
U.S. DEPARTMENT

fftiri f\ .
/Vl 1 K „ ,

,:'oe-''Ps

COMMERCE National Bureau Standards

Institute for

Computer
Sciences and
Technology

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

NBSIR 86-3416

Simple Multiprocessor
Performance Measurement
Techniques and Examples
of Their Use

Alan Mink, John W. Roberts,

Jesse M. Draper, Robert J. Carpenter

U. S. DEPARTMENT OF COMMERCE
National Bureau of Standards
Center for Computer Systems Engineering
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

niE COPY'

REfyWvfU

July 1986

Partially sponsored by the

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209
ARPA Order No. 5520, July 23, 1985

Simple Multiprocessor Performance Measurement Techniques
and Examples of Their Use

Alan Mink
John W. Roberts

Jesse M. Draper

Robert J. Carpenter

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

Partially sponsored by the

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

ARPA Order No. 5520, July 23, 1985

U.S. Department of Commerce, Malcolm Baldrige, Secretary

National Bureau of Standards, Ernest Ambler, Director

July 1986

'
1/

.'!
' .

.

'^'
''

'

'
' '

’f

'

' ' '
' "

'i
•

'7 .''',

V' \;

;v''". ';'. '!th

.

"'..•I

:'
:
-M

.:
. VW'-

771':“

]

. ..
7\ V'^l .'

,

,. ..^ .
' ^

'^' am
' ‘

'V'
'

'
"

'
'

’"V'.'
.'

~I,

r ;

.'
. .

.' ' (UX-' ' I'v' ' "i:- .'V\ .

, r'^Wi '

- v ''(;

i/?- '

. 7):& “ 7^-
"V.;^

.. -

• C-'V'''";

'

'^1

.
a

.)»/
,

'".I.,,:

:.
'. :,'

• ..!4.

5Jia 2^ 2*tA

^ '^oB. .W rtilol

-’'':'''V)'^^ w?T!07'*6D .rnfdk^Jl'.;

®
,

'

'I.'':

'

.X

ri'^'f^yii" *'->..
, ,, '^'.'^rl '

' "'
'

' '

7 . 7 -'7
:;. "%;;, Sr;’

-V
'”• ¥

V
f liil ,f)i8^n5<feip0 I k,:k:^

!:.'"
•'.v:'.--;j(tV,

-

1 ,^'
:f'.:'.

-

t

7''

,;7?'

7,

''^. 5
'

' ? 0

, 1 ^..
.''

:..'

.sf,

A-'"
' 'W'-' I

‘

4

.WJ'

bWMWiqpli t

ar^-9(jprfl' bsSMwAA'OMia^^

^ brs’iv^'XjrC'ti

"•'*^'0 A‘OJ/7
'

7
'

7|fcli
<w> .*

':»' 'V

"%
'

:>yi»iiit'jiii>H-..
—-— iXiliili- I

— i
i^ i

,;

n .ii M- i'»ipii>^t«

|
|^'»-^«

I ^

j-9^ -

.

’I;

.":-v

"

’.
.

,

..
.

7' '''' f^{4»3A ^«0#'V* 'j^lRb4f«l'ilii’’?'J U.. OXUft

';’:i:;'
-

'

'
,:.' 7.7 :..: .; ,7 ,„-r

:

.' 77 ... i.v. <!..

''V\.7'
7.'.: .: ,'7^-':::;,

.-I" 7 ;7,,„'S&'i:,..v^’77

"
'.'M:

)

’'

*Y'

i ;

•'
>

. k

'

.

,
7
',r„7 it i

.
. 7777 :f

-.’•.•x-v v';.„77 ^:'

.7i:
V;:;,.

'.'7:'7;?iV
•':.! .,r

• • '

I ^

'
l/’’

,'...'1

*
'

•

'": *. ":
.

