

Measuring the Corrosion Rate of Reinforcing Steel Concrete -Final Report

E. Escalante, E. Whitenton, F. Qiu

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Materials Science and Engineering Metallurgy Division Gaithersburg, MD 20899

October 1986

 OC
 pd by:

 100
 I Highway Administration

 .U56
 Igton, DC 20590

 86-3456
 1986

 C.2
 Image: Content of the second s

NBSIR 86-3456

MEASURING THE CORROSION RATE OF REINFORCING STEEL CONCRETE -FINAL REPORT

NBS RESEARCH INFORMATION CENTER NBSC OCLOO , U.SG MO. 86-3456 1986 C.Z

E. Escalante, E. Whitenton, F. Qiu

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Institute for Materials Science and Engineering Metallurgy Division Gaithersburg, MD 20899

October 1986

Sponsored by: Federal Highway Administration Washington, DC 20590

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

TABLE OF CONTENTS

	Page
Abstract	1
Introduction	1
Background	2
Approach	2
System Description	3
Laboratory Measurements	5
Procedure - Laboratory	5
Results and Discussion - Laboratory	6
Field Measurements	7
Procedure - Field	7
Results and Discussion - Field	8
Summary	9
Acknowledgement	10
References	11
Tables	13
Figures	18

Appendices

LIST OF TABLES

Table		Page
1	Information Printed During Polarization Measurement	13
2	Composition of Concrete Mixes	14
3	Conditions of Exposure of Laboratory Specimens	15
4	Weight Loss and Polarization Resistance Data	16
5	Calculated Corrosion Rates of Three Bridge Decks	17

LIST OF FIGURES

Figur€		Page
1	Schematic diagram showing relationship of the three electrodes, control switches, power supply	18
2	Magnified view of a portion of the Potential of the working electrode during "Holding" stage a) Potential trace From oscilloscope b) Idealized trace of Potential	19
3	Magnified view of a portion of the applied Current during "Holding" stage a) Current trace from oscilloscope b) Idealized trace of applied Current	20
4	<pre>View of entire trace of the Potential of the working electode and applied Current a) Trace from oscilloscope b) Idealized trace</pre>	21
5	Circuit diagram of dummy load simulating electrodes in concrete environment	22
6	Plot of Known Resistance added to Dummy load versus Resistance eliminated by computer system using current-interrupt technique	23
7	Configuration of steel rod in concrete cylinders	24
8	Plot of Calculated Corrosion Rate versus Time for specimens #1, #3, and #7	25
9	Plot of Calculated Weight Loss versus Gravimetric Weight Loss for twelve specimens in a laboratory controlled environment	26
10	Schematic diagram of electrode configuration on a bridge deck	27

LIST OF APPENDICES

Appendix

- Corrosion calculations А
- В Hardware and software
 - 1) Overview of system
 - 2) Detail of 3421A Data Logger
 3) Custom D/A board
 4) Computer software

C FHWA forms

Measuring the Rate of Corrosion of Reinforcing Steel in Concrete Final Report

E. Escalante and E. Whitenton Metallurgy Division

F. Qiu

Fujian Institute of Research on the Structure of Matter Peoples Republic of China

ABSTRACT

This report describes a three phase study directed at developing a portable system for measuring the corrosion of steel in concrete bridge decks. A small, portable computer system is used to control the measurement of polarization resistance of steel in concrete, and using current interruption, iR error is eliminated. During the first two phases, the system hardware and software were constructed, then measurements were made on small steel specimens in concrete cylinders in a laboratory controlled environment. The results of the weight losses calculated from the electrochemical measurement are compared to gravimetrically determined weight losses. In the third phase, the same portable system was used to measure the corrosion of three bridge decks in Frederick County MD, over a four month period. The results of these field measurements and the problems encountered are discussed.

INTRODUCTION

It is now well recognized that steel in concrete will corrode under certain conditions (1-3), and many studies have been directed at identifying the factors that influence this deterioration (4-8). An early review of the literature revealed a dearth of information in this area (9). A means of measuring the corrosion rate of steel in concrete would be extremely useful for many applications, and several laboratories, including the National Bureau of Standards (NBS), have devoted time to developing some understanding of how this measurement can be made in a nondestructive manner (10-12).

The ability to measure the corrosion rate of steel in concrete is useful for several reasons. First, a better understanding of the corrosion processes in concrete could be developed by making controlled changes in the concrete (oxygen, chloride, pH, moisture) and observing the effects on corrosion rate. Secondly, the performance of corrosion control systems could be monitored as a function of time, and thus, the effectiveness of overlays, reinforcing steel coatings, corrosion inhibitors, and cathodic protection could be measured and evaluated. Recent advances in computer technology have led to commercially available, portable, battery operated computers and accessories that give us the capability of extending laboratory techniques to field measurements. The object of this study is to take a step in this direction.

BACKGROUND

In 1978, an effort was initiated at NBS to develop an understanding of the conditions and processes that control or effect the corrosion of steel in concrete. As a result, three reports have been issued (9,13,14). The first report was a literature survey covering the period from 1964 to 1978 in which 394 references were cited (9). Examination of this literature revealed that much of the effort had been concentrated in learning about the role of the chloride ion and the concrete mixture design on the corrosion process. Only one reference considered the effect of oxygen, and none were found on the corrosion of steel in an alkaline environment. On the basis of these findings, a study seeking to learn more about the interaction of oxygen, pH, and chloride was started. In addition, preliminary efforts were directed at developing a nondestructive, electrochemical technique for measuring the corrosion of steel in concrete. The results of this initial study are described in the second report (13). The third report considered the problem of current distribution during the polarization process, and included our first attempt at controlling the measurement with a microprocessor system (14).

This report describes our most recent effort at applying a useful laboratory technique to a field situation, and can be broken down into three major phases as follows:

- Design and assembly of the microcomputer-controlled corrosion measuring system,
- 2) Testing of the microcomputer-controlled device under laboratory controlled conditions, and
- 3) Testing the microcomputer-controlled device in the field.

The general format of this report will be developed around these topics.

APPROACH

Judging from our early studies, it became apparent that there were two major obstacles to measuring the corrosion rate of steel in concrete, namely: (a) determining the area of the steel being polarized during the measurement, and (b) compensating for iR error, an error arising when potential measurements are made in the presence of an electric current in a resistive medium. Knowledge about current distribution during a measurement on a bridge deck is important for the simple reason that only a very small area of the steel in the bridge deck is polarized at a time, and this area must be known so that a corrosion rate may be calculated. Anticipating this problem earlier in the project, a study was initiated as previously described (14). This study indicated that current distribution in concrete is very limited and is concentrated to the immediate vicinity of the source of current, the counter electrode (CE). Thus, by knowing the location and size of the steel in the region of the CE of a given size, the area of the steel rebar being polarized can be determined. Elimination of iR error was accomplished through the use of a current interrupt technique whereby the potential of the steel is measured while current is zero (15,16).

Preliminary studies using manually controlled equipment indicated that the corrosion of steel in concrete, also referred to as the working electrode (WE), can be measured by polarization techniques (13,14). However, the procedure is very slow and tedious, and not at all suited for field measurements. Furthermore, iR compensation is always difficult and, at times, questionable with these manually controlled methods. The use of portable computer equipment opens new avenues to the application of laboratory methods to field measurements especially where a resistive medium may be encountered. The remainder of this report is a description of the operation of such a computer-controlled system and the results obtained in the laboratory and in the field.

System Description

The computer controlled device operates by modulating the current applied to the electrodes so as to maintain a potential (E) difference between the WE and the reference electrode (REF), Ew - Er, which is 10 mV less than the same potential difference at open circuit (o.c.):

$$(Ew - Er) - (Ew - Er)o.c. = -10 mV = \Delta E$$

The reading, however, is taken during a brief period while the current is interrupted, so that the potential due to the iR drop is absent, but soon enough after the interruption of the current that the potential due to polarization of the WE has not yet decayed significantly. The entire process occurs as follows. Initially, during the "setting" portion of the measurement, the current is gradually increased or decreased depending on whether ΔE is smaller or larger than -10 mV. Once the desired value of ΔE is reached, it is maintained for 3.5 min. during the "holding" portion of the measurement. The duty cycle is 2.2 s with the current on and 0.4 s with the current off. The sampling of the voltage occurs approximately 75 ms after current interruption. The error in the voltage reading introduced by its decay during 75 ms is of the order of 5% if the decay constant of the electrode potential (assuming an RC parallel circuit) were of the order of 1 s. This, for instance, could be given by a polarization of 10^5 ohm cm² and a capacitance of 10 uF/cm². This is a conservative approximation of error since transport processes in concrete are likely to be very slow, and the decay constants observed experimentally are much longer than 1 s.

