
NBSIR 86-3496

The AMPLE Project

J. C. Boudreaux

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Automated Production Technology Division

Gaithersburg, MD 20899

March 1987

NBSIR 86-3496

THE AMPLE PROJECT

ms
RESEARCH

INFORMATION

CENTER

TL

QjUoo

, u
m,

\q%7

J. C. Boudreaux

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Manufacturing Engineering

Automated Production Technology Division

Gaithersburg, MD 20899

March 1987

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler. Director

The AMPLE Project
*

J.C. Boudreaux

Center for Manufacturing Engineering

National Bureau of Standards

1 Introduction

This report describes the Automated Manufacturing Programming Language Environment

(AMPLE!) system, being developed within the Center for Manufacturing Engineering of the

National Bureau of Standards. The development of AMPLE is being undertaken for two

main reasons: to provide a precise mechanism for the construction of control interfaces to

industrial manufacturing processes; and to provide an integrated system of software tools

for translating product design and process planning specifications into verified equipment-

level control programs.

Work on the AMPLE project has been surrounded by a more comprehensive project

which investigates the design of advanced automated manufacturing systems. This project,

embodied in the Automated Manufacturing Research Facility (AMRF) of the National

Bureau of Standards, has provided an invaluable source of empirical data and practical

experience.

From the inception of the AMPLE project in October 1984, the design of the system

has been deliberately coupled with the development of rapid prototypes. There have been

two prototypes. The first was built during the initial design phase, and the second, now
being finished, is a more elaborately worked companion to Version 0.1. Both prototypes

have been built in FranzLISP, a popular dialect of LISP /10/. Since the LISP family is not

widely known in the world of manufacturing engineering, an appendix on this programming

language has been included in this report.

2 An Overview

All programming languages are based upon a model of computation and AMPLE is no

exception. Traditional programming languages, like FORTRAN, have store- centered models

of computation in which the interpretation of each feature of the language is reduced to

the behavior of an idealized von Neumann machine^ and ultimately to the effect of that

behavior on the contents of store. However, the AMPLE model of computation is based

on the notion of fully automated manufacturing workstations, whose mathematical form,

though as yet imperfectly grapsed, is clearly much more complicated than that of any model

heretofore considered. The salient characteristic of this model is that success and failure

may only be determined by the occurrence or non-occurrence of certain preferred states in

‘Certain commercial equipment and products are identified in this paper in order to adequately specify

the experimental procedure. Such identification does not imply recommendation or endorsement by the

National Bureau of Standards, nor does it imply that the equipment identified is necessarily the best

available for the purpose.

1

the physical universe, and thus is largely independent of such computer-related measures

as side effects on store /6/.

An automated manufacturing workstation, also called a flexible manufacture system

(
FMS), is a hybrid manufacturing regime, having features in common with both man-

ual manufacture and factory automation, while retaining its own definite characteristics.

Though FMS systems differ in detail, there are sufficient uniformities for an accurate general

picture to have emerged.

First, automated workstations are centered on a numerically controlled (NC) machines,

such as horizontal or vertical mills, lathes, or coordinate-measuring machines. The phrase

“NC” is intended to imply that all machining operations, especially those relative motions

of the tool which modify part geometry or material condition, are performed under the

direction of a user-defined program. Such programs are executed by an embedded computer,

called the NC machine controller. NC part programs may be written in a FORTRAN-level
language, called APT, cf. ANSI X3.37-1977 /3/. APT programs are not only used to

specify the path which the cutting tool is to traverse, but also the rate of the traversal and

a variety of auxiliary operations, such as adjusting the flow of coolants during machining.

Second, since parts are designed to specific engineering tolerances, the position and ori-

entation of the part throughout the manufacturing must be precisely determined. This is

accomplished by fastening the part in a suitably designed fixture, such as a vise. Workhold-

ing fixtures may be mounted on one or more pallets, which are shuttled into proper position

for either fixturing the part or presenting the part for machining.

Third, all of the implied transfers of material within an automated workstation are

carried out by a programmable industrial robot, cf. Edkins /8/.

A fully automated manufacturing workstation is one whose resident capital equipment

can be quickly re-configured to produce a large number of different manufacturing parts.

This degree of flexibility has much in common with the manual manufacturing regime. In

manual manufacture, workpieces are under the supervisory control of skilled human work-

ers, who are routinely able to make very accurate judgments about such features as the

linearity of the part’s edges or the relative alignment of holes without special training.

