
NBS

PUBLICATIONS
A11102 S4BSL1

NBSIR 86-3407

NATL INST OF STANDARDS & TECH R.I.C.

All 102542561
Wallace, Dolores R/An experiment In soft
QC100 .1156 NO.86-3407 1986 V19 C.1 NBS-P

An Experiment in Software
Acceptance Testing

Dolores R. Wallace

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

July 1986

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

QC

100

U56

86-3407

1986

C. 2





KBS

RESEARCH

INFORMATION

CENTER

NBSIR 86-3407

AN EXPERIMENT IN SOFTWARE
ACCEPTANCE TESTING

Dolores R. Wallace

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

June 1986

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director





AN EXPERIMENT IN SOFTWARE ACCEPTANCE TESTING

Dolores R. Wallace

ABSTRACT
Software acceptance testing was performed on a prototype software engineering

environment as part of the program to provide information to Federal agencies for

improving quality and productivity in software development and maintenance. The pur-

pose of software acceptance testing is to demonstrate to its purchasers that the software

satisfies its requirements. This report describes the method and standards applied in

this study in software acceptance testing. The report also discusses the difficulties

encountered during the study and proposes research directions for software acceptance

testing.

KEYWORDS
software acceptance criteria; software acceptance testing; software engineering

environment; software standards; software test planning; software test tools.

FOREWORD
Under the Brooks Act, the National Bureau of Standards Institute for Computer Sci-

ences and Technology (ICST) promotes the cost effective selection, acquisition, and utili-

zation of automatic data processing resources within Federal agencies. ICST efforts

include research in computer science and technology, direct technical assistance, and the

development of Federal standards for data processing equipment, practices, and

software.

ICST has published several documents on software verification, validation and testing

as part of this responsibility. This report presents the results of a study in software

acceptance testing performed on an experimental software engineering environment. It

discusses applicable software standards, acceptance criteria, test procedures and project

difficulties to enable readers to gain an understanding of the software acceptance test

process.

The experimental software engineering environment prototype and other commercial

products are identified in this paper for clarification of specific concepts. In no case does

such identification imply recommendation or endorsement by the National Bureau of

Standards, nor does it imply that the material identified is necessarily the best for the

purpose.

-in-



TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 DESCRIPTION OF THE TEST EXPERIMENT 1

3.0 SOFTWARE ENGINEERING GUIDANCE 2

4.0 TEST REQUIREMENTS & ACCEPTANCE CRITERIA 4

5.0 TEST PROCEDURE 6

6.0 PROJECT DIFFICULTIES 8

7.0 PROJECT EVALUATION 10

8.0 FUTURE RESEARCH 11

9.0 REFERENCES 12

- iv -



LIST OF FIGURES

Figure 1. Characteristics of selected guidance documents 3

Figure 2. Project requirements for acceptance testing 5

Figure 3. Project procedure for acceptance testing 6

Figure 4. Difficulties of acceptance test project 8

Figure 5. Benefits of acceptance test project 10

Figure 6. Definition of research topics 12

- V -





1.0 INTRODUCTION
Software acceptance testing is usually performed to enable a customer to determine

whether or not to accept a software system. In our experiment we performed software

acceptance testing for an additional purpose: to define areas in which research and gui-

dance are needed in software acceptance testing. We examined current software

engineering guidance and traditional acceptance test procedures for their applicability to

the acceptance testing of software for which we were not the original customer.

As part of its research on characteristics and functions of software engineering

environments, the Institute for Computer Sciences and Technology (ICST) of the

National Bureau of Standards (NBS) participated in the evaluation of a modern

software development environment both to provide feedback to the developers and to

gain first-hand experience with the tools and uses of environments [WAL86a]. This pro-

ject also provided the opportunity to apply current software validation, verification and

testing (W&T) guidance and practices for the purpose of studying their strengths and

weaknesses.

While the test experiment was underway, two other ICST documents were being

prepared; each of these has influenced, and has been influenced by, the test experiment.

One document describes the characteristics and functions of software engineering

environments and provides examples of their implementation in environments

[HOUG85]. The other document discusses traditional acceptance test procedures

[WAL86b] and serves as the basis on which the results of this test experiment will build.

