SCAT: A Vector Program to Solve A Transient MFIE

Egon Marx

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratories
Center for Manufacturing Engineering
Gaithersburg, MD 20899

April 1986
SCAT: A VECTOR PROGRAM TO SOLVE A TRANSIENT MFIE

Egon Marx

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratories
Center for Manufacturing Engineering
Gaithersburg, MD 20899

April 1986

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director
Abstract

The FORTRAN program SCAT is used to solve the magnetic field integral equation (MFIE) to determine the fields scattered by a perfectly conducting sphere. The incident field is a plane-wave pulse, and a stepping-in-time procedure is used to determine the surface current density induced on the sphere. The program does not take advantage of the special symmetry of the scatterer because it is intended to serve as a verified starting point for more general programs. The output is compared to that of the program PERF, which computes the same fields via a Fourier transform of the monochromatic fields obtained from the Mie formulas. The contributions of the self-patch and neighboring patches to the singular integral are optionally computed by using their expansions in the linear size of the patches. The self-patch term is important for the solution of other integral equations that may be of the first kind. For the MFIE, these corrections are small but not negligible. The program takes advantage of the vector programming features of the CYBER 205.

Key words: computer programs; electromagnetic pulse scattering; magnetic field integral equation; Mie scattering; perfectly conducting sphere; stepping-in-time procedure; transient electromagnetic fields; vector programming.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Program PERF</td>
<td>5</td>
</tr>
<tr>
<td>3. Program SCAT</td>
<td>8</td>
</tr>
<tr>
<td>3.1 The Main Loop</td>
<td>9</td>
</tr>
<tr>
<td>3.2 The Interpolation Formulas</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Subroutine RUNT</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Subroutine INFL</td>
<td>13</td>
</tr>
<tr>
<td>3.5 Subroutine FARFL</td>
<td>14</td>
</tr>
<tr>
<td>4. Self-Patch Corrections</td>
<td>15</td>
</tr>
<tr>
<td>5. Neighboring-Patch Corrections</td>
<td>17</td>
</tr>
<tr>
<td>6. Vector Programming Considerations</td>
<td>23</td>
</tr>
<tr>
<td>7. Ancillary Programs</td>
<td>25</td>
</tr>
<tr>
<td>7.1 Program PERFPLT</td>
<td>25</td>
</tr>
<tr>
<td>7.2 Program CURCHK</td>
<td>26</td>
</tr>
<tr>
<td>7.3 Program SCATP</td>
<td>26</td>
</tr>
<tr>
<td>7.4 Subroutine VINUFT</td>
<td>27</td>
</tr>
<tr>
<td>8. Program Inputs and Outputs</td>
<td>28</td>
</tr>
<tr>
<td>9. Conclusions</td>
<td>38</td>
</tr>
<tr>
<td>References</td>
<td>39</td>
</tr>
<tr>
<td>Appendix</td>
<td>41</td>
</tr>
</tbody>
</table>
1. Introduction

There are many procedures related to the metrology mission of the National Bureau of Standards that require the analysis of waves scattered by an obstacle. Comparison of the scattered waves with those computed for known obstacles can serve to determine parameters related to the scatterer. Codes used in inverse scattering problems also may require the solution of the direct problem. If the scatterer is a homogeneous body, the scattered fields can be computed from tangential fields defined on the surface of the scatterer. In turn, these fields can be computed by solving a singular integral equation.

The electromagnetic fields scattered by a perfect conductor can be obtained from the surface current density \mathbf{J}_s [1]. This tangential field can be determined by solving the magnetic field integral equation (MFIE),

$$\mathbf{J}_s(x,t) = (2/\mu_0) \hat{n} \times \mathbf{B}^{in}(x,t)$$

$$- \frac{1}{2\pi} \hat{n} \times \oint_S dS' \mathbf{R} \times \left[\frac{1}{R^2} \frac{\partial \mathbf{J}_s(x',\tau)}{\partial t'} + \frac{1}{R^3} \mathbf{J}_s(x',\tau) \right],$$

where \mathbf{B}^{in} is the magnetic field of the incident pulse, μ_0 is the permeability of free space, \hat{n} is the outside normal to the

*Numbers in square brackets indicate the literature references at the end of his report. There are further references in these publications.
scatterer, \(\tau \) is the retarded time

\[
\tau = t - R/c, \tag{2}
\]

and

\[
\hat{R} = \hat{x} - \hat{x}', \quad R = |\hat{R}|. \tag{3}
\]

This is a singular integral equation because the integrand diverges where \(R = 0 \), and it is an integral equation of the second kind because the unknown field \(\vec{J}_s \) also appears outside the integral, on the left side of the equation.

An example of a singular integral equation of the first kind is the electric field integral equation (EFIE),

\[
0 = \hat{n} \times \vec{E}^{\text{in}}(x, t) + \frac{1}{4\pi} \int_{S} dS' \begin{bmatrix}
\frac{\hat{R}}{\epsilon_0 R^2 c} \frac{\partial \rho_{s}(x', \tau)}{\partial t'} \\
\frac{1}{\mu_0 R} \frac{\partial \vec{J}_{s}(x', \tau)}{\partial t'}
\end{bmatrix}, \tag{4}
\]

where \(\vec{E}^{\text{in}} \) is the electric field of the incident pulse, \(\epsilon_0 \) is the permittivity of free space, and \(\rho_{s} \) is the surface charge density, related to \(\vec{J}_{s} \) by conservation of charge.

We have shown [2, 3] how the scattered and transmitted fields of a pulse scattered off a homogeneous dielectric body can be determined from a single tangential vector field that obeys a singular integral equation of the first kind. We have further
generalized [4] this formulation to the scattering by a dispersive body, such as an imperfect conductor. In some papers we also derive equations for the scattering of other types of fields by homogeneous bodies, as well as the corresponding equations for the scattering of monochromatic waves.

The solution of the integral equations by means of the stepping-in-time procedure takes advantage of causality and the finite speed of propagation of the wave. The new values of the unknown field are expressed in terms of an integral over the retarded values of the field, which have been calculated in previous steps.

The integration can be performed numerically by dividing the surface of the scatterer into patches and adding the products of the integrand at the center of each patch times the area of the patch. This prescription does not apply to the contribution of the self-patch because this is the patch where the integrand becomes infinite as the field point \(\mathbf{x} \) and the source point \(\mathbf{x}' \) coincide. For an integral equation of the second kind, the contribution of the self-patch can be neglected in the computation of a new value of the field in comparison to the large number of contributions from the other patches. This is not so for an integral equation of the first kind, because the self-patch contribution to the integral is the only term that depends on the new value of the field.

We have expanded the contribution of the self-patch to first order in the linear size of the patch for an arbitrary surface [5], and in this form it may be included in the integral. We
have similarly expanded the contribution of a neighboring patch, because the integrand cannot be well approximated by its value at the center of such a patch when $1/R$ or $1/R^2$ varies significantly over the patch [6].

We have developed the program SCAT to implement the computation of the surface current density and the far fields scattered by a perfectly conducting sphere by solving the MFIE. In this program we provide the option of computing the correction to the surface fields due to the self-patch contribution and the more accurate computation of the neighboring-patch contributions.

We found that terms that contain the time derivatives of the fields, terms that are negligible in most computations, cannot be ignored when the fields themselves are small [7]. The expansions of the surface current density J_s and its derivatives that we use in SCAT are explained in [7]; they differ from those we used in [5] and [6] in that the dependence of the retarded time τ on the curvilinear coordinates u and v is taken into account when a partial derivative with respect to u or v is taken.

We intend SCAT to serve as a validated starting point for other programs that will determine the fields scattered by more general types of scatterers. For this reason we do not take advantage of special symmetry properties of the sphere. To validate the program, we compare the far fields to those computed by means of another program, PERF, which uses the Mie formulas [7] for monochromatic fields and a Fourier transform. This program is discussed in section 2.

The general structure of SCAT is presented in section 3. Section 4 is devoted to a discussion of the issues related to the
computation of the contributions of the patches neighboring the self-patch, and in section 5 we examine the contribution of the self-patch itself. In section 6 we point out where we use vector programming as appropriate for the CYBER 205. We describe a number of ancillary programs in section 7, and we show some examples of results in section 8. Listings of computer programs are given in the appendix.

We define the incident plane-wave pulse so that it reaches the sphere at $t = 0$. We choose a double-exponential smoothed at the beginning by a power factor for the profile of the plane wave. The incident magnetic field is

$$B_{1}^{\text{in}}(\xi) = \beta \xi (e^{\alpha \xi} - a e^{\beta \xi}) \Theta(-\xi), \quad B_{2}^{\text{in}}(\xi) = B_{3}^{\text{in}}(\xi) = 0,$$ \hspace{1cm} (5)

where Θ is the unit step function, α is the rise constant of the pulse, β the decay constant, and

$$\xi = z + a - ct,$$ \hspace{1cm} (6)

where a is the radius of the sphere.

2. Program PERF

The Mie formulas give the fields scattered by a homogeneous sphere from an incident plane monochromatic wave. For a perfect conductor and a wave incident along the z-axis, the scattered far field components reduce to
\[
E_\phi = \exp(ikr) \frac{\sin \phi}{ikr} \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} \left\{ \frac{P_n^{(1)}(\cos \theta)}{n \sin \theta} \right\} (-1)^{n+1},
\]

\[
E_\theta = - \exp(ikr) \frac{\cos \phi}{ikr} \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} \left\{ \frac{dP_n^{(1)}(\cos \theta)}{d\theta} \right\} (-1)^{n+1},
\]

where \(k \) is the wavenumber, \(r \) is the distance from the center of the sphere to point where the field is computed, \(\theta \) is the polar or scattering angle, \(\phi \) is the azimuthal or polarization angle, \(P_n^{(1)} \) is the associated Legendre function, and \(a_n \) and \(b_n \) are coefficients given by

\[
a_n(\rho) = - j_n(\rho)/h_n^{(1)}(\rho),
\]

\[
b_n(\rho) = - [\rho j_n(\rho)]'/[\rho h_n^{(1)}(\rho)]',
\]
where j_n is a spherical Bessel function, $h_n^{(1)}$ is a spherical Hankel function of the first kind, and

$$\rho = ka = 2na/\lambda.$$ (11)

The primes in eq. (11) indicate derivatives with respect to ρ.

The Fourier transform of the incident wave (5) is

$$B_n^\omega(z) = \exp[ik(z + a)](\beta/c)[(\beta - ik)^{-2} - (\alpha - ik)^{-2}],$$ (12)

where $k = \omega/c$. The coefficient of $\exp(ikz)$ multiplies the amplitude of the far fields given in eqs. (7) and (8). The steady state component of the incident pulse does not contribute to the scattered fields.

In the program PERF, we compute first the required Bessel and Hankel functions by means of the subroutines BESRJ and BESRY [8], then the scattering coefficients a_n and b_n in the subroutine SCACO, and the monochromatic fields in the subroutine FLD. The inverse Fourier transform is carried out in subroutine INUFT [9] or VINUFT (its vector version); we do not use a fast Fourier transform because we determined that it was better to cover low and high frequencies at different intervals than to use an equispaced grid. The frequencies are selected in subroutine OMEGA [9] and the intervals increase in a geometric progression, which gives a thorough coverage of low frequencies and a sparse but extended coverage of high frequencies. The input to the program requires the specification of α, β, and the radius of the sphere, the number of scattering angles and the scattering angles. In addition, we have to specify the lower and upper
frequency limits at which the fields are computed and the number of frequency and time points. The output consists of the intensity of the scattered fields for both polarizations of the scattered fields; they are saved in a file and they are plotted using the subroutines DRAW3 [10] or DRAW4 [11].

3. Program SCAT

In this program we compute the surface current density \(\mathbf{J}_s \) induced on the sphere by solving the MFIE (1) in the time domain by a stepping-in-time procedure. The scattered fields are then obtained by integration, and we compute the intensities in the far zone for comparison with the output of PERF. The magnetic field in the radiation zone is

\[
\mathbf{E}_{\text{rad}}(x,t) = -\frac{\mu_0}{4\pi r} \mathbf{r} \times \int_{S} dS' \frac{\partial \mathbf{J}_s(x',\tau)}{\partial \tau}. \tag{13}
\]

The surface current density is tangential to the surface and has only two independent components. To decrease the amount of memory required to run the program, we decided to store only the components along the meridians and parallels on the sphere. To sum the contributions from different patches, we first compute the components of the vectors in a Cartesian coordinate system. Once the two tangential components of the surface current density are determined, they are saved on disk for future use.
3.1 The Main Loop

Most of the execution time needed for the program is spent computing the surface current density by solving the MFIE. The components of this tangential vector are computed at the center of each patch starting at $t = 0$ and after each time increment Δt.

If we ignore the self-patch contribution to the integral in eq. (1), the contributions from the other patches can be computed because the fields at their centers have previously been calculated at the retarded times. We have to choose a time interval that is smaller than the distance between any pair of patches (divided by the speed of light c) to obtain a retardation that is sufficiently large. It is unlikely that the current density will have been calculated at precisely the retarded time, and an interpolation is needed to obtain the necessary values. The interpolation is discussed in the next subsection.

After the values of the surface current density are computed in this way, we can perform the corrections for the self-patch, for the neighboring patches, or for both; these corrections are described in detail in separate sections.

3.2 The Interpolation Formulas

The interpolation method [12] turned out to affect significantly the outcome of the calculations. The program SCAT allows for two alternatives. In the first one, the fields at the retarded times are computed from a polynomial of degree 4 that passes through five points chosen so that they fall on both sides
of the retarded time. The relation has the form

\[y(t) = a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0 \] \hspace{1cm} (14)

and we rescale the independent variable so that it takes integer values from -2 to 2. In terms of the corresponding values of the dependent variable, the coefficients are

\[a_4 = \frac{1}{24}y(2) - \frac{1}{6}y(1) + \frac{1}{4}y(0) - \frac{1}{6}y(-1) + \frac{1}{24}y(-2), \] \hspace{1cm} (15)

\[a_3 = \frac{1}{12}y(2) - \frac{1}{6}y(1) + \frac{1}{6}y(-1) - \frac{1}{12}y(-2), \] \hspace{1cm} (16)

\[a_2 = -\frac{1}{24}y(2) + \frac{2}{3}y(1) - \frac{5}{4}y(0) + \frac{2}{3}y(-1) - \frac{1}{24}y(-2), \] \hspace{1cm} (17)

\[a_1 = -\frac{1}{12}y(2) + \frac{2}{3}y(1) - \frac{2}{3}y(-1) + \frac{1}{12}y(-2), \] \hspace{1cm} (18)

\[a_0 = y(0). \] \hspace{1cm} (19)

In the second method, a polynomial of degree 2 is fitted to the same five points by a least-squares approximation. The coefficients \(a_4 \) and \(a_3 \) are zero, and the other coefficients are

\[a_2 = \frac{1}{7}y(2) - \frac{1}{14}y(1) - \frac{1}{7}y(0) - \frac{1}{14}y(-1) + \frac{1}{7}y(-2), \] \hspace{1cm} (20)
\[a_1 = \frac{1}{5}y(2) + \frac{1}{10}y(1) - \frac{1}{10}y(-1) - \frac{1}{5}y(-2), \quad (21) \]

\[a_0 = -\frac{3}{35}y(2) + \frac{12}{35}y(1) + \frac{17}{35}y(0) + \frac{12}{35}y(-1) - \frac{3}{35}y(-2). \quad (22) \]

The polynomial interpolation gives more accurate results, but leads more easily to numerical instabilities [7, 13]. The time derivatives of the fields are calculated from

\[y'(t) = 4a_4t^3 + 3a_3t^2 + 2a_2t + a_1. \quad (23) \]

The values of the fields and their derivatives are set to zero for times before the time the incident pulse reaches the center of the corresponding patch on the sphere. The interpolated values do not necessarily vanish at these times and the error increases when they are used.

The interpolation formulas are implemented in a form suitable for the execution of vector instructions in subroutines \texttt{INTRPO} and \texttt{INTRP1}, and \texttt{INRP2} and \texttt{INRP3} are scalar versions needed only for the computation of the derivatives of the fields at the self-patch. The choice of the five points for the interpolation also has an effect on the accuracy of the results, which is improved if the retarded time is close to the center of the interval. We choose the points in this way except for patches that are so close to the self-patch that the retardation is too small for all the needed values to be available. The values of the components of the surface current density and of their time derivatives at the self-patch itself are needed to
carry out the self- and neighboring-patch corrections; we use the uncorrected values at the self-patch as a first approximation where necessary.

3.3 **Subroutine RUNT**

This subroutine is executed once at the beginning of the program to perform the division of the sphere into patches and to compute coefficients that will be needed during the execution of the program.

We do not take advantage of the symmetry of the sphere to simplify the integral equations, but we have to take into account the characteristics of the sphere to choose a good way to divide it into patches. We naturally use spherical coordinates, the polar angle \(\theta \) and the azimuthal angle \(\phi \), which form a principal orthogonal curvilinear coordinate system [5].

We divide the surface of the sphere into patches by meridians and parallels. We first divide the surface into \(n_1 \) strips of equal increments of \(\theta \). Each strip is then divided into a number of patches that is roughly proportional to the length of the strip, that is, to \(\sin \theta \). We leave two undivided caps at the poles, where spherical coordinates become undefined; we use Cartesian coordinates for these caps, which requires special formulas for the computations. We divide the strips next to the caps into a given number \(n_2 \) of patches, usually 5. Then the other strips are divided into approximately

\[
 n = (n_2 - n_3) \sin \theta + n_3
\]
patches of equal size by lines of constant ϕ.

This more or less asymmetrical division of the surface into patches leads to computed nonzero values for some intermediate variables that should vanish by symmetry. Although this discrepancy does not seem to make much difference in the final results, we get intermediate values that are closer to zero by restricting the number of patches in each strip to a power of 2.

For strips near the poles, n is not large and the values of the increment in ϕ, $\Delta \phi = 2\pi/n$, may not be small compared to 1. The side of the patch, $a \sin \theta \Delta \phi$, is small compared to a.

To obtain patches that are approximately square in form, we would have to choose $n_2 = 2n_1$. A choice that works essentially just as well is $n_2 = n_1$. The consequent reduction in memory requirements and computing time is made possible by the periodicity of the fields in ϕ, which greatly improves the accuracy of the integration over that variable [7].

We compute and store the components of the radius vector, of the tangential vectors, the surface elements, and the coefficients required for self- and neighboring-patch corrections. These computations involve the evaluation of trigonometric functions and logarithms, the performance of numerical integrations, and other time-consuming operations, but they are done only once in each run.

