
NBS

PUBLICATIONS
A111DB 5423b?

NBSIR 86-3395

National Bureau of Standards
Workshop on Performance
Evaluation of Parallel Computers

NATL INST OF STANDARDS & TECH R.I.C.

All 102542367
Salazar, Sandra B/Natlonal Bureau of Sta
QC100 .1156 NO.86-3395 1986 V19 C.1 NBS-P

Sandra B. Salazar

Carl H. Smith

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

July 1986

U.S. DEPARTMENT OF COMMERCE

QC

100

- U 5 6

86-3395

1986

C. 2

ONAL BUREAU OF STANDARDS

NBS
RESEARCH

INFORMATION

CENTER

NBSIR 86-3395
* 9 if

National Bureau of Standards
Workshop on Performance
Evaluation of Parallel Computers

Sandra B. Salazar

Carl H. Smith

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

July 1986

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

NBSIR 86-3395

NATIONAL BUREAU OF STANDARDS
WORKSHOP ON PERFORMANCE
EVALUATION OF PARALLEL COMPUTERS

Sandra B. Salazar

Carl H. Smith

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

. Center for Computer Systems Engineering

Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

July 1986

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

o'*

NATIONAL BUREAU OF STANDARDS
WORKSHOP ON PERFORMANCE EVALUATION

OF PARALLEL COMPUTERS

Sandra B. Salazar and Carl H. Smith *

U.S. Department of Commerce
National Bureau of Standards

Center for Computer Systems Engineering

Institute for Computer Sciences and Technology

Gaithersburg, MD 20899

The Institute for Computer Sciences and Technology of the National Bureau

of Standards held a workshop on June 5 and 6 of 1985 in Gaithersburg, Maryland

to discuss techniques for the measurement and evaluation of parallel computers.

Experts from industry, government and academia presented position papers and

reported on experiences with parallel computers. This document is the report of

the workshop.

Key words: parallel processors; parallel architectures for computers; performance

evaluation; benchmarking.

Foreword
The Institute for Computer Sciences and Technology at the National Bureau of Stan-

dards is actively engaged in the development of techniques to measure and evaluate the

performance of parallel computers. As a preliminary step, a workshop on performance

evaluation was held in Gaithersburg, Maryland on June 5 th and 6 th
,
1985. The goal of the

workshop was to define the issues and problems involved in the development of benchmarks

for large parallel computers. Thirty-six talks were given by representatives of government,

industries, universities and research laboratories. The topics presented ranged from spe-

cific measurements of large parallel machines to the philosophical issues concerned with

the development of universally applicable benchmarks. In addition to the formal talks,

there were several lively discussions.

This document is a report on the workshop. A one-page synopsis of each presentation

is included. The synopses were compiled from notes taken and copies of the speakers’

transparencies. Each contributor had the opportunity to review the synopsis of his or her

presentation. Pointers to particular synopses are bracketed in slanted type face. Many
of the synopses mention commercial products. These references in no way constitute an

endorsement by the National Bureau of Standards or any of its employees.

* Also affiliated with the Department of Computer Science at the University of Maryland

and the University of Maryland Institute for Advanced Computer Studies

1

Introduction

In the past decade, the cost of conventional computers has dropped dramatically

while the processors themselves have become significantly faster. Although most of the

advances are due to enhanced fabrication technology rather than innovative architectures,

it is widely believed that further fabrication improvements are unlikely to yield major

performance gains. Thus the unending search for faster computers has led scientists to

emphasize new computer architectures. In particular, parallel architectures have received

considerable attention
[

Connoly
,
Schneck].

With these new parallel architectures comes the problem of evaluating them. Stan-

dard benchmarking techniques display several shortcomings when applied to conventional

sequential machines. All the same criticisms apply to the benchmarking of parallel comput-

ers. In addition, new problems arise when trying to benchmark parallel machines. Some

of the difficulty lies in the diversity of the architectures under consideration. Language

constructs used to exploit multiple instruction stream, multiple data stream (MIMD) ar-

chitectures are radically different from constructs designed for use on a single instruction

stream, multiple data stream (SIMD) machine. Consequently, a benchmarking program

written for one type of machine may not run on any other parallel machine without exten-

sive modifications altering the very nature of the algorithm underlying the benchmark. In

any event, the performance of a benchmark may fail to predict how the machine will behave

when asked to run application programs written by the intended users of the machine.

The participants of the workshop all agreed that benchmarks for large parallel com-

puters were necessary to influence the design decisions of vendors and for the procurement

of machines | Hayes]. Academic comparison of machines would be enhanced by a reason-

able set of benchmarks and the National Bureau of Standards was deemed an appropriate 1

,

unbiased collection point for such a set [Nelson . The participants also agreed that there

were several pitfalls to avoid when benchmarking parallel computers. Unfortunately, there

was no consensus on how to avoid those pitfalls. In some cases, there weren't even any

ideas on how to solve aspects of the benchmarking problem. The remainder of this section

is devoted to listing problems that will be encountered when trying to benchmark parallel

computers.

The benchmarking of standard sequential computers is complicated by word length

differences. If the benchmark uses 40 bit aggregates of data, then a processor will take

between 1 and 5 memory accesses to get one logical word of data. A relatively slow

processor might run a benchmark faster than a “fast” processor with a narrow meinon

bandwidth. Consequently, a benchmark designed to assess processor speed might actualb

(when run on several different machines) measure memory efficiency.

The word size problem is amplified when discussing the benchmarking of parallel com

puters. By their very nature, parallel computers are designed to process several data item

simultaneously. Some of the data must come from external sources (disk files) as input,

and some data is correspondingly designated as output. Incoming data must be tr.ni

ferred from an essentially serial device and loaded into an appropriate meinon locatioi

before processing can begin. The reverse process is necessary for output. Perhaps tin

processors can process data faster than it can be received as input or fed to the output

device. Interconnection network topology and bandwidth influence input output spi-ed

2

j

Arnold
,
Bailey

,
Faiss]. The former factor is evident only on parallel architectures. Again,

the question as to what is actually being measured arises. Separating processor perfor-

mance from input/output proficiency may well be impossible, and perhaps undesirable, on

some parallel architectures. Similarly, separating processor performance from benchmark

overhead is trickier for parallel architectures than for inherently sequential ones.

If a benchmark is to be useful, the same program must run on several different ma-

chines. Consequently, assembly languages exploiting unusual characteristics of individual

architectures are ruled out. Two fundamental problems stem directly from the use of high

level programming languages for benchmarking. Firstly, compilers vary tremendously as to

the efficiency of the code they produce. Consequently, a benchmark may actually measure

compiler efficiency as opposed to processor performance [Alien]. There is no widely used

standard language for parallel processors. All parallel processors use an extension of some

programming language developed for sequential processors. Each extension is designed

to exploit particular features of the host machine. Consequently, a benchmark must be

‘‘translated” into the dialect used for each machine. In some cases, the translation is not

straightforward, involving modifications to the underlying algorithm. Consequently, the

benchmark may measure the quality of the translation and not machine performance.

The problems with benchmarks written in high level programming languages are com-

pounded by the applications bias inherent in today’s parallel processors. Each architecture

has features designed to facilitate particular parallel operations
[

Browne
,
Jordan

,
Schwet-

man}. The different features are incarnated in the extensions to the standard base language.

It would be misleading, and in some cases unfair, to use a benchmark designed to exploit

a particular type of parallelism on a machine geared toward a different type of parallelism.

The classic example is SIMD vs. MIMD. However, no one type of parallelism seems to be

common to all parallel architectures. So, in addition to other problems with benchmark-

ing, each result must be qualified by some notion of the appropriateness of the benchmark

algorithm for the the particular computer.

Designs of parallel architectures sometimes call for thousands, even millions of pro-

cessors \Uhr}. Prototypes with far fewer processing elements are constructed for program

development and benchmarking. Studies done with 4, 8 and 16 processor versions of the

same general architecture indicate that the results for one number of processors do not

extrapolate to a larger set of processors [Clark, Lakshmirvarahan, Thomas]. Hence, even if

the above problems with benchmarks could be solved, the results obtained from prototype

machines would be virtually useless in evaluating production models.

Current parallel computers are notoriously difficult to program. Benchmarking should

address the issue of productivity throughout the complete process of algorithm design,

implementation and use. It may well turn out that a particularly fast processor is so

cumbersome to program, that a solution to some problem may be achieved more rapidly

on a standard sequential computer that is significantly easier to program.

