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Image Processing for Optical Engineering Applications

Matthew B. Weppner and Matt Young

Electromagnetic Technology Division
National Bureau of Standards

Boulder, Colorado 80303

This Internal Report describes a palette of computer image processing

algorithms for picture processing and optical fiber characteri zati on.

Keywords: computer processing; Fourier optics; g-profile; Gaussian beam; image

processing; images; optical fiber characteri zati on ; optical processing; single-

mode fiber

1. Introduction

1.1 Statement of Purpose and Organization

This Internal Report describes the development and testing of image pro-

cessing software designed for optical engineering applications. Image pro-

cessing functions in this software include two-dimensional Fourier transforms,

convolution, noise reduction, multiple image resolutions, and low-level image

processing functions. The software also contains image information display

tools including Gaussian beam and g-profile characteri zati on for optical fiber

measurements. The necessary image file input/output routines are presented in

the software and are used to read and store images in conjunction with other

image processing software, digitizing cameras, and output display devices.

A design is never finished but simply stopped due to time limitations.

Therefore, this software does not comprise a complete set of image processing

functions and display tools, but, rather, provides a good base for most appli-

cations and can be expanded with additional future image processing algorithms.

The rest of this section describes the basic two-dimensional digitized

image used in image processing. Section 2 describes in depth the image pro-

cessing functions and display tools contained in the software. Section 3.1

describes an application of the software for a hybrid computer-opti cal image

recognition experiment (a copy of the full paper is in appendix C). Section

3.2 describes a preliminary experiment that relates the near-field and far-

field scans from a single-mode optical fiber. Section 4 contains concluding

remarks and future applications. Appendices A and B show the manual and source

code listing for the software.
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Figure 1-1. Ameri can Gothic by Grant Wood (1930), oil on beaver board
(29- 7 /

8

11

x 25
1

'). Friends of the American Art Collection. Copy-
right, The Art Institute of Chicago. All rights reserved.

Figure 1-1 is an image used throughout section 2. This painting was

chosen because it is a familiar image with good range of contrast, shapes, and

detai 1

.

This report is based entirely on the Master of Science thesis of Matthew

B. Weppner (Electrical and Computer Engineering Department, University of

Colorado, Boulder, 1986). It has been edited lightly, and the format has been

changed, but it is otherwise intact.

1.2 Image Representation and Format

A digitized image is made up of picture elements called pixels. A pixel

is a small region, usually square, whose size determines the resolution of the

picture. Each pixel is assigned a numerical value which represents the aver-

age light intensity over the area of the pixel. The intensity values are not

absolute measurements but represent a relative intensity level. In this soft-

ware, each pixel value must be a positive integer, one byte, which allows for
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256 intensity levels. Possible pixel values are 0 to 255, and the maximum

dynamic range over the 256 intensity levels is

maximum dynamic range = 10 • log
10

(—— )
= 24 dB. (1)

Although this represents the maximum dynamic range of the software, the

dynamic range of a digitized image is determined by the weakest link among the

input digitizing device, software, and output device.

Each digitized two-dimensional image is made up of a finite number of

pixels with a horizontal width and vertical height (resolution format) speci-

fied by the software. The image is represented by a two-dimensional array,

p(x,y), which is shown in figure 1-2. Each element p(x
0 ,yQ ) represents the

intensity value of a pixel at a specified position (x
0 ,y 0

). In this software

valid resolution formats are 256 x 240, 128 x 120, 64 x 60, 32 x 30, and

16 x 15.

Figure 1-3 is a 256 x 240 digitized image of figure 1-1. A CCD (charge

coupled device) camera with resolution 480 x 384 is used to obtain this image.

Four similar pictures have been averaged together to reduce the effects of

video camera noise (section 2.3).

2. Image Processing Functions

2.1 Single-Pixel Functions

Single-pixel functions are those in which the (intensity) value of a

pixel is altered according to an algorithm that depends on the original value

of that pixel. The functions have the general form,

^ x
o*^o^ ^si ngle^ x

o’^o^ ’ ' ^ '

where p(x
Q ,y 0 ) is the current pixel being processed in the picture p(x,y).

These functions scan the entire image and process each pixel indivi-

dually. In general these functions are relatively quick to execute and do not

require complex computation.

3



Width = M

0 <- x -> M-l

Height = N

0

t

y

N-l

Figure 1-2. Diagram of a M x N digitized image p(x,y).

Figure 1-3. 256x240 digitized image of figure 1-1.
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2.1.1 Biasing

Biasing adds an input scalar value to each pixel of a digitized image.

The input value must be an integer within the valid range (0 to 255). The

general form of the equation is

where $ = input bias value and has the range -255 < 8 < 255.

The purpose of this biasing function is to shift the spectrum of intens-

ity levels by a specified amount. This changes the average intensity level of

the picture and can alter the range of visual contrast of an image. Image

information loss results if computed values exceed the intensity range and are

truncated.

Figure 2-1 shows the result of biasing figure 1-3 with 8 = 50. Fig-

ure 1-3 initially had a good range of exposure. In figure 2-1 the picture

appears much brighter, but the brightest parts of the picture appear over-

exposed because the pixel values in those areas exceed 255. Figure 2-2 shows

the result of biasing figure 1-3 with 8 = -50. In this case the picture is

much darker and much of the dark area appears underexposed because the pixel

values in those areas have values that are less than 0.

2.1.2 Contrast Enhancement

Contrast enhancement increases the range of contrast of the intensity

values of a picture. Pixel values within an input range less than 256, are

linearly expanded to the full range of 0 to 255. The input range is deter-

mined by a lowest and highest input bounds. The general form of the equation

0

255

P( x0
»y

0 ) + 8 < 0

0 < p(VV + 6 < 255

P( x
0
>y

0
) + 6 > 255

(
3 )

is

f
enhance

0 a < 0

( p ( x 0
»y

0
)

»

a » b )
= a 0 < a < 255 (4)

255 a > 255
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Figure 2-1. Biased image of figure 1-3 (=+50).

Figure 2-2. Biased image of figure 1-3 (=-50).
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pcc
where a =

(Ilf) ( p( x
0
»y

0
)-a)

,

a = input lower bound,

b = input upper bound,

0 < a < b < 255.

Pixel intensity values not within the range of the lowest and highest input

values will exceed the valid range after enhancement and are truncated to 0

and 255, respectively.

Contrast enhancement makes the picture appear brighter and brings out

hidden detail. This function is also useful for expanding the dynamic range

of intensities of a picture for other image processing functions.

Figure 2-3 shows an enhanced image of Figure 1-3 using the values a = 49

and b = 227, which are the lowest and highest pixel values in figure 1-3. We

call this process "auto-enhance" in the software because the image is auto-

matically adjusted to the maximum possible contrast. Figure 2-4 shows another

enhanced image of Figure 1-3 using a=100 and b= 1 75. This image is deliber-

ately over-enhanced to bring out the detail within range between a and b.

Pixel information outside this range is lost.

2.1.3 Negative Formation

Forming a negative of a digitized picture is analogous to creating nega-

tive image in photography. The range of pixel intensities is reversed, with

the brightest pixels becoming the darkest and vice versa. The form of the

equation is

^negati ve^P^ xo*^o^
~

P^ x o 5^o^*

The purpose of this function is to reverse the contrast of a picture and

create an inverse image. Figure 2-5 shows the negative image of figure 1-3.

This function is helpful in bringing out detail and analyzing certain images.

7



Figure 2-3. Enhanced image of figure 1-3 (a=49, b=227)

Figure 2-4. Enhanced image of figure 1-3 (a=100, b=175).
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Figure 2-5. Negative image of figure 1-3.

2.1.4 Thresholding

Thresholding is used to set a range of pixels to a desired value. Upper

and lower pixel input bounds are used to establish a range of intensity. The

general form of the function is

f
threshold( p ( x o

,y
o)

>

a ’ b ’ T )

,t a < P(x
Q ,y0 )

< b

(
6

)

( p(x ,y ) otherwise
o o

where a = input lower bound,

b = input upper bound,

0 < a < b < 255,

t = input threshold set value,

0 < x < 255.

This function sets a range of pixel intensity values equal to an input thresh-

old value. This can be used to distinguish ranges of intensity within a pic-

ture.
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Figure 2-6 shows the thresholded image of figure 1-3 with the values

a = 0, b = 128, and t = 64. Contrast information within this range, 0 to 128,

is lost and diverts our attention to the unthresholded pixel values.

Figure 2-7 shows an image of figure 1-3 with the number of possible pixel

intensity values reduced from 256 to 16. This is done by setting ranges of

pixels into 16 threshold levels, by thresholding 16 times using a = 0, b = 15,

and t = 0, then a = 16, b = 31, and t = 16, etc.

2.2 Multiple-Pixel Functions

Multiple-pixel functions are image processing functions which operate on

one pixel as a function of many pixels or even the entire digitized image.

The functions have the general form.

where p'(x
0 ,y0 ) is the current pixel being processed in the picture p(x,y).

These functions scan the entire picture but process each pixel individ-

ually. Since each pixel is a function of many pixels (or the entire image) we

must put the processed results into a second array, p'(x,y). This is neces-

sary because the computer is capable of processing only one pixel at a time,

and the entire original image is needed until all the pixels are processed.

Usually, these functions are relatively slow to execute and require more com-

plex computation compared to single pixel functions.

2.2.1 Convolution

The purpose of the convolution function is to apply a spatial frequency

filter to the digitized picture. A straightforward method [1] of convolving

two functions is to multiply the Fourier transform of the digitized image with

a frequency filter function in the frequency plane. The inverse Fourier

transform is then taken to transform the result back into the image plane.

The general form is

p
'
(x ,y )

= f
' ' o o' imultiple^ o

,J
o

(x ,y ,p(x,y) )

,

( 7 )

P'(x,y) = F
_1

{P(f
x
,f
y

)
• K(f

x
,f
y
)>, (

8 )
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Figure 2-6. Thresholded image of figure 1-3 (a=0, b= 128, t=64).

Figure 2-7. Thresholded image of figure 1-3 with the number of pixel
intensity values reduced from 256 to 16.
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where F{g(x,y)} = G(f ,f
)

= (forward) Fourier transform,
x y

F
_1

{G(x,y)} = g(x,y) = inverse Fourier transform,

P(f ,f )
= F{p(x,y)} = Fourier transform of the picture,

x y
K(f

x ,fy) = frequency filter function.

Computing the two-dimensional Fourier transform of the picture and the

inverse transform of the filtered result is usually very time consuming. We

can also filter the picture with respect to spatial frequency by performing

the convolution directly in the image plane. Using the convolution theorem we

obtain [1],

F{k(x,y) * p(x,y)} = P(f
x>

f
y

)
• K(f

x
,f
y

),

k(x,y) * p(x,y) - F'i{P(f
x
,f
y

)
• K(f

x
,f
y
)} - p‘(x,y)> (9)

-foo -00

where f * g = / / g(c,n)g(x-c,y-n) d^dn,
—00 —00

k(x,y) = F
_1

{K(f ,f )} = convolution kernel function,
x y

and * denotes convolution. Convolution in the image plane is the mathematical

equivalent to multiplication in the Fourier plane. We use convolution because

it is simpler to implement and faster when the kernels are small.

In image processing we deal with digitized pictures in matrix form.

Similarly, we must chose a finite matrix, k(x,y), which serves as the convolu-

tion kernel. This convolution kernel is often an approximation to the inverse

Fourier transform of the frequency filter function, K(fx ,fy). The general

form of the two-dimensional computer convolution formula is

where

f
convolve (VV p(x ’y) ’ k(x 'y))

0 a < 0

255 a > 255

a otherwi se

a = 0 +

N
k

( l

n=l
l k(m,n)

m=l
p(x

0
+m-m

c ,y0+n-nc )). ( 10 )

8 = bias value,

t)
= normalization value,
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1 l l k(m,n) = 0

n=l m=l

\ l l k(m,n) otherwise
n=l m=l

k(x,y) = M
k

x Nk matrix (convolution kernel,

(mc ,nc )
= center of matrix k(x,y),

m
c = (M

k
div 2)+l,

n
c = (N

k
div 2)+l,

and "div" denotes integer division, which ignores the remainder.

Figure 2-8 shows a low-pass image of figure 1-3. The convolution kernel

k
low-pass

1 1 1

111 .

1 1 1

( 11 )

This kernel is a rough approximation to a small circles in the Fourier plane.

The result is loss of high frequency information or blurring.

Figure 2-9 shows a high-pass filtered image of figure 1-3. The convolu-

tion kernel is

k
high-pass

0-10
-14-1.
0-10

( 12 )

This kernel is a rough approximation to a sinc(r) function, which represents

an opaque stop in the Fourier plane. The result is loss of low frequency

information and gives an image with only the edges and noise remaining.

2.2.2 Fourier Transforms

The Fourier transform functions transform a digitized image in either the

forward or reverse direction. This is similar to the Fourier transform! ng

13



Figure 2-8. Low-pass filtered image of figure 1-3.

Figure 2-9. High-pass filtered image of figure 1-3.
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properties of a lens, although a lens performs only a forward transformation.

The form of the transform functions is

P
(^x >fy) =

fforward-FFT(P( x ) >

P (x,y) = f-j nverse-FFT( p
(
p
x ,py) ’^ ,e ) »

where P(f
x ,fy) = the 2-D Fourier transform of p(x,y),

x,y = spatial variables in the image plane,

f

x

, fy
= frequency variables in the Fourier plane

8 = transform plane magnification factor,

e = transform plane scaling factor.

In this software a digitized image is assumed to be a phaseless intensity

distribution. To process the Fourier transform we convert the intensity

distribution into a complex amplitude distribution. For the forward trans-

form,

(13)

(14)

P(VV l

a
complex^

x
o’^o^

^ a real ^ xo *^o^
+

^
a
imaginary^

x
o

,,yo^ (15)

where acomplex( x,y)

Arbitrarily, we set

= complex amplitude distribution in the image plane.

a
real (Vyo )

=
<P( xo>yo ))

k
'

a. . (x ,y )
= 0.

imaginary' o o'
(16)

Similarly for the inverse transform,

P(f
x

.f
x )

= |A
x
o

x
o

x_ ’ x_' i complex' x
5

y
(f. .fy

0
J o

= (A , (f ,f ))
2 + (A. . (f ,f ))2,

' real' x
Q

* yQ
" ' imaginary' x

Q
* y 0

"

(17)

where Acomp] ex (fx ,fy)
= complex amplitude distribution in the Fourier plane.

Again, we set

15



( 18 )

A
real<

f
x

- f
y

> =
<
P

<
f
x

> f
y
»

0
J
0 0

J
o

72

^imaginary^x^y^

To describe the transforming process in detail we start with the basic

Fourier transform equations. The equation for the forward Fourier transform

is [1]

+°0 +00 — j 2 tT (f X+f V

)

F{g(x,y)} = / / g(x,y) • e r dxdy = G(f ,f ), (19)
— 00 — OO J

and the inverse Fourier transform is

+oo +oo +j2ir(f x+f y)
F'*{G(f f )} - / / G(f f )

• e
x y dfdf -g(x,y). (20)

*
— 00 — 00

* *

Since we are interested in performing the two-dimensional Fourier transform on

a digitized picture, we use the Fast Fourier Transform algorithm (FFT) to take

advantage of its inherent speed, which is necessary for the transformation of

the relatively large digitized pictures. The FFT algorithm in its basic form

transforms only a one-dimensional array. To perform the Fourier transform in

two dimensions we rewrite the two-dimensional transform as successive one-

dimensional transforms:

+°° +°° -2irf x — j 27r f y
Ffg(x,y)} = f f g(x,y) • e

x
• e y dxdy

+oo —00

+oo +oo -2irf x — 2 tt f y
= / ( / g(x,y) • e

x
dx) • e y dy

—00 -00

= F
y
{F

x
{g(x,y) }} = F

x
(F
y
{g(x,y)}}.

Similarly for the inverse transform.

F" 1 fg(f
x
.F

y
» = F

y
-i{F

x
'i{g(f

x)
f
y
m F

x'
l
t F/>tg( f

x
.fy))}.

( 21 )

( 22 )
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Thus, to obtain the two-dimensional transforms we can first transform all the

(vertical) columns, and then transform all the (horizontal) rows, or vice

versa.

If the input picture function has moderate size relative to the bounds of

the picture array, the transformed result will occupy a small portion of the

transform plane and will not contain many nonzero data points or pixels. To

achieve a transformed result of moderate size with an input of moderate size

we use transform plane magnification. This results in a transform with more

nonzero elements, though there is, in reality, no more information than

before. Its usefulness is mainly for visual display.

Transform plane magnification involves shrinking the input plane to

achieve a stretching or magnification in the transformed plane. Using the

similarity theorem for Fourier transforms we see that [1]

1
f
x

f
v

F{g(ax,by)} =
-R-rrr • G

b )• (23)

Thus, for the magnified forward and inverse transforms,

Ff
p(f,f)}

= s 2 • P(sf
x
,ef

y
), (24)

f f

F'M - e
2

• P(sx,sy), (25)

where 8 = transform plane magnification factor. To obtain a shrinking of the

input plane without loss of information, the input plane is enlarged by a

factor of 8 and padded with 0's. This creates a factor-of-8 magnification in

the transform plane with no loss of information in the input plane because the

input is only effectively shrunk with the use of larger FFT arrays. The

penalty is increased computing time.