'
•

A* 'iSii^iii

« .;

"?'; 7.'
77

i’ v.
^' V/v/Jt. '

• ’V'i-
r;

'

',ir|„ < ..,

,

",', 'i-

'

7h,7f1^J^7
:'

TABLE OF CONTENTS

Page

INTRODUCTION 1

LIMITATIONS OF TRADITIONAL APPROACHES 2

INTERIM MEASUREMENT SYSTEM 2

Overall View 2

Data Buffer (Logic Analyzer) 3

Limitations caused by the buffer 3

Other buffering techniques 3

Program Perturbation 3

Summary of System Issues 4

MEASUREMENT METHODOLOGY 4

Measurement Events 4

Running the Experiment 4

INITIAL MEASUREMENTS 4

Determination of Measurement Overhead 5

Measurement of Loop Structures 5

Data Analysis 6

Results 6

Simple measurement statements 6

Loop structures 6

CONCLUSIONS 7

-iii-

A'l

,V? ,

‘iS
"

.?P';;^5
!!)»''''’

mm I

UAVioiriaAOT ^vouK^v^u

/' j -ym

... .>..i .•'< f ». .tak >. •
>« *•« • i

' .'
,

.,

•woiV ItuwO

;?,. ,. ofgoJ) vihfi'S

-V'.'

'

./<, /'S^.

... , . •

''
; v'mo enc^.uwjii.

;v ,..V- .A

.,kt»y.. .4 t'

?:^v;

;
' !«>

,
,.

k« k ••)» « »-t

?)• ,•./< V. ..

,

Y()a.!ogofc^

,
},.', '%3 jflSSOivc (i(«i«M ..

-

vi:

*S

• • » . - *iV**^V b« M

.-'• M'i’

...

^44r7,i*r<* >'•• - '•SAf/',
•riiUfifliROWaiO

V iKmi/r » J

I

. ..

-.A-* MMiois

h

’.“..
is

>« r •> •<

-
'*"

'

.

’
- .O', i ..'

”

,6 k4
slqipie

'y.:,''' '.

'

'•.
• ..^> ; V.. ...-.s 'f

-S
' •',

I’
; ' ' '>^

/>* 4
• ” v’ •

'^' -.' #'»S# \^-‘ .- r.

O

'' '

’I,"*

'

' '•' ' '
' ' k'-vt'A*.

., ./M-

,

> •
..

'
.'i.i'

" ''
'!:

. .

'
,, ,;. „ v'!..

.•' '

" v" ',

"'
'
.'''rf f

,'.' ‘.\'< "'
*',...

's'' ,"'r ..'':j/?;.';- 'w,'; ''i '^sV

Simple Multiprocessor Performance Measurement Techniques
and Examples of Their Use

Alan Mink

John W. Roberts

Jesse M. Draper

Robert J. Carpenter

This report describes simple hardware techniques for the measurement of the per-

formance of multiprocessor computers. A number of examples of data obtained using

these techniques are reported, as well as a discussion of the timing accuracy obtain-

able with this approach.

Key words: Multiprocessor computers; parallel computers; performance measurement;

hardware.

INTRODUCTION

A full expression of the performance of multiprocessor parallel computers wiU require the meas-

urement of many parameters. These include the utilization of such resources as the individual proces-

sors, interconnection network, cache memory, etc. Special hardware to gather this information without

perturbation of the computer under test is under development at the National Bureau of Standards. Our

long-range goal is to develop a measurement device which will be connected at many (100-200) points

to the system under test. The signal lines will be divided into groups, and each group fed into a

"preprocessor", which performs extensive reduction and interpretation of the incoming data. The prepro-

cessors generally run independently from one another, but when any one activates a trigger mechanism,

they all cooperate to place a record of the system state into a large memory from which further analysis

can be performed. Such a measurement device can be made sufficiently general that it may be used

with a substantial range of multiprocessor architectures.

Since it will take many months to design and build the long-term measurement device, we decided to

begin by setting up the Interim Measurement System, in order to begin taking measurements earlier.

We will be able to gain first-hand experience in the problems of measuring multiprocessors, and can use

the knowledge gained to guide the development of the long-term system. Furthermore, there is a large

amount of needed design information common to the two measurement systems, and we will be able to

establish the suitable solutions on the interim system before it will be possible to do so on the long-

term system. This will help to catch major design weaknesses early, so they can be avoided in the later

system.