The result of a benchmark is generally a single numeric value [Nelson]. A single value

cannot possibly sort out the issues of raw speed, input/output speed, net productivity

and ease of use. This is especially true for parallel architectures where overall efficiency

must be traded off versus total time to task completion. Single numbers are sought after by

administrators, not versed in the technical issues, who seek simple metrics for the purposes

3

of procurement \Dembart}.

The above comments do not represent the views of any one individual. Rather they

are a compendium of the views expressed by the participants of the National Bureau of

Standards Workshop on Performance Evaluation of Parallel Computers. Several of the

above issues were hotly debated during the workshop.

Since the workshop, an on line library of benchmarks has been set up at the National

Bureau of Standards. The library is accessed by sending electronic mail to:

NBSLIBQICST-CMR . ARPA

Sending the message:

send doc from info

will cause a brief description of how to access the library to be returned to the sender.

The library contains several well known benchmarks (e.g. whetstone and dhrystone) and

some benchmarks developed at the National Bureau of Standards. There are currently 78

benchmarks in the collection. Additions are welcome.

4

List of Attendees

Walid Abu-Sufah - University of Illinois
George B. Adams III - NASA Ames Research Center
Randy Allen - Rice University
Clifford N. Arnold - ETA Systems, Inc.
David H. Bailey - Informatics General Corporation for NASA/AMES
Robert P. Blanc - National Bureau of Standards
Vito Bongiorno - Cray Research, Inc.
Martha A. Branstad - National Bureau of Standards
A1 E. Brenner - Fermilab
Richard Brice - MCC Corporation
Stephen A. Brobst - Massachusetts Institute of Technology
Jim C. Browne - University of Texas
William E. Burr - National Bureau of Standards
Robert J. Carpenter - National Bureau of Standards
Ronald S. Clark - IBM/Kingston
John W. D. Connolly - National Science Foundation
James E. Cottrell III - National Bureau of Standards
Kent K. Curtis - National Science Foundation
Benjamin Dembart - Boeing Computer Services
Jesse M. Draper - National Bureau of Standards
Kenneth M. Dymond - National Bureau of Standards
Rudolf 0. Faiss - Goodyear Aerospace Corporation
John B. Freeman - Control Data Corporation
D. Odell Hamilton - National Bureau of Standards
Ann H. Hayes - Los Alamos National Laboratory
Arthur W. Holt - National Bureau of Standards
Harry F. Jordan - University of Colorado
Malvin Kalos - New York University
Robert M. Keller - University of Utah
William A. Kneisly - ETA Systems, Inc.
Alfred L. Koenig - National Bureau of Standards
James T. Kuehn - Purdue University
S. Lakshmi varahan - University of Oklahoma
Olaf Lubeck - Los Alamos National Laboratory
Gordon E. Lyon - National Bureau of Standards
Creve Maples - Vitesse Electronics
Joanne L. Martin - IBM/Yorktown
Ernst Mayr - Stanford University
Kevin P. McAuliffe - IBM/Yorktown
Alan Mink - National Bureau of Standards
Harry Nelson - Lawrence Livermore National Laboratory
Rodney R. Oldehoeft - Colorado State University
John P. Riganati - National Bureau of Standards

Steve Ritzman - National Bureau of Standards
John W. Roberts - National Bureau of Standards
Sandra B. Salazar - National Bureau of Standard
Paul Schneck - National Security Agency
Herb Schwetman - MCC Corporation
Zary Segall - Carnegie-Mel Ion University
Carl H. Smith - National Bureau of Standards
Robert H. Thomas - BBN Laboratories
Michael Tsao - IBM/Yorktown
Leonard Uhr - University of Wisconsin
Walt Vandevender - Sandia National Laboratory
Robert G. Voigt - NASA/ICASE
Shukri A. Wakid - National Bureau of Standards
John Zelenka - ETA Systems, Inc.

SPEAKERS AT THE NBS WORKSHOP ON PERFORMANCE EVALUATION

Enhancing Performance of Small Grain Multiprocessors
Walid Abu-Sufah - University of Illinois

A Performance Study Involving Designers and Users
George B. Adams III - NASA Ames Research Center

Evaluating Program Transformations for Supercomputers
Randy Allen - Rice University

Performance Implications of a Hierarchical Memory in a Multi-
processor System
Clifford N. Arnold - ETA Systems, Inc.

Memory Bank Contention on High-Speed Computers
David H. Bailey - Informatics General Corporation for NASA/AMES

Performance Tools for CRAY Computers
Vito Bongiorno, Jr. - Cray Research, Inc.

Past, Present, and Future Uses of Computers in High-Energy
Physics
A1 E. Brenner - Fermilab

Performance Evaluation of the Tagged Token Dataflow Architecture
Stephen A. Brobst - Massachusetts Institute of Technology

A Universal Simulator for Parallel Computation
Jim C. Browne - University of Texas

VS FORTRAN Program Multitasking Facility Application Performance
Analysis
Ronald S. Clark - IBM/Kingston

The NSF Supercomputer Initiative
John W. D. Connolly - National Science Foundation

Allocating Costs in a Multiprocessor Environment
Benjamin Dembart - Boeing Computer Services

Impact of Operand Types on Machine Performance
Rudolf 0. Faiss - Goodyear Aerospace Corporation

Benchmarking Activities and Plans at Los Alamos
Ann H. Hayes - Los Alamos National Laboratory

The HEP Multiprocessor and the Principle of Universal Parallelism
Harry F. Jordan - University of Colorado

The NYU Ultra Computer: Its Architecture and its Applications
Malvin Kalos - New York University

The Rediflow Simulator
Robert M. Keller - University of Utah

Evaluating the Performance of the PASM Reconf igurable SIMD/MIMD
Machine
James T. Kuehn, H. J. Siegel, and Leah H. Jamieson - Purdue
Univers ity

Experience with HEP
S. Lakshmivarahan - University of Oklahoma

A Benchmark Comparison of Three Supercomputers: Fujitsu VP-200,
Hitachi S810.20, and CRAY X-MP/2
Olaf Lubeck - Los Alamos National Laboratory

The Importance of Performance Analysis Tools in Highly Parallel
Architectures
Creve Maples - Vitesse Electronics

Analysis and Measurement of Scientific Applications Codes
Joanne L. Martin - IBM/Yorktown

Nonparal lei izab le Algorithms
Ernst Mayr - Stanford University

Performance Monitoring of the Research Parallel Processor
Prototype (RP3)
Kevin P. McAuliffe - IBM/Yorktown

Why NBS Should Set the Computer Classification Standards
Harry Nelson - Lawrence Livermore National Laboratory

Performance Considerations in HEP SISAL
Rodney R. Oldehoeft - Colorado State University

Plans for the NSA Supercomputing Research Center
Paul Schneck - National Security Agency

Parallel Workloads
Herb Schwetman - MCC Corporation

Programming and Instrumentation Environment for Parallel
Processing
Zary Segall - Carnegie-Mel Ion University

Performance Measurements for the Butterfly Parallel Processor
Robert H. Thomas - BBN Laboratories

Performance Monitoring of the Research Parallel Processor
Prototype (RP3)
Michael Tsao and Kevin McAuliffe - IBM/Yorktown

Toward Architectures that Execute Algorithms Efficiently
Leonard Uhr - University of Wisconsin

Benchmarking at Sandia National Laboratory, Albuquerque
Walt Vandevender - Sandia National Laboratory

Early Experience with the FLEX/32
Robert G. Voigt - NASA/ICASE

Synopses of Talks

Enhancing the Performance of Small Grain Mul t iprocessors*

Walid Abu-Sufah
University of Illinois

A taxonomy for depicting the evaluation issues for high-
speed computers shows the great diversity of data structures,
program structures, and machine structures which must be
addressed in performance evaluation.

Performance evaluation activities at the Center for Super-
computing Research and Development at the University of Illinois
include

:

* machine instrumentation for performance measurement,
monitoring and analysis
* performance enhancement techniques

An example of performance enhancement techniques can be
found in compiler optimizations for reducing data synchronization
in mul t iprocessed loops. A hierarchical approach to
multiprocessing involves:

* large grain
decompose the problem into large tasks, each to

execute on a computational resource (e.g. a
multiprocessor with a small number of processors, each
with vector instructions, and a fast network)

* small grain
multiprocessing within a task (subroutine).
data synchronization requirements of loops are due

to inter-iteration data dependencies, such as flow
dependence and output dependence

By using our data synchronization reduction technique, synchro-
nizing references to some shared data items, might eliminate the
need to synchronize references to many other shared variables.

