0 5．671E 05 G0 370 $^{\circ} 6$
 90 ЭZらでし \circ
0
ω
0
0
∞
∞ $90 \mathrm{JzG} 1 \cdot \mathrm{~g}$ $\stackrel{8}{\stackrel{8}{~}}$ 90 э999．\llcorner 90 Эしで・し $\stackrel{8}{\stackrel{\circ}{4}}$ $\stackrel{\stackrel{\circ}{\circ}}{\stackrel{1}{0}}$

 $\stackrel{\circ}{4}$
㞧

i | \circ |
| :--- |
| $\stackrel{\rightharpoonup}{\text { 山 }}$ |
| $\stackrel{-}{-}$ | $\stackrel{\bullet}{\stackrel{\rightharpoonup}{\mu}}$ $\stackrel{\circ}{\stackrel{\circ}{0}}$ $\stackrel{\circ}{\stackrel{0}{\sim}}$

 Angle 16 $M U=0.9446$
 $\xrightarrow{\stackrel{n}{8}}$
 8.8
$山$
$\stackrel{\leftrightarrow}{\sim}$
$\stackrel{\sim}{\sim}$
-
 $\stackrel{\circ}{\stackrel{\circ}{~}}$ $\stackrel{\Omega}{\stackrel{\circ}{\sim}}$

 8
$\stackrel{3}{\omega}$
$\stackrel{3}{0}$
i $\stackrel{8}{\stackrel{\rightharpoonup}{\omega}}$

 \circ
$\stackrel{\sim}{0}$
$\stackrel{\sim}{0}$
$\underset{\sim}{0}$
 Angle 15 $M U=0.8656$ $\stackrel{\circ}{\circ}$
$\stackrel{1}{\circ}$
$\stackrel{+}{+}$ $\stackrel{\circ}{\circ}$ $\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\omega}{\infty}}$

 $\stackrel{\circ}{\stackrel{4}{\mu}}$ $\stackrel{\leftrightarrow}{\circ}$

 $\stackrel{8}{\stackrel{3}{0}}$

 \circ
i
$\stackrel{y}{\tilde{y}}$
i
 $\stackrel{\text { ® }}{\stackrel{\text { w }}{\sim}}$

 $M u=0.7550$ $903 \angle \varepsilon 8^{\circ} 1$

 $\stackrel{\stackrel{\circ}{\text { ® }}}{\stackrel{\omega}{\omega}}$ $\stackrel{\circ}{\circ}$
 $\stackrel{8}{\circ}$
$\stackrel{3}{3}$
$\stackrel{\rightharpoonup}{6}$
 응 은 o
岂
崖
i
－
 $\stackrel{\circ}{山}$
$\stackrel{山}{0}$
$\stackrel{1}{i}$
 ： ©

 $M U=0.6179$ s0 Эしてし・1 1．478E 05
 \＆
$\stackrel{0}{0}$
0
0
0 $\stackrel{\circ}{\circ}$

$\stackrel{\circ}{4}$
$\stackrel{1}{0}$
$\stackrel{\sim}{-}$

$\stackrel{\circ}{3}$
$\stackrel{3}{3}$
$\underset{\sim}{~}$

응
宮
-

 O

 $\stackrel{\stackrel{\circ}{\mathrm{O}}}{\stackrel{\sim}{\mathrm{m}}}$

 Angle 12 $M U=0.4580$ 7.770 E 04
1.126 E 05

 8
趸
i

à
$\stackrel{0}{0}$
－

 $\stackrel{\circ}{\circ}$

 $=$
$\frac{0}{8}$
$\frac{0}{女}$
$M u=0.2815$ to $3 \angle t<\cdot g$ t0 3992＊ 6

 \circ
${ }_{o}^{\circ}$
ì
i

oे
$\stackrel{1}{0}$
$\stackrel{1}{-}$

$\stackrel{\rightharpoonup}{\mathrm{u}}$
$\stackrel{\rightharpoonup}{0}$
-

 Angle 10

 \circ
山
山े
iे $\stackrel{\circ}{\circ}$ $\stackrel{\rightharpoonup}{3}$
$\stackrel{3}{0}$

$\stackrel{3}{3}$合 | $\stackrel{\rightharpoonup}{3}$ |
| :--- |
| $\stackrel{3}{\vdots}$ |
| $\stackrel{3}{-}$ | | $\stackrel{\rightharpoonup}{u}$ |
| :--- |
| $\stackrel{1}{U}$ |
| $\stackrel{1}{-}$ |

 8
$\stackrel{\omega}{0}$
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots 00 3H1＇1－－－10－309•9

 \begin{tabular}{c}
प

$\stackrel{1}{山}$

\vdots

\hline

 2．90E－05－－－1．01E－04

0

\vdots

\hline

\circ

\vdots

\hline

\hline

\circ

\vdots

\hline
\end{tabular}

 $0.0 \quad---4.14 \mathrm{E}-07$

Table IV. Structural Details

Structure	Thickness of	
Number	Basement Ceiling	Windows ?
1	0 psf	No
2	0 psf	Yes
3	57 psf	No
4	57 psf	Yes

Table V
Comparison of Roof Barrier Factors

Z(psf)	Air Secondaries			FP Gammas		
	MAGI	NBS	RATIU	MAGI	NBS	RATIO
0	1.00	1.00	1.00	1.00	1.00	1.00
10	. 72	. 80	. 90	. 58	. 63	. 92
28	. 47	. 53	. 89	. 31	. 33	. 94
57	. 27	. 28	. 96	. 153	. 145	1.05
85	. 156	. 155	1.01	. 076	. 071	1.07

Table VI. Comparison of Reduction factors for combined Components

Structure \#4

First Story

First Story					
				High	Low
				Yield	yield
				IRF	IRF
AS	FP	N	NG	(eq. 4)	(eq. 5)

NBS	.305	.208	.485	.096	.258	.451
MAGI	.298	.173	.339	.060	.256	.334
Ratio				1.0	1.4	

Basement

NBS	.234	.128	.1127	.0343	.155	.151
MAGI	.178	.085	.0814	.0351	.113	.122
Ratio					1.4	1.3

Structure \#5

First Story

.490	.082	.350	.444
.331	.047	.253	.310
		1.4	1.4

Basement

NBS	.073	.0290	.063	.0122	.052	.066
MAGI	.059	.0102	.069	.026	.045	.056
Ratio					1.2	1.2

Table VII. Comparison of AS and FP Gamma-Ray Reduction Factors

Structure 41
(On first story at a height of 3 feet above the floor)
Air Secondaries
FP Gammas Roof Walls Total

NBS	.232	.053	.285	.123	.043	.166
MAGI	.228	.052	.280	.101	.034	.135
Ratio	1.02	1.02	1.02	1.22	1.26	1.23

NBS	(In basement at a depth of 9 feet below the basement ceiling)					
	. 184	. 109	. 293	. 112	. 038	. 150
MAGI	. 156	. 091	. 247	. 083	. 026	. 109
Ratio	1.18	1.20	1.19	1.35	1.46	1.38

Table VIII. Comparison as AS and FP Gamma-Ray Reduction Factors

Structure \#2

(On first story at a height of 3 feet above the floor)
Air Secondaries
FP Gammas
Walls and
Walls Windows Windows Walls Windows Windows

NBS	.042	.031	.073	.032	.053	.085
MAGI	.0360	.0340	.070	.0244	.0480	.072
Ratio	1.17	0.91	1.04	1.31	1.10	1.18

(In basement at a depth of 9 feet below the basement ceiling)

NBS	.068	.119	.187	.025	.088	.113
MAGI	.0664	.0693	.136	.0209	.0409	.062
Ratio	1.02	1.72	1.38	1.20	2.15	1.82

Table IX. Comparison of AS and FP Gamma-Ray Reduction Factors

Structure \#3

Table X. Calculated Gamma-Ray Attenuation Factors for Basement Ceiling

Structure \#3

	Air Secondaries			FP Gammas	
	Roof	Walls	Roof	Na11s	
MAGI	.36	.266	.28	.211	
	.34	.165	.29	.065	

Table XI. Comparison of AS and FP Gamma-Ray Reduction Factors

Structure \#4
(In basement at a depth of 9 feet below the basement ceiling)
Air Secondaries
Walls Windows Walls and Windows Wils Windows Windows

NBS	.018	.032	.050	.0036	.0128	.0164
MAGI	.012	.0098	.022	.0014	.0010	.0024
Ratio	1.50	3.3	2.3	2.6	13.	6.8

Table XII. Comparison of AS and FP Gamma-Ray Reduction Factors.

Structure \#5

(On first story at a height of 3 feet above the floor)
Air Secondaries FP Gammas

Walls: Story 1 Story 2 \begin{tabular}{ccc}
Stories All

$3-9$ \& Walls

 Story 1 Story 2

Stories All

$3-9$
\end{tabular} Walls

NBS	.165	.077	.0	.242	.233	.027	.0	.260
MAGI	.165	.041	.019	.225	.179	.009	.002	.190
Ratio	1.00	1.88	0.0	1.08	1.30	3.0	0.0	1.37

(In basement at a depth of 9 feet below the basement ceiling)

NBS	.073	.0	.0	.073	.0290	.0	.0	.0290
MAGI	.039	.013	.007	.059	.0080	.0014	.0008	.0102
Ratio	1.87	.0	.0	1.24	3.62	.0	.0	2.84

Table XIII. Comparison of Neutron and Secondary-Gamma Reduction Factors Calculated by MAGI and NBS for Benchmark Structure \#4.

