
NBS
Reference publications

AlllDb DMfibSfl

NbJsiM eo-o390

Evaluation of Codes Using Polynomial
Approximation Problems

P. D. Domich. K. L. Hoffman, R. H. F. Jackson, P. B. Saunders. D. R. Shier*

Center for Applied Mathematics
National Engineering Laboratory

National Bureau of Standards

Gaithersburg, MD 20899

‘This work was performed while 0. R. Shier was a member of the Center for Applied Mathematics bf NES.
He is currently a prcfessor in the Mathematical Sciences Dept, of Clemson University.

nr - ° „ DEPARTMENT OF COMMERC.E. Malcolm Balarige Secretary
UL

DNAL BUREAU 0^" STANDARDS Ernest Ambler. Director

- U 56

86-3390

1986

id June 1986

KBS

RESEARCH

INFORMATION

CENTER

NBSIR 86-3390

Evaluation of L
1 Codes Using Polynomial

Approximation Problems

P. D. Domich, K. L. Hoffman, R. H. F. Jackson, P. B. Saunders, D. R. Shier*

Center for Applied Mathematics
National Engineering Laboratory

National Bureau of Standards

Gaithersburg, MD 20899

'This work was performed while D. R. Shier was a member of the Center for Applied Mathematics of NBS.
He is currently a professor in the Mathematical Sciences Dept, of Clemson University.

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige. Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director

Issued June 1986

ABSTRACT

This paper presents the methodology and results of a computational experiment

which compares the performance of four computer codes which determine the best

discrete approximation to a continuous nonlinear function. The experiment

utilizes 320 test problems created by a test problem generator. Several

performance measures describe solution quality as well as computational

effort.

Key Words: Algorithm testing; approximation; computational experiment; least

absolute deviation; performance measures; polynomial approximation.

iii

'

1

I. INTRODUCTION

This paper is part of a series of papers dealing with computational experi-

mentation in mathematical programming, which emphasizes sound, statistically-

based methodology for comparing codes in this area. As the specific object of

our experimentation (and, therefore, a vehicle for developing a sound method-

ology), we chose to study codes that solve problems of least absolute value

curve fitting. Estimation in the norm provides a useful adjunct to least

squares estimation [12,20], especially when errors derive from long-tailed

distributions [15,16].

In earlier work [14], we studied four codes, representative of a range of so-

lution techniques, using a statistically based experiment design and pseudo-

randomly generated test problems (representative of general data-fitting

problems). It was discovered that such codes could be clearly ranked with re-

spect to computational effort (CPU time), but that very little difference

among the codes could be observed with respect to certain "quality-of-

results" performance indicators: accuracy, consistency, and correctness.

Therefore, another experiment was designed using polynomial approximation test

problems and the same four codes used in the earlier work. Polynomial ap-

proximation problems are frequently encountered in practice [7,19,25], and are

known to admit some of the interesting properties of ill-conditioning [11]

which tend to differentiate among codes with respect to the quality of re-

sults

2

Moreover, prior to executing the first comparison experiment, we tested the

codes on a battery of hand-picked test problems obtained from the authors, the

literature and code users [22]. Each of the codes yielded incorrect informa-

tion on at least one of the hand-picked problems, with polynomial approxima-

tion problems being especially troublesome.

This paper will present an experiment for testing codes on a class of poly-

nomial approximation problems, and discuss the results of this test effort.

Directions for future research in both code development and code-comparison

methodology will be presented in the final section of this report.

9

II. BACKGROUND

Given n sets of observations (yi,x-j_) i=l, • . . , n, the discrete L] polynomi-

al approximation problem is that of determining values 0 O ,
• . . , 0m which

minimize

n m
j

0 (8q» • • • » Bm)
3

I I yi
—

L x

i-1 j-0 1
(1)

In other words, for n observations on a dependent variable y and an explana-

tory variable x, we wish to determine a polynomial of degree m which best fits

these data, in the sense of minimizing the sum of the absolute values of the

residuals

j
e i “ 7i ” I 8j x

j=0

if it

A vector 6* = (0 ,
. . . , 0) which yields the minimum value 0* of

o m

0 (0 O ,
. . . , 0m) is termed a solution vector

,
with optimum objective func-

tion value 0*. Unlike the case for polynomial approximation over a contin-

uous interval [25], page 38, the solution vector for a discrete polynomial

approximation problem need not be unique.

Discrete polynomial approximation problems can be formulated and solved as

linear programming problems by the stratagem of introducing variables a
i

4

minimize
n

I

i=l
ai

m
3

ubject to x > Yi ,

=0
J

i
i = 1 ,

. . . , n
,

(2)

m
ai l 0j

j=0 i
> -

Yi i — 1 ,
. . . , n •

It can be demonstrated [2,4,13] that a solution vector 3* can always be found

that interpolates at least m+1 of the data points; that is, at least m+1 re-

siduals e-j_ are equal to zero at the solution. Degeneracy is said to occur

when more than m+1 residuals have value zero at a solution B*.

Certain algorithms for solving general discrete approximation problems make

use of the above "interpolation" result. Namely, these algorithms restrict

attention to basic solutions (where precisely m+1 residuals equal zero), and

move in a systematic way from one basic solution to an improved basic solu-

tion. Any such collection of m+1 zero-valued residuals corresponds, then, to

the specification of m+1 active constraints: values selected from i 3
1

,
. .

, n, where both inequalities of (2) hold with equality.