Other issues of concern are forward and backward branching,
compile-time questionable data dependencies, and enforcing of
output dependencies. Some results of using our techniques
on the 61 subroutines in Eispack are:

* only 38 subroutines need inter-iteration synchronization
in the mul t iprocessed loops

* the number of lock variables was reduced by more than
10* in all subroutines

* synchronized memory references were reduced by 50* for
1/2 of the subroutines

Supported in part by the National Science Foundation under Grant
No’s. DCR-84-101 10 , and DCR-84-06916 , the U.S. D.O.E. under
Contract No. DOE-DE-FG02-85ER2500 1

.

A Performance Study Involving Designers and Users

George B. Adams III
Research Institute for Advanced Computer Science

NASA Ames Research Center
Moffett Field, California

Progress in concurrent processing research has been limited
by a lack of understanding of interactions between computational
models, system architecture, and classes of algorithms. A
goal of the Research Institute for Advanced Computer Science
project is to develop usable systems .

In September 1984, a two-week study of the Massachusetts
Institute of Technology static data flow machine and the language
VAL focused on algorithms for six applications of interest
to NASA Ames Research Center (computational fluid dynamics,
computational chemistry, galactic simulation, linear systems,
queueing network models, and natural language processing). Seven
one- or two-person teams of scientists studied data flow concepts
and mapped their applications onto the machine, coding in VAL.
The goal in mapping was to maximize the number of busy processing
elements and to minimize the traffic on the routing network.

The scientists utilized terminals which made the RIACS
computer system, running the VAL trans lator/ interpreter ,

appear
familiar to them. The problem-solving steps were as follows:

Problem statement (prose)
Mathematical model (mathematics)
Abstract algorithm (discrete mathematics)
High-level program (VAL)
Machine program (machine language)

This experimental study provided a number of valuable
findings, including the following:

* VAL is readily learned

* The data flow model of computation is readily learned

* Most applications could use all parallelism available in

the data flow machine

* Small data flow machines may be quite cost effective

Evaluating Program Transformations for Supercomputers

Randy Allen
Rice University
Houston, Texas

An effort is underway at Rice University to review existing
FORTRAN programs for application to vector or parallel machines.
Parallel algorithms have been found to run slower on parallel
machines than was anticipated by either the users or the machine
designers. The compiler tends to get the blame for this.
Compilers are needed which can use the parallel features effect-
ively. There is also the ’’dusty deck” problem involving old
existing programs which need to be transformed for parallel
machines. In the case of new programs, a user may choose to
program directly in vector code, although this may turn out to be
formidable. Imposing a sequential order among a block of vector
statements requires the same analysis as vectorizing sequential
statements

.

Program development and debugging may be done on a different
machine than the one that runs the object program. In this case,
there are portability problems to be considered. The transforma-
tion process needs to optimally adapt to each architecture on
which the program is to be run.

There is a problem in finding suitable programs in the
public domain. Artificial benchmarks may include code to
deliberately trick the compiler.

Two main tools are in use at Rice University for this work.
One is the Automatic Vectorizer and the other is PTOOL (Program-
ming Tool). These are useful for both vector and parallel
supercomputers. Effectiveness is evaluated by actually running
the code on a specific machine. The amount of computer effort
to perform transformations is also noted, as well as the situa-
tions in which the transformations are useful.

Performance Implications of a Hierarchical Memory
in a Multiprocessor System

Clifford N. Arnold
ETA Systems

The characterization of large machines by means of a single
number is becoming less realistic. Solutions are difficult to
visualize. CPU speed is proportional to memory speed and
capacity (Amdahl’s Law) and is limited by the slowest component.
Performance issues include the ratio of memory speeds, ratio of
memory capacities, memory management algorithm, and software
overhead

.

The Working Set size (WS) in comparison with the memory size
is a factor in performance. For example, consider a system with
a memory hierarchy -- a small fast memory (Ml) and a large slow
memory (M2). When WS is greater than Ml, performance is
proportional to the performance of M2. When WS is similar in
size to Ml and migrates around a larger static user space,
performance is a compromise of the performance of Ml and M2, and
is determined by the hit rate of the application, the memory
manager algorithms and overhead, and the performance of Ml and
M2. When WS is close to the size of M2, the system is dominated
by the application; the application should be optimized so as
not to adversely impact other users of the system.

Only when the static user space is less than the size of Ml
is the hierarchical memory not an issue. If Ml is shared by
multiple CPUs, then an application with WS proportional to Ml
dominates these CPUs whether it uses all of them or only one.
This encourages multitasking for the sake of system throughput.
If Ml is large enough for several users* WS

, then the CPU can
efficiently support those several users simultaneously. This is

important for quick interactive response and for high throughput
of many short and intermediate duration jobs. If the memory
hierarchy is managed by virtual memory managers in the OS, then
the user can enjoy the capacity of M2, with the performance of
Ml without writing I/O.

In conclusion, performance assessment is becoming more
difficult. CPU based performance kernels are probably
meaningless, as memory organization is becoming more important.
Some system designs encourage (or require) multiprocessing. The
effective working set of a code on a particular design can only
be discovered by running the code on that machine, testing both
its hardware and software.

Memory Bank Contention on High-Speed Computers

David H. Bailey
Informatics General Corp.

for NASA/AMES

One cause for reductions in the performance of a high speed
computer system is memory bank contention -- the delays
encountered when one CPU attempts to access a memory bank that
is busy processing a previous access by another CPU (or even the
same CPU). This problem will become more pronounced in future
generations of supercomputers because of the growing imbalance
between CPU speed and memory operation speed.

Two models of memory bank contention were presented. The
simple model can be solved exactly using techniques from Markov
chain theory, yielding the conclusion that the number of memory
banks n necessary to preserve a constant level of efficiency is
approximately proportional to the number of processors m times
the square of the bank reservation time t.

The advanced model has these assumptions:

* At each system clock tick, every free CPU inititiates,
with probability r, a vector memory access (fetch or store).

* Starting bank numbers for vector accesses are uniformly
distributed on (1,2,. ..,n}.

* Vector lengths are uniformly distributed on
except that a larger fraction v of the lengths
maximum value V.

0,2, ... , V},
are the

Vector strides are uniformly distributed on (l,2,...,n),
except that a larger fraction s of the strides are 1. The
term stride refers to the memory increment between
successive words fetched or stored.

The more advanced model has not been solved by analytic methods;
however, it can be analyzed using Monte Carlo simulation methods.
Simulations run on a Cray X-MP/48 produced results consistent
with the simple model analysis. The number of banks necessary
to preserve a constant level of memory efficiency is approx-
imately proportional to the number of processors minus one times
the square of the bank reservation time.

These studies suggest that unless much faster memory chips
are developed, future generations of computers will need to
employ very large numbers of independent memory banks.

Performance Tools for CRAY Computers

Vito Bongiorno, Jr.
Cray Research, Inc.

A variety of software tools exist on CRAY computers to help the
user understand and optimize programs. These tools cover a wide
spectrum of user needs. For example, there are static analysis
tools that provide the user with information on the references
to FORTRAN variables and vector izat ion potential at compilation
time. In addition, there are a number of dynamic analysis tools
that allow the user to analyze program components such as
subroutines and do-loops during execution. Several of these
tools use a unique hardware feature of the CRAY X-MP called the
hardware performance monitor.

The hardware performance monitor contains a set of eight counters
to track hardware related events that can be used to indicate
performance. Some examples of events that can be tracked are the
number of instructions issued, numbered central processor hold
cycles, fetches, scalar or vector memory references, floating
point adds, multiplies, and reciprocals. In total there are 32
hardware events that can be tracked. The performance monitor
counters operate in parallel with the execution of a user’s
program and do not interfere or delay the events being monitored.
Two of the software interfaces to the monitor, one a job control
language statement, and the other a FORTRAN compiler option,
allow its use without any program modifications. In the case of
the FORTRAN compiler option, statistics are generated on a

subroutine basis, and include the central processor time,
floating point operations, the average memory reference rate, the
ratio of memory references to floating point operations, and the
average number of floating point operations per second (MFLOP
rate.

Through the use of the hardware performance monitor and
supporting software, the user can identify important subroutines,
determine if they are executing at a high MFLOP rate, and
concentrate optimization efforts there.