3.4 Subroutine INFL

The incident field B_{in} has to be computed at the center of
each patch at each time step; this is done in subroutine INFL. For the plane-wave pulse, eq. (5) allows us to calculate the magnetic field for arbitrary \(t \). If the pulse is spatially limited, the incident fields have to be computed from their initial values by solving Maxwell's equations. This can be done by numerical integration over the information-collecting sphere \[14\].

3.5 **Subroutine FARFL**

The far field is calculated in subroutine FARFL by doing the integration in eq. (13) for any number of scattering directions given by the corresponding values of \(\theta \) and \(\phi \) for the direction of the scattered pulse. The intensities of the fields are plotted and they are also saved on disk for comparison with the results of other calculations.

The time scale is referred back to the center of the sphere, as is appropriate to compare the fields with the output from PERF. The time the scattered pulse starts is a function of the scattering angle,

\[
t_0 = (a/c)[1 - 2\sin(\theta/2)],
\]

(25)

and the duration of the pulse is comparable to the length of the pulse and to the size of the sphere.
4. **Self-Patch Corrections**

The surface integral in eq. (9) is singular because the integrand diverges when \(R = 0 \), which happens on the self-patch. The magnitude of the first term in the integrand is proportional to \(R^{-1} \) and the integral of that term is well defined. The magnitude of the second term is proportional to \(R^{-2} \), and the integral is defined in a limiting sense analogous to the principal value of a one-dimensional integral. In an expansion in the size of the patch \([5]\), the leading term in the integral is not absolutely integrable, but it vanishes by symmetry when the field is computed at the center of the patch. The next term is linear in the size of the patch.

The self-patch contribution to the integral is usually neglected, although there is no more reason to neglect the contribution of this patch than that of any other patch. Actually, the self-patch contribution is linear in the size of the patch, while those of most other terms are quadratic. Also the self-patch contribution is of fundamental importance in an integral equation of the first kind, where the unknown field does not appear outside the integral. We thus include in the program the option to compute the self-patch correction.

The expansion of the integral of the first term is of order 2 in the size of the patch, but we cannot neglect this term when \(\Delta J \) is comparable to \(J_s \) \([7]\). In this case, because \(\Delta t \) is less than \(R \) in the denominators, the integral of the first term is larger than the integral of the second term. This happens, for instance, when the pulse first reaches a patch. To make sure
that we do not neglect an important contribution, we keep this term in all self-patch corrections. The importance of this term complicates the implementation of a similar solution for an integral equation of the first kind.

We include terms with spatial derivatives of the surface current density, which are often ignored or assumed to be negligible by requiring that the fields vary slowly over the scatterer [15]. We also have to take into account the spatial variation of the tangential unit vectors.

The resulting expression for the self patch correction is

\[
\Delta J_s \approx \frac{a}{4\pi} \left[a \left(C_2 - \sin^2 C_3 \right) (-J_\theta \hat{\theta} + J_\phi \hat{\phi}) \right. \\
+ \frac{1}{c} \left(C_7 - \sin^2 C_8 \right) \left(\frac{\partial J_\theta}{\partial t} \hat{\theta} + \frac{\partial J_\phi}{\partial t} \hat{\phi} \right), \theta \neq 0, \pi, \\
\left. \right. \\
\frac{\Delta \theta}{4} \left[J_s \pm a \left(\frac{\partial J_s \hat{\xi}^\wedge}{\partial x} + \frac{\partial J_s \hat{\xi}^\wedge}{\partial y} \right) \right] \right]
\]

\[
+ \frac{a(\Delta \theta)^2}{16c} \left[\frac{\partial J_s}{\partial t} \pm a \left(\frac{\partial J_s \hat{\xi}^\wedge}{\partial x} \right) \hat{i} + \frac{\partial}{\partial y} \left(\frac{\partial J_s \hat{\xi}^\wedge}{\partial t} \right) \hat{j} \right), \theta = 0, \pi,
\]

where the coefficients are given in [5] or [7], \(\hat{\theta} \) and \(\hat{\phi} \) are the
tangential unit vectors along the coordinate curves, and $\Delta \theta$ is the angular width of a strip. To compute the corrections, we need to know the fields and their time derivatives at the self-patch, where the time retardation vanishes. We determine their values from the uncorrected results. If the integral of the term proportional to $\partial J_s^i / \partial t$ is neglected, the correction is proportional to J_s^i and it can be incorporated in the coefficient of the term on the left side of the equation.

Derivatives with respect to ϕ are calculated by approximating them by a quotient of differences of the respective quantities for the patches on both sides. Derivatives with respect to θ are calculated in a similar manner. If the values of the functions at the same ϕ on the strips above and below are not available, they have to be obtained by interpolation. There is an additional problem when one of the neighboring strips is a polar cap because the θ- and ϕ-components of a tangential vector are not well defined there; we define the θ-direction tangent to the meridian that passes through the center of the self-patch, and the corresponding ϕ-direction from $\hat{\phi} = \hat{n} \times \hat{\theta}$. At the poles, the derivatives with respect to x and y are obtained from the values on both sides on the neighboring strip.

Since there is only one self-patch contribution to the integral, the effect is hardly noticeable.

5. **Neighboring-Patch Corrections**

The integral over patches other than the self-patch is first computed by multiplying the value of the integrand at the center
of the patch by the surface of the patch. This is a reasonable approach if the integrand varies slowly over the patch. This is not so for factors like $1/R$ or $1/R^2$ where R is small, that is, for patches near the self-patch. Neighboring patches are those that are closer than a small multiple (set in subroutine RUNT) of the patch size to the center of the self-patch. We expand the contributions from the neighboring patches in the parameters that are of the order of magnitude of the size of the patch, which here includes the displacements between the centers of the patches [6].

As we explained in the previous section, the contribution of the time-derivative term is not negligible when the current density at the previous time is zero or small, and we also have to expand this term [7].

We have to compute $\hat{n} \times \hat{t}$, where

$$\hat{t} = \int_{S_2} \hat{r} \times \frac{1}{R^2 c} \frac{\partial J_s (x', \tau)}{\partial t'} + \frac{1}{R^3} J_s (x', \tau), \quad (27)$$

and S_2 is a neighboring patch. Since \hat{n} is the unit normal at the center of the self-patch S_1, it is not perpendicular to the tangential vectors $\hat{\theta'}$ and $\hat{\phi'}$. If we expand \hat{n} in terms of the vectors related to the patch S_2, the expansion is greatly simplified but the resulting contribution to J_s is not tangential. Also the change in \hat{n} between neighboring patches is not small when these patches are on a strip near a pole of the sphere. Consequently, we expand \hat{t} itself instead of $\hat{n} \times \hat{t}$. We
\[
\mathbf{I} \approx \left\{ \left(-1 + \cot\theta_0 \Delta \theta_0 \right) \mathcal{C}(1,0,3) - \frac{1}{a} \cot\theta_0 \mathcal{C}(2,0,3) \right. \\
- 3 \cot\theta_0 \Delta \theta_0 \mathcal{C}(1,2,5) + \frac{3}{2a} \cot\theta_0 \mathcal{C}(2,2,5) \left[\hat{\phi}' \right. \\
+ \left. \left[(-1 + 2 \cot\theta_0 \Delta \theta_0) \mathcal{C}(0,1,3) - \frac{2}{a} \cot\theta_0 \mathcal{C}(1,1,3) + \cos\theta_0 \Delta \phi_0 \mathcal{C}(1,0,3) \right. \\
- 3 \cot\theta_0 \Delta \theta_0 \mathcal{C}(0,3,5) + \frac{3}{2a} \cot\theta_0 \mathcal{C}(1,3,5) \left[\hat{\phi}' + \left[\frac{1}{2a} \mathcal{C}(2,0,3) \\
- \left. \Delta \theta_0 \mathcal{C}(1,0,3) \right] \hat{n}_0' + \left[\frac{1}{2a} \csc\theta_0 \mathcal{C}(0,2,3) - \Delta \phi_0 \mathcal{C}(0,1,3) \right] \hat{\rho}' \right] \times \hat{\mathbf{j}}_5 \right. \\
+ \left. \left\{ \left[\Delta \theta_0 \mathcal{C}(1,0,3) - \frac{1}{a} \mathcal{C}(2,0,3) \right] \hat{\phi}' + \left[\Delta \theta_0 \mathcal{C}(0,1,3) \\
- \frac{1}{a} \mathcal{C}(1,1,3) \right] \hat{\phi}' \right\} \times \frac{\partial \hat{\mathbf{j}}_5}{\partial \theta'} + \left\{ \left[\Delta \phi_0 \mathcal{C}(1,0,3) - \frac{1}{a} \csc\theta_0 \mathcal{C}(1,1,3) \right] \hat{\phi}' \\
+ \left[\sin\theta_0 \Delta \phi_0 \mathcal{C}(0,1,3) - \frac{1}{a} \mathcal{C}(0,2,3) \right] \hat{\phi}' \right\} \times \csc\theta_0 \frac{\partial \hat{\mathbf{j}}_5}{\partial \phi'} \right\}
\]
\[+ \left\{ \left[(-1 + \cot \theta_0 \Delta \theta_0) C(1,0,2) - \frac{1}{a} \cot \theta_0 \Delta \theta_0 C(2,0,2) \right] \right\} \hat{\theta}' + \left\{ \left[(-2 + 2 \cot \theta_0 \Delta \theta_0) C(1,2,4) + \frac{1}{a} \cot \theta_0 \Delta \theta_0 C(2,2,4) \right] \right\} \hat{\theta}' \\
- 2 \cot \theta_0 \Delta \theta_0 C(1,2,4) + \frac{1}{a} \cot \theta_0 \Delta \theta_0 C(2,2,4) \right] \hat{\theta}' + \left\{ \left[(-1 + 2 \cot \theta_0 \Delta \theta_0) C(0,1,2) - \frac{2}{a} \cot \theta_0 \Delta \theta_0 C(1,1,2) + \cos \theta_0 \Delta \phi_0 C(1,0,2) \right] \right\} \hat{\phi}' + \left\{ \left[(-1 + 2 \cot \theta_0 \Delta \theta_0) C(0,3,4) + \frac{1}{a} \cot \theta_0 \Delta \theta_0 C(1,3,4) \right] \right\} \hat{\phi}' + \left\{ \left[\frac{1}{2a} C(2,0,2) \right] \right\} \hat{\phi}' \\
- \Delta \theta_0 C(1,0,2) \right\} \hat{n}'_0 + \left\{ \left[\frac{1}{2a} \csc \theta_0 \Delta \phi_0 C(0,2,2) - \Delta \phi_0 C(0,1,2) \right] \right\} \hat{\rho}' \} \times \frac{1}{c} \frac{\partial J_s}{\partial t'} \\
+ \left\{ \left[\Delta \theta_0 C(1,0,2) - \frac{1}{a} C(2,0,2) \right] \right\} \hat{\theta}' + \left\{ \left[\Delta \theta_0 C(1,2,4) + \frac{1}{a} \cot \theta_0 \Delta \theta_0 C(2,2,4) \right] \right\} \hat{\phi}' \\
- \frac{1}{a} C(1,1,2) \right\} \hat{\phi}' \} \times \frac{1}{c} \frac{\partial}{\partial \theta'} \frac{\partial J_s}{\partial t'} + \left\{ \left[\Delta \phi_0 C(1,0,2) - \frac{1}{a} \csc \theta_0 \Delta \phi_0 C(1,1,2) \right] \right\} \hat{\theta}' \\
+ \left\{ \left[\sin \theta_0 \Delta \phi_0 C(0,1,2) - \frac{1}{a} C(0,2,2) \right] \right\} \hat{\phi}' \} \times \frac{\csc \theta_0}{c} \frac{\partial}{\partial \phi'} \frac{\partial J_s}{\partial t'}, \tag{28} \]

where \(\hat{\theta}' \) and \(\hat{\phi}' \) are the tangential unit vectors at \(\chi_0' \), the center
of \(S_2 \), \(\hat{\rho}' \) is the radial unit vector in the xy-plane, and the current density and its derivatives are evaluated at \(\hat{\mathbf{x}}_0' \) at the corresponding retarded time \(\tau_0' \). The derivatives with respect to \(\theta \) or \(\phi \) take into account the dependence of the retarded time on \(\theta \) and \(\phi \). The coefficients are given in [6] and [7].

Some of the coefficients become undefined when one of the sides of the neighboring patch has the same coordinate as the center of the self-patch [7]. We then have to evaluate these coefficients from alternative expressions. Also the azimuthal angles of the first and the last patches on a strip differ by an amount close to \(2\pi \); we have to subtract \(2\pi \) from such a difference to get the proper value of \(\Delta \phi \) for the calculations.

If the neighboring patch \(S_2 \) is the spherical cap at \(\theta = 0, \pi \), we use Cartesian coordinates and obtain

\[
\vec{I} \approx \left(\hat{\rho}_0 \hat{C}'(0,0,3) - \hat{C}'(1,0,3) - \hat{j}C'(0,1,3) \right) + \frac{1}{2a} \hat{x}' \left(\hat{\rho}_0^2 \hat{C}'(0,0,3) - \hat{C}'(2,0,3) - \hat{C}'(0,2,3) \right) \times \vec{J}_s
\]

\[
+ \left[\hat{\rho}_0 \hat{C}'(1,0,3) - \hat{C}'(2,0,3) - \hat{j}C'(1,1,3) \right] \times \frac{\partial \vec{J}_s}{\partial x'}
\]

\[
+ \left[\hat{\rho}_0 \hat{C}'(0,1,3) - \hat{C}'(1,1,3) - \hat{j}C'(0,2,3) \right] \times \frac{\partial \vec{J}_s}{\partial y'}
\]
\[+ \frac{1}{c} \left(\rho_0 C'(0,0,2) - \hat{i} C'(1,0,2) - \hat{j} C'(0,1,2) \right) \]

\[+ \frac{1}{2a^k} \left[\rho_0^2 C'(0,0,2) - C'(2,0,2) - C'(0,2,2) \right] \times \dot{\mathbf{j}}_s' / \dot{\alpha}' \]

\[+ \frac{1}{c} \left[\rho_0 C'(1,0,2) - \hat{i} C'(2,0,2) - \hat{j} C'(1,1,2) \right] \times \frac{\partial}{\partial x'} \dot{\mathbf{j}}_s' / \dot{\alpha}' \]

\[+ \frac{1}{c} \left[\rho_0 C'(0,1,2) - \hat{i} C'(1,1,2) - \hat{j} C'(0,2,2) \right] \times \frac{\partial}{\partial y'} \dot{\mathbf{j}}_s' / \dot{\alpha}' , \quad (29) \]

where

\[\rho_0 = a \sin \theta, \quad \hat{\rho}_0 = \rho_0 (\hat{i} \cos \phi_0 + \hat{j} \sin \phi_0), \quad (30) \]

and the coefficients are defined in [7]. The computation of these coefficients involves a numerical integration [7], for which we use the subprogram Q1DB in CMLIB [16]. The integrand becomes undefined for certain values of the variable of integration, and an alternative expression has to be used where this happens.

The corrected neighboring-patch contributions replace those obtained in the simple way. We have compared the two computed values of the neighboring-patch contributions and we have found that sometimes they differ little while at other times the difference can be large. Since a patch can have about ten neighboring patches, the overall effect of this correction is more significant than that of the self-patch.
6. Vector Programming Considerations

The largest savings in execution time can be achieved by vectorizing the computations in the main loop.

The values of the components of \mathbf{J}_s that may be needed for the integration are kept in memory in two-dimensional arrays, where one index represents the patch number and the other the time. After these fields are no longer needed, they are saved on a disk file.

An important observation that facilitates the vectorization of the interpolation in the time variable is that the location of the retarded fields in the two-dimensional array for a fixed field point is the same for the different components of the fields and is shifted by one column as the time is incremented for the interpolation. Thus the array IND is computed once and used in a QBVETHR function repeatedly. This function is used to collect the values of the components of \mathbf{J}_s at the different retarded time in a single array. We originally computed the values stored in the array IND and the related array FT once for each field point and saved them, to be used at each time. This procedure requires square arrays for IND and FT, increasing the memory requirements. Although the CYBER 205 has virtual memory, paging generates much activity and slows significantly the execution of the program. The arrays that contain the values of the surface current density components are accessed in an irregular manner and they have to be in memory at the time of execution. The arrays IND and FT may be paged in gradually as the field point changes, but we have chosen to recompute their
values for each time point with only a small increase in the running time. We save square bit arrays BT3 and BT4 to control where the interpolation has to be shifted from the center of the interval.

The vectorization of this main loop produces a reduction of the execution time by a factor of 7 if the sphere is divided into 70 patches, and 20 for 550 patches. These factors can probably be reduced somewhat by improving the scalar version of the program, where we use the three Cartesian components of the fields instead of the two tangential components we use in the vector program. The vectorization has to be done explicitly to be able to take advantage of the QBVGATHR function.

The subroutine RUNT is called only once at the beginning of the program, and we made no great effort to vectorize this part of the code. The subroutine FARFL can be called repeatedly to find the scattered fields in different directions, and its structure is not very different from the main loop since we are also doing surface integrals over retarded fields.

The computation of the self-patch correction takes only an additional one percent for execution. The additional execution time for the neighboring-patch corrections depends on the number of neighboring patches, which in turn depends on the criteria used to define them and the patch distribution on the sphere. It varies between ten and 40 percent of the basic execution time for the loop. It may be possible to decrease this time by vectorizing the computation of the neighboring-patch contributions.
7. **Ancillary Programs**

We have developed two programs that we use to examine the results of the main programs PERF and SCAT. They are PERFPLT, and CURCHK. These programs require very little execution time, but they run on the CYBER 205 because that is where the output files are stored.

We have written a program SCATP that runs on the front-end computer to determine the required dimensions of the different arrays in SCAT and the number of large pages needed to accommodate these arrays.

We have also written vector versions of subroutines NUFT and INUFT, which we use to compute the direct and inverse Fourier transform of functions that are not given at equispaced points.

7.1 **Program PERFPLT**

Program PERFPLT uses the output files PERFSV of PERF and SCFLxxx of SCAT, where xxx stands for the qualifier that identifies the run, and allows us to plot the far-field intensities on a single plot for each outgoing direction of propagation. We thus can compare the plotted output of PERF with up to 4 plots produced by SCAT. We can choose printer plots by using DRAW3 [10] or plots that can be produced on a Versatec printer/plotter by using DRAW4 [11] adapted to FORTRAN 77. Actually, the information for the plots is added to a file stored on the front-end computer. Then, when several plots have accumulated, this information is transferred to tape which is
taken to our local PE 3230 minicomputer for plotting.