One of the requirements of the FFT algorithm is that the number of ele-

ments in the one-dimensional input array be a power of 2. Therefore, for nor-

mal situations (8 = 1), the number of elements in each one-dimensional FIT

array must also be a power of 2. In both the horizontal and vertical

17



directions, the size of the FFT array must equal the number of pixels in that

direction. If the number of pixels is not a power of 2, the number of ele-

ments used for the FFT array must be the next higher power of 2. For an M x N

pi cture,

a

max f
log

intMog V for horizontal transforms.

max rl23Jh
intMog 2' for vertical transforms,

(26)

where 2
a = minimum number of elements in the FFT array, and

max-j nt () = rounds up to the next integer.

To adjust for the Fourier plane magnification, we use

A = 8 • 2
a

(27)

where A = number of elements in the FFT array to be used, and

8 = 2
n for n > 0.

Since a is an integer, 8 must be a power of 2 to ensure that A is also a

power of 2.

Since the number of elements used in either direction usually exceeds the

numbers of pixels, extra FFT array elements are set to 0 before being trans-

formed. After transformation, the extra FFT array elements are ignored.

We are careful in choosing an input image that contains 0's around the

boundaries of the two-dimensional picture array to prevent ringing due to dis-

continuous edges. Also, a convention set by the FFT algorithm requires that

the zero frequency term (the dc term) be shifted to the first element of the

array to be transformed. The transformed result also assumes that the first

element is the dc term. Therefore, the horizontal rows and vertical columns

are shifted to move the center dc term from the assumed center of the picture

(appendix A) to the upper left position (0,0). After the transformati on the

rows and columns are shifted once again to move the dc term back to the center

position.

18



Once the complex amplitude distribution is obtained the array is trans-

formed. The vertical columns of the picture are transformed first and the

horizontal rows are transformed second. For the forward transform,

Acomplex(fx’fy)
= FFTx {FFTy{acompi ex (x,y)}} , (28)

and for the inverse transform,

a complex( x »y) FFTx ^FFTy 1 {Acompi ex (f
x
,fy)}} • (29)

Now the transformed amplitude distribution must be converted back into an

intensity distribution. For the forward transform,

P ^x
Q
,f
y0

) (Veal (

V

0
»

*y0
^ 2+

( Vmagi nary(V
0 »

V

0
^
2

* (30)

and for the inverse transform.

P( xo»y0 ) ( a real (
xo’^o^

2 +
( a imaginary( xo’^o^

2
* (^1)

Since phase is not retained after converting back to an intensity distri-

bution, these transformed images are not completely analogous to amplitude

transforms, which have phase. Consequently, the Fourier transform functions

described here are not conservative, and we cannot undo the transform process.

Using the Fourier integral theorem for amplitude distributions [1] we see that

g(x,y) = F" 1 {F{g (x ,y ) } }
= F {F

“

1 (g(x,y)} . (32)

But, since we are assuming intensity distributions with no retention of phase

terms.

P(x,y) * fj nverse-FFT^forward-FFl(P( x ))

)

* Vorward-FFT^ i nverse-FFl(P( x, y) ) ) * (33)

We must be careful in interpreting these transform functions, keeping in mind

that the digitized input pictures and transformed results are intensity dis-

tributions and have certain limitations.
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Since Fourier transforms usually have large peaks we use an integer scal-

ing factor, e, to enhance smaller details which would not normally seen

because of the limited dynamic range of the pixel values (0 to 255). This

scaling process is similar to overexposing film to observe detail normally

drowned out by the strong peaks. The scaling factor, e, represents the level

of overexposure to which the transformed values are assigned pixel values. A

scaling factor of 1 means the highest transformed FFT value is assigned 255

and the rest of the values are scaled accordingly. For values of e greater

than 1 the scale is simply multiplied by that factor. Pixel values which are

computed to be higher than 255 are truncated. For the forward transform,

(p 0 < p < 255

P(f ,f ) =
]x

o yo (255 otherwise

P = • P(f
x

.f
y ). (34)

" x
o y o

where e = integer scaling factor (e > 1),

h = highest value contained in P(f
x
,fy).

For the inverse transform.

p(x ,y )
=

o o

p =
(

(255

255 • s

0 < p < 255

otherwise

P(x
0
.y
0
). (35)

where e = integer scaling factor (e > 1),

h = highest value contained in p(x,y).

Figure 2-10 shows a 128 x 120 Fourier transform of figure 1-3. 128 x 120

is the highest resolution that can be transformed by our computer, since this

resolution requires 120 kbytes of memory for the image alone using complex

floating point arithmetic which requires 8 bytes per pixel (a 256 x 240 image

requires 480 kbytes of memory). Since the image of figure 1-3 is large

relative to the bounds of the image array, the resulting transform is quite

small. Enlargement is achieved with a Fourier plane magnification factor

8=4. To bring out the finer transform detail the image was scaled or over-

exposed by a factor of e = 3000.
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Figure 2-10. Fourier transform of figure 1-3.

Figure 2-11 shows a 128 x 120 image of a circ(r) function with r = 20 and

height = 255. Figure 2-12 shows the Fourier transform of figure 2-11, which

has the form sinc 2 (r). Once again a Fourier plane magnification factor B = 4

is used. To bring out the detail in the secondary maxima a scaling factor

e = 50 is used.

2.2.3 Magnification/Demagnification

Magnification increases the physical scaling of a digitized picture by a

factor of 2 in both the horizontal and vertical directions. A factor of 2 is

the only value provided by the software to ensure exact processing without

aliasing between pixels. This process is similar to 2X magnification using

lenses. Information contained in the picture is decreased by a factor of 4

because only the center fourth of the area of the image is capable of magnifi-

cation. Information outside the area to be magnified is lost. Magnified

pixels are simply replicated to produce the larger image. The general form of

the equation is
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Figure 2-11. 128x120 computer generated circ(r) function with r=20.

Figure 2-12. Fourier transform of figure 2-11.
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(36)fmagnify( xo>VP( x -'>')>
=

P< x a
+

( xo
div d1v 2 >>

where x
a

= M div 4,

y a
= N div 4,

M x N = picture resolution format.

Figure 2-13 shows the magnified image of figure 1-3.

Demagnification decreases the scaling of a digitized picture by a factor

of 2 in both directions. Information in the picture is decreased by a factor

of 4 because averaging of four pixels is used to create each demagnified

pixel. This is similar to 2X image reduction using lenses. Information taken

from beyond the bounds of the input image is obviously unavailable and the

demagnified pixels are set to 0. The general form of the equation is

^demagnify (
x
o’^o’^

x’^
j g

< x < x. , y < y < y,
o b

J
a

J
o

otherwise

1
2 2

«
- i i x

j=i i-i
P(2(x

0
- x

a )
+ 1 ,2(y

0 - ya ) + j). (37)

where x
a

= M div 4 x^ = 3(M div 4
)

“

1
,

y a = N div 4 y^ = 3(N div 4)" 1
,

M x N = picture resolution format.

Figure 2-14 shows the demagnified image of figure 1-3. Both functions can be

used repeatedly on an image to achieve higher magnification or demagnification

factors.

2.2.4 Noise Filtering

Noise filtering is used to reduce random noise such as video camera noise

or noise generated by other image processing functions. The algorithm for the

function is from reference [2]. When the intensity value of a pixel differs

from the average of its eight surrounding neighborhood pixels by more than a

set value, e, the pixels are set to the average neighborhood value. The

general form of the function is
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Figure 2-13. 2X magnified image of figure 1-3.

Figure 2-14. 2X demagnified image of figure 1-3.
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otherwise
( 38 )

where e = input set value,

P lt . . .,P 8 = the eight neighboring pixels of p(x
Q ,y0 ).

The average of the neighboring pixels of this function is obtained by automa-

tically convolving, in software, the image with the noise filtering

convol ution kernel

,

The difference between p(x
Q ,y 0 )

and the average is then compared with e, and

p(x
0 ,y 0 )

is set accordingly by the function.

Figure 2-15 is an image of figure 1-3 with randomly generated pixels of

value 255 added. This random noise is similar to some types of video camera

noise under extreme conditions. Figure 2-16 is an image of figure 2-15 with

the noise filtering. Looking closely at the cleaned image we can see that the

noise is greatly reduced but not completely eliminated.

2.2.5 Resolution Changing

The resolution changing function changes the hori zontal -by-vertical reso-

lution format of the input image. Changing resolution does not alter the

scale of the picture but alters only the number of pixels in both the horizon-

tal and vertical directions.

Decreasing resolution decreases the number of pixels by a factor of 4
n by

reducing the number of pixels in both directions by a factor of 2
n

. This

results in a loss of information because groups of 4
n pixels are averaged to

produce pixels in the lower resolution picture. The general form of the equa-

tion is

(39)



Figure 2-15. Image of random noise superimposed on figure 1-3.

Figure 2-16. Reduced noise image of figure 2-15.
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(40 )

^dec rea se - res ^o’^o’P^ 5^

)

,n )

2
n

= \ l l P(2
n

• x
0

+ 1 >2
n

* y
Q

+ J) >

4
n

j=l i=l
0 0

where n = resolution reduction factor (n s> 1). The new resolution format is

M '

=^
andN'=7* <«>

where M x N = resolution format of p(x,y),

M'x N'= resolution format of p'(x,y).

Figure 1-3 is the highest resolution format handled by the software at

256 x 240. Figures 2-17, 2-18, 2-19, and 2-20 are reduced resolution images

of figure 1-3 with respective resolution formats, 128 x 120, 64 x 60, 32 x 30,

and 16 x 15.

Increasing resolution increases the number of pixels by a factor of 4
n

by

increasing the number of pixels in both directions by a factor of 2
n

. This

results in no gain of information because pixels are simply replicated by a

factor of 4
n

. The general form of the equation is

f increase-res( xo»yo’P( x ’y)’ n )
=

P( xo
div ^o div 2")’ (

42
)

where n = resolution enlargement factor (n > 1). The new resolution format is

M' = 2
n

• M and N' = 2
n

. N, (43)

where M x N = resolution format of p(x,y),

M'x N'= resolution format of p'(x,y).

Increasing resolution does not change appearance of an image but may be

necessary for matching resolution formats of different imaging software or

input/output devices.

27



Figure 2-17. 128x120 image of figure 1-3.

Figure 2-18. 64x60 image of figure 1-3.
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Figure 2-19. 32x30 image of figure 1-3.

Figure 2-20. 16x15 image of figure 1-3.
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2.3 Two-Picture Functions

Two-picture functions are image processing functions that compute each

pixel as a function of the corresponding pixels of two pictures, p^x.y) and

p (x,y) . The functions have the form,

Pi( xo^o) ^two-picture^i (
xo’^o^ *^2 ^

x
o 5^o^ »

where P^Xq^q) is the current pixel being processed in the picture p (x,y).

(In this algorithm, p (x,y) is replaced by the new array.) Examples of two-

picture functions include averaging, addition, subtraction, multiplication,

and logical functions. The averaging function is the only two-picture func-

tion included in the software and is a very useful method of noise reduction.

These functions scan the entire picture and process each pixel individ-

ually. Both pictures must have the same resolution format. In general these

functions are quick and usually do not require complex computation.

2.3.1 Averaging

Averaging is creating a picture that is the pixel -by-pixel average of two

pictures. The general form of the equation is

^average^ 1 ^
x
o’^o^ *P 2 ( xo*^o^

MVV + P 2 (x
0
,y

0
)

(45)

where p (x,y) = current picture in memory,

p (x,y) = input picture file.

The purpose of this process is to reduce random noise such as video camera

noise. Averaging two or more pictures can reduce this type of noise

si gnificantly.

Using only a two-picture function, we may also average any number of pic-

tures that is a power of 2. For example, four pictures can be averaged in

three steps as follows.
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P
3
(x
o’y0 )

~
^average^a ^ xo’^o^ ’^4 ^ xo’^o^ 5

Pi^ xo’^o^
”
^average^i ^ xo’^o^ * ^2 ^ xo’^o^ ’

Pi( xo^o)
”
^average^i ^ xo’^o^ *P

3 (
xo’^o^ *

where p^x.y) becomes the average of the four pictures p (x,y), p (x,y),

P
3
(x,y), and p

4
(x,y).

Figure 1-3 shows the result of averaging four images similar to fig-

ure 2-21. The eye is a marvelous averaging device; the image looks fine

viewed live on a video screen but is noisy when digitized and frozen, as in

figure 2-21. Figure 2-22 shows a noisy image of the output of a single-mode

optical fiber. The image is obscured by randomly generated noise as a result

of the low-light conditions. Figure 2-23 is the average of eight images taken

separately but all similar to figure 2-22. The averaged image contains much

less random noise.

Figure 2-21. Unaveraged image of figure 1-3.
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Figure 2-22. Noisy image of a Gaussian beam.

Figure 2-23. Averaged image of figure 2-22.
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2.4 Image Information Display Tools

Image Information Display Tools compute and display information about a

digitized image. Some of these tools are custom in that they are designed to

meet the needs of a specific user. The Gaussian and g-profile curve-fitting

tools are specially designed to meet the needs of characteri zi ng beam spot

radius of single-mode and multimode optical fibers. The hi stogram-of-

intensity graph, line intensity graph, and three-dimensional intensity plot

have much more universal applications.

2.4.1 Gaussian Curve Fitting

Two-dimensional Gaussian intensity distributions are found in lasers,

optical fibers, and integrated optical devices. The purpose of the Gaussian

curve fitting tool is to take a one-dimensional line of data from a digitized

image and fit a Gaussian curve to it.

Since the dark pixel value of most video cameras is not 0, we usually

want to bias the image with the negative of the dark level, that is, to clip

the dc level. This dc level may be taken to be the peak value of the intens-

ity histogram. Also, since these images are usually taken under low-light

conditions we fit to the Gaussian function using only pixel values greater

than a noise cutoff value, n, which is taken to be the maximum absolute value

of the video and quantization noise. We subjectively set the value of n by

looking at a line intensity scan of the beam image. After removal of the dark

level, pixel values less than or equal to n are ignored in the curve fitting

routine.

After biasing and deciding on an appropriate n, we calculate the centroid

or first moment of the image. The centroid is the center position of a digit-

ized picture whose coordinates are determined by the weighted average along

each axis. The general form of the coordinates of the centroid [3] is

N M N M -1

c = ( l I x • p
'
(x,y)

) • ( l 7 p
1

(x,y)
) ,

y=0 x=0 y=0 x=0

N M N M -1

C = ( I l y • p'(x,y)
) • ( £ l p'(x,y)

) , (47)
3 y=0 x=0 y=0 x=0
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where (c
x
,Cy) = centroid of image,

(p(x,y) p(x,y) > n

P'(x,y) = l

to otherwise,

n = noise cutoff value.

The general form of the one-dimensional Gaussian curve is

P(u) - A • e-
a < u

- c)\

where u,c =

x, c for horizontal line fit at y = c
x y

y,

c for vertical line fit at x = c .

y x

(
48

)

To fit a Gaussian curve to the data, we linearize by taking logarithms and use

a linear least squares fit. In linear form,

ln(p(u) )
= ln(A) - ct(u-c) 2

.

y
1 = 1 n(A) - ax'

,

(49)

where y' = ln(p(u)) and x' = (u-c) 2
. We now have the basic equation of a

line.

y' = mx' + b (50)

where m = -a and b = ln(A). We use the method of least squares to determine

the line of best fit with the formulas [4],

k l x
1

,

y
i

’

- Jxj' l y,.'

m = ~
k l - (I x, ‘)2 >

l (x,') 2
l y

f

' - l x
i

'

l x
i

'y
i

,

b =
k l (x^) 2 - (J x^) 2 “ (51)

where y^
1 = 1 n(p(u)

)

x^ ' = (u-c) 2

but not used if p(u) < n,
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k = number of data points for which p(u) > n

< M for horizontal fit

< N for vertical fit.

After the fit is completed we have

A = e
b and a = -m. ( 52 )

We use these parameters to calculate the beam spot radius of the fitted

data. The beam spot radius, r, is defined as the 1/e 2 point relative to the

maximum of the intensity distribution. Using the a parameter, we see that

Examples of the Gaussian curve fitting tool can be seen in section 3.2.

2.4.2 Multimode Curve Fitting (g-Profile)

The purpose of the multimode curve fitting tool is to fit a power-law

profile, known as a g-profile, to a graded index multimode fiber with uniform

cladding. The index profile is given as [5]

where A = (n
Q

2 - n
2
2 )/2n

Q
2

.

This equation is made up of four parameters, n
Q

, A, core radius a, and expo-

nent g. The parameters a and g are of most importance.

Since fitting a set of data to four parameters is not trivial, a simpli-

fication is needed. Following Cherin [6], we use the approximation,

1/e 2 = e-“r2

and

(53)

n(r) = n
0
[l - 2i(r/a) g

]
1/2

(54)
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A n(r) = An [1 - (r/a) g
]. (55)

where An = n
L

- n
2

and An(r) = n(r) - n
2

.

This new equation now contains only three parameters. An, a, and g.

Since we are interested in looking at digitized images of the near field

of multimode fibers, the data are in the form of an intensity distribution,

I(r) = I
0
[l - (r/a) 9

]. (56)

Taking logarithms of both sides, we see that

1 n [1 - I ( r ) /

I

0 ]
= g • ln[r] - g • ln[a], (57)

which follows the basic equation of a line,

y = mx + b, (58)

where y = ln[l - I(r)/I
0
]

,

m = g,

x = ln[r],

b = -g • 1 n [a]

.