5

Four general-purpose discrete approximation FORTRAN codes were selected for

study and evaluation in this paper. Three of these codes are based on linear

programming reformulations of the approximation problem:

(I) A double-precision dual revised simplex code by Abdelmalek [1],

(II) A primal revised simplex code with a partial sort procedure by Arm-

strong [3],

(III) A primal simplex code with full tableau and limited use of double-

precision by Barrodale and Roberts [5].

While codes II and III are essentially primal simplex codes, they do make use

of certain dual properties in passing over several simplex vertices in a sin-

gle iteration.

In addition, a restricted gradient method for minimizing piecewise differenti-

able functions is embodied in a fourth code:

(IV) A descent code by Bartels [6], incorporating a form of QR decom-

position.

A May 1977 version of each code was obtained from the authors. Tolerance set-

tings were fixed at those levels suggested by the authors as appropriate for

our computer (UNIVAC 1108 with 36-bit words). In code IV, a random perturba-

tion is internally applied to the problem data when near-degeneracy is suspected.

6

Unfortunately, when using this code as a subroutine to solve a series of identical

problems, the actual perturbation applied varies from problem to problem. In order

to ensure that the same (perturbed) problem is solved in successive executions

using the same input problem, the pseudo-random number generator provided in

Code IV was always initialized prior to execution. Other than these changes

(tolerance settings, and pseudo-random number initialization), the codes were

implanted exactly as provided by the authors. Certain general characteristics

of the various codes are indicated in Table I.

Table I

General Code Characteristics

Code Code Code Code

I II III IV

Number of

Statements
270 186 223 1609

Required*
Storage

2np+2p2+7n
+6p+l 15

1

np+p^+6n
+4p+824

np+5p+5n
+723

np+1 . 5p2+5n
+6. 5p+4496

Restrictions None Full Rank None tn> 1

Additional
Features

None None None Allows constraints
variable starting
points, selective
printing

Defined in terms of n = number of observations
,
and p

= m+1 * number of

estimated parameters.

7

In our previous study of these codes [14], two types of test problems were

considered: (1) a collection of 27 hand-picked problems [22], devised with a

specified structure in mind or arising from an actual application; and (2)

pseudo-randomly generated problems for general discrete approximation [17].

While for certain classes of pseudo-randomly generated problems, all four

codes "correctly" solved each generated problem, this was not the case for

many of the 27 hand-picked problems. Since a number of these "difficult"

problems were in fact forms of discrete polynomial approximation in the

norm, it appeared useful to study systematically the performance of the four

codes on a wider class of polynomial approximation problems. To this end,

test problem generators have been developed [9] to create a range of polynomi-

al approximation problems representative of situations encountered in prac-

tice.
©

One test problem generator (P0LY1) models the situation in which a given non-

linear function f(x) is to be approximated in the norm by a polynomial of

specified degree, over a discrete set. Accordingly, the observed values y^ in

(2) are modeled as arising from the given function, via yj_
= f(x^). Control-

lable features of this generator include: the choice of function f(x), the

interval I of approximation, the distribution and number of observation points

Xj_el, and the degree of the approximating polynomial. For this particular

generator, the actual solution vector 8* cannot be specified in advance. How-

ever, in the second generator (P0LY2) for another class of polynomial approxi-

mation problems, the solution vector can be so specified; the current experi-

ments have concentrated on the use of P0LY1, and thus attention will subse-

quently be confined to results obtained using this first generator.

8

With P0LY1 one can study discrete polynomial approximation of a variety of

functional forms, defined on certain intervals. The eight functions f(x) em-

ployed in the present code evaluations are listed in Table II, together with

their associated domains. These functions, and their intervals of definition,

were chosen in order to represent a useful variety of shapes likely to be en-

countered and (through the choice of interval) a range of "ill-conditioning”

for the problem matrix X = (x^). Figure 1 graphs the light functions studied

in this paper.

TABLE II

Functions and Their Intervals of Approximation

Function f(x) Interval I

1 e“x sin x . [0,4]

2 ex sin x [0,4]

3 ex sin x [1,7]

4 e 2x / 2x [-05,1

5 75x/[l+(7.5x) 2
] [0,2]

6 10 x e“*^x [0,4]

7 l/[l+(x-2.5) 4
] [0,5]

8 x l/3 [-1,1]

9

» » S 3 «

X

2. Y=e
X
sin(x)

5. Y=75x[l+(7-5x)
2

] 6< y=lOxe
* 5x

10

III. METHODOLOGY

The approach taken in comparing the four codes consisted of designing a

computational experiment to discern the effects of certain controlled vari-

ables by examining a number of performance indicators. This section of the

paper will describe the details of this experiment.

The first step in designing the experiment involved the identification, speci

fication, and quantification of the controlled variables which characterize

the problems generated by P0LY1. These controlled variables fall into three

main categories: those describing the function to be approximated, those de-

scribing the spacing of the observations within the interval over which che

function is approximated, and those describing the size of the problem. For

the experiment described here, the functions used were the eight functions

described in Table II together with their associated intervals of approxima-

tion. Observations were chosen to be evenly spaced within the interval.

The size of each approximation problem was specified by the number of observa

tions n and the degree m of the approximating polynomial. For the experiment

the number of observations assumed the values 50, 100, 200, 400, and 800 and

the approximating polynomial had degree varying from 3 to 10 inclusive. Thus

each of the four codes was exercised on a total of 320 problems (8 func-

tions, 8 degrees, 5 sets of equally spaced observations).