This National Bureau of Standards report is not subject to copyright in the United States. Certain com-

mercial equipment, instmments, or materials are identified in this paper in order to adequately specify

the experimental proceedure. Such identification does not imply recommendation or endorsement by

the National Bureau of Standards, nor does it imply that the materials or equipment identified are neces-

sarily the best available for the purpose.

- 1 -

LIMITATIONS OF TRADITIONAL APPROACHES

The traditional software approach to instrument a program for measuring performance is to insert

supervisory (system interrupt) calls (to the operating system) to obtain a timestamp at the beginning and

end of an event, to store this information in a buffer area in memory, and later write it to a file at some

convenient time, A major problem with this approach is that it perturbs the original program with extra

overhead, particularly additional execution time. This additional execution time is required for the

operating system to provide the time and for the code added to the program being tested to store the

time with the data describing the event This time overhead is on the order of tens of milliseconds, or

worse. In a multiprocessor system, this overhead is only suffered by the processor asking for the tim-

ing; all others proceed without delay. This can greatly distort execution in interprocessor synchroniza-

tion situations. Of course this distortion would not exist in a uniprocessor situation.

INTERIM MEASUREMENT SYSTEM

The Interim Measurement System, unlike the traditional software approach, minimally perturbs the

program by requiring very little overhead to capture a timestamp. The Interim Measurement System

code imbedded in the (users) software of the system under test is very simple; as little as a single as-

signment statement per timestamp. The overall configuration of the measurement system is illustrated

in Figure 1. At selected test points in the programs, the processors write events to a board called the

Event Data Card, which has been installed in the normal I/O space of the system. These are edc assign-

ment statements. The testbed computer being measured has a Multibus card cage for peripheral dev-

ices, so the Event Data Card was implemented on a Multibus board and designed to respond as a Mul-

tibus slave device. Only a few microseconds are required for the computer being measured to execute

each edc assignment statement, since no supervisory calls are made to the operating system. As report-

ed below, the time overhead for a measurement is two to fifteen microseconds (NOT milliseconds), so

there is much less effect on parallel programming operation.

Overall View

As each edc statement is encountered in the execution of the test program on the system being

measured, an event is said to occur. The events contain data specified by the user at the time they are

inserted in programs used to test the system, and may include process ID, values of variables, or other

state information. The Event Data Card then adds hardware signals including a microsecond timestamp,

processor identification, and user/supervisor mode status, and sends a trigger signal to a logic analyzer

to enter the data into its 48-bit-wide buffer. The use of hardware probes to determine the identity of

the processor initiating the measurement event is complicated by extensive use of pipelining in the

hardware of the system under test By the time the Event Data Card becomes aware of the need to

capture data, many of the signals of interest have vanished. The solution is to use flip-flops on the

Event Data Card to always capture these signals while they are valid, then hold them until they need to

be entered into the data latch. A logical combination of signals provides the needed processor

identification. Many other useful signals on this and other systems could be derived using this tech-

nique, which is a simple form of the preprocessing to be used in the long-term measurement system.

Note that in shared-memory multiprocessors, all processors can write to at least some common range of

addresses, one of which can be used as the address for an Event Data Card. Thus only a single Event

-2-

Data Card is needed in most shared memory systems.

Data Buffer (Logic Analyzer)

As mentioned above, a logic analyzer is used as a data buffer to store the event data. One com-

plete item of data, including the timestamp, is captured every time it is triggered. The logic analyzer is

controlled through an IEEE-488 interface by a Sun computer, which performs statistical analysis and

display of the data, as described below. The logic analyzer we are using takes 48-bit samples. The 48

input lines are allocated among the signals to be captured as follows: 32 bits for timestamp, 1 1 bits for

event data written by the user program, four bits for processor ID, and one bit to indicate

user/supervisor mode.