Using a least-squares fit, eq (51), we can solve for m and b for a given

I
Q

. The g-parameter we seek is the slope m, and the core radius is

a =
-b/m

e (59)

To find the center of the two-dimensional profile, a calculation of the

centroid is performed, eq (47), similar to the Gaussian curve fit in section

2.4.1. From the coordinates of this centroid we can determine the center

line, in either horizontal or vertical direction, and the center of that line

from which we compute the radius.

In the EIA (Electronic Industries Association) standard FOTP-58 [7], only

the data points in the 10 percent and 80 percent range of the total profile

are used. In other words, valid data points used in the curve fitting are

only those which fall between 0 . 1 1 o anc* 0. 81 0
-
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I cannot be obtained by a least-squares fit with only two parameters.

Consequently, we optimize the fit with respect to I by looking at the quality

of the fit, which is taken as the error,

E = l (I (r) - I
0
[l - (r/a) 9

])
2

. (60)

We initially set I to be equal to Imax , the maximum pixel intensity in the

digitized image. We then minimize the error function, E, by monitoring E as

I is changed and recalculating the parameters a and g. Once E is minimized,

a final set of parameters for I , a, and g is reached.

2.4.3 Intensity Histogram

An intensity histogram is a two-dimensional graph of relative frequency

versus the pixel intensity values, 0 to 255. The relative frequency is

defined as the number of occurrences of a pixel intensity on a normalized

scale. This scale is defined to be 1.0 at the most numerous pixel (s) and

scaled accordingly for the remaining pixel values.

I N I EH S I T ¥

Figure 2-24. Intensity histogram of figure 1-3.
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Figure 2-27. Three-dimensiona 1 intensity plot of ~'g- re 1-3.

Figure 2-28. Three-dinensi ona 1 inte^sit) pi ct :f *';
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Using a histogram we can look at the relative contrast range of an image.

Also computed are the highest, lowest, average, and highest relative frequency

(or peak) pixel. Figure 2-24 shows a histogram of figure 1-3. The highest

pixel value is 227, the lowest is 49, the average is 121, and the peak is 79.

2.4.4 Line Intensity Scan

The line intensity scan tool allows us to graph the pixel intensity

values across a specified line in either the horizontal or vertical direction.

Figure 2-25 shows a horizontal intensity scan of line 120 of figure 1-3.

Figure 2-26 shows a horizontal intensity scan across line 120 of figure 2-11.

Using these scans we can analytically monitor the results of image processing

functions and read image data with reasonable accuracy.

2.4.5 Three-Dimensional Intensity Plot

The three-dimensional intensity plot generates a visual surface whose

height is determined by the intensity levels of an image versus two-

dimensional positions [8],

Figure 2-27 shows a three-dimensional plot of figure 1-3. Figure 2-28

shows a three-dimensional plot of figure 2-11. Using these plots we can

better visualize the image intensity distributions.

3. Applications of the Software

3.1 Creating a Model Image for a Hybrid Computer-Optical

Processing Experiment

The purpose of our experiment in hybrid computer-optical processing was

to do real-time pattern recognition at video rates. The computer was respon-

sible for preprocessing a model image. This model was then permanently stored

as a Fourier transform hologram. Optical processing was then used in real

time to recognize a live image. For complex enough images, optical processing

will be much faster than the computer.
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In this experiment we created a model image for real-time pattern recog-

nition [9]. A liquid-crystal television (LCTV) was used as a real-time trans-

parency to display digitized images. We used an optical processor in series

with a converging beam processor [1] to display the Fourier transform of a

specially prepared model and generated its Fourier transform hologram. Actual

images were then displayed on the LCTV, and their (optical) Fourier transforms

illuminate the hologram. The convolution theorem, eq (9), shows that we can

obtain the convolution of the model with the actual image as our method of

image recognition. The purpose of this experiment was to use the computer's

advantage in digital image input/output processing and also take advantage of

optical processing's superior convolution speed.

As a test 256x240 model image, we used an ordinary pair of pliers as in

figure 3-1. We chose the pliers for their distinct shape and applicability to

image recognition in manufacturing. The shiny surface of the pliers required

that we use very diffuse and uniform illumination with a black background to

bring out the plier's overall shape rather than accent the reflected light

from its contours.

Since the background of figure 3-1 is not perfectly black, the noise

cleaning function of section 2.2 was used to remove noise and spurious bright

spots. To remove the background entirely, we used the thresholding function

and specified a threshold range to set that area to 0, being careful not to

erase any detail of the pliers. The resulting image is shown in Figure 3-2.

To make the outline shape of the pliers as distinct as possible we used

the thresholding function once again and set all the pixels of the pliers to

255. The resulting image is shown in figure 3-3.

From the model image we wished to obtain the edge pattern of figure 3-3.

To do this we normally convolve the object with a high-pass convolution ker-

nel, given in eq (12). In this case the image will be projected on an LCTV

with resolution of only 140 x 120 pixels. Since this lower resolution format

does not match exactly any of the formats handled by this software, the image

resolution of the model image remained at 256 x 240 to achieve maximum detail.

To compensate for the larger pixels of the LCTV we used a larger convolution

kernel

,
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Figure 3-1. 256x240 digitized image of pliers.

Figure 3-2. Background processed image of figure 3-1.
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k
model

0 0 0 -1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

-1 0 0 4 0 0 -1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 -1 0 0 0 .

(61)

This convolution kernel is analogous to eq (12), but produces an outline of

the image that is three times wider, which is large enough for the LCTV. The

final model image is shown in figure 3-4. Details of the pattern recognition

experiment are given in reference [9] and are reproduced as appendix C.

3.2 Analyzing Near- and Far-Field Images for an Integrated

Optics Experiment

The propagation of light in the form of a Gaussian beam has great inter-

est in the fields of optical fibers and integrated optics. The important

parameters of a Gaussian beam are the radius of curvature, R(z), of the

spherical wave and its spot size, w. With these parameters we can predict the

propagation characteristics of the beam.

The spot size is defined as the radial distance from the center to the

1/e point of the Gaussian beam's amplitude distribution. In a homogenous

medium the form of the Gaussian beam is [10]

E(x,y) E
o • WJ ’ exPHttz-Mz)] - + 2Rlly)).

E(x.y) - E
o

(62)

where r

R(z)

w(z)

k

n

x

(x 2 + y
2

)
l/2 = radial distance,

radius of curvature of the spherical wave,

spot size at distance z,

minimum spot size (at z = 0),

amplitude coefficient,

= propagation constant of the medium,

refractive index of the medium,

optical wavelength.
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Figure 3-3. Foreground processed image of figure 3-2.

Figure 3-4. Convolution model of figure 3-1.
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Since we are interested in intensity distributions as seen by the video

camera, the beam spot size, w, is the 1/e 2 point of the intensity distribu-

tion. The general form of the intensity distribution [10] is

W
r>

2

?r2

I(x,y) - E 2 (x,y) - E 2 . • exp(-^pjjy).

or

I(x,y) « A • exp(-ar 2
) (63)

w 2

where A = E 2
• 2 i \

and a = 2/w2 (z).
O W ^ Z

;

The A and a terms correspond to the parameters discussed for the Gaussian

curve-fitting tool in section 2.4.

Using the Gaussian curve-fit tool we can measure the spot size, w, at a

certain distance. Subsequent spot sizes can be then be predicted by the equa-

tion [10],

w2 (z) = w
0
2

• (1 + (64)

or

when
(
TTW

X
§-)

2 » 1 .

o n

w(z)
AZ

ttw n
o

In the first experiment, as shown in figure 3-5, we looked at a near-

field image of a beam that is approximately Gaussian. We used a single-mode

optical fiber that nominally has a 5 pm core diameter and a numerical aperture

of 0.11. The fiber is illuminated by a quartz halogen lamp with a 851 nm

narrowband filter. The other end of the fiber is then magnified by successive

40X and 10X microscope objectives. The near-field image was captured with a

vidicon equipped with automatic gain control.

The digitized image of the near-field spot is shown in figure 3-6 with a

resolution of 256 x 240. Averaging four similar images is necessary to reduce

the video noise resulting from the low-light conditions. Figure 3-7 is the
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Reticle

Figure 3-5. Experimental setup for the near-field image of an optical fiber.

image of a precision stage micrometer placed in the plane z = 0. The lines

are 2 pm apart, so the screen has a total horizontal length of 24 ym.

To obtain the beam spot radius we first reduced the resolution of the

near-field image to 64 x 60 using the resolution changing function. This

allowed for adjacent lines to be averaged to reduce possible errors. Fig-

ure 3-8 is the intensity histogram of the near-field image and shows good con-

trast. We took the peak histogram intensity value, 83, as the average value

of the dark background with 0 intensity. The intensity of the image of the

near field was then reduced by -83 using the biasing function.

Figure 3-9 is the Gaussian curve fit to the near-field beam. The con-

tinuous line represents the fitted curve and the dots represent the actual

data points. A noise cutoff value was n = 20 (sect. 2.4). The value of n is

a subjectively chosen value of the maximum noise shown in figure 3-9. The
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Figure 3-6. Near-field image of an optical fiber.

Figure 3-7. Image of scaling reticle for near field.
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Figure 3-8. Intensity histogram of near-field image.
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Figure 3-9. Gaussian curve fit of near-field image.
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z =2540pm

Figure 3-10. Experimental setup for the far-field image of an optical fiber.

computed beam spot radius is 8.2891 pixels with 64 pixels across the horizon-

tal screen length. The spot radius at z = 0 is

,> 8.2891 pixels
^w

o ^ 64 pixels ' (24 ym) = 3.108 ym.

In the second experiment, shown in figure 3-10, we looked at the far-

field image. We used the same single-mode optical fiber and 851 nm illumina-

tion. The far-field beam of the fiber at a distance z = 2540 ym was magnified

by a single lens and imaged onto the vidicon with automatic gain control.

The digitized image of the far-field beam spot is shown in figure 3-11

with a resolution of 256 x 240. Averaging eight similar images was necessary

to reduce the video noise resulting from the low-light conditions. Fig-

ure 3-12 is the image of a stage micrometer placed in the plane z = 2540 ym.

Lines are 10 ym apart, so the screen has a total horizontal length of about

950 ym.

To obtain the beam spot radius we first reduced the resolution of the

near-field image to 64 x 60 using the resolution changing function. This

allows adjacent lines to be averaged to reduce possible errors. Figure 3-13

is the intensity histogram of the near-field image, and shows moderate con-

trast. Again, we take the peak histogram intensity value, 65, as the average

value of the dark background with 0 intensity. The intensity of the image of

the near field was therefore reduced by -65 with the biasing function.
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Figure 3-11. Far-field image of an optical fiber.

Figure 3-12. Image of scaling reticle for far field.
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Figure 3-13. Intensity histogram of far-field image.

256

I 192

N

T

E

N 128

S

I

T

V 64

0

0 16 32 48 64

P 0 S I I I 0 N

Figure 3-14. Gaussian curve fit of far-field image.
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Figure 3-14 is the Gaussian curve fit to the far-field beam with a noise

cutoff value of 32. The beam spot radius is 13.629 pixels with 64 pixels

across the horizontal screen length. The spot radius at z = 2540 ym is there-

fore

f 13.629 pixels^ /ncn \ om ow
o

= t~64 -pixel
'

s
• (95° um) = 202 ' 3 vm

We can test the results of the near- and far-field experiments by pre-

dicting the far-field spot radius from the spot radius in the near field.

Using the formula for the propagation of the Gaussian beam, eq (64), we see

that

,/_ N Xz (0.851 urn) (2540 pm) 001 „
w(z) “

-rrw

o
n (3.1415) (3.108 pm)(1.0)

221,4 pm ’

whereas we have measured a value of 202.3 pm. The relative error is thus

% error =
-

. 10q% ~ 9%.
202.3 pm

The near- and far-field images produce consistent results.

The error incurred in this set of preliminary experiments is a result of

many contributions. The small distance z was hard to measure with great

accuracy but can be increased through the use of longer focal length lenses.

The recti 1 inearity and, especially, the linearity of responsivity of the vidi-

con camera are questionable. These could be improved greatly with a CCD

(charge coupled device) array camera but light from the beam signal was too

low for our CCD camera. This may be improved with a broader band interference

filter or a laser source. Distortion in the lenses is also subject to scru-

tiny.

4. Conclusion

4.1 Conclusions and Future Applications

The purpose of this thesis was to develop and test image processing soft-

ware designed for optical engineering applications. Image processing is a

relatively new and rapidly advancing field. Present applications of image

processing include aerial photography analysis, medical analysis, photographic
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processing, robotic image recognition, and inspection, to name a few. Most of

the software and systems available today are designed with universal applica-

tions in mind to meet the widest sector of potential customers in this new

area. The software in this thesis is partly universal in nature, but has been

written with optical engineering applications in mind.

Image processing has many strengths which are advantageous to optical

engineering. By using software and mathematically modeling optical devices we

can simulate optical processing without the actual devices. This is important

in the design and simulation of electrical and electronic components in very

large scale integrated (VLSI) electronic chips. Simulating optical processing

may prove to be even more important.

Since image processing deals with digital images we can process such

images with great numerical accuracy. Real optical components are also image

processors but are quite costly to make with high quality and are time consum-

ing to implement. Image processing offers a cheaper and faster alternative

with greater possibilities. The image processing functions described in

section 2 process images without coherent optics. With more sophisticated

hardware and algorithms the software may actually do a better job than real

optical devices. Computer processing can also perform functions that cannot

be performed optically, and sometimes these can be used to advantage in coher-

ent optical processing.

As shown in section 3.2, we can also use image processing in fiber and

integrated optics; other optical devices can also be analyzed with computer

processing. This is important in both the characteri zation and testing of

experimental and newly manufactured optical devices. The output of whole

optical systems can also be analyzed.

The software in this thesis serves as an introduction to image processing

for optical engineering. Possible future directions for a project of this

type involve a system with greater resolution and computing capacity. Today's

digital design is heavily involved in working to create faster and more spe-

cialized hardware to meet these goals. With greater computing power more com-

plex and challenging problems can be investigated. There is also the need for

better input and output devices for image processing systems. High resolution
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digitizing cameras and scanning devices are very expensive and limited. Simi-

larly, high resolution displays and printers are advancing but still have a

long way to go. In particular, a cheap, fast, high resolution coherent dis-

play would be most useful. Liquid crystal televisions are cheap and avail-

able, but have low resolution, contrast, and speed. Ferroelectric crystal

displays are more promising in these areas but are expensive and not fully

developed at present. For both input and output devices there is a need for

recti 1 inearity and linearity of responsivity to ensure high image fidelity and

measurement accuracy.
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Appendix A. User's Manual

1. Introduction

1.1 Software Description

IMPROC is an image processing software designed primarily for optical

engineering applications. It contains a unique set of image processing tools

not found in other current software.

IMPROC is generic in the sense that it works on ordinary MS-DOS data

files. IMPROC is designed to be used in conjunction with a video image digit-

izer or frame-grabber. Picture files created by the frame-grabber are used as

the input to IMPROC. IMPROC can manipulate and display information about

these files using the various image processing tools. These altered files can

be stored again as picture files, which can be subsequently displayed by the

frame grabber.

2. Program Information

2.1 Picture File Specifications

Picture files are the main means of storage of a digitized image. Each

pixel of the digitized image is represented, by one byte. This allows for the

capability of up to 256 levels of intensity (gray scale) per pixel. The pic-

ture file consists of a linear array of pixels which represent the two-dimen-

sional image. The file has a resolution format which describes the vertical

and horizontal resolution of the image. The valid resolution formats allowed

by IMPROC are

Resolution format
(vert, by horiz.)

File s i ze

(bytes)

16x15 240
32x30 960
64x60 3,840
128x120 15,360 (15K)

256x240 61,440 (60K)
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I MPROC allows the user to choose between detail and computational speed by

changing resolution formats. Input picture files with resolution formats not

listed above are illegal. Illegal files cannot be used and will prompt an

error when attempted to be read by IMPROC.

Also throughout the software certain conventions about directional

indices and implied center points are assumed.

Res. Format Horiz. Indices Vert. Indices Center

16x15 0 , 1 , . . . , 15 0,1,. ..,14 (8,7)
32x30 0,1,. ..,31 0,1,. ..,29 (15,14)
64x60 0,1 , . . . ,63 0, 1, ... ,59 (31,29)

128x120 0,1,. ..,127 0,1,. ..,119 (63,59)
256x240 0,1, .. . ,255 0,1,. ..,239 (127,119)

These conventions are necessary for correct interpretation and manipulation in

center dependent functions such as Fourier transform and magnif ication.

2.2 Program Execution

The IMPROC program is initiated by simply typing IMPROC. This calls the

MS-DOS batch file IMPROC.BAT, which is the heart of the IMPROC software. This

file controls the program flow of the three IMPROC execution files,

IMPR0C#1 .EXE, IMPR0C#2.BAS, and IMPR0C#3.EXE.

IMPR0C#1.EXE is an executable compiled C program which contains all the

picture file manipulation code and is by far the largest of the three. This

portion of the code is written in C to take advantage of its speed and program

flow, which are necessary for the long and complex image processing algo-

rithms.

IMPR0C#2.BAS is an interpreted BASIC program used for two dimensional

graphing on the graphics monitor. IMPR0C#3.EXE is an executable compiled

BASIC program used for three-dimensional plotting on the graphics monitor.

These two programs were written in BASIC because of the lack of convenient
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graphic capabilities in the C language. The second BASIC file, IMPR0C#3.EXE,

is compiled to speed up the tedious process of plotting.