Roof Source

	First Story Detector						
	Neutrons		Secondary	Gammas	Sum		Ratio
	MAGI	NBS	MAGI	NBS	MAGI	NBS	
Reflected	. 0990	. 126	. 0302	. 0378	. 1292	. 164	
Unreflected	. 1117	. 124	. 00820	. 0108	. 1199	. 135	
Sum	. 2107	. 250	. 0384	. 0486	. 2491	. 299	1.2
Basement Detector							
Reflected	. 0377	. 0322	. 0122	. 0097	. 0499	. 419	
Unreflected	. 0172	. 0318	. 0076	. 0114	. 0248	. 0432	
Sum	. 0549	. 0640	. 0198	. 0211	. 0747	. 0851	1.1

Window Source							
First Story Detector							
Reflected	. 0657	. 0852	. 00795	. 0255	. 0737	. 1203	
Unreflected	. 0226	. 0566	. 0	. 0	. 0226	. 0566	
Sum	. 0883	. 1418	. 00795	. 0255	. 0963	. 1975	2.0
Basement Detector							
Reflected	. 0119	. 0175	. 00273	. 0060	. 0146	. 0235	
Unreflected	. 00432	. 0173	. 00477	. 00121	. 00909	. 0185	
Sum	. 0162	. 0348	. 00750	. 0072	. 0237	. 0420	1.8

Table XIII. (Continued)

			11 Sour				
			Story 0	ector			
		ons	Seconda	Gammas		um	
	MAGI	NBS	MAGI	NBS	MAGI	NBS	Ratio
Reflected	. 0246	. 0524	. 0113	. 01574	. 0359	. 0681	
Unreflected	. 0152	. 0403	. 00222	. 00620	. 0174	. 0465	
Sum	. 0398	. 0927	. 0135	. 0219	. 0533	. 115	2.2
			ment Det	cor			
Reflected	. 00915	. 00697	. 00554	. 00209	. 0147	. 00906	
Unreflected	. 00112	. 00688	. 00225	. 00392	. 00337	. 01080	
Sum	. 01026	. 01385	. 00779	. 00601	. 0181	. 0199	1.1

All Sources

First Story Detector

Reflected	.189	.264	.0494	.0790	.238	.343	
Unreflected	.150	.221	.0104	.0170	.160	.238	
Sum	.339	.485	.0598	.0960	.399	.581	1.5

Basement Detector

Reflected	.0588	.0567	.0205	.0178	.0793	.0745	
Unreflected	.0226	.0560	.0146	.0165	.0372	.0725	
Sum	.0814	.1127	.0351	.0343	.1165	.147	1.3

Table XIV. Comparison of Neutron and Secondary-Gamma Reduction Factors Calculated by MAGI and NBS for Benchmark Structure \#5.
Neutrons
MAGI NBS

Reflected	.157	.248
Unreflected	.106	.196
Sum	.263	.444

Reflected	.041	.032
Unreflected	.012	.031
Sum	.053	.063

SecondaryMAGI	Gammas	Total		Ratio
	NBS	MAGI	NBS	
First Story				
. 026	. 074	. 183	. 334	
. 0	. 0	. 106	. 184	
. 026	. 074	. 289	. 518 。	1.8
Basement Detector				
. 011	. 0095	. 052	. 041	
. 006	. 0027	. 018	. 034	
. 017	. 0122	. 070	. 075	1.1

Reflected	.047	.017
Unreflected	.021	.029
Sum	.068	.046

Reflected	.0106	0
Unreflected	.0054	0
Sum	.0160	0

Fig. 1. Angular coordinate systems: The angle β is the polar angle with respect to the original source-detector line. The angular distribution from a point source is averaged over all azimuthal directions ϕ to form a ring source. Angular distributions are rotated to (θ, ϕ) polar and azimuthal angles for radiation incident on the roof, and to (ψ, ϕ) polar and azimuthal angles for radiation incident on the walls.

Fig. 2. Initial gamma ray barrier factors.

Fig. 3. Initial neutron and wall secondary gamma barrier factors.

Fig. 4. Overhead geometry factor, air secondary gamma rays.

Fig. 5. Overhead geometry factor, fission product gamma rays.

Fig. 6. Overhead geometry factors, neutrons.

Fig. 7. Overhead geometry factors, wall capture gamma rays.

Fig. 8. Wall geometry factor G_{1}, air secondary gamma rays.

Fig. 9. Wall geometry factors G_{1}, fission product gamma rays.

Fig. 10. Wall geometry factor G_{1}, neutrons.

Fig. 11. Wall geometry factor G_{1}, wall capture gamma rays.

Fig. 12(a). Detector on same story as radiating walls: geometry factors for upper and lower solid angles are added.
12(b). Detector on story below radiation walls: geometry factors for upper solid angles are subtracted. Solid angle fractions such as $\omega_{u}^{\prime \prime}$ may be determined by exterior building.

Fig. 13. Wall geometry factors G_{2}, air secondary gamma rays.
Fig. 14. Wall geometry factors G_{2}, fission product gamma rays.
Fig. 15. Wall geometry factor G_{2}, neutrons.
Fig. 15. Wall geometry factor G_{2}, wall capture gamma rays.
Fig. 17. Mutual shielding geometry factors M_{R} for roof and $M_{S}=m_{S} \frac{\sin \phi_{0}}{2}$ for walls.

Fig. 18. Neutron reflection factors ρ for sidewalls and ρ_{e} for end walls.
Fig. 19. Data for estimating attenuation factors in ceiling, air secondary gamma rays.

Fig. 20. Data for estimating attenuation factors in ceiling, fission product gamma rays.

Fig. 21. Plan and elevation views of benchmark structure with basement ceiling and windows on two sides.

Fig. 22. Views of benchmark structure 5. Figures a) and b) represent elevation and plan views, respectively. Dots represent detector points.

Fig. 1. Angular coordinate systems: The angle β is the polar angle with respect to the original source-detector line. The angular distribution from a point source is averaged over all azimuthal directions ϕ to form a ring source. Angular distributions are rotated to (θ, ϕ) polar and azimuthal angles for radiation incident on the roof, and to (ψ, ϕ) polar and azimuthal angles for radiation incident on the walls.

Fig. 2. Initial yamma ray barrier factors.

Fiy. 3. Initial neutron and wall secondary jamma barrier factors.

Fig. 4. Overhead geometry factor, air secondary gamma rays.

Fig. 5. Overhead geometry factor, fission product gamma rays.

Fig. 6. Overhead geometry factors, neutrons.

Fiy. 7. Overhead geometry factors, wall capture yamma rays.

Fig. 8. Wall geometry factor G_{1}, air secondary gamma rays.

Fig. 9. Wall yeometry factors G_{1}, fission product gamma rays.

Fig. 10. Wall geometry factor G_{1}, neutrons.

Fig. 11. Wall geometry factor G_{1}, wall capture yamma rays.

$G\left(\boldsymbol{\omega}_{\mathrm{L}}\right)+\mathrm{G}\left(\boldsymbol{\omega}_{\boldsymbol{l}}\right)$

Fig. 12(a). Detector on same story as radiating walls: geometry factors for upper and lower solid angles are added.

$$
G\left(\omega_{u}{ }^{\prime}\right)-G\left(\omega_{u}\right)
$$

(b)

Fig. 12(b). Detector on story below radiation walls: geometry factors for upper solid angles are subtracted. Solid angle fractions such as $\omega_{u}^{\prime \prime}$ may be determined by exterior building.

Fig. 13. Wall geometry factors G_{2}, air secondary gamma rays.

Fig. 14. Wall geometry factors G_{2}, fission product gamma rays.

Fig. 15. Wall geometry factor G_{2}, Neutrons.

Fig. 16. Wall geometry factor G_{2}, wall capture gamma raus.

Fig. 17. Mutual shielding geometry factors M_{R} for roof and $M_{S}=m_{S} \frac{\sin \phi_{0}}{2}$ for

Fig. 18. Neutron reflection factors ρ for sidewalls and ρ_{e} for end walls.

Fig. 19. Data for estimating attenuation factors in ceiling, air secondary gamma rays.

Fig. 20. Data for estimating attenuation factors in ceiliry, fission product gamma rays.

(ELEVATION)

Fig. 21. Plan and elevation views of benchmark structure with basement ceiling and windows on two sides.

Fig. 22. Views of benchmark structure 5. Figures a) and b) represent elevation and plan views, respectively. Dots represent detector points.

APPENDIX A

Sources of Data for INR Computer Codes

INRG5

Barrier Factors L.V. Spencer NSE 57, 129-154 (1975) Table X Geometry Factors L.V. Spencer op cit, Tables XIV, XV, XVI, XVII, XVIII, and XX

INRN5

Barrier Factors L.V. Spencer (unpublished) 1 ft concrete $=146.6 \mathrm{pst}$ Geometry Factors L.V. Spencer (unpublished) Tables Duct Reflection Factors L.V. Spencer (unpublished) Graphs Mutual Shielding Factor L.V. Spencer (unpublished) Graphs M_{R}, m_{S}

APPENDIX B

TREATMENT OF MUTUAL SHIELDING FOR NEUTRONS

The present version of the code assumes that the mutual shielding factor for a wall or roof is determined by the m_{s} and M_{r} curves generated by Spencer (fig. 17). The solid angle subtended by open space in the upper hemisphere is determined for the exterior walls and the roof. A table-lookup for each solid angle is used to find some response for the walls (m_{s}) or the response for the roof (M_{r}).

The following steps are included in the subroutine NMSHLD:

1. If the mutual shielding input index IMS $\leqslant 0$ the mutual shielding factor for the walls is set equal to 0.5 and that for the roof is 0.58 .
2. If IMS > 0, solid angle fractions are determined for each of the four walls at a point at detector height on the outside wall. The solid angle fraction is calculated on the center line of a nypothetical norizontal area twice the size of the actual open horizontal area next to the side of the building. The field length is assumed to be symmetrical about the vertical plane perpendicular to the wall and including the detector point. The mutual shielding factor is set equal to $1 / 2$ of the solid angle fraction.
3. To determine the mutual shielding factor for radiation incident on the roof, the maximum height HMAX of nearby buildings is first determined. If the height on any side is less than the roof height, the distance to the nearest building is arbitrarily set at 1000 ft . Otherwise, the unobstructed solid angle is projected onto a horizontal plane at level of HMAX. In this plane the width X of the clear field of view is determined by similar triangles, as shown in figure B.1.

Fig. B. 1
4. Solid angle fractions are then calculated for the four quadrants around the detector point on the roof, as shown in figure B.2.

Fig. B. 2
5. Response functions m_{s} are then looked up (INTRPR) for solid angles subtended by detectors on each of the four sides of the building. These are multiplied by 0.5 . Response functions M_{r} are looked up for each of the four quadrants surrounding the roof detectors. These four responses are averaged and multiplied by 0.58 to obtain the mutual shielding factor for the roof.