The software development environment that was examined is the result of an on-

going research project. The goal of the project’s developers was to study some of the

central questions confronting the would-be builder of a software development environ-

ment by creating and analyzing an experimental prototype of a useful environment

[OSTE83]. Preliminary versions of this environment, called Toolpack, were released for

test and evaluation during 1984.

The Toolpack support environment was developed for a target community of

developers of mathematical software written in FORTRAN 77, to support the develop-

ment and the verification, validation, and testing activities of the coding phase of the

software lifecycle.

Toolpack is a collaborative effort involving researchers at Argonne National Labora-

tories, Bell Communications Research,Inc., Morristown, NJ, Jet Propulsion Laboratory,

Numerical Algorithms Group, Ltd., Purdue University, University of Arizona at Tucson,

and the University of Colorado at Boulder. Funding in the United States has been sup-

plied by the National Science Foundation and the Department of Energy; funding in

England has been supplied by Numerical Algorithms Group, Ltd.

Under no circumstances does this report constitute an endorsement of Toolpack by

the National Bureau of Standards; nor does it imply that Toolpack is necessarily the

best product for its purpose. It is also understood that the product assessed is still

undergoing development, that it is intended to be a research product, and that many
features reported herein are likely to be different in future versions of Toolpack.

2.0 DESCRIPTION OF THE TEST EXPERIMENT
The Toolpack beta-test project also provided the opportunity to develop a case study

in software acceptance testing. Our goal was not to develop new techniques for accep-

tance testing but rather to examine and use the procedures indicated in current software



engineering documents and then define areas where research and guidance in acceptance

testing are needed.

This case study was a real world situation in which we encountered several classic

problems. The product was not complete
(
from the beta-test and research perspectives

that was a perfectly acceptable circumstance.) We were not the original purchasers and
therefore had not specified the requirements for the product. In our role, we acted as

potential buyers who needed to examine this system for acceptance, i.e., that it would
satisfy our requirements. Hence, the pre-test questions:

What existing guidance in software testing can help us develop and implement an

effective test plan to aid in our acceptance decision?

How do we identify our own requirements in quantitative terms that enable us to

show that the software system meets our needs?

How do we define acceptance criteria for state-of-the-art characteristics?

How do we implement our test plan? That is, what procedures are necessary?

Some post-test questions are:

What problems did we encounter?

Did we achieve the test goals from the perspective of the software tools and

environments program?

Did we achieve our goals for the software W&T program?

What did we learn about software engineering guidance?

What areas in testing require further research and guidance?

3.0 SOFTWARE ENGINEERING GUIDANCE
From our examination of literature on software engineering and software W&T, we

found a few software engineering standards and guidelines that at least mentioned

software acceptance testing. Since we wanted to locate weaknesses and strengths of

existing standards and the areas where additional guidance is needed, we attempted to

restrict ourselves to planning the project based on information from these documents,

whose characteristics are given in Figure 1.

For this study, the appropriate guidance came from the following documents:

o FIPS38, Guideline for Documentation of Computer Programs and Automated

Data Systems [FIPS38].

o FIPS101, Guideline for Lifecycle Validation, Verification, and Testing of Com-

puter Software [FEPSlOl].

o ANSI/IEEE STD 829-1983 IEEE Standard for Software Test Documentation

[IEEE829].

o IEEE P1012, Draft Standard for Software Verification and Validation I ’Ians

[FUJI85].

FIPS38 views the test plan as a comprehensive document that itemizes all informa-

tion prior to executing the tests. This document is completed during the programming

phase and contains all the information on test cases, specifications, and procedures.

FIPS101 addresses acceptance testing as part of the development project. Accep-

tance criteria are developed during the requirements specification of the project by both

- 2 -



Major Features

o Testing defined generically

o Planning heavily emphasized

o Documenting, not how to perform

o Tailoring to project needs

o Assuming user involvement in the software process

Figure 1. Characteristics of selected guidance documents

developer and purchaser. The test plan is written during the requirements phase. Later

documents specify the actual test case designs, specifications, and procedures. The

developer may be the installer of the software and may perform at least a basic accep-

tance test for the purchaser. Then the purchaser may perform additional tests. The

acceptance criteria are clearly-defined, with user functional and performance require-

ments expected to be satisfied.

ANSI/IEEE Std 829-1983 describes a comprehensive test document set that may
apply to any test type. It views the test plan as an initial guiding document for the test

process. The test plan provides the information necessary to manage the testing but not

to implement the testing. That information appears in separate documents for test

design, test case, and test procedures. Test reporting is covered by four separate docu-

ments.