Limitations caused by the buffer. The logic analyzer link in the measurement chain suffers from

significant limitations in capacity and speed. The 512 word buffer size of the logic analyzer limits the

number of continuous samples that can be captured. The effective transmission speed of the event data

from the logic analyzer to the analysis computer via the IEEE 448 interface is on the order of seconds

for the entire buffer contents. The logic analyzer cannot capture samples while it is transmitting its

buffer contents via the IEEE 488 interface. The logic analyzer cannot report the number of samples it

has captured or lost; therefore, it is important to plan each experiment carefully around this limitation.

Finally, the number of "independent" devices in the data chain creates at best annoyance, and at times

problems, in the access and transmission of data.

Other buffering techniques. Had this not been an interim system, we would have gone to the trouble

of providing a substantially larger buffer for the event data on the Event Data Card itself. In this case

the data could either be analyzed later on the system being tested, or on an external machine as in the

present case.

Program Perturbation

The Interim Measurement System has some limitations. The Interim Measurement System still per-

turbs the the execution of the test program, though a great deal less than the traditional approach. As in

the traditional approach, a programmer must add code to the program to delineate the events to be

measured. With the Interim Measurement System this is just a simple assignment statement for each

timing event. Each time a new set of events is to be measured, a programmer must again change the

locations of the added commands. Since activation of the Event Data Card requires execution of code

placed in the test programs, it is inevitable that there will be some perturbation of the results caused by

the measurement process itself. The long-term measurement system will avoid this problem; in the

meantime, we can produce useful results by taking the perturbations into account, and keeping them as

small as possible. Experiments to measure this perturbation are reported below, and show a cost of

from two to ten microseconds per write to the Event Data Card with the "guinea pig" computer we are

testing.

-3 -

Summary of System Issues

Although the interim measurement system greatly improves on the traditional measurement ap-

proach, it still perturbs the system to some extent and has some other limitations. The fiill-fledged

measurement system, currently under construction, does not suffer from these disadvantages and will

not perturb the system being measured.

MEASUREMENT METHODOLOGY

The coordination of a programmer familiar with the application program being measured and an

analyst is required to obtain measurements using the interim measurement system.

Measurement Events

The programmer and the analyst determine the events to be measured and the data that the pro-

grammer will output to the Event Data Card to identify each event. There are two major categories of

metrics that are usually measured, intervals and frequencies. Intervals require paired events, the start of

the interval and the end. Frequencies may require one or two events, depending on the variation of the

metric. In the simplest form, only one event is necessary to keep a simple count In more complex

variants, two events are necessary to determine ratios. The programmer must insert special edc meas-

urement statements in the source code of the application program. These write the event data to the

Event Data Card identifying the measurement events. The analyst must write (or modify) an analysis

program that will take the timestamped application-specific data, match up interval boundaries of each

event, and output a statistical summary for each event.

Running the Experiment

The programmer and the analyst then begin execution of the application program on the multipro-

cessor computer under test At times previously coordinated with the programmer, the analyst initiates

a capture program on the analysis computer which acquires a copy of the logic analyzer’s buffer con-

taining the timestamped event data. This data is placed in a file to be analyzed by a program written

by the analyst. If the test program has been so designed, this process may be repeated a few times for

each experiment, to determine the stability of the statistical results. The logic analyzer cannot sample

the Event Data Card information while the analysis computer is reading out the data buffer. Therefore,

either the experiment must be designed to limit the amount of event data written to the Event Data

Card or the data captured in any arbitrary window must be sufficient for analysis.

INITIAL MEASUREMENTS

A series of experiments were planned to test the Interim Measurement System and to determine

the program and execution overhead involved in its use. In the following discussions, the macro

-4 -

edc(<data>)" represents the edc measurement statement, which actually is coded (in C) as

*<address of Event Data Card> = <event data to write>.

Determination of Measurement Overhead

The frist program did nothing but write to the Event Data Card to determine the overhead of the

edcQ measurement statement. In this program there is only one kind of event, the edc statement.

Therefore no encoding of the data is necessary and, in fact, the data written is irrelevant. Only the

timestamp is of interest to determine the length of each successive interval. Also the amount of data is

not significant since whatever window of data was captured is as valid as those lost. Each experiment

consisted of three variations to the program structure. The first variation used a constant in the edc

statement.

edc(OxFAO);

edc(OxFAO);

edc(OxFAO);

etc.