Information is passed among the three programs by temporary data files,

IMPR0C#1 .PIC, IMPR0C#2 .DAT, and IMPR0C#3.DAT. IMPR0C#1 .PIC is the current pic-

ture being used by IMPR0C#1.EXE and is stored when a call to IMPR0C#2.BAS or

IMPR0C#3.EXE is made. IMPR0C#2.DAT is the graphing data created by

I MPR0C#1 .EXE and is used by the graphing program IMPR0C#2.BAS. IMPR0C#3.DAT

is the plotting data created by IMPR0C#1.EXE and is used by the plotting pro-

gram IMPR0C#3.EXE.

2.3 Program Compilation

To make changes, additions, or corrections in the software, we need to

know how to compile the program source code. The program is written C using

Lattice C Rev. 2.14 [11]. The program should be compiled under the "d" model

which stresses a moderately sized program which works with a large amount of

memory. The batch file, CCDFFT.BAT, controls the compilation process

lei %1 -mD

1 c2 %1

link cd+fft87+%l ,%1 ,nul ,lcmd+lcd

To compile we simply need to type CCDFFT IMPR0C#1 and return. The machine

code Fourier transform program, FFT87.C (Rapid Imaging Software [11]), is

automatically linked. Compilation takes the source file, IMPR0C#1.C, and

generates the executable file IMPR0C#1 .EXE.

3. Commands

3.1 Image Commands

3.1.1 Average

COMMAND: i [RETURN] a [RETURN]

FUNCTION: p(x) =
( p(x) + input(x) ) / 2

DESCRIPTION: Averages the individual pixels of the current picture in

memory with an input picture file. The result becomes the current picture.
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3.1.2 Bias

COMMAND: i [Return] b [Return]

FUNCTION: p(x) = p(x) + bias

DESCRIPTION: Adds an input integer value to each pixel. Valid range is

-255 to 255. Biased values >255 are set to 255 and values <0 are set to 0.

OPTION(S): The auto-bias option computes a histogram and automatically

biases (negatively) with the peak relative frequency pixel value.

3.1.3 Convolution

COMMAND: i [RETURN] c [RETURN]

FUNCTION: p(x) = cross correlation with input matrix

DESCRIPTION: Computes the cross correlation of the neighbors of each

pixel with an input matrix and sets the value to that pixel.

The input matrix has two dimensions, each of which must have an odd

integer length. The matrix is centered on the current pixel and the elements

of the matrix must be integers. A matrix normalization value is automatically

calculated to set the area of the matrix elements to 1. If the matrix has

zero area the normalization constant is set to 1.

During convolution the elements of the matrix are multiplied with their

respective pixel neighbors. The sum of these products is then normalized and

biased (optional). Pixels off the edge will cause erroneous convolutions and

should be ignored. Pixel values created which are >255 are set to 255 and

values <0 are set to 0.

OPTION(S): The normalization value may be set manually but not to zero.

Also a bias value may be added after the convolution of each pixel.
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3.1.4 Demagnify

COMMAND: i [RETURN] d [RETURN]

FUNCTION: Demagnify picture by 2X

DESCRIPTION: Shrinks the current picture by a factor of 2 in each direc-

tion and places it in the center. This process results in a 4X loss of infor-

mation as averaging of four pixels is used to create each demagnified pixel.

The pixels of the blank area around the demagnified picture are set to 0.

3.1.5 Enhance Contrast

COMMAND: i [RETURN] e [RETURN]

FUNCTION: p(x) = (255/ (hi ghest-1 owest ) )
* (p(x)-lowest)

DESCRIPTION: Increases the contrast over a specified range [lowest, high-

est] to full contrast [0,255]. Pixels values >255 are set to 255 and values

<0 are set to 0.

OPTION(S): The autoscale option automatically finds the lowest and high-

est values to enhance the contrast to full scale without clipping.

3.1.6 Fourier Transform

COMMAND: i [RETURN] f [RETURN]

FUNCTION: creates a 2-D FFT of picture.

DESCRIPTION: Creates a two-dimensional Fourier transform using a one-

dimensional fast Fourier transform algorithm (FFT). The transform assumes

that the picture is an intensity distribution made up of real components. The

square root of each pixel is taken to represent the light amplitude. First

the function processes the picture in the vertical direction to obtain the

vertical transforms. Second the function processes in the horizontal direc-

tion to obtain the horizontal transforms. The result is taken to be the

square of the real plus the square of the imaginary components which represent

the Fourier transform intensity distribution.

OPTION(S): The user can make the choice of obtaining either the forward

or inverse Fourier transform.

The user can also select an appropriate power-of-2 Fourier plane magnifi-

cation to get a reasonably sized output transform relative to the input
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picture. Fourier plane magnification results in the use of larger FFT arrays

and subsequently requires more computation.

Finally the Fourier transform must be scaled to fit with the pixel limits

[0,255]. The maximum point of the transform is taken to be 255. Using a

scaling factor provides that the output can be scaled to observe finer detail

not found in the dynamic range of the pixels. The height of the intensity

pattern can then be taken to be the maximum point divided by the scale factor.

3.1.7 Magnify

COMMAND: i [RETURN] m [RETURN]

FUNCTION: Magnify picture by 2X.

DESCRIPTION: Enlarges the center of the current picture by a factor of 2

in each direction. This process results in a 4X loss of information as the

pixels outside the center to be magnified are lost. Center pixels are repli-

cated four times each to create the new picture.

3.1.8 Negative

COMMAND: i [RETURN] n [RETURN]

FUNCTION: p(x) = 255 - p(x)

DESCRIPTION: Creates a reversed contrast image.

3.1.9 Pratt's Noise Cleaning Algorithm

COMMAND: i [RETURN] p [RETURN]

FUNCTION: Reduces noise from picture.

DESCRIPTION: Cleans noise generated by a video camera or image process-

ing. The noise threshold is set by the input value of e. If the absolute

value of the difference between a pixel value and the average of its eight

neighbors is greater than e, then the pixel value is set to the average of its

nei ghbors

.
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3.1.10 Resolution Change

COMMAND: i [RETURN] r [RETURN]

FUNCTION: Changes resolution format.

DESCRIPTION: Reduces or expands the vertical by horizontal resolution

format of the current picture. In resolution reduction the pixels are aver-

aged; this results in an information loss, and the new picture has fewer

pixels. In resolution expansion the pixels are replicated with no information

gain although the new picture has more pixels. If the resolution is chosen to

remain the same the picture is unchanged.

3.1.11 Threshold

COMMAND: i [RETURN] t [RETURN]

FUNCTION: if ( p(x) >= lower bound ) and ( p(x) <= upper bound
)
then

p(x) = new value

DESCRIPTION: Sets each pixel to a new value if that pixel is within the

desired range. The range is determined by the upper and lower bound.

3.2 Display Commands

3.2.1 Gaussian Curve Fit

COMMAND: d [RETURN] g [RETURN]

FUNCTION: Fits a Gaussian curve to a picture.

DESCRIPTION: Calculates the centroid or first moment of a Gaussian image.

A horizontal or vertical line that passes through the centroid may be

selected. A Gaussian curve fit is performed using a least squares fit to the

linearized data of the line.

The 1/e 2
, 5%, 4%, and 3% points are calculated from the parameters of the

fitted Gaussian curve. Also a plot of the selected line is generated with the

Gaussian curve shown as a continuous line and the actual data points repre-

sented by dots.

OPTION(S): We must enter a minimum noise cutoff value. Pixel values less

than or equal to this value are ignored in calculating the centroid and

Gaussian curve as these values are taken to be noise. We can also select

either a horizontal or vertical fit.
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3.2.2

Multimode Curve Fit (g-Profile)

COMMAND: d [RETURN] m [RETURN]

DESCRIPTION: Calculates the centroid of the multimode profile. A hori-

zontal or vertical line that passes through the centroid may be selected. A

g-Profile fit is performed using a least-squares fit on the data in the 10

percent to 80 percent range (EIA standard) of Imax which is the maximum pixel

value of the digitized image. The parameters a (core radius) and g are

cal cul ated.

OPTION(S): We must enter a minimum noise cutoff value. Pixel values less

than that or equal to this value are ignored in the calculation of the cen-

troid. We can also enter a radius of exclusion which omits all data points

within a certain radius from the center.

A horizontal or vertical fit may be selected.

3.2.3 Intensity Histogram
v

COMMAND: d [RETURN] h [RETURN]

DESCRIPTION: Calculates the relative frequency versus pixel value over

the entire picture and creates a graph.

OPTION (S): The output graph can be displayed in either the line or bar

graph mode. If the bar graph mode is chosen the bar width may be specified.

A one-line message may be entered to be displayed on the output graph.

3.2.4 Line Intensity Scan (2-D)

COMMAND: d [RETURN] 2 [RETURN]

DESCRIPTION: Displays intensity as a function of position of a line

across the picture.

OPTIONS: The user can use either a horizontal or vertical scan across the

picture. If a horizontal scan is selected the user must input the vertical

index or position of the scan. If a vertical scan is selected the user must

input the horizontal index or position of the scan. The output graph can be

displayed in either the line or bar graph mode.

A one-line message may be entered to be displayed on the output graph.
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3.2.5 3-D Intensity Plot

COMMAND: d [RETURN] 3 [RETURN]

DESCRIPTION: Creates a three-dimensional intensity plot of the picture.

The plot can have a maximum of 60 horizontal lines and 256 points per line.

Since the function is limited to only 60 horizontal lines all of the informa-

tion of the highest resolution pictures (128x120 or 256x240) cannot be dis-

played.

OPTION(S): In the highest resolution pictures (128x120 or 256x240) the

user may select a 4X magnification around the center point.

Autoscaling can be used to find the lowest and highest pixels contained

in the picture to ensure that the plot has the appropriate height.

We can chose between a single-line or a cross-hatch type of 3-D graph.

Also a one-line message may be entered to be displayed on the output plot.

3.3 File Commands

3.3.1 Read

COMMAND: r [RETURN]

DESCRIPTION: Reads a picture data file into memory. To read the file the

user must input the complete picture file name (and path if necessary). After

the file is read the number of bytes read and resolution format of the picture

are displayed. On an illegal resolution format, an error will occur (see pic-

ture file specifications, section 2.2).

3.3.2 Write

COMMAND: w [RETURN]

DESCRIPTION: Writes a picture in memory to a file. To write the file the

user must input the complete picture file name (and path if necessary).
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Appendix B. Source Code

The source code for this software is made up of four executable files.

The first file, IMPROC.BAT is the main batch file responsible for controlling

the other three files. The second file, IMPR0C#1 . EXE , is an executable com-

piled C file of the image processing program IMPR0C#1.C. The third file,

IMPR0C#2.BAS, is a BASIC program which creates the two-dimensional graphs.

And the fourth file, IMPR0C#3.EXE, is an executable compiled BASIC file of the

program IMPR0C#3.BAS which creates the three-dimensional plots.

There are also other necessary files which are not listed in this appen-

dix. The file, INIT_FFT.COM (Rapid Image Software, Tijeras, N.M.), is a

machine code FFT program and must be executed before running the software.

The file, GRAPHICS.COM (IBM Corp.) must also be executed before running the

software for proper printing of graphics. The files, BASICA.COM and

BASRUN.EXE must be present for the execution of IMPR0C#2.BAS and IMPR0C#3.EXE

[11 ].

IMPROC . BAT

echo off
if exist improc#l

.
pic erase improc#l.pic

if exist improc#2 . dat erase improc#2 . dat
if exist improc#3 . dat erase improc#3 . dat
: loop
mode mono
els

improc#l =32768
if exist improc#2.dat mode co80
if exist improc#2 . dat basica improc#2
if exist improc#3.dat mode co80
if exist improc#3.dat improc#3
if not exist improc#l.pic goto end
goto loop
: end
mode mono
els
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IMPROC#! .C

#include <stdio.h> /*
#include <fcntl.h> /*
#include <math.h> /*
#include <limits.h> /*

#define MAXLINE 40 /*
#define MAXMAT 50 /*
#define PSIZESIZE 4 /*
#define MAXPSIZE 61440 /*
#define FBYTES 240 /*
#define MAXFFT 4096 /*
#define EIAMMMAX 0.8 /*
#define EIAMMMIN 0.1 /*

standard input/output routines */
memory/hardware functions */
math routines */
standard limits */

# of char, read as screen input */
#-l of non-zero convolution elements
# of elements in psize array */
maximum picture size (60K) */
file 10 block size */
maximum FFT array length */
EIA multi-mode maximum point */
EIA multi -mode minimum point */

*/

main(

)

{

char line [MAXLINE] , *malloc (), *p

;

/* line: array for user input */
/* malloc(): memory allocation function */
/* p[]: single dimension picture array */
unsigned psize [ PSIZESIZE

]

;

/* psize[]: picture size attributes array
psize[0]: total picture array length
psizefl]: vertical picture length
psize[2]: horizontal picture length
psize[3]: picture resolution format number (1..5) */

int *exit
,
quit , ret

;

/* exit: program exit flag */

p=malloc (MAXPSIZE)
;

/* picture array memory allocation */
if (p==NULL) printf ( "***** malloc error *****\n");
init_pic(p

,
psize)

;

/* reset interupted picture array from a previous program to execute a

graphics operation (BASIC) */

quit=0

;

while (quit==0) {

printf ("\n")

;

printf("Main Menu:\n");
printf("\td = display functions (graphics)\n" )

;

printf("\ti = image processing functions\n" )

;

printf("\tr = read a file\n");
printf ("\tw = write a file\n");
printf("\tq = quit\n");

printf ( "\n===> "); ret=getline ( line)

;

if (ret!=0) {

switch (line[0]) {

case '

D
'

:

case'd': display (p ,
psize , exit)

;

if (*exit==l) { save_pic (p ,
psize)

;
quit=l ; }

;

/* save current picture before exiting program */
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break;
case '

I

'

case '

i

'

case '

R'

case '

r

'

case '

W'

case '
w'

case'Q'
case

'

q

'

default

image (&p ,
psize)

;
break;

read_pic (p ,
psize)

;
break;

write_pic (p ,

psize)
;
break;

quit=l
;
break;

printf (

"

%c***** invalid command *****\n " , 7 ) ;
break

;

)

;

ret=free(p); /* free picture memory */

display (p ,
psize , exit)

char *p;

unsigned *psize;
int *exit;

{

char line [MAXLINE]

;

int ret;

printf ("\n")

;

printf ( "Display Menu:\n");
printf("\tg = gaussian curve fit\n");
printf("\th = histogram of intensity graph\n");
printf("\tm = multi-mode curve fit (g-profile)\n" )

;

printf("\t2 = 2-D line intensity graph\n");
printf("\t3 = 3-D intensity plot\n");
printf("\tq = quit\n");

=> "); ret=getline ( line)

;

printf ( "\n=
*exit=0

;

if (ret!=0) {

switch (line[0]) {

/* exit will end the program to execute graphics program (BASIC) */
case '

G

'

gaussian(p
,
psize)

;
*exit=l

;
break;case

'

g'

case '

H'

case 'h'

case 'M'

case '

m'

case '

2

'

case '

3

'

case
'

Q'

case
'

q

'

default

histogram(p
,
psize)

;
*exit=l

;
break;

multi_mode (p ,
psize)

;
*exit=l

;
break;

graph_2d(p
,
psize)

;
*exit=l

;
break;

plot_3d(p
,
psize)

;
*exit=l

;
break;

break

;

printf ("%c***** invalid command *****\n" , 7) ;
break;

)

;

B-3



image (pp ,
psize)

char **pp

;

unsigned *psize;

{

char i ine[ MAXLINE ] ,*p;

int mv[MAXMAT] , ret

;

/* mv[]: convolution matrix value array */
unsigned ma[MAXMAT]

;

/* ma[]: convolution matrix relative address array */

printf ("\n")

;

printf ("Image Menu:\n");
printf("\ta = average with another file\n");
printf("\tb = bias\n");
printf("\tc = convolve\n" )

;

printf("\td = demagnification\n" )

;

printf("\te = enhance contrast\n" )

;

printf("\tf = fourier transform (2-D FFT)\n");
printf("\tm = magnification\n" )

;

printf("\tn = negative (reverse contrast) \n" )

;

printf("\tp = Pratt's noise cleaning algorithm\n" )

;

printf ("\tr = resolution change\n");
printf("\tt = threshold\n" )

;

printf("\tq = quit\n");

printf ( "\n======> "); ret=getline(line)

;

if (ret !=0) {

P=*PP

;

switch (line[0]) {

case 'A'

average(p
,
psize)

;
break;case '

a'

case '

B

'

case 'b

'

case '

C

'

case '

c

'

case '

D

'

case '
d'

case '
E'

case '
e

'

case '
F'

case '
f

'

case '

M'

case '

m'

case '

N'

case '
n'

case '

P

'

case
'

p

'

case '

R'

case '

r

'

case '
T

'

case '
t

'

case
'

Q

'

case
'

q

'

default

bias (p ,
psize)

;
break;

convolve(pp, psize, ma,mv, 1,0); break;

demag(pp
,
psize)

;
break;

enhance (p ,
psize)

;
break;

fourier (p ,
psize)

;
break;

mag(pp
,
psize)

;
break;

negative(p
,
psize)

;
break;

pratt(pp
,
psize ,ma,mv)

;
break;

resolution(pp
,
psize)

;
break;

threshold(p
,
psize)

;
break;

break;
printf (" %c***** invalid command *****\n" ,

7

) ;
break
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)

)

;

);

average (p ,
psize)

char *p

;

unsigned *psize;

(

char *malloc ( )

,

*temp
;

int ret;

unsigned psizeO , tempsize [PSIZESIZE] ,u;

temp=malloc (MAXPSIZE)

;

if (temp==NULL) printf ( "%c***** malloc error *****\n",7);

else {

read_pic

(

temp , tempsize)

;

if ( tempsize [ 0 ]! =psize [ 0 ]

)

printf (" %cResolution of input does not match current file.", 7);

else {

printf ( "Averaging with input file. .
.
\n")

;

psizeO=psize [ 0 ]

;

for (u=0; u<psizeO; ++u) p [u]=(p [u]+temp [u]+l)/2
;

);

ret=free ( temp)

;

)

;

}

bias (p

,

psize)
char *p ;

unsigned Upsize;

{

int biasvalue , exit , mode
,
peak , value

;

unsigned h256 [ 256 ], psizeO , u;

printf ( "Select mode (0=manual , l=auto-bias) [0]: "); mode=getnum(

)

;

if (mode!=l) mode=0

;

psizeO=psize [ 0 ]

;

if (mode==0) {

exit=0

;

while (exit==0) {

printf ( "Enter bias value
[
- 255 , . . .