We can select the initial and final times on the plots to show details of particular regions of the pulses.

7.2 Program CURCHK

Program CURCHK selects the values of the components of \(\tilde{J}_s \) saved in a file SCSVxxx for up to 10 patches for the whole time range or a given interval. These values can be printed or they can be plotted on the printer or on a plotter and they provide a useful check on the solution of the integral equation.

7.3 Program SCATP

We run this program on the CYBER 180/855, the front end, and then use the editor to pass the information to the parameter statements in SCAT and CURCHK. The class and priority of a job on the CYBER 205 depends on the memory and time requirements, and it is better to keep them as small as possible.

Program SCATP does the part of the calculations that will be made in SCAT to find the number of patches for the given \(n_1, n_2, \) and \(n_3 \), estimates the number of time steps that have to be kept in memory, and the number and distribution of neighboring patches if this correction will be made.

A discrepancy arose in these calculations due to the differences between the CYBER 170/855 and the CYBER 205. The former returned the result \(\cos(n/6) = .4999... \) while the latter
returned \(\cos(n/6) = .5 \); rounding led to a different number of patches and an insufficient size for the arrays; this is why the size is incremented by 2 in SCATP.

7.4 Subroutine VINUFT

This subroutine is used by program PERF to compute the inverse Fourier transform of the scattered fields. It is related to subroutines NUFT and INUFT [9].

The subroutines NUFT can be used to compute the Fourier transform of a function \(f(t) \), \(a \leq t \leq b \) when the values of \(f(t) \) are known at a set of values \(t_i \) that are not equispaced. The function is approximated by straight line segments joining adjacent points, the Fourier transform of this approximation is determined analytically, and the result is evaluated numerically at a given set of values \(\omega_i \).

Subroutine NUFT can be used twice to obtain the inverse Fourier transform in the analogous approximation, but we can do this more efficiently by using subroutine INUFT if we know that \(f(t) \) is real, that is, when

\[
\hat{f}(-\omega) = \hat{f}^*(\omega).
\] (31)

Subroutines VNUFT and VINUFT are the vectorized versions of NUFT and INUFT, and they are listed in the appendix. The vector versions do not have the small angle approximation for the sine function used in the scalar versions.
8. Program Inputs and Outputs.

The inputs required to run PERF and SCAT are contained in the files PERFIN and SCINxx (filenames on the front end can have 7 characters only, and we add another digit to indicate the type of correction selected). The procedure used to submit a run to the computer causes a file SCINxx to be saved, so that the input file SCINxx may be modified.

The information that is required for a given run relates both to the physical problem and to the numerical computation.

The constants \(a\) and \(\beta\) determine the shape of the pulse, and we also need the radius \(\bar{a}\) of the sphere. Actually, the value of \(\bar{a}\) simply fixes the scale of the problem, and we could set \(\bar{a} = 1\) everywhere in the program. The outputs for \(a = 1\), \(\alpha\), \(\beta\), and \(t\) are the same as those for \(\bar{a}\), \(\alpha/\bar{a}\), \(\beta/\bar{a}\), and \(\bar{a}t\).

We have to specify the angles \(\theta\) and \(\phi\) of the direction of propagation of the scattered fields, and we may give times \(t_1\) and \(t_2\) to obtain plots of some part of the scattered fields. Several sets of directions and times may be specified, and all the calculations use the same previously determined surface currents. If \(t_1\) or \(t_2\) is not given, we make an estimate of the extreme values based on the time of arrival of the pulse and the time covered by the calculation of \(J_s\). Further sets of fields may be computed in separate runs without recomputing the surface current density, which is saved in SCSVxx.

The parameters needed for the computation of the fields in SCAT are the time increment \(\Delta t\) and the patch distribution on the sphere. The distance light travels in the time \(\Delta t\) has to be
smaller than the separation between the centers of any two patches; the program SCAT makes this Δt equal to 0.8 times the smallest separation between the centers if none is given or if the given Δt is larger than this quantity. We can also give the number of time increments in the calculation, which determines the time interval for which the surface current density is determined; if this number is not given, the program selects a number that corresponds to propagation over a distance $6a$. The division of the sphere into patches is controlled by the number of strips, n_1, the approximate number of patches on the equatorial strip, n_2, and the number of patches on the strip next to a polar cap, n_3, as discussed in section 3. To do the calculation is PERF we also have to give the first frequency increment, the highest frequency, and the number of frequency values where the monochromatic fields are to be calculated.

The agreement between the curves computed via the Fourier transform and by solving the MFIE is shown in figure 1. The output of SCAT in this figure corresponds to the largest run we made. We needed 28 large pages, which is essentially the size of the computer memory, the main loop executed in 10754 s with no self- or neighboring-patch corrections, and the total CPU-time for the job was 10812 s. The sphere was divided into 58 strips, and this was also the maximum specified for the number of patches in a strip (in powers of 2, the actual number goes from 8 near the poles to 64 at the equator), for a total of 2898 patches. We selected $\Delta t = 0.3 \times 10^{-10}$ s for the time interval and computed the current density for 900 time steps. There is some evidence
Figure 1. Intensity (in arbitrary units) of the scattered far fields as a function of ct in (a) the forward direction, (b) and (c) at 90 degrees with both polarizations, and (d) the backward direction for an incident pulse with $\alpha = 2 \text{ m}^{-1}$ and $\beta = 3 \text{ m}^{-1}$. The solid curves are computed via a Fourier transform from Mie scattering formulas and the dashed curves with the markers were computed via the MFIE. There is good agreement.
of oscillations at the later times, especially in backward scattering.

Many factors affect the accuracy of the computation of the fields from the integral equation, and these factors interact in complex ways. The two effects of the interpolation formula used for the time variable are illustrated in figure 2 for runs in which the sphere was divided into 19 strips with 8 to 32 patches in a strip (370 patches total) or 5 to 20 patches in a strip (258 patches total), and with $\Delta t = 2.75 \times 10^{-10}$ s, which is a relatively large interval. Near the first peak, the curves that correspond to the fourth-degree polynomial interpolation are much closer to the correct solution, while near the end of the graph these curves show the onset of oscillations. These oscillations tend to become larger as time progresses, limiting the usefulness of this interpolation scheme. We also see in figure 2 that the particular way in which the strips are divided into patches, whether we use powers of 2 or not, has little effect on the final results.

In figure 3 we show a details of the curves about the first peak to illustrate the effect of the self- and neighboring-patch corrections. The sphere was divided into 1986 patches, and the time increment was 0.5×10^{-10} s. We see that the effect of including the contribution of the self-patch is slight, while that of correcting the contributions of the neighboring patches is more significant.

The periodicity of the surface fields as functions of the azimuthal angle ϕ has the effect of reducing the number of patches that are required in a strip [7]. The trapezoidal rule
Figure 2. Illustration of the effects of the subdivision of the strips and the interpolation scheme. The curves marked with 0 and 2 correspond to patch numbers that are powers of 2 and curves 0 and 1 are computed with least-squares interpolation. The curves were cut off at ct = 2.8 m.

gives a much more accurate integral for periodic than for arbitrary functions when the integration is over one period. Thus, if the sphere is divided into \(n_1 \) strips, it is better to divide the equatorial strip into \(n_1 \) patches instead of the \(2n_1 \) required to make the patches more or less square. The smallness of the effect of this or even a greater reduction is shown in figure 4. The increase in the size of the patch has an adverse effect in the computation of the self- and neighboring-patch
Figure 3. Effect of self-patch and neighboring-patch corrections. We show a detail of the curves near the first maximum. Curves 2 and 3, computed with neighboring-patch corrections, agree better with the solid curve than 0 and 1. The inclusion of self-patch corrections in the computation of 1 and 3 does not lead to a noticeable improvement over 0 and 2, respectively.

corrections, which is also illustrated in figure 4.

We show the components of the current density on the top cap in figure 5a; the x-component remains essentially equal to zero, as expected by symmetry. The computed surface current density remains exactly equal to zero until the incident wave reaches the patch; after that time, the current density is determined by the integral equation. On the other hand, the actual fields cannot
Figure 4. Illustration of the small effect of a variation in the number of patches per strip. The sphere is divided into 29 strips, and the number of patches in the equatorial strip is 15 for curve 0, 29 for curve 1, and 45 for curve 2. Curve 3 includes corrections with the same patch distribution used for curve 0, showing a deterioration of the results.

reach a patch until they go around the outside of the perfectly conducting sphere. This means that the solution of the integral equation at the top cap of the sphere has to remain zero between $ct = 2a$ and $ct = (1 + n)a$, an effect that is illustrated in figures 5b to 5f. The discrepancies shown for the different calculations are an indication of the accuracy that was attained in the solution of the integral equation.

The fields computed for the program-selected value of Δt are
Figure 5. Components of the current density (in arbitrary units) at the top pole of the sphere; the x-component remains zero. We show the complete graph (a) in the run with 2898 patches with least-squares interpolation, and a detail of the region between \(ct = 2 \text{ m} \) and \(ct = 1 + \pi / 2 \text{ m} \) for (b) the same run, (c) one with 1586 patches, (d) same with corrections, (e) one with 370 patches, and (f) 370 patches with polynomial interpolation.
Figure 6. Fields computed with program-selected (minimum) values of Δt (approximately 3.5×10^{-10} s) and number of time increments with 370 patches. The computation without corrections shown in curve 0 is compared to the same with polynomial interpolation and corrections in curve 1 and with a time increment of $1. \times 10^{-8}$ s in curve 2.

compared with those computed with a smaller time increment in figure 6. The curves show that it is important to use the more accurate polynomial interpolation for a small number of patches.

The scattered fields for a sharper incident pulse, which has constants $\alpha = 6 \, m^{-1}$, $\beta = 9 \, m^{-1}$, are shown in figure 7. The fit at the peaks is not very good and there are oscillations at later times. Smaller patches are required for a sharper pulse.
Figure 7. Intensity of the scattered far fields in (a) the forward direction, (b) and (c) at 90 degrees with both polarizations, and (d) in the backward direction for an incident pulse with $\alpha = 6 \text{ m}^{-1}$ and $\beta = 9 \text{ m}^{-1}$. The graphs, which correspond to runs with 1586 patches, show an increase in the oscillations after the initial peak.
9. **Conclusions**

The agreement between the results of programs PERF and SCAT shows that both programs are essentially correct. Thus, program SCAT can be used as the basis for more general programs that compute scattering of pulses by arbitrary perfectly conducting surfaces. The parts of the program that would have to be modified are mainly those related to the division of the surface into patches and the computation of spatial derivatives. The scattering of spatially localized pulses can also be included in the program by making the appropriate changes in the computation of the incident fields.

The importance of the time-derivative term in the computation of the contribution of the self-patch causes difficulties in the use of a similar procedure to solve integral equations of the first kind, such as the EFIE or the integral equation that describes the scattering by a dielectric.

The correction for the neighboring-patch contributions has a greater effect than inclusion of the self-patch, probably because there are a number of neighboring patches for each patch. On the other hand, the uncorrected integrals also gave satisfactory solutions with a sufficiently large number of patches.

The vectorization of the program reduces the running time by a factor that depends on the number of patches on the sphere. This factor is approximately equal to 20 for 550 patches. We also found that straight polynomial interpolation gave better accuracy than a least-squares polynomial interpolation at the cost of increased instability.
References

Appendix

In this appendix we provide listings for the programs SCAT, SCATP, PERF, PERFPLT, and CURCHK together with most of the subprograms that they require. We also provide listings for the Fourier transform subroutines VNUFT and VINUFT.

The plotting subroutines DRAW3 and DRAW4 are documented elsewhere, as are the integration subroutine Q1DB, the interval generating subroutine OMEGA, and the subroutines to compute Bessel functions BESRJ and BESRY.
PROGRAM SCAT

VECTORIZED VERSION OF PROGRAM THAT COMPUTES SCATTERED FIELDS.
SELF-PATCH AND NEIGHBORING-PATCH CONTRIBUTIONS CAN BE INCLUDED.
NO CHARGE DENSITY IS COMPUTED

XR1, XR2, XR3: ARRAYS WITH THE COMPONENTS OF THE POSITION VECTOR
ON THE SPHERE
SRF: (SOLID ANGLE SUBTENDED BY EACH PATCH)/(TWO Pi)
TF: TIME OF FIRST ARRIVAL OF THE WAVE AT EACH PATCH
CO: COEFFICIENT FOR CONTRIBUTION TO SELF-PATCH
DO: SAME AS CO, FOR THE TIME-DERIVATIVE TERM
TH1, TH2, TH3: COMPONENTS OF THE UNIT VECTOR ALONG MERIDIANS
PHI1, PHI2: COMPONENTS OF UNIT VECTOR ALONG PARALLELS
FU1, FU2, FD1, FD2, FC1, FC2: INFORMATION FOR INTERPOLATION
THETA: POLAR ANGLE OF PATCH
PHI1: AZIMUTHAL ANGLE OF PATCH
DPHI1: INCREMENT OF AZIMUTHAL ANGLE
RB1, RB2, RB3, RB4: ARRAYS THAT CONTAIN BIT ARRAYS
COJ, COJT, COJU, COJTU, COJV, COJTV: ARRAYS WITH COEFFICIENTS
NEEDED TO COMPUTE NEIGHBORING-PATCH CORRECTIONS
SINT1, SINT2, SINT3: CARTESIAN COMPONENTS OF INTEGRALS
DR1, DR2, DR3: COMPONENTS OF R = X - X'
DR, DRM2, DRM3: WORK ARRAYS
CJTHD, CJPHD: COMPONENTS OF THE RETARDERD SURFACE CURRENT DENSITY
IN THE THETA- AND PHI-DIRECTIONS
DJTHD, DJPHD: SAME FOR TIME DERIVATIVE OF SURFACE CURRENT DENSITY
UTH, UPH, AO, A1, A2, A3, A4, YM2, YM1, YO, Y1, Y2: WORK ARRAYS
CJTHA, CJPHA: COMPONENTS OF SURFACE CURRENT DENSITY AT TIME T
CJTH, CJPH: TWO-DIMENSIONAL ARRAYS WITH COMPONENTS OF ALREADY CALCULATED
CURRENT DENSITY
FT: INFORMATION FOR TIME INTERPOLATION
NL, NR, NU1, NU2, ND1, ND2: INFORMATION FOR SPATIAL INTERPOLATION
NEI, NPOINTER: INFORMATION FOR NEIGHBORING-PATCH CORRECTION
IND: INDEX ARRAY FOR VECTOR PROCESSING
IJ: IJ(1) = I, FOR VECTOR PROCESSING
BT1: BIT ARRAY SELECTS ALL PATCHES EXCEPT THE SELF PATCH
BT2: BIT ARRAY TO INDICATE WHETHER THE PULSE HAS REACHED A PATCH
BT3, BT4: BIT ARRAYS TO INDICATE NECESSITY OF SHIFTING INTERPOLATION

PARAMETER(LL=LLG, LC=LCG, LL12=LL12G, LL20=LL20G,
1 LB=LL*2/64+1, LB1=LL/64+1)
BIT BT1(LL), BT2(LL), BT3(LL, LL), BT4(LL, LL)
CHARACTER TITLE*80, SUBT*80, XLAB*30, YLAB*30, QAL*4
COMMON /RDOM/ XR1(LL), XR2(LL), XR3(LL), SRF(LL), TF(LL),
1 CO(LL), DO(LL), TH1(LL), TH2(LL), TH3(LL),
2 PHI1(LL), PHI2(LL), FU1(LL), FU2(LL), FD1(LL), FD2(LL), FC1(2), FC2(2),
3 THETA(LL), PHI1(LL), DPHI1(LL), RB1(LL1), RB2(LL1), RB3(LL), RB4(LL),
4 COJ(6, LL12), COJT(6, LL12), COJU(2, LL12), COJTU(2, LL12),
5 COJV(2, LL12), COJTV(2, LL12), SINT1(LL), SINT2(LL), SINT3(LL),
6 DR1(LL), DR2(LL), DR3(LL), DR(LL), DRM2(LL), DRM3(LL),
7 CJTHD(LL), CJPHD(LL), DJTHD(LL), DJPHD(LL),
8 UTH(LL), UPH(LL), AO(LL), A1(LL), A2(LL), A3(LL), A4(LL),
9 YM2(LL), YM1(LL), YO(LL), Y1(LL), Y2(LL),