11

The second part of the experiment design involved identifying and quantifying

various indicators of code performance. Performance indicators can be grouped

naturally into two general categories: those related to computational effort

and those related to the quality of the solution produced. The indicators in

both categories must be judged relative to the particular computer system and

computer environment in which the experiment is conducted. All of the results

reported in this paper were obtained on the UNIVAC 1108 at the National Bureau

of Standards under the Exec 8 operating system, Version 33. R3, with 36 bits

for each single precision computer word.

Perhaps the most frequently used performance indicator is Central Processing

Unit (CPU) time. In this experiment CPU time was chosen as the appropriate

indicator of computational effort inasmuch as the four codes were sufficiently

different for iteration counts to be meaningless. Quantification of this in-

dicator was obtained by accessing an internal clock from a system subroutine

which references an appropriate elapsed CPU time entry (in milliseconds) in

the run accounting table. Previous results in timing experiments on our com-

puter [13] indicated several sources of variability in the process which con-

found code comparison results. First, the inherent variability associated

with clock and accounting table update was found to be on the order of 2 or 3

milliseconds. A second possible contributor to variability occurs because the

execution time depends on the locations in core memory of instructions and the

data upon which those instructions operate. To reduce this effect, the dimen-

sions of the arrays used by all four codes are fixed and do not vary with

problem size. A third source of timing variability is the computing environ-

ment: the number and types of other jobs being run during the same time

12

period. Previous results [14] indicated that for any environment other than a

totally dedicated computer, one run of a code on a problem would not suffice

to determine true CPU time on that problem. Thus, all of the timing results

reported here were obtained under totally dedicated conditions.

The second category of performance indicators studied relates to the quality

of the solution obtained. This category (which is not always considered)

proved to be critically important in the present experiment, whereas in our

previous experiment [14], it did not play a decisive role in distinguishing

among the codes. The evaluation of solution quality requires either knowledge

of the "true" solution or the ability to check a given solution for optimali-

ty. As mentioned in Section 2, the polynomial approximation problems produced

by P0JLY1 cannot be generated with solutions known a priori. Thus, it was

necessary to devise a procedure for checking solution quality. Accordingly,

we developed a double precision computer subroutine which, given the problem

data and specified set of active constraints, checks the Kuhn-Tucker condi-

tions for optimality [4,17]. If satisfied, it then performs a double-

precision reinversion of the optimal basis matrix to obtain accurate optimal

values for the objective function and the solution vector. These solution

values are accepted as the "true" values for purposes of comparison with the

results produced by the codes.

Four different performance indicators were chosen to represent solution quali-

ty: correctness, accuracy, accuracy after reinversion, and consistency. \1

1

four indicators involve comparisons between "true" and code-derived active

13

constraints, solution vectors or objective function values. Several quantifi-

cations were used in this study. For comparing objective function values, the

experiment calculated the number of digits of agreement, the absolute differ-

ence, and the relative difference. For comparing solution vectors, the ex-

periment examined average number of digits of agreement, absolute Euclidean
*

distance, and normalized Euclidean distance (where the two vectors B co<je and

*

Btrue were viewed as points in (m-i-1) -dimensional space). Precise definitions

of these indicators and their quantification are deferred to the next section.

The experiment design reported here thus consists of the specification of

problems to be solved by each of the four codes and the identification of

the indicators upon which code performance will be evaluated and compared.

The next section presents the results of executing this experiment design.

14

IV. RESULTS

Each of the four codes was tested using all 320 test problems. Elapsed CPU

time and four measures for quality of results (correctness, accuracy, accuracy

after reinversion, and consistency) were obtained.

CORRECTNESS

Correctness (did the code actually arrive at the true solution?) is a measure

of performance of interest to all users. We defined correctness as a binary

(YES/NO) measure. If the active constraints defining the final solution pro-

duced by an Lj_ code satisfied the Kuhn-Tucker conditions to given tolerances,

it is called "correct". In our analyses, we noticed that some codes produced

an objective function value* which agreed with the true solution to eight stg-

nificant digits but whose final simplex vertex was not an optimal vertex.

Since comparisons using more than eight significant digits are inappropriate

using single-precision arithmetic on the UNIVAC L108, whenever the objective

function produced by a single precision code agreed with that of the true

solution to eight digits, we also considered the solution "correct”. For ten

of the 320 problems, no code produced the correct solution judged according to

Kuhn-Tucker conditions. These problems were eliminated from our subsequent

analysis since the "true" solution could not be ascertained. Analyses of the

results using the correctness measure are presented in Figures 2-4. There

is no table for Code I which obtained the correct solution for every problem

analyzed (310 of the 320). Code II produced incorrect results—regardless of

function type—for almost all problems of degree greater than 5 or for

15

Figure 2.

CODE II - CORRECT SOLUTIONS

FUNCTION 1 FUNCTION 2

800
400

OBS. 200
100

50

wmzy. mPm
El Vip'# Wj, fvv/ m {/\Mil

Wf, p
1ppi
$iIi

3 6 10

DEGREE DEGREE

FUNCTION 3 FUNCTION 4

800
400

OBS. 200

100

50

3 6 10 10

DEGREE DEGREE

FUNCTION 5 FUNCTION 6

DEGREE DEGREE

FUNCTION 7

800
400

OBS. 200 3m//. V/'Y/-y

100 1..J

50 --

3 6 10

DEGREE

FUNCTION 8

800
400

OBS. 200

100

50

3 6 10

DEGREE

K\v

|IPmpi!s\v

mV1i1
p;

V\Y»
'.'ANP i

|fe Fp
i1 p

9 CORRECT M N0T CORRECT CORRECT SOLUTION
UNKNOWN

16

Figure 3.

CODE III -CORRECT SOLUTIONS

FUNCTION 1

FUNCTION 3 FUNCTION 4

6 10

DEGREE

mmpim viv!