The IEEE P1012 draft standard assumes custom built software with the purchaser

participating in specifying the requirements. This draft standard requires an acceptance

test plan early in the development of the product. It assumes that a requirements docu-

ment and user documentation are available to those planning the acceptance testing. It

also requires a detailed description of the generic types of information (scheduling,

organizing, test approach, tool needs, etc) that any test plan should contain. Like

FIPS101 and IEEE 829, the IEEE P1012 draft views the test plan as a planning docu-

ment, with the details for the implementation of the tests appearing in the test case

designs, specifications, and procedures.

None of the above documents completely defines how to perform acceptance testing.

Two (FIPS101 and IEEE P1012) specifically mention acceptance testing, and in them
there is an implicit assumption that their guidance has been followed. The documents

imply that how a W&T program has been implemented during development may affect

some of the acceptance test considerations. In some cases, the customer is involved

early in the development of the product to establish the acceptance criteria. For all

software, prior to acceptance test, the software is expected to be complete, with ade-

quate documentation for determining test requirements.

The concept of "tailoring” is emphasized in FIPS101; that is, a W&T program

should be built from the framework of FIPS101 to satisfy a project’s particular needs.

- 3 -



We extrapolated this approach to the project by tailoring the plan outlines and sug-

gested contents to define our acceptance test plan.

In summary, the guidance documents provide an overview of testing with general for-

mats for test plans, but not a minimum level of content for acceptance test plans. At
the time of this experiment, none of the documents addressed the different goals and

objectives of different types of testing 1
. Other topics include the need for management

and planning, the types of documentation needed for complete testing, test procedures,

and the need for quantitative criteria on which to evaluate test results. The guidance is

applicable to custom built software in development or maintenance. Those who acquire,

manage, develop, maintain, vend, and use software are involved in software acceptance

testing. We hoped our experiment would be a first step leading to more complete gui-

dance in software acceptance testing for this audience.

4.0 TEST REQUIREMENTS & ACCEPTANCE CRITERIA
Acceptance testing is performed to demonstrate that the final software product per-

forms as the customer expects it to, based on customer requirements. As researchers in

software tools, however, we weren’t as concerned with how well a particular tool, or set

of tools, behaved in this particular system. It was more important to determine the

potential value of a tool or set of tools. We had to design the test requirements to

satisfy both needs.

We were not involved in the evolution of the system; we did not know precisely the

original requirements for the system. Our approach was to define Toolpack’s functional

requirements from the available literature and to assess how well the software met those

requirements.

Designing the test requirements to answer questions of the tools research program

required scenario-building, that is, determining how Toolpack would most likely be used

by its intended audience. When customers have not written the original software

requirements, they must define completely the capabilities expected of the system. The
customers and the acceptance test planners (who may be the same) design tests that

implement these capabilities as they would be used by the customers. In this case, that

meant developing tests that would exercise the processes a programmer uses to develop,

test, and maintain a computer program. This scenario-building technique enables custo-

mers to determine if a software product will satisfy their unique situation. The remain-

ing test requirements described in this report resulted from this scenario-building.

From the perspective of our software tools and environments program, we selected

characteristics and functions for evaluation to determine how well they would aid in

software development or maintenance. As purchasers, we wanted to know how the sys-

tem would respond in our operating environment. Examples of questions that were

evaluated include: Would its use disrupt other users on our computer? Would its use

detract from or add to users’ access to the capabilities of the computer’s operating sys-

tem? Would more than one copy of Toolpack reside efficiently on our system 9

The guidance we were following is applicable throughout the development of tin-

software. We weren’t involved in that development; hence, some of the assurances of

the development’s W&T program weren’t available to us. We expanded the traditi ::a!

definition of acceptance testing to allow us to consider some of these quality issues. We

*At a later meeting (March 1985) of the P1012 group, the group added specific definitions of design, inteRr»iion. •ot'm »nd

acceptance test to the draft standard.

- 4 -



would want to know something about future maintenance costs, whether or not we had

the source code. Therefore, we needed to perform some maintainability measurements.

We asked the questions that we would expect customers to ask before they purchase a

product. Time constraints prevented us from examining as many quality concerns as we

would have liked.