Figure 1 is a schematic diagram showing the relationship of the three electrodes, the current control switches, and the power supply. The details of the operation of the computer controlled system are as follows. First, the three potentials V1, V2, and V3 are measured in the open circuit condition. A voltage, V, equal and opposite to V1 is then applied by the power supply. Switch, S1, in series with a 4.7 k ohms resistor, closes and the applied current, I2, through the circuit is determined by measuring V2 across a 100 ohm resistor (I2 = V2/100). The power supply voltage, V, is then adjusted to make I2 equal to zero so that applied current at the start of the measurement is zero. This current zeroing process is repeated more accurately when the second switch, S2, is closed. The entire current zeroing procedure occurs in less than 10 s and prepares the system for the polarization measurement.

There are two stages to the measurement as described earlier, the initial "setting" stage when the WE is polarized to -10 mV and the "holding" stage when the WE is maintained at -10 mV while the data are collected. During the "setting" period, the power supply voltage, V, is increased in small increments (28 mV during the first 5 mV of ΔE and 1.4 mV as it approaches ΔE) until $\Delta E = -10$ mV as measured at V3. This "setting" period can vary in length from a few seconds to a maximum of 5 minutes, depending on the amount of current necessary to polarize the WE. If the WE cannot reach a ΔE of -10 mV within 5 minutes, then the system is programmed to accept the ΔE reached at the end of the 5 minute period, a rare occurrence. Once $\Delta E = -10$ mV or the 5 minute maximum is reached, the system goes into the "holding" stage where ΔE is held constant and the WE potential, V3, is measured during every "current off" cycle and the applied current, I2, is determined during the "current on "cycle.

All data taken during the "holding" period are stored on the cassette mass memory, and each file is identified by name, date, and time. Table 1 is a typical printer listing from the computer memory displaying, on the first four groups of data, the potential between the WE and the CE, V1, the applied current, I2, the potential between the WE and the REF, V3, and elapsed time, in seconds, after each set of measurements during a run. The fifth and sixth groups of data are the minimum, maximum, average, standard deviation, and number of readings for the WE potential, V3, and the polarizing current, I2, respectively. The polarization resistance is then calculated from these data and listed as shown.

The voltage and current signals were independently monitored with a digital oscilloscope during a measurement period giving us a visual record of the progress of the measurement sequence. This record can be saved in the memory of the oscilloscope for later analysis. Furthermore, the recorded trace can be expanded in the X or Y axis for close examination of any portion of the trace. The following figures, generated using this capability, illustrate some of the details of the measurement. Figures 2 and 3 are magnified portions of the measurement sequence shown in its entirety in Figure 4. Figure 2a is a recording of the potential of a steel rod in concrete during the on-off cycling

of the current. The schematic representation of the recording in Figure 2b identifies the significant portions of the trace. The corresponding trace for current is shown in Figure 3a illustrating the "current on" and "current off" characteristics as a function of time. The idealized trace of the current is shown in Figure 3b. A typical trace of an entire polarization measurement, from which 2a and 3a were taken, is shown in Figure 4a, and illustrates the two important regions of the measurement, the "setting" and the "holding" portions. Figure 4b identifies the regions of this trace.

To evaluate the computer system's ability to eliminate iR error, a circuit simulating the WE, CE, and REF in a concrete environment, was constructed as illustrated in Figure 5. The resistive R component (not shown) in iR was added in series with the WE. Using known values of resistance for R in the range from from 1 to 5000 ohms, it was determined that 95% of the iR error is eliminated throughout the resistance range as shown in Figure 6. The straight line represents 100% elimination of iR and the six data points are the values eliminated by the computer system and almost lay on the plot of ideal correction for R.

The calculation of polarization resistance, corrosion rate, and weight loss are described in Appendix A. The computer system hardware and a listing of the program that controlled the measurement are shown in Appendix B. Except for the custom digital to analog converter board (Custom D/A Board), all hardware is commercially available. The program is fully documented with remark statements identifying the major routines and subsets of these routines.

LABORATORY MEASUREMENTS

Procedure - Laboratory

Cleaned and weighed steel rods 1.3 cm (0.5 in) in diameter and 15.2 cm (6 in) long encased in small cylindrical concrete cylinders 5 cm (2 in) in diameter and 15.2 cm (6 in) long as shown in Figure 7 were used for laboratory measurements. Two concrete mixes were used: one chloride free and one with chloride added as described in Table 2. After casting in molds, the concrete was mechanically vibrated to remove large air bubbles. Approximately 24 h later, the specimens were removed from the molds, and the protruding steel rod and the top surface of the concrete were coated with a primer and a rubber based coating. This was followed by immersing the specimens in either a simulated pore solution (0.6 M KOH, 0.2 M NaOH, and 0.001 M Ca(OH)₂), a sodium chloride saturated pore solution or a pure sodium chloride saturated solution (17). The surface area of steel imbedded in the concrete was approximately 62 cm² (9.6 in²).

In an effort to stimulate oxygen diffusion and, thereby, accelerate the corrosion process, some of the specimens were immersed in their respective solution for only two hours per day and allowed to air dry the remaining 22 h. The rest of the specimens were kept continuously immersed to reduce oxygen diffusion. The specimens and conditions of immersion are shown in Table 3. The solutions were contained in 2 liter stainless steel containers which also served as counter electrodes for the laboratory polarization measurements. Saturated calomel electrodes were used as reference. The period of exposure for these specimens was approximately 115 to 148 days, and measurements were made on each specimen once a day, 5 days per week.

At the end of the exposure period, the cylindrical specimens were removed from their environment and the imbedded steel rods immediately extracted from the concrete by breaking up the concrete cylinders. The rods were then cleaned in Clark's solution prior to weighing for determination of weight loss as described in ASTM Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (G1-81).

Results and Discussion - Laboratory

As an example of the results obtained on a day to day basis, the calculated corrosion rates of three specimens (#1, #3, and #7) are plotted as a function of time and illustrated in Figure 8. Specimen #1 was not expected to corrode since it was exposed to chloride-free conditions, however, some corrosion was expected on specimen #3 since it was cast in chloride-free concrete, but immersed into a solution containing chloride. Specimen #7 was exposed to the highest concentration of chloride with chloride in the concrete mix and in the immersion solution. Hence, specimen #7, was expected to undergo the most severe corrosion of the three illustrated. All three were maintained in conditions of alternate immersion to increase oxygen availability.

There were extensive fluctuations in the corrosion rate during the first few days, but after this initial period, the conditions stabilized. These data indicate that specimen #7 did exhibit the highest corrosion attack, and specimen #1 the least corrosion attack. Furthermore, the data also show that the corrosion rate of specimen #3 was between #1 and #7, as expected.

A test of these results was made by gravimetrically measuring the weight loss of steel for each rod as previously described and comparing this actual weight loss with the weight loss calculated from the electrochemical data. This comparison is shown in Table 4 where the twelve specimens are ranked by order of increasing gravimetric weight loss. Also listed is the corresponding average of the polarization resistance and the calculated weight loss during the period of exposure. Indeed, these data show that specimen #7 did experience the most weight loss, specimen #1 the least weight loss, and specimen #3 a weight loss in between specimens #1 and #7, as predicted by the electrochemical measurements. This listing shows an agreement between the gravimetrically determined weight loss and the calculated weight loss over the entire range encountered. A more graphic view of this relationship is shown in Figure 9 which displays a plot of gravimetric weight loss versus calculated weight loss. In general, the calculated weight loss data underestimated the actual weight loss.

The anodic and cathodic Tafel slopes were assumed to both equal 150 mV for the calculations of weight loss, and these values were picked on the basis of preliminary Tafel slope measurements made on steel in concrete indicating that both slopes were higher than those normally encountered in solutions. These same measurements further indicated that the anodic Tafel slope is larger than the cathodic slope. It is conceivable that these unusually high Tafel slopes result from the physical characteristics of concrete (voids in a matrix of concrete, sand and stone) where transport and diffusion processes can be expected to be very slow compared to those in solutions.