!$!

$|
x'

FUNCTION 5 FUNCTION 6

OEGREE

FUNCTION 7

10

800
400

OBS 200
100

50

miw
p!v/ M

Wv
av.‘

MV

jjg
8$

10

FUNCTION 8

CORRECT NOT CORRECT CORRECT SOLUTION
UNKNOWN

17

Figure '4.

CODE IV-CORRECT SOLUTIONS

FUNCTION 1

DEGREE

FUNCTION 2

800 HWk itlBi 800 pp
400 if 400 f mmii

DBS 200 11 OBS 200

100 jg pil 100 ft
'

• fv *

50 gg 1^84 &§ 50 &f riiir
1

1rH
3 6 10 3 6 10

DEGREE

FUNCTION 3

6

DEGREE

10

FUNCTION 4

6

'DEGREE

800 800
400 400

OBS 200 nl • 'Miy\ • H
ioo b m .as’llM 100 res Bft

:i5
50 50

10

FUNCTION 5 FUNCTION 6

800
400

OBS 200
100

50

mT
imM1
Vi1

.!

y.y.i S$H

Ai
MT‘ i

10

FUNCTION 7

DEGREE
10

FUNCTION 8

CORRECT m NOT CORRECT

0 NUMERICAL DIFFICULTIES 0 MAXIMUM ITERATIONS

CORRECT SOLUTION
UNKNOWN

18

problems with greater than 100 observations. Codes III and IV were less fre-

quently correct than Code I but more often correct than Code II. Although one

can conclude that both of these codes are likely to be judged "not correct"

for problems having both high degree and many observations, consistent pat-

terns did not emerge to delineate the function-type or problem sizes which are

most likely to cause difficulty to either of these codes.

ACCURACY

Having established that all codes do not yield the correct solution to all

problems, the next natural question is how close to correctness are the an-

swers provided by the codes. Accordingly, the performance indicator, accur -

acy , compares the true solution with that obtained by the code. Figures

5-7 present for each code the fraction of solutions produced with errors In*

the objective function values no greater than a given magnitude, where error

is quantified by three measures: the absolute difference, the relative dif-

ference, and the number of digits of agreement between the true objective

function value and that produced by the code. The test results for all 310

test problems produces a definitive ranking of the codes, with Code I being

the superior code, followed by Code III, then Code IV and finally Code II.

Note that this ranking is invariant with respect to the measurement quantifi-

cation.

Three measures were developed for quantifying the accuracy of the solution

vector. The true solution vector and that produced by each code can be

considered as points in (m+l)-space. The Euclidean distance and the

Figure

5.

ABSOLUTE

ACCURACY

OBJECTIUE

FUNCTION

UALUE

19.

OJ

©

OJ
I

i

CD
I

00
I

o
i

v|

!-4

O
J-4

4-4

O

OJ

a
3

c
60
63

(—
i 3

I—I t-H

LJ LlI

Ci Q
o o
o o
II 14

cs =
LU X
t~ co

<ro QQ

1—4

I—I H~

4

f—

I

LJQ LlIO QO OO
N

D

Q X
—3 COo <r
co o

apn^TuSBiq U9atj) U9qi
asieaag aoaaa qixw suoT^nqos jo xusoxsa

RELATIVE

ACCURACV

—

-

OBJECTIVE

FUNCTION

VALUE

20

G> 00 CJO ’'T nj

ru

o

ru
i

00

c
i

*—i i—

i

UJ LJQ Q
C OO O
H ii

O -

LU ZC
(— CD
{- <rO QQ

»—

i

i—i *—

i

i—

i

LUC LlIo co oo
n

H

C
i-i XJ CD
O <E
CO Q

U9AI q ueqx
on aoajg qq™ suoTunpos jo ^uaojaj

NUMBER

OF

ACCURATE

DIGITS-—

OBJECTIVE

FUNCTION

UALUE

21

©

OJ

CD
4-

00

s:jt8tq arjBxnooy jo

aaqumfl ubato b }sbbx }b q}TA suoxxnxos jo xuaoxad

SOLID

=

CODE

I

DOT

=

CODE

II

DASH

=

CODE

III

DASH"

=

CODE

IU

22

normalized Euclidean distance between the points are then two measures of the

accuracy of the solution vectors produced by the codes. A third measure is

obtained by calculating the number of digits of agreement (0 to 8) between

corresponding components of the solution vectors and averaging these over Che

m+1 components to obtain the average number of accurate digits in the solution

vector. These three measures of solution vector accuracy are presented in

Figures 8 - 10. Note that the ranking of the four codes is essentially the

same as that obtained for objective function accuracy except that Codes III

and IV are more evenly matched.

ACCURACY AFTER REINVERSION

In performing the analyses of these test results, we noticed that frequently a

code would arrive at a "correct" vertex but the - objective function value and/

or the solution vector would be "inaccurate". We, therefore, performed a

double-precision inversion of the final basis matrix and compared the objec-

tive function value and solution vector obtained after inversion to the true

solution values. We call this performance measure "accuracy after reinver-

sion" .

We note that for Code IV the results here are based on only 279 (rather than

310) problems because 31 of the solutions produced by Code IV had fewer than

m+1 active constraints, thereby rendering reinversion impossible. Figure 11

presents the results of examining the relative differences in objective func-

tion values. Similar results were obtained for the other two quantifications,

i. e. absolute difference and number of digits of agreement. Figure 12

EUCLIDEAN

DISTANCE

—

-

SOLUTION

UECTOR

23

OJ

©

OJ
I

co
nj

s:

CD

CO

^ LU

Soo
II

o
o
II

i

—

oQ
X
on
<LQ

LU
Q
O
O
ii

Q
i—

i

—1

O
<S)

LUQOO
ii

<xQ

© 00 CD ru

apn3TU§B]^ U9AXQ
unqx 1939913 .10:1.13 ipxn suox^npos jo 31190193

Figure

9.