The second variation used a variable in the edc statement.

edc(q);

edc(q);

edc(q);

etc.

The third variation used a constant ORed with a variable in the edc statement.

edc(proc|OxFA);

edc(proc|OxFA);

edc(proclOxFA);

etc.

This last variation was indicative of the type of data expected in other experiments, where the variable

may represent the process number and the constant may represent the specific event.

Measurement of Loop Structures

Data were taken of the intervals between successive edc assignment statements imbedded in typi-

cal programming looping structures. The second experiment consisted of a single edc assignment state-

ment imbedded in a DO-WHILE loop construct

do

{ edc(<one of the above three variations hero);

}while(-q);

The interval between successive executions of the edc instmction measured the speed of the DO-
WHILE construct plus one edc execution. The third experiment consisted of a single edc assignment

statement imbedded in a WHILE loop construct.

while(q—

)

{ edc(<one of the above three variations here>);

};

The fourth experiment consisted of a single edc assignment statement imbedded in a FOR loop con-

struct

for(i=l; i<=q; i-i-+)

{ edc(<one of the above three variations here>);

}

-5 -

This resulted in a measure of the speed of the FOR construct.

Data Analysis

The analysis program took the raw timestamp data and converted it to intervals. The first pass of

the analysis program computed statistics for all interval data. The second pass of the analysis program

used the smallest interval as a baseline and discarded all intervals greater than four times as large.

Since the intervals between events were small and regular, this culling operation filtered out time inter-

vals not attributable to the application test code. These longer intervals are from sources such as

interrupts,wherein the processor serviced some other task in the middle of the execution of the test loop

structure. The statistics for this reduced set of intervals was computed along with its distribution. The

statistics for each experiment include the number of sample points (events), their range and mean. If

any values are more than four times as large as the minimum value, they are excluded. A new range

and mean are computed for the reduced data set. The distribution of the data values for the culled data

are provided for later plotting (Figures 2 - 13). This includes the percentage of data in each one-

microsecond interval.

Results

Each experiment shows a narrow range of time for the event being measured, which is consistent

with the expected results. One may initially expect a single time value for the event interval for such a

repetitious series, but after some thought a narrow range seems more reasonable. First, the resolution of

the Event Data Card timestamp is one microsecond. Since the events are asynchronous to the Event

Data Card clock, a plus-or-minus one microsecond variation is possible due to the phase difference of

the two clocks. Second, a few microsecond variation may be expected due to the instmction prefetch

of the multiprocessor computer under test Due to the structure of the code, no time variation is expect-

ed based on the operation of the cache, and translation look-aside buffer misses in the memory manage-

ment unit are not expected to be frequent in this test. The environment in which these initial measure-

ments were made was that of an unloaded system — no other active users and only a single (non-

parallel) active process. The measurement results are summarized in Table 1, but are more graphically

presented in the figures mentioned below.

Simple measurement statements. The first experiment consisted of nothing but in-line sequential edc

statements, with no intervening code between each statement. This resulted in a measure of the speed of

the edc statement. This experiment was conducted with three variations in the data written at each

event. Two runs are plotted from each. In the first case, a simple constant is written (See Figures 2a and

2b). In this, as in all other histograms in this paper, only the culled data is plotted. Each plot shows

the percentage of the unculled data points which were discarded. In the second case a simple variable

is written (See Figures 3a and 3b). In the third case, a variable ORed with a constant is written (See

Figures 4a and 4b).