APPENDIX C

SUBROUTINE SECTIK (IL,HU,HUR,HL, XL, w, Y)
OIMENSION Y(18,2), OM(4),SPHI(4)

6
EXPRESSION FOR SULIC ANGLE SURTENEED EY A RECfANGLE
 $H=H U$
CALL GEDM (H,XL,W, UM, SPHI)
C. SET UP Y ARRAY FREH VALUES GF GHEGA AND SIA PHI
$0[-20-1=1,4$
$J P=J+j$
Y(J)It $=$ EM (4)
$20 Y(J P, 2)=S P H I(J)$

C equate fifth y value to solio angle ffaeticn subtendeu ey rodf
$E P S=W / X L$
$T Z P=2 . * H U R$
$E T A=T Z P / X L$
$Y(5,1)=T A U(E P S, E T A)$

E - TESF-FQ-SEE WEFHEF-FG-CALEHHAFE-Y-ARRAY-FER PGRFION OF WALL
C
L/TESTDETEGTOR PLANE ([L=1) OR EXIT (IL=0)
IF (IL.EQ.C) GO TO 2CO
$\mathrm{H}=\mathrm{HL}$
CALL GEUM (H, XL, W, JM, SpHI)
CO $40 \quad \mathrm{~J}=1,4$
$j 1=J+9$
$\checkmark 2=J+14$
$Y(J 1,1)=0 M(J)$
$40 Y(J 2,2)=S P H I(J)$
C
EALCULAFE SGLIO ANGLE-FRACFIEV-SUBFEYGEE-BYFLGOR (NOF USEO)
$T Z P=2 . * H L$
$E T A=T Z P / X L$
$Y(14,1)=T A L(E P S, E T A)$
RETURN
ENO

SUBROUTINE GEOM (HI, * C , W, UN, SPHI)
expression fop sulif angle slotended ey a rectangle
$\operatorname{TAU}(A, Z)=2 . * A T A N(A / B / S A R T(A * * 2+8 * * 2+1.0) 1 / 3.24159$
calculate parameters eta and Eps(ilon) fur solid angle fractiun suet
$00-4 \mathrm{~J}-\mathrm{J}=1,4$
$T Z P=W$
IF (J.EQ.2.OR.J.EQ.4) TLP =KL
$X L P=X L$
IF (J.EQ.2.OR.J.EQ.4) XLP=W
$E T A=T Z P / X L P$
c
calculate azimuthal half-angle fhi sletended by each wall PHI = $\operatorname{ATAN}(X L / W)$
IF (J.EQ.2.CR.J.EQ.4) PHI=ATAN(w/Xt)
$W P=2 . \# H I$
$E P S=W P / X L P$
replace each wall by secticn of cyeider dith vertical axis thru oetector point and calculate sclid angle fgactign omega subteno -ed ey equivalent circular ceiling

$40 \mathrm{SPHI}(J)=$ SIN(PHI)
200 RETURN
END

```
*INPUTT
```

 subrgutine inputt (Ipr,gmtab,sptab)
 DIMENSION XTAB(11), STAB(11,4),ZTAG(6), OMTAB(11), SPTAE(11),GTAE(6,
 1 11,6), yTa(
 DIMENSION XLABEL(IO)

DATA XLABEL /4HG(X,,4HOM)R,4HAS ,4HG(X,,4HOM)R,4HFP, 4HG(X,

2SIN, 4H)wFP1
c
read in tabulateo barrier thicknesses
REAC 1, xtab
$0030 \quad 1=1,11$
$30 \times \operatorname{TAB}(I)=68.1 * \times \operatorname{TAB}(I)$
c
read in tabulateo barrier facticrs
READ $\mathrm{L},((\mathrm{BTAB}(I, J), J=1,4), I=1,11)$
1. FORMAT (8E10.3)
2 FORMAT (1HO)
3 FGRMAT (IH)

IFR2)
7 FORMAT (F10.3,1P4E12.3)
IF (IPRFEDOU) GQ FE-EC
PRINT 2
PRINF 5
PRINT 2
OO-50 $5=1,11$ …
PRINT 7, XTAE(I),(BTAÓ(I,J), J=1,4)
50 CONTIAUE
read in tabulated barrier fhicknesses, solio angle fractions, an
and values of sin phi fer geometay factors
SO READ 110, 2TAB
READ llo, oMTAB
READ 110, SPTAB
$\operatorname{OMTAB}(1)=1.0 E-10$
SPTAB(1)=1.0E-10
110 FCRMAT (2.2FE.4)

DO $150 \quad k=1,4$
If $(k-2) \quad 130,120,130$
120 READ 112. (fGIAE(I, $\downarrow, K 1, I=1,0,1, \downarrow=2,11)$
GO TO 140
130 KEAO 110 , ((GTAB(I, J, K) $,[=1,6), J=1,11)$
140 LC $145 \mathrm{I}=1,6$
IF $(K \cdot L E \cdot 2)$ GTAB(I,1,K) $=1.0 E-10$
IF (K.GT.2) GTAB(I, 11,K)=1.CE-10

145 CONTINUE
150 GONTINUE
DO $154 K=5,6$

DO $154 \quad[=1,6$
$00-15-3-\alpha=7,-1$.
$153 \operatorname{GTAB}(I, J, K)=1.0 E-10$
154 GTAB(I,I,K)=1.VE-1C
IF (IPR.EG.O) GO TU 400

PRINT IES
160 FERMAT $(23 x, 1 \times(P S F)=1,0 F 10.0)$
162 FCPMAT (50x,3A4)
 1)

OE $250 \quad k=1,5$
PRINT 2
$K i=3 \neq k-2$
$K 2=K 1+\bar{Z}$
PRINT 162, (XLABEL(I), I=KL,K2) -
PRINT 3
PFINT 100, ZTAB
PRINT 3
OC $250 \mathrm{~J}=1,11$
PRINT i7), OMTAB(J),SPTAB(J), (GTAE(I,J,K),I天I, 6)
170 FGRMAT (2F12.4, 6Fi0.4)
250 CONTINUE
400 RETURN
END

SUBROUTINE LNNER (IP, Xt, XI, XUE, XUI, XXLE, XXLI, Xh, XL, XXL)
OIMENSION XE (5), XI (5), XUE(5), XUI (5), XXLE(5), XXLI (5), XI' 9), XU(9),
$1 \times \times 1$ (9)

C SET ROGF BARFIFR FFICKAESSEEUAL TG AE(S), CEILING THICKNESS
c EQUAL TU XUI(5), ANO FLOCR THICKNESS EOUAL TO XXLI(S)
$X W(5)=X \subseteq(5)$
$X \cup(5)=X U I(5)$
$X X L(5)=X X L I(5)$
IF 1IPGT-Gも-GD-IG = 心
$0020 \quad L=1,4$
$x \cdot(L)=x \leq(L)$
$X \cup(L)=X \cup \bar{E}(L)$
$2 \mathrm{C} \times \times \mathrm{L}(\mathrm{L})=\times \times \mathrm{LE}(\mathrm{L})$
GO TO 200
50 EF- (IP.GF-1)-GU FS-19G
$0060 \quad L=1,4$
$x \in(L)=x E(L)+x I(L)$
$X U(L)=X U E(L)+X U I(L)$

0010200
$100-x+1)=x=(i+x+(1)$
$x w(3)=x w(1)$
$x+(2)=x E(2)$
$x_{w}(4)=x+(2)$
$x \cup(1)=X \cup E(1)+X U I(I)$
$x \cup(3)=X \cup(1)$
$x \cup(\hat{\Sigma})=X \cup E(2)$
$x \cup(4)=x \cup(2)$
$X X L(1)=x \times L E(1)+x X L I(1)$
$x \times L(3)=x \times L(1)$
$x \times L(2)=x \times L E(2)$
$X X L(4)=X X L(2)$
200 REFURN
EHD

* INTRPG

SURROUTINE INTRPB-(XTAB̈, X, BTAE, है)
DIAENSICN XTAB(11),BTAB(21,4),B(5,2),x(5)
C RELAXATICN LENGTHS FOR EXTRAPOLATIDN

C RELATE K (TYPE UF RAUIATEEN) ANO L (INOEA GF HALL OR OVERGEAC
6 TO PARAMETER J WHIGK INEEXES GARFIER FACTOR TABLES
$10000250 k=1,2$
$00250 \quad L=1,5$
IF (K.EQ.1,AND.L.EQ.5) $\mathrm{J}=1$
IF-(K.EU.I.ANC.L.NE. I^{-}) $-j=3$
IF (K.EQ.2.ANO.L.EQ.E) $J=2$
IF (K.EQ.2.AND.L.NE. 5) $\mathrm{J}=4$
$200 \quad I=1$
$210 \mathrm{I}=\mathrm{I}+1$
IF (I.EQ.11) GO TO 22 C
IF (X(L). (T.XTAB(I)) GO TO 2zO
GOTO 210
C
Lineaf interpolation on x ano log of barrier facter
220 E(L,K) $\operatorname{EEXP}(A L O G(B T A B(I-1, J))+A L O G(B T A B(I, J) / B T A B(I-1, J)) *$ $1(X(L)-X T A B(I-1)) /(X T A B(I)-\lambda T A B(I-1)))$
250 CONTINUE
300 RETURN
END

```
* INTRPG
SUBROUTINE INTRPG (X ,Y,G)
OIMENSION ZTAÖ( 6),YTAB(11,Z),GTAB(t,11,6),Y(18,2),G1(11,6),X(9),
l G(G,2), XTAB(11), वTAE(11,4)
CQYMON XHAX,XTAB,BTAB,ZTAE,YTAB,GTAB
c
relate m (type uf radiatien) ano l (index of wall or overheadi
TO-PARAMETER-K WHIGH- INEEFES-GECMETRY FACFGR TAGLES
DE 450 M=1,2
00 450 L=1,9
IF (M.EC.I. 4i+O.L.EE.5) K=1
IF (M.EQ.2.AND.L.EQ.j) K=2
IF (M,E2.2.NNO.E.ET.E)-x=3
IF (M.EQ.2.AND.D.LT.E) }x=
IF (M.EQ.I.ANO.L.GT.5) K=5
IF (M.EQ.Z.ANO.L.GT.5) K=6
\(c\) Index I for tho nearest barriek thicknesses
\(I=1\)
110 I= I+1
    IF (I.EQ. 6) GO TO 2CC
```



```
    GO TC 110
200 IX=I
    IN=I-1
C
determine if variagle is cmega (k.le.4) or sin phi (k.gt.4)
IF \((K-4) 320,320,330\)
\(320 \mathrm{KI}=1\)
GU TC 350
\(330 \mathrm{KI}=2\)
C
IHEEX J FOR-FWG-HEARESF-GMEGA-ER-SIM-PHI-VAEUES
\(350 \quad J=1\)
\(360 \mathrm{~J}=\mathrm{J}+\mathrm{I}\)
IF (Y(L,KI).LT.YTAZ(J,KI)) GO TO 3CO
GO TO 360
\(300 \quad 12=1\)
\(\mathrm{J}=\mathrm{J}-1\)
```