42
A CJTHA(LL), CJPHA(LL), CJTH(LL, LC), CJPH(LL, LC), FT(LL),
B NL(LL), NR(LL), NU1(LL), NU2(LL), ND1(LL), ND2(LL),
C NEI(LL, LL20), NPOINT(LL, LL20), IND(LL), IJ(LL)
COMMON /ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLOT, INTER, IDEB,
1 IPATCH, N3, NU
COMMON /LABEL/ TITLE, SUBT, XLAB, YLAB
COMMON /PARAM/ ALPHA, BETA, DT, RAD, RADM1, CDTM1, THSC, SR1, SR2, SR3
COMMON /CONST/ AMU0, TWOMU0, TWEPO, C, CM1, PI, TOP1, PITO, OS, OTW, OTF
EQUIVALENCE (RB1, BT1), (RB2, BT2), (RB3, BT3), (RB4, BT4)
DATA IZP/0/, BT1/L*E
WRITE(XLAB, 7)
WRITE(YLAB, 8)
LL2=2*LL
OS=1./7.
OTW=1./12.
OTF=1./24.
C=3.E8
CM1=1./C
PITO=2. *ATAN(1.)
PI=2. *PITO
TOP1=4. *PITO
CONV=PI/180.
AMU0=PI*4. E-7
TWOMU0=2. /AMU0
TWEPO=2. *CM1**2/AMU0
PRINT ' (1H1)'
READ *, ICORR, ISKIP, IPLOT, INTER, IDEB, IPATCH, QAL
PRINT *, 'ICORR=', ICORR, ',', ISKIP=', ISKIP, ',', IPLOT=', IPLOT,
1 ',', INTER=', INTER, ',', IDEB=', IDEB, ',', IPATCH=', IPATCH, ',', QAL=', QAL
C READ IN VALUES OF CONSTANTS FOR THE PULSE
C READ 4, DT, RAD, ALPHA, BETA
READ 5, N1
READ 5, N1, N2, N3
IF(N1.GT.100) STOP 2
IF(N3.EQ.0) N3=5
RADM1=1./RAD
IF(ISKIP.EQ.1) ICORR=0
C COMPUTE COMPONENTS OF VECTORS ON SPHERE AND INFORMATION NEEDED FOR
C SELF-PATCH AND NEIGHBORING-PATCH CORRECTIONS
CALL RUNT
IF(IDEB.EQ.1) THEN
WRITE(7, *)', I XR1(I), XR2(I), XR3(I) ',
1 'SRF(I) TF(I) CO(I) DO(I) ',
2 'TH1(I) TH2(I) TH3(I) ',
WRITE(7, *)', PH1(I) PH2(I) FU1(I) ',
1 ' FU2(I) FD1(I) FD2(I) ',
WRITE(7, *)', NL(I) NR(I) NU1(I) NU2(I) ND1(I) ND2(I) ',
DO 90 I=1, IS
WRITE(7, 2) I, XR1(I), XR2(I), XR3(I), SRF(I), TF(I),
1 CO(I), DO(I), TH1(I), TH2(I),
2 TH3(I), PH1(I), PH2(I), FU1(I), FU2(I), FD1(I), FD2(I)
WRITE(7, 1) NL(I), NR(I), NU1(I), NU2(I), ND1(I), ND2(I)
C 43
CONTINUE
IF(ICORR.GE.2) THEN
DO 95 I=1,IS
 WRITE(7,1) I,(NEI(I,J),J=1,NEI(I,1))
95 CONTINUE
END IF
END IF
C NO CALCULATIONS IF NI < 0
IF(NI.LT.0) STOP
DO 100 I=1,IS
 I(J(I))=I
100 CONTINUE
DTM1=1./DT
CDTM1=CM1*DTM1
C COMPUTE THE NUMBER OF TIME STEPS TO A DIAMETER TO DIMENSION ARRAY
NU=2.*RAD*CM1*DTM1+6.
C COMPUTE THE NUMBER OF TIME STEPS IF NOT GIVEN
IF(NI.EQ.0) NI=6.*RAD/(C*DT)
PRINT *, 'NI=',NI,', N1=',N1,', N2=',N2,', N3=',N3,
 'DT=',DT,', RAD=',RAD,', ALPHA=',ALPHA,', BETA=',BETA
PRINT *, NU, 'ROWS NEEDED OUT OF ',LC
IF(NU.GT.LC) STOP 3
NUM2=NU-2
IF(ICORR.EQ.1) THEN
 PRINT *, 'SELF-PATCH CORRECTIONS ONLY'
ELSE IF(ICORR.EQ.2) THEN
 PRINT *, 'NEIGHBORING-PATCH CORRECTIONS ONLY'
ELSE IF(ICORR.EQ.3) THEN
 PRINT *, 'SELF- AND NEIGHBORING-PATCH CORRECTIONS'
ELSE
 PRINT *, 'NO PATCH CORRECTIONS'
END IF
C ENCODE INFORMATION FOR TITLES OF GRAPHS
IF(ICORR.EQ.1) THEN
 IF(INTER.EQ.0) THEN
 WRITE(SUBT,11) ALPHA,BETA,DT,NI,N1,N2,N3
 ELSE
 WRITE(SUBT,12) ALPHA,BETA,DT,NI,N1,N2,N3
 END IF
ELSE IF(ICORR.EQ.2) THEN
 IF(INTER.EQ.0) THEN
 WRITE(SUBT,13) ALPHA,BETA,DT,NI,N1,N2,N3
 ELSE
 WRITE(SUBT,14) ALPHA,BETA,DT,NI,N1,N2,N3
 END IF
ELSE IF(ICORR.EQ.3) THEN
 IF(INTER.EQ.0) THEN
 WRITE(SUBT,15) ALPHA,BETA,DT,NI,N1,N2,N3
 ELSE
 WRITE(SUBT,16) ALPHA,BETA,DT,NI,N1,N2,N3
 END IF
ELSE
 IF(INTER.EQ.0) THEN
 WRITE(SUBT,9) ALPHA,BETA,DT,NI,N1,N2,N3
ELSE
WRITE(SUBT, 10) ALPHA, BETA, DT, NI, N1, N2, N3
ENDIF
ENDIF
CALL Q5REQUEST('LFN=', 'SCFL'/QAL, 'MXR=', 2400, 'LEN=', 50,
1 'RT=', 'W')
OPEN(9, FILE='SCFL'/QAL, FORM='UNFORMATTED')
T=DT
NF2=8*IS
LENGTH=NI*IS*2/512+10
IF(ISKIP.EQ.1) THEN
CALL Q5REQUEST('LFN=', 'SCFL'/QAL)
OPEN(2, FILE='SCFL'/QAL, FORM='UNFORMATTED', RECL=NF2)
T=NI*DT
GO TO 400
ENDIF
CALL Q5REQUEST('LFN=', 'SCFL'/QAL, 'MXR=', NF2, 'LEN=', LENGTH,
1 'SFO=', 'D')
OPEN(2, FILE='SCFL'/QAL, FORM='UNFORMATTED',
1 RECL=NF2, ACCESS='DIRECT')
TL=SECOND()
NUM=1
NREC=1
IXH=0
C
C INITIALIZE ARRAYS
C
CJTHA(1; IS)=0.
CJPHA(1; IS)=0.
CJTHD(1; IS)=0.
CJPHD(1; IS)=0.
DJTHD(1; IS)=0.
DJPHD(1; IS)=0.
UTH(1; IS)=0.
UPH(1; IS)=0.
DO 120 J=1, LC
CJTH(1, J; IS)=0.
CJPH(1, J; IS)=0.
120 CONTINUE
C
C MAIN LOOP
C
DO 300 IZ=2, NI
NUM=NUM+1
PRINT *, IZ, ' OF ', NI
C
SHIFT THE NUMBERS IN THE ARRAYS
DO 170 I=2, NU
CJTH(1, I-1; IS)=CJTH(1, I; IS)
CJPH(1, I-1; IS)=CJPH(1, I; IS)
170 CONTINUE
C
COMPUTE DENSITIES AT EACH PATCH ON THE SPHERE
DO 200 IX=1, IS

45
C RETRIEVE THE RADIUS VECTOR (NORMAL)
X=XR1(IX)
Y=XR2(IX)
Z=XR3(IX)
C FIND THE INCIDENT FIELDS
CALL INFL(SINT10, SINT20, SINT30, T, *210)
DR1(1, IS)=X-XR1(1, IS)
DR2(1, IS)=Y-XR2(1, IS)
DR3(1, IS)=Z-XR3(1, IS)
CDRM2(1, IS)=DR1(1, IS) **2 + DR2(1, IS) **2 + DR3(1, IS) **2
DR(1, IS)=VSQRT(CDRM2(1, IS); DR(1, IS))
DRM3(1, IS)=CDTM1*DR(1, IS)
IND(1, IS)=VINT(DRM3(1, IS); IND(1, IS))
FT(1, IS)=VAINT(DRM3(1, IS); IS)
WHERE BT3(1, IS) WHERE BT3(1, IS)
IND(1, IS)=IND(1, IS) + 1
FT(1, IS)=FT(1, IS) + 1.
END WHERE
WHERE BT4(1, IS)
IND(1, IS)=IND(1, IS) + 2
FT(1, IS)=FT(1, IS) + 2.
END WHERE
IND(1, IS)=IND(1, IS) + 1
BT1(IX)=B '0'
C SHIFT THE FIVE POINTS FOR INTERPOLATION IF NECESSARY
WHERE BT2(1, IS)
IND(1, IS)=IND(1, IS) + 1
FT(1, IS)=FT(1, IS) + 1.
END WHERE
WHERE BT2(1, IS)
IND(1, IS)=IND(1, IS) + 1
FT(1, IS)=FT(1, IS) + 1.
END WHERE
IND(1, IS)=IND(1, IS) + 1
BT1(IX)=B '0'
C DETERMINE WHETHER THE PULSE HAS REACHED THE PATCH
BT2(1, IS)=T-CM1*DR(1, IS), LE. TF(1, IS)
WHERE BT1(1, IS) DRM3(1, IS)=1. /DR(1, IS)
CDRM2(1, IS)=DRM3(1, IS) **2
CDRM3(1, IS)=CDRM2(1, IS) * DRM3(1, IS)
CDTM2(1, IS)=CDTM2(1, IS) * DRM3(1, IS)
C DETERMINE RETARDED INTERPOLATED FIELDS
IF (INTER. EQ. 0) THEN
CALL INTRPO (IND, FT, CJTH, CJTHD, DJTHD, AO, A1, A2,
1 YM2, YM1, YO, Y1, Y2)
CALL INTRPO (IND, FT, CJPH, CJPHD, DJPHD, AO, A1, A2,
1 YM2, YM1, YO, Y1, Y2)
ELSE
CALL INTRP1 (IND, FT, CJTH, CJTHD, DJTHD, AO, A1, A2, A3, A4,
1 YM2, YM1, YO, Y1, Y2)
CALL INTRP1 (IND, FT, CJPH, CJPHD, DJPHD, AO, A1, A2, A3, A4,
1 YM2, YM1, YO, Y1, Y2)
END IF
C SET FIELDS TO ZERO IF PULSE HAS NOT REACHED PATCH
C (INTERPOLATION MAY MAKE FIELDS NONZERO BEFORE THEY ARE)
WHERE (BT2(1, IS))
CJTHD(1, IS)=0.
CJPHD(1, IS)=0.
DJTHD(1, IS)=0.
DJPHD(1, IS)=0.
END WHERE
C DETERMINE THE CARTESIAN COMPONENTS OF THE CONTRIBUTION OF THE
C PATCH TO THE INTEGRAL
UTH(1, IS) = DRM2(1, IS) * DJTHD(1, IS) + DRM3(1, IS) * CJTHD(1, IS)
UPH(1, IS) = DRM2(1, IS) * DJPHD(1, IS) + DRM3(1, IS) * CJPHD(1, IS)
SINT1(1, IS) = -SRF(1, IS) * (DR2(1, IS) * UTH(1, IS) * TH3(1, IS))
1 -DR3(1, IS) * (UTH(1, IS) * TH2(1, IS) + UPH(1, IS) * PH2(1, IS))
SINT2(1, IS) = -SRF(1, IS) * (DR3(1, IS) * (UTH(1, IS) * TH1(1, IS))
1 + UPH(1, IS) * PH1(1, IS) - DR1(1, IS) * UTH(1, IS) * TH3(1, IS))
SINT3(1, IS) = -SRF(1, IS) * (DR1(1, IS) * (UTH(1, IS) * TH2(1, IS))
2 + UPH(1, IS) * PH2(1, IS) - DR2(1, IS) * UTH(1, IS) * TH1(1, IS))
SINT1 = QBSSUM(SINT1(1, IS), BT1(1, IS)) + SINT10
SINT2 = QBSSUM(SINT2(1, IS), BT1(1, IS)) + SINT20
SINT3 = QBSSUM(SINT3(1, IS), BT1(1, IS)) + SINT30
BT1(IX) = 81'

FILL IN APPROXIMATE VALUES FOR CURRENTS AND DERIVATIVES

IF (IX, EQ. 1) THEN
 CJTHD(1) = SINT2
 CJPHD(1) = - SINT1
 CJTH(1, NU) = SINT2
 CJPH(1, NU) = - SINT1
ELSE
 CJTHD(IX) = - PH1(IX) * SINT1 - PH2(IX) * SINT2
 CJPHD(IX) = TH1(IX) * SNT1 + TH2(IX) * SNT2 + TH3(IX) * SNT3
 CJTH(IX, NU) = CJTHD(IX)
 CJPH(IX, NU) = CJPHD(IX)
END IF

IF (INTER. EQ. 0) THEN
 CALL INTRP2(2, CJTH, IX, NU-2, DJTHDX)
 CALL INTRP2(2, CJPH, IX, NU-2, DJPHDX)
ELSE
 CALL INTRP3(2, CJTH, IX, NU-2, DJTHDX)
 CALL INTRP3(2, CJPH, IX, NU-2, DJPHDX)
END IF

COMPUTE CORRECTIONS FOR NEIGHBORING PATCHES

IF ICORR = 0 OR 1, NEI(IX, 1) = 1 AND LOOP IS SKIPPED

DO 190 IXX=.2, NEI(IX, 1)
 IXP=NEI(IX, IXX)
 IF (T-CM1 * DR(IXP). LE. TF(IXP)) GO TO 190
 NPNT=NPNT(IXP(IX, IXX))
 COJ1=COJ(1, NPNT)
 COJ2=COJ(2, NPNT)
 COJ3=COJ(3, NPNT)
 COJ4=COJ(4, NPNT)
 COJ5=COJ(5, NPNT)
 COJ6=COJ(6, NPNT)
 COJT1=COJT(1, NPNT)
 COJT2=COJT(2, NPNT)
 COJT3=COJT(3, NPNT)
 COJT4=COJT(4, NPNT)
190
COJT5=COJT(5, NPNT)
COJT6=COJT(6, NPNT)
COJU1=COJU(1, NPNT)
COJU2=COJU(2, NPNT)
COJTU1=COJTU(1, NPNT)
COJTU2=COJTU(2, NPNT)
COJV1=COJV(1, NPNT)
COJV2=COJV(2, NPNT)
COJTV1=COJTV(1, NPNT)
COJTV2=COJTV(2, NPNT)

IF (IXP. EQ. 1. OR. IXP. EQ. IS) THEN
 COMPUTE NEIGHBORING-PATCH CORRECTIONS FROM CAPS, IF NECESSARY
 IF (IXP. EQ. 1) THEN
 ISP=2
 ELSE
 ISP=IS1
 END IF
DETERMINE THE INCREMENTS WITH RESPECT TO X
CJ1D2=TH1(ISP) * CJTHD(ISP) + PH1(ISP) * CJPHD(ISP)
CJ2D2=TH2(ISP) * CJTHD(ISP) + PH2(ISP) * CJPHD(ISP)
CJ3D2=TH3(ISP) * CJTHD(ISP)
N1=NL(IXP)
N2=NR(IXP)
CJ1DL=TH1(N1) * CJTHD(N1) + PH1(N1) * CJPHD(N1)
CJ2DL=TH2(N1) * CJTHD(N1) + PH2(N1) * CJPHD(N1)
CJ3DL=TH3(N1) * CJTHD(N1)
CJ1DR=TH1(N2) * CJTHD(N2) + PH1(N2) * CJPHD(N2)
CJ2DR=TH2(N2) * CJTHD(N2) + PH2(N2) * CJPHD(N2)
CJ3DR=TH3(N2) * CJTHD(N2)

IF (IXP. EQ. 1) THEN
 DXCJ1=CJ1D2-(CJ1DL*FC1(1)+CJ1DR*FC2(1))
 DXCJ2=CJ2D2-(CJ2DL*FC1(1)+CJ2DR*FC2(1))
 DXCJ3=CJ3D2-(CJ3DL*FC1(1)+CJ3DR*FC2(1))
ELSE
 DXCJ1=CJ1D2-(CJ1DL*FC1(2)+CJ1DR*FC2(2))
 DXCJ2=CJ2D2-(CJ2DL*FC1(2)+CJ2DR*FC2(2))
 DXCJ3=CJ3D2-(CJ3DL*FC1(2)+CJ3DR*FC2(2))
END IF

DETERMINE THE INCREMENTS WITH RESPECT TO X
N1=NU1(ISP)
N2=NU2(ISP)
CJ1PU=(TH1(N1) * CJTHD(N1) + PH1(N1) * CJPHD(N1)) * FU1(ISP)
 + (TH1(N2) * CJTHD(N2) + PH1(N2) * CJPHD(N2)) * FU1(ISP)
CJ2PU=(TH2(N1) * CJTHD(N1) + PH2(N1) * CJPHD(N1)) * FU1(ISP)
 + (TH2(N2) * CJTHD(N2) + PH2(N2) * CJPHD(N2)) * FU2(ISP)
CJ3PU=TH3(N1) * CJTHD(N1) * FU1(ISP)
 + TH3(N2) * CJTHD(N2) * FU2(ISP)
N1=ND1(ISP)
N2=ND2(ISP)
CJ1PD=(TH1(N1) * CJTHD(N1) + PH1(N1) * CJPHD(N1)) * FD1(ISP)
 + (TH1(N2) * CJTHD(N2) + PH1(N2) * CJPHD(N2)) * FD1(ISP)
CJ2PD=(TH2(N1) * CJTHD(N1) + PH2(N1) * CJPHD(N1)) * FD1(ISP)
 + (TH2(N2) * CJTHD(N2) + PH2(N2) * CJPHD(N2)) * FD2(ISP)
CJ3PD=TH3(N1) * CJTHD(N1) * FD1(ISP)
 + TH3(N2) * CJTHD(N2) * FD2(ISP)
+TH3(N2)*CJTHD(N2)*FD2(ISP)
DYCJ1=CJ1PU-CJ1PD
DYCJ2=CJ2PU-CJ2PD
DYCJ3=CJ3PU-CJ3PD

\[\text{Determine increments of time derivatives with respect to } x \]
\[\text{DJD1D2=TH1(ISP)*DJTHD(ISP)+PH1(ISP)*DJPHD(ISP)} \]
\[\text{DJD2D2=TH2(ISP)*DJTHD(ISP)+PH2(ISP)*DJPHD(ISP)} \]
\[\text{DJD3D2=TH3(ISP)*DJTHD(ISP)} \]
N1=NL(IPX)
N2=NR(IPX)

\[\text{IF } \text{XP. EQ. 1) THEN} \]
\[\text{DJDJ1=DJD1D2-(DJD1L*FC1(1)+DJD1DR*FC2(1))} \]
\[\text{DJDJ2=DJD2D2-(DJD2L*FC1(1)+DJD2DR*FC2(1))} \]
\[\text{DJDJ3=DJD3D2-(DJD3L*FC1(1)+DJD3DR*FC2(1))} \]
\[\text{ELSE} \]
\[\text{DJDJ1=DJD1D2-(DJD1L*FC1(2)+DJD1DR*FC2(2))} \]
\[\text{DJDJ2=DJD2D2-(DJD2L*FC1(2)+DJD2DR*FC2(2))} \]
\[\text{DJDJ3=DJD3D2-(DJD3L*FC1(2)+DJD3DR*FC2(2))} \]
\[\text{ENDIF} \]

\[\text{Determine increments of time derivatives with respect to } y \]
N1=NU1(IPX)
N2=NU2(IPX)

\[\text{DJ1PU=(TH1(N1)*DJTHD(N1)+PH1(N1)*DJPHD(N1))*FU1(ISP)} \]
\[\text{+((TH1(N2)*DJTHD(N2)+PH1(N2)*DJPHD(N2))*FU2(ISP)} \]
\[\text{DJ2PU=(TH2(N1)*DJTHD(N1)+PH2(N1)*DJPHD(N1))*FU1(ISP)} \]
\[\text{+((TH2(N2)*DJTHD(N2)+PH2(N2)*DJPHD(N2))*FU2(ISP)} \]
\[\text{DJ3PU=TH3(N1)*DJTHD(N1)*FU1(ISP)} \]
\[\text{+TH3(N2)*DJTHD(N2)*FU2(ISP)} \]
N1=NU1(IPX)
N2=NU2(IPX)

\[\text{DJ1PD=(TH1(N1)*DJTHD(N1)+PH1(N1)*DJPHD(N1))*FD1(ISP)} \]
\[\text{+((TH1(N2)*DJTHD(N2)+PH1(N2)*DJPHD(N2))*FD2(ISP)} \]
\[\text{DJ2PD=(TH2(N1)*DJTHD(N1)+PH2(N1)*DJPHD(N1))*FD1(ISP)} \]
\[\text{+((TH2(N2)*DJTHD(N2)+PH2(N2)*DJPHD(N2))*FD2(ISP)} \]
\[\text{DJ3PD=TH3(N1)*DJTHD(N1)*FD1(ISP)} \]
\[\text{+TH3(N2)*DJTHD(N2)*FD2(ISP)} \]
DYDJ1=DJ1PU-DJ1PD
DYDJ2=DJ2PU-DJ2PD

\[\text{Determine correction to integral from caps} \]
DYDJD3=DJ3PU-DJ3PD
SNT1P=CJ1J*CJPHD(IPX)-CJ1U2*DXCJ3-COJV2*DYCJ3
1 +CJ1T3*DJDPHD(IPX)-CJ1TU2*DJD3-CJ1TV2*DYDJ3
SNT2P=-CJ1J*CJTHD(IPX)+CJ1U1*DXCJ3+CJ1V1*DYCJ3
1 -CJ1T3*DJDTHD(IPX)+CJ1TU1*DJD3+CJ1TV1*DYDJ3
SNT3P=-CJ1J*CJPHD(IPX)+CJ1U2*DXCJ3+CJ1V2*DYCJ3
1 +CJ1U2*DXCJ1-COJV1*DYCJ1+CJ1V2*DYCJ1
2 -CJ1T1*DJDPHD(IPX)+CJ1T2*DJDTHD(IPX)-CJ1TU1*DJD3
3 +CJ1TU2*DJDTH-CJ1TV1*DYDJ3+CJ1TV2*DYDJ3