FIELD MEASUREMENTS

Procedure - Field

Though the problems encountered in the field measurements were completely different to those in the laboratory, in essence, the measurement and approach to obtaining the data were very similar. These similarities include the use of the same equipment programmed as previously described. Furthermore, the current and potential ranges encountered in both cases were of the same order of magnitude. The differences, on the other hand, were mostly mechanical. For example, the configuration of the electrodes in the field was as illustrated in Figure 10 showing the use of a Cu/CuSO4 reference electrode, a lead (Pb) ring for a counter electrode, and the steel reinforcing bar (rebar) in the concrete bridge deck as the working electrode. Note that the CE and the REF are on a wetted absorbent material (towel or sponge) and are supported by a clear plastic holder that facilitates alignment of the electrodes. The wetting agent used on the absorbent material is a solution of 1% liquid detergent in tap water which helped wet the concrete and dispersed the oil film on the surface of the bridge deck. Scrubbing with a wire brush proved useful in some cases where the concrete was heavily encrusted with soil. Another difference was the manner in which the connection was made to the WE. To be assured of good electrical contact to the rebar, a small 15 x 15 cm (6 x 6 in) portion of the concrete over the rebar was removed on each span of the bridge deck. The location of the exposed rebar was chosen to minimize maintenence problems during the several months of the measurements. These rebar contact points were located off the traffic lanes on the centerline separating oncoming traffic. Measurements made on sections of bridge decks early in the program revealed that the grid of rebar in a bridge deck is electrically continuous, and making a contact anywhere on this grid provides electrical contact to the entire grid. Thus, measurements could be made on all lanes of traffic from one rebar contact point. The one difference that generated the most serious problems was the electronic equipment damage resulting from mechanical vibration generated during transportation between the laboratory and the field. Vibration caused

7

breakage of wires resulting in equipment failure at inopportune moments. This destructive effect was reduced by carefully packing the equipment in shock absorbing foam material during transit. Cable and contact continuity had to be checked constantly. Using the dummy cell shown earlier in Figure 5, the equipment and cables were checked before and after every series of measurements.

Three bridges located in Frederick County, MD, were chosen for the study on the basis of age, known history, and condition. Thus, bridge number 10029 was a 54 year old structure with fine cracks scattered over the surface of the deck, but otherwise in good condition. Bridge number 10100, along a major interchange, was 17 years old and appeared to be in excellent condition. The newest bridge, number 10059, was 13 years old and also in good condition, but cracks are beginning to appear along the rebar positions. Deicing salts for snow removal are used on all three bridges.

Three measurents were made on each bridge span every two weeks over a four month period during the summer. The location of each measurement was permanently marked on the bridge deck surface so that the measurements could be repeated at the same location each time.

Results and Discussion - Field

The first 90 days of the four month period were spent in improving the equipment and developing our ability to make the measurements in the field. One problem encountered, not yet mentioned, was that of electrical noise in the measurement, and unfortunately, eliminating this interference was a time consuming process. The noise can be placed in three categories and listed in order of discovery and elimination. First, there was interference from alternating current (a.c.) sources; second, we had interference from our gasoline motor driven a. c. generator used to power the digital oscilloscope monitoring the measurements; and finally, we discovered interference from current generated by the corrosion of the counter electrode. The first problem, a. c. interference, was relatively easy to eliminate through shielding of all cables. However it was several weeks after starting the measurements that the second problem, effects of the generator, were discovered. This interference took the form of direct current (d. c.) coming through the power line and a. c. voltage spikes at random times that caused strange things to happen to the data. After extensive filtering attempts, changes in configuration of the equipment, and much time, it was finally decided that removing the offending generator was the best alternative, and a battery powered oscilloscope was used for monitoring instead. The third problem was the irreproducibility of the WE potential. Investigation revealed that localized corrosion of the steel counter electrode plate on the detergent wetted towel was generating an electric current that affected the potential measurement. By trial and error it was discovered that a lead (Pb) CE reduced the effect to a tolerable level.

After this initial period, measurements were continued, and the resulting data are displayed in Table 5. As this Table reveals, data were collected on three dates, October 8, October 23, and November 6. It was possible to make measurements on bridge number 10029 on only one occasion during this period because of weather constraints. Data for two positions on bridge number 10100 are missing because of problems (e.g. electrical continuity) that developed during those measurements. The results show that the 54-year old bridge, number 10029, on the average exhibited the lowest average corrosion rate (0.5 MDD) of the three bridges. The 17 year old bridge, number 10100, had an average corrosion rate of 1.1 MDD, and the 13 year old bridge, number 10059, exhibited the highest average corrosion rate of 1.9 MDD (Milligrams per square Decimeter per Day).

It is difficult to assess the reliability or accuracy of these data obtained through these preliminary field measurements. We hesitated to carry out a coring examination of the rebar because of the destructive nature of this action and the very limited amount of data collected. However, the results can be compared to the visual appearence of the bridge deck surface in the immediate vicinity of the measurement. On this basis we can make the following observations. Visual examination of the surfaces of the bridge decks revealed the following. The 54-year old bridge, though it has suffered wear and tear through the years, is in surprisingly good condition with small cracks randomly scattered over the surface of the deck. The 17 year old bridge appears to be relatively crack-free with little evidence of wear to the original surface, and is judged to be in good condition. The 12 year old bridge, in general, looks good, but a close examination of the surface reveals cracking of the concrete above and in line with many of the rebar. This crack alignment is not evident on the other two bridges. Thus, the visual appearance of the bridge deck surfaces tends to support the electrochemical data. In spite of this apparent agreement between the electrochemical measurements and the visual appearance of the bridge deck, we are reluctant to place much meaning to the results because of the very limited amount of useful data obtained. Nevertheless, the exercise of making this corrosion measurement in the field was very valuable in providing information on the problems encountered.

SUMMARY

In order to evaluate the effectiveness of bridge deck protection systems and gain a better understanding of corrosion processes in concrete, a fast, reliable, nondestructive means of measuring the corrosion of steel in concrete is needed. In an effort to meet this need, NBS undertook a study of the application of an electrochemical technique to measure the corrosion of steel in concrete. Using a portable computer as a basis for control of the measurment, a procedure was developed that applied the polarization resistance technique and current interruption to the measurement. Through this approach, measurements of corrosion of steel in concrete were carried out in the laboratory indicating that there is a relationshop between the polarizatuon resistance measured and the corrosion observed. This same approach was then applied to the measurement of corrosion of steel rebar in a bridge deck. After overcoming many problems of mechanical breakdown of the equipment and electrical interference, the measurement was successfully carried out on three bridges in Frederick County, MD. This preliminary venture into field measurements indicated that the corrosion measurement can be performed, and furthermore, revealed many of the obstacles that can be expected.

ACKNOWLEDGEMENT

We wish to thank Dr. Ugo Bertocci for his many helpful discussions and suggestions; Mr. Denzil Mathews for his assistance in performing the measurements; Mr. Wayne Clingan and Mr. Edward W. Feeser of the Maryland Department of Transportation for their cooperation in providing the bridges and traffic control; and finally, Dr. Paul Y. Virmani for his guidance and financial support through the Federal Highway Administration.

REFERENCES

1. Tonini, D. E. and Gaidis, J. M., Eds., Corrosion of Reinforcing Steel in Concrete, ASTM STP 713, American Society for Testing and Materials, 1980.

2. Tonini, C. E. and Dean, S. W., Eds., Chloride Corrosion of Steel in Concrete, ASTM STP 629, American Society for Testing and Materials, 1977.

3. Slater, J. E., Corrosion of Metals in Association with Concrete, The Metal Properties Council, Inc., N. Y., July 1981.

4. Gouda, V. K. and Monrad, H. M., Galvanic Cells Encountered in the Corrosion of Steel Reinforcement; Parts I-IV, Corrosion Science, 15, 1975

5. Whiting, D., Influence of Concrete Materials, Mix, and Construction Practices on the Corrosion of Reinforcing Steel, Materials Performance, NACE, 12, 1978.

6. Gjorv, O. E., Vennesland, O. et al., Diffusion of Dissolved Oxygen Through Concrete, Proceedings NACE '76, Paper No. 17, 1976.

7. Berman, H. A., The Effect of Sodium Chloride on the Corrosion of Concrete Reinforcing Steel and the pH of Sodium Hydroxide Solution, J. American Concrete Inst., 72, 4, 1975.

8. Hausmann, D. A., Steel Corrosion in Concrete, How Does it Occur, Materials Protection, 6, 11, 1967.

9. Escalante, E. and Ito, S., A Bibliography on the Corrosion and Protection of Steel in Concrete, NBS SP 550, National Bureau of Standards, August 1979.

10. Locke, C. E. and Siman, A., Electrochemistry of Reinforcing Steel in Salt-Contaminated Concrete, ASTM STP 713, American Society for Testing and Materials, 1980.

11. Hansson, C. M., Comments on Electrochemical Measurements of the Rate of Corrosion of Steel in Concrete, Cement and Concrete Research, Pergamon Press, 14, 1984.

12. Gonzalez, J. A., Algaba, S., and Andrade, C., Corrosion of Reinforcing Bars in Carbonated Concrete, British Corrosion J., <u>15</u>, 3, 1980.