Human workers also bring an enormous store of commonsense knowledge, including sophis-

ticated error-recovery procedures for repairing slightly damaged parts and returning the

process to acceptable control bounds. Since there is little to recommend a flexible manu-

facturing system which consistently produces a large number of parts to obtain a few that

pass muster, any economically viable FMS must be held within very tight control bounds,

whose width depends upon such matters as the tolerances on the finished parts. That is,

the control bounds must be shifted much closer to the nominal line than would be the

case if the parts were being manufactured in the manual manufacturing regime. Hence,

automated workstations must be able to monitor their own operating states and have the

ability to adapt to their current environment.

3 The Design of AMPLE
Self-monitoring system must have access to internal representations of all of the entities

whose behavior is to be controlled. Internal representations of this kind are called world

models.

AMPLE may be pictured as a loosely bundled, extensible collection of software modules,

distributed around a central nucleus, called AMPLE/core, whose primary function is to

maintain the world model (Figure 1). As discussed in Section 4, the design of AMPLE/core

2

is based on a few carefully chosen abstractions.

The design of the surrounding collection of modules, hereafter called AMPLE/mod, is

harder to characterize. Membership in AMPLE/mod is decided by the functional require-

ments which the specific implementation of AMPLE is designed to satisfy. Some modules,

such as those which provide disciplined access to AMPLE/core, will be required by all

implementations. Others, such as those which support specific modes of interaction with

the external environment, are usually tailored to their function, and thus, have a narrower

scope.

The configuration of AMPLE/mod for the Version 0.1 Prototype are described in Sec-

tion 5. In this implementation, AMPLE support two different kinds of external interface,

allowing AMPLE to be used both as an off-line programming system and as a run-time

support system within AMRF. As configured for the December 1986 AMRF test run, the

Prototype implementation provided run-time support for the horizontal workstation (HWS)
and the turning workstation (TWS), and off-line programming for HWS. (Figure 1)

4 AMPLE/core

The function of AMPLE/core is to maintain formally precise representations of all physical

objects and processes in the manufacturing domain:

• parts, including representations for geometric attributes, topological attributes, tol-

erance and dimensioning data, and administrative data;

• devices, including NC-machines, fixtures and specialized workholding devices, NC-
machine tools and tool-changing devices, robots, grippers and other end-effectors;

• sensors, which may either be atomic sensors, such as contact switches, or more com-

plicated sensory systems consisting of a network of simpler sensors; and

® processes, which are associated with manufacturing devices and provide the methods

for bringing about physical changes in the workstation or the manufactured part.

The construction of world models poses many difficult conceptual problems. The basic

problem is the invention of techniques that are powerful enough to allow all necessary

information to be represented, and yet simple enough to allow users to readily grasp the

general structural details. Though this problem obviously has no unique solution, the

strategy adopted in AMPLE is to associate each type of entity to be represented with a

generic template.

A template is a structural hypothesis that identifies those features of devices that are

essential. For example, devices differ from one another in complicated ways, but considered

abstractly, a device can be defined as any entity that (i) has finitely many components each

of which is itself a device, (ii) has the capability to perform a finite, but extensible, set of

operations, and (iii) occupies one of a finite number of states. Definitions of this sort can

be expressed by an abstract type definition:

typedef <device-type-name>- is device

components are

-< component-listy

end components;

operations are

3

-< operation-list>-

end operations;

states are

-< state -list>-

end states;

end device;

There are many different kinds of programmable devices in any workstation. To achieve the

widest degree of flexibility and portability, equipment interfaces should be considered as

links between abstract device specifications in the type definition and equipment-dependent

device drivers. Since the primary mechanism for device abstraction is the specification of

an operation list, each component of which consist of a single main verb, followed by

zero or more qualifying phrases, the link between AMPLE-level commands and equipment-

level control programs can be established by instantiating an equipment-level template,

written in whatever that equipment recognizes as its native language. For a more thorough

discussion of the issues involved in the use of such templates, see Boudreaux /5/ and /6/.

4.1

Core Support Modules

Given the central importance of the world models, a great deal of effort has been devoted

to the organization of those software tools that are used to allow the user to have access to

them.

4.1.1 Workspace Manager (WM)

To encourage disciplined access to symbolic names in AMPLE the Version 0.1 AMPLE/mod
Prototype uses workspace management system. A workspace is a collection of symbolic

names. Upon entering a workspace, users are permitted access to its resident names, and

also acquire certain rights to add, delete, or otherwise modify them. Upon exiting the

workspace, access to its names - and hence all other rights - are automatically revoked.