49
SNT1=SINT1-SINT1(IP)+SNT1P
SNT2=SINT2-SINT2(IP)+SNT2P
SNT3=SINT3-SINT3(IP)+SNT3P

ELSE
C
COMPUTE NEIGHBORING-PATCH CORRECTIONS FROM REGULAR PATCHES
C
DETERMINE INCREMENT OF FIELDS AND TIME DERIVATIVES WITH RESPECT TO THETA
CALL AVCUR(IP, NU1, NU2, FU1, FU2, CJTHUO, CJPHUO,
1 CJTHD, CJPHD)
CALL AVCUR(IP, ND1, ND2, FD1, FD2, CJTHDO, CJPHDO,
1 CJTHD, CJPHD)
CALL AVCUR(IP, NU1, NU2, FU1, FU2, DJTHUO, DJPHUO,
1 DJTHD, DJPHD)
CALL AVCUR(IP, ND1, ND2, FD1, FD2, DJTHDO, DJPHDO,
1 DJTHD, DJPHD)
DTHCJTH=CJTHDO-CJTHUO
DTHCJPH=CJPHDO-CJPHUO
DTHDJTH=DJTHDO-DJTHUO
DTHDJPH=DJPHDO-DJPHUO

C
DETERMINE INCREMENT OF FIELDS AND TIME DERIVATIVES WITH RESPECT TO PHI
IPX1=NR(IPX)
IX2=NL(IPX)
CJTX1=CJTHD(IPX1)
CJPHX1=CJPHD(IPX1)
CJTX2=CJTHD(IPX2)
CJPHX2=CJPHD(IPX2)
DPHCJTH=CJTHX1-CJTHX2
DPHCJPH=CJPHX1-CJPHX2
DTHX1=DTHD(IPX1)
DTHX1=DTHD(IPX1)
DTHX2=DTHD(IPX2)
DTHX2=DTHD(IPX2)
DPHDJTH=DJTHX1-DJTHX2
DPHDJPH=DJPHX1-DJPHX2
CJTHDP=CJTHD(IPX)
CJPHDP=CJPHD(IPX)
DJTHDP=DJTHD(IPX)
DJPHDP=DJPHD(IPX)

C
DETERMINE CONTRIBUTION TO INTEGRAL FROM NEIGHBORING PATCH
CJITH=C0J1*CJTHDP+C0J4*CJPHDP
DJITH=C0J1*DTHDP+C0J4*DJPDP
CJIPH=C0J2*CJTHDP+C0J5*CJPHDP
DJIPH=C0J2*DTHDP+C0J5*DJPDP
CJINO=C0J3*CJTHDP+C0J6*CJPHDP+C0JU1*DTHCJTH
1 +C0JU2*DTHCJPH+C0JU3*DTHCJTH+C0JU4*DTHCJPH
1 DJINO=C0J3*DTHDP+C0JU3*DJPDP+C0JU1*DTHDJP
1 +C0JU2*DTHDP+C0JU3*DTHDP+C0JU4*DTHDP
CITH=CJITH+DJITH
CIPH=CJIPH+DJIPH
CINO=CJINO+DJINO
TH1P=TH1(IPX)
TH2P=TH2(IPX)
TH3P=TH3(IPX)
PH1P=PH1(IPX)
PH2P=PH2(IPX)
\[X_P = R \alpha M_1 \times R(1) \times P \]
\[Y_P = R \alpha M_1 \times R(2) \times P \]
\[Z_P = R \alpha M_1 \times R(3) \times P \]
\[S_{NT1P} = -T(1)P \times C \times I \times P \times H \times X_P \times C \times I \]
\[S_{NT2P} = -T(2)P \times C \times I \times P \times H \times Y_P \times C \times I \]
\[S_{NT3P} = -T(3)P \times C \times I \times P \times H \times Z_P \times C \times I \]
\[S_{NT1} = S_{NT1} - S_{NT1} \times P \]
\[S_{NT2} = S_{NT2} - S_{NT2} \times P \]
\[S_{NT3} = S_{NT3} - S_{NT3} \times P \]

END IF

STORE CORRECTED VALUES OF INTEGRAL

IF(IF.EQ.1) THEN
\[C_{JTHA}(1) = S_{NT2} \]
\[C_{JPHA}(1) = -S_{NT1} \]
ELSE
\[C_{JTHA}(I) = -TH(1)P \times S_{NT1} - TH(2)P \times S_{NT2} \]
\[C_{JPHA}(I) = TH(1)P \times S_{NT1} + TH(2)P \times S_{NT2} + TH(3)P \times S_{NT3} \]
END IF

CORRECT FOR SELF-PATCH CONTRIBUTIONS IF REQUIRED

IF(IFCORR.EQ.1 OR IFCORR.EQ.3) THEN

DO BOTTOM CAP (THETA = PI)

IF(IF.EQ.1) THEN
\[C_{J3D2} = TH(3)(2) \times C_{J3HD}(2) \]
\[N1 = N(L)(1) \]
\[N2 = N(R)(1) \]
\[C_{J3DL} = TH(3)(N1) \times C_{J3HD}(N1) \]
\[C_{J3DR} = TH(3)(N2) \times C_{J3HD}(N2) \]
\[D_XCJ3 = C_{J3D2} - (C_{J3DL} \times FC1(1) + C_{J3DR} \times FC2(1)) \]
\[N1 = N(U1)(1) \]
\[N2 = N(U2)(1) \]
\[C_{J3PU} = TH(3)(N1) \times C_{J3HD}(N1) \times FU1(1) + TH(3)(N2) \times C_{J3HD}(N2) \times FU2(1) \]
\[N1 = N(D1)(1) \]
\[N2 = N(D2)(1) \]
\[C_{J3PD} = TH(3)(N1) \times C_{J3HD}(N1) \times FD1(1) + TH(3)(N2) \times C_{J3HD}(N2) \times FD2(1) \]
\[D_YCJ3 = C_{J3PU} - C_{J3PD} \]
\[D_J3D2 = TH(3)(2) \times D_J3HD(2) \]
\[N1 = N(L)(1) \]
\[N2 = N(R)(1) \]
\[D_J3DL = TH(3)(N1) \times D_J3HD(N1) \]
\[D_J3DR = TH(3)(N2) \times D_J3HD(N2) \]
\[D_XD_J3 = D_J3D2 - (D_J3DL \times FC1(1) + D_J3DR \times FC2(1)) \]
\[N1 = N(U1)(1) \]
\[N2 = N(U2)(1) \]
\[D_J3PU = TH(3)(N1) \times D_J3HD(N1) \times FU1(1) + TH(3)(N2) \times D_J3HD(N2) \times FU2(1) \]
\[N1 = N(D1)(1) \]
\[N2 = N(D2)(1) \]
\[D_J3PD = TH(3)(N1) \times D_J3HD(N1) \times FD1(1) + TH(3)(N2) \times D_J3HD(N2) \times FD2(1) \]
\[D_YD_J3 = D_J3PU - D_J3PD \]
\[PC = CO(1) \]
PD = DO(1)
PD = DO(IS)
CJTHA(1) = CJTHA(1) * PC + DJTHD(1) * PD - 125 * DXCJ3 - PDD * DXDJ3
CJPHA(1) = CJPHA(1) * PC + DJPHD(1) * PD - 125 * DYCJ3 - PDD * DYDJ3
ELSE IF (IX. NE. IS) THEN
 DO REGULAR PATCHES
 CJTHA(IX) = CJTHA(IX) * (1. - CO(IX)) - DJTHD(IX) * DO(IX)
 CJPHA(IX) = CJPHA(IX) * (1. + CO(IX)) + DJPHD(IX) * DO(IX)
 ELSE
 DO TOP CAP IF REQUIRED
 CJ3D2 = TH3(IS1) * CJTHD(IS1)
 N1 = NL(IS)
 N2 = NR(IS)
 CJ3DL = TH3(N1) * CJTHD(N1)
 CJ3DR = TH3(N2) * CJTHD(N2)
 DXCJ3 = CJ3D2 - (CJ3DL * FC1(2) + CJ3DR * FC2(2))
 N1 = NU1(IS)
 N2 = NU2(IS)
 CJ3PU = TH3(N1) * CJTHD(N1) * FU1(IS) + TH3(N2) * CJTHD(N2) * FU2(IS)
 N1 = ND1(IS)
 N2 = ND2(IS)
 CJ3PD = TH3(N1) * CJTHD(N1) * FD1(IS) + TH3(N2) * CJTHD(N2) * FD2(IS)
 DYCJ3 = CJ3PU - CJ3PD
 DJ3D2 = TH3(IS1) * DJTHD(IS1)
 N1 = NL(IS)
 N2 = NR(IS)
 DJ3DL = TH3(N1) * DJTHD(N1)
 DJ3DR = TH3(N2) * DJTHD(N2)
 DXDJ3 = DJ3D2 - (DJ3DL * FC1(2) + DJ3DR * FC2(2))
 N1 = NU1(IS)
 N2 = NU2(IS)
 DJ3PU = TH3(N1) * DJTHD(N1) * FU1(IS) + TH3(N2) * DJTHD(N2) * FU2(IS)
 N1 = ND1(IS)
 N2 = ND2(IS)
 DJ3PD = TH3(N1) * DJTHD(N1) * FD1(IS) + TH3(N2) * DJTHD(N2) * FD2(IS)
 DYDJ3 = DJ3PU - DJ3PD
 CJTHA(IS) = CJTHA(IS) * PC + DJTHD(IS) * PD - 125 * DXCJ3 + PDD * DXDJ3
 CJPHA(IS) = CJPHA(IS) * PC + DJPHD(IS) * PD - 125 * DYCJ3 + PDD * DYDJ3
END IF
END IF
200 CONTINUE
210 IXH = IX - 1
C STORE NEW VALUES OF FIELDS
CJTH(1, NU, IS) = CJTHA(1, IS)
CJPH(1, NU, IS) = CJPHA(1, IS)
IF (NUM. EQ. NU) THEN
C WRITE RESULTS OUT TO DISK IF ARRAY IS ALL NEW
DO 280 I = 1, NU
 WRITE(2, REC = NREC) CJTH(1, I, IS)
 WRITE(2, REC = NREC + 1) CJPH(1, I, IS)
280 CONTINUE
NREC=NREC+2

CONTINUE
NUM=0
END IF
C INCREMENT TIME
T=T+DT
300 CONTINUE
TL=SECOND()-TL
MAIN
PRINT *,'EXECUTION TIME FOR THE LOOP IS ',TL,' SECONDS'
C WRITE REMAINING RESULTS OUT TO DISK
DO 310 I=NU-NUM+1,NU
 WRITE(2,REC=NREC) CJTH(1,I;IS)
 WRITE(2,REC=NREC+1) CJPH(1,I;IS)
 NREC=NREC+2
310 CONTINUE
C MAKE DISK FILE PERMANENT
CLOSE(2)
CALL Q5PURGE('LFN=','SCSV'//QAL,'STATUS=',ISTAT)
IF(ISTAT.GT.0. AND. ISTAT.NE.1402) STOP 4
CALL Q5DEFINE('LFN=','SCSV'//QAL)
OPEN(2,FILE='SCSV'//QAL,STATUS='OLD',ACCESS='DIRECT',
1 FORM=,'UNFORMATTED',RECL=NF2)
400 READ(*,4,END=500) THSC,PHSC
ITH=THSC
IPHI=PHSC
WRITE(TITLE,6) ITH,IPHI
THSC=THSC*CONV
PHSC=PHSC*CONV
C COMPUTE COMPONENTS OF SCALED VECTOR TO FIELD POINT
SR1=SIN(THSC)*COS(PHSC)*CDTM1
SR2=SIN(THSC)*SIN(PHSC)*CDTM1
SR3=COS(THSC)*CDTM1
C COMPUTE FAR FIELDS
CALL FARFL
GO TO 400
500 CLOSE(9)
C SAVE FILE WITH COMPUTED FIELD INTENSITIES
CALL Q5PURGE('LFN=','SCFL'//QAL,'STATUS=',ISTAT)
IF(ISTAT.GT.0. AND. ISTAT.NE.1402) STOP 5
CALL Q5DEFINE('LFN=','SCFL'//QAL)
STOP
1 FORMAT(20(1X,I5))
2 FORMAT(1X,I4,3X,10(2X,1PE10.3))
4 FORMAT(E12.5)
5 FORMAT(314)
6 FORMAT('PULSE SCATTERED IN THE DIRECTION THETA=',I4,
1 ' , PHI=',I5)
7 FORMAT('TIME IN METERS')
9 FORMAT('INTENSITY')
? FORMAT('LST. SQ, ALPHA=',F4.1,',' , BETA=',F4.1,',' , DT=',1PE7.1,
1 ' , NT=',I3,',' , N1=',I2,',' , N2=',I2,',' , N3=',I2,',' , NO CORR')
10 FORMAT('INTERP. ALPHA=',F4.1,',' , BETA=',F4.1,',' , DT=',1PE7.1,
1 ' , NT=',I3,',' , N1=',I2,',' , N2=',I2,',' , N3=',I2,',' , NO CORR')
11 FORMAT('LST. SQ, ALPHA=',F4.1,',' , BETA=',F4.1,',' , DT=',1PE7.1,
SUBROUTINE AVCUR (IN, NX1, NX2, FX1, FX2, CJTHP, CJPHP, CJTHX, CJPHX)

TO COMPUTE CURRENTS AT DESIRED PHI BY AVERAGING
PARAMETER (LL=LLG, LC=LCG)
DIMENSION NX1(LL), NX2(LL), FX1(LL), FX2(LL),
1 CJTHX(LL), CJPHX(LL)
N1=NX1(IN)
N2=NX2(IN)
F1=FX1(IN)
F2=FX2(IN)
IF(N1.EQ.N2) THEN
 IF(N1.EQ.1) THEN
 FOR BOTTOM CAP
 CJTHP=-F1*CJTHX(N1)-F2*CJPHX(N1)
 ELSE
 FOR TOP CAP
 CJTHP=F1*CJTHX(N1)+F2*CJPHX(N1)
 END IF
 CJPHP=-F2*CJTHX(N1)+F1*CJPHX(N1)
ELSE
FOR OTHER PATCHES
 CJTHP=F1*CJTHX(N1)+F2*CJTHX(N2)
 CJPHP=F1*CJPHX(N1)+F2*CJPHX(N2)
END IF
RETURN
END

SUBROUTINE FARFL

THIS SUBROUTINE COMPUTES THE RADIATION FIELDS AT TIMES IN T1
IN THE DIRECTION GIVEN BY SR1, SR2, SR3.
TMP: TIME ARRAY
AMP: AMPLITUDE ARRAY

PARAMETER (LL=LLG, LC=LCG, LL12=LL12G, LL20=LL20G,
1 LB=LL*#2/64+1, LB1=LL/64+1)
DIMENSION TMP(300), AMP(300)
COMMON /RCOM/ XR1(LL), XR2(LL), XR3(LL), SRF(LL), TF(LL),
1 CO(LL), DO(LL), TH1(LL), TH2(LL), TH3(LL),
2 PH1(LL), PH2(LL), FU1(LL), FU2(LL), FD1(LL), FD2(LL), FC1(2), FC2(2),
Common /ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLOT, INTER, IDEB.
1 IPATCH, N3, NU
 Character TITLE*80, SUBT*80, XLAB*30, YLAB*30
 Common /LABEL/ TITLE, SUBT, XLAB, YLAB
 Common /PARAM/ ALPHA, BETA, DT, RAD, RADM1, CDM1, THSC, SR1, SR2, SR3
 Common /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOP1, PITO, OS, OTW, OTF
 PRINT *, 'START FAR-FIELD COMPUTATION'
 CDTM2=CDTM1**2
 RCDTM1=RAD*CM1
 FAC=(1. E-7*TOP1*RADM1)**2
 NU=1
 NI2=NI*2
 READ(*, 1) T1, T2
 COMPUITE FIRST TIME OF ARRIVAL IF T1 = 0
 IF(T1.EQ.0.) T1=RAD*CM1*(1. - 2. *SIN(5. *THSC)) - DT
 COMPUTE LAST TIME IF T2 = 0
 IF(T2.EQ.0.) T2=(NI - 5)*DT-RAD*CM1
 TIDT=T1/DT
 READ(*, 2) N
 IF(N.GT.300) STOP 6
 AMP(1, 300)=-1.
 DT1=(T2-T1)/((N-1)*DT)
 NMAX=TIDT+RCDTM1+.4.
 NM1N=TIDT-RCDTM1-.3.
 NTOT=NMAX-NMIN+1
 IF(NTOT.GT.LC) THEN
 PRINT *, 'NTOT=', NTOT, 'GREATER THAN LC=', LC
 STOP 7
 END IF
 IF(NMIN.LE.0) THEN
 DO 130 J1=1, -NMIN+1
 CJTH(1, J1; IS)=0.
 CJPH(1, J1; IS)=0.
 CONTINUE
 NREC=0
 ELSE
 NREC=(NMIN-1)*2
 J1=1
 END IF
 DO 150 J=J1, NTOT
 NREC=NREC+2
 IF(NREC.GT.NI2) THEN
 PRINT *, 'TIME LIMIT ON SPHERE EXCEEDED DURING INTEGRATION'
 PRINT *, 'T2= ', T2, ' ', T= ' ', TIDT*DT, ' K= ', K, ' OUT OF ', N
 END IF
 130
 150
STOP 8
END IF
READ(2, REC=NREC-1) CJTH(1, J; IS)
READ(2, REC=NREC) CJPH(1, J; IS)