C TWO-WAY INTERPOLATIGN ON GEGMETRY FACTORS
390 CO $400 \mathrm{~J}=\mathrm{J} 1, \mathrm{~J} 2$
linear interpolation on barqier thickness x and log of GEOMETRY FACTERS
 $1 *(X(L)-Z T A B(I N)) /(Z T A B(I X)-Z T A B(I N)))$
400 CONTINUE
c
LINEAR IATEAPOLATIGN GN LQG Y ANE LQG GF-GEGMETRY fACTORS
IF (K.EQ.3.ER.K.EQ.4) GE TE-425
$G(L, M)=E X P(A L O G(G 1(J 1, K))+A L O G(G 1(J 2, K) / G 1(J l, K)) * A L O G(Y(L, K I) /$

GC TO 450
$425 \quad Y I=1 .-Y(L, K I)$
IF (YI.LT.1.0E-10) YI $=1.0 E-10$
$Y 1=1 .-Y T A B(J 1, K I)$
If (YI.LT.1.0E-10) YI=1.0E-10
$Y 2=1,-Y T A Z(J 2, K I)$
IF (YZ.LT.1.OE-1C) Y $2=1.0 E-1 G$
$G(L, M)=E X P(A L O G(G 1(J I, K))+A L O G(G 1(J 2, K) / G 1(J 1, K)) \neq A L O G(Y I / Y 1) / A L D G$ 1(Y2/Y1))
450 CONTINUE
RETURN
END

```
    PROGRAM TEST (INPUT,DUTPUT,TAPES=INPUT,TAPEO=CUTPUT)
    OIMENSICH XTAB(11),BTAB(11,4), YTAB(11,2),
    OIMENSIUN ZTAG(6),GMTAE(11),SPTAB(11),GTAB(6,11,6)
    OIMENSIDN RF(5,2),XU(9),XXL(9)
    OIMENSIUN XLM(4),HM(4),HM(4),XE(j),XI(5),XUE(5),XUI(5),XXLE(5),
    -1-XXLI(-5),TIFLE(2C)
    COMMON XMAX,XTAB,BTAB,ZTAZ,YTAB,GTAE
    1 FERHAF GEEIG.子'
    2 FORMAT (IHO)
    3 FCRMAT (LH-)
    4 FORMAT ( jx, 'X', 7X,'B(X)AS', 8X,'B(X)FP')
```



```
    IFF')
    6 FEKMAT (IHI)
    8 FERMAT (F1U.3,1PZE12.4)
    9. FOKMAF-(20A4.)
    READ (5,9) TITLE
    --WFITE-{t,6)
    WRITE (5,2)
    WRITE (6,9) TITLE
    READ (5,1C) In,IO,IPR,IMS,IP,HI,HS,HT,HD,HR,FW,HIU,HIL,XL,W
    WRITE (E,LO) In,ID,IPR,IMS,IP,HE,HS,HT,HO,HR,FW,HIU,HIL,XL,W
    10 FGRMAT (5I5,5F10.2/5F10.2)
    40-FEAE 45,-xtM
    REAQ-45,WM
    FRINT 45, WM
    KEAE-45, HM
    PRINT 45, HM
    45-FGRMAT-(4FIGF3)
    CALL INPUTT (IPR,OMTAB,SPTAB)
    OO 50.J=1,-11
    YTAB(J,1)=CMTAE(J)
    50 YTAB(J,2)=SPTAB(J)
    KEAD (j,1) (XE(L),L=1,5)
    WRITE (5,1) (XEft),t=1,5)
    READ (5,1) (XI(L),L=1,5)
    WRITE (6,1) (XI(L),L=1,5)
    XMAX=Ó81.
    READ (5,1) (XUE(L),L=1,5)
    WRITE (t,l) (XUE(L),L=1,5)
    READ -(5,I) (XU[(L),L=1,5,
    WRITE (6,1) (XUI(L),L=1,5)
    READ (5,1) (XXLE(L),L=I,5)
    WRITE (6,1) (XXLE(L),L=1,5)
    KEAD (5,1) (XXLI(L),L=1,j)
    WRITE (6,I) (XXLI(L),L=1,j)
    CALL - INNER IIP,XE,XI,XLE,XUI,XXLE,XXLI,X ,XU,XXLI
    CALL RFSTOR (IW,HI,HIU,HIL,HS,HT,XL,W,X,XU,XXL,FN,
    IID,IPR,IMS,IP,WM,HM,HO,HR,XI,XUI,XXLI,RF)
1000 STOP
    END
```

 SURROUTENE RFSTOR- (FH,HI,HIU,HIt,HS,HT, XL, W, 天, XU, XXL, FW,
 IID, IPR,IMS, IP, WM, HM, HE, HR, XI, XUI, XXLI, RF)
 DIMENSION-XTAB(11), BTAE(I1,4),Y(1E,2),YTAB(11,2), \(6(9,2), x(9)\)
 DIMENSICV LTAB(5), GTAB(0,11,6),B(5,2)
 OIMENSIGN GP(7,1e,2), XM(9)
 OLMENSION XMSG(4,E,2), RF(5,2),F(4), XU(9),XXL(9), BU(5,2), BL(E, (2)
 DIMENSION XI(5), XUI(5), XXLI(5), XX(9), BI(5, 2), ЗU士(5, 2), BLI(5, 2)
 COMMON XMAX,XTAB, BTAB, ZTAZ, YTAZ, GTAE

1 FCRMAT (1Hi)
2 FORMAT (IHO)
3 FORMAT (1H)

8 FCRMAT (F1O. $\mathrm{a}, 1$ P2E12.4)
9 FORMAT (F10.0,3F10.4)
$00 \quad 50 \quad M=1,2$
00 5j $j=1,18$
DO $50 \mathrm{k}=1,7$
$50 G P(K, J, M)=C .0$
calculate obarier factors for four walls ano overhead

CALL INTRPB (XTAB,XU,BTAB,BU)
CALL INTRPE (XTAB,XXL,BTAB,BL)
IF (IP.EQ.0) GO TO 0 C
CALL INTRPE (XTAB,XI, OTAB,EI)
CALL INTRPB (XTAB, XUI, ETAB,BUI)
CALL-IATXR +XFA 3 ,XXLI,BFAE, BLI)
GO 1075
60 DO $70 \mathrm{k}=1,2$
$0070 \mathrm{~L}=1,5$
$B I(L, K)=I .0$
$\operatorname{EUI}(L, K)=1.0$
70 BLI (t) K $7=1.0$
75 CONTINUE
PRINT-2
PRINT 2
PRINT 4
PRINT 2
DO $80 \quad \mathrm{~L}=1,5$
80 PRINT 8, X(L), (B(L,K),K=1,2)
PRINT 2
DO \& $L=1,5$
31 PRINT 8, XU(L), $\operatorname{FBU}(L, K), K=1,2)$
PRINT 2
DO \& $2-1=1,5$
82 PRINT 8, XXL(L), $(B L(L, K), K=1,2)$
PRINT 2
DO $83 \quad L=1,5$
83 PRINT 8 , XI(L), (3 I($(t, k), x=1, Z)$
PRINT 2
00-84 $t=1,5$
84 PRINT 8, XUI(L), (BUI(L,K),K=1,2)
PRINT 2
DO $85 \mathrm{~L}=1,5$
85 PRINT 8, XXLI(L),(BLI(L,K),K=1,2)