13. Escalante, E. Ito, S., and Cohen, M., Measuring the Rate of Corrosion of Reinforcing Steel in Concrete, NBSIR 80-2012, National Bureau of Standards, March 1980.

14. Escalante, E., Cohen, M. and Kahn, A. H., Measuring the Rate of Corrosion of Reinforcing Steel in Concrete, NBSIR 84-2853, National Bureau of Standards, April 1984.

11

15. Britz, D. and Crocke, W. A., Elimination of IR-Drop in Electrochemical Cells by the Use of a Current Interruption Potentiostat, Electroanalytical Chemistry and Interfacial Electrochemistry, Elsevier Sequoai S.A., 108, 1980.

16. Williams, L. F. G. and Taylor, R. J., IR Correction; Parts I and II, J. Electroanalytical Chemistry, Elsevier Sequoai S. A., 108, 1980.

17. Wheat, H. G. and Eliezer, Z., Some Electrochemical Aspects of Corrosion of Steel in Concrete, Corrosion, 41, 11, 1985.

Information Printed During Polarization Measurement

Specimen ID Date Time Open Circuit Measurement at t=0 : WE Potential, V3 Current, I2 WE-CE Potential, V1 Time Closed Circuit Measurement after Current Zeroing: WE Potential, V3 Current, I2 WE-CE Potential, V1 Time, s First Measurement During "Holding": WE Potential, V3 Current, I2 WE-CE Potential, V1 Time, s Last Measurement During "Holding": WE Potential, V3 Current, I2 WE-CE Potential, V1 Time, s Summary of WE Potential During "Holding": Minimum V3 Maximum V3 Average V3 Standard Deviation V3 Number of Readings Summary of Applied Current During "Holding": Minimum I2 Maximum I2 Average I2 Standard Deviation I2 Number of Readings Polarization Resistance, ohms (V3_{Avg.} - V3)_{0.C.}/ 12_{Avg.}

Composition of Concrete Mixes (Weight Ratio of Components to Cement)

	Without Chloride	With Chloride
Cement	1	1
Sand	1.7	1.5
Pea Gravel	2.5	2.3
Sodium Chloride	none	0.06
Water	0.5	0.4

CONDITIONS OF EXPOSURE

SPEC ! NO !	TYPE OF IMMERSION	CONDITION
1 !	ALTERNATE	C1 FREE CONCRETE C1 FREE PORE SOLUTION
2 !	CONTINUOUS	C1 FREE CONCRETE C1 FREE PORE SOLUTION
3 !	ALTERNATE	Cl FREE CONCRETE Cl IN PORE SOLUTION
4 ! !	CONTINUOUS	C1 FREE CONCRETE C1 IN PORE SOLUTION
! 5 ! !	CONTINUOUS	C1 IN CONCRETE C1 IN PORE SOLUTION
6 ! !	CONTINUOUS	C1 IN CONCRETE C1 IN PORE SOLUTION
! 7 ! !	ALTERNATE	Cl IN CONCRETE Cl IN PORE SOLUTION
8! 8!	ALTERNATE	C1 IN CONCRETE C1 IN PORE SOLUTION
9 ! 9 !	CONTINUOUS	Cl IN CONCRETE Cl IN DISTILLED WATER
! 10 ! !	CONTINUOUS	Cl IN CONCRETE Cl IN DISTILLED WATER
! 11 ! !	ALTERNATE	CI IN CONCRETE CI IN DISTILLED WATER
! 12 ! !	ALTERNATE !	C1 IN CONCRETE C1 IN DISTILLED WATER

(Ba = Bc = 0.15 V)

SPEC NO.	TIME DAYS	AVG Rp OHMS	GRAVIMETRIC WT LOSS g	CALCULATED WT LOSS g	STD DEV SUM g	
1	142	38042	0.0011	0.0054	0.00214	
2	148	13210	0.0083	0.0235	0.01004	
10	115	10307	0.0228	0.0179	0.00231	
9	115	3606	0.0345	0.0326	0.00282	
11	115	4740	0.0357	0.0253	0.00239	
12	109	3091	0.0466	0.0348	0.00325	
6	148	1556	0.1700	0.4258	0.10582	
3	138	1630	0.1913	0.0970	0.01015	
4	148	1919	0.2522	0.1195	0.01293	
5	142	895	0.4149	0.3678	0.09256	
8	148	362	0.4510	0.3650	0.02841	
7	148	231	0.4771	0.5427	0.03947	

WEIGHT LOSS AND POLARIZATION RESISTANCE DATA

		A	CAL AT S	SIX POSI	TIONS	SION RA	ATE, EE B	MDD BRIDGES	
DAI	===: ?E		SPA	N 1				SPAN 2	
		A1	-=== POSI -===	TION A3	A4		==== Bl ====	POSITION B3	B4
		ROUTE	28	BRIDGE	(1931)	NUMBE	R 10	029	
OCT	8			-	-				_
OCT	23	0.6	5	0.3			0.8	0.3	0.6
NON	6	(BRI	IDGE	UNDER	WATER	!!)		-	-
	Ave	erage (Cori	rosion H	Rate =	0.5			
		ROUTE	15	BRIDGE	(1968)	NUMBE	R 10	0100	
OCT	8	0.4	 1	3.2	0.5		1.3	2.6	1.7
OCT	23	0.8	3	0.5	1.3		1.3	3 1.0	0.6
NOV	6			0.8	1.0			0.9	0.2
	Ave	erage (Cori	rosion H	Rate =	1.1			
							====		
		ROUTE	80	BRIDGE	(1972)	NUMBE	R 10	059	
OCT	8	3.6	 5	2.8	2.3				
OCT	23	3.5	5	1.3	1.2		0.7	0.8	2.1
NOV	6	3.3	1	2.1	2.6		0.6	5 1.2	1.0
	Av	erage (Cori	cosion H	Rate =	1.9			

Figure 1

(a)

Time,s

(b)

(a)

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Calculated Corrosion Rate, MDD

Figure 10

APPENDIX A

Corrosion Calculations

Corrosion calculations are based on Stern and Geary's (1) equation:

^Ba ^Bb dv --- $2.3026(B_a+B_c)I_{corr}$ di i-→0 dv where --- is the slope of the polarization curve near the di corrosion potential, ohms B_a the anodic Tafel slope, V B_c the cathodic Tafel slope, V icorr the corrosion current, A let: $R_p = --$ where $R_{\rm p}$ is polarization resistance, ohms then: $i_{corr} = \frac{B_a B_c}{2.3026(B_a+B_c)R_p}$ (equation 1) Assuming $B_a = B_c = 0.15 V$, $i_{corr} = \frac{0.03257}{R_p}$ then: · (equation 2)

where i corr is the corrosion current, A

Polarization Resistance, R_p , is calculated from the values obtained during a measurement sequence.

$$R_{p} = \frac{(V_{3}avg. - V_{3}o.c.)}{I_{avg.}^{2}}$$
 (equation 3)

where $V3_{0.c.}$ the open circuit potential (at t=0) of the working electrode, V

> V3_{avg.} is the average polarized potential of WE during the "holding" period, V

> $I2_{avg}$ is the average current applied to the WE

during the "holding" period.

- R_p represents a period of 3.5 min ("holding" period) when the polarization data are collected, but it is assumed that this value of
- Rp also represents the entire period, t, between measurements (e.g. 24, 48, 72 hrs, etc.). This assumption allows the calculation of weight loss for the entire time of exposure of the WE. Using Faraday's law (2):

W = kticorr

(equation 4)

where W is weight loss, the amount of metal reacted, g
 t the time period of corrosion, s
 k the electrochemical constant, g/C (grams/coulomb)

For Fe -- Fe^{±±} + 2 e ; $k = 2.8938 \times 10^{-4}$ g/C

Combining equations 1 and 4:

$$W = \frac{B_a B_c kt}{2.3026(B_a+B_c)R_p}$$

substituting:
$$W = \frac{0.15(0.15)(2.8938 \times 10^{-4})t}{2.3026(0.15 + 0.15)R_p}$$

 $9.4257 \times 10^{-6} t$
 $W = \frac{9.4257 \times 10^{-6} t}{R_p}$ (equation 5)

Total weight loss, W_{total}, is the sum of all the "daily" weight losses,

Wdaily, calculated from Rp(daily)

The term "daily" is used loosely since t_{daily} can also represent a two-day weekend when measurements were not performed.

If we know the area of the working electrode being polarized, corrosion rate, MDD, can be calculated.