Past, Present, and Future Uses of Computers
in High-Energy Physics

A1 E. Brenner
Fermilab

In particle physics, a typical experiment
10 5 interactions per second with 10 6 bytes of data
tion. The nature of the computational problem
track analysis is basically simple, in spite of the
but vector machines have not been successfully emplo
purpose so far. Currently under development is a
128 nodes which will be completed in the summer o
nodes are all supplied via a branch bus which is
limiting factor. The Hypercube machine appears in
has more capability than is required for this applic

may involve
per interac-
in particle

data volume,
yed for this
machine with

f 1985. The
felt to be a

teresting but
at ion

.

Performance Evaluition of the Tagged
Token Dataflow Architecture

Stephen A. Brobst
Massachusetts Institute of Technology

The tagged token dataflow architecture (TTDA) is based on a

dynamic dataflow model. It is an MIMD machine, with each
processing element highly pieplined. The criteria for evaluation
include an assessment of the price/performance ratio as compared
to conventional supercomputers as well as scalability.
Difficulties with performance evaluation of this architecture
arise from the complex interactions between the compiler, the
machine architecture, and resource management policies.

To attack this problem, both simulation and emulation are
being employed. As input, both methods take dataflow graphs
generated by the compiler for the ID language. In cooperation
with IBM Yorktown, a detailed simulation of the TTDA has been
developed. This software implementation of the machine facili-
tates experimentation with low level details of the machine
architecture. It collects complete timing and performance data
on the dynamic behavior of the machine during program execution.
In stand-alone mode on an IBM 4381, the processing rate is 20
million dataflow instructions per day.

Emulation of the TTDA will permit evaluation of the
architecture on the basis of more substantial application codes
than simulation can support. Currently, the emulaton comprises
8 LISP machines connected via a 10 megabit ethernet. The final
configuration will consist of 64 LISP machines with some packet
switched communication network. A circuit switch has been
implemented as our first step toward a high-speed interconnection
network. The packet switch will follow in approximately one
year. The inter- connection network is easily reconf igurable and
heavily instrumented to facilitate performance monitoring.

The TTDA emulation is built on top of generic multiprocessor
emulation software. This package provides primitives for:

* defining the number and type of processors being emulated
* specifying the interconnection topology
* monitoring the program execution
* handling the control panel interface

The user must define each logical processor in the architecture
to be emulated as a LISP program which exhibits the behavior of
the physical processor by modifying local data structures (state)
and communicating to other processors via message sending
primitives.

The LLNL SIMPLE code has been translated to ID and compiled
into the base language (a dataflow graph) for the TTDA. This
code is being run on the simulator to assess the machine
resources required by this application.

A Universal Simulator for Parallel Computation

Jim C. Browne
University of Texas

The problem addressed in this talk is how to design compu-
tation structures and predict performance of computation across
architectures, given the diversity of models of parallel
computation, as well as the diversity of parallel architectures.
The basis for the universal simulator is to develop a unified
model of parallel computation, a declarative programming
language, and a program synthesis process. The declarative
specification includes:

* schedulable units of computation
* dependency relations
* relations among dependencies

All computations can be structured as directed graphs in which
the schedulable units of computation form the nodes, while the
dependency relations constitute the arcs. This type of model
features a clean separation of concepts and an abstract machine
specification, as well as a declarative specification.

VS FORTRAN Program Multitasking Facility
Application Performance Analysis

Ronald S. Clark
IBM/Kingston

The VS FORTRAN program multitasking facility allows 2-way
and 4-way parallelism for single FORTRAN jobs executing on
various large multi-processor systems: 3090, 3081/3084, and
4381-3. Experiments have been run to test the improvement in
throughput time for various degrees of parallelism. Modification
to the FORTRAN code to achieve parallelism consists of utilizing
forks in the program which fan out to multiple tasks which can be
run concurrently. Upon task completion the separate tasks then
rejoin under the main task. One example is the dispersing of an
array among the various available processors.

Three sample applications were modified for parallelism:

1) TBLADE - turbine blade analysis, using a finite
difference algorithm

2) VA3D - a fluid dynamic application, using Euler
approximat ionn

3) BOAST - an oil reservoir simulation, using iterative
line successive over-relaxation techniques

The majority of the paral lei izab le execution time was spent in a

subset of subroutines. The lines of code run in parallel was
193*, 36%, and 24%, respectively, for an effective par a 1 1 e 1 i z ab 1 e

execution time of 83-93%. Note: Since the Workshop, IBM
announced the 3090 Vector Facility (10/1/85) which does support
parallel execution of vector code on 3090 model 200 and model
400 configurations. However, all results presented at the
Conference pertained to scalar code. Comparable measurement
results for parallel vector will be published by IBM.

The observed speed-ups over a single processor were a factor of
about 1.7 - 1.8 for two processors and about 2.6 - 3.3 for four
processors

.

The NSF Supercomputer Initiative

John W. D. Connolly
National Science Foundation

Supercomputers and networks of supercomputers
leading edge of the "megatrend" from an industria
information society. The primary purpose of the NSF is
meet the long-term needs of the country by . . . the s

science and engineering research and the training
scientists and engineers." The NSF Supercomputer Pro
meet these needs by establishing a network of supe
centers for academic basic research. The NSF supe
initiative will:

form the
1 to an
to "help

upport of
of future
gram will
rcomput er
rcomput er

* Make a significant impact on research in the U.S.,
allowing the solution to many unsolved problems.

* Train students and new scientists in the use of advanced
computers

.

* Stimulate the innovative parts of the computer industry.

The NSF Office of Advanced Scientific Computing (OASC) was
established in 1984 to provide immediate access to
supercomputers. It now provides time at six separate commercial
and university supercomputer centers. Time is being distributed
to more than 300 research groups. Four new centers dedicated to
the support of NSF basic research will be started within the
next year.

Four sites for the NSF Supercomputer Centers have been
chosen as a result of a nationwide competition. These are: San
Diego (USCD campus), Illinois (U. of Illinois, Urbana), John
Von Neumann Center (near Princeton), and Cornell. The NSF budget
is 10 million dollars per year per center, plus cost-sharing with
states and industry.

Future plans include:

* Networking
- Expand the existing community networks, such as the
ARPAnet, BITnet.
- Pilot projects to test technology for a nationwide
network, involving satellites, earth stations, and
fiber opt ics

.

* Software and Computational Mathematics
- Development of algorithms, languages, compilers,
operating systems, etc.

* Experimental Machines
- Access to prototypes of future supercomputers.

Allocating Costs in a Multiprocessor Environment

Benjamin Dembart
Boeing Computer Services

The goal of this project was to improve utilization of a
multiprocessor Cray system used for commercial timesharing.
A billing algorithm was developed, based on the idea that
reducing job costs would improve system throughput and resource
utilization. Charges were based only on resources used, not on
the environment. Multitasking was encouraged since inactive
CPU's are inefficient.

The model developed has these characteristics:

* Billed Time = Job CPU Time/Efficiency

* Efficiency =

System CPU Time/(Wall Clock Time * No . Processors)

* Efficiency depends on the job mix

* CPU Fraction =

SUM(CPU Time) / (SUM (CPU Time) + SUM(Channel Time))

* Resource Utilization Efficiency (RUE) is the efficiency
measured with the system loaded with identical jobs. It is

dependent on the CPU fraction and the number of tasks.

Another approach considers the RUE as a function of memory:

* Effective Task Memory =

Job Memory * Task CPU/Job CPU

* RUE depends on CPU Fraction and Effective Task Memory

* Task Billed Time = Task CPU/Task RUE

* Job Billed Time = SUM(Task Billed Time)

Testing was based on a random job mix, with 11 cases run on a

one processor system and 13 cases run on a two processor system.
In all cases the billed time covered the wall clock time and in

some cases exceeded it by 30%. It was concluded that the
resulting billing algorithm would provide an incentive to users
to increase their use of multitasking.

Impact of Operand Types on Machine Performance

Rudolf 0. Faiss
Goodyear Aerospace Corporation

Problems posed by humans exhibit much diversity. It is no
wonder, then, that in responding to problems, man encounters and
treats a rich variety of information types. During digital
problem solving sessions, the different information types are
treated by using different kinds of information elements. Each
element is defined by a "clump of bits" of varying bit count and
form, i.e., by an information entity invented by man.

Typical entities encountered include:

a status bit,
a one bit logical variable,
a 16 bit 2’s complement number,
a 64 bit CRAY floating point,
an 8 bit character,
a list of any of the entities above,
a set of lists,
etc

.

A "higher order" entity is one that is likely to be
described in terms of "lower order" entities. Thus, a binary
number is a "higher order" entity than the individual "place"
bits of the number, a list of numbers (vector) entity is of
higher order than the components (numbers) of the list, a set of
lists (e.g., matrix) entity is of higher order than the compo-
nents (vectors) of the list, etc.