, 255

]

: "); biasvalue=getnum( )

if ( (biasvalue>=- 255 ) &&(biasvalue<=255 ) ) exit=l

;

};

);

if (mode==l) {

printf ("Computing Histogram. .
.
\n")

;

for (u=0
;
u<256

;
++u) h256[u]=0;

for (u=0; u<psize0; ++u) ++h256 [p [u]
]

;

peak=0

;

for (u=0; u<256; ++u) {

if (h256 [u] >peak) {

peak=h256 [u]
;
biasvalue=u;
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)

;

);

printf("Peak value is %d\n" ,biasvalue)
;
biasvalue=-biasvalue

;

)

;

printf ( "Adding bias of %d. .
.
\n" ,biasvalue)

;

for (u=0; u<psizeO; ++u) {

value=p [u]+biasvalue

;

if (value<0) p[u]=0;
else {

if (value>255) p[u]=255;
else p[u]=value;

} ;

)

;

}

calc_res (psize)
unsigned Upsize;

{

switch ( (int) (psize [0]/2) ) {

case 120: psize 1]= 15 psize 2]= 16 psize
[ 3 ]

=1 break;
case 480: psize 1]= 30 psize 2]= 32 psize

[ 3 ]=2 break

;

case 1920: psize 1]= 60 psize 2 ]
= 64 psize

[ 3 ]
=3 break;

case 7680: psize 1 ] =120 psize 2 ] =128 psize
[ 3 ]

=4 break

;

case 30720: psize 1 ] =240 psize 2 ] =256 psize
[ 3 ]=5 break

;

default printf (" %c***** invalid file size
psize[0]=0; psize[l]=0; psize[2]=

k'k'k'k't

0
;

ps:

An", 7);

Lze [ 3
] =0

break

;

};

}

convolve (pp ,
psize , ma , mv , option , epsilon)

char **pp

;

unsigned *psize , *ma

;

int *mv, option, epsilon;
/* option 1 is a user inputed convolution, option 2 is for Pratt's algorithm */
/* epsilon: threshold value from Pratt's algorithm */

{

char *malloc ( )
, *p , *temp

;

int bias , diff, i ,n,norm, sum;

unsigned psizeO ,psize2 ,u,v;

p=*pp ;
temp=malloc(MAXPSIZE)

;

if (temp==NULL) printf ( "***** malloc error *****\n");
else {

psizeO=psize [0] ;
psize2=psize [ 2 ]

;

bias=0

;

if (option==l) {

input_matrix(psize , ma , mv)

;

printf ("\n")

;

printf ( "Enter bias value [0]: "); bias=getnum( )

;

};

n=ma[0]; norm=0

;
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for (i-1; i<=n; ++i) norm+=mv[ i]

;

if (norm==0) norm=l

;

if (option==l) {

printf ("Enter normalization value [%d]: ",norm); i=getnum();

if (i!=0) norm=i;

)

;

printf ("Bias = %d Normalization = %d\n" , bias , norm)

;

printf(" 0%% completed\b\b\b\b\b\b\b\b\b\b\b\b\b\b" )

;

u=0

;

while (u<psizeO) {

for (v=0; v<psize2; ++v) {

sum=0

;

for (i=l; i<=n; ++i)

if (u+ma[i]<psizeO) sum+=mv[ i
] *( int)p [u+ma [ i ] ]

;

sum=sum/norm

;

if (option==l) {

sum+=bias

;

if (sum<0) temp[u]=0;
else if (sum>255) temp[u]=255;
else temp[u]=sum;

}

else {

diff=sum- ( int)p [u]

;

if (diff<0) diff=( -diff )

;

if (diff<epsilon) temp [u]=p[u]

;

else temp[u]=sum;

);

++u
;

};

printf (
" %3 . Of\b\b\b"

,
( 100 . 0*u) /psizeO)

;

};

printf ( "\n" )

;

*pp=temp
;
i=free(p);

) ;

)

demag (pp ,psize)

char **pp

;

unsigned Upsize;

{

char *malloc ( )
, *p , *temp

;

int ret, sum;

unsigned psizeO, psizel ,psize2,px,py, tempx , tempxs tart , tempxfinish

,

tempy , tempys tart , tempyfinish , u

;

printf ( "Demagnifying by 2X. . .\n ")

p=*pp; temp=malloc (MAXPSIZE)

;

if (temp==NULL) printf (" %c**'**'* malloc error ****"*\n"
, 7 ) ;

else {

psizeO=psize [0] ;
psizel=psize [ 1 ] ;

psize2=psize [ 2 ]

;

for (u=0; u<psize0; ++u) temp[u]=0;

tempxs tart=psize2/4
;
tempxfinish=( 3*p size 2) /4

;
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tempystart=(psizel/4)*psize2
;
tempyfinish=( (3*psizel ) /4)*psize2

;

py=0;
for ( tempy=tempystart

;
tempy<tempyfinish

;
tempy+=psize2) (

px=0;
for ( tempx=tempxstart

;
tempxCtempxfinish

;
++tempx) {

sum=p [px+py ] +p [px+l+py ] +p [px+py+psize2 ] +p [
px+l+py+psize2

]

;

temp [ tempx+tempy ] = ( sum+2 ) /4

;

px+=2

;

} ;

py+=(2*psize2)

;

*pp=temp
;
ret=free(p);

);

}

enhance (p ,
psize)

char *p

;

unsigned Upsize;

{

int exit , low, high, mode

;

unsigned psizeO,u;
float slope, value;

printf (" Select mode (0=manual , l=auto- enhance) [0]: "); mode=getnum(

)

if (mode!=l) mode=0;

psizeO=psize [0]

;

if (mode==0) {

exit=0

;

while (exit==0) {

printf ( "Enter lowest value (0,...,254): "); low=getnum( )

;

if ( (low>=0)&&(low<=254) ) exit=l

;

};

exit=0

;

while (exit==0) {

printf ( "Enter highest value (%d, . .
.

, 255)

:

”,low+l);
high=getnum( )

;

if ( (high>=(low+l) )&&(high<=255) ) exit=l

;

);

}

;

if (mode==l) {

low=255; high=0;
for (u=0; u<psize0; ++u) {

if (p[u]<low) low=p[u];
if (p[u]>high) high=p [u]

;

);

printf ( "Lowest value is %d, Highest value is %d
.
\n" , low , high)

;

};

printf ("Enhancing contrast. .
.
\n" )

;

slope=255 . 0/(high- low)

;

for (u=0; u<psize0; ++u) {

value=slope*(p [u] -low)

;
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if (value<0.0) p[u]=0;

else {

if (value>255 . 0) p[u]=255;
else p [u]=value+0 . 5

;

)

;

);

)

fourier (p ,psize)

char *p;

unsigned Upsize;

{

struct complex {float real,imag; };

struct complex *array , *getmem( )
, *getml ( )

, *temp

;

char line [MAXLINE]

;

int dir , exit , i , liml , lim2 , ret , scale

;

unsigned arraybytes , fftsize , beta , maxbeta

,

psizeO
,
psizel

,
psize2

,
px

, py , tempx, tempy

;

long tempbytes;
float beta4 , imag .highval , real , scale factor , val , root [ 256 ] ;

printf("2-D fast fourier transform algorithm (FFT)\n");
psizeO=psize [0] ;

psizel=psize [ 1 ] ;
psize2=psize [ 2 ]

;

tempbytes=8L*psize0

;

temp=getml( tempbytes)

;

if (temp==NULL) printf ( "%c***** insufficient memory *****\n",7);
else {

exit=0

;

while (exit==0) {

printf ( "Enter transform direction (f=foward, i=inverse) [f]: ")

ret=getline(line)
;

if (ret==0) line [ 0 ]
=

'

f
'

;

switch (line[0]) {

case'F': case'f': dir=0; exit=l
;
break;

case' I': case'!': dir=-l; exit=l
;
break;

default: printf ( "%c***** invalid entry *****\n",7);

} ;

};

printf ( "Enter power of 2 fourier plane magnification ");

maxbeta=MAXFFT/psize2

;

printf (
" ( 1 , 2 , 4 , . .

.
, %d) [1]: ", maxbeta); beta=getnum( )

;

ret=0; for (i=l; i<=maxbeta; i*=2) if (beta==i) ret=l

;

if (ret==0) beta=l

;

fftsize=psize2*beta; beta4=( float ) beta*beta*beta*be ta

;

arraybytes=8*fftsize
;
array=getmem(arraybytes)

;

if (array==NULL) printf

(

"%c***** malloc error *****\n" , 7 )

;

printf ("FFT array size is %d\n" , fftsize)

;

printf ( "Calculating square root table ... \n" )

;

for (i=0; i<256; ++i) root [ i ]=sqrt( (double) i)

;

printf ("Calculating vertical transforms. . .\n")

;

printf(" 0%% completed\b\b\b\b\b\b\b\b\b\b\b\b\b\b

"

)

;
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liml=psizel/2+l

;

lim2=psizel/2+(fftsize-psizel)

;

tempx=0

;

while (tempx<psize2) {

py=(psizel/2 -l)*psize2;
for (i=0; i<fftsize; ++i) {

if ( ( i<liml ) | |
( i>lim2 ) ) array [ i ]. real=root [p [ tempx+py]

]

;

else array [ i] . real=0 . 0

;

array [ i ] . imag=0 . 0

;

py+=psize2; if (i==lim2) py=0

;

};

fft87 (fftsize , dir , array)

;

tempy=0
;
i=lim2+l

;

while ( tempy<psizeO) {

temp [ tempx+tempy ] . real=array [ i ] . real

;

temp [ tempx+tempy ] . imag=array [ i ] . imag

;

tempy+=psize2

;

++i
;

if (i==fftsize) i=0

;

};

++tempx

;

printf (
" %3 . Of\b\b\b"

,
( 100 . 0*tempx) /psize2 )

;

);

printf ( "\n" )

;

printf ( "Calculating horizontal transforms ... \n" ) ;

printf(" 0%% completed\b\b\b\b\b\b\b\b\b\b\b\b\b\b" )

;

liml=psize2/2+l

;

lim2=psize2/2+(fftsize-psize2)

;

tempy=0
;
highval=0.0;

while ( tempy<psizeO) {

tempx=psize2/2 - 1

;

for (i=0; Kfftsize; ++i) {

if ( (icliml) | |
(i>lim2) ) {

array [i] . real=temp [ tempx+tempy ] .real;

array [ i ] . imag=temp [ tempx+tempy ] . imag

;

}

else {

array [ i ] . real=0 . 0 ;
array [ i ] . imag=0 . 0

;

);

++tempx; if (i==lim2) tempx=0

;

);

fft87 (fftsize , dir , array)

;

tempx=0
;
i=lim2+l

;

while ( tempx<psize2) {

real=array [ i ] . real
;
imag=array [ i ] . imag

;

val=(real*real+imag*imag)/beta4
;
temp [ tempx+tempy ] . real=val;

if (val>highval) highval=val;
++i; if (i==fftsize) i=0

;

++tempx

;

);

tempy+=psize2

;

printf ( "%3 . 0f\b\b\b"
,

( 100 . 0*tempy ) /psizeO)

;

);

printf ( "\n" )

;
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printf ( "Highest value is % . 3e\n" ,highval)

;

printf ( "Enter integer scale magnification ( l=autoscale) [1]

:

")

scale=getnum( ) ;
if (scale<=0) scale=l;

printf ("Scaling. . .\n")

;

printf (" 0%% completed\b\b\b\b\b\b\b\b\b\b\b\b\b\b" )

;

scalefactor=255 . 0*scale/highval

;

tempy=0

;

while ( tempy<psizeO) {

for (tempx=0; tempx<psize2
;
-H-tempx) {

val=scalefactor*temp [ tempx+tempy ] . real+0 . 5

;

if (val>255.0) p [tempx+tempy ] =255

;

else p [ tempx+tempy ]=val

;

)

;

tempy+=psize2

;

printf ( "%3 . Of\b\b\b"
,
(100 . 0*tempy)/psize0)

;

};

printf ("\n")

;

ret=rlsml ( temp , tempbytes)

;

ret=rlsmem( array , arraybytes)

;

};

)

gaussian(p ,psize)

char *p;

unsigned *psize;

{

char c, line [MAXLINE]

;

int cutoff , exit , file , k, option, ret

;

unsigned index , loop, offset, psiz el, psize2,px,py,u;
float a , alpha, b , center , centerx , centery ,m, sumx, sumy , sumxy , sumx2

,

value, x,y;
long sump , sumxp , sumyp

;

printf ("Gaussian Curve Fit:\n");

exit=0

;

while (exit=0) {

printf ( "Enter maximum pixel noise cutoff value (0,1,...) [0]: "

cutoff=getnum( )

;

if ( (cutoff>=0)&&(cutoff<=255) ) exit=l;
else printf ("%c***** invalid value *****\n" , 7) ;

};

printf ( "Calculating centroid. . .\n")

;

sump=0
;
sumxp=0

;
sumyp=0

;

u=0
;
psizel=psize [ 1 ] ;

psize2=psize [ 2 ]

;

for (py=0; py<psizel; ++py) {

for (px=0; px<psize2; ++px) {

c=p[u]
;
++u;

if (c>cutoff) {

sump+=c

;

sumxp+=px'*c

;
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sumyp+=py*c

;

}

;

)

;

centerx=( (float) sumxp) /sump

;

centery=( (float) sumyp) /sump

;

printf ( "Centroid is ( % . 2f , % . 2f )\n" , centerx , centery )

;

exit=0

;

while (exit==0) {

printf ( "Select horizontal or vertical fit (h,v): ");

ret=getline(line)

;

if (ret ! =0) {

switch (line[0]) {

case 'H'

:

case'h': loop=psize [ 2 ] ;
offset=l

;
option=3;

center=centerx
;
index=centery+0 . 5

;

exit=l
;
break;

case '
V'

:

caseV : loop=psize [ 1 ] ;
offset=psize [ 2 ] ;

option=4;
center=centery

;
index=centerx+0 . 5

;

exit=l
;
break;

default: printf ("%c***** invalid option *****\n",7); break

)

;

};

};

printf ("Fitting to a Gaussian. .. \n" )

;

file=creat ( "improc#2 . dat" , - 1 ) ;

ret=write(file ,&option, 1) ;
ret=write ( file ,&index, 1)

;

c=loop-l; ret=write(file,&c, 1)

;

if (option==3) index*=psize [ 2 ]

;

sumx=0
;
sumx2=0

;
sumy=0

;
sumxy=0

;
k=0

;

for (u=0; u<loop; ++u) {

c=p[ (unsigned)u*offset+index]

;

if (c>cutoff) {

++k

;

x=(u-center)*(u-center)

;

y=log( (float)c)

;

sumx+=x

;

sumx2+=x*x

;

sumy+=y

;

sumxy+=x*y

;

);

};

m=(k*sumxy- sumx*sumy) /(k*sumx2-sumx*sumx)

;

b=( sumx2*sumy - sumx*sumxy ) / (k*sumx2 - sumx*sumx)

;

alpha=-m

;

a=exp (b)

;

printf("A = %f alpha = %e c = %f\n" , a , alpha , center )

;

printf ("Beam spot radius :\n");

printf ("\tl over e squared = %f\n" , sqrt ( 2 . 0/alpha) )

;

printf ("\t5 percent = %f\n" , sqrt(2 . 99573/alpha) )

;
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printf("\t4 percent = %f\n" , sqrt (3 . 21888/alpha) )

;

printf("\t3 percent = %f\n" , sqrt ( 3 . 50656/alpha) )

;

printf( "Press RETURN to get graph. \n"); ret=getline ( line)

;

printf ( "Watch graphics monitor ... \n" )

;

for (u=0; uCloop; ++u) {

value=a*exp ( -alpha*(u-center)*(u-center) )

;

if (value>255 . 0) c=255; else c=value+0.5;
if (c=26 ) c=25

;

/* Note: this step is taken because character 26 is EOF in BASIC which
halts the reading of a file (ie. 26 is illegal) */

ret=write (file , &c , 1 )

;

} ;

for (u=0; uCloop; ++u) {

c=p [ (unsigned) u*offset+index]

;

if (c—26 ) c=25

;

/* Note: this step is taken because character 26 is EOF in BASIC which
halts the reading of a file (ie. 26 is illegal) */

ret=write (f ile , &c , 1 )

;

);

ret=close(file)

;

getline ( s

)

char s
[ ]

;

{

int c , i

;

for (i=0
;
i<MAXLINE- 1 && (c=getchar ( ) ) ! =E0F && c!='\n'; ++i)

s [ i ] =c

;

s[i]='\0'; return(i);

getnum(

)

{

char line [MAXLINE]

;

int i,n;

i=getline (line)
;
i=sscanf (line , "%d" , &n)

;

if (i==l) return(n)
;
else return(O)

;

graph_2d(p
,
psize)

char *p;

unsigned *psize;

{

char c , line [MAXLINE]

;

int exit , i , file , lim, option, ret

;

unsigned index , loop , off , x

;

printf ("2-D line intensity graph\n");
exit=0

;

while (exit==0) {

printf ( "Select horizontal or vertical scan (h,v): ");
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ret=getline ( line)

;

if (ret !=0) {

switch (line[0]) {

case '

H
' : case '

h
'

:

lim=psize [ 1 ]
- 1 ;

loop=psize [ 2 ] ;
off=l

;
option=0;

exit=l
;
break;

case '
V'

: case ' v'

:

lim=psize [2] - 1 ;
loop=psize [ 1 ] ;

off=psize [ 2 ] ;
option=l

;

exit=l
;
break;

default: printf ( "%c***** invalid option *****\n" , 7) ;
break;

);

}

;

)

;

exit=0

;

while (exit==0) {

printf ( "Enter index value (0 , 1 , . .
.