General categories which provided the basis for the test and evaluation requirements

and cases are summarized in Figure 2. Specific requirements, including acceptance cri-

teria, and test cases were included in the project test plan.

General Test and Evaluation Categories

o evidence that Toolpack meets its requirements as defined in the technical literature

o overall performance as a complete, integrated software engineering environment

o assurance that the product has been verified and validated

o information concerning coding standards, procedures, etc. used by developers

o how well Toolpack would operate on our computer

o how Toolpack operation would affect users of other software on our computer

o maintainability of Toolpack

Figure 2. Project requirements for acceptance testing

In defining test and evaluation requirements we took advantage of our access to the

source code. To evaluate for maintainability, we examined the code for features in a

maintenance guideline [FIPS106] and executed measures requiring source code. Without
source code, an acceptance criterion might have been evidence from the developer that

maintainability measurements have been met (e.g., statistics on module size, proof of

conformance to a structured language standard).

In some cases, acceptance criteria were easy to define, (e.g., either the function would
execute as defined or it would fail.) In others, such as for quality or state-of-the-art

features, defining criteria was more complex. A feature such as maintainability is

difficult to define in quantitative terms. A judgment on the completeness of the tool set

or the value of individual tools may also be considered subjective. To maintain objec-

tivity, we decided to use accepted guidelines or other technical information. For main-

tainability, we examined the Toolpack code according to [FIPS106]. In order to evalu-

ate the completeness of the environment, we checked against the levels of capability as

presented in [BRAN81]. These levels were particularly suitable as a baseline because as

the support level increased, so did the level of integration, another of the proposed

features of Toolpack. While this project was underway, a technical journal presented

the results of a different type of study on the value of software tools to the programmer
[HANS85]. We compared Toolpack’s tools against the conclusions of this study also.

- 5 -



5.0 TEST PROCEDURE
In order to perform the acceptance testing, we established a general procedure to

organize the various tasks and to allow us to evaluate how large the effort would be.

The procedure list, shown in Figure 3, does not cover all tasks, such as the initial deci-

sion to apply existing W&T guidance.

In general, we were able to follow this procedure. Although we did everything on the

list, some steps were performed out of sequence. These include the management review,

some significant iterations to the test plan, and the document examination. For an

informal review, an impartial and highly experienced staff member provided comments
on the first draft of the plan. For the formal review, we had difficulty getting manage-

ment staff together. When it did occur, near the end of testing, it became a review of

the project. The nature of comments was such that had this review occurred earlier,

the project might have been easier.

The iterative nature of test planning was evident on this project. As a consequence

of the management review of the test plan, we added more information concerning the

automation of the testing process and descriptions of procedures which we were actu-

ally implementing but had not documented in the plan. The original test plan was

PROCEDURE for EXPERIMENTAL PROJECT

o develop a test plan including

- management information

- the general approach to testing

- functional requirements and general test requirements

- criteria for acceptance

o conduct a management review of the test plan

o develop test design and cases for each requirement from the perspective

of the original customer

o develop other requirements to test needs as potential customers (scenario-building)

o develop specific test procedures

o develop algorithms, software tools for measurements and data collection

o define other analysis methods

o build a test library

o execute tests

o maintain a test log, including an automated history profile

o evaluate and document.

Figure 3. Project procedure for acceptance testing

- 6 -



written before the results of another tool study [HANS85] were published. Although we

were evaluating completeness of the environment according to integrated levels of capa-

bility suggested by [BRAN81], this article presented a different perspective for measur-

ing the worth of individual tools. We wanted to include this approach in our work and

modified the test plan once more.

The test plan called for an evaluation of the Toolpack documents. Because we

needed to read all the literature in order to get started, we considered the initial reading

to be the required examination. Later, near the end of the project, we briefly re-visited

the documents. On a larger project, a more formal examination may have been

required.

After installation and preliminary examination, we knew which Toolpack functions

existed in our configuration. We used those capabilities to examine their usefulness in a

programming environment and to determine how well they met the level of expectation.

In addition, we evaluated properties of the future complete system as it was described.

Obviously, we could not try these properties ourselves; rather we evaluated against our

own and others’ experiences. In one case, we had already examined a feature not

included in our configuration, that is, a command interpreter [CLEM84] which was a

prototype of Toolpack’s command interpreter, the tool that would complete the integra-

tion of the Toolpack tools. We considered this to be at least a partial ” proof of con-

cept” of tool integration.