While an "ideal" 1 bit processor (a processor that executes
instructions in a vanishingly small time, has memory with near
zero access time, and has near infinite bandwidth channels)
provides the needed versatility to handle the myriad entities of
any arbitrary kind of problem solution algorithm, it doesn't
exist

.

When early users of 1 bit processors were confronted by the
fact that such processors were painfully slow when executing
arithmetic on N-bit scalar entities, they rejected the call for
a multiprocessor comprising a set of N one bit processors.
Instead, they designed a processor biased toward treating N-bit
"scalar" entities. In the processor, all N bits of a scalar are
treated in a unified manner by a common controller; memory
accesses and channels are laid out in parallel to support such
processing. The processor provides the original example of
Single Instruction, Multiple Data (SIMD) stream architecture!
The new architecture outperformed the original architecture by
N:1 when treating the N-bit scalar entity, but performance
ability degraded substantially when entities treated were the
more primitive 1 bit entities.

Generally, although more than one kind of entity is treated
and/or developed while a processor executes a problem solution
algorithm, a real digital processor makes more efficient use of
its hardware resources (memory, channels, processing unit(s),
control, etc.) when treating specific high order entities. A
VAX 11/780 does not like to treat CDC 7600 floating numbers.
CRAY machines are architecturally biased to treat 64 bit floating
point number entities. Other machines (e.g., the Goodyear MPP)
are biased toward treating higher order entities such as lists.

In general, processors designed for treating low order
entities can treat high order entities with equal efficiency
(but slowly); processors designed for treating high order
entities treat low order entities with substantially reduced
efficiency. When a high speed processor is used, it should be
used within its sphere of applicability.

The NBS ought to identify the performance of a machine in
terms of its ability to treat a large number of low to very high
order information entities; a vector of speed ratings (corre-
sponding to an input vector of entity types) is required. The
potential user would be obliged to establish the frequency of
use of each entity in his applications environment. In conjunc-
tion with the NBS vector, the user would then have sufficient
information to establish a "best" speed rating for a mono,
multi, or mixed processor computing system. How close the user
could get to the best rating is out of the hands of the NBS; the
NBS could not guess at what processor lashups users might
employ. (At best, the NBS could caution users about lashup
pitfalls .

)

The development of the appropriate entity set would be a

major NBS task. As an example, it would be shortsighted to
limit the entity set to only one vector entity comprising 64 bit
floating point components. To solve surveillance and AI

problems, vectors comprising 1 bit components are common (and,
perhaps, most common). The NBS ought to recognize that its
close association with the scientific community tends to sanctify
the 64 bit floating point number; the NBS will need to exert
special care so that the association does not distort its rating
efforts

.

At best, a single speed rating number for a processor is

dangerous to use as the basis for selecting a processor. The
NBS should resist efforts to describe processor performance with
a single number.

Benchmarking Activities and Plans at Los Alamos

Ann H. Hayes
Los Alamos National Laboratory

The computer benchmarking effort at LANL is being conducted
for measurement and comparison purposes, for procurement
purposes, and as a means of influencing vendors. There is a
concentration of interest at the intersection which occurs among
mathematical models, programming languages, and realizable
architectures. The machines of interest are vector processors,
parallel architectures, and innovative architectures. Benchmark
programs are typically subsets of production codes; these
production codes may involve 150 thousand or more lines of code.
LANL adheres to the rule that productivity of people is first,
and productivity of machines is second. The benchmark tests are
designed to measure raw machine speed, hardware-specific
features, and compiler influence. There is a further need to
examine graphics and I/O.

The Los Alamos benchmark set is representative of the
laboratory’s workload, including Monte Carlo, particle-in-cell,
hydrodynamics, and reactor safety problems. The Livermore loops
are also used. Recent machines tested include the Cray XMP/24
and XMP/48, Fujitsu VP200, Hitachi S810, and the ELXSI.
Experimental computers studied were the Denelcor HEP and the
Intel iPSC (Hypercube). Pitfalls to be aware of are:

* benchmarks are valid only for the tested workload (with
typical vector length of 50)

* results are time-dependent

* results are influenced by the machine configuration.

Of concern in the testing of multiple processors is the
throughput of a single processor versus that of the aggregate,
as well as the choice of the best algorithm for a particular
configuration versus portability.

The HEP Multiprocessor and the Principle
of Universal Parallelism

Harry F. Jordan
University of Colorado

The focus of this paper was on multi-processors of the MIMD
type, on large-scale parallelism in the range of hundreds to
thousands (but not infinitely many) processors, and on single
problem solution speed rather than multiprogramming. Six
"Articles of Faith" were proposed:

* Multiprocessing is the way.
* Shared memory should be supported by hardware.
* Multiprocessor algorithms should be independent of the
number of processes.
* Process management should be done at the very top of the
program hierarchy.
* Performance can be predicted very accurately on the
basis of simple models.
* Performance measurements show fine structure which is
qualitatively obvious.

User mapping of problems to memory structures is difficult.
Consider programming the Illiac IV or the Hypercube. Architec-
tural techniques are available to support shared memory in the
near term. These include: instruction stream pipelining
that removes dependence on round trip time; message switched
processor-memory interconnection with a high step rate; Ultra-
computer style combining switch that reduces congestion to a

manageable level; and local cache memories that reduce total
traffic in the processor-memory interconnection.

It is not reasonable to have a detailed dependence on
a number of processes on the order of thousands. The optimal
number of processes depends on system hardware configuration and
load, and neither number is a good basis for algorithm design.

Global parallelism, which places parallel processes at the
top of the program hierarchy, is preferred to encapsulation,
which confines parallel processes within individual program
modules. An example was presented using the solution of block
tridiagonal systems.

The NYU Ultra Computer: Its Architecture and its Applications

Malvin Xalos
NYU

The Ultracomputer project is aimed at the development of a

MIMD machine comprised of a large number of small processors,
the number ranging up to perhaps 8192. It will incorporate
shared memory plus caches and will be organized around a message
switched Omega network. Messages will be combined to handle
"hot spots." Distributed control will incorporate dynamic load
balancing and parallel queuimg/dequeuing. Process creation will
not be a critical section. This design supports a traditional
programming style as well a© coarse-grained data flow.

A shuffle-exchange network, topographically equiv ent to
an omega network, will be used for interconnection among
processing elements and memories. This network follows an n log
n growth pattern with the number of interconnected elements.

The fetch-and-add instruction is a universal coordination
primitive. Given an address and an increment, it returns the
contents of the addressed word in shared memory and adds the
increment to the value stored there. This instruction is
used for assigning work to processors without a centralized
monitor. The execution of fetch-and-add is distributed through
the network to avoid communications "deadlocks". The network
switches have memory to maintain bandwidth for large systems and
handle the combining of multiple fetch and add instructions.

Simulations of parallel programs using WASHCLOTH have been
performed on a wide variety of applications, such a® fluid
dynamics, Monte Carlo, and molecular dynamics. Some performance
evaluation/monitoring issues have been identified:

* network performance - queue use, blocking, combining
* cache performance
* process behavior - overheads, synchronization delays
* job/task throughput - multiprogramming scheduling

Among the conclusions of the Ultracomputer research
(including network and cache simulations) are:

* distributed coordination is necessary
* effective caches can be designed
* programming need not be difficult
* a family of similar machines may be built, ranging
from desktop to supercomputer

An 8-PE (68010) prototype with a UNIX based operating system has
been built and can be accessed via the ARPAnet. IBM is building
a many-processor prototype with significant architectural
enhancements (RP3).

The Rediflow Simulator

Robert M. Keller
University of Utah

The name Rediflow is derived from reduction plus dataflow.
Applications that have been coded and run include a relational
database system, Prolog and LISP interpreters, matrix
multiplication, tree searches, and convolution. Reduction is a

fundamental problem-solving technique. It is also a medium-grain
tasking model, including a full lambda-calculus. Processes are
definable as tail-recursive reductions.

Rediflow integrates with reduction two forms of dataflow:
streams and Kahn processes. A number of add-ons are available,
such as "object-oriented" programming, indeterminate "flow”
operators, open Von Neumann operations, logical variables,
unification, and resource expressions. Among the motivations for
this effort are scalability (to tens of thousands of processors),
determinacy by default, completely distributed dynamic load
balancing, and programming with minimal configuration sensi-
tivity.