4.1.2 Lexical Analyser (Lexx)

Because of the specialized requirements of industrial control, and especially the requirement

that AMPLE cause potentially dangerous physical motions, certain classes of users must

be able to tailor the system to their own needs. Lexx is a module which provides such users

with methods for introducing new symbolic names that have pre-defined meaning in the

application domain and for assigning them formal definitions in AMPLE.

4.1.3 Object-oriented EDitor (OED)

To ensure that objects in AMPLE/core are processed in a disciplined way, all changes to

them are made through a special module, called the Object-oriented EDitor (OED). OED
is a syntax-directed editor which initially understands the characteristic structure of LISP

objects, and which can be taught to recognize the structure of AMPLE values which are

generated with the Lexx module.

4

5 AMPLE/mod

Other AMPLE/mod modules allow the programmer to selectively examine different parts of

the AMPLE environment, in much the same manner that operating system commands allow

users to examine the available directories, to get assistance by invoking HELP commands,

and to control any one of a number of well-defined, but extensible, computational processes.

Though AMPLE has been designed to be an extensible system, it will clarify the intended

mode of operation if some of the external modules in Version 0.1 are described in more

detail.

5.1 User Interface

When operating as an off-line programming system, workstations programmers may select

the operations to be performed by mousepicks from a user-defined menu, and also by

responding appropriately when questioned for additional information.

5.2 Communication Package (Acomm)

When operating in real-time support mode, the communication link with HWS and TWS
is supplied by this module. Though several different kinds of data can be transmitted, the

most important information is contained in process plans.

5.3 Process Planning Interface (APPI)

The purpose of this module is to parse process plans, once they have been made available,

and to determine that the process plans are correct and complete.

A process plan is correct if the following conditions are satisfied: the plan is syntacti-

cally correct and agrees with the AMRF flat file format for process plans; and all of the

workelements defined in the plan can be performed by the targeted workstation.

A process plan is complete if all workelements needed to manufacture the part have

been provided in the proper sequence. If the plan is incomplete, the verifier will identify

the missing element by issuing either an “ERROR, MISSING ELEMENT” message or an

appropriate “WARNING” if the missing element is not critical. In either case, the user

may then decide whether to correct the condition or pass the plan on, with notes, to the

part programmer.

5.4 Real-Time Control Interface (ARTCI)

This module accepts high-level instructions, either interactively from the user interface or

remotely from APPI, and then generates equipment-level control data, and data to drive

the animation package. Equipment-level control data is highly machine dependent, and

thus cannot be transported from one controller to another. One primary motivation for

the design of ARTCI is to encourage high-level process abstraction.

5.5 Workstation Animation Package (AWAP)

This module accepts input from ARTCI and generates a fully animated preview of the all of

the physical motions that the associated control data, if actually executed, would produce.

In this manner, AWAP allows off-line validation and testing of control programs.

5

To enhance the accuracy and reliability of AWAP, all motions are based on kinematic

models of the moving components. For example, the kinematic model for the robots will

not allow any motion during which joint angle limits are violated.

5.6 NC Verification Package (NCVer)

Part programming is the procedure whereby the sequence of elemental operations to be

performed by a numerically controlled (NC) machine are specified and documented. The
purpose of this module is to verify that NC part programs, as expressed in Cutter Location

files (CLfiles) in the programming language APT /3/, are correct before they are actually

used.

NCVer first screens the APT CLfile to determine that it is free of gross errors, i.e.,

checking COOLANT ON before any cutting operation is performed, and second determines

whether a part program can produce the desired shape from an initial stock item or in-

process part. The verifier is integrated with the part programming system to provide

the user with an interactive, graphics-based system. Specifically, the verifier uses a solid

model of the finished and in-process parts as well as models of cutting tools, fixtures, and

the machine tool itself to provide visual and analytic verification of CLfiles. The verifier

detects overcuts, undercuts, and collisions of the cutter or spindle with fixture elements.

6 Work in Progress

Since the beginning of the AMPLE project in October 1984, the focus of our effort has

been on the the generation of control data and its off-line verification. Though additional

work in this direction is still needed, our focus in the near future will be devoted to the the

extension of AMPLE/mod. To better support the needs of the manufacturing community,

which already depends quite heavily on commercially available CAD/CAM tools, some

controlled tests will be done to determine the degree of effort required to fit pre-existent

modules into AMPLE/mod. Some work in this direction has already been done, most

notably, the very early partial integration of ICM’s Geometric Solid Modeler (GMS) in the

Prototype implementation, but more such co-operative efforts need to be undertaken to

convincingly establish the adequacy of the AMPLE methodology.