CONTINUE

DO 200 K=1, N
NX=T1DT+RCDTM1+4.
NN=T1DT-RCDTM1-3.
IF(NX-NN+1. GT. LC) THEN
 PRINT *, 'NEW RANGE ', NX-NN+1, ' GREATER THAN LC=', LC
 PRINT *, 'NX=', NX, ', NN=', NN, ', K=', K
 STOP 9
END IF

IF(NX-NMIN+1. GT. LC) THEN
NA=NN-NMIN
DO 160 L=1, NMAX-NN+1
 NA=NA+1
 CJTH(1, L; IS)=CJTH(1, NA; IS)
 CJPH(1, L; IS)=CJPH(1, NA; IS)
160 CONTINUE
NMIN=NN
ELSE
 L=NMAX-NMIN+2
END IF

IF(NX GT. NMAX) THEN
DO 170 J=L, LC
 NREC=NREC+2
 IF(NREC GT. NI2) THEN
 PRINT *, 'TIME LIMIT ON SPHERE EXCEEDED DURING INTEGRATION'
 PRINT *, 'T2=', T2, 'T=', T1DT*DT, ' K=', K, ' OUT OF ', N
 STOP 10
 END IF
 READ(2, REC=NREC-1) CJTH(1, J; IS)
 READ(2, REC=NREC) CJPH(1, J; IS)
170 CONTINUE
NMAX=NMIN+LC-1
END IF

NMIN1=NMIN-1
TMP(K)=T1DT*DT*C
DR(1; IS)=T1DT+XR1(1; IS)*SR1+XR2(1; IS)*SR2+XR3(1; IS)*SR3
IND(1; IS)=VINT(DR(1; IS); IND(1; IS))
FT(1; IS)=DR(1; IS)-VAINT(DR(1; IS); IS)
IND(1; IS)=IJ(1; IS)+(IND(1; IS)-NMIN1)*L0
IF(INTER.EQ.0) THEN
 CALL INTRP0(IND, FT, CJTH, CJTHD, DJTHD, AO, A1, A2,
1 YM2, YM1, Y0, Y1, Y2)
 CALL INTRP0(IND, FT, CJPH, CJPHD, DJPHD, AO, A1, A2,
1 YM2, YM1, Y0, Y1, Y2)
ELSE
 CALL INTRP1(IND, FT, CJTH, CJTHD, DJTHD, AO, A1, A2, A3, A4,
1 YM2, YM1, Y0, Y1, Y2)
 CALL INTRP1(IND, FT, CJPH, CJPHD, DJPHD, AO, A1, A2, A3, A4,
1 YM2, YM1, Y0, Y1, Y2)
END IF
C1 = QBSSUM((DJTHD(1; IS)*TH1(1; IS)+DJPHD(1; IS)*PH1(1; IS)))
 *SRF(1; IS))
C2 = QBSSUM((DJTHD(1; IS)*TH2(1; IS)+DJPHD(1; IS)*PH2(1; IS)))
 *SRF(1; IS))
C3 = QBSSUM(DJTHD(1; IS)*TH3(1; IS)*SRF(1; IS))
AMP(K) = ((C1**2 + C2**2 + C3**2) * CDTM2 - (C1*SR1 + C2*SR2 + C3*SR3)**2) * FAC
T1DT = T1DT + DT1

200 CONTINUE
WRITE(9) TMP
WRITE(9) AMP
IF (IPLOT.EQ.1 .OR. IPLOT.EQ.2)
 CALL DRAW1(1, 16, 12, 56, 80, N, 0., 0., XLAB, YLAB, TITLE, SUBT, TMP, AMP)
IF (IPLOT.EQ.0 .OR. IPLOT.EQ.2)
 CALL DRAW2(1, 16, 12, 56, 80, N, 0., 0., XLAB, YLAB, TITLE, SUBT, TMP, AMP)
RETURN
1 FORMAT(E12.5)
2 FORMAT(2I4)
END

SUBROUTINE INFL(SINT1, SINT2, SINT3, X, Y, Z, T, *)
C
C THIS SUBROUTINE PROVIDES THE INCIDENT FIELDS
C
COMMON /PARAM/ ALPHA, BETA, DT, RAD, RADM1, CDTM1, THSC, SR1, SR2, SR3
COMMON /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOPI, PITO, OS, OTW, OTF
ZCT = Z - C*T + RAD
IF (ZCT .GE. 0.) RETURN 1
AZ = ALPHA*ZCT
BZ = BETA*ZCT
IF (BZ .GE. -25.) THEN
 B1 = BZ*(EXP(AZ) - EXP(BZ))
 E2 = -B1*C
ELSE
 B1 = 0.
 E2 = 0.
END IF
SINT1 = TWOMUO*B1
SINT2 = 0.
SINT3 = 0.
RETURN
END

SUBROUTINE INTRPO(IND, FT, ARR, CA, DA, AO, A1, A2, YM2, YM1, Y0, Y1, Y2)
C
C LEAST SQUARES INTERPOLATION
C
PARAMETER(LL=LLG, LC=LCG)
COMMON /ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLOT, INTER, IDEB,
 IPATCH, N3, NU
COMMON /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOPI, PITO, OS, OTW, OTF
DIMENSION ARR(LL, LC), CA(LL), DA(LL), AO(LL), A1(LL), A2(LL), YM2(LL), YM1(LL), Y0(LL),
 Y1(LL), Y2(LL), YM2(LL), YM1(LL), Y0(LL), Y1(LL), Y2(LL), IND(LL), FT(LL)
PARAMETER(LL=LLG, LC=LCG)
COMMON /ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLNT, INTER, IDEB,
1 IPATCH, N3, NU
COMMON /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOP1, PITO, OS, OTW, OTF
DIMENSION ARR(LL, LC), CA(LL), DA(LL), YM2(LL), YM1(LL), Y0(LL),
1 Y1(LL), Y2(LL), A0(LL), A1(LL), A2(LL), A3(LL), A4(LL),
2 IND(LL), FT(LL)
Y2(1; IS)=GVGATHR(ARR(1, NU+2; 1), IND(1; IS); Y2(1; IS))
Y1(1; IS)=GVGATHR(ARR(1, NU+1; 1), IND(1; IS); Y1(1; IS))
Y0(1; IS)=GVGATHR(ARR(1, NU+1; 1), IND(1; IS); Y1(1; IS))
YM1(1; IS)=GVGATHR(ARR(1, NU-1; 1), IND(1; IS); YM1(1; IS))
YM2(1; IS)=GVGATHR(ARR(1, NU-2; 1), IND(1; IS); YM2(1; IS))
A0(1; IS)=(YM2(1; IS)+YM1(1; IS)+Y0(1; IS)+Y1(1; IS)+Y2(1; IS))*2
A1(1; IS)=(Y2(1; IS)+.5*(Y1(1; IS)-YM1(1; IS))-YM2(1; IS))*2
A2(1; IS)=(Y2(1; IS)-.5*(Y1(1; IS)+YM1(1; IS))-Y0(1; IS)+YM2(1; IS))*OS
CA(1; IS)=A0(1; IS)+FT(1; IS)*A1(1; IS)
1+(FT(1; IS)**2-2.)*A2(1; IS)
DA(1; IS)=A1(1; IS)+FT(1; IS)*2.*A2(1; IS)
RETURN
END

SUBROUTINE INTRP1(IND, FT, ARR, CA, DA, A0, A1, A2, A3, A4,
1 YM2, YM1, Y0, Y1, Y2)

POLYNOMIAL INTERPOLATION

PARAMETER(LL=LLG, LC=LCG)
COMMON /ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLNT, INTER, IDEB,
1 IPATCH, N3, NU
COMMON /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOP1, PITO, OS, OTW, OTF
DIMENSION ARR(LL, LC), CA(LL), DA(LL), YM2(LL), YM1(LL), Y0(LL),
1 Y1(LL), Y2(LL), A0(LL), A1(LL), A2(LL), A3(LL), A4(LL),
2 IND(LL), FT(LL)
Y2(1; IS)=GVGATHR(ARR(1, NU+2; 1), IND(1; IS); Y2(1; IS))
Y1(1; IS)=GVGATHR(ARR(1, NU+1; 1), IND(1; IS); Y1(1; IS))
Y0(1; IS)=GVGATHR(ARR(1, NU+1; 1), IND(1; IS); Y1(1; IS))
YM1(1; IS)=GVGATHR(ARR(1, NU-1; 1), IND(1; IS); YM1(1; IS))
YM2(1; IS)=GVGATHR(ARR(1, NU-2; 1), IND(1; IS); YM2(1; IS))
A0(1; IS)=OTW*(YM2(1; IS)-Y2(1; IS)-8*(YM1(1; IS)-Y1(1; IS)))/15
A2(1; IS)=OTF*(-YM2(1; IS)-Y2(1; IS)+16.*(YM1(1; IS)+Y1(1; IS))
1-30.*Y0(1; IS))
A3(1; IS)=OTF*(-YM2(1; IS)+Y2(1; IS)+2.*(YM1(1; IS)-Y1(1; IS))
1+6.*Y0(1; IS))
CA(1; IS)=Y0(1; IS)+FT(1; IS)*(A1(1; IS)+FT(1; IS)
1*(A2(1; IS)+FT(1; IS)*A3(1; IS)+FT(1; IS)*A4(1; IS)))/15
DA(1; IS)=A1(1; IS)+FT(1; IS)*2.*A2(1; IS)+FT(1; IS)
1*(3.*A3(1; IS)+FT(1; IS)+4.*A4(1; IS))
RETURN
END

SUBROUTINE INTRP2(TT, ARR, I, NTP, DA)

LEAST-SQUARES INTERPOLATION, SCALAR VERSION, DERIVATIVE ONLY

PARAMETER(LL=LLG, LC=LCG)
DIMENSION ARR(LL, LC)
COMMON /ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLNT, INTER, IDEB,
1 IPATCH, N3, NU
COMMON /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOP1, PITO, OS, OTW, OTF
YM2=ARR(I, NTP-2)
YM1=ARR(I, NTP-1)
Y0=ARR(I, NTP)
Y1 = ARR(I, NTP + 1)
Y2 = ARR(I, NTP + 2)

t = (YM2 + YM1 + YO + Y1 + Y2) *. 2
A1 = (Y2 + .05 * (Y1 - YM1) - YM2) *. 2
A2 = (Y2 -. 5 *(Y1 + YM1) - YO + YM2) * D5
CA = A0 + TT * A1 + (TT ** 2 - 2.) * A2
DA = A1 + TT * 2. * A2
RETURN
END

SUBROUTINE INTRP3(TT, ARR, I, NTP, DA)
P = POLYNOMIAL INTERPOLATION, SCALAR VERSION, DERIVATIVE ONLY

PARAMETER(LL = LLG, LC = LCG)
DIMENSION ARR(LL, LC)
COMMON /CONST/ AMUO, TWOMUO, TWOEPO, C, CM1, PI, TOPI, PITO, D5, OTW, OTT
YM2 = ARR(I, NTP - 2)
YM1 = ARR(I, NTP - 1)
YO = ARR(I, NTP)
Y1 = ARR(I, NTP + 1)
Y2 = ARR(I, NTP + 2)
A1 = OTW * (YM2 - Y2 - 8. *(YM1 - Y1))
A3 = OTF * (YM2 + Y2 - 4. *(YM1 + Y1) + 6. *YO)
CA = Y0 + FTT * (A1 + TT * (A2 + TT * (A3 + TT * A4)))
RETURN
END

SUBROUTINE RUNT

THIS SUBROUTINE COMPUTES COMPONENTS OF THE RADIUS VECTOR AND FACTORS NEEDED FOR CORRECTIONS

N1 = NUMBER OF STRIPS ON THE SPHERE (VALUES OF THETA)
N2 = MAXIMUM NUMBER OF PATCHES IN A STRIP (VALUES OF PHI ON EQUATOR)
N3 = MINIMUM NUMBER OF PATCHES IN A STRIP (NEXT TO A POLAR CAP)
NPHI IS THE ARRAY WHERE THE NUMBER OF PATCHES IN A STRIP IS STORED
IS = TOTAL NUMBER OF ANGLE PAIRS

PARAMETER(LL = LLG, LC = LCG, LL12 = LL12G, LL20 = LL20G, 1 LB = LL ** 2/64 + 1, LB1 = LL/64 + 1)
DIMENSION NPHI(100)
BIT BT3(LL, LL), BT4(LL, LL)
EXTERNAL FOO3, F103, F013, F203, F113, F023
EXTERNAL F002, F102, F012, F202, F112, F022
COMMON /RCOM/ XR1(LL), XR2(LL), XR3(LL), SRF(LL), TF(LL), 1 CO(LL), D0(LL), TH1(LL), TH2(LL), TH3(LL), 2 PH1(LL), PH2(LL), FU1(LL), FU2(LL), FD1(LL), FD2(LL), FC1(2), FC2(2), 3 THETA(LL), PHI1(LL), DPHI1(LL), RB1(LB1), RB2(LB1), RB3(LB), RB4(LB), 4 COJ(6, LL12), COJT(6, LL12), COJU(2, LL12), COJTV(2, LL12), 5 COJV(2, LL12), COJTV(2, LL12), SINT1(LL), SINT2(LL), SINT3(LL), 6 DR1(LL), DR2(LL), DR3(LL), DR(LL), CDRM2(LL), DRM3(LL),
7 CJTHD(LL), CJPHD(LL), DJTHD(LL), DJPHD(LL),
8 UTH(LL), UPH(LL), A0(LL), A1(LL), A2(LL), A3(LL), A4(LL),
9 YM2(LL), YM1(LL), Y0(LL), Y1(LL), Y2(LL),
A CJTHA(LL), CJPHA(LL), CJTH(LL, LC), CJPH(LL, LC), FT(LL),
B NL(LL), NR(LL), NU1(LL), NU2(LL), ND1(LL), ND2(LL),
C NEI(LL, LL20), NPOINT(LL, LL20), IND(LL), IJ(LL)
C \ Common / ICOM/ IX, IS, IS1, N1, N2, NI, ICORR, IPLOT, INTER, IDEB,
1 IPATCH, N3, NU
C \ Common / Param/ ALPHA, BETA, DT, RAD, RADM1, CDTM1, THSC, SR1, SR2, SR3
C \ Common / Const/ AMUO, TWOMUO, TWDOP0, C, CM1, PI, TOPI, PITO, OS, OTW, OTF
C \ Common / Parfun/ PHI, RHQQ, RHQQI, TRHQQ, TRHQQI, RHOSQ, RHOSQI, OS
C \ Equivalence (RB3, BT3), (RB4, BT4)
C \ Data PC, PC2, PC3, ZRO/4*0, /, EPS/1. E-10/
C Compute DELTA-THETA
O3=1. /3.
PIM1=1. /PI
TOPIM1=1. /TOPI
FOPIM1=. 5*TOPIM1
RCDTM1=RAD*CDTM1
TPCTM1=RCDTM1*TOPIM1
FPCTM1=RCDTM1*FOPIM1
DTH=PI/(N1-1)
SDTHM1=1. /SIN(DTH)
DTH2=DTH*. 5
DTHM1=1. /DTH
DTHM1H=FOPIM1/DTH
DTHM1C=DTHM1H*RCDTM1
SDTH2=SIN(DTH2)
SDTHM1=1. /SDTH2
C Compute Number of Patches in Strip
TH=PI
IS=2
NPHI(I)=1
NPHI(N1)=1
NIH=(N1+1)/2
DPH=1.
IF(IPATCH.EQ.0) THEN
C Number of Patches in a Strip Has to be a Power of 2
NPHX=1
90 NPHX=NPHX*2
IF(NPHX.LT.N3) GO TO 90
DO 100 I=2, NIH
TH=TH-DTH
STH=SIN(TH)
NPH=(N2-N3)*STH+N3+. 5
IF(NPHG.T. NPHX) NPHX=NPHX*2
NPHI(I)=NPHX
IS=IS+NPHX
DPH=MIN1(DPH, STH*SIN(PI/NPHX))
100 CONTINUE
ELSE
DO 105 I=2, NIH
TH=TH-DTH
STH=SIN(TH)
NPH=(N2-N3)*STH+N3+.5
NPHI(I)=NPH
IS=IS+NPH
DPH=AMIN1(DPH,STH*SIN(PI/NPH))