Loop structures. Data were taken of the intervals between successive edc statements imbedded in typ-

ical programming looping structures. The second experiment consisted of a single edc statement im-

bedded in a DO-WHILE loop construct. This resulted in a measure of the speed of the DO-WHILE
construct Two such runs are plotted for all three types of data written by the edc statement (See Fig-

ures 5a and 5b, 6a and 6b, and 7a and 7b). The third experiment consisted of a single edc statement

imbedded in a WHILE loop constmct. This resulted in a measure of the speed of the WHILE con-

struct. Two such runs are plotted for all three types of data written by the edc statement (See Figures

11a and 11b, 12a and 12b, and 13a and 13b). The fourth experiment consisted of a single edc

-6-

statement imbedded in a FOR loop construct. This resulted in a measure of the speed of the FOR con-

struct. Two such runs are plotted for all three types of data written by the edc statement (See Figures

8a and 8b, 9a and 9b, and 10a and 10b). Subtracting the basic measurement overhead (Figures 2

through 4) from the corresponding times in Figures 5 through 13 allows evaluation of the execution

time of the loop mechanisms in the presence of different types of imbedded instructions. The appropri-

ate columns in Table 1 show the substantial consistency.

CONCLUSIONS

The results shovm here demonstrate that a relatively simple hardware attachment makes it possible

to measure execution times of programs, and small segments of programs, with few-microsecond accu-

racy and without substantially perturbing the execution of the program.

-7 -

'"''- W?' " ' " ' *'

*. 'ilS^

'M .

: BpFI# mw^n
t5t’,f!'' i M’-'< b4^ flt^r!; .-

:#!2'^t>J1«'

"' ' ‘ Ov/V ,)50Wi|

r ,(^ ;ih^: i0
(

' imr «8

ll m mvni C

^ V^ s><i} ni *m2ictui:e«' tpol l• • uu^;

;»«>> ,'
-i'' v?'\, '; ' >f'-v (.

•. •»> .

i

I.. iyvy^ ; ..

V- - T'' V;v'='

'

>»; r(s;U'

’ Vv'"-

V ;, tlM v
'

tS®-'' ‘''S’
'••'!'•

.. iiy J'. i‘i'J?i”
,

' .'rr;,’<;;1(}'''|p;''|eJl^ 'l•.l:tat;^ll ».i;StSftm Ol

Xr.i 'O '

'..I' 'S', '''*',A.<;v,*!i»s *;fj
,

• ikjiUmoMI
A.'."

.iV'ii'i'
)uw>(l/rjv t’OJi

- “
1 ,

:-i'i

1^ tr^rti^^y

'

A
'•'

^ ,

'

* ,''('*• rtni/Ai I h,- 'W^ i .(, ."_. ';
f

'• ’

rt' :. t'/f'.v _'"i.<'.

Md ^rrt-'UumWt'A <^'6 u

-:’'* Cut? '•

ii-c-iL„ t 4
-Lt-<>«-<'W}r.u« ./4'p r,f, %'

. ' -.A,
-'^ •

'"''\/V /yit).

,'4 Ai. ,1
•:.’.j,i :• • v'nk'4’ c.

*

7.i
j' ' -:'f/;*:./i)V ^:v. ./

if, . jiyj \ }k >'
.

'

’"^1

.'«A;"i^;j;r>v> '»?!;?'-- ^^.
^«-'

i,:, ,

,
i*

-'I , ntt)^:!::^, i'hs a-.AWir. . .
> r'..

'4
. :J

'liv-y

1

• '••fl :,i h. •< ji rry»\

t
'

v^ i’',
•

• -v ':;
^

,. v",! ,

*

.x ' V -:•
'.

-' '• ^;:: <:^<Uhw''p^i(W/’WN!t4.5

..
..'• I'." i' -;. '.•., y':li V*)i ijliil^

;!.' tu w ,*'
-^i

' '' '
’

;

"
' ^ ‘

^t:

' ' f

:.]W'

li
i:::

’ '<•

I

loiiiJiiiU.MiKtm' Ih.U y-yuti^ tii >m;v

prnjTfijW ^fv.?viti|; .uo'K'iSifri -
1": ' of ,'

iO/. ..':*'vin\t i. vliy fgt. Hi, r^t4t,mr»* C>f ^mi ci ii4';iw'»?»/>i:r

;

;;t..;i . . >• nu»i;iliK'? ,ptul«<<r f->I .»(.•! '.i./_ 'ii'L ,4,uvettft#ni,r(^-'*.