Though many possible additions to AMPLE/mod could be undertaken, one that seems

especially worthy is the AMPLE Part Window. The design of the Part Window will be

based on the representation of parts in the current IGES standard /9/ and will be extended

to incorporate other product data information as that becomes available through the on-

going Product Data Exchange Specification (PDES) effort.

Part geometry data provide the information necessary to characterize the geometry of

the part in a computer-readable form. In the initial stage, part geometry data will be

represented using wireframe information structures, whose formats are described in IGES,

Version 3.0. The defining characteristic of wireframe systems is that the geometry of parts

is represented by points, lines, curves, circles, and so on. More complicated geometric

features are described by splicing together simpler features or by introducing spline func-

tions, i.e., piecewise continuous polynominal interpolation functions. In subsequent stages,

more advanced geometric representations, including boundary representations and geomet-

ric solids, will be undertaken. During this phase of the construction of the Part Window,

some careful thought will have to be given to the issue of the the rational segmentation

of part features. Some preliminary work in this direction has already been undertaken by

CAM-I, see /7/.

6

To be useful in the manufacturing process, a representation of part geometry must be

accompanied by representations of dimensioning data. These data give information about

the magnitude, or size, of specific features of the part so that all sizes and shapes can be

determined without assuming the magnitude of any unrepresented dimensions. Since it is

not possible to produce exact dimensions, tolerancing data must also be included. Conven-

tional tolerances may be expressed as allowable errors on the dimension, e.g., 1.00±0.05

mm specifies a dimensional variation which is constrained to lie in the interval 0.95 to 1.05

mm. Methods for minimizing cumulative error in dimensional tolerances are described in

ANSI Y14.5M-1982

Manufactured parts must have some determinate properties and attributes which al-

low them to perform the specific function for which they were designed. This is true of

manufactured parts which have been designed to fit within larger units, like gears and

other single-block pieces, and also for such large-scale assemblies as airplanes and nuclear

reactors, which may be among the most complicated entities ever designed. In order to

guarantee that the product will indeed do its job, we must have a clear statement of part

specifications, including the dimensioning scheme for the part, and also a description of

permitted variations, which are given as tolerances.

The specifications of a part may be thought of as a complicated property, expressed in

a formal language such as the first-order logic, which the part either satisfies or does not

satisfy. In this case, specifications may be represented as Boolean gates through which the

part either passes or fails to pass. This account assumes that the specifications are well-

enough defined that those parts that pass will perform up to - and maybe slightly beyond

the demands placed upon them through their active worklife in the final assembled product.

7

Bibliography

1. Albus, J.S. Brains, Behavior, and Robotics. McGraw-Hill; 1981.

2. Albus, J.S., Barbera, A.J., Nagel, R.N. “Theory and Practice of Hierarchical Control,”

2Srd IEEE Computer Society International Conference, September 1981, 18-39.

3. ANSI X3.37-1977, “Programming Language APT,” American National Standards

Institute, Inc.; 1977.

4. ANSI Y14.5M-1982, “Dimensioning and Tolerancing,” The American Society of Me-

chanical Engineers; 1983.

5. Boudreaux, J.C. “Problem Solving and the Evolution of Programming Languages,”

The Role of Language in Problem Solving-1, edited by R. Jernigan, B.W. Hamill, and

D.M. Weintraub, North-Holland, 1985; 103-126.

6. Boudreaux, J.C. “AMPLE: A Programming Language Environment for Automated

Manufacturing,” The Role of Language in Problem Solving - 2\ edited by J.C. Boudreaux,

B. Hamill, and R. Jernigan, North Holland, Amsterdam, 1986.

7. “CAM-I’s Illustrated Glossary of Workpiece Form Features,” Computer Aided Manufacturing-

International, Inc., Arlington, TX; R-80-PPP-02.1, revised May 1981.

8. Edkins, M. “Linking industrial robots and machine tools,” in A. Pugh, Robotic Tech-

nology, Peregrinus; 1983.

9. Smith, B.M. and Wellington, J. “Initial Graphics Exchange Specification (IGES),”

Version 3.0, U.S. Department of Commerce, National Bureau of Standards, NBSIR
86-3359, April 1986.