NORMAL.

EUCLIDEAN

DISTANCE

SOL.

UECTOR

24

u
UJ

V

50
CC

© CO CO OJ

LU LU
1—4 l—l

o oo o
II II

Q =

LU X
f— CD
t- <ro L3Q

l—l

l—l l—l

I—

I

LU
C-l LU
OO Oo
II

II

Q
—1 O')

o <r
LO o

apnnxuSBW li9at

q

ueqj, oft aojjg qrjTw suoiiinpos jo nuaoaaj

AUG.

HO.

OF

ACCURATE

DIGITS

SOL.

VECTOR

25

©

nj
4*

co

'T -H
4. iC

I

33

u

o
o
<

CD

00
4-

© CO CD OJ

LU LUQ Q
O OO O
ii it

Q =

LU X
E— CO
E— <EO QQ

LUO LU
O Q
0 OO
n

it

Q
1 i X
-J CO
o <x
CO Q

sjxSxa ajBjnoov
jo xaqmriN ubajo b jsbbj JB qjxtt suox^njos jo quaozaa

RELATIVE

ACCURACY

AFTER

REINVERSION

OBJ.

FUNCTION

VALUE

26

© 00 CD T CU

OJ

©

OJ
I

i

CD
I

00
I

c
i

V-

o
1-1

u

c
to
eg

I>

I—

t

LJ

OO

LJO
OO
n

it a

o
Cl

CO
<rQ

i—

«

LlIQ
O
o
M

»—

I

I—

I

I—

I

LJQOO

Q

apnrjxuSen uaAf3

ueqi xo-iag suoxanxog 30

Figure

12

NORMAL

EUCLIDEAN

DISTANCE

AFTER

REINUERSION

SOL

UECTOR

27

O 00 (D (U

nj

©

nj

^r
i

co
i

00
I

o
i

v|

a;

T3
a

c
»» c\

i;

h-i 3
i—i —

i

LlJ LUQ QO O
O O
h ;i

Q =

LU JZ
f— CO
E— <EO QQ

i—

i

i—i i—

i

LUQ LU
O Q
O OO
it

ii

Q
t-H XJ CO
o <r
cm Q

apn3TU§BJ^ U3AXJ)

uepx jariBaaf) on ipXA suoxqnpos jo ^uao^ax

28

illustrates the accuracy in the solution vector after reinversion as quanti-

fied by the normalized Euclidean distance between the two points. Again, sim-

ilar results were obtained for the absolute Euclidean distance and the average

number of digits of agreement. Note that the accuracy of codes II, III, and

IV have improved substantially through reinversion. Thus, if one were to use

any of the single precision codes tested in the study, it is clear that an ac-

curate (double precision) inversion of the final basis is desirable.

CONSISTENCY

A fourth indicator of solution quality, consistency , provides some information

about the effects of round-off error. It refers to the internal consistency

between the solution vector and the objective function value produced by the

code. The solution vector produced by the code is used with the given problem

data to calculate, in double-precision, the residuals and an objective func-

tion value. Consistency is then measured by comparing this objective function

value with that given by the code. As can be seen from Figure 13, approxi-

mately 40 percent of the solutions produced by Codes II, III, and IV yielded

inconsistencies in the solution information such that the relative differences

in objective function value exceeded 10“^. The ranking of the codes for this

performance measure is not unlike that produced for the other performance mea-

sures. Note that even the "correct" and "accurate" results of Code I are not

consistent, an indication that round-off error is affecting the results.

Figure

13.

RELATIUE

CONSISTENCY

OBJECTIUE

FUNCTION

UAIUE

29

apruruSexi usaiq
uet[i on Joaj;a suoxunxog jo ijuaoxaa

30

In summary, one observes that Code I—a double-precision code—was superior to

the other three single-precision codes with respect to all measures of all

four quality of results criteria. It should also be noted that Code III,

which is a single-precision code using one double-precision variable to ac-

cumulate inner products, generally outperforms the other two single-precision

codes. This inexpensive and core-conserving device should be considered in

all single-precision codes where numerical difficulties may be anticipated.

Finally, although two of the three single-precision codes had a switch to In-

dicate that they terminated due to numerical difficulties and although there

were many instances when significant round-off errors existed, only rarely did

a code terminate with this warning.

TIMING

As stated in Section IIT, CPU time for runs made on a dedicated computer was

used as an indicator of computational effort. In a previous comparison ex-

periment [14] with the four codes, solution quality was "perfect" and the

only mechanism for distinguishing among the codes was in terms of CPU time.

The results of that experiment indicated that Code II always required the

least amount of time, followed by Codes III, I, and IV, generally in that

order. For the experiment described herein, the solution quality became of

significant importance and, as a result, CPU time became less important since

it can be argued that solution time is irrelevant when solution quality is van-

acceptable. It can also be argued, however, that CPU time is always important

since (1) it is perhaps the single most important factor In calculating

31

computer run costs under many computer accounting systems, (2) the codes rare-

ly produced warnings that solution quality was perhaps suspect, and (3) one

does not know in advance of code execution just what to expect in terms of the

solution time and quality. Thus, CPU times were analyzed for three of the

four codes studied in this experiment. Code II was omitted from the analysis

of CPU time because of the very large number of problems for which solution

quality was deemed unacceptable.