W MDD = -----A_{WE}t

where: A is the area of the working electrode, dm^2 t the period of exposure, d

Calculations of corrosion rates on the bridge decks were based on an area of rebar of 60.3 sq.cm which is twice the area of projection from a 6 cm (2.5 in) diameter CE on a 1.6 cm (5/8 in) rebar with a 5 cm (2 in) concrete cover. The time period was 30 days, the period of the final measurements.

REFERENCES

1. Stern, M. and Geary, A. L., Electrochemical Polarization, A Theoretical Analysis of the Shape of {olarization Curves, J Electrochemical Society, 104, 1, p56-63, 1957.

2. Uhlig, H. H. and Revie, R. W., Corrosion and Corrosion Control, third edition, Joln Wiley and Sons, N. Y., 1985.

APPENDIX B1

Detail of 3421A Data Logger

APPENDIX B3

APPENDIX B4

20 ! ERIC P WHITENTON 30 ! NATIONAL BUREAU OF STANDARDS 40 ! MARCH 1986 50 ! DOCUMENTED VERSION OF 'COR6' 60 ! 70 ! 90 DISP 'SETTING UP COMPUTER' 100 OPTION BASE 1 110 GOSUB 3920 ! HPIL CONFIGURATION 120 DIM E\$[2] ! CARRIAGE RETURN / LINE FEED 130 E\$=CHR\$(13)&CHR\$(10) 140 DIM F\$[20] ! CASSETTE FILE NAME 150 DIM D(4,4) ! DATA ARRAY FOR WHOLE TEST 160 ! D(1, *) - V1170 ! D(2,*)-12 180 ! D(3, *) - V3190 ! D(4, *) - TIME200 ! D(*,1)-OPEN CIRCUIT 210 ! D(*,2)-INITIAL 220 ! D(*,3)-SET 230 ! D(*,4)-FINAL 240 P=0 ! D(*,F) FOR SUBROUTINE 'READALL' 250 M=0 ! MODE FOR SUBROUTINE 'READALL' CARD FOR D/A (REALLY DIGITAL I/O BOARD DRIVING D/A) 260 DIM C\$[6] ! 270 C\$=";WRT2," 280 B=0 ! BINARY VALUE OF V, THE D/A VOLTAGE TEMP BINARY VALUES BINARY TO VOLT SLOPE FOR V BINARY TO VOLT INTERCEPT FOR V 290 BO, B1, B2=0 ! 300 P1=0 ! 310 P2=0 ! 320 S=0 ! ERROR STATUS 330 DIM S(10) ! COUNTER FOR EACH TYPE OF ERROR 340 E=-1 ! ERROR LOCATION 350 T=0 ! TARGET VOLTAGE FOR V3 360 D=.01 ! ATTEMPTED DELTA VOLTAGE FOR V3 USED IN SUBROUTINE SET V3 -370 K1=.5 @ K2=20 ! WHILE SETTING V3, IF THE PRESENT V3 IS MORE THAN D*K1 AWAY FROM T, THEN CHANGE B BY K2 UNITS, ELSE CHANGE B BY 1 UNIT 380 !

 420
 11,T2=0 !
 ELSE CHANGE

 420
 C1,C2=0 !
 TEMP TIMES

 430
 F1,F2,F3,F4=0 !
 TEMP COUNTERS

 440
 Q0,Q1,Q2,Q3,Q4=0 !
 TEMP FLAGS

 450
 Q5,Q6,Q7,Q8,Q9=0 !
 TEMP VAR

 460
 DIM Q\$[100] !
 TEMP STETUTE

 470
 DIM Q1\$[30].Q24F700
 TEMP STETUTE

 390 ! 480 R2=100 ! VALUE OF RESISTOR USED TO MEASURE 12 490 Z2=0 ! I2 ZERO 500 Z4=0 ! TIME ZERO STATS FOR V3, 12 DURING HOLD 510 DIM V(5), I(5) ! (1)-MIN 520 ! 530 ! (2)-MAX (3)-AVE 540 ! 550 ! (4)-STD 560 ! (5)-# PTS FILE ASSIGNMENTS 570 ! IF F\$<>"NO" THEN 580 ! #1-A BASIC FILE CALLED 'TTTT' FOR DATA WHILE 590 ! 600 ! WHILE HOLDING V3

#2-A TEXT FILE CALLED F\$ GENERATED FROM FILE 610 ! #1 WHEN TEST IS OVER 620 ! AT END OF TEST FILE #2 IS COPIED ONTO CASSETTE 630 ! AND BOTH FILE #1 & #2 ARE ERASED IN MEMORY. 640 ! IF YOU STOP THE PROGRAM EARLY, THEN ONE OR 650 ! BOTH OF THE FILES MAY BE LEFT IN MEMORY AND 660 ! EVENTUALLY HAVE TO BE FURGED. 670 ! 680 ! 690 FOR C2=1 TO 4 ! CLEAR ARRAYS 700 FOR C1=1 TO 4 @ D(C1,C2)=0 @ NEXT C1 710 NEXT C2 720 FOR C1=1 TO 5 @ V(C1), I(C1)=0 @ NEXT C1 730 GOSUB 3420 ! CLEAR ERROR 740 GOSUB 3480 ! INITIALIZE DATA LOGGER 750 GOSUB 3720 ! CALIBRATE D/A & SET P1,P2 760 IF S<>0 THEN E=0 @ GOSUB 1860 @ GOTO 740 770 SENDIO ':DL', 'UNL, LAD#', 'F1RA1Z1N4'&E\$! SET UP VOLTMETER CONNECT WIRES TO STRUCTURE 780 ! 790 DISP "CONNECT WIRES" @ BEEP 280,1 @ Q\$=KEY\$ 800 IF KEY\$=" ' THEN GOTO 800 GET FILE NAME FOR HOLD V3 DATA 810 ON ERROR GOTO 810 ! 820 BEEP 280,1 @ INPUT 'enter cassette file name or NO ';F\$ 830 IF F\$<>"NO" THEN ASSIGN # 2 TO F\$, TEXT 840 OFF ERROR 850 IF F\$<>"NO" THEN PRINT F\$ 860 FRINT DATES @ FRINT TIMES ! PRINT DATE, TIME 870 Z2=0 @ Z2=FNB @ Z4=TIME ! SET ZEROES 880 P=1 @ M=0 @ GOSUB 3000 ! READALL 890 IF S<>0 THEN E=1 @ GOSUB 1860 @ GOTO 880 900 B=INT(F1*D(1,1)+F2+.5) @ GOSUB 3340 ! SETV, SO V. CLOSE TO V1 910 IF S<>0 THEN E=2 @ GOSUB 1860 @ GOTO 900 920 GOSUB 3560 ! CLOSE S1, CONNECTING D/A, THRU RES. 930 IF S<>0 THEN GOSUB 1860 @ GOTO 920 940 T1=120 @ GOSUB 2120 ! ZEROI FOR A MAX OF T1 SECONDS 950 IF S<>0 THEN E=3 @ GOSUB 1860 @ GOTO 940 960 GOSUB 3600 ! CLOSE S2, CONNECTING D/A, NO RES. 970 IF S<>0 THEN GOSUB 1860 @ GOTO 960 980 GOSUB 3640 ! OPEN S1, DONT NEED ANY MORE 990 IF S<>0 THEN GOSUB 1860 @ GOTO 980 1000 T1=120 @ GOSUB 2120 ! ZEROI FOR A MAX OF T1 SECONDS 1010 IF S<>0 THEN E=4 @ GOSUB 1860 @ GOTO 1000 1020 P=2 @ M=1 @ GOSUB 3000 ! READALL 1030 IF S<>0 THEN E=5 @ GOSUB 1860 @ GOTO 1020 1040 T=D(3,1)+D ! TARGET VOLTAGE FOR V3 1050 PRINT 1060 PRINT 'TARGET VOLTAGE' 1070 FRINT T 1080 PRINT 1090 T1=300 @ T2=3 @ GOSUB 2330 ! SET V3 FOR T1 SECONDS, 1100 ! WITH T2 SECOND TEST-ADJUST CYCLES 1110 IF S<>0 THEN E=6 @ GOSUB 1860 @ GOTO 1040 1120 P=3 @ M=1 @ GOSUB 3000 ! READALL 1130 IF S<>0 THEN E=7 @ GOSUB 1860 @ GOTO 1120 1140 T1=180 @ T2=3 @ GDSUB 2630 ! HOLD V3 FOR T1 SECONDS, 1150 ! WITH T2 SECOND TEST-ADJUST CYCLES 1160 IF S<>0 THEN E=8 @ GOSUB 1860 @ GOTO 1140 1170 P=4 @ M=1 @ GOSUB 3000 ! READALL 1180 IF S<>0 THEN E=9 @ GOSUB 1860 @ GOTO 1170 1190 GOSUB 3480 ! INITIALIZE DATA LOGGER 1200 IF S<>0 THEN E=10 @ GOSUB 1860 @ GOTO 1190