10.

Wilensky, R. LISPcraft, W.W. Norton; 1984.

8

AMPLE Flow Diagram

Figure 1 . Schematic of the AMPLE Version 0.1 Prototype

9

Appendix: LISP and AMPLE/Core

Dialects of LISP have been the primary tools in the field of artificial intelligence almost

from the beginning. However, the idea that this family of languages should be considered

for applications outside of this field is an idea that until very recently would not have been

seriously entertained. In this section, I will briefly explain FranzLISP, which is the LISP

dialect actually used as the conceptual paradigm for AMPLE/core. For a more thorough

examination of the ideas sketched here, see /5/.

One feature which runs through almost all dialects of LISP is that it is an interactive

language which presents the user with a comparatively simple interface. Thus, from the

user’s perspective, the FranzLISP system consists of an interpreter which signals its avail-

ability by printing a prompt symbol. When the user responds by keying in an expression,

the interpreter immediately returns the value of that expression on the next line. The

following example is the transcript of two very simple exchanges between a user and the

FranzLISP system:

12

12

23.4567

23.4567

In this case, the user has keyed in an integer value, which in FranzLISP jargon is called a

fixnum, and then a floating point number, or flonum.

FranzLISP recognizes only two kinds of objects: atoms and lists. Atoms include such

scalar values as integers, floating point reals, symbols, and strings. A list is an object that

may always be resolved into a head component which may either an atom or a list, and

a tail component which must be a list. The accepted notation for lists is to enclose their

components within mated parentheses:

(A B)

In this example, the head is the symbolic atom A, and the tail is the list (B). The list

which has no components is called the null list and may be represented by the empty-nest

expression “()” or by the constant symbol “nil”. The null list is a useful artifact, especially

in that it permits us to disambiguate such expressions as (B), which is the list whose head

is the symbol B and whose tail is the null list.

The only other class of entities recognized by FranzLISP are functions. In order to

signal the FranzLISP interpreter that a particular function is to be applied to a (possibly

empty) sequence of arguments, the programmer simply presents the interpreter with a list

object whose head is the symbolic name of the function and whose tail is the list of the

expressions to be passed to the function as arguments.

Two functions, car and cdr, are used to select the components of any list; in particular,

car selects the head component and cdr selects the tail:

(car ’(A B))

A
(cdr ’(A B))

(B)

10

The single quote is an important FranzLISP function which is used to signal the FranzLISP

interpreter that the FranzLISP object following the occurrence of the single quote is not

to be evaluated but treated as a literal. There are several important contexts in which the

single quote function is used covertly, for example, the FranzLISP function setq, which

abbreviates set quote, is used to assign FranzLISP values to symbols:

->- (setq ab ’(A B))

(AB)

The effect of the evaluation of this function is the association of the value of the second

argument with the symbol in the initial argument place. This symbol may then be used as

a FranzLISP variable. The variable ab and its current value is stored in otherwise hidden

symbol table, and from this point on, if the interpreter is presented with this name, it will

respond with the assigned value:

->- ab

(AB)

There is one primitive constructor function for lists, namely, cons, which when applied to

two arguments, returns a list whose head is equal to the first argument and whose tail is

equal to the second:

->- (cons ’A ’(B))

(A B)

Symbols may also be used to represent entities with properties, where the property name is

itself a symbol and the value of the property is any FranzLISP expression. Thus, to express

the fact that bee is the name-of B, we would execute:

->- (putprop ’B ’bee ’name-of)

bee

To retrieve the value of a property, we would write

->- (get ’B ’name-of)

bee

All FranzLISP systems share the characteristic that programmers are encouraged to

construct new application-specific functions of their own devising. Once written, these

functions have the same status as the functions supplied by the FranzLISP system. To

illustrate this important feature, let’s use the example of the square function:

(def square (lambda (X) (times XX)))
square

The response square tells us that the function is subsequently available as a FranzLISP

function, as the following exchanges clearly indicate:

->- (square 4)

16

->- (square 2.36)

5.5696

11

Note that def is just another FranzLISP function, differing from others that have already

been mentioned, primarily with respect to its side effects on the FranzLISP environment.

Like setq, this function causes a value to be associated with a symbolic name, in this

case the symbolic name square. It associates this symbol with the otherwise anonymous
function defined by the lambda abstraction formula

(lambda (X) (times XX))

The variable X in this definition is said to be lambda bound, which means that the actual

value is dependent upon the argument being passed during the activation of the function.