CPU times for Codes I, III, and IV were analyzed for all 320 problems (in-

cludes the 10 problems for which no code found a correct solution) with one

general exception. There were a total of 18 problems for which Code IV ap-

parently entered some sort of infinite loop, stopping the solution process on-

ly by exceeding a maximum of 1000 iterations without determining a result

which the code considered a solution. These eight problems required a total

of slightly over 13 minutes of computer time and were not included in the re-

sults shown for Code IV. Because Code IV generally requires more CPU time

than the other codes, the omission of these exceptionally large times does not

significantly alter the ranking of the codes with respect to CPU time.

Figures 14, 15, and 16 illustrate various results with respect to CPU time.

Figure 14 illustrates the average CPU time in milliseconds as it relates to

the number of observations. The results here indicate that with the possible

exception of a very slight reversal of the order between Codes I and II at 50

observations. Code I requires the least CPU time followed by Codes III and IV.

Figure

14.

AVERAGE

CPU

TIME

PER

PROBLEM

VS.

NO.

OF

OBSERVATIONS

32

<3 <3 S3 (3
S3 <3 <3 (3
<3 <3 S3 (3
<3 ID <3 LO
CM — —

UQ.D K-EU — 2 n co

NO.

OF

OBSERVATIONS

SOLID

=

CODE

I

DOT

=

CODE

III

DASH

=

CODE

IV

AVERAGE

CPU

TIME

PER

PROBLEM

VS.

DEGREE

33

U CL 3 H- 21 UJ z n co

DEGREE

SOLID

=

CODE

I

DOT

=

CODE

III

DASH

=

COOE

IV

Figure

16.

AVERAGE

CPU

TIME

PER

PROBLEM

VS.

FUNCTION

34

<3 <3 (3 (3 (3 (3
<3 <3 <3 <3 <3 (3

(3 <3 C3 (3 (3
C\J <3 00 CO V (\J

O CL 3 1— •—
* 3 LiJ ^21 n co

FUNTION

NUMBER

SOLID

=

CODE

I

DOT

=

CODE

III

DASH

=-

CODE

IV

35

In Figure 15, the results are not quite so definitive. This figure illus-

trates average CPU time as it relates to the degree of the approximating poly-

nomial. Here, Code IV performs well for polynomials of low degree, but uses

noticeably more time for degrees 9 and 10. In contrast, Codes I and III per-

form fairly well and consistently for all degrees studied. Except for degree

3, the average CPU time for Code I was always less than that for Code III.

Figure 16 illustrates the relationship between average CPU time and the func-

tion to be approximated. This figure illustrates quite clearly the need for

comparing code performance over a wide class of problems. Consider, for exam-

ple, the difference of opinion that would result if one were to examine code

performance only on function 3 or only on function 5 versus the examination of

all 8 functions. Indeed, to the extent that longer CPU time is indicative of

greater problem "difficulty”, the results here demonstrate conclusively that

problems which are the most difficult for one code are not necessarily the

most difficult (and at times are even the least difficult) for some other

code. Thus, valid statements regarding comparative code performance cannot be

made solely on the basis of computational experience with a small number of

problems.

36

V. OTHER RESULTS

A preliminary investigation was also made of the effect of "ill-conditioning"

on the nature of test problems and the behavior of L[codes on those problems.

For the purpose of this investigation, the 1-condition number (or H-condition

number) of the optimal basis matrix B was chosen as a measure of problem

difficulty [10,18]. An estimate k(B) of this condition number can be effi-

ciently computed [10], with the interpretation that calculation of 6*, using

Bg* = YB» involves the loss of approximately logigk(B) significant figures of

accuracy.

It was found that the condition number estimate k(B) did not vary appreciably

with n (the number of observations), but it was strongly affected by m (the

degree of the approximating polynomial). In fact, for each unit increment in

m, k(B) grows by approximately one order of magnitude. Furthermore, for fixed

n and m, the condition estimate varies by function - with function 3 giving

the largest and function 8 the smallest such estimates. This occurence Ls not

unexpected, in that function 3 is approximated over a fairly broad interval

[0,7], while function 8 is approximated over a fairly narrow interval [-1,1].

More generally, k(B) was observed to increase with the increasing magnitude of

the interval endpoints. Such results are consistent with the notion that the

m
successive powers 1, x^, . . . , x^ comprising matrix B become more widely

divergent in magnitude as m increases or Ix-jJ increases.

In order to assess how the accuracy of the codes changed In response to

problem characteristics, the average number of agreeing digits (AAD) between

* *

the true solution vector Btrue anc* provided by the code 3 C0(je was

37

computed. Agreement was invariably perfect for Code I, and so subsequent

analysis focused on Codes II - IV. For these latter codes, AAD did not vary

in a discernable way with n, but generally exhibited a decrease with increas-

ing values of m. While this behavior of AAD parallels that found for k(B),

there was no consistent relation between this measure of accuracy and the con-

dition estimate for a given degree m . In other words, very little additional

information on code accuracy is conveyed by knowing the condition estimate, in

addition to the value of m.

REGULARLY SPACED POINTS OF EXACT FIT

The test problems used within this study were generated by varying the form of

the function to be approximated, the degree of the approximating polynomial,

and the number of observation points. The observation points were positioned

evenly spaced over the interval of interest.

When the interpolation points defining the best L^ solution to each problem

were tabulated—keeping the degree of the polynomial and the number of obser-

vaton points fixed but allowing the function-type to vary—a pattern emerged

which indicated that these interpolation points would be regularly spaced

within the interval regardless of the functional form chosen.