1210 GOSUB 1570 ! PRINT RESULTS 1220 IF F\$="NO" THEN GOTO 1370 ! IF F\$<>'NO' THEN CONVERT TEMP 1230 ! FILE TO LOTUS .PRN FILE AND 1240 ! SAVE ON CASSETTE 1250 DELAY O 1260 READ # 1,1 ; Q1 1270 FOR Q2=1 TO Q1 1280 READ # 1,10*02 ; 03,04,05 1290 Q\$=FNS\$(Q3,8,10)&FNS\$(Q4,2,10)&FNS\$(Q5,3,10) 1300 DISP Q\$ @ PRINT # 2,02 ; Q\$ 1310 NEXT Q2 1320 DELAY 1 @ PURGE 'TTTT' @ Q\$=F\$ 1330 DISP 'PUTTING DATA ON CASSETTE' @ ON ERROR GOTO 1750 1340 COPY F\$ TO Q\$&':CA' 1350 OFF ERROR 1360 FURGE F\$ 1370 DISP "DONE" @ BEEP 280,1 @ Q\$=KEY\$! DONE 1380 FOR C1=1 TO 5 @ PRINT @ NEXT C1 1390 IF KEY\$='' THEN GOTO 1390 1400 GOTO 680 ! LOOP BACK FOR ANOTHER TEST 1410 END 1420 ! 1440 ! 1450 ! *** CENTER NUMBER IN STRING *** A FUNCTION 1460 ! Q6 IS NUMBER TO FUT IN STRING 1470 ! 07 IS LOCATION OF DECIMAL POINT 1480 ! Q8 IS STRING WIDTH 1490 ! MODIFIES 01\$,02\$,00,09 1500 DEF FNS\$(Q6,Q7,Q8) 1510 01\$[1,08]=" " @ Q9=10^(Q8-Q7) @ 02\$=STR\$(INT(.49+Q6*Q9)/Q9) 1520 09=FOS(02\$,".") @ 00=LEN(02\$) @ IF 09=0 THEN 09=00 1530 Q9=Q7-Q9+1 @ IF Q9>0 THEN Q1\$[Q9,Q9+Q0-1]=Q2\$ 1540 FNS\$=01\$ 1550 END DEF 1560 ! 1570 ! *** PRINT RESULTS *** A SUBROUTINE 1580 ! VIEWS D(*,*),V(*),I(*) 1590 ! MODIFIES C1, C2, Q1, Q2 1600 DISP 'PRINTING RESULTS' 1610 PRINT 1620 FOR C2=1 TO 4 1630 FOR C1=1 TO 4 @ PRINT D(C1,C2) @ NEXT C1 1640 FRINT 1650 NEXT C2 1660 FOR C1=1 TO 5 @ PRINT V(C1) @ NEXT C1 1670 PRINT 1680 FOR C1=1 TO 5 @ PRINT I(C1) @ NEXT C1 1690 PRINT @ FRINT "COR. RES. IN OHMS" 1700 IF I(3)=INF OR V(3)=INF THEN PRINT "NOT COMPUTABLE" @ GOTO 1730 1710 Q1=I(3)-D(2,1) @ Q2=D(3,1)-V(3) 1720 IF Q1=0 THEN PRINT SGN(Q2) * INF ELSE PRINT Q2/Q1 1730 RETURN 1740 ! 1750 ! *** CASSETTE ERROR *** NOT A SUBROUTINE - EXITS WITH A GOTO 1760 ! MODIFIES Q\$ 1770 ! CALLS HEIL CONFIGURATION 1780 PRINT @ PRINT 'CASSETTE ERROR' 1790 PRINT 'TRY AGAIN' @ PRINT 1800 INPUT 'enter cassette file name ';Q\$