SET PARAMETEXS F(L) FIR FRACTION GF PERIMETER JCCUPIED By WINDOWS

DC $300 \quad L=1,4$
IF (IW.EQ.O) F(L)=C.0
IF (IW.GT.C) F(L)=FW
IF (IW.GF.1.AND.t.EQ.E $F f(t)=0.0$
IF (IW.GT.I.AND.L.ED.4) $\quad F(L)=0.0$
3 CO GONTINUE
$x_{m}(5)=x(5)$


```
Xx(LP)=xXLI(L)
344-若(LP)=XXL(L)
383 FEFMAT (I5,7F1J.3)
345 IF (-IN.E-.C) OG TG 3`0
    IF (K-3) 380,340,340
    340 IF (K.NE.3.ANO.K.NE.3.ANO.K.NE.7),GG TO 300
C
    RESET \forallALGE OF-XN TS EERO FOK NALES NITH WINOQNS
    IF (IW.GT.I) GO TO 35G
    OC 348 L=1,4
    &P={+5
    XN(LP)=XX(L)
348 x v(L)=x*(L)
    G] T0 3a0
    350 XN(1) = XX(1)
    xin}(2)=x(2
    XN(3) = x*(3)
    XN(4) = X (4)
    DO 370 L=1,4
    LP=L+5
    370 XN(LP)=xw(L)
CALCULATE Y ARRAY
380 ©ALL \(3 E C T O F(I L, H L, H U R, H L, X L, B, Y)\)
381 FGRMAT (2F10.3)
calculate geunetry facturs above detecter plane
CALL
INTRPG \((X W, Y, G)\)
IF (K.GT.I.AND.K.LT.6) GE-FG 385
Calgulate gegmetry facters eelum defector plane
DO \(382 t=1,4\)
\(L P=L+G\)
DO \(382 M=1,2\)
\(382 \mathrm{GP}(K, L P, M)=1 .-Y(L P, 1) \neq 3\)
385 CD \(390 \quad t=1,9\)
DO \(390 \quad M=1,2\)
\(390 G P(K, L, M)=G(t, M)\)
IF (IPR.EQ.O) GU TO 450
PEINF 3
DC \(515 \mathrm{~L}=1,9\)
IF (L.EEG-1) PEINT 520
IF (L.EQ.6) PRINT 521
IF \((t-1 E+5) \quad d=1\)
IF (L.ET.5) \(\mathrm{J}=2\)
515 PRINT 9, XW(L), X(t, Jt, \(16(t, M), M=1, Z)\)
PQINT 410. GP
410 FORMAT (7F1ひ.4)
450 CONTINUE
```



```
521 FORMAT ( 1 SINPHI G2(X,SIN) AS G2(X,SIN)FP')
IF (IMS) 5130,2150,518
\(515000517 M=1,2\)
DO \(517 \mathrm{~J}=1,4\)
DO \(516 L=1,4\)
516 XMSG(J, \(, \mathrm{M}, \mathrm{M})=0.5\)
517 XMSG(J,5,M) \(=0.85\)
GO TO 500
518 CALL GMSHLD (WM,HM, XL,W,HD,HI,HIU,HS,HT,HUR,X,Y,GP, IW, 1 XMSG)
```

```
    jCO DO 551 M=1,2
                            calculate reducticm factor for klgf
    530 RF(5,M)=E(5,M)*GP(1,5,M)
        RF(-5,M)=RF(5,-4)*XMSG(1, 5,M)
            IF (IO.EQ.C) GO TO S51
C
    540 00 550 L=1,4
        LP=L+E
            LPP=L+9
            CSUl=B(t,H)*(v.もE*GR(I,t,A)*GP(1,LP,M))
            l*XMSG(1,L,M)
            CSU2=
        1 +. 35*F(L)*(BI(L,M)*GP(3,L,M)*GP(3,LP,M)-B!L,M)*GP(2,L,M)*GP(2,LP,
```



```
            CSU=CSUI+CSUZ
            IF (IO.LT-2) CSt=0.0
            CSL=3(L,M)*(0.15*GP(1,LPP,W)*GP(1,LP,M))
            CSL =0.5*CSt
            IF (ID.LT.3) CSL=C.O
            CS=CSU+C-FL
            CUI=
```



```
            1*XMSG(3,L,M)
            CU2=0.85*F(L)*
            3 ( उUI(L,M)*(GP(j,L,M)*GP(F,LP,M)-GP(3,L,M) *GP(3,LP,M))
```



```
            5*XMSG(4,L,M)
            CU=CUI+CUZ
            IF (ID.GE.5) CU=0.0
            CL=
            j +.15*BL(L,M)*(GP(t,LPP,M)*GP(6,LP,M)-GP(1,LPP,M)*GP(1,LP,M))
```



```
            7 ))-BL(L,M)*(GP(O,LPP,M)*GP(O,LP,M)-GP(L,LPP,M)*GP(I,LP,M)))
                CL=0.5*CL
            IF (ID.LT.4.OR.ID.GT.E) CL=0.0
C PRINI 1050, CSU1,CSU2,CSL,CUI,CUZ,CL,BU(5,M),BL(5,M),XMSG(2,L,M)
1050 FDRMAT (1PGE10.2)
            RF(L,NL=CS+BU(5,M)*Cll+BL(5,M)*CL
    550 cONTINUE
    5 5 1 ~ C O N T I N U E ~
        GO TO 900
    600 00 650 M=1,2
        00 650 L=1,5
    650 RF(L,M)=0.0
    900 PRINT 1
        PRINT 2
        PRINT 920
        00 915 L=1,5
        PRINT 910, X(L),(RF(L,M),M=1,2)
    910 FGRMAT (F10.0,10x,IPZEEGन्ट)
    915 cONTINUE
```



```
        RETURN
        ENO
```

$\neq G H S H L D$
SUBROUTIAE GMSHLC (WH, HM, XL,, HD, HI, HIU,HL,HT, HUR, XW, Y, GP, IW, LXMSNI

$1, x(4), \operatorname{TAUMRF}(4), G(9,2), \operatorname{Hin}(4)$
COMMON - XMAX, XTAE, STAE, LTAB, YTAE,GTAO


```
XMSW(L,L,M) IS THE MUTUAL SHIELOING FUR THE SOLID wall
                GONTRIBUTIUN TO CSU (IN RFSTER)
                XMS(2,L,M) IS THE,MUFUAL SHIELOING FOF THE WINOUW CONTRIBUTIGN
                    TO CSU
                XHSW(3,L,M) IS THE Hufual SHIELOING FQf fHE SOLIO wAlL
                CONTRIGUTICN TO CU
        XMS*(4,L,M) IS THE MUTUAL SHIELDING FUR THE MINODN CINTRIGUTION
                T0 CU
        XMSN (1,5,M) IS THE MUTUAL SHIELDING FOK THE ROOF
```

 \(I L=C\)
 \(Y M(1)=0.5 \neq W\)
 \(Y\) in (Z) \(=0.5 * \times L\)
 \(Y M(3)=Y M(1)\)
 \(Y M(4)=Y M(Z)\)
 \(00100 L=1,4\)
 IF(MM(L)-HO) 1G,1G, 30
 \(10 \quad 0015 \quad M=1,2\)
 DO \(15 \mathrm{~J}=1,4\)
 \(15 \mathrm{XMS} \operatorname{H}(\mathrm{J}, \mathrm{L}, \mathrm{M})=0.5\)
 GU FO 100 .
 30 HTEST = (HM (L)-HD) \(\ddagger\) YM(L)/(NM (L) +YM(L))
 \(H U=H T-H L\)
 IF (HTEST-HU) 35,35, EO
 35 CALL SEGTOK (IL,HFESF,HUR,HL, HL, w, Y)
 CALL INTRPG (XW,Y,GM)
 \(-50.50-1.2-\)
 \(X M S \propto(L, L, M)=(G P(1, L, H)-G M(L, M)) / G P(1, L, M) / 2\).
 IF (IN.GT.C)
 \(1 \times M S W(2, L, M)=(G P(3, L, M)-G M(L, M)) / G P(3, L, M) / 2\).
 \(X M S *(3, L, M)=0.5\)
 \(50 \times M S W(4, L, M)=0.5\)
 - GO TO 100
 \(60 \mathrm{HU}=\mathrm{HI}-\mathrm{HL}\)
 IF (HTESI-HU) \(65,65,20\)
 65 CALL SECTIR (IL,HTEST, HUF, HL, XL, N, Y)
 CALL INTRPG (XA, Y, OM)
 \(C\)
 C
REOUNDANT wIH PREVIOUS LOOP, RUT INCLUCED FOR POSSIBLE
$0070 M=1,2$
$X M S W(1, t, M)=(G P(1, L, M)-G M(t, M)) / G P(1, L, M) / 2$.
IF (IN.GT. ©)
LXMSW($2, L, M)=(G P(3, L, M)-G M(L, M)) / G P(3, L, M) / 2$.
PRINT 1050, GP(3,L,M),GM(L,M), XMSW(2,L,M)
1050 FOKMAF (1P4E10.2)
$X M S W(3, L, M)=0.5$
$70 \times \operatorname{MSW}(4, L, M)=0.5$
GU TO 100
$80 \mathrm{HU}=\mathrm{HI}+\mathrm{HIU}-H L$
IF (HTEST-HU) 85,85,95
85 CALL SECTOR (IL,HTESF,HUR,HL, XL,N,Y)
CALL INTRPG (XW,Y,GM)
DO $90 \quad M=1,2$
$X M S W(1, L, M)=0.0$
$X: M S$ W $(2, L, M)=0.0$

```
        XMS:A(3,L,M)=(GP(4,L,M)-GM(L,M))/(GP(4,L,M)-GP(1,L,M))/2.
        IF (IN.GT.C)
    IXMSW(4,L,M)=(GP(シ,L,*)-GM(L,H))/(GP(\xi,L,M)-GP(3,L,W))/2.
    go continue
        GO TC 100
    95-DG-9.8-M=1,2
        XMSW(1,L,M)=0.0
        XMSW{2,L,M}}=0.
        XMSW(3,L,M)=0.0
    98 XMSW(4,L,M)=0.0
    100 continue
        OEL-H=HUR
        DO 300 L=1,4
        HTEST=(HM(t)-H0)*YM(t)+f(WNH(t)+Y#(t))
        IF (HTEST-DELH) 220,己己C,0z4C
    220. }\because(L)=FM(L
        GO TO 300
    240-X(L)=OELH*(WM(L)+YMft))/(HM(L)-HO)
    300 contINUE
        EPS = X(1)/X(2)
        ETA=OELH/X(2)
        TAUMRF(E)=TAUGEPSOEFN)
        EPS = x(2)/x(3)
        ETA =0EtH/-x(3)
        TAUMRF(2)=TAU(EPS,ETA)
        EPS = X(3)/X(4)
        ETA=DELh/X(4)
        TAUMRF(3)=TAU(EPS,ETA)
        EPS=X(4)/X(1)
        ETA=DELH/X(I)
        TAUMRF(4)=TAU(EPS,ETA)
        00 400 L=1,4
        Y(5,1)=TAUMRF(L)
        CALL INTRPG (XA,Y,G)
        DO 4CO M=1,Z
    400GM(L,M)=G(5,M)
    00 500 M=1,2
    500 XMSW(1,5,M)=0.25#0.85#(G.4(I,M)+G.4(2,M)+GM(3,M)+G:4(4,M))/GPP(I,j,M)
        RETURN
        END
```

INRN

SUBRDUTINE SECTOR (Il, hU, HIJR, $\mathrm{FL}, \mathrm{XL}, \mathrm{m}, \mathrm{y}$) CIMENSION Y(18,2),OM(4),SPHI(4)
c
expressign for solid avgle subtenceo ey a pectangle
$\operatorname{TAU(A,B)=2.*ATAN(A/3/SURT(A**2+B\# \# 2+1.0)1/3.14159~}$
$\mathrm{H}=\mathrm{HU}$
CALL GEOM (H, XL,A,OM,SPHI)
c
SET UD y array from values of omega and sin phi
DC $20 \quad J=1,4$
$J P=j+5$
$Y(J, 1)=04(J)$
20 Y(JP, 2) $=$ SPHI(J)
c
equate fifth y value to sulig anglefratfion subfenued oy roof

$$
E P S=W / \times L
$$

$T Z P=2 . \neq H U R$
$E T A=T Z P / X L$
$Y(5,1)=$ TAU(EPS,ETA)
c
test to see whether to calculate y array for portion of wall
6