In effect, the lambda expression creates a nested environment in which all lambda bound

variables are set to the argument values, then the inner expression is evaluated in the usual

way until some resulting value emerges. Once this value has been obtained, the nested

environment is deleted and the resulting value is returned in place.

Every FranzLISP variable ranges over the entire domain of LISP values. That is, Fran-

zLISP only recognizes universal typefree variables. Of course, the fact that LISP is not

strongly typed does not mean that there is no way in LISP to enforce the underlying dis-

cipline, which is useful in many practical contexts. In LISP, as in set theory, one considers

types to be predicates, that is, suitably defined Boolean-valued functions which return the

value t if the argument is a bonafide member of the type, and nil otherwise. The following

definition introduces the type predicate natural:

(def natural (lambda (intx)

(and (fixp intx) (not (lessp intx 0)))))

The monadic function fixp returns t if its argument is an integer.

There are advantages to be had by accepting the types- as-predicates approach which

are difficult or impossible to simulate in strongly typed languages, for example:

(def even (lambda (intx)

(and (natural intx) (equal (mod intx 2) 0))))

(def odd (lambda (intx)

(and (natural intx) (equal (mod intx 2) 1))))

Though not particularly interesting in their own right, these definitions do show that type

names can be associated with infinitely large collections of LISP objects.

To achieve the effect of abstract data types in AMPLE/core, one approach is to stipulate

some formal mechanism for collecting together and then associating a symbolic name with

a class of structurally similar lists. The simplest way to define such a typing mechanism is

to select a few type constructors, say enumeration, record, and array, but then to leave

open the possibility of eventually adding to this list.

Suppose, for example, we wanted to define a type POINT, then we would probably

want to construct a list whose display-form is:

typedef POINT is

record

X-ord : float;

Y-ord : float;

Name : string;

end record;

12

In this case, we are using the record constructor. Since every record is a finite sequence

of fields, each of which has a field name and a correpsonding type, one obvious FranzLISP

object which seems to express the same information as definition of POINT is

((X-ord float)(Y-ord float)(Name string))

A very nice feature of this representation is that we can move from one field specification

to the next by simply cdr-ing down the list, and then car-ing the resulting value. Once

we have grasped a field specification, then one application of car will yield the field name,

and one application of cadr will yield the field type.

But the selection of this representation is not enough. We also need to associate the

field sequence with the type name POINT, and we also have to keep in mind that POINT
was defined by using the record mechanism. One way to do this, though by no means the

only way, is to use the putprop function:

(putprop ’RECORD
’((X-ord float)(Y-ord float) (Name string))

’POINT)

which has the effect of putting the record’s fields on the property list of the atom ’RECORD
under the indicator ’POINT. If this is done, then the AMPLE definition of POINT could

be obtained as follows:

(get ’RECORD ’POINT)

Since property lists are always extendable by the easy process of putprop-ing under a

new symbolic indicator, this approach is a completely general method for building records

in FranzLISP.

The techniques for other AMPLE/core representations may be handled in an analogous

fashion. Thus, the job of finding a representation for the enumeration constructor is very

simple indeed. Suppose we consider the type BOOLEAN:

typedef BOOLEAN is (true false);

then the only reasonable approach is to associate the list of values with the type name by

putprop-ing on the special symbol ’ENUMERATION. In order to achieve a good fit

with FranzLISP, we should also establish a link between the value ’false and nil, and ’true

and t, since the second components are the Booleans of FranzLISP.

13

NBS-114A (REV. 2 -60)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 86-3496

2. Performing Organ. Report No. 3. Publication Date

FEBRUARY 1987
4. TITLE AND SUBTITLE

The AMPLE Project

5. AUTHOR(S)

J. C. Boudreaux

6. PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

10. SUPPLEMENTARY NOTES

j Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This report describes the Automated Manufacturing Programming Language Environment
(AMPLE) system, being developed within the Center for Manufacturing Engineering of

the National Bureau of Standards. The development of this system is being undertaken
to provide a precise, conceptually transparent medium for the construction of

control interfaces to industrial processes; and to address the technical and economic

requirements of small-batch flexible manufacturing systems.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

automated manufacturing; programming language environment; flexible manufacturing

systems; industrial control processes

13. AVAILABILITY

[JZ] Unlimited

[J For Official Distribution. Do Not Release to NTIS

nn Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
' 20402.

(Xj Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

16

15. Price

$9.95

USCOMM-DC 6043-P80