An understanding of approximation theory presents a partial explanation for

this phenomenon. A theorem in this field [21, pp. 71-73] states that the best

Li approximating polynomial of degree m-1 (or less) to x^ over [-1,1] has its

38

interpolation points at the values x^ = cos k tt (k = 1, . . . , m). These
m+1

values x^ are the roots of a Chebyshev polynomial of the second kind. * This

theorem only holds for continuous approximation and describes Che fitting of a

polynomial of degree m-1 to a polynomial of next highest degree.

In our experiment, we were using only a discrete number of points (evenly

spaced) and non-polynomial functions. However, our preliminary analyses have

indicated that although the roots of the Chebyshev polynomial are not always

the interpolation points defining the best solution, they are usually very

"close". This result suggests that one might consider using such values x^ as

starting points for discrete polynomial approximation algorithms. Further

research in the area is presented in [8].

TA mth order Chebyshev polynomial of the second kind has the following form:

m/2 (1-m)!

Um(x) = l (-1)1 (2x) ra
- 2 l

1=0 1 ! (m-21)

!

where Um(l) is defined to equal m+1.

39

VI. SUMMARY AND RECOMMENDATIONS

In summarizing the results of the work described here, several conclusions and

recommendations can be made. First, the results clearly indicate that solu-

tion quality is substantially improved by a final (double-precision) reinver-

sion of the optimal basis matrix. We recommend that this procedure be imple-

mented to supplement any of the three single precision Lj. codes when solving

polynomial approximation problems of the type described here.

In an earlier experiment [14] using Lj_ problems with different structure, all

four codes consistently produced correct solutions so that CPU time was the

only distinguishing performance measure. Code II used significantly less CPU

time than any of the other three codes. In particular, Code I, the double-

precision code, was relatively slow in obtaining solutions. The results from

the polynomial approximation experiment contrast sharply. Solution quality is

not consistent among codes. In fact, based on the measures of solution quali-

ty presented in this report, it can be concluded that Code II is not well-

suited for solving the type of polynomial approximation problems utilized in

this experiment. On the other hand, Code I not only produced more correct

solutions than any of the other three codes, but it utilized relatively little

CPU time in doing so. It is conjectured that the use of double-precision

arithmetic in Code I was costly in terms of increased CPU time in the first

experiment, but paid off in the second experiment where the generated problems

were numerically more difficult to solve.

40

Codes III and IV are fairly comparable in terms of solution quality. Recall,

however, the eight problems for which Code IV utilized excessive CPU time. A

user of Code IV is advised to impose a limit on execution times to avoid this

occurrence. Furthermore, to insure replicability when several problems are

solved sequentially by Code IV, the user is advised to reinitialize the random

number generator between problems as discussed in Section II. We note in

passing that the use of a double-precision variable in Code III to force the

double-precision accumulation of inner products appears to be a cost-effective

approach to improving solution quality.

Based on the observation that interpolation points are nearly identical for

different functional forms, we anticipate that additional investigation of

this phenomenon may well lead to a recommended "starting basis" for this type

of problem. The theoretical explanation for the continuous case suggests the

use of the roots of Chebyshev polynomials as a starting solution. Further

study should be conducted to determine the practical implications of this sug-

gestion in the discrete case.

We caution the reader that the results obtained from this experiment are valid

only for the type of problem described herein. Further evaluation of code

performance on polynomial approximation problems should address the situation

in which it is desired to find the best polynomial approximation to observed

data. This type of problem can be generated by P0LY2 and should be utilized

in future code comparison efforts. The importance of examining many class-

es of problems is emphasized by the difference in the results reported here

and those in earlier experiments [14].

41

The evaluation described in this paper was conducted in accordance with a sys-

tematic methodology for obtaining statistically valid results. The set of

test problems was randomly generated within a well-defined, controlled struc-

ture known to arise in real world applications. Performance measures were

identified for both solution quality and computational efficiency. Finally,

the conditions under which CPU time was measured were chosen to minimize vari-

ability. The results of the experiment, therefore, permit a valid ranking

among the four codes with respect to code performance on the class of problems

covered by this experiment. Although the rankings may vary in another comput-

ing environment, the experimental approach can be replicated to obtain equally

valid results. The general type of methodology presented in this paper should

serve as a guide for future code comparison experiments.

42

VII. REFERENCES

[1] Abdelmalek, N. N.
, An Efficient Method for the Discrete Linear L^

Approximation Problem, Mathematics of Computation, _29, 844-850 (1975).

[2] Appa, G. and Smith, C. , On L^ and Chebyshev Estimation, Mathematical
Programming, _5, 73-87 (1973).

[3] Armstrong, R. D. and Frome, E. L.
,
A Comparison of Two Algorithms for

Absolute Deviation Curve Fitting, Journal of the American Statistical
Association, 71 , No. 354, 328-330 (1976).

[4] Barrodale, I. and Roberts, F. D. K. , An Improved Algorithm for Discrete

Li Linear Approximation, SIAM Journal on Numerical Analysis, _1_0, No.

5, 839-848 (1973).

[5] Barrodale, I. and Roberts, F. D. K.
,
Solution of an Overdetermined

System of Equations in the L]^ Norm, Communications of the Association
for Computing Machinery, JL_7, 319-320 (1974).

[6] Bartels, R. H.
,
Conn, A. R.

,
and Sinclair, J. W.