For some of the test requirements, we had to develop software. We wanted to keep

our development efforts as simple as possible, using readily available technology.

Software was needed to calculate storage and timing requirements, to test the extensibil-

ity feature, that is, the capability to insert additional tools into the system, and to par-

tially automate the testing process. We developed a test library of programs to test the

capabilities of Toolpack and the results of the various tests. The names of test pro-

grams and test results in the test library provided a cross-reference between them.

Programs in the test library were prepared to measure execution time on programs of

various lengths, to test functional capabilities such as syntax error detection, data-flow

analysis, structuring, and compatibility with FORTRAN 66. (The last requirement was

included because potential users of Toolpack may have many programs in FORTRAN
66.) A sample program was written to demonstrate Toolpack’s extensibility feature, the

ease with which a tool can be added.

Toolpack provides access to its tools in different modes. In embedded mode the Tool-

pack user operates completely within the Toolpack environment and can access features

outside Toolpack only by completely exiting the environment. In the stand-alone mode,

the user has access to individual Toolpack tools but control is maintained by the

computer’s operating system. To test and record an embedded mode session, the com-

mand executor was run with results recorded by the "script” function of UNIX2
.

Stand-alone test scripts were designed to automatically execute tools on a collection of

test files. These test sessions were also recorded using UNIX "script”. The test files

were provided one-by-one to the program being tested. After conducting the tests we
were able to incorporate portions of the log files into test reports.

Output of the UNIX function ’’script” provides history files of the test execution.

However, test summary reports are also needed. To capture our impressions

2UNDC is a trademark of AT&T.

- 7 -



immediately, we wanted to create a ’’notes” file and edit it inside Toolpack. Technical

difficulties forced us to make manual notes which we later put together as one

automated file.

6.0 PROJECT DIFFICULTIES
Some project difficulties were easy to handle; others would make reasonable research

projects. We were not immune to the problems of real life. Some of these difficulties are

listed in Figure 4.

o personnel turnover

o various configurations of the product to test

o separation of developmental from acceptance tests

o determining requirements for purchased rather than custom built software

o defining acceptance criteria for state of art features

o loss of objectivity in testing and evaluating

o realization of most of the anticipated constraints

o lack of automated data collection facilities

o too many iterations to add more test cases

o inadequate configuration management for the test items.

Figure 4. Difficulties of acceptance test project

During this project, staff changes meant reorganization, delays, and changes in focus.

The scope of the project was expanded to satify goals of both the W&T and softare

engineering environments projects.

We had begun our preparations for evaluating Toolpack long before the first system

configuration arrived. We received several configurations of the Toolpack system, but

never received the complete system. The test plan, based on descriptions of Toolpack

from the technical literature and some Toolpack documents published by the research-

ers, was based on the complete system and could not be implemented completely. The

latest version we received had more tools, still in the experimental stage, and perhaps

represented the intended prototype more closely than previous versions. The expectation

(of developers and testers) that the new tools would not perform well meant that this

version was less likely to perform overall as well as the version preceding it. For tlx

formal testing, we selected the earlier, less complete environment because its tools were

more likely to perform well and to indicate more clearly how they would benefit a pro-

grammer. This selection probably reduced our objectivity.

Acceptance testing is usually performed on the final product, often in the operating

environment. In many cases the customers do not further examine the source code itself.

However, we did have the source code and it was very difficult to separate acceptance

testing from the types of testing and measurements that might be performed during

development. Some measurements on the code would answer questions concerning

the tools were created and how they were integrated. In the original specifications,

there may have been requirements for performance and maintainability wli

fulfillment might have been verified during development for the original customer. I r

customers not involved in the development of a product, some acceptance criteria might

require evidence that the source code was developed in accordance with standards on

- 8 -



programming languages, W&T, and maintenance.

Closely related to the distinctions between developmental and acceptance testing are

also the distinctions between the test concerns of the original customer and those of a

purchaser of completed software. In the former case, the test requirements are built

around the requirements for the software system, which the original customer specified.

In the second case, the test requirements are designed to show that the system does not

only what ' the developer says it does, but also that it will fulfill scenarios desired by the

new customer. Scenario-building requires knowledge of the system to be tested and of

how the new customer will attempt to use the system.