..;v;5 ,("r ;., ’u., .., ,f!na" 7 j» WHl Vb) ^ :v;v

'.iiJs>>ji'id'! , "W.C Thw ini«tlJ«ttv' 'o. ' .. <
.

. i
''

i>;'7 CIW

J

•

, . 1 ,;'
('.I'v ' ^ ::ii n t’ '*'

;)tl 3lli .
1 ’!''>»

-4 Jia *0;“ IfT’'”' siVd ,
t>& I

^

,; a" fiV^r':
' r ...; „

..A

Ks

,^i ,

'

.iS,

rmt

TABLE

1
-

Execution

time

measurements

EVENT
DATA
^4?ARD,

MULTIPROCESSOR COMPUTER UNDER TEST

ANALYSIS COMPUTER

DISPLAY

PRINTER

PROC.
ID

DATA
LATCH

TIME
STAMP

48 /

IEEE 488

/

DATA BUFFER
512 48-BIT

SAMPLES

/
GOULD K-101D

LOGIC
ANALYZER

TIMESTAMP USER DATA
-JL

I

\

I

FIG 1 - INTERIM MEASUREMENT SYSTEM nbs^
860505
860715

80 80
72.5

One-line Execution Time, |is

Fig. 2a

One-line Execution Time, jis

Fig. 3a

71.7
(/)

c
0)
> edc(OxFAO);
UJ 60 - edc(OxFAI);

O edc(0xFA2);

0 edc(0xFA3);
O)

^ 40 -

0 N. SECOND RUN
o

<o
0 C^J

Q.

20 - 0.6%
discarded

(O o
d i-

0 -
1 1 1 1

1

0 2 4 6 8 10 12

One-line Execution Time, \is

Fig. 2b

One-line Execution Time, |j.s

Fig. 3b

Percentage

of

Events

Percentage

of

Events

80

20

0

edc(proc
|
OxFAO);

edc(proc
j
0xFA1);

edc(proc
j
0xFA2);

edc(proc
|
OxFAS);

FIRST RUN

53=6

<o

oi 1.6%
^ lo discarded
o

i ^ 'sf

: : : O O
1

I I I I

'

T"

2 4 6 8 10 12
One-line Execution Time, |is

80

Vi

I 60
lU

<]>

O) M f\
CO 40
c
0)
o
0)
Q.

20

0

edc(proc
|
OxFAO)

edc(proc
j
OxFAl)

edc(proc
j
0xFA2)

edc(proc
j
OxFAS)

SECOND RUN

54.0

in

in

1 . 6%
1- 1- discarded

c>i

<0 CM
• •O o

T 1 \ \ I

\

—

2 4 6 8 10 12

One-line Execution Time, |is

Fig. 4a

do

One-time Execution Time, iis

Fig. 5a

Fig. 4b
do
{

One-time Execution Time, \is

Fig. 5b

Percentage

of

Events

Percentage

of

Events

do

One-time Execution Time, {is

Fig. 6a

do

One-time Execution Time, |is

Fig. 7a

One-time Execution Time, |is

Fig. 6b

One-time Execution Time, jis

Fig. 7b

Percentage

of

Events

Percentage

of

Events

for (1= 1
;
l<=q; i++)

{

One-time Execution Time,)is

Fig. 8a

for (i=1; i<=q; i++)

One-time Execution Time, }is

Fig. 9a

for (i=1; i<=q; i++)

{

One-time Execution Time, \is

Fig. 8b

for (i=1; i<=q; i++)

One-time Execution Time, |j.s

Fig. 9b

Percentage

of

Events

Percentage

of

Events

80 -

60 -

40 -

20 -

for (1=1; i<=q; i++)

{

edc(proc|0xFA);

}

FIRST RUN

0 . 2%
discarded CO

O)

1
1 1 1— I 'I'

2 4 6 8 10 12
One-time Execution Time, jis

Fig. 10a

80 -

(0

§ 60
m

ow 40
(0

c
u
h.
<i>

Q. 20

for (i=1; i<=q; i++)

{

edc(proc|0xFA);