, %d)

:

" , lim)
;
index=getnum( )

;

if ( (index>=0)&&( index<=lim) ) exit=l

;

else printf ( "%c***** illegal value *****\n" , 7 )

;

) ;

printf ( "watch graphics monitor ... \n" )

;

file=creat (
" improc#2 . dat"

,
- 1 ) ;

ret=write ( file , &option, 1 ) ;
ret=write ( file , &index , 1 )

;

c=loop-l; ret=write(file,&c, 1)

;

if (option==0) index*=psize [ 2 ] ;

for (x=0; x<loop; ++x) {

c=p
[
(unsigned) x*off+index]

;

if (c—26) c=25
;

/* Note: this step is taken because character 26 is EOF in BASIC which
halts the reading of a file (ie. 26 is illegal) */

ret=write (file , &c , 1 )

;

};

ret=close(file)

;

}

histogram(p ,psize)
char *p

;

unsigned upsize;

{

int ave , file , i , j , highval , lowval , option
,
peakval , ret

;

unsigned u
,
peak ,h256 [ 256 ]

;

long sum;

printf ( "Computing histogram. .
.
\n")

;

for (i=0; i<256; ++i) h256[i]=0;
for (u=0; u<psize[0]; ++u) ++h256 [p [u] ]

;

sum=0

;

for (i=0; i<2 5 6 ;
++i) sum+=( long) i*h256 [ i]

;

peak=0

;

for (i=0; i<2 5 6 ;
++i) if (h256 [ i]>peak) {

peak=h256 [ i ] ;
peakval=i

; );

highval=255

;

while (h256 [highval ] ==0) --highval;
lowval=0

;

while (h256 [ lowval ] ==0) ++lowval;
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ave-(int) (( float ) sum/psize [ 0 ] )

;

printf ("Creating histogram graph (watch graphics monitor )... \n" )

;

file=creat

(

" improc#2 . dat" , - 1 )

;

option=2
;
ret=write(file ,&option, 1)

;

ret=write(file ,&lowval , 1) ;
ret=write(file ,&highval , 1)

;

ret=write(file , &ave , 1 ) ;
ret=write ( file , &peakval , 1 )

;

for (i=0; i<256; ++i) {

j = ( ( long) 255*h256 [ i ] ) /peak

;

if (j==0 && h256 [ i ] >0) j=l;

if ( j
==26

) j=25
;

/* Note: this step is taken because character 26 is EOF in BASIC which

halts the reading of a file (ie. 26 is illegal) */

ret=write(file,&j , 1)

;

)

;

ret=close(file)

;

init_pic (p ,
psize)

char *p

;

unsigned *psize;

{

int i, file, ret;

file=open( " improc#l
.
pic" , 0_RD0NLY

|

0x8000);

if (file==- 1 ) {

/* interupted picture file does not exist, begin fresh */
printf ("\nIMAGE PROCESSING PR0GRAM\n" )

;

printf("by Matt Weppner (NBS 1986)\n");
for (i=0; KPSIZESIZE; ++i) psize[i]=0;

)

else {

/* interupted picture file is retrieved */
psize [0]=0; ret=FBYTES;
while (psize [0]<MAXPSIZE && ret==FBYTES) {

ret=read(file ,p , FBYTES)
;
p+=ret; psize [ 0 ] +=ret

;

);

calc_res (psize)

;

);

ret=close(file)
;
ret=unlink( " improc#l .pic")

;

}

input_matrix(psize ,ma,mv)

unsigned *psize;
int *ma,*mv;

{

int a, i , j ,n,v,x,y;

printf ( "Convolution with input matrix\n");
printf ( "Enter matrix height (1,3,...): "); y=getnum();
printf ( "Enter matrix width (1,3,...): "); x=getnum();
printf ( "\nRow\tColumn\tValue\n" )

;

n=0

;

for (j=l
; j <=y ; ++j ) {

for (i=l; i<=x; ++i) {
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printf (
" %d\t%d\t"

, j , i) ;
v=getnum( )

;

if (v!=0) {

++n;

ma[n] =psize [ 2 ] *( j
- (y/2) - 1 ) + ( i - (x/2) - 1 ) ;

mv[n]=v;

printf("\n%d non-zero elements
.
\n" , n) ;

ma[0]=n;

}

mag(pp,psize)
char **pp

;

unsigned Upsize;

{

char c , *malloc ( )
, *p , *temp

;

int ret;

unsigned psizel ,psize2,px, pxstart
,
pxfinish

, py ,
pystart

,
pyfinish

,

tempx , tempy

;

printf ( "Magnifying by 2X. .

.

\n")

;

p=*pp ;
temp=malloc (MAXPSIZE)

;

if (temp==NULL) printf (" %c***** malloc error *****\n",7);
else {

psizel=psize [ 1 ] ;
psize2=psize [ 2 ]

;

pxstart=psize2/4
;
pxfinish=(3*psize2) /4

;

pystart=(psize 1/4) Upsize 2 ;
pyfinish=( (3*psizel) /4)*psize2

;

tempy=0

;

for (py=pystart; py<pyfinish; py+=psize2) {

tempx=0

;

for (px=pxstart; px<pxfinish; ++px) {

c=p[px+py]

;

temp [ tempx+tempy ] =c
;
temp [ tempx+l+tempy ] =c

;

temp [ tempx+tempy+psize2 ] =c
;
temp [ tempx+l+tempy+psize2 ] =c

;

tempx+=2

;

);

tempy+=(2*psize2)

;

);

*pp=temp; ret=free(p);

} ;

}

multi_mode(p ,psize)
char *p

;

unsigned Upsize;

{

char c , 1 ine [ MAXLINE
] ,
pmax

,
pmin

;

int cutoff , exit, file, iO, imax , k , n, option , ret , radius , step

;

unsigned index , loop, offset, psizel ,psize2 ,px,py,u;
float a ,b , center , centerx , centery

, g , e , m , r , sumx , sumy , sumxy , sumx2 , value , x ,

y

float olda , olde , oldg , rarray [ 256 ]
,xarray[256] ,yarray[256]

;

long sump , sumxp , sumyp

;

printf ( "Multi -mode Curve Fit:\n");
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exit-=0

;

while (exit==0) {

printf( "Enter maximum pixel noise cutoff value (0,1,...) [0]: ");

cutoff=getnum( )

;

if ( (cutoff>=0)&&(cutoff<=255) ) exit=l

;

else printf ("%c***** invalid value *****\n",7);

}

;

printf

(

"Calculating centroid. . .
\n")

;

sump=0
;
sumxp=0

;
sumyp=0

;

u=0; psizel=psize [ 1 ] ;
psize2=psize [ 2 ]

;

for (py=0; py<psizel; ++py) {

for (px=0; px<psize2; ++px) {

c=p[u]
;
++u;

if (c>cutoff) {

sump+=c

;

sumxp+=px*c

;

sumyp+=py*c

;

) ;

centerx=( ( float )sumxp) /sump

;

centery=( (float) sumyp) /sump

;

printf ( "Centroid is (% . 2f , % . 2f)\n" , centerx, centery)

;

exit=0

;

while (exit==0) {

printf ("Select horizontal or vertical fit (h,v): ");

ret=getline ( line)

;

if (ret ! =0) {

switch (line [0] ) {

case '

H
'

:

case'h': loop=psize [ 2 ] ;
offset=l

;
option=5;

center=centerx
;
index=centery+0 . 5

;

exit=l
;
break;

case '
V'

:

case'v'

:

loop=psize [ 1 ] ;
offset=psize [ 2 ] ;

option=6;
center=centery

;
index=centerx+0 . 5

;

exit=l; break;
default: printf ("%c***** invalid option *****\n",7); break;

)

;

);

};

exit=0

;

while (exit==0) {

printf ( "Enter radius of exclusion (0,1,...) [0]: "); radius=getnum(

)

if ( (radius>=0)&&(radius<=loop/3) ) exit=l

;

else printf ( "%c***** invalid value *****\n "
, 7 )

;

);

printf ( "Fitting to a g-profile . .
.
\n" )

;

file=creat ( "improc#2 . dat" , - 1 )

;
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ret=write(file ,&option, 1) ;
ret=write ( f ile ,&index, 1)

;

c=loop-l; ret=write(file ,&c , 1)

;

if (option==5) index*=psize [ 2 ]

;

imax=0

;

for (u=0; u<loop; ++u) {

c=p
[
(unsigned)u*offset+index]

;

if (c>imax) imax=c

;

} ;

printf("imax = %d\n" , imax)

;

pmax=imax*EIAMMMAX
;
pmin=imax*EIAMMMIN

;

k=0
;
sumx=0

;
sumx2=0

;

for (u=0; u<loop
;
++u) {

c=p
[
(unsigned)u*offset+index]

;
r=fabs (u- center)

;

if ( (c>=pmin)&&(c<=pmax)&&(r>radius) ) {

rarray[k]=r; x=log(r)
;
xarray[k]=x; yarray[k]=c;

sumx+=x
;
sumx2+=x*x; ++k;

} ;

)

;

printf("%d data points used.\n",k);

printf ( "Enter starting value for Io [ % d ] :
" , imax)

;
iO=getnum();

if ( (i0==0) | |
(i0>=255) ) iO=imax;

n=0
;
iO+=l

;
step=-l;

e=1.0el0; a=0
;
g=0

;

while ( ( (e<olde)
| |

(n<=2) )&&(i0>=0)&&(i0<=255) ) {

olde=e; olda=a; oldg=g;
++n; iO+=step;
sumy=0

;
sumxy=0

;

for (u=0; u<k; ++u) {

x=xarray[u]
;
y=log(l . 0-yarray [u] /iO)

;

sumy+=y; sumxy+=x*y;

};

m=(k*sumxy- sumx*sumy )/(k*sumx2 - sumx*sumx)
;
g=m;

b=(sumx2*sumy-sumx*sumxy)/(k*sumx2-sumx*sumx)
;
a=exp(-b/m)

;

e=0
;

for (u=0; u<k; ++u) {

value=yarray [u] -iO*(l . 0 - exp (g*log(rarray [u] /a) ) )

;

e+=value*value

;

) ;

printf ("n=%d Io=%d error=% . 4e\n" , n , iO , e)

;

if (e>olde) step=-step;

} ;

iO+=step; a=olda; g=oldg;
printf ( "\nFinal Parameters: Io = %d a = %f (pixels) g = %f\n\n" , iO , a , g)

printf ( "Press RETURN to get graph. \n"); ret=getline ( line)

;

printf ( "Watch graphics monitor ... \n" )

;

for (u=0; u<loop; ++u) {

value=iO* ( 1 .
0 -exp

(
g*log( fabs (u- center ) /a) ) )

;

if (value>255 . 0) c=255;
else { if (value<0.0) c=0

;
else c=value+0 . 5 ; };

if (c==26) c=25

;
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/* Note: this step is taken because character 26 is EOF in BASIC which

halts the reading of a file (ie. 26 is illegal) */

ret=write(file , &c , 1)

;

);

for (u=0; u<loop
;
++u) {

c=p[ (unsigned)u*offset+index]

;

if ( c==26 ) c=25;

/* Note: this step is taken because character 26 is EOF in BASIC which

halts the reading of a file (ie. 26 is illegal) */

ret=write(file ,&c , 1)

;

) ;

ret=close(file)

;

negative (p ,
psize)

char *p;

unsigned *psize;

{

unsigned psizeO,u;

printf( "Creating negative picture (reversing contrast) ... \n" )

;

psizeO=psize [0]

;

for (u=0; u<psize0; ++u) p [u]=255-p [u]

;

plot_3d(p
,
psize)

char *p

;

unsigned *psize;

{

char c , lowest , highest , line [MAXLINE] , *temp , *malloc ( )

;

int exit , file , i , ret , zoom;
unsigned center , tempsize , t ,u,v,

x
, y ,xsize ,

ysize , xcenter
,
ycenter , xmin

,
ymin , xmax

,
ymax

, yj ump

;

printf("3-D intensity graph\n");
zoom=0

;

if (psize [ 3]>=4) {

exit=0

;

while (exit==0) {

printf( "Select full size or 4X enlargement (f,e): ");

re t=ge 1 1 ine ( 1 ine )

;

if (ret ! =0) {

switch (line[0]) {

case '
F'

:

case'f': exit=l
;
break;

case '

E
'

:

case'e'

:

zoom=l
;
exit=l

;
break;

default: printf ("%c***** invalid entry *****",7); break:

);

};

)

;

);
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if (zoom==l) {

xmin=psize [ 2 ]
/8 - 1 ;

xmax=psize [ 2
]

- (xmin+2) ;
center=psize [ 2 ]

/2 - 1

;

printf( "Enter center horizontal position ");

printf (
" ( %d , . .

.
, %d) [%d]: " ,xmin,xmax, center)

;

xcenter=getnum( )

;

if ( (xcenter<xmin)
|

|
(xcenter>xmax) ) xcenter=center

;

ymin=psize [ 1 ]
/8 - 1 ;

ymax=psize [ 1
]

- (ymin+2 ) ;
center=psize [ 1 ]

/2 - 1

;

printf ( "Enter center vertical position ");

printf (" (%d %d) [%d]: ", ymin
,
ymax , center )

;

ycenter=getnum( )

;

if ( (ycenter<ymin) | |
(ycenter>ymax)

)
ycenter=center

;

} ;

printf ( "Creating 3-D plot (watch graphics monitor) ... \n" )

;

switch ( ( int)psize [ 3 ] ) {

case 1

:

ysize=15 xsize=16

;

break;
case 2: ysize=30 xsize=32

;

break

;

case 3: ysize=60 xsize=64

;

break;
case 4: if (zoom===0) {ysize==60; xsize=128; }

else { ysize=30; xsize=32; };

break;
case 5: ysize=60;

if (zoom==0) { xsize=256; } else { xsize=64; };

break;

}

;

yjump=(psize [ 1 ]
/ysize) Upsize [ 2 ]

;

tempsize=ysize*xsize
;
temp=malloc( tempsize)

;

if (temp==NULL) printf ( "***** malloc error *****\n");
file=creat (

" improc#3 . dat" , -1)

;

c=ysize-l; ret=write ( file , &c , 1 )

;

c=xsize-l; ret=write (file , &c , 1) ;

ret=write (file , &zoom, 1 )

;

lowest=255; highest=0;

if (zoom==0) {

t=0
;
u=psize [ 0 ] -psize [ 2 ] ;

for (y=0; y<ysize; ++y) {

for (x=0; x<xsize; ++x) {

c=p[u+x]; if (c==26) c=25; temp[t]=c; ++t;
/* Note: this step is taken because character 26 is EOF in BASIC

which halts the reading of a file (ie. 26 is illegal) */
if (cClowest) lowest=c; if (c>highest) highest=c;

)

;

u-=yj ump;

);

ret=write(file ,&lowest , 1) ;
ret=write(file,&highest, 1)

;

ret=write ( file , temp , tempsize)

;

}

else (

t=0
;
u=psize [ 2 ] *(ycenter+psize [ 1 ]/8) ;

xcenter-=psize [ 2 ]
/8 - 1

;

for (i=0; i<ysize; ++i) {

for (v=0; v<xsize; ++v) {

c=p [u+v+xcenter
] ;

if (c==26) c=25; temp[t+v]=c;
/* Note: this step is taken because character 26 is EOF in BASIC
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which halts the reading of a file (ie. 26 is illegal) */

if (cClowest) lowes t=c
;

if (c>highest) highest=c;

);

t+=xsize; u-=psize[2];

)

;

ret=wr ite ( file , &lowes t , 1) ;
ret=write(file , &highest , 1)

;

ret=write (file , temp , tempsize)

;

)

;

ret=close (file)
;
ret=free ( temp)

;

pratt (pp ,
psize , ma ,mv)

char **pp

;

unsigned *psize;
int *ma,*mv;

{

int i, epsilon;

printf ( "Pratt ' s noise cleaning algorithim\nEnter epilson: ");

epsilon=getnum( )