As acceptance testers, we tried to use quantitative criteria in order to make highly

objective evaluations. But, some of the features we were looking at were new concepts;

quantifying criteria for state of art characteristics involved examining other research

results. From the perspective of the software tools project, we were frequently more

interested in the proof of the concept of a feature. We tried to envision the tools in a

completed environment and how as an integrated collection, they might help or hinder a

programmer. We had to consider whether or not such an environment would in some

cases be less valuable to a programmer, for example, if the programmer’s operating sys-

tem also included many tools. Our experience and the reference documents [BRAN81,

HANS85] provided some guidance, but as proponents of automated software engineering

aids, we nevertheless may have lost some objectivity during testing. In our work with

the system and in our discussions about features we might like to have, we generally

ended up saying something like, "Well, that can be put in or modified.”

Another example is that we had previously examined ODIN [CLEM84], a command
interpreter similar to the one proposed for Toolpack, the feature which would truly tie

the system together. The configuration which we chose for the testing did not have the

command interpreter (and the final version had only an experimental command inter-

preter). In ODIN we saw that the concept could work; from our research perspective

that was satisfactory and in some sense met acceptance criteria. A more objective

analysis might be made if the acceptance criteria left no room for such opinion, (e.g., we
could look at the command interpreter only in the environment.) In our case, we
brought some of this on ourselves by designing the project to have the somewhat
conflicting goals of exploring research concepts and accepting them at the same time. In

reality, we were testing to accept the concepts, not the environment! In any case, the

testing staff should have no interest in the product other than to tell the customers

whether or not it meets the acceptance criteria.

As in many real life situations, we realized. several constraints. The full system never

arrived; in fact we received the system in bits and pieces. Without knowing when we
would have the total system, it was difficult to assign staff full-time to the evaluation

project. We developed the test plan primarily from research papers rather than require-

ments specifications and user manuals. While installing the system and figuring out

what we actually had, we essentially ran all the functional tests on an informal basis

and knew the system’s capabilities before the test plan was completed. Repeating all of

them formally, when there are time limitations, was not reasonable, at least for achiev-

ing the goals of the tools project. As the algorithms were developed to aid in measure-

ments, they were individually and methodically executed and recorded. Later we gen-

erated the test scripts and re-executed several tests formally. However, we had gathered

most of our results informally. Because other tasks were demanding our attention, we
had to use the remaining project time for documentation.

- 9 -



It may have been worthwhile to rerun some tests formally if we had better data col-

lection methods. Examples are the automatic recording of screen images or the quick
and efficient recording of comments without exiting the Toolpack system. We found the

line editor slow and cumbersome. Files created inside Toolpack were not easily accessi-

ble outside Toolpack. It was time-consuming to exit Toolpack, write notes and then
return to Toolpack. A simple exit to UNIX that didn’t require closure of the system
would have been a great aid. Instead we usually recorded observations on paper, then

did most of our computerized documentation near the end of the project.

Initially, we didn’t impose firm cut-off dates for changes to the test plan and require-

ments or to the stop conditions for the testing. We had several iterations to keep track

of. We took advantage of the tools in our computer’s operating environment to manage
the various configurations. Yet, more automation was needed in the configuration

management of the testing process, from plan versions through execution and evaluation

of each test. In fact, the ideal situation would have been to use a complete software

engineering environment for all document production, automation, and controls.

7.0 PROJECT EVALUATION
Benefits of this experiment in acceptance testing are summarized in Figure 5.

Overall, we were satisfied. We collected sufficient data to evaluate the prototype Tool-

pack environment. In addition, we made appreciable gains in our knowledge of software

engineering environments and in the types of problems encountered in developing such

systems. As a result of this experiment, we are able to establish areas for more research

in our software W&T program.

o Evaluation of the software

o Gains in experience with software engineering environments

o Understanding of problems in developing software engineering environments

o Definition of problems in acceptance testing

o Influence on a developing standard

Figure 5. Benefits of acceptance test project

An unexpected benefit of this project was the effect on an evolving software standard.

As part of this project, we tried to apply appropriate sections of the draft of the IEEE

Standard for Software Verification and Validation Plans (P1012), in strictly an experi-

mental capacity. During this period we presented feedback to the P1012 working group,

who then made some appropriate changes.