}

SECOND RUN

0 . 2%
discarded

T

o
d

—[—“T 1

2 4 6 8 10 12
One-time Execution Time, |is

Fig. 10b

80

60 -

40 -

20

while(q—

)

{ edc(OxFA);

}

FIRST RUN 70.1

none
discarded

o>

o>
CM

T I I I I

”1

2 4 6 8 10 12
One-time Execution Time, (is

Fig. 11a

80 -

(0

I 60
UJ

o
TO 40
(o

C
0)
o
o
Q. 20 -

while(q-)

{ edc(OxFA);

}

SECOND RUN

none
discarded

T

O)

d
CM

T1 1 T
2 4 6 8 10 12

One-time Execution Time, |is

Fig. 11b

Percentage

of

Events

Percentage

of

Events

80

60 -

40 -

20 -

while(q—

)

{ edc(q);

}

FIRST RUN

80.1

o>

o>
none
discarded

1 I i I I I

2 4 6 8 10 12
One-time Execution Time, |is

Fig. 12a

while(q-)

One-time Execution Time, [is

Fig. 12b

80

60

40

20

0

2 4 6 8 10 12
One-time Execution Time, |is One-time Execution Time, |j.s

Fig. 13a Fig. 13b

NBS»n4A (REV. 2-ac)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 86-3416

2. Performing Organ. Report No. 3. Publication Date

JULY 1986

4. TITLE AND SUBTITLE

Simple Multiprocessor Performance Measurement Techniques and Examples of Their Use

5. AUTHOR(S)

Alan Mink, John W. Roberts, Jesse M. Draper, Robert J. Carpenter
6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

S. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

10. SUPPLEMENTARY NOTES

I I
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200~word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This report describes simple hardware measurement techniques for the measurement of

the performance of multiprocessor computers. A number of examples of data obtained
using these techniques are reported, as well as an indication of the timing accuracy
obtainable with this approach.

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

hardware; multiprocessor computers; parallel computers; performance measurement

13. AVAILABILITY

CJS Uni imited

I I
For Official Distribution. Do Not Release to NTIS

I I
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

19

15. Price

$9,95

USCOMM-DC 6043-P80

BBSmmuam

1 .u’tj.v

v • • WJ/P*

y“‘

'4iS'
-

;
auT

.
<»!

V O .T-^»0 -S.l -j

ATAammmmf '

;' W' I-

o*U(i;v

NM

,W tot»t:',i!j^jidolf:
I—^ — -

5 aia»
,

1

1

*\ •arlHii wfcft v u >• ./rilct <tV/'C ^ ' .V;va4«'.‘,

*A
,'

•i&Mi''

ia»Aa«AT j «jis3 V >(3 jamo!T;««m
aanawucio iift.,r«ffcni4**. .a

r'^

r' ii ^TajlMcD
“

'o*','

'

.
“ dienstfiO

»OSS^ '»lntM'.
WKl

/ .\ir;,i» < f V"T?iiVv '
'((’ I'liij'trt rt :,{!'< i*e

i

I

'. '}:^'i ,t ?
'

'lilt,
- '•

<•
: ^<-.C

.]

.» wvISmPH''
‘ <\

'

'i'’i-S'--

;> •». - > o *
,

-

.c;p 2h'5r

t.;-' ^
i

(.'.
.

''q

91 (
>.'

- c:

t rt;' «’v.

'>

!' Z

ft ,

f«u

:i

M.

,A
, Mi

"^C

ViViM’-'-

1 r .isiTV#''^

^ M :'4^v’5i

.,..MSSks:4mL

i'^TfM t'i'> i
Jt'j

I^.I
!

Il.^
. |^̂ ’.'i llllrt|»l^

' '

^•W.>.
j

jpjii

'?.f.

7.,1'1'

' '

1,
'

.'
''x’

'

’
'

;
,,'. ’•‘ ./

' ''

'-
.

•' ^<Xli '^r Ui^.i If .•^-^^•* ;
• ' lidi- '/' r, -i

‘ :X|,(te>yr,
.

• M.
.

I'"?:

"; '**.' - 'furkS^jir’