1810 GOSUB 3920 ! HPIL CONFIGURATION 1820 IF @\$="NO" THEN GOTO 1350 1830 PRINT 'NEW FILE NAME' @ PRINT Q\$ @ PRINT 1840 GOTO 1330 1850 ! 1860 ! ***ERROR ROUTINE*** NOT ALWAYS A SUBROUTINE - EXITS WITH EITHER A FOP, GOTO OR A RETURN 1870 ! 1880 ! MANY OF THE VALUES OF S(*) LEFT UNDEFINED FOR FUTURE EXPANSION 1890 ! MODIFIES S,S(*),E,Q0 1900 ! CALLS CLEAR ERROR, INITIALIZE DATA LOGGER 1910 IF S(5) THEN PRINT "SOFTWARE TIME OUT (";S(5);")" 1920 IF S(6) THEN PRINT "DELAY BETWEEN READINGS TO SHORT (";S(6);")" 1930 IF S(7) THEN PRINT "DATA LOGGER ERROR (";S(7);")" 1940 PRINT "LAST ERROR" 1950 IF E=0 THEN PRINT "WHILE SETTING UP FOR TEST" 1960 IF E=1 THEN PRINT "WHILE READING OPEN CIRCUIT VALUES" 1970 IF E=2 THEN FRINT "WHILE SETTING INITIAL V1" 1980 IF E=3 THEN PRINT "WHILE COURSE ZEROING 12" 1990 IF E=4 THEN PRINT "WHILE FINE ZEROING I2" 2000 IF E=5 THEN PRINT "WHILE READING INITIAL VALUES" 2010 IF E=6 THEN PRINT "WHILE SETTING V3" 2020 IF E=7 THEN PRINT "WHILE READING SET VALUES" 2030 IF E=8 THEN PRINT "WHILE HOLDING V3" 2040 IF E=9 THEN PRINT "WHILE READING FINAL VALUES" 2050 IF E=10 THEN PRINT "AFTER TEST OVER" 2060 00=0 @ INPUT "(1) AGAIN / END (2) ":QO 2070 DISP 2080 IF QO=1 THEN GOSUB 3410 @ RETURN 2090 IF Q0=2 THEN GOSUB 3480 @ GOSUB 3410 @ FOF @ GOTO 1210 2100 GOTO 2060 2110 ! 2120 ! *** ZEROI *** A SUBROUTINE 2130 ! VIEWS T1 2140 ! MODIFIES Q1, Q2, Q3, Q4, F1, F2, F3, F4, S, S(5), B 2150 ! CALLS FNB, SETV 2160 DISP 'ZEROING 12' 2170 Q1=S ! SAVE OLD STATUS 2180 Q2=0 ! PRESENT I2 2190 F1=0 @ F2=10 @ F3=20 ! OVER/UNDER ZERO FLAGS 2200 Q3=TIME ! START TIME 2210 ! LOOP 2220 04=02 ! LAST I2 2230 Q2=FNB ! PRESENT I2 2240 IF S<>Q1 THEN RETURN 2250 F4=F3 @ F3=F2 @ F2=F1 @ F1=SGN(Q2) 2260 IF F1=0 THEN RETURN 2270 IF F4=F2 AND F3=F1 AND ABS(Q2)<=ABS(Q4) AND F1<>F2 AND F3<>F4 THEN RETURN 2280 IF TIME-Q3>=T1 THEN S=S+1 @ S(5)=S(5)+1 @ RETURN 2290 B=B+F1 @ GOSUB 3340 ! SETV 2300 IF S<>Q1 THEN RETURN 2310 GOTO 2210 2320 ! 2330 ! *** SET V3 *** A SUBROUTINE 2340 ! VIEWS D, T1, T2, K1, K2 2350 ! MODIFIES Q1, Q2, Q3, Q4, F1, F2, F4, T, B, S, S(6) 2360 ! CALLS OPEN S2, CLOSE S2, FNC, SETV 2370 DISP 'SETTING V3' 2380 Q1=S ! SAVE OLD STATUS 2390 Q2=TIME ! START TIME 2400 Q3=TIME ! NEXT TIME

```
2410 F4=0 ! REACHED TARGET FLAG
2420 GOSUB 3680 ! OPEN 52
2430 F1, F2=SGN(FNC-T)
2440 GOSUB 3340 ! CLOSE S2
2450 IF S<>01 THEN RETURN
2460 ! LOOP
2470 IF F1<>F2 AND F4=0 THEN F4=1 @ PRINT "TARGET REACHED" @ PRINT TIME$ @ PRINT
2480 IF TIME-02<T1 THEN GOTO 2510
2490 IF F4=0 THEN T=FNC @ PRINT "NEW TARGET" @ PRINT T @ PRINT
2500 RETURN
2510 F2=F1
2520 GOSUB 3680 ! OPEN S2
2530 Q4=FNC-T @ F1=SGN(Q4)
2540 IF ABS(04)>K1*D THEN B=B+K2*F1 ELSE B=B+F1
2550 GOSUB 3340 ! SET v
2560 GOSUB 3600 ! CLOSE S2
2570 IF S<>01 THEN RETURN
2580 Q3=Q3+T2 ! NEXT TIME
2590 IF TIME>03 THEN S=S+1 @ S(6)=S(6)+1 @ RETURN
2600 IF TIME<03 THEN GOTO 2600
2610 GOTO 2460
2620 !
2630 ! *** HOLD V3 *** A SUBROUTINE
2640 ! VIEWS T, T1, T2, F$
2650 ! MODIFIES FILE #1,01,03,04,05,06,07,8,5,5(6),V(*),I(*)
2660 ! CALLS OPEN S2, CLOSE S2, SETV, FNC, FNB
2670 DISP 'HOLDING V3'
2680 IF F$<>"NO" THEN ASSIGN # 1 TO 'TTTT', BASIC
2690 Q1=S ! SAVE OLD STATUS
2700 V(1)=INF @ V(2)=-INF @ V(3)=0 @ V(4)=0 @ V(5)=0
2710 I(1)=INF @ I(2)=-INF @ I(3)=0 @ I(4)=0 @ I(5)=0
2720 Q3=TIME ! START TIME
2730 Q4=TIME ! NEXT TIME
2740 ! LOOP
2750 Q5=FNB @ Q7=B
2760 GOSUB 3680 ! OPEN S2
2770 Q6=FNC
2780 B=B+SGN(Q6-T) @ GOSUB 3340 ! SETV
2790 GOSUB 3600 ! CLOSE S2
2800 IF S<>01 THEN GOTO 2910
2810 I(1)=MIN(I(1),Q5) @ I(2)=MAX(I(2),Q5)
2820 I(3)=I(3)+Q5 @ I(4)=I(4)+Q5^2 @ I(5)=I(5)+1
2830 V(1)=MIN(V(1),Q6) @ V(2)=MAX(V(2),Q6)
2840 \vee (3) = \vee (3) + 0.6 \oplus \vee (4) = \vee (4) + 0.6^2 \oplus \vee (5) = \vee (5) + 1
2850 IF F$<>"NO" THEN PRINT # 1,1 ; I(5) @ PRINT # 1,10*I(5) ; Q7,Q5,Q6
-2860 IF TIME-Q3>=T1 THEN GOTO 2910
2870 Q4=Q4+T2
2880 IF TIME>04 THEN S=S+1 @ S(6)=S(6)+1 @ GOTO 2910
2890 IF TIME< Q4 THEN GOTO 2890
2900 GOTO 2740
2910 ! COMPUTE STATS & RETURN
2920 Q3=I(3) @ Q4=I(4) @ Q5=I(5)
2930 IF 05>=1 THEN I(3)=03/05 ELSE I(3)=INF
2940 IF Q5>=2 THEN I(4)=((Q5*Q4-Q3*Q3)/(Q5*(Q5-1)))^.5 ELSE I(4)=INF
2950 Q3=V(3) @ Q4=V(4) @ Q5=V(5)
2960 IF 05>=1 THEN V(3)=03/05 ELSE V(3)=INF
2970 IF Q5>=2 THEN V(4)=((Q5*Q4-Q3*Q3)/(Q5*(Q5-1)))^.5 ELSE V(4)=INF
2980 RETURN
2990 !
3000 ! *** READ ALL *** A SUBROUTINE
```

```
3010 ! VIEWS Z4.M.F
3020 ! MODIFIES D(*,P)
3030 ! CALLS FNA, FNB, FNC, OPEN S2, CLOSE S2
3040 DISP 'READING V1, 12, V3, TIME'
3050 D(1,P)=FNA
3060 D(2,P)=FNB
3070 D(4,P)=TIME-Z4
3080 IF M=1 THEN GOSUB 3680 ! OPEN S2
3090 D(3,P)=FNC
3100 IF M=1 THEN GOSUB 3600 ! CLOSE S2
3110 RETURN
3120 !
3130 ! *** READ V1 *** A FUNCTION
3140 ! VIEWS E$
3150 DEF FNA
3160 SENDIO ':DL', 'UNL, LAD#', 'CLS2; T2'&E$
3170 FNA=-VAL(ENTIO$(':DL','UNL,TAD#,SDA'))
3180 END DEF
3190 !
3200 ! *** READ 12 *** A FUNCTION
3210 ! VIEWS E$, R2, Z2
3220 DEF FNB
3230 SENDIO ':DL', 'UNL, LAD#', 'CLS3; T2'&E$
3240 FNB=VAL(ENTIO$(':DL','UNL,TAD#,SDA'))/R2-Z2
3250 END DEF
3260 !
3270 ! *** READ V3 *** A FUNCTION
3280 ! VIEWS E$
3290 DEF FNC
3300 SENDIO ':DL','UNL,LAD#','CLS4:T2'&E$
3310 FNC=VAL(ENTIO$(':DL','UNL,TAD#,SDA'))
3320 END DEF
3330 !
3340 ! *** SETV *** A SUBROUTINE ' VIEWS C$, E$
                                                    MODIFIES B, BO, B1, B2, Q$
3350 IF B<0 THEN B=0
3360 IF B>4095 THEN B=4095
3370 B0=4095-B @ B2=B0 DIV 64 @ B1=MOD(B0,64)
3380 @$=C$[2,6]&STR$(B2+64)&C$&STR$(B2+192)&C$&STR$(B1)&C$&STR$(B1+128)&C$&'0'&F
s.
3390 SENDIO ':DL','UNL,LAD#',Q$
3400 RETURN
3410 !
3420 ! *** CLEAR ERROR *** A SUBROUTINE
3430 ! MODIFIES C1, S(*), S, E
3440 FOR C1=1 TO 10 @ S(C1)=0 @ NEXT C1
3450 S=0 @ E=-1
3460 RETURN
3470 !
3480 ! *** INITIALIZE DATA LOGGER *** A SUBROUTINE
3490 ! MODIFIES Q$, S, S(7)
3500 DISP "CLEARING DATA LOGGER"
3510 CLEAR ':DL' @ WAIT 2 ! CLEAR DATA LOGGER
3520 Q$=ENTIO$(':DL','UNL,TAD#,SST') ! READ STATUS
3530 IF NUM(Q$)<>1 THEN S=S+1 @ S(7)=S(7)+1 ! IF STATUS NOT 1 THEN ERROR
3540 RETURN
3550 !
3560 ! *** CLOSE S1 *** A SUBROUTINE
                                         VIEWS E$
3570 SENDIO ':DL','UNL,LAD#','CLSO'&E$
3580 RETURN
3590 !
```

```
3600 ! *** CLOSE S2 *** A SUBROUTINE
                                        VIEWS E$
3610 SENDIO ':DL', 'UNL, LAD#', 'CLS1'&E$
3620 RETURN
3630 !
3640 ! *** OPEN S1 *** A SUBROUTINE
                                        VIEWS E$
3650 SENDIO ':DL', 'UNL, LAD#', 'OPNO'&E$
3660 RETURN
3670 !
3680 ! *** OPEN S2 *** A SUBROUTINE VIEWS E$
3690 SENDIO ':DL','UNL, LAD#','OFN1'&E$
3700 RETURN
3710 !
3720 ! *** CALIBRATE D/A & SET P1, P2 *** A SUBROUTINE
3730 ! VIEWS E$
3740 ! MODIFIES 01,02,0$, B, P1, P2
3750 ! CALLS OPEN S1, OPEN S2, SETV
3760 DISP 'CALIBRATING D/A'
3770 Q$=KEY$
3780 GOSUB 3640 @ GOSUB 3680 ! OPEN 51,52
3790 B=4095 @ GOSUB 3340 ! SETv
3800 SENDIO ':DL','UNL,LAD#','CLS5;T2'&E$ ! READ D/A OUTPUT (V)
3810 Q1=-VAL(ENTID$(':DL','UNL,TAD#,SDA'))
3820 IF ABS(Q1)<.1 THEN DISP 'TURN D/A DN' @ BEEP 540,.02 @ WAIT 1 @ GOTO 3790
3830 B=0 @ GOSUB 3340 ! SETV
3840 SENDID ': DL', 'UNL, LAD#', 'CLS5; T2'&E$ ! READ D/A OUTPUT (v)
3850 02=-VAL(ENTIO$(':DL','UNL,TAD#,SDA'))
3860 P1=4095/(Q1-Q2) @ P2=-Q2*P1
3870 Q$=KEY$
3880 DISP 'TOTAL RANGE IS '; ABS(Q1-Q2)
3890 IF Q$='' THEN GOTO 3790
3900 RETURN
3910 !
3920 ! *** HPIL CONFIGURATION ***
3930 ASSIGN ID ':DL,:PR,:CA'
3940 FRINTER IS ':PR'
3950 RETURN
```