,
Minimization Tech-

niques for Piecewise Differentiable Functions: The L^ Solution to an

Overwhelmed Linear System, SIAM Journal on Numerical Analysis,
J_5_,

No.

2, 224-241 (1978).

[7] Davis, P. J., Interpolation and Approximation, (Blaisdell, New York,

1965).

[8] Domich, P. D. and Hoffman, K. L.
,
A Near Optimal Starting Basis for

Polynomial Approximation of Continuous Functions in the L^-Norm,

unpublished working paper, National Bureau of Standards.

[9] Domich, P.
,
Lawrene, J., and Shier, D.

,
Generators for Discrete Poly-

nomial L^ Approximation Problems, Journal of Research, National
Bureau of Standards, _84, No. 6, November-Deceraber 1979.

[10] Dongarra, J. J. , Moler, C. B.
,
Bunch, J. R. , and Stewart, G. W.

,

LINPACK Users’ Guide, Society for Industrial and Applied Mathematics,
Philadelphia (1979).

[11] Forsythe, G. E. , Generation and Use of Orthogonal Polynomials for Data-
Fitting with a Digital Computer, SIAM Journal,

J5,
No. 2, 74-88

(1957).

[12] Gentle, J. E.
,
Least Absolute Values Estimation: An Introduction,

Communications in Statistics, _B6, No. 4, 313-328 (1977).

[13] Gentle, J. E. , Kennedy, W. J. , and Sposito, V. A., On Least Absolute
Values Estimation, Communications in Statistics, A6, No. 9, 839-345

(1977).

43

[14] Gilsinn, J.
,
Hoffman, K. , Jackson, R. H. F. , Leyendecker, E.

,
Saunders,

P., and Shier D. ,
Methodology and Analysis for Comparing Discrete

Linear Approximation Codes, Communications in Statistics, _B(3, No.

4, 399-413 (1977).

[15] Hampel, F. R. ,
A General Qualitative Definition of Robustness, Annals

of Mathematical Statistics, 42^, 1887-1896 (1971).

[16] Harter, H. L. Nonuniqueness of Least Absolute Values Regression, Com-
munications in Statistics, A6, No. 9, 829-838 (1977).

[17] Hoffman, K. and Shier, D. , A Test Problem Generator for Discrete
Linear L^ Approximation Problems, to appear in Transactions on

Mathematical Software.

[18] Ortega, J. M. ,
Numerical Analysis, A Second Course

,
Academic Press,

New York (1972)

.

[19] Rice, J. R. , The Approximation Functions
, _1 (Addison-Wesley , Reading,

Mass.
, 1964)

.

[20] Rice, J. R. and White, J. S. , Norms for Smoothing and Estimation, SIAM
Review, _6, No. 3, 243-256 (1964).

[21] Rivlin, T. J., An Introduction to the Approximation of Functions,
(Blaisdell Publishing Company, Waltham, Mass., 1969).

[22] Shier, D. R. , Neupauer, S. J., and Saunders, P. B. , A Collection of Test
Problems for Discrete Linear Lj Data Fitting, National Bureau of

Standards Internal Report NBSIR 79-1920, November 1979.

[23] Schlossmacher , E. J., An Iterative Technique for Absolute Deviations
Curve Fitting, Journal of the American Statistical Association, 68 ,

No. 344, 857-859 (1973).

[24] Spyropoulos, K. , Kiountouzis, E. and Young, A., Discrete Approximation
in the L^ Norm, Computer Journal, _L6, No. 2, 180-186 (1973).

[25] Timan, A. F. , Theory of Approximation of Functions of a Real Variable
,

trans. by J. Berry (MacMillan Co., New York, New York, 1963).

NSS-HiA ipev. ;-«c)

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No. 3. Puplication Dace

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET i See instructions) NBSIR 86-3390 MAY 1986

4. TITLE AND SLiBTITL:

Evaluation of L]_ Codes Using Polynomial Approximation Problems

5. AUTHOR(S)
P.D. Domich, K.L. Hoffman, R.H.F. Jackson, P.3. Saunders, D.R. Shier.

6. PERFORMING QRGANI ZATION (/f joint cr otner thcnNBS, see in struct/on s)

NATIONAL bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, O.C. 20224

7. Cantract/Grant No.

S. Type of Reoort & Perioa Cove'ea

9. SPONSORING ORGANIZATION NAME ANO COMPLETE AODRE53 < Street, City. State, ZIP)

Center for Applied Mathematics
NES

10. SU r cLEMENTARY NOTES

Cocurrent describes a comoucer orogram: SF-185. FIPS Software Summary, is attacned.

11. AES i RAC. i'A 220-worc or less factual summary o/ most significant information, r "acjmen t includes a significcn t

Ci cliogrcpny or literature survey, mention it here)

This paper presents the methodology and results of a computational experiment
which compares the performance of four computer codes which determine the best

discrete L-f approximation to a continuous nonlinear function. The experiment
utilizes 320 test problems created by a test problem generator. Several per-

formance measures describe solution quality as well as computational effort.

12. KEY WORDS (Six to twelve entries; alphabetical oraer; capitalize only proper names; ana separate Key woras zv semicc on

Algorithms testing; approximation; computational experiment; least

absolute deviation; performance measures; polynomial approximation.

13. AVAILABILITY

| XI Unlimited

| |

For Official Distribution. Oo Not Release to NTIS

j

Order From Superintendent of Documents, U.S. Government Printing Office. Wasnmgcon. O.C.

2002 .

r~X~j Order From National Technical Information Service (NTIS), Springfield. VA. 2216 1

14. NO. OF
PRINTED PAGES

47

IS. PriCI