105 CONTINUE
END IF
C TO ASSURE SYMMETRY
IF(MOD(N1,2).EQ.1) N1H=N1H-1
DO 110 J=I,N1-1
 NPH=NPHI(N1H)
 NPHI(J)=NPH
 IS=IS+NPH
 N1H=N1H-1
110 CONTINUE
C CHOOSE AN ADEQUATE (MINIMUM) TIME INTERVAL
DT1=1.6*RAD*CM1*AMIN1(SDTH2,DPH)
IF(DT.EQ.0.) THEN
C USE DT1 IF NO TIME INCREMENT IS GIVEN
 DT=DT1
ELSE
C USE DT1 IF GIVEN TIME INCREMENT IS TOO LARGE
 PRINT 3, DT,DT1
 NI=NI*DT/DT1
 DT=DT1
END IF
END IF
C PRINT THE COMPUTED VALUES
C FILE 'OUTPT' IS USED BECAUSE THE OUTPUT FILE TENDS TO FILL UP
IF(IDEB.EQ.1) THEN
 LENGTH=IS*133/1024+10
 CALL Q5REQUEST('LFN=','OUTPT','MXR=','133','LEN=','LENGTH)
 OPEN(7,FILE='OUTPT')
 WRITE(7,('1H1'))
 WRITE(7,*) 'NUMBER OF PATCHES IN STRIPS'
 DO 120 I=1,N1,10
 WRITE(7,1) NPHI(I),NPHI(I+1),NPHI(I+2),NPHI(I+3),NPHI(I+4),
 NPHI(I+5),NPHI(I+6),NPHI(I+7),NPHI(I+8),NPHI(I+9)
120 CONTINUE
 WRITE(7,('///'))
END IF
PRINT *, 'NUMBER OF PATCHES IS ',IS, ', NUMBER OF ROWS IS ',LL
IF(IS.GT.LL) STOP 11
IS1=IS-NPH
TH=PI
S1=2.*(RAD*SIN(DTH*.25))**2
IN=1
C COMPUTE COMPONENT OF RADIUS VECTOR, SURFACE ELEMENT, TANGENTIAL UNIT
C VECTORS, ETC.
C BOTTOM CAP, THETA = PI
XR1(1)=0.
XR2(1)=0.
XR3(1)=-RAD
SRF(1)=S1
TF(1) = 0.
THETA(1) = PI
PHII(1) = 0.
DPHII(1) = TOP1
TH1(1) = 1.
TH2(1) = 0.
TH3(1) = 0.
PHI1(1) = 0.
PH2(1) = 1.
NP2 = 1
NP3 = NPHI(2)
INB2 = 1
INB3 = 2
DPHI2 = TOP1
DPHI3 = TOP1/NP3
IF (ICORR. NE. 0) THEN
 COMPUTE COEFFICIENTS FOR SELF-PATCH CORRECTIONS FOR CAPS
 CO(1) = 1. + 0.25*DTH
 DO(1) = 0.0625*DTH**2*RCDTM1
 DO(IS) = 0.03125*DTH*RCDTM1
 CALL UD(P1, DPHI3, NP3, 1, 2, NL, NR, FC1, FC2)
 CALL UD(PITO, DPHI3, NP3, 1, 2, NU1, NU2, FU1, FU2)
 CALL UD(PITO*3, DPHI3, NP3, 1, 2, ND1, ND2, FD1, FD2)
END IF
C REGULAR PATCHES
DO 200 I = 2, M1 - 1
 TH = TH - DTH
 STH = SIN(TH)
 CTH = COS(TH)
 RSTH = RAD*STH
 RCTH = RAD*CTH
 TFI = CM1*(RAD + RCTH).
 NP1 = NP2
 NP2 = NP3
 NP3 = NPHI(I + 1)
 INB1 = INB2
 INB2 = INB3
 INB3 = INB2 + NP2
 DPHII = DPHI2
 DPHI2 = DPHI3
 DPHI3 = TOP1/NP3
 PHI = 0.
C SOLID ANGLE FOR THE PATCH
C SOLG = PIM1*DPHI2*STH*SDTH2*RAD**2
C PATCH COEFFICIENT
C IF (ICORR. NE. 0) THEN
 COMPUTE COEFFICIENTS FOR SELF-PATCH CORRECTIONS
 STHDPHI = STH*DPHI2
 STHDPHI1 = 1./STHDPH
 DGAMA2 = DTH**2 + STHDPH**2
DGAMMA=SGRT(DGAMMA2)
AL1=ALOG((DGAMMA+DTH)/(DGAMMA-DTH))
AL2=ALOG((DGAMMA+STHDPH)/(DGAMMA-STHDPH))
PC2=FOPIM1*STHDPH*AL1
PC3=FOPIM1*DTH*AL2
PC=PC2-PC3
ATDG= 5*DGAMMA2*ATAN(STHDPH*DTHM1)
TAB= 5*DTH*STHDPH
SNPH2= 5*PITO*STHDPH**2
PC7=FPCTM1*(TAB+ATDG-SNPH2)
PC8=FPCTM1*(TAB-ATDG+SNPH2)
PD=PC7-PC8
END IF
DO 190 J=1,NP2
IN=IN+1
CPH=COS(PHI)
SPH=SIN(PHI)
XR1(IN)=RSTH*CPH
XR2(IN)=RSTH*SPH
XR3(IN)=RCTH
SRF(IN)=SOLG
THETA(IN)=TH
PHII(IN)=PHI
DPHI1(IN)=DPHI2
TH1(IN)=CTH*CPH
TH2(IN)=CTH*SPH
TH3(IN)=-STH
PH1(IN)=-SPH
PH2(IN)=CPH
TF(IN)=TFI
IF(ICORR. NE. 0) THEN
CO(IN)=PC
DO(IN)=PD
IF(J. EQ. 1) THEN
NL(IN)=IN+NP2-1
ELSE
NL(IN)=IN-1
END IF
IF(J. EQ. NP2) THEN
NR(IN)=IN-NP2+1
ELSE
NR(IN)=IN+1
END IF
CALL UD(PHI, DPHI1, NP1, IN, INB1, ND1, ND2, FDI, FDI)
CALL UD(PHI, DPHI3, NP3, IN, INB3, NU1, NU2, FU1, FUI)
END IF
PHI=PHI+DPHI2
190 CONTINUE
200 CONTINUE
C
TOP CAP, Theta = 0
XR1(IS)=0.
XR2(IS)=0.
XR3(IS)=RAD
SRF(IS)=S1
THETA(IS) = 0.
PHII(IS) = 0.
DPHI2(IS) = TDPI
TH1(IS) = 1.
TH2(IS) = 0.
TH3(IS) = 0.
IF (ICORR. NE. 0) THEN
 CALL UD (PI, DPHI2, NP1, IS, INB1, NL, NR, PH1, PH2)
 FC1(2) = PH1(IS)
 FC2(2) = PH2(IS)
 CALL UD (P1O, DPHI1, NP2, IS, INB1, NU1, NU2, FU1, FU2)
 CALL UD (P10*3, DPHI2, NP2, IS, INB1, ND1, ND2, FD1, FD2)
END IF
PH1(IS) = 0.
PH2(IS) = 1.
TF(IS) = 2.*CM1*RAD
C COMPUTE QUANTITIES RELATED TO TWO PATCHES
DL1 = DTH*RAD
NMAX = 0
IN = 1
NPNT = 0
NP = 0
DO 240 I = 1, IS
 X = XR1(I)
 Y = XR2(I)
 Z = XR3(I)
 TH = THETA(I)
 PH1 = PHII(I)
 STH = SIN(TH)
 RSTH = RAD*STH
 NM = 1
 IF (NP. EQ. 0) THEN
 NPH = NP1H(IN)
 DPH = TDPI/NPH
 DL2 = DPH*RSTH
 RMAX = SQRT(2)*AMAX1(DL1, DL2)
 IF (I, EQ. 1. OR. I, EQ. IS) RMAX = 1.5*DTH*RAD
 NP = NPH
 IN = IN + 1
 END IF
 NP = NP - 1
 DR1(1; IS) = X - XR1(I; IS)
 DR2(1; IS) = Y - XR2(I; IS)
 DR3(1; IS) = Z - XR3(I; IS)
 DR(1; IS) = V3SQRT(DR1(1; IS)**2 + DR2(1; IS)**2 + DR3(1; IS)**2,
 1
 DR(1; IS))
 DRM3(1; IS) = CDTM1*DR(1; IS)
 IND(1; IS) = VINT(DRM3(1; IS)); IND(1; IS))
C DETERMINE WHERE SHIFTS IN INTERPOLATION ARE NEEDED
 BT3(1, I; IS) = IND(1, I; IS). EQ. 2
 BT4(1, I; IS) = IND(1, I; IS). EQ. 1
 IF (ICORR. LT. 2) GO TO 230
C COMPUTE COEFFICIENTS FOR NEIGHBORING-PATCH INTEGRALS
DO 220 J = 1, IS
IF(J.EQ.I. OR. DR(J). GT. RMAX) GO TO 220
NM=NM+1
IF(NM GT. LL20 OR. NPNT. GT. LL12) THEN
 PRINT *, 'NM=',NM, ', NPNT=',NPNT, ', I=',I, ', J=',J
 STOP 12
END IF
NEI(I,NM)=J
NPNT=NPNT+1
NPOINT(I,NM)=NPNT
IF(J. EQ. I. OR. J. EQ. IS) THEN
 NEIGHBORING PATCH IS A SPHERICAL CAP
 RHQ0=STH*SDT2M1
 TRHOQ=2. *RHQ0
 RHQ0H=STH*TOPIM1*SDTHM1
 RHQCT=RHQ0H*RCDTM1
 RHQI=1./RHQ0
 TRHOQI=2. *RHQI
 RHQSI=1. +RHQI**2
 RHCTM1=STH*RCDTM1*TOPIM1
 RHCTM1H=.5*RHCTM1
C USE Q1DB FROM CMLIB TO DO NUMERICAL INTEGRATIONS
C CP003 INCLUDES AN ADDITIONAL FACTOR 1/RH00
CALL Q1DB(F003, ZRO, TOPI, EPS, CP003, ER, KF, IFLAG)
IF(IFLAG. GT. 3) THEN
 PRINT *, 'PROBLEM IN CP003=',CP003, '; ERROR=',ER,
 1 ', NO. OF COMPUTATIONS=',KF, ', FLAG=',IFLAG
 STOP
END IF
CALL Q1DB(F103, ZRO, TOPI, EPS, CP103, ER, KF, IFLAG)
IF(IFLAG. GT. 3) THEN
 PRINT *, 'PROBLEM IN CP103=',CP103, '; ERROR=',ER,
 1 ', NO. OF COMPUTATIONS=',KF, ', FLAG=',IFLAG
 STOP
END IF
CALL Q1DB(F013, ZRO, TOPI, EPS, CP013, ER, KF, IFLAG)
IF(IFLAG. GT. 3) THEN
 PRINT *, 'PROBLEM IN CP013=',CP013, '; ERROR=',ER,
 1 ', NO. OF COMPUTATIONS=',KF, ', FLAG=',IFLAG
 STOP
END IF
C CP203 INCLUDES AN ADDITIONAL FACTOR 1/RH00
CALL Q1DB(F203, ZRO, TOPI, EPS, CP203, ER, KF, IFLAG)
IF(IFLAG. GT. 3) THEN
 PRINT *, 'PROBLEM IN CP203=',CP203, '; ERROR=',ER,
 1 ', NO. OF COMPUTATIONS=',KF, ', FLAG=',IFLAG
 STOP
END IF
C CP113 INCLUDES AN ADDITIONAL FACTOR 1/RH00
CALL Q1DB(F113, ZRO, TOPI, EPS, CP113, ER, KF, IFLAG)
IF(IFLAG. GT. 3) THEN
 PRINT *, 'PROBLEM IN CP113=',CP113, '; ERROR=',ER,
1 NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
C CP023 INCLUDES AN ADDITIONAL FACTOR 1/RHOO
CALL Q1DB(F023, ZRO, TOPI, EPS, CP023, ER, KF, IFLAG)
IF(IFORM GT. 3) THEN
 PRINT *, 'PROBLEM IN CP023=', CP023, ', ERROR=', ER,
 ' NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
C CP102 INCLUDES AN ADDITIONAL FACTOR 1/RHOO
CALL Q1DB(F102, ZRO, TOPI, EPS, CP102, ER, KF, IFLAG)
IF(IFORM GT. 3) THEN
 PRINT *, 'PROBLEM IN CP102=', CP102, ', ERROR=', ER,
 ' NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
C CP012 INCLUDES AN ADDITIONAL FACTOR 1/RHOO
CALL Q1DB(F012, ZRO, TOPI, EPS, CP012, ER, KF, IFLAG)
IF(IFORM GT. 3) THEN
 PRINT *, 'PROBLEM IN CP012=', CP012, ', ERROR=', ER,
 ' NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
C CP202 INCLUDES AN ADDITIONAL FACTOR 1/RHOO**2
CALL Q1DB(F202, ZRO, TOPI, EPS, CP202, ER, KF, IFLAG)
IF(IFORM GT. 3) THEN
 PRINT *, 'PROBLEM IN CP202=', CP202, ', ERROR=', ER,
 ' NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
C CP112 INCLUDES AN ADDITIONAL FACTOR 1/RHOO**2
CALL Q1DB(F112, ZRO, TOPI, EPS, CP112, ER, KF, IFLAG)
IF(IFORM GT. 3) THEN
 PRINT *, 'PROBLEM IN CP112=', CP112, ', ERROR=', ER,
 ' NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
C CP022 INCLUDES AN ADDITIONAL FACTOR 1/RHOO**2
CALL Q1DB(F022, ZRO, TOPI, EPS, CP022, ER, KF, IFLAG)
IF(IFORM GT. 3) THEN
 PRINT *, 'PROBLEM IN CP022=', CP022, ', ERROR=', ER,
 ' NO OF COMPUTATIONS='KF', FLAG='IFLAG
STOP
END IF
CPH=COS(PHI)
SPH=SIN(PHI)
COJ(1,NPNT)=TOPIM1*(CPH*CP003-CP103)
COJ(2, NPNT) = TOPI1*(SPH*CP003-CP103)
COJT(1, NPNT) = RHCTM1*(CPH*CP003-CP102)
COJT(2, NPNT) = RHCTM1*(SPH*CP002-CP012)
IF (J.EQ.1) THEN
 COJ(3, NPNT) = FOPIM1*STH*(CP003-CP203-CP023)
 COJT(3, NPNT) = RHCTM1H*STH*(CP002-CP202-CP022)
ELSE
 COJ(3, NPNT) = -FOPIM1*STH*(CP003-CP203-CP023)
 COJT(3, NPNT) = -RHCTM1H*STH*(CP002-CP202-CP022)
END IF
COJU(1, NPNT) = RHOQH*(CPH*CP103-CP203)
COJU(2, NPNT) = RHOQH*(SPH*CP103-CP113)
COJV(1, NPNT) = RHOQH*(CPH*CP103-CP113)
COJV(2, NPNT) = RHOQH*(SPH*CP103-CP023)
COJTU(1, NPNT) = RHOQCT*(CPH*CP102-CP202)
COJTU(2, NPNT) = RHOQCT*(SPH*CP102-CP112)
COJTU(1, NPNT) = RHOQCT*(CPH*CP012-CP112)
COJTU(2, NPNT) = RHOQCT*(SPH*CP012-CP022)
ELSE
COTHER NEIGHBORING PATCHES
THP = THETA(J)
PHI = PHI(J)
STHP = SIN(THP)
CTHP = COS(THP)
CSCTHP = 1./STHP
COTTHP = CTHP*CSCCTHP
SPHP = SIN(PHIP)
CPHP = COS(PHIP)
STCP = STHP*CPHP
STSP = STHP*SPHP
CTCP = CTHP*SPHP
CTSP = CTHP*SPHP
DELPHI = PHI-PHI
IF (I.EQ.1 OR I.EQ.IS) THEN
 DELPHI = 0
ELSE
 IF (DELPHI.GT.PI) DELPHI = DELPHI - TOPI
 IF (DELPHI LT. -PI) DELPHI = DELPHI + TOPI
END IF
STDELP = STHP*DELPHI
THTP = DELTH+.5*DTH
THTP2 = THTP**2
THTP3 = THTP2*THTP
THTP4 = THTP3*THTP
THTM = DELTH-.5*DTH
THTM2 = THTM**2
THTM3 = THTM2*THTM
THTM4 = THTM3*THTM
DPHI = DPHI(J)
PHTP = (DELPHI+.5*DPHI)*STHP
PHTP2 = PHTP**2
PHTP3 = PHTP2*PHTP
PHTP4 = PHTP3*PHTP
67
PHTM = (DELPHI - 5*DPHI) * STHP
PHTM2 = PHTM2 * 2
PHTM3 = PHTM2 * PHTM
PHTM4 = PHTM3 * PHTM
GAM1T = SQRT (THTM2 + PHTM2)
GAM1TI = 1. / GAM1T
GAM1TI2 = GAM1TI * 2
GAM1TI3 = GAM1TI2 * GAM1TI
GAM2T = SQRT (THTP2 + PHTM2)
GAM2T1 = 1. / GAM2T
GAM2T12 = GAM2T1 * 2
GAM2T13 = GAM2T12 * GAM2T1
GAM3T = SQRT (THTP2 + PHTP2)
GAM3T1 = 1. / GAM3T
GAM3T12 = GAM3T1 * 2
GAM3T13 = GAM3T12 * GAM3T1
GAM4T = SQRT (PHTM2 + PHTP2)
GAM4T1 = 1. / GAM4T
GAM4T12 = GAM4T1 * 2
GAM4T13 = GAM4T12 * GAM4T1
THMAX2 = AMAX1 (THTM2, THTP2) * 1. E-12
PHMAX2 = AMAX1 (PHTM2, PHTP2) * 1. E-12

IF (THTM2. LT. PHMAX2. AND. PHTP. LT. 0.) THEN
 C103 = AL0G (PHTM * (GAM2T + PHTM) / ((GAM3T + PHTP) * PHTP))
ELSE IF (THTP2. LT. PHMAX2. AND. PHTP. LT. 0.) THEN
 C103 = AL0G ((GAM4T + PHTP) * PHTP / (PHTM * (GAM1T + PHTM)))
ELSE
 C103 = AL0G ((GAM4T + PHTP) * (GAM2T + PHTM) / ((GAM3T + PHTP) * (GAM1T + PHTM)))
END IF

IF (PHTM2. LT. THMAX2. AND. THTP. LT. 0.) THEN
 C013 = AL0G (THTM * (GAM4T + THTM) / ((GAM3T + THTP) * THTP))
ELSE IF (PHTP2. LT. THMAX2. AND. THTP. LT. 0.) THEN
 C013 = AL0G ((GAM2T + THTP) * THTP / (THTM * (GAM1T + THTM)))
ELSE
 C013 = AL0G ((GAM2T + THTP) * (GAM4T + THTM) / ((GAM3T + THTP) * (GAM1T + THTM)))
END IF

IF (PHTM2. LT. THMAX2) THEN
 C203 = -PHTM * ABS (AL0G (THTP / THTM)) + 5 * PHTP * AL0G ((GAM3T + THTP) * (GAM4T - THTM) / ((GAM3T + THTP) * (GAM4T + THTM)))
ELSE IF (PHTP2. LT. THMAX2) THEN
 C203 = -5 * PHTM * AL0G ((GAM2T + THTP) * (GAM1T - THTM) / (GAM2T + THTP) * (GAM1T + THTM)) + 5 * PHTP * AL0G ((GAM3T + THTP) * (GAM4T - THTM) / (GAM3T + THTP) * (GAM4T + THTM))
ELSE
 C203 = -5 * PHTM * AL0G ((GAM2T + THTP) * (GAM1T - THTM) / (GAM2T - THTP) * (GAM1T + THTM)) + 5 * PHTP * AL0G ((GAM3T + THTP) * (GAM4T - THTM) / (GAM3T - THTP) * (GAM4T + THTM))
END IF