;

ma [ 0 ] =8

;

i=psize [ 2 ] ;

ma [ 1
] =- ( i+1 ) ;

ma[2]=-i; ma[3]=- (i-1)
;
ma[4]=-l;

ma[5]=l; ma[6]=i-l; ma[7]=i; ma[8]=i+l;
for (i=l; i<=8

;
++i) mv[i]=l;

convolve (pp ,
psize ,ma,mv, 2 , epsilon)

;

read_pic (p ,
psize)

char *p

;

unsigned *psize;

{

char line [MAXLINE]

;

int file, ret;

printf ("Enter input filename: "); ret=getline(line)

;

printf ("Reading file %s\n",line);
file=open( line , 0_RD0NLY

|
0x8000);

if (file=-l) printf ("%c***** cannot open file *****\n" , 7)

;

else {

psize [ 0 ] =0 ;
ret=FBYTES

;

while (psize [0]<MAXPSIZE && ret==FBYTES) {

ret=read(file
, p , FBYTES)

;
p+=ret; psize [ 0 ] +=ret

;

};

printf ("%u bytes read
.
\n"

,
psize [ 0 ])

;

calc_res (psize)

;

printf ( "Resolution is %ux%u\n"
,
psize [ 2 ], psize [ 1 ])

;

};

ret=close(file)

;

}

resolution(pp
,
psize)

char **pp

;

unsigned *psize;
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char *malloc ( )
, *p , *temp

;

int exit,i,ret;
unsigned area , ratio , sum , tempsize [ PSIZESIZE

]
, u , x , xoff , y ,

yoff

,

psizeO,psizel,psize2,tsizeO,tsizel,tsize2;

printf( "Resolution is %ux%u\n"
,
psize [ 2 ] ,

psize [ 1 ] )

;

exit=0

;

while (exit==0) {

printf( "Enter new resolution ");

printf (
" ( 1=16x15 , 2=32x30 , 3=64x60 , 4=128x120 , 5=256x240) : ")

;

ret=getnum( )

;

switch (ret) {

case 1 tempsize [0]= 240 exit=l break;
case 2 tempsize[0]= 960 exit=l break

;

case 3 tempsize[0]= 3840 exit=l break;
case 4 tempsize [0]=15360 exit=l break;
case 5 tempsize [ 0 ] =6 1440 exit=l break;
default: printf (" ifec***** invalid option *****", 7); break;

};

)

;

calc_res (tempsize)

;

if ( tempsize [ 3 ]! =psize [ 3 ] ) {

p=*pp ;
temp=malloc (MAXPSIZE)

;

if (temp==NULL) printf ( "ifec***** malloc error *****\n" , 7 )

;

psizeO=psize [ 0 ] ;
psizel=psize [ 1 ] ;

psize2=psize [ 2 ]

;

tsizeO=tempsize [ 0 ] ;
tsizel=tempsize [ 1 ] ;

tsize2=tempsize [ 2 ]

;

printf ( "Changing resolution from %ux%u ", psize [ 2 ], psize [ 1 ])

;

printf ( "to %ux%u. .
.
\n" , tempsize [ 2 ]

, tempsize [ 1 ] )

;

if ( tsizeO<psizeO) {

ratio=psizel/tsizel

;

area=ratio*ratio

;

y=0 ;
x=0

;

for (u=0; u<tsize0; ++u) {

sum=0

;

for (yoff=0; yoff<(ratio*psize2)
;
yoff+=psize2) {

for (xoff=0; xoff<ratio; ++xoff) {

sum+=p [y+yoff+x+xoff
]

;

);

}

;

temp [u] =sum/area

;

x+=ratio

;

if (x==psize2) { x=0
;
y+=ratio*psize2

; );

} ;

}

;

if ( tsizeO>psizeO) {

ratio=tsizel/psizel

;

y=0; x=0

;

for (u=0; u<psize0; ++u) {

for (yoff=0; yoff<(ratio*tsize2)
;
yoff+=tsize2) {

for (xoff=0; xoff<ratio; ++xoff) {

temp [y+yoff+x+xoff ] =p [u]

;

)

;
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}

;

x+=ratio
;

if (x==tsize2) (x=0; y+=ratio*tsize2
; };

}

;

)

;

*pp=temp
;
ret=free(p);

for (i=0; i<PSIZESIZE; ++i) psize [ i
] =tempsize [ i ]

;

)

;

printf ( "Resolution is %ux%u\n"
,
psize [ 2 ], psize [ 1 ])

;

savepic (p ,
psize)

char *p;

unsigned *psize;

{

int file, ret;

unsigned sum;

file=creat("improc#l .pic" , -1)

;

sum=0
;
ret=FBYTES;

while (sum<psize [ 0 ]
&& ret==FBYTES) {

ret=write(file ,p , FBYTES)
;
p+=ret; sum+=ret;

)

;

ret=close(file)

;

)

threshold(p
,
psize)

char *p

;

unsigned *psize;

{

int exit , low , high , new;

unsigned psizeO.u;

exit=0

;

while (exit==0) {

printf ( "Enter lower bound [0, . .
.
,255]

:

"); low=getnum( )

;

if ( ( low>=0)&&( low<=255) ) exit=l

;

};

exit=0

;

while (exit==0) {

printf ( "Enter upper bound [ %d, . .
.

, 255 ] : " , low)

;

high=getnum(

)

if ( (high>=low)&6c(high<=255) ) exit=l

;

)

;

exit=0

;

while (exit==0) {

printf ("Enter new value [0,...,255]: "); new=getnum( )

;

if ( (new>=0)&&(new<=255) ) exit=l

;

);

printf ( "Setting threshold values ... \n" )

;

psizeO=psize [0 ]

;

for (u=0; u<=psize0; ++u)
if ( (p [u]>=low)&&(p [u]<=high) ) p[u]=new;
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write_pic (p ,
psize)

char *p

;

unsigned Upsize;

{

char Line [MAXLINE]

;

int file, ret;

unsigned sum;

printf( "Enter output filename: "); ret=getline ( line )

;

printf( "Writing file %s\n",line);
file=creat ( line , - 1 )

;

if (file==-l) printf (
" %c***** cannot open file*****\n" , 7

)

else {

sum=0
;
ret=FBYTES;

while (sum<psize [0] && ret==FBYTES) {

re t=write ( file
, p , FBYTES)

;
p+=ret; sum+=ret;

}

;

}

;

printf ("%u bytes written
.
\n" , sum)

;

ret=close (file)

;
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IMPR0C#2 . BAS

10 SCREEN 2 : CLS

20 KEY OFF
30 OPEN " improc#2 . dat " FOR INPUT AS 1

40 XSCALE=2 : XB=76
50 YSCALE= . 5 : YB=20
60 0PT=ASC ( INPUT$ ( 1 , #1 )

)

70 PRINT "2-D PLOTTING PROGRAM"
80 PRINT
90 PRINT "When plot is completed press Shift-Prt to print hardcopy,"
100 PRINT "or any other key to exit."

110 PRINT
120 MODE=0
130 IF (OPT>=3 ) AND ( OPT<=6 ) GOTO 160

140 INPUT "Select Graph Mode (0=line , l=bar) [0]
:

" .MODE

150 PRINT
160 IF MODEOl THEN MODE=0
170 IF (MODE=0 ) OR (0PTO2 ) THEN GOTO 230

180 INPUT "Enter Bar Width (odd # of pixels only) [ 1 ]
:

" , BARWIDTH
190 PRINT
200 BARWIDTH=CINT( BARWIDTH)
210 IF BARWIDTHCl THEN BARWIDTH=1
220 BARWIDTH=INT(BARWIDTH/2)
230 INPUT "Message: " ,MESSAGE$
240 CLS
250 IF 0PTO0 THEN GOTO 270
260 PRINT "Horizontal Intensity Graph: " ; :XLIM=255 : GOTO 450
270 IF OPTOl THEN GOTO 290
280 PRINT "Vertical Intensity Graph: " ; :XLIM=239 : GOTO 450
290 IF 0PTO2 THEN GOTO 360
300 L0W=ASC ( INPUT $ ( 1 , #1 ) ) : HIGH=ASC ( INPUT? ( 1 , #1 )

)

310 AVE=AS C( INPUT? ( 1,#1) ) :PEAK=ASC( INPUT? (1,#1))
320 XLIM=255 : LOOP=255
330 PRINT "Intensity Histogram: Low=" ; LOW; " High=";HIGH;
340 PRINT " Average=" ;AVE; " Peak=";PEAK
350 GOTO 480
360 IF 0PTO3 THEN 380
370 PRINT"Horizontal Gaussian Curve Fit: " ; :XLIM=255 : GOTO 450
380 IF 0PTO4 THEN GOTO 400
390 PRINT "Vertical Gaussian Curve Fit: " ; :XLIM=239 : GOTO 450
400 IF 0PTO5 THEN GOTO 420
410 PRINT "Horizontal G-Profile Fit: " ; :XLIM=255 : GOTO 450
420 IF 0PTO6 THEN GOTO 440
430 PRINT "Vertical G-Profile Fit: "

; :XLIM=239 : GOTO 450
440 PRINT "Illegal input file": STOP
450 INDEX=ASC (INPUT? ( 1 ,#1))
460 LOOP=ASC( INPUT? (1 ,#1)

)

470 PRINT "Line Index ="; INDEX
480 PRINT
490 IF OPT=2 THEN GOTO 550
500 FOR Y=256 TO 0 STEP -64

510 PRINT TAB (6) ;Y

520 PRINT : PRINT : PRINT
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530 NEXT Y
540 GOTO 600
550 PRINT TAB(5)"1 .00" : PRINT: PRINT: PRINT
560 PRINT TAB (5)" 0.7 5": PRINT: PRINT: PRINT
570 PRINT TAB (5)" 0.50": PRINT: PRINT: PRINT
580 PRINT TAB ( 5) "0. 25"

: PRINT: PRINT: PRINT
590 PRINT TAB (5) "0 .

00"

600 LINE (XB , YB) - (XB+2*XLIM+2 , YB)

610 LINE (XB+2*XLIM+2,YB)-(XB+2*XLIM+2,YB+128)
620 LINE (XB , 128+YB) - (XB+2*XLIM+2 , 128+YB)
630 LINE (XB , YB) - (XB , YB+128)
640 SSIZE=16 :TSIZE=1
650 FOR X=0 TO (2*XLIM)+2 STEP SSIZE
660 LINE(XB+X, YB) - (XB+X, YB-TSIZE)
670 LINE (XB+X, YB+128) - (XB+X , YB+128+TSIZE)
680 NEXT X
690 SSIZE=8 : TSIZE=3
700 FOR Y=0 TO 128 STEP SSIZE
710 LINE(XB, YB+128 -Y) - (XB-TSIZE , YB+128 -Y)

720 LINE (XB+2*XLIM+2 , YB+1 2 8 - Y) - (XB+2*XLIM+2+TS IZE , YB+1 2 8 - Y)
730 NEXT Y
740 PRINT CHR$ (11)

750 IF (OPT=0)OR(OPT=1)OR( (OPT>=3)AND(OPT<=6) ) THEN Y$=" INTENSITY" : Zl=5 : Z2=4

760 IF (OPT=2) THEN Y$="REL FREQUENCY" : Z 1=3 : Z2=2

770 FOR Y=1 TO Zl : PRINT : NEXT Y
780 FOR Y=1 TO LEN(Y$ ): PRINT MID$ (Y$ , Y , 1 ) : NEXT Y
790 FOR Y=1 TO Z2 : PRINT : NEXT Y
800 IF (LOOP=255) THEN PRINT TAB (10)

II 0 64 128 192 256"

810 IF (LOOP=127) THEN PRINT TAB (10)
!t 0 32 64 96 128"

820 IF (LOOP=63) THEN PRINT TAB (10)
It 0 16 32 48 64"

830 IF (LOOP=31) THEN PRINT TAB (10)
II 0 8 16 24 32"

840 IF (LOOP=15) THEN PRINT TAB (10)
II 0 4 8 12 16"

850 IF (LOOP=239) THEN PRINT TAB (10)
II 0 40 80 120 160 200 240"

;

860 IF (LOOP=119) THEN PRINT TAB (10)
It 0 20 40 60 80 100 120"

}

870 IF (LOOP=59) THEN PRINT TAB (10)
II 0 10 20 30 40 50 60"

;

880 IF (LOOP=29) THEN PRINT TAB (10)
II 0 5 10 15 20 25 30"

i

890 IF (L00P=14) THEN PRINT TAB (10)
II 0 5 10 15"

>

900 PRINT
910 IF (OPT=0)OR(OPT=3)OR(OPT=5) THEN PRINT TAB(35);"P 0 S I T I 0 N"

920 IF (OPT=l ) OR(OPT=4)OR(OPT=6) THEN PRINT TAB(33);"P 0 S I T I 0 N"

930 IF (OPT=2) THEN PRINT TAB(34);"I N T E N S I T Y"

940 PRINT: PRINT MESSAGE?

;

950 FIRST=1
960 IF (OPT=Q)OR(OPT=3)OR(OPT=5) THEN XSCALE=512/(LOOP+l

)
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970 IF (OPT=l )OR(OPT=4)OR(OPT=6) THEN XSCALE=480/ (LOOP+1

)

980 FOR X=0 TO LOOP
990 Y=ASC

(

INPUT$ (

1

, #1 )
) *YSCALE

1000 XSCREEN=XSCALE*X+XB : YSCREEN=128 -Y+YB- .

1

1010 IF MODE=l THEN GOTO 1040

1020 IF FIRST=0 THEN LINE - (XSCREEN , YSCREEN) : GOTO 1080

1030 PSET(XSCREEN, YSCREEN) :FIRST=0: GOTO 1080

1040 IF (0PTO2) THEN LINE (XSCREEN
,
YB+128 )- (XSCREEN

,
YSCREEN) : GOTO 1080

1050 FOR I=-BARWIDTH TO BARWIDTH
1060 LINE(XSCREEN+I , YB+128) - (XSCREEN+I , YSCREEN)
1070 NEXT I

1080 NEXT X
1090 IF NOT ( ( OPT>=3 ) AND ( OPT<=6 ) ) THEN GOTO 1220
1100 1=1

1110 FIRST=1
1120 FOR X=0 TO LOOP
1130 Y=ASC(INPUT$(1 ,#1))*YSCALE
1140 XSCREEN=XSCALE*X+XB:YSCREEN=128-Y+YB- .1

1150 IF FIRST=1 THEN FIRST=0 : PSET (XSCREEN , YSCREEN) : GOTO 1210
1160 IF (LOOPMOO) THEN LINE- (XSCREEN .YSCREEN) : GOTO 1210
1170 LINE (XSCREEN - 2*1 , YSCREEN+I )

- (XSCREEN+2*I , YSCREEN+I

)

1180 LINE(XSCREEN-2*I .YSCREEN-I) - (XSCREEN+2*I , YSCREEN- I

)

1190 LINE (XSCREEN+2*I , YSCREEN-I )
- (XSCREEN+2*I , YSCREEN+I

)

1200 LINE(XSCREEN-2*I , YSCREEN-I) - (XSCREEN- 2*1 , YSCREEN+I)
1210 NEXT X
1220 CLOSE 1

1221 BEEP
1230 A$=INKEY$ : IF A$="" THEN 1230
1240 KILL " improc#2 . dat"
1250 SYSTEM

B- 27



IMPR0C#3 . BAS

10 SCREEN 2 : CLS
20 KEY OFF
30 PRINT "3-D PLOTTING PROGRAM"
40 PRINT
50 PRINT "When plot is completed press Shift-PrtSc to print a hardcopy,"
60 PRINT "or any other key to exit."
70 PRINT
80 INPUT "Select Autoscale (l=on,0=off) [1]: ",AUTOSCALE$
90 PRINT
100 IF AUTOSCALE$="0" THEN AUTOSCALE=0 ELSE AUT0SCALE=1
110 INPUT "Select Graph Type (0=lines , l=cross -hatch) [0]: ",TYPE$
120 PRINT
130 IF TYPE$=" 1

" THEN TYPE=1 ELSE TYPE=0
140 INPUT "Message: " , MESSAGES
150 CLS
160 PRINT "THREE DIMENSIONAL INTENSITY PLOT: " ; MESSAGE$
170 DIM BIGGEST ( 639 ) , SMALLEST (6 39) , TEMPBIGGEST(639) , TEMPSMALLEST (639)

180 OPEN " improc#3 . dat" FOR INPUT AS 1

190 YSIZE=ASC (INPUT$ ( 1 , #1 ) ) :XSIZE=ASC(INPUT$(1 ,#1)

)

200 DIM OLDLINE (256,2)
210 ZOOM=ASC (INPUT $ ( 1 , #1 )

)

220 LOWEST=ASC ( INPUT$ ( 1 , #1 ) ) : HIGHEST=ASC ( INPUT$ ( 1 , #1 )

)

230 IF AUT0SCALE=0 THEN LOWEST=0 : HIGHEST=255
240 MSCALE=255/ (HIGHEST-LOWEST) : BSCALE=(255*LOWEST)/(LOWEST-HIGHEST)
250 HEIGHT= . 27 : FIRSTX=0 : LASTX=XSIZE
260 FOR ELEMENTS TO 639
270 BIGGEST ( ELEMENT )=0 : SMALLEST (ELEMENT) =19

9

280 TEMPBIGGEST ( ELEMENT ) =0 : TEMPSMALLEST ( ELEMENT) =1 9 9

290 NEXT ELEMENT
300 XSTEP=2*(256/(XSIZE+1))
310 YSTEP=2*(60/(YSIZE+1))
320 FOR Y=0 TO YSIZE
330 XSCREENADJUST=6+YSTEP*Y
340 YSCREENADJUST=199-YSTEP*Y
350 FOR X=FIRSTX TO LASTX
360 Z= (HEIGHT* (MSCALE*ASC ( INPUT$ ( 1 , #1 ) )+BSCALE)