If IIL.EO.CJ GO TO 200
$\mathrm{H}=\mathrm{HL}$
CALL GEQM-(HOXL, *, EM, SPHI)
OO $40 \mathrm{~J}=\mathrm{i}, 4$
$J 1=J+9$
J $2=\mathrm{J}+14$
$Y(J l, 1)=0 M(J)$
$40 \mathrm{Y}(\mathrm{J} 2,2)=\mathrm{SPHI}(\mathrm{J})$
c
calculate solis angle fraction subtended by floor (not used)
$T Z P=2 . \neq H L$
$E T A=T Z P / X L$
Y(14,1) $=$ TAU(EPS, ETA)
200 RETURN
END
*GEOM

$$
\begin{aligned}
& \text { SUEREUTINE GEQM-THI, XL, HSOM, SPHI } \\
& \text { OIMENSIUN CM(4), SPHI }(4)
\end{aligned}
$$

c
expressiun fur solid angle subtended ey a fectangle
$\operatorname{TAU(A,B)=2.*ATAN(A/B/SGRT(A**2+6**2+1.0))/3.14129~}$
c calculate parameters eta and eps(llon) for solid angle fraction sue
C -.......SUZTENDED BY EACH-WALL
$00-40-J=1,4$
$T Z P=W$
IF (J.EG.2.OR.J.EQ.4)-TZP=XL
$X L P=X L$
IF (J.EN.2.OR.J.EG.4) XLP=W
$E T A=T Z P / X L P$
c
calculate azimuthal half-angle phi subtended by each wall
PHI=ATAN(XL/H)
IF (J.EQ.2.OR.J.EQ.4) PHE=AFAN(音/XL)
$W P=2 . * H I$
$E P S=W P / X L P$
C. FEPLACE EACH WALL EY SECTION OF CYLIOER WITH VERTICAL AXIS THRU cetector point and calculate solio angle fraction dmega sueteno -ed by equivalent circular ceiliag

EM(J)-1.-1. $37 C 8$ TAU(EFSSETA)/RHI
40 SPHI(J)=SIN(PHI)
200-RETURN
END

SUBRDUTINE IMPUTT (IPR,OMTAB,SPTAB)
DIMENSION XTAB(11), BTAB(11,4), ZTAB(6), OMTAB(11),SPTAB(11),GTAB(6,
1 11,6), YTAB(11,2)
DIMENSION XLABEL(28)
1 -GMRTAB (17) \rightarrow RTAB(17, 2$)$
DIMENSION GMSTAB(17), XMSTAB(17,2)
CGMMON XMAX, XFAB, OTAE, ZTAB,YTAB, OTAB
COMMON OMRTAB, RTAB, OMSTAB, XMSTAC
CATA XLABEL/4HG(X, $4 H \mathrm{HM}) \mathrm{R}, 4 \mathrm{HN}, 4 H G(X, 4 H G H) R, 4 H G-4 H G(X, 9$
$14 \mathrm{HOM}) \mathrm{W}, 4 \mathrm{HN}, 4 \mathrm{HG}(X, 4 \mathrm{HOM}) \mathrm{W}, 4 \mathrm{HG}, 4 \mathrm{HG} 2(X, 4 \mathrm{H}, \mathrm{SIN}, 4 \mathrm{H}) \mathrm{WN}, 4 \mathrm{HGZ}(\mathrm{X}, 4 \mathrm{H}$
2SIN. 4 HJNG-

C … READ-EN FAGUtATEO EAFREER-THICKNESSES
READ 1 , (XTAB(I), $I=1, t)$
00 $30 \quad I=1,6$
$30 \times$ TAB(I) $=146 \cdot 6 * X$-FAB(I)
C
-READ-EN-FABULATEH BARRIER-FAGFGRS

4 FORMAT (6E10.3)
BFAB(1,2) $=1.0 E-10$
ETAB(1,4)=1.OE-10
1 FERRMAT (8E16.3)
2 FORMAT (IHC)
3. FGRMAT (1H-)

7-FGRMAT (FIG.3,1P4E12.-3)
IF (IPR.EQ.O) GD TO SO
PRINT 2
PRINT 5
PRINT 2
$0050 \quad I=1,0$

50 CONTINUE
READ IN TABULATED BARRIER THICKNESSES, SOLID ANGLE FRACTIONS, AM ANO VALUES GF SIN PHI FQR GEOMETRY-FACFERS

60 READ 110, ZTAE
READ 110, (0MTAÓ(I), I = 1,11)
FEAD 110, SPTAB
OMTAB(1)=1.OE-10
SPTAE(1) $=1 \cdot 0 E-10$
110 FLRMAT (12Ft.4)

OC $150 \mathrm{~K}=1,4$
130 KEAD $110,($ (GTAB (I, $I, N), I=1,6 t, J=5,11)$
$14000145 \mathrm{I}=1, \mathrm{t}$
IF (K.LE-Z) GFAB(I, $1, K)=1 . G E-10$
IF (K.GT.2) GTAB(I,11,K)=1.0E-10
IF (K.GT. 2.ANO.K.LE.4)-GTAB(I,11,K) $=1.0 E-10$
145 CONTINUE
150 CENTINUE
OO $154 K=5, b$

OC $154 \quad I=1,6$
DC $15.3, \mathrm{~J}=7,11$
153 GTAB $(I, J, K)=1.0 E-10$
$154 G T A B(I, 1, K)=1,0 E-10$

```
IF (IPR.EG.O) GO TO 260
P&INT-2
PFINT 105
    ISO FORMAT (23X,:X(PSF)=1,GFIO.E)
    162 FCRMAT (50x,3a4)
```



```
        1)
        CO 250 K=1,6
        PRINT 2
        K1=3手K-2
        K2=KL+2
        PRINT 102, (XLABEL(I),E=KI,K?)
        PRINT }
        PRINT LOU, ZTAB
        PRINT 3
        DC 2j0 j=1,11
        PRINT 17O, CMTAB(J),SPTAZ(J),(GTAG(I,N,K),I=1,6)
    170 FOKMAT (2FLう.4,6F1U.4)
    250 CONTINUE
C
    READ IN OUCT REFLECTION FACTORS
    2c0 REAO 110, (OMRTAE(J),J=1,17)
        EHRTAB(1)=1.GE-10
        READ 110, ((RTAB(J,I),J=1,17), I=1,2)
        RTAB(1,2)=1.0E-10
        IF (IPR.EQ.O) GO TO 4CO
        PRINT 265
    255 FORMAT (5X,'JMEGA',OX,'RHJ',4X,'スHC-SUB-E')
    DE 350 J=1,17
    PFINT 270, OMRTAE(J),(RTAB(J,I),I=1,2)
    270 FGRMAT (F15.4,2F1C.4)
    350 COMTINUE
C
    read in mutual shieloing factors
    400 REAO 110, (OMSTAB(J),J=1,17)
        GMSTAB(1)=1.OE-10
        00 420 I=1,2
    420 READ 110, (XMSTAB(J,It,d=1,17)
        XMSTAB(1,1)=1.OE-10
    XMSTAB(1,2)=1-0E-16
    IF (IPR.EG.O) GO TO 500
    PRINT 430
430 FGRMAT (5X, 'CMEGA', GX, 'MS', 8X,'MR')
    OO 450 d=1,17
    PRINT 270, OMSTAB(J),(XMSTAB(J,I),I=1,2)
    450 CENTINUE
    500 CONTINUE
    RETURN
    END
```


* INTRPR

SUBROUTINE INTRPR (OMRTAB,RTAB,TALR,RHE)
DIMENSION CMKTAB(17), FTAJil7, 2), TAUR(う), रHC(5, 2)
DO $4 C O I=1,5$
$J=1$
$250-\downarrow=\alpha+1$
IF (TAUR(I).LT. GMRTAB(J)) GO TO 30C
IF-(J.LF-17)-GJ-FO-260
$300 \mathrm{~J} 2=\mathrm{J}$
$\downarrow 1=J-1$
DO $350 k=1,2$

12, x)/RTAB(J1, x)//ALOG(OMRTAO(J2)/CM\&TAB(J1)))
400 CENTINUE
gETURN
END

*INTRPE

DIMENSION XTAB(11), ÉTAB(11, ヶ), 8(5, 2), X(5)
C
relaxation lengths for exthafolation

C RELATEK (TYPE GF RADIATIENG ANO E-GENEX OF WALE GR OVEKHEAO
C TO PARAMETER J WHICH INOEXES BARKIER FACTOR TABLES
$10000250 \mathrm{~K}=1,2$
00 250 $L=1,5$
IF $(K, E G \cdot 1, A N D, L, E Q .5) J=1$

IF (K,EQ.2.AND.L.E..5) $\mathrm{J}=2$
IF (K.EG. $2 \cdot A N D \cdot L \cdot i v E \cdot 5) ~ J=4$
$200 \quad I=1$
$210 \quad I=I+1$
IF (I.EQ.E) GO TO 220
IF (X(L).LT.XTAB(I)) GO TO 220
6010210
C
LINEAR INTERPQLATION UA X AND LDG JF BAFRIER FAGTOR
220 B(L,K) $=E \times P(A L O G(3 T A B(I-1, J))+A L O G(B T A B(I, J) / B T A B(I-1, J)) *$
$1(X(L)-X \operatorname{TAB}(I-1)) /(X T A 马(I)-X T A B(I-1)))$
250 CONTINUE
300 RETURN
END

```
* Intrpg
```

SUBRCUTINE INTRPG (x, y, G)
OIMENSION ZTAB (0), YTAB(11, 2$), G T A B(6,11,6), Y(18,2), G 1(11,6), x(9)$,
$1 \mathrm{G}(9,2)$, XTAB(11), BTAB(1i,4)
COMMON XYAX, XTAB, ITTAB, ZTAB, YTAB, GTAE
relate m (type jf gaoiation) and l (index cf wall or overhead)
c
fo Parameter k hich ineexes-getmetry factor tables
$00-450 \quad M=1,2$
$00450 \mathrm{~L}=1,9$
IF (M.EQ.1.AND.L.EG. 5) $K=1$
IF (M.EQ.2.AND.L.EG.E) $k=2$

IF (M.EQ.2.AND.L.LT. I) $k=4$
IF $-M \cdot E Q \cdot 1 \cdot A N+G \cdot L \cdot G F \cdot 5)-K=5$
IF (M.EQ.Z.AND.L.GT.E) $K=0$
index i for two nearest barrier thicknesses
$I=1$
$110 I=1+1$
If (I.EQ.6) GO TO 200

GO TO 110
200 IX $=\mathrm{I}$
$I N=I-1$
6
determine if variable is cmega (k.le.4) or sin phi (K.gT.4)
If $(x-4) 320,320,330$
$320 \mathrm{KI}=1$
GO 10350
$330 k I=2$
c
- INQEX f FGR fTQ-NEAREST GMEGA of Sin Phi VALUES
$350-J=1$
$360 \mathrm{~J}=\mathrm{J}+1$
IF (Y(L,KI).LT.YTAB(J,KI)) GO TO 300
GC TO 360
$300 \quad 12=1$
$\mathrm{J}=\mathrm{J}-1$
thenay interpolation on geometry factors
$39000 \quad 400 \quad j=J 1, J 2$
linear interpolaticn on barriex thigkness x and log of
6 GECMETRY FACTORS