The Rediflow architectural model is developed around the
"Xputer" as a replicable unit; this comprises a smart switch, a

processor (such as a 32 bit microprocessor) and a one megabyte
memory. Various switching networks are possible. Using the
concept of load balancing by pressure gradient, it was asserted
that under "steady-state" conditions, propagated pressure yields
the minimum number of hops to an underutilized Xputer. The route
to the latter is dynamically established.

Knobs and meters in the simulator provide a means by which
various performance parameters can be monitored and manipulated.

The current simulator runs on VAX/Unix and the DBC-20. It

comprises 10K lines of Pascal. It is slow and memory-limited.
Plans for the future include:

* more efficient compiled code
* calibrated simulation and more interaction (with Lisp)
* emulation (on the Butterfly)
* small-scale prototype (by Sperry)

Evaluating the Performance of the PASM
Reconfigurable SIMD/MIMD Machine

James T. Kuehn
H. J. Siegel

Leah H. Jamieson
Purdue University

PASM (Part it ionable SIMD/MIMD) is a dynamically reconfigu-
rable multimicroprocessor system being developed at Purdue
University for research in large-scale parallel image and speech
understanding applications. PASM consists of N Processing
Elements (PEs) that communicate through a multistage cube-type
network, Q Microcontrollers (MCs), each of which controls N/Q
PEs, N/Q secondary storage devices, and a number of processors
that operate in a distributed fashion for high-level task
scheduling and memory management functions. A prototype of PASM
with N=16 and Q=4 is currently being constructed.

An MC and its N/Q PEs (called an MC-group) can act either
as an SIMD machine (with the MC acting as an SIMD control unit)
or as an MIMD machine. Also, the MC-group can dynamically
switch from one mode of parallelism to the other. MC-groups can
be combined to form larger virtual machines of up to N PBs and
the virtual machine size can be changed at run time. Since
there are Q such independent MC-groups available, PASM can
support multiple simultaneous users. The various virtual
machines all function independently due to the interconnection
network part itionability and distributed control. Because of
the interconnection network reconfigurability, a variety of
communication patterns such as mesh, ring, and pyramid are
possible.

The reconfigurability of the PASM network, variable virtual
machine size, and the dynamic switching between SIMD and MIMD
modes make performance measurement and analysis difficult on a
system-wide basis. Analysis techniques used to date include
detailed simulation studies of SIMD and MIMD algorithms at the
machine-language level, interconnection network performance
simulations, and parallel algorithm complexity studies. Data
collection hardware is being implemented in the prototype.

Another aspect of the project is the study of matching
parallel algorithms to architectures. Algorithm programming
constructs and architecture features are examined pairwise; for
example

:

local storage requirements vs. local memory size
local/global references vs. memory structure and
access times
communication structure vs. interconnection network type

This matching is often aided by application-specific character-
istics .

Further information about the PASM architecture, parallel
image and speech algorithm performance studies, and studies of
matching algorithms to architectures is available from the
authors

.

Experience with HEP

S. Lakshmivarahan
University of Oklahoma

Bxperiaental evaluations were carried out on various classes
of problems with various degrees of parallelism. Hockney and
Jesshope present the following formulation:

t = r" 1 [n + m/ 2]

"N-half", the vector length required to obtain half the maximum
performance, is generally considered a good discriminant. This
formulation purports to represent the relationship between speed
of computation and degree of parallelism.

From experimental results it has been observed that computa-
tion speed does not decrease linearly with the degree of
parallelism. In the situations studied on the HEP — cascade
sum, linear recurrence, and solving Ax=b where A is a tridiagonal
matrix — saturation was observed at about 12 to 16 processors.
The factor M n-half M did not appear to be a particularly useful
parameter; megaflops appeared to be preferable.

A Benchmark Comparison of Three Supercomputers:
Fujitsu VP-200, Hitachi S810/20, and CRAY X-MP/2

Olaf Lubeck
LANL

Los Alamos, New Mexico

Performance measurement of supercomputers is strongly
dependent on workload. Measurement of a supercomputer yields an
entire spectrum of performance and a workload characterization
identifies only a point on that spectrum that may vary in time.

The Fujitsu VP-200, Hitachi S810/20, and the Cray X-MP/2
were benchmarked, using codes that typify the Los Alamos
workload. Benchmarking was approached at three levels:

1) Timing of elementary vector operations as a function of
vector length, to obtain basic data about the architec-
ture and compiler.

2) Timing of short characteristic codes, ranging from
purely scalar to highly vectorized codes, up to 3000
lines of FORTRAN. This level includes algorithms such
as matrix operations, linear algebra routines, and fast
fourier transforms, as well as large code excerpts
such as particle in cell, Monte Carlo, state equations,
and hydrodynamics.

3) Timing of characteristic real codes that can contain
up to 20,000 lines of FORTRAN. These codes were not
used in this benchmark.

The benchmark set consisted of 10 programs derived from
major codes run at Los Alamos. Most codes were between 400 and
3000 lines of FORTRAN. Most were originally developed on Cray
machines. The amount of vectorizat ion varies from 0 to 99
percent

.

The overall conclusion was that the VP-200 is "comparable"
to the American supercomputer. The VP-200 can be two to three
times as fast as the X-MP/2 in vector mode for large vector
lengths. On codes indicative of the Los Alamos workload, the two
machines are comparable. The S810/20 was a factor of two slower
than the other two machines, probably because its scalar perform-
ance and vector processor clock period are slower.

The Importance of Performance Analysis Tools
in Highly Parallel Architectures

Creve Maples
Vitesse Electronics

Camarillo, California

The comparison of computers may presently be characterized
as "chaotic." Better tools are needed for use within individual
systems, let alone intercomparison of systems. Areas of concern
include the following:

Hardware
Communication structures
Memory organization
Control
Contention

Software
Problem decomposition
Reproducibility
Synchronization
Sequential code
Problem dispatching

The MIDAS concept is a parametrically controlled configura-
tion. Arranged in a pyramid structure, a three-level system
would have 137 processors, while a four-level system would have
some 1200 processors. A modified hierarchical memory is
employed, with some portions being local and some shared.
Processors can be interconnected via memory. A variety of
interconnection networks among processors can be established
to achieve algorithmically-specialized processor arrays. This
system has been used to perform alpha-beta tree searches in
artificial intelligence. It has been programmed for the game of
Othello, where it is feasible to carry out comprehensive
look-ahead procedures. Different processors can be used for
different functions. For example, in an 8-processor configur-
ation, one processor might be dedicated to the processing of
serial code, while 2 or 3 are used for load balancing and the
others are used for communications.

The two main problems are implementing the algorithm and
achieving load balancing. An important aspect in analyzing such
a machine is to determine how the time is being spent. Analytical
tools are necessary for isolating bottlenecks.

Analysis and Measurement of Scientific Applications Codes

Joanne L. Martin
IBM/Yorktown

The purpose and goals of this project are to:

* obtain a collection of reasonable problems in the
engineering/scientific domain
* develop computational models of these problems
* develop models of significant architectures
* assess the relationship between the computational and
architectural models
* answer the question: Is there an inherent pairing of
the models?

The codes selected for analysis include VA3D, SCF, Molecular
Dynamics, WAVE, Monte Carlo, TRAC, and others of interest to
universities and customers. Architectures to be studied are:

* standard scalar
* super scalar
* vector
* parallel

- scalar with attached processors (loosely-coupled)
- shared-memory with multiple processors
(tightly- coup led)
- shared-memory with multiple vector processors

* dataflow

Initial test architectures are the Cray X-MP, the IBM 3084 and
3090, the LCAP (Loosely Coupled Array of Processors), and the
RP3. Tools for measurement and analysis will feature:

* software
- instruction analysis tools developed at LANL for use
on the Cray architectures
- PARAPHRASE from the University of Illinois
- other tools and simulators, as available

* hardware
- IBM systems performance monitors

Benchmark runs are carried out using INSTRMIX. This
method has the following steps:

* Compile the source code and obtain an assembly listing.
* Using a preprocessor, insert counting macros before each
instruction in the listing.
* Assemble the code.
* Run the postprocessor to produce formatted counts and
summaries of instructions executed.

The runtime is magnified by a factor of about 10. Timings are
made in separate runs. Preliminary measurements have been made
for the WAVE and VA3D codes.