We learned firsthand about many of the pitfalls of software testing. We found that

the guidance documents on software testing provide good general support, particularly

for management and planning, but guidance is needed on how to do specific types of

testing. The project also made clear that acceptance testing for non-custom built

software requires attention to concerns that might have been covered during d

ment for the original customer. The second customer’s requirements may not be identi-

cal to those of the initial customer. The definition of acceptance criteria may require

scenario-building in the new customer’s environment, and may require more compromis-

ing of the requirements before accept or reject criteria are established.

- 10 -



Guidance documents appear to be written for the ideal, rather than the real life, cir-

cumstances software projects are likely to encounter. There is a need to have guidance

that aids testers to reach their test goals in spite of realized constraints. The guidance

should not be rigid but should provide a framework from which the users can tailor to

fit their project. We expected to make changes in our plans but the frequency and

number of changes indicated that we needed either to allow more lead time before test-

ing or to state clearly in our plan that there would be changes. Guidance for planning

documents should emphasize the iterative effort required between defining test require-

ments and implementing those requirements.

It would be useful to have examples included in guidance, but practical examples can

be produced only from careful data collection during testing projects. Data collection

was one of our problems. We wanted to document our results as we accrued them but

two separate problems here made documentation difficult: the informal testing that pre-

ceded, and in some cases replaced, formal testing; and lack of tools to collect the test

results and immediately analyze and document them.

Formal procedures for automation should be established as a general rule in one’s

working environment. Then, even if one is running some informal tests, automated

recording procedures are in place. In essence, ” informal” testing would not occur.

In some cases we were able to take advantage of the UNIX function "script” that

captures all screen activity. However, for additional annotation we needed to leave

Toolpack to use a screen editor. In spite of our good intentions, we usually did our writ-

ing after a complete series of tests. If we were to do further work in test automation, a

good place to contribute is in providing the capability to comment interactively on tests,

particularly those that involve screen responses. Our immediate reactions would have

been easily saved for review for our final evaluation.

Finally, objectivity is sometimes hard to maintain. A very important element in test-

ing is to define the acceptance criteria in quantitative terms. Those that may require

subjective judgment should at least have the judgment supported by some accepted

standard of performance, whether it is a formal standard or a technical evaluation by a

recognized authority. These types of considerations will help to determine if the particu-

lar aspect of the software has passed or failed the acceptance criteria.

This study pointed out weaknesses in existing standards and guidelines in software

acceptance testing. This study provided the information necessary to map out a project

leading to a stronger set of guidelines for software acceptance testing.

8.0 FUTURE RESEARCH
One of the goals of this project was to define areas of needed research and guidance

for software W&T. Some topics that might be considered for future research are sum-

marized in Figure 6. Future guidance should also provide management direction in

determining the scope and appropriateness of the acceptance testing project for a

software system.

Research in automated support should particularly emphasize methods of data collec-

tion during the testing. During testing easy access to information about Toolpack that

we had already collected would have been useful; instead we hd to leave Toolpack to

gain access to information stored in file system. We were able to implement some test

harnessing, that is, the automated organization of the test cases and their execution,

because of the powerful operating system we were using. More configuration control

- 11 -



Suggested Research Topics

o Automated support

o Software purchase vs custom build

o Acceptance criteria

o Test case selection.

Figure 6. Definition of research topics

mechanisms would have been useful. These experiences indicate that the entire test

process can be vastly improved with automation from test planning through execution,

including mechanisms to trace software requirements through test execution.

The purchasers of software systems are recognizing that much of the software they

need already exists, or is in the process of being built for another customer. If they wish

to purchase this software, they need methods of determining how well the software will

meet their own needs. Acceptance tests for this software may include areas outside the

domain of traditional software acceptance testing. Guidance to define the concerns for

this type of software testing would be very useful.

Although acceptance criteria are sometimes difficult to define in quantitative terms,

they are essential in helping purchasers make unbiased accept or reject decisions. Gui-

dance is sorely needed to emphasize this. Methods to establish criteria, particularly

when the software is either state-of-the-art or performing a function that is not well-

known, need to be studied. Guidance is also needed to map criteria against various

software products and the methods of demonstrating that each product meets its cri-

teria.