1* (X(L)-ZTAB(IN))/(ZTAB(IX)-ZTAB(IN)))
400 CONFINUE

LINEAR INTERPOLATIGA OA LQG Y ANG-LGG of gegmetry facters
IF (K.EO.J.GR.K.EQ.4) GE-TO-425
$G(L, M)=\operatorname{EXP}(A L U G(G I(J 1, K))+A L C G(G 1(J C, K) / G I(J I, K)) * A L D G(Y(L, K I) /$

GO TO 450

425 YI=1.-Y(L,KI)
LF (YI.LT.1.0E-10) YI=1.0E-10
$Y 1=1 .-Y T A B(J 1, K I)$

$Y Z=1,-Y T A B(J 2, K I)$
If (YZ.LF.1.0E-10t Y2=1.0E-10
$G(L, M)=E X P(A L G G(G I(J 1, K))+A L O G(G I(J Z, K) / G I(J I, K)) \neq A L O G(Y I / Y 1) / A L E G$ 1(Y2/Y1))
450 continue
RETURN
END

```
* IMNER
```

 SUBROUTINE INNER (IP, XE, XI, XUE,XUI, XXLE, XXLI,XW,XU,XXL)
 DIMENSION XE(5), XI(5), XUE(5), XUI(5), XXLE(5), XXLI(5), X* \((9), X \cup(G)\),
 \(1 \times x(9)\)
 SET RGOF BARRIER THICAMESS EGUAL-FO AEFSH-EEILING-FHICKAESS
 c
EQUAL TO XUI (5), AND FLOQR THICKNESS EQUAL TO XXLI(כ)
$X W(5)=X E(5)$
$X \cup(5)=X U I(-5)$
$X X L(う)=X X L I(5)$
c

FOLD CEILING INT］UPPER STORY WALLS AND

c

IF IIPGT．OH GG－FO－50
OO $20 \mathrm{~L}=1,4$
$x W(t)=X E(t)$
$X \cup(L)=X \cup E(L)+X U I(5)$
$x \times X(L)=x \in \in E(t)+x \cdot x(-I+5)$
$X \cup I(L)=X \cup I(L)+X U I(E)$
$20 \times \times L-E(-)=X X L I(L)+X X L I(5)$
GO TO 200
50－IF HP．GF－1FGETO 100
OO UC L＝1，4
$X \operatorname{Xin}(L)=X E(L)+X I(L)$
$X \cup(L)=X U E(L)+X U I(L)+X U I(5)$
$x \times L(L)=x \times L E(L)+x \times L I(L)+x X L I(5)$
$X \cup I(L)=X \cup I(L)+X \cup I(5)$
$60 \times \times L-I(L)=\times \times L I(L)+\times \times L I(-\zeta)$
GOTO 200
$100 \mathrm{XW}(1)=X E(-1)+X I(1)$
$x \times(3)=x *(1)$
$x_{w}(2)=x E(2)$
$x W(4)=x W(2)$
$X \cup(1)=X \cup E(1)+X \cup I(1)+X 甘 I(弓)$
$x \cup(3)=x \cup(1)$
$x \cup(2)=x \cup E(2)+x U I(5)$
$x \cup(4)=x \cup(2)$
$x \cup I(1)=X \cup I(1)+X \cup I(5)$
$x \cup I(3)=x \cup I(1)$
XUI（2）$=x$ UI（2）＋XUI（5）
$X \cup I(4)=X \cup I(2)$
$X X L(1)=X X L E(1)+X X L I(1)+X X L I(5)$
$X X L(3)=X X L(1)$
$X X L(2)=X X L E(2)+X X L I(5)$
$X X L(4)=X X L(2)$
$x \times 1$（1）$=x \times 1$ I（1）－$x \times 1$（I5）
$X X L I(3)=X X L I(1)$
$X X L I(2)=X X L I(2)+X X L I(5)$
$X X L I(4)=X X L I(2)$
200 RETURN
END

1 ID,IPR,IP,HR,HD,XI, XUI, XXLI,RF)

DIMENSICN ZTAB(6), GTAB(6,11,6), E(5,2)

DIMENSION RF(5, 2), XMS (5, 2), F(4), XU(9), XXL(G), BU(5,2), BL(5,2)
1 , DKRTAB (17), QTAB(17, Z), TAUR(5), RHC(5, 己)
DIMENSION XI(う), XUI (5), XXLI (5), XX(9), $\mathrm{BI}(5,2), 8 \cup I(5,2), E L I(5,2)$
CGMMGN XMAX,XFAZ, BFAB,ZFAG,YFAB,GFAE
COMMON UMRTAB, KTAB, OMSTAB, XMSTAB
$\operatorname{TAU}(A, Z)=2.7 A \operatorname{TAN}(A / 3 / S G R T(A \neq \ldots 2+3 \neq 42+1 \cdot 0)) / 3.24159 \ldots$
1 FGRMAT (1H1)
2 FORMAT (1HO)
3 FCRMAT (IH)
4 FORMAT $\left(5 x, 1 x^{1}, 7 x, 2 B(x) N^{1}, 8 x, 1\right.$ B(x) G')
8 FCRMAT (F10.3,1P2512.4)
9 FORMAT (FIO.0,3F10.4)
DO $50 \quad M=1,2$
$0050 \mathrm{j}=1,18$
DO $50 \mathrm{~K}=1,7$
$50 \mathrm{GP}(K, J, M)=0.0$
C - CALEULATE BARKEER FAETERS FER FOUR WALLS ANO OVERHEAD
CALL INTRPE (XTAB, X, ETAE, B)
CALL INTRPE (xTAB,XU, BTAB, BU)
CALL INTRPB (XTAB, XXL, ETAS, BL)
CALL INTRPB (XTAB,XI, BTAB, BI)
CALL-INFRPG (ATAE, XUI, GTAZ, EUI)
C PRINT 949,XUI,3UI
C 999 FORMAT-(IOF10.5)
CALL INTRPS (XTAE, XXLI, BTAE,BLI)
GO TO 75
$600070 \mathrm{~K}=1,2$
0E-70 士=1, 5
$B I(L, K)=1.0$
GUI $(L, K)=1.0$
70 BLI $(L, K)=1.0$
75 CONTINUE
PRINT 2
PRINT-2
PRIAT 4
PRINT 2
DO $80 \mathrm{~L}=1,5$
80 PRINT $8, \quad X(L), f(L, K), K=1,2)$
PRINT 2
OC. $81-1=1,5$
81 PRINT 8, XU(L), $(3 \cup(L, K), K=1,2)$
PRINT 2
DO \& $2 L=1,5$
82 PRINT $8,-x * L+L),(3 L(-,-K), A=1,2)$
- PRINT-2
$0083 L=1,5$
83 PRINT 3, XI(L), (BI(L,K),K=1,2)
PRINT 2
DO $84 L=1,5$
84 PRINT 8, XUI(L), (BUI(L,K),K=1,2)
PRINT-2
OO $85 \mathrm{~L}=1,5$
85 PRINT 8, XXLI(L), fBLIfL, K), K=I, 2)
WINDOWS

C IF (L.EO.I.AND.M.EQ.I)
C IPRINT 988, Hot,CU
IF (ID.GE.S) CU=0.0
$\epsilon L=$
$5+.42 * B L(L, M) *(G P(6, L P P, M) * G P(6, L P, M)-G P(1, L F P, M) * G P(1, L P, M))$
$6+.42 \neq F(L) \neq(B L I(L, A) \neq f G P(7, L P P, M) \neq G P(7, L P, 14)-G P(1, L P P, H) * G P(1,(P, M$
$7) 1-B L(L, M) *(G P(G, L P P, M) * G P(O, L P, M)-G P(1, L P P, M) * G P(1, L P, M)))$
IF (ID.LT.4.0..IG.GT.5) CL=0.C
C TEMPORARY CHANGE 7-9-86

IF (M.EQ.1.AND.ID.GE.2) CSR(L) $=\operatorname{CS} \#(R H O(L, 1)+R H O(L, 2) *(1,-F W))$

IF (M.EQ.1) CS=CS+CSR(L)
C - PRINT G998,-CSU,CSL,CSF(E),RHC(E,I), KHO(L,2)
C7998 FORMAT (' CSU,CSL, CSK,RHCI,RHU2,=1, בP5E12.4)
IF (M.EQ. 2) ES = CS $+0.3 * C S R(b)$
C ADD REFLECTION TO CONTRB FROM OTHER STURIES
C TEMPGRARY CHANGE 7-G-80

IF (M.EQ.I.AND.ID.GE.2) CUR(L) =CU*(RHO(5,1)*(1.-FW)+RHO(5,2))
C TEMPORARY CHANGE 7-5-E6
C IF (M.EQ.1) CLR(L)=CL* (RHO (5, 1) +RHQ(E, 2$)$)
IF (M.EQ.1) CLR(L) CCL *(RHO $(5,1) \neq(1,-F A)+R H Q(5,2))$
IF (M.EQ.1)-EU=CU+EUR(t)
IF (Y.EQ.1) CL=CL+CLR(L)

IF (M.EO.2) CL=CL+O.3*CLR(L)
c attenuatien in ceiling is num included in wall barrieg $R F(L, M)=C S+C U+C L$
$R F(L, M)=R F(L, M) * X M S(L, M)$
C PRINT 9999, CS,CU,CL,XMS(L,M)
C9999 FORMAT (' CS,CU,CL, $\mathrm{CMS}=1,1 \mathrm{P} 4 \mathrm{E} 12.41$
550 CONTINUE
551 continue
900 PRINT 1
PRINF Z
PRINT 920
$00915 \quad L=1,5$
PRINT 910, $X(L),(R F(L, M), M=1,2)$
910 FORMAT (F10.0.-10x, 1P2E10.2)
915 CONTINUE