1. Report No.	2. Government Accession No.	3. Recipient's Cotolog No.
FHWA/RD-86/		
4. Title and Subtitle	5. Report Date	
Measuring the Pate of Corre-	November 1086	
Concrete-Final Report	sion of Kernioleing sleet in	6. Performing Organization Code
Concreterimar Report		
		8. Performing Organization Report No.
7. Author's)		
E. Escalante, E. Whitenton,	F. Qiu	NBSIR 86-3456
9. Performing Orgonization Name ond Addres	s	10. Work Unit No. (TRAIS)
National Bureau of Standards	S	35Q2034
Gaithersburg, MD 20899		11. Controct or Grant No. DTFU_803_V_10025
		12 T (2)
12 Second Anna Marca Address		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address		Final
Federal Highway Administrat:	ion	
McLean, Virginia		14. Sponsoring Agency Code
15. Supplementory Notes		
16. Abstract		
A small, portable com polarization resistan tion, iR compensation measurements were mad environment, and the based on the electroc determined weight los used to measure the c Maryland, over a four ments and the problem	puter system is used to cont ce of steel in concrete, and is accomplished. During th e on small specimens in a la results of the calculated we hemical measurement are comp s. In the second phase, the orrosion of three bridge dec month period. 'The results' s encountered are discussed.	rol the measurement of using current interrup- e development stage, boratory controlled ight loss measurements ared to gravimentrically portable system was ks in Frederick Country, of these field measure-
17. Key Words	18. Distribution Stoter	nent
bridge deck corros	sion	
corresion rate me	asurement	
polarization resi	stance	
steel in concrete		
19. Security Classif. (of this report)	20. Security Clossif. (of this poge)	21. No. of Pages 22. Price
Form DOT F 1700.7 (8-72)	Reproduction of completed page authorize	ad a state of the

METRIC CONVERSION FACTORS

APPROXIMATE CONVERSIONS FROM METRIC MEASURES

SYMBOL	eet Xe	102 743 112	5 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TO FIND	inches Inches feet yards miles	square inches square yards square miles acres	ounces pounds short tons	fluid ounces pints quarts gallons cubic feet cubic yards Edhrenheit
LENGTH	0.04 0.4 3.3 1 - 0.6 AREA	0.16 1.2 0.4 2.5 ASS (weigh	0.035 2.2 1.1 VOLUME	8.03 2.1 1.06 0.26 36 1.3 1.3 9/5 (then
WHEN YOU KNOW	millimeters centimeters meters meters kilometers	square centimeters square meters equare kilometers hectare(10,000m ²) M	grams kilograms tormes (1000kg)	millititers Liters Liters Liters cubic meters cubic meters Cetsius
SYMBOL	5 5 5 5 5	ta 2 ta 2 ta 2 ta 2 ta 2 ta 2 ta 2 ta 2	0 <u>0</u> +	ēfe %
108				
TO FIND SYMBOL	ing 20 21 32 23 antimeters efers km a m a b e c m c m c m c m c m c m c m c m	lucre centimeters cm ² lucre meters m ² ² ⁻ <u>-</u>		difficters difficters difficters difficters dera ters $a_{a} = a_{a} = a_{a}$ ters $a_{a} = a_{a}$ ters $a_{a} = a_{a}$ ters $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = a_{a}$ ters $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = a_{a}$ ters $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = a_{a}$ $a_{a} = $
ARATIPLY BY TO FIND SYMBOL	2.5 centimeters 30 centimeters 0.9 meters 1.6 kilometers AREA AREA	6.5 square centimeters cm ² 6.5 square meters cm ² 0.6 square meters m ² 2.6 square kilometers m ² 0.4 hectares ha 0.4 hectares ha	28 grams 9 2 0.45 kilograms kg 2 1 1 2 0.9 tonnes kg 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 multititers milititers 15 multitiers milititers 30 multitiers milititers 0.24 liters milititers milititers 0.47 liters milititers 3.8 liters milititers 0.76 cubic melers milititers 0.76 cubic melers milititers 0.76 cubic melers milititers 0.76 cubic melers milititers 1.6 militers 1.6 mili
WHEN YOU KIYO! ANTIPLY BY TO FIND SYMBOL	AREA AREA AREA AREA AREA AREA AREA AREA	square inches 6.5 square centimeters cm ² square feet 0.09 square meters cm ² ² square miles 2.6 square meters m ² ² aquare miles 2.6 square kilometers km ² ⁴ acres 0.4 hectares ha ⁹	ounces 28 grams 9	lesspoons 5 milititers mil tablespoons 15 milititers mil fluid cunces 30 milititers mil cupa 0.24 liters mil pints 0.35 liters mil quarts 0.95 liters mil cubic yada 0.76 cubic meters mil cubic yada 0.76 cubic meters mil cubic yada 0.76 cubic meters mil

•

NBS-114A (REV. 2-80)			
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No.	3. Publication Date
BIBLIOGRAPHIC DATA	REPORT NO.		
SHEET (See instructions)	NBSIR 86-3456		October 1986
4. TITLE AND SUBTITLE			
Measuring the Ra	te of Corrosion of Rei	inforcing Steel in Concr	ete - Final Report
5. AUTHOR(S)			
E. Escalante, E.	Whitenton, F. Qiu		
	TION (If joint or other than NBS	see instructions)	Contract/Cront No.
6. FERFORPING ORGANIZA		, see matuctions, 7.	DEPTH 000 X 10005
NATIONAL BUREAU OF	STANDARDS		DTFH=893-1-10025
DEPARTMENT OF COMM	ERCE	8.	Type of Report & Period Covered
WASHINGTON, D.C. 2023	4		Final
9. SPONSORING ORGANIZAT	TION NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP)	
Federal Highway	Administration		
McLean, Virginia			
10. SUPPLEMENTARY NOTE	S		
FHWA Contract Ma	nager: Y. P. Virmani		
Document describes a	computer program; SF-185, FIP	S Software Summary, is attached.	
11. ABSTRACT (A 200-word o	r less factual summary of most s	significant information. If document	t includes a significant
bibliography or literature s	survey, mention it here)		
This report de	scribes a two phase s	tudy directed at develop	oing a portable
system for mea	suring the corrosion	of steel in concrete bri	dge decks.
A small, porta	ble computer system i	s used to control the me	asurement of
polarization r	esistance of steel in	concrete, and using cur	rent interrup-
tion, iR compe	nsation is accomplish	ed. During the developm	ient stage.
measurements w	ere made on small spe	cimens in a laboratory c	controlled
environment, a	nd the results of the	calculated weight loss	measurements
based on the e	lectrochemical measur	ement are compared to gr	avimentrically
determined wei	ght loss. In the sec	and phase, the portable	system was
used to measur	e the corresion of the	ree bridge decks in Fred	lerick Country
Manyland over	a four month period	The negults of these f	'ield measure-
ments and the	problems encountered	The results of these f	Terd measure
mentos and the	problems encouncered a	are discussed.	
12. KEY WORDS (Six to twelv	e entries: alphabetical order: ca	pitalize only proper names: and sep	arate key words by semicolons)
bridge deck corros	ion [*] corresion of ste	el corrosion rate measu	rement: nolarization
resistance: steel	in concrete.	i, corrobion rate measu	remente, poraribation
rebiblance, breer	In concrete.		
13 AVAILABILITY			
			14 NO OF
			14. NO. OF PRINTED PAGES
X Unlimited			14. NO. OF PRINTED PAGES
X Unlimited For Official Distributi	on, Do Not Release to NTIS		14. NO. OF PRINTED PAGES 49
X Unlimited For Official Distributi Order From Superinter	on. Do Not Release to NTIS Ident of Documents, U.S. Govern	ment Printing Office, Washington, D	14. NO. OF PRINTED PAGES 49 0.C. 15. Price
X Unlimited For Official Distribute Order From Superinter 20402.	on. Do Not Release to NTIS ident of Documents, U.S. Govern	ment Printing Office, Washington, C	14. NO. OF PRINTED PAGES490.C.15. Price
X Unlimited For Official Distributi Order From Superinter 20402. X Order From National 1	ion. Do Not Release to NTIS ident of Documents, U.S. Govern rechnical Information Service (N	ment Printing Office, Washington, C TIS), Springfield, VA。22161	14. NO. OF PRINTED PAGES 49 0.C. 15. Price \$9.95