The problem of test case selection is important for all types of testing. Basically, gui-

dance is needed in two major areas, one technical and one managerial. The technical

question for acceptance testing is how to build and select scenarios that reasonably

represent the purchaser’s intended use of the system. Of course, the purchaser needs to

represent this intended use without doing exhaustive testing. This leads to the larger

management question of how much quality assurance is enough.

This study was the first of a series of steps planned to lead to guidance in software

acceptance testing. Its primary purpose was to locate the topics where more informa-

tion and research are necessary before guidance can be written. The next steps are to

perform the research and to locate more information concerning these topics. One

approach has been to conduct a workshop to address these research questions in

software acceptance testing. Future steps leading to guidance will be based on the

results from this workshop.

9.0 REFERENCES
[BRAN81]

Branstad, Martha A., W. Richards Adrion, and John C. Cherniavsky, " A

View of Software Development Support Systems,” Proceedings of the National

Electronics Conference, National Engineering Consortium, Inc. 1981.

- 12 -



[CLEM84]
Clemm, Geoffrey M., "ODIN - An Extensible Software Environment Report and

User’s Manual,” University of Colorado, Boulder, CO, CU-CS-262-84, March, 1984.

[FEPS38]

"Guidelines for Documentation of Computer Programs and Automated Data Sys-

tems,” Federal Information Processing Standards Publication 38, National Bureau

of Standards, 1976.

[FIPS101]

"Guideline for Lifecycle Validation, Verification and Testing of Computer

Software,” Federal Information Processing Standards Publication 101, National

Bureau of Standards, 1983.

[FIPS 106]

"Guideline on Software Maintenance,” Federal Information Processing Standards

Publication 106, National Bureau of Standards, 1983.

[FUJI85]

Fujii, Roger U., Dolores R. Wallace, and Michael Edwards, "Status: Draft of

the Proposed IEEE Standard for Software Verification and Validation Plans

(P1012),” Phoenix Conference on Computers and Communications, EEEE
Computer Society, NY, March, 1985.

[HANS85]
Hanson, Stephen Jose and Richard R. Rosinski, "Programmer Perceptions of Pro-

ductivity and Programming Tools,” Communication of the ACM, Vol.28, No. 2,

February, 1985.

[HOUG85]
Houghton, Raymond C.,Jr. and Dolores R. Wallace, "Characteristics and Functions

of Software Engineering Environments,” National Bureau of Standards, NBSIR 85-

3250.

[EEEE829]

"IEEE Standard for Software Test Documentation,” ANSI/IEEE Std.829-1983,

The Institute for Electrical and Electronics Engineers, Inc., 345 East 47th SDt.,

New York, NY 10017.

[OSTE83]
Osterweil, Leon J., "Toolpack - An Experimental Software Development Environ-

ment Research Project,” IEEE Transactions on Software Engineering, Vol. SE-9,

No. 6, November, 1983.

[WAL86a]
Wallace, Dolores R. and D. Richard Kuhn, "Study of a Prototype Software

Engineering Environment,” National Bureau of Standards, NBSIR 86-3408.

[WAL86b]
Wallace, Dolores R., ”An Overview of Computer Software Acceptance Testing,”

National Bureau of Standards, NBS SP 500-136, February, 1986.

- 13 -



NBS-114A (REV. 2-80

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 86-3407

2. Performing Organ. Report No. 3. Publication Date

JULY 1986

4. TITLE AND SUBTITLE

An Experiment in Software Acceptance Testing

5. AUTHOR(S)
Dolores R. Wallace

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

S. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10.

SUPPLEMENTARY NOTES

| |
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document Includes a significant

bibliography or literature survey, mention it here)

Software acceptance testing was performed on a prototype software engineering environ-

ment as part of the program to provide information to Federal agencies for improving

quality and productivity in software development and maintenance. The purpose of soft-

ware- acceptance testing is to demonstrate to its purchasers that the software satisfies

its requirements. This report cribes the method and standards applied in this study in

software acceptance testing. The report also discusses the difficulties encountered

during the study and proposes research directions for software acceptance testing.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by ••mfCO/MfJ

software acceptance criteria; software acceptance testing; software engineering

environment; software standards; software test planning; software test tools.

13. AVAILABILITY

| X] Unlimited

| |

For Official Distribution. Do Not Release to NTIS

| |

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

[T] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

19

IS. Price

S9.95

UlCOuu*OC