1000 RETURN

END

```
*TEST
    PROGRAM TEST (INPUT,OUTPUT,TAPE5=INPUT,TAPEO=OUTPUT)
    CIMENSION XTAB(11),BTAE(1I,4), YTAB(11,2),
    DIMENSION ZTAB(6),GMTAE(II),SPTAB(11),GTAB(0,11,6)
    DIMENSION RF(5,2),XMS(5,2),XU(G),XXL(9)
    DIMENSION UNSTAB(17),XMSTAB(17,Z)
    OIMENSICN XLM(4),WM(4),HM(4),XE(5),XI(5),XUE(5),XUI(5),XXLE(5),
    1 XXLI(5),TIFLE(20)
    1 ,OMRTAB(17),RTAB(17,2)
    COMMON XMAX,XTAB,ETAB,ZTAB,YTAB,GFAB
    COMMON OMRTAB,RTAB, QMSTAB, XMSTAZ
    1 FORMAF (EEIO.O)
    2 FDRMAT (1HC)
    3 FGRMaf-(IH-)
    4 FORMAT (5x,'x',7x,'3(x)AS', Ex,'E(x)FP')
```



```
        1FP1)
    6 FORMAT (IHI)
    8 FORMAT (F10.3,1P2E12.4)
    9 FERMAT-{F10.0,3F10.3)
    11 FORMAT (20A4)
    EEAO (5,11)-TITLE
    WRITE (t,ó)
    WRIFE (0,Z)
    WRITE (S,II) TITLE
    FEAD (5,IU)-IH,IQ,IPR, EMS,IP,HI,HSOHT,HE,HR,FW,HIU,HIL,XL,W
    ARITE (G,IC) IW,ID,IPR,IMS,IP,HI,HS,HT,HD,HR,FW,HIU,HIL,XL,W
    10 FJRMAT (5IF,5F10.2/5F10.2)
    HUR=HR
    40 KEAD - 4j, XLM
    PRINT 45, XLM
    READ 45, WM
    PRINT 45, MM
    READ 45, HM
    PRINT 45, HM
    45 FRRMAT (4F10.3)
    CALL INPUTT (IPR,OMTAB,SPTAB)
    DO 310 J=1,11
    YTAB(J,I)=CMTAB(J)
310 YTAB(J,2)=SPTAB(J)
    READ (5,1) (XE(L),L=1,5)
    WRITE (b,l) (XE(L),L=1,矢)
    READ (5,1) (XI(L),L=1,5)
    WRITE (6,1) (XI(L),L=1,5)
    READ (5,1) (XUE(L),L=1,5)
    WRITE (0,1) (XUE(L),L=1,5)
    READ (j,1) (XUI(L),L=1,5)
    WRIIE (6,l) (XUI(L),L*N,㐋
    READ (5,1) (XXLE(L),L=1,5)
    WRITE (6,1) (XXLE(L),,L=1,2)
    FEAD (5,1) (XXLI(L),L=1,5)
    WRITE-(6,-1) (XXLI(t),t=1,5)
    CALL INNER (IP,XE,XI,XUE,XUI,XXLE,XXLLI,X ,XU,XXL)
    XMAX=6.81
    IF (IMS) 60,60,80
    60 00 70 [=1,2
    00 65 J=1,4
    65 XMS(J,I)=0.5
    70 XMS (5,I)=0.58
    GO TO 600
    80 CALL
    NMSHLD (XLM, WM,HM,XL,W,FE,HR,XMS)
oco cCNTINUE
    CALL
    RFSTOR (In,HI,HIU,HIL,HS,HT,HUR,XL,W,X,XU,XXL,FW,XMS,
    1-IO,IFR,IP,HR,HD,XI,XUI,XXLI,RFI
```

```
*NMSHLD
    SUBROUTINE NMSHLD (XLH,WM,HM,XL,N,HD,HR,XMS)
    OIMENSION XTAB(11),BTAB(11,4),ZTAB(E),GTAB(5,11,6),YTAB(11,2)
    DIMENSION XLM(4),WM(4),HM(4),TAUM(5),X(4),Y(4)
    OIMENSIUN TAUMRF(5),XMS(5,2),XMSP(5,2), UMSTAB(17),XMSTAB(17,2)
    OLMENSION OMRTAB(17),RTAB(17,2)
    COMMON XMAX,XTAB, ETAB, ZTAB,YTAB,GTAE
    COMMON GMRTAS,RTAZ,GMSTAB,XMSTAB
    TAU(A,Z)=2.*ATAN(A/B/SGRT(A**2+8**2+1.0))/3.14159
    C PRINT 41, XLM
C 41 FORMAF (1OEIO.4)
    40 DO 50 J=1,4
        DELH=HM(J)-HD
        IF (CELH) 42,42,44
    42 FAUM(J)=1-0
        GO TO 50
    44-EPS=-2.+#M(-5)+XLH(J)
        ETA=2.*(HM(J)-HO)/XLM(J)
        TAUM(よ)=TAU(EPS,ETA)
    50 CONTINUE
    HMAX=HM(2-)
    IF (HM(2),GT,HMAX) HMAX=HM(2)
    IF (HiM(3).GT.HMAX)-HMAX=HM(-3)
    IF (HM(4),GT.HMAX) HMAX=HM(4)
    Y(1)=0.5*W
    Y(2)=0.j*XL
    Y(3)=Y(1)
    Y(4)=Y(2)
    DELH=HMAX-HR
    OO 70 J=1,4
    IF (HM(J)-HR) 52,52,54
    52 X(J)=10C0.
    G0-TO-70
    54X(J)=DELH*(NM(J)+Y(J))/(HM(J)-HR)
    70 CONTINUE
    IF (DELH) 400,400,10C
    100 EPS =x(1)/X(2)
    ETA=DELH/X(2)
    TAUMRF(I)=TAU(EPS,ETA)
    EPS=X(2)/X(3)
    ETA=DELH/X(3)
    TAUMRF(2)=TAU(EPS,ETA)
    EPS = X(3)/X(4)
    ETA=DELH/X(4)
    TAUMRF(3)=TAU(EPS,ETA.)
    EPS = X(4)/X(1)
    ETI=DELH/X(1)
    TAUMRF(4)=TAU(EPS,ETA)
    400 TAUM(5)=1.0
    TAUMRF(j)=1.0
    CALL INTRPK (DMSTAB,XMSTAE,TAUM,XNSP)
C PRINT 41, TAUM,XMSP
    DO 500-I=1,2
    OO 480 j=1,4
    480 XMS (J,I)=0.5* XMSP(J,Z)
    500 CONTINUE
        IF (DELH) 520,520,53G
    520 00 525 I=1,2
    525--xMS(5,1)=6.-50
        GO TO 200
    530-CALL INTRPR (OMSTAB, XMSTAR,FAUMRF,XMSP)
    DU 550 I=1,2
    550 XMS (5,1)=0.25*(XMSP(1,1)+XMSP(2,1)+XMSP(シ,1)+XMSP(4,-1)+*0.58
```

APPENDIX D

APPENDIX E

$$
E(x) i_{-} \quad j(x)_{r}
$$


```
C-. ..........
```



```
%. -.2.5-% - %%-%
```


を่（x）

000	こー・1	
7.00	1．とから1を－く1	き．とてもどつづ
7．C00	1．0091E－01	ま．67とこと－こえ
7．0ご		3．0うこと
	1．c101E－	1•13ヶ4

24.60 5.2710ET.2 3.6255E-.22

$$
57.606 \quad 2.41245-21 \quad 2.3344=-22
$$

－C00 1．COOOE＋ご 1．EこCこと－1C

	1．ナ843E－：	$=$
Ced	1.984 ミと－も	こ．く1も＊と－0゙く
57．000	$1.98435-21$	－．21こ4E－32
E0）	1．9843E－サ1	う．21ヒ4と－ぐく
くこし	$2 \cdot+154 \mathrm{E}-5$	2．32

7．000	$843 E-C 1$	2． $2164 E-02$
こくし	1．9Eくさを－31	こ．く1くせEーご
戸・じった	1．484さと－う口	こ． 2104 －－
7．0ご	1．+04 Eと－C1	こ． 21
－ 06	己．41う4Eー．」	2．きミ

	＋r－	
67 ．	1・フミこーく，	3．70t－3
27.	1．こるこーご	2．37上－ 3
$=7$.	1．フラとーして	－ 7 ¢Eーへ
67.	1．2ここーで	2．डアにー，
$=70$ ．	2．17E－Cと	1．ヒことーで

U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET (See instructions)	1. PUBLICATION OR REPORT NO. NBSIR 87-3507	2. Performing Org	$\begin{aligned} & \text { 3. Publication Date } \\ & \text { FEBRUARY } 1987 \end{aligned}$
4. TITLE AND SUBTITLE APPROXIMATE PROCEDURES FOR CALCULATING PROTECTION FROM INITIAL NUCLEAR RADIATION FROM WEAPONS			
5. AUTHOR(S)			
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234			7. Contract/ Grant No. 8. Type of Report \& Period Covered

9. SPONSORING ORGANIZATION AAAME AND COMPLETE ADDRESS (Straet. City. Stute, ZIF)
10. SUPPLEMENTARY NOTES
[-] Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

In this report we discuss procedures for routine evaluation of the protection of complex structures against the initial radiations from nuclear detonations. We describe procedures for evaluating and combining dose reduction factors for four radiation components: early fission product gamma rays, air secondary gamma rays generated by neutron interactions in the air, neutrons, and wall capture gamma rays generated by neutrons through interactions with nuclei in structural materials. We describe computer codes developed to evaluate reduction factors for each of these components. The radiation field in the vicinity of the structure was generated for a 30° elevation angle for the detonation, as well as a "ring source" averaging over the points of the compass. Comparisons are made with Monte Carlo calculations for a series of five benchmark structures.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)
initial nuclear radiation; neutron transport; photon transport; protection factor; reduction factor; shielding
13. AVAILABILITY

* Unlimited

For Official Distribution. Do Not Release to NTIS
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

X Orter From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF PRINTED PAGES

130
15. Price
$\$ 18.95$

[^0]: ${ }^{l}$ Initial radiation is that which is emitted during the first minute after a detonation.
 ${ }^{2}$ Figures in brackets indicate literature references at the end of this paper.

[^1]: ${ }^{3}$ In the methodology for calculating fallout protection this information is not available and it is arbitrarily assumed that for thin walls the geometry factor is proportional to ϕ_{0} and for thick walls it is proportional to $\sin \phi_{0}$, where ϕ_{0} is the azimuthal angle between a line perpendicular to the wall and a line drawn to one end of the wall. This implies that at the center of a rectangular building with thick walls, the relative contributions of the long and short walls is equal to the ratio of their lengths.