Nonparallelizable Algorithms

Ernst Mayr
Stanford University

Parallel complexity theory deals with:

* parallel machine models
- P-RAM and its variants
- fixed interconnection networks
- VLSI

* parallel complexity classes
- parallel time approximates sequential space
- NC = problems solvable in polylog time using a

polynomial number of processors

Problems in NC are said to be "efficiently solvable"
in parallel. Problems "complete for P" (where P = polynomial
time), under logspace reductions, are commonly considered
n on-parallelizable , since an NC-algorithm for any one of them
would imply P = NC and, in particular, P is contained in
polylogspace . Examples of P-complete problems include the
circuit value problem, network flow problem, list scheduling,
linear programming, and unification.

Some problems, with many solutions, have extremely simple,
optimal sequential algorithms, e.g. "greedy graph traversal",
the maximal independent set problem, and the first-fit
bin-packing heuristic. However, to compute the same solutions as
computed by the (standard) sequential algorithms is P-complete.
Nonetheless, all of the above problems have NC solutions and
these efficient parallel algorithms use completely different
approaches. Very often, algorithms using the "greedy" paradigm
turn out to be non-parallelizable (P-complete). Also, some
P-complete problems permit efficient parallel approximation
schemes

.

In conclusion, certain problems permit no significant
speed-up whatsoever, independent of the machine model, dataflow,
functional programming language, etc. For other problems, the
standard algorithms are inherently sequential, but there are
very different, fast parallel algorithms, generally producing
very different solutions. As in the sequential case (P vs. NP),
approximation schemes sometimes provide fast, viable parallel
solut ions

.

Performance Monitoring of the Research Parallel
Processor Prototype (RP3)

Kevin P. McAuliffe
IBM/Yorktown

A key element in the RP3 design is the performance moni-
toring chip. The performance monitoring chip counts the
occurrence of events in the PME and stores sample information.
It is controlled via the I/O Support Processors (ISP) or the PMB
and may operate in either a transparent mode or PME mode. The
chip can monitor a variety of events such as instructions
complete, translated and non-t rans lated requests, cache hits and
misses, waiting time, response time, and busy time. Sample
information includes the virtual addresses of the last
instruction and the last data reference, the last opcode
serviced, and time stamping of requests and responses. A variet
of commands are available for controlling and reading data fro
the chip, and for setting and clearing bits of its status
register. The combining network can be monitored in detail, both
for network performance and algorithm performance.

<<

Why NBS Should Set the Computer Classification Standards

Harry Nelson
Lawrence Livermore National Laboratory

The purpose of benchmarking is to attach numbers to
products. This facilitates at least a partial ordering and is an
aid to understanding. There are frequent requests for a single
number to characterize a machine. Two such metrics are the
Nominal Service Unit (NSU) and the Relative Computing Unit
(RCU), which has superseded the NSU, being larger by a factor of
10 , 000 .

The RCU can be used to characterize a diversity of computing
requirements over an extended time span for a particular
laboratory. A variety of supercomputers can be ordered by
class, according to speed (in MFLOPS), and can be plotted using
a scale of MFLOPS or RCU’s. The plot shows peak and net MFLOPS,
with the net value being based on the weighted harmonic mean of
expected usage.

The use of kernels has considerable merit as a way of
characterizing machines with respect to particular applications,
as these can be developed quickly. However, it is not advisable
to average the results of different kernels. A factor that is
not evident is the skill necessary to achieve the rated
performance

.

In conclusion, the development of a standard metric for
computer performance should be an NBS responsibility, because
the individual laboratories are unable to do it, and it should
not be left to the vendors.

Performance Considerations in HEP SISAL

Rodney R. Oldehoeft
Colorado State University

s ISAL i s a dyn amic data fl ow la:

VAL (s t at ic

)

pro gramming language . It

* appl icat i ve semantics
* inf i x f o rms

,

block struct ure , i

* rich dat a s t ructures
* st re ants for I/O and pip el ining
* para 1 lei and sequential 1 oops
* enr i ched val ue types fr om loopi

1 1 doe s not provide explicit Paral 1

but it has specific provisions to preclude deadlock.

Cooperative efforts with other institutions include:

* DEC - a multi-cpu VAX, VMS parser, code generator, and
interpreter-executed benchmarks

* LLNL - vector processors, UNIX interpreter, and tools
for the intermediate form (I F 1

)

* University of Manchester - dataflow machine with an
instruction set optimized for SISAL

* Colorado State University - Denelcor HEP, UNIX parser, an

IF1 to IFPCC translator, and HEP/UPX run time support

Among areas of current study are: machine independent optimiza-
tion, dynamic storage allocation, arrays, process management, and
parallel loop execution.

Plans for the NSA Supercomputing Research Center

Paul Schneck
NSA

The NSA Supercomput ing Research Center (SRC) is a division
of the Institute for Defense Analyses. In addition to its
advanced computing facilities, it will have a broadly based
research staff. Its goals are to:

* advance the state-of-the-art in supercomputing
* develop and evaluate parallel processing systems
* develop parallel processing algorithms and systems for
solving national security problems
* establish and maintain a secure center of excellence for
supercomput ing research

The Center will engage in algorithm design and analysis,
development of systems and applications software, and exploration
of experimental architectures. These studies will include the
transformation of programs for parallel architectures and
intercommunication within such machines. Research will focus on
operating systems, programming languages and compilers, and
performance measurement. A substantial portion of the Center and
its activity will be unclassified in order to facilitate inter-
action with outside researchers.

The Center will be staffed by approximately 100
professionals including computer scientists, mathematicians and
engineers, with about 70 support personnel. It will contain an
operational supercomputer, together with various support compu-
ters and prototype equipment. Work stations will be extensively
provided. The facility, to be completed in 1988, will be
located at the Maryland Science and Technology Center, near
Bowie, Maryland. Until then work will be performed at an
interim facility of 63000 square feet in Lanham, MD

.

The Supercomputing Research Center will maintain close
working relationships with industry and the academic community.
Through contracts, industry will provide basic computation
equipment and research prototypes. The SRC will work with
universities to explore supercomputer architectures. The
expertise of professionals in industry and academia in theory and
implementation of parallel processing supercomputer systems
will be solicited. Unclassified research results will be
disseminated through publications and conferences.

Parallel Workloads

Herb Schwetman
MCC Corporation
Austin, Texas

Workloads are defined as collections of prograas (and data)
to be executed on a system. The purpose of this project is to
develop workloads for "novel” architectures.

The objectives of novel architectures are generally to
obtain enhanced performance and to reduce the running times of
individual programs. Representative workloads are needed for
use in designing, evaluating, and testing new systems, to help
evaluate the impact of architectures.

Possible sources for such workloads include:

* Existing programs. These are of limited value because
they do not use the novel features.

* Automatic generators, such as a vectorizer or
paral lel-er izer . This requires automatic detection of
constructs that can be mapped onto new features.

* Assembly languages for the new systems. These may be
expensive and limited.

* Compilers with new data objects and (possibly) new
operations.

There is a great deal of experience with the progression
from problem statement to programming language to machine
language, but it is very hard to go the other way. The solution
proposed is the development of a programming environment in which
all of the levels are available. Thus it would not be necessary
to depend on the machine to recognize the overall structure of a

program from the fine structure.

Programming and Instrumentation Environment
for Parallel Processing

Zary Segall
Carnegie-Mellon University

The key goal of the Programming and Instrumentation Environ-
ment for Parallel Processing (PIE) is semiautomatic generation
of performance efficient parallel programs. Three levels of
support are provided:

* Modular Programming Metalanguage
- provides support for the efficient manipulation of
parallel modules, fast parallel access to shared
data constructs, and "programming for observability"
in a language independent fashion

- allows programmers to code in their choice of
languages

- provides the ability to observe or monitor the
execution

* Program Constructor
- provides mechanisms and policies for combining and

transforming both the development time (static) and
the run-time (dynamic) information into meaningful
program representations

- based on using the relational model approach

* Implementation Assistant
- predicts parallel program performance before

extensive implementation investments
- assists the user in choosing between "implemen-

tations," that is, specific ways of decomposing and
controlling the parallel computation processes and
data

The PIE system is developed to be used as the Programming
Environment for the Supercomputer Workbench (SCW). SCW will
perform a dual role. First, it will support the performance
prediction and evaluation of alternative algorithms, implemen-
tations and architectures for supercomputers. Second, it will
be a host providing the infrastructure and supporting the
integration of other special purpose architectures. The SCW
hardware has been built with the goal of high programmability in
mind. Hence, the hardware provides for homogeneity, resource
allocation transparency, synchronization "hot spots" avoidance
and non-intrusive hardware instrumentation.

The current PIE system (PIE 4) is developed to run on a VAX
11/784 processor.