)

370 XSCREEN=XSCREENADJUST+XSTEP*X
380 YSCREEN=YSCREENADJUST-Z
390 IF TYPE=0 THEN GOTO 540
400 IF Y=0 THEN GOTO 530
410 DYSCREEN=YSCREEN-OLDLINE(X, 2)

420 M=DYSCREEN/YSTEP
430 B=YSCREEN-M*XSCREEN
440 IF ABS (M)<1 THEN GOTO 500
450 IF DYSCREEN>0 THEN STEPI=1 ELSE STEPI=-1
460 FOR 1=0 TO CINT(DYSCREEN) STEP STEPI
470 PY=CINT ( OLDLINE (X, 2 )+I) : PX=CINT( (OLDLINE (X, 2 )+I -B)/M) :GOSUB 830

480 NEXT I

490 GOTO 530
500 FOR 1=1 TO YSTEP
510 PX=CINT (OLDLINE (X, 1)+I) : PY=CINT(M* (OLDLINE (X, 1 )+I)+B) :GOSUB 830

520 NEXT I
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530 OLDLINE (X , 1
) =XSCREEN : OLDLINE (X , 2 ) =YSCREEN

540 IF XOFIRSTX THEN GOTO 570

550 PX=CINT(XSCREEN) : PY=CINT (YSCREEN) :G0SUB 830

560 GOTO 690

570 DYSCREEN=YSCREEN-YOLDSCREEN
580 M=DYSCREEN/XSTEP
590 B=YSCREEN-M*XSCREEN
600 IF ABS (M)<1 THEN GOTO 660

610 IF DYSCREEN>0 THEN STEPI=1 ELSE STEPI=-1
620 FOR 1=0 TO CINT(DYSCREEN) STEP STEPI

630 PY=CINT(YOLDSCREEN+I ) : PX=CINT( (YOLDSCREEN+I-B)/M) :GOSUB 830

640 NEXT I

650 GOTO 690
660 FOR 1=1 TO XSTEP
670 PX=CINT (XOLDSCREEN+I ) : PY=CINT(M*(XOLDSCREEN+I)+B) :GOSUB 830

680 NEXT I

690 XOLDSCREEN=XSCREEN : YOLDSCREEN=YSCREEN
700 NEXT X
710 FOR ELEMENT=1 TO 639
720 IF TEMPBIGGEST ( ELEMENT ) >BIGGEST ( ELEMENT

)

THEN BIGGEST ( ELEMENT) =TEMPBIGGEST ( ELEMENT)
730 IF TEMPSMALLEST(ELEMENT)<SMALLEST( ELEMENT)

THEN SMALLEST ( ELEMENT) =TEMPSMALLEST ( ELEMENT)
740 TEMPBIGGEST ( ELEMENT )=0 : TEMPSMALLEST( ELEMENT) =1000
750 NEXT ELEMENT
760 NEXT Y
770 CLOSE 1

780 BEEP
790 A$=INKEY$ : IF A$= ,”, THEN 790
800 KILL " improc#3 . dat"
810 SYSTEM
820 END
830 IF (PY>BIGGEST(PX) )OR(PY<SMALLEST(PX) ) THEN PSET(PX,PY)
840 IF PY>TEMPBIGGEST ( PX) THEN TEMPBIGGEST(PX)=PY
850 IF PY<TEMPSMALLEST ( PX) THEN TEMPSMALLEST ( PX) =PY
860 RETURN
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Appendix C.

Hybrid computer-optical processing
with inexpensive liquid crystal television

Matt Young and Matt Weppner

U.S. National Bureau of Standards, Electromagnetic Technology Division,
325 Broadway, Boulder, Colorado 80303, USA

Abstract

We describe a computer-optical processing system that uses an inexpensive liquid crystal
(LCD) television monitor and a selective holographic filter for coherent pattern recogni-
tion. Specifically, we use a digital computer to generate an edge enhanced image of an
object, expose a Fourier transform hologram of this image, and use the hologram as a sort of
matched filter for recognizing the original object in real time.

Introduction

It may not be true that great minds think alike, but it is demonstrably true that a hand-
ful of researchers have roughly simultaneously discovered a new liquid crystal, or LCD,
television set for use in optical processing. 1-5 The value of such a device, of course, is
that it is not self luminous (like a CRT) but, rather, can be used as a spatial light modu-
lator for generating coherent images at video rates.

Typical LCD TVs cost less than US$200 and may be addressed by a TV camera or by a micro-
computer with a video frame digitizer. They therefore promise to allow coherent video
images and computer generated patterns for holography and optical processing into almost any
optics laboratory. We anticipate that they will find their greatest application in the
input plane of the optical processor, where they are well suited, for example, to matched
filtering and incoherent correlation experiments. Devices with higher resolution than the
currently available values of about 120 x 140 pixels (vertical times horizontal) should
additionally be useful for change or defect detection 6 and, to a limited degree, to computer
generated holograms. 5 In applications where the transform plane can be magnified signifi-
cantly, the monitor may be located there and used as a computer generated spatial filter or,
possibly, a holographic filter.

The devices on the market today are designed for recreation and consist of a twisted
nematic LCD screen glued between crossed polarizers. They are viewed in transmission and
through a diffuser inclined at an angle of about 45° to the horizon. Removing the diffuser,
modifying the hinge on the device, and building a rigid frame takes several hours.

The LCD panel we use is about 55 x 42 mm 2 and uses a raster formed by a grid of fine
wires; the pixels are about 0.35 x 0.39 mm 2

.
7 The polarizers are not flat and cause a

serious aberration in the transform plane 1 as well as a lack of space invariance in spa-
tially coherent systems. 4 The aberration may be corrected by contacting optical glass
plates with index matching fluid to both sides of the display or by removing the polarizers
entirely and using external polarizers.

The fine wire raster causes many diffraction orders in the transform plane of a coherent
processor; these orders contain the information about the raster itself. Therefore, for
many applications, it will be necessary to use low pass filtering to eliminate all but the
lowest diffraction order of the grid. For this purpose we use a two-stage system with two
transform planes. 1 The low pass filtering is performed in the first stage; this leaves th._-

transform plane of the second stage completely unobstructed so that filters or holograph i c
plates may be easily located there.

The LCD display is also well suited to incoherent correlations, where the object is ill
minated coherently but diffusely, a hologram is recorded, and correlations are perform'-:
with spatially incoherent illumination. 8 ' 9 (In thi's case, the quality of the polarizers is

irrelevant.) Such applications have been hindered in the past by the lack of a suital 1<-

incoherent display with the same wavelength as the argon laser; the LCD monitor allow: the
argon laser to be used throughout the experiment.

Hybrid optical processor

The optical system we use is an extension of that described in reference 1 an 1 is
here as Fig. 1. An unpolarized 3-mW He-Ne laser beam is split by an uncoatei, w-- 1 :«• : : .

splitter; one of the reflected beams is used as the reference beam in a mat -he : f

experiment. The transmitted beam is spatially filtered with a lOx microscope ;,«••• i n
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Figure 1. Hybrid processor consisting of a two-stage Fourier optical system that includes a
liquid crystal, or LCD, TV monitor as input. A digital computer with a frame
digitizer addresses the LCD monitor and a matched filter is recorded on the
photographic plate. Camera TV2 displays the cross-correlation functions on a
monitor or, alternatively, connects to the frame digitizer, as shown by the
dashed line. The three Fourier transform lenses have 250-mm focal length, f/5.6.

40-ym pinhole, collimated with a 360-mm lens, and directed into the two-stage processor.
This system consists of a conventional 4-f processor followed by a single-lens processor in
which the image is magnified slightly for ease of photographing. The lenses in the
processor are all 210-mm copy or enlarging lenses. A Fresnel lens is inserted into the
final image plane to serve as a field lens.

We located the LCD monitor in the object plane of the first stage. To optimize the sys-
tem's performance, we peeled the polarizers from the screen and used external polarizers.
We enclosed both the polarizers and the screen in liquid gates by contacting them on both
sides to optical glass flats with an index matching oil. The oil has had no effect on the
electrical performance of the monitor.

The monitor is addressed by a microcomputer with a video frame digitizing board. To
evaluate the performance of the monitor, we generated some patterns, such as that shown in
Fig. 2. This pattern is radially symmetric and runs linearly from black in the center to
white at the edge, or, in terms of the frame digitizer, from 0 at the center to 255 at the
edge. (We used this pattern because the monitor gave unpredictable results with uniform
gray or with a gray scale whose gradient was either vertical or horizontal. We attribute
this to a defect in the video analog-to-digital (A-to-D) converter, but we do not know
whether or not it is just an idiosyncrasy of our sample. A newer model seems to give some-
what better results in this regard.) After optimizing the polarizers and the monitor's
brightness control and A-to-D converters, we used a silicon detector to scan along a diam-
eter of the radial transmittance pattern. The result is shown as Fig. 3A. The monitor has
an overall contrast ratio of only 10 to 1 and cannot respond to the full dynamic range of
the TV camera or frame digitizer. We attribute the low contrast in part to the presence of
the wires; these mainly add unwanted light to the nominally black areas, probably because of
diffraction or some perturbation of the liquid crystals.
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Relative

Intensity

Figure 2. Radial transmittance function displayed on the LCD monitor. A, before low pass
filtering, B, after low pass filtering. Contrast ratio of B is 5 times that
of A.

255 0 255
White Black White

Input to LCD Monitor

Figure 3. Transmittance as a function of position along a diameter of each of tin- - j

shown in Fig. 2. Horizontal scale is the output of the frame digit i.-.

range from 0 (black) to 255 (white).
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When we located a 0.4-mm low pass filter in the transform plane of the first stage, we
thereby eliminated the wire grid from the image (Fig. 2B) and measured a contrast ratio
(Fig. 3B) of about 50 to 1. The monitor, however, still does not respond to the full
dynamic range of the incoming TV signal, as is shown by the flat portions of the curve near
the center and the edges of the display. These signify a relative lack of both shadow and
highlight detail; adjusting the brightness or the video A-to-D converter level simply shifts
the sloped portions of the curve horizontally toward or away from the center of the graph.

To complete the system, we located a holographic plate in the transform plane of the
second stage and introduced the reference beam through a pair of polarizers for intensity
control. (The reference beam angle of about 15° was determined by the size of the transform
lens.) For these experiments, we did not collimate the reference beam, so it had a waist at
the location of the laser, about 2 m from the hologram. This may reduce the position
invariance of the system, but we did not check for position invariance.

Experiment

For our experiment, we illuminated a pair of pliers diffusely with two incandescent lamps
and white, matte paper diffusers. Using a TV camera fitted with a zoom lens, we captured
and stored an image of the pliers with the computer and the frame digitizer. The image dis-
played on the LCD monitor is shown in Fig. 4A prior to low pass filtering with the optical
system. Figure 4B shows the same image after spatially filtering with the 0.4-mm aperture
to eliminate the wire grid. When the low pass filter is chosen properly, only the grid is
eliminated from the picture; there is no loss of resolution of the image itself.

Figure 4. Pair of pliers used as a subject for pattern recognition experiment and displayed
on the LCD monitor. A, image of the pliers themselves. B, low pass filtered to
remove the pixels on the LCD screen. C, binary image of the pliers, wherein
values below a threshold are set equal to 0 and values above that threshold are
set equal to 255. D, edge enhanced model of the pliers.
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Next we used the computer to prepare a clipped, or binary, image of the pliers, Fig. 4C,

where intensities above a certain level are set equal to 255 (white) and those below that
level are set equal to 0 (black). In the one dimensional analogy,

Next, we performed a two dimensional edge enhancement in which we retained only the
inside edge of the binary image; that is, the image is black except for a white region that
runs along the inside edge of the binary image. Symbolically,

( 2 )

where the asterisk (*) denotes cross correlation and values less than zero are interpreted
as zero. We refer to the resulting image as the model; it is shown in Fig. 4D. The width
of the enhanced edge is determined by the number of zeros between the peaks of the kernel of
the cross correlation integral. We chose this width to be two pixels on the LCD monitor;
this corresponds to about six pixels on a conventional monitor with the full resolution of
about 380 pixels.

We used the model, somewhat in the manner of references 8 and 9, as the object in a pat-
tern recognition experiment. We inserted a holographic plate in the second transform plane
and recorded a Fourier transform hologram of the model. The value of using the model,
rather than the object itself, is that the cross correlation function of the model and the
object

,

(3)

is, with an irregular two dimensional object, sharper than the autocorrelation function of
the object itself.

(4)

and permits greater discrimination against similar objects. In addition, the model is
located on a black background, and its Fourier transform has a relatively weak dc or zer
order component. As a result, the exposure of the photographic plate is comparatively mi-
form and allows a hologram to be recorded with roughly constant diffraction efficiency
all relevant spatial frequencies.

Results

Placing the emulsion side away from the transform lens, we exposed some Fourier •
:

holograms to serve as matched filters for the model. We processed some of the- it. • ' u-
sium ferricyanide bleach (15 mg/mL for 4 min). These may be expected to have > !i f ! : .>

•

efficiency perhaps 10 times that of amplitude transmission holograms and ar<- :• i

tolerant of variations of exposure. 10 Our best filter was just such a phase h u i
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Using a second TV camera denoted TV2 and shown in Fig. 1, we viewed the autocorrelation
function of the model on a monitor. Because the image is mostly black, we switched the
camera's automatic gain control off to avoid overexposing the autocorrelation spot. The AGC
was left off during all the observations that follow. We did not need to synchronize the
camera TV2 to the computer, evidently because the decay time of the LCD panel was longer
than the frame rate of 1/60 s.

Figure 5A shows a photograph of the central portion of the monitor. The spot is sharp
and has a width of about six TV lines; this agrees well with the expected value of two
pixels on the lower resolution LCD monitor. The spot can also be seen clearly with the eye
and is surrounded by a diffraction ring that does not appear in the photograph.

Next, we displayed the clipped image of the object on the LCD monitor, without moving the
apparatus or adjusting either TV2 or the brightness of the monitor. The resulting cross
correlation function is shown in Fig. 5B. We then switched to real time and displayed the
real object on the LCD monitor. The relative brightness of the object was substantially
less than the 255, or white, of the computer processed images. The cross correlation with

Figure 5. Correlation functions as seen by TV2 displayed on a monitor. A, autocorrelation
function of the model. B-D, cross correlation function of the model with (B)

clipped tool, (C) tool in real time, and (D) tool rotated 2°. All photographs
were taken with the same exposure.

Figure 6. Intensity as a function of position along a horizontal TV line through the center
of the cross correlation peak of Fig. 5C. Average of four frames.
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the model was weaker but plainly visible on the monitor (Fig. 5C). Finally, we rotated the
object 2°. The cross correlation function in this case was still visible and is shown in

Fig. 5D.

We then switched the camera, TV2, to the computer and digitized its output. We could not
record the autocorrelation function of the model, because that would have required two frame
digitizers; indeed, this is one of the reasons that we designed our experiment to examine
the cross correlation of the unprocessed object, rather than a processed image, with the
model

.

We have made no attempt to optimize the diffraction efficiency of the hologram. What was
plainly visible on the monitor was not so plain to the computer; the eye does a marvelous
job of smoothing and averaging. We therefore digitized four frames and averaged them. Fig-
ure 6 is a graph of the relative intensity across one horizontal line in the averaged pic-
ture, multiplied by 3 for clarity of display. The constant value of about 115 is simply
dark current from the TV camera.

Figure 7 shows a histogram of the entire screen (of which Fig. 6 is a single line). (All

values greater than zero are shown as small ticks, whether or not they properly round to
zero.) The highest value, 228, represents the cross correlation peak. The average value of
the dark current is about 118, and the dark noise fluctuations range from roughly 104 to
132. If we take this to be ±3 sigma, we estimate the signal-to-noise ratio (SNR) to be
approximately 24.

Figure 7. Histogram of the entire screen from which Fig. 6 is derived. The signal peat is

228, the noise average 118, and ±3 sigma about 28. The signal-to-noise rati is

about 24.

Discussion

We have used a digital computer to generate an edge enhanced (but non-negative) !el i

a tool, prepared a Fourier transform hologram of the model, and cross correlated the ie

in real time with an image of the original tool.

We might have achieved better discrimination if we had either edge enhance 1 • he •

real time (as in reference 8) or edge enhanced with positive and negative val its i-
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reference 9). For practical reasons, we did neither. The latter, in particular, would
have required an encoding scheme that required a space-bandwidth product greater than the
LCD monitor offered and would not have achieved significantly different results unless we
had used the equivalent of heterodyne detection. We could have achieved a similar result by
edge enhancing optically (with a bandpass filter in the first transform plane); this
achieves a phase shift in the electric field at the location of an edge (as is shown by the
presence of a zero of intensity at the edge 11 ). We chose, however, to edge enhance by com-
puter since we thought that this would be more readily controllable and result in a simpler,
singly peaked intensity distribution at the edge.

Finally, we have performed our experiment using coherent processing. This is far more
efficient than incoherent processing, which requires diffused illumination, and has allowed
us to use a small He-Ne laser rather -than the much higher power argon laser used in refer-
ences 8 and 9. Except for the limited space-bandwidth product offered by the LCD monitor,
most other considerations are about equal, and the use of the small and inexpensive He-Ne
laser may therefore militate in favor of coherent processing for this sort of pattern recog-
nition .
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