Performance Measurements for the Butterfly Parallel Processor

Robert H. Thomas
BBN Laboratories

The Butterfly Parallel Processor is:

* an MIMD machine
* a tightly coupled, shared memory machine
* expandable over a wide range of configurations
* a homogeneous multiprocessor

The processor nodes utilize MC68000 processors, an AMD290 1-based
coprocessor, EPROM and 1 MByte of memory. The Butterfly switch
is a high performance shuffle exchange network used to inter-
connect the processor nodes.

Objectives of the benchmarking effort are to measure:

* The ability of various applications to effectively
utilize multiple processors.

* Multiprocessor overhead.

The benchmarking technique is to:

* Measure the runtime on 1 through n processors.
* Compare the runtime of an optimized uniprocessor

version of the application with the runtime
of the multiprocessor version on a single
processor

.

The programming methodology addresses two principal concerns:

* Storage management, where the goal is to keep all
memories equally busy to prevent the slowdown that
occurs when many processors access a single memory.
The approach is to uniformly distribute data across
the memory of the machine.

* Processor management, where the goal is to avoid the
slowdown that occurs when some processors are over-
loaded and others sit idle. The approach is to
dynamically assign tasks to processors, and to
decompose the problem into T tasks, where T >> P (the
number of processors.

Applications are structured into "worker" procedures that perform
the tasks, and "task generator" procedures that identify the
"next" task for execution. A task generator procedure G takes as

parameters a worker procedure W and a description of data. G

calls W, specifying subsets of the data until the work is

completed. Processors are used as they are available to execute
the calls of W. Task generation is implemented in a distributed
fashion, with each processor that performs tasks participating

in their generation.

Results on matrix multiplication, solution of simultaneous
linear equations, and various image processing utilities reveal
an almost linear speedup with up to 256 processors.

Performance Monitoring of the Research Parallel
Processor Prototype (RP3)

Michael Tsao and Kevin McAuliffe
IBM/Yorktown

A key element in the RP3 design is the performance moni-
toring chip. The RP3 has cache and a shareable memory with each
processing element, the shareable portion being dynamically
part itionable between local and global usage. The performance
monitoring chip counts the occurrence of events in the PMB
(define?) and stores sampled information. It is controlled via
the 1/0 Support Processors- (ISP) or the PMB and may operate in
either a transparent mode or PMB mode. The chip can monitor a
variety of events such as instructions complete, translated and
non-translated requests, cache hits and misses, waiting,
response, and busy time in cycles. Sample information includes
virtual addresses of last instruction and data reference, last
opcode serviced, and time stamping of requests and responses. A

variety of commands are available for controlling and reading
data from the chip. Included on the chip is a detailed status
register. The combining network can be monitored in detail,
both for network performance and algorithm performance.

Toward Architectures that Execute Algorithms Efficiently

Leonard Uhr
University of Wisconsin

Networks of 10 4 computers have been built and in the
time frame of 1985 to 2001 it should be possible to build
networks having 10 5 - 10® (or even 10 e ?) computers. These are
needed for important and difficult tasks such as perception and
thinking, to develop real intelligent systems, rather than
simply AI toy demos. Network topology can employ any possible
graph, yet, to date, only the simplest have been built. These
are almost all von Neumann machines, with only one node, pipe-
lines, with a linear string, arrays and n-cubes. There are many
other interesting candidates that are too big to simulate, but
can be analyzed by other means.

Important goals in designing an architecture should be
elegant simplicity and the ability to execute very large jobs in
realtime. Some example tasks are the perception of moving
objects, which may be distorted or obscured in unknown ways, and
everyday problem solving, namely conversing and responding in a
second or two. These tasks involve non-numeric as well as
numeric processing, and will require massively parallel systems.
This can be accomplished — the brain is the existence proof!

Criteria for assessing good topologies include such factors
as density, connectivity for fault-tolerance, and addressibility

.

Graphical representations, such as Petri nets and data flow
graphs, can be useful for depicting information flow for both
software and hardware.

Topologies have progressed from the single CPU case to
complete graph structures such as the bus, ring, crossbar, and
star, as well as the reconfiguring shuffle network.
Point-to-point topologies of today include the tree, pipeline,
n-cube, 2-D array, and linked cluster. In the future we may
expect augmented trees, pyramids, augmented pyramids, Moore
graphs and other dense graphs, and compounded clusters. A number
of these possibilities were (briefly) examined.

Benchmarking at Sandia National Laboratory, Albuquerque

Walt Vandevender
Sandia National Laboratory

The benchmarking activity at Sandia has involved a number
of machines, including VAX 11/780, VAX 11/785, VAX 8600, CDC
7600, Cray 1-S, several versions of the Cray X-MP, and the BLXSI
6400. The codes used are generally of two types:

* Batch benchmark codes
10 codes, on the order of 150 - 600 lines
Examples include:

SPEED - measures machine speed in Megaflops
WHET - measures machine speed in Mips
LIN6 - inner product of long vectors

* Benchmark user codes
7 codes, on the order of 2.5K - 45K lines
Examples include:

TIGER - Monte-carlo electron/photon transport code
ADINA - 3-D finite element structures code

Comparisons of SPEED and WHET on the various machines were
presented, and price/performance comparisons of the machines
were computed. Price per megaflop ranged from $109K for a Cray
X-MP/48 to $1.5 million for a VAX 11/780. Comparisons of the 10
batch benchmark codes on the three DEC machines and the BLXSI
were also presented.

Several major codes are being multitasked. Speedup when
using 2 to 5 tasks was presented for the 5 kernels of the SP8ED
code and for a 60x60 matrix problem (Ax =b). A set of
timesharing benchmark scripts has also been developed.

Early Experience with the FLEX/32

Robert G. Voigt
NASA/ ICASB

Hampton, Virginia

The FLEX/32 machine is an MIND machine having a common bus
which can accommodate up to ten local buses. Each local bus
will support two boards with each board consisting of 4 megabytes
of memory or a processor with a megabyte of memory. The memory
can be allocated for local or shared use. Programmable arbitra-
tors provide access to the bus. System V, concurrent C, and
FORTRAN are available; concurrent FORTRAN will be added. System
generation allows local/global configuration of memory.

The installation will be used for exploratory putposes and
is designated a beta site. The FLEX/32 will be used to explore
parallel solutions of PDEs, which will be formulated directly for
parallel computation, rather than the retrofitting of "dusty
decks." Performance evaluations will include studies of communi-
cation, synchronization, and memory configurations. The system
will utilize new programming languages which are evolving for
research in parallelism. Programming environments will include
PISCES and BLAZE. PISCES is FORTRAN-UNIX based, presents levels
of virtual machines, allows multiple granularities of
parallelism, and affords portability. The new scientific
language BLAZE is a functional programming language which allows
multiple granularities of parallelism, has high level functions
such as array operations, and supports portability.

USCOMM-NBS-DC

NBS-114A (REV. 2»80)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No.

NBSIR-86/3395

4. Publication Date

JULY 1986

4. TITLE AND SUBTITLE

Report on the National Bureau of Standards Workshop on Performance Evaluation of
Parallel Computers

5. AUTHOR(S)

Sandra B. Salazar and Carl H. Smith

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

I. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State. ZIP)

10.

SUPPLEMENTARY NOTES

1321 Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant

bi bl iography or literature survey, mention it here)

The Systems Components Division of the Institute for Computer Sciences and Technology

at the National Bureau of Standards is actively engaged in the development of

techniques to measure and evaluate the performance of parallel computers. As a

preliminary step, a workshop on performance evaluation was held in Gaithersburg,

Maryland on June 5th and 6th, 1985. The goal of the workshop was to define the

issues and problems involved in the development of benchmarks for large parallel

computers. Thirty-six talks were given by representatives of government, industries,

universities and research laboratories. The topics presented ranged from specific

measurements of large parallel machines to the philosophical issues concerned with

the development of universally applicable benchmarks. In addition to the formal

talks, there were several lively discussions.

This document is a report on the workshop. A one-page synopsis of each presentation

is included. The synopses were compiled from notes taken for the Systems Components

Division and copies of the speakers' transparencies. Each contributor had the

opportunity to review the synopsis of his or her presentation.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

benchmarks; computer measurement; parallel computing; performance evaluation

13. AVAILABILITY

|X I

Unlimited

For Official Distribution. Do Not Release to NTIS

f
]
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

“ 20402.

[X] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

50

IS. Price

$9.9?

UlCOuu-OC # 0 4 • • •* • o