C113 = GAM1T + GAM2T - GAM3T + GAM4T

IF (THTM2. LT. PHMAX2) THEN
C023=-THTM*ABS(ALOG(PHTP/PHTM))
+ 5*THTP*ALOG((GAM3T+PHTP)*(GAM2T-PHTM)/
((GAM3T-PHTP)*(GAM2T+PHTM)))
ELSE IF(THTP2. LT. PHMAX2) THEN
C023=- 5*THTM*ALOG((GAM4T+PHTP)*(GAM1T-PHTM)/
((GAM4T-PHTP)*(GAM1T+PHTM)))
+ THTP*ABS(ALOG(PHTP/PHTM))
ELSE
C023=- 5*THTM*ALOG((GAM4T+PHTP)*(GAM1T-PHTM)/
((GAM4T-PHTP)*(GAM1T+PHTM)))
+ 5*THTP*ALOG((GAM3T+PHTP)*(GAM2T-PHTM)/
((GAM3T-PHTP)*(GAM2T+PHTM)))
END IF
C125=03*((PHTP*(GAM3T-GAM4T)-PHTM*(GAM2T-GAM1T))
+C103)
C035=03*((THTM*(GAM4T-GAM1T)-THTP*(GAM3T-GAM2T))
+2.*C013)
C225=03*((THTP*(PHTP*GAM3T-PHTM*GAM2T)
-(THTP*(PHTP*GAM4T-PHTM*GAM1T))))
C135=THTM2*03*THTM2*(GAM1T-GAM4T-GAM4T-GAM1T)-GAM1T
+GAM4T)+PHTP4*03*(GAM4T-GAM3T-GAM3T)
+GAM2T)+PHTM4*03*(GAM2T-GAM1T)
DTHTP=THTP-THTM
DPHT=PHTP-PHTM
PHT1=ATAN2(PHTM, THTM)
PHT2=ATAN2(PHTM, THTP)
PHT3=ATAN2(PHTP, THTP)
PHT4=ATAN2(PHTP, THTM)
PHT12=PHT1-PHT2
PHT23=PHT2-PHT3
PHT34=PHT3-PHT4
PHT41=PHT4-PHT1
IF(PHTM. LT. 0. AND. PHTP. GT. 0. AND. THTP. LT. 0.) THEN
PHT23=PHT23+TOP1
PHT41=PHT41-TOPI
END IF
ALG12=ALOG(GAM1T*GAM2T)
ALG23=ALOG(GAM2T*GAM3T)
ALG34=ALOG(GAM3T*GAM4T)
ALG41=ALOG(GAM4T*GAM1T)
C102=-THTP*PHTP23+PHTP*ALG34-THTM*PHTP41+PHTM*ALG12
C012=-PHTP*PHT43-THTP*ALG23-PHTM*PHT12-THTM*ALG41
C202=. 5*(DTHTP*DPHT+PHTM2*PHT12-THTP2*PHT23
1+PHTP2*PHT34-THTM2*PHT41)
C112=. 5*(PHTM2*ALG12-THTP2*ALG22)
1+PHTP2*ALG34-THTM2*ALG41)
C022=. 5*(DHTP*DPHT*PHTM2*PHT12+THTP2*PHT23
1-PHTP2*PHT34+THTM2*PHT41)
C124=. 5*(PHTM3*GAM2T12-GAM1T12)-THTP*PHT23
1+THTP2*(PHTM*GAM2T12-PHTP*GAM3T12)
2+PHTP3*(GAM4T12-GAM3T12)-THTM*PHT41
3+THTM2*(PHTP*GAM4T12-PHTM*GAM1T12))
C034=. 5*(-PHTM*PHT12-PHTM2*(THTP*GAM2T12-THTM*GAM1T12)
\[\text{CTHTH} = \text{DELTH} \times \text{CTHPH} \]
\[\text{CTHPH} = \text{DELTH} \times \text{CTHTH} \]
\[\text{CTHTH} = \text{DELTH} \times \text{CTHPH} \]
\[\text{CTHPH} = \text{DELTH} \times \text{CTHTH} \]

\[\text{COJTH} = \text{JPHTH} \]
\[\text{COJPH} = \text{JPHPH} \]
\[\text{COJHP} = \text{JPHNP} \]

\[\text{COTTH} = \text{CTHTH} \]
\[\text{COTPH} = \text{CTHPH} \]
\[\text{COTHP} = \text{CTHTH} \]
\[\text{COI} = \text{CTHTH} \]

\[\text{COJ} = \text{CTHTH} \]
\[\text{COJ} = \text{CTHPH} \]
\[\text{COJ} = \text{CTHTH} \]
\[\text{COJ} = \text{CTHPH} \]
COJTVA(2, NPNT) = STD M1C * CPHTH

END IF

CONTINUE

NEI(I, 1) = NM

IF (NM, GT. NMAX) NMAX = NM

CONTINUE

PRINT *, 'NUMBER OF COLUMNS NEEDED IS ', NMAX - 1, ' OUT OF 19', ',

1 ' TOTAL NUMBER OF NEIGHBORING PATCHES IS ', NPNT,

2 ', WITH A MAXIMUM OF ', LL12

RETURN

FORMAT(10(2X, I10))

FORMAT(' GIVEN DT=', E9.2, ' GREATER THAN "MINIMUM" DT=', E9.2)

END

SUBROUTINE UD(PHI, DPHI, NP, IN, INB, NX1, NX2, FX1, FX2)

THIS SUBROUTINE IS USED TO COMPUTE QUANTITIES NEEDED FOR PHI-INTERPOLATION

PARAMETER(LL = LG, LC = LCG)

DIMENSION NX1(LL), NX2(LL), FX1(LL), FX2(LL)

F1 = PHI / DPHI

N1 = F1

F1 = F1 - REAL(N1)

NX1(IN) = INB + N1

IF (N1 EQ NP - 1) THEN

 NX2(IN) = INB

ELSE

 NX2(IN) = INB + N1 + 1

END IF

IF (N1 EQ N2) THEN

FOR POLAR CAPS

 FX1(IN) = COS(PHI)

 FX2(IN) = SIN(PHI)

ELSE

 FX1(IN) = F1 - F1

 FX2(IN) = F1

END IF

RETURN

END

FUNCTION FOO3(X)

COMMON / PARFUN/ PHI, RHOG, RHOGI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3

COSX = COS(X)

EKS = SQRT(RHOSQ - TRHOQ * COSX)

FOO3 = 1. / (EKS * (EKS + RHOG - COSX))

RETURN

END

FUNCTION F103(X)

COMMON / PARFUN/ PHI, RHOG, RHOGI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3

COSX = COS(X)

RCOSX = RHOG * COSX

TCOSX = 2. * RCOSX

EKS = SQRT(RHOSQ - TCOSX)
ECOSX = EKS * COSX
IF(COSX .GT. 5) THEN
 F103 = COS(X + PHI) * (ALOG((RHOQ + RCOSX)/(EKS + RCOSX - 1.)) +
 1 2. * COSX/(EKS * (EKS + RHOQ - COSX)) -
 2 (1. - TCOSX)/(EKS * (1. - ECOSX - RCOSX)))
ELSE IF(COSX .GT. -5) THEN
 F103 = COS(X + PHI) * (ALOG((RHOQ + RCOSX)/(EKS + RCOSX - 1.)) +
 1 2. * COSX/(EKS * (EKS + RHOQ - COSX)) -
 2 (1. + ECOSX - RCOSX)/(EKS * (1. - COSX ** 2)))
ELSE
 F103 = COS(X + PHI) * (ALOG(RHOQ + RCOSX)/(EKS + RCOSX - 1.)) +
 1 2. * COSX/(EKS * (EKS + RHOQ - COSX)) -
 2 (1. - TCOSX)/(EKS * (1. - ECOSX - RCOSX)))
END IF
RETURN
END

FUNCTION F013(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, 03
COSX = COS(X)
RCOSX = RHOQ * COSX
TCOSX = 2. * RCOSX
EKS = SQRT(RHOSQ - TCOSX)
ECOSX = EKS * COSX
IF(COSX .GT. 5) THEN
 F013 = SIN(X + PHI) * (ALOG((RHOQ + RCOSX)/(EKS + RCOSX - 1.)) +
 1 2. * COSX/(EKS * (EKS + RHOQ - COSX)) -
 2 (1. - TCOSX)/(EKS * (1. - ECOSX - RCOSX)))
ELSE IF(COSX .GT. -5) THEN
 F013 = SIN(X + PHI) * (ALOG((RHOQ + RCOSX)/(EKS + RCOSX - 1.)) +
 1 2. * COSX/(EKS * (EKS + RHOQ - COSX)) -
 2 (1. + ECOSX - RCOSX)/(EKS * (1. - COSX ** 2)))
ELSE
 F013 = SIN(X + PHI) * (ALOG((EKS - RCOSX + 1.)/(RHOQ - RCOSX)) +
 1 2. * COSX/(EKS * (EKS + RHOQ - COSX)) -
 2 (1. - TCOSX)/(EKS * (1. - ECOSX - RCOSX)))
END IF
RETURN
END

FUNCTION F203(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, 03
COSX = COS(X)
RCOSX = RHOQ * COSX
TCOSX = 2. * RCOSX
EKS = SQRT(RHOSQ - TCOSX)
ECOSX = EKS * COSX
IF(COSX .GT. 5) THEN
 F203 = COS(X + PHI) ** 2 * (RHOQI * EKS - 1. +
 1 3. * COSX * ALOG((RHOQ + RCOSX)/(EKS + RCOSX - 1.)) +
 2 (4. * COSX ** 2 - 1.)/(EKS * (EKS + RHOQ - COSX)) -
 3 2. * COSX * (1. - TCOSX)/(EKS * (1. - ECOSX - RCOSX)))
ELSE IF(COSX .GT. -5) THEN
 F203 = COS(X + PHI) ** 2 * (RHOQI * EKS - 1. +
FUNCTION F113(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOQ, RHOQ, PHI
COSX=COS(X)
RCSX=RHOQ*COSX
TCOSX=2.*RCOSX
EKS=SQRT(RHOQ-TCOSX)
ECOSX=EKS*COSX
IF(COSX GT .5) THEN
 F113=COS(X+PHI)*SIN(X+PHI)*(RHOQI*EKS-1.+)
1 3.*COSX*ALOG((RHOQ+RCOSX)/(EKS+RCOSX-1.+))
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-COSX))-)
3 2.*COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
ELSE IF(COSX GT -.5) THEN
 F113=COS(X+PHI)*SIN(X+PHI)*(RHOQI*EKS-1.+)
1 3.*COSX*ALOG((RHOQ+RCOSX)/(EKS+RCOSX-1.+))
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-COSX))-)
3 2.*COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
ELSE
 F113=COS(X+PHI)*SIN(X+PHI)*(RHOQI*EKS-1.+)
1 3.*COSX*ALOG((RHOQ+RCOSX)/(EKS+RCOSX-1.+))
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-COSX))-)
3 2.*COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
END IF
RETURN
END

FUNCTION F023(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOQ, RHOQ, PHI
COSX=COS(X)
RCSX=RHOQ*COSX
TCOSX=2.*RCOSX
EKS=SQRT(RHOQ-TCOSX)
ECOSX=EKS*COSX
IF(COSX GT .5) THEN
 F023=SIN(X+PHI)**2*(RHOQI*EKS-1.+)
1 3.*COSX*ALOG((RHOQ+RCOSX)/(EKS+RCOSX-1.+))
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-COSX))-)
3 2.*COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
ELSE IF(COSX GT -.5) THEN
 F023=SIN(X+PHI)**2*(RHOQI*EKS-1.+)
1 3.*COSX*ALOG((RHOQ+RCOSX)/(EKS+RCOSX-1.+))
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-COSX))-)
3 2.*COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
ELSE
 F023=SIN(X+PHI)**2*(RHOQI*EKS-1.+)
1 3.*COSX*ALOG((RHOQ+RCOSX)/(EKS+RCOSX-1.+))
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-COSX))-)
3 2.*COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
END IF
RETURN
END

73
3 2. *COSX*(1. +ECOSX-RCOSX)/(EKS*(1. -COSX**2)))
ELSE
 F023=SIN(X+PHI)**2*(RHOQI*EKS-1. +
1 3. *COSX*ALOG((EKS-RCOSX+1.)/(RHOQ-RCOSX))+
2 (4.*COSX**2-1.)/(EKS*(EKS+RHOQ-RCOSX))-
3 2. *COSX*(1.-TCOSX)/(EKS*(1.-ECOSX-RCOSX)))
END IF
RETURN
END

FUNCTION F002(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3
SINX=SIN(X)
COSX=COS(X)
EKS2=RHOSQI-TRHOQI*COSX
IF(ABS(SINX).GE.1.E-4) THEN
 F02=ATAN(SINX/(RHOQ-COSX))/SINX
ELSE
 DEN=1./(RHOQ-COSX)
 F02=DEN-O3*SINX**2*DEN**3
END IF
F002= . 5*ALOG(EKS2)+COSX*F02
RETURN
END

FUNCTION F102(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3
SINX=SIN(X)
COSX=COS(X)
EKS2=RHOSQI-TRHOQI*COSX
IF(ABS(SINX).GE.1.E-4) THEN
 F02=ATAN(SINX/(RHOQ-COSX))/SINX
ELSE
 DEN=1./(RHOQ-COSX)
 F02=DEN-O3*SINX**2*DEN**3
END IF
F102=COS(X+PHI)*(RHOQI+COSX*ALOG(EKS2))
1 - (1.-2. *COSX**2)*F02)
RETURN
END

FUNCTION F012(X)
COMMON /PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3
SINX=SIN(X)
COSX=COS(X)
COSX2=COSX**2
EKS2=RHOSQI-TRHOQI*COSX
IF(ABS(SINX).GE.1.E-4) THEN
 F02=ATAN(SINX/(RHOQ-COSX))/SINX
ELSE
 DEN=1./(RHOQ-COSX)
 F02=DEN-O3*SINX**2*DEN**3
END IF
F012=SIN(X+PHI)*(RHOQI+COSX*ALOG(EKS2))
1 - (1. - 2. * COSX ** 2) * F02)
RETURN
END

FUNCTION F202(X)
COMMON / PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3
SINX = SIN(X)
COSX = COS(X)
COSX2 = COSX ** 2
EKS2 = RHOSQI - TRHOQI * COSX
IF (ABS(SINX) . GE. 1. E-4) THEN
 F02 = ATAN(SINX/(RHOQ - COSX))/SINX
ELSE
 DEN = 1. / (RHOQ - COSX)
 F02 = DEN - O3 * SINX ** 2 * DEN ** 3
END IF
F202 = COS(X + PHI) ** 2 * (RHOQI * (.5 * RHOQI + 2. * COSX)
1 + (2. * COSX2 - .5) * ALOG(EKS2) - COSX*(3. - 4. * COSX2)*F02)
RETURN
END

FUNCTION F112(X)
COMMON / PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3
SINX = SIN(X)
COSX = COS(X)
COSX2 = COSX ** 2
EKS2 = RHOSQI - TRHOQI * COSX
IF (ABS(SINX) . GE. 1. E-4) THEN
 F02 = ATAN(SINX/(RHOQ - COSX))/SINX
ELSE
 DEN = 1. / (RHOQ - COSX)
 F02 = DEN - O3 * SINX ** 2 * DEN ** 3
END IF
F112 = COS(X + PHI) * SIN(X + PHI) * (RHOQI * (.5 * RHOQI + 2. * COSX)
1 + (2. * COSX2 - .5) * ALOG(EKS2) - COSX*(3. - 4. * COSX2)*F02)
RETURN
END

FUNCTION F022(X)
COMMON / PARFUN/ PHI, RHOQ, RHOQI, TRHOQ, TRHOQI, RHOSQ, RHOSQI, O3
SINX = SIN(X)
COSX = COS(X)
COSX2 = COSX ** 2
EKS2 = RHOSQI - TRHOQI * COSX
IF (ABS(SINX) . GE. 1. E-4) THEN
 F02 = ATAN(SINX/(RHOQ - COSX))/SINX
ELSE
 DEN = 1. / (RHOQ - COSX)
 F02 = DEN - O3 * SINX ** 2 * DEN ** 3
END IF
F022 = SIN(X + PHI) ** 2 * (RHOQI * (.5 * RHOQI + 2. * COSX)
1 + (2. * COSX2 - .5) * ALOG(EKS2) - COSX*(3. - 4. * COSX2)*F02)
RETURN
END
PROGRAM SCATP

TO COMPUTE THE SIZES OF ARRAYS FOR PROGRAM SCAT AND RELATED PROGRAMS

CHARACTER QAL*4, SUF*3, JCAT*2, PRI*2
COMMON /PARAM/ RAD, ALPHA, BETA, DT, DTM1, THDIR
COMMON /ICOM/ IX, IS, IS1, NTOT, N1, N2, N3, NI, ISKIP, IPATCH, ICORR
COMMON /CONST/ C, CM1, PI, TOP

DATA C/3.E8/
CM1=1.0
PI=4.*ATAN(1.0)
TOPI=2.*PI

OPEN(1,FILE='SCTQAL', STATUS='OLD')
READ(1,*) QAL, ISKIP, NT, IPATCH, PRI, ICORR, N1, N2, N3
PRINT *, 'INPUT FILE: SCIN'//QAL, ' SKIP=', ISKIP, ' PATCH=', IPATCH

CALL RUNT1(LL12, LL20)
NU=2.*RAD*CM1*DTM1+6.
IF(NI.EQ.0) NU=6.*RAD/(C*DT)
IF(NI.LT.0) NU=1
PRINT *, 'DT=', DT, ', RAD=', RAD, ', ALPHA=', ALPHA, ', BETA=', BETA,
1 ', NI=', NI, ', N1=', N1, ', N2=', N2, ', N3=', N3
PRINT *, NU, ' ROWS NEEDED'

READ(2,4,END=500) THDIR, PHDIR
ITH=THDIR
IPHI=PHDIR
THDIR=THDIR*CONV
PHDIR=PHDIR*CONV
CALL FARFL
IF(NTOT.GT.NTM) NTM=NTOT
GO TO 400

500 LL=15+2
C ADD 2 BECAUSE COMPUTATIONS ON 855 AND 205 SOMETIMES DISAGREE
LC=MAX0(NU, NTM)+2
C PRELIMINARY CALCULATIONS ONLY
IF(NI.LT.0) LC=1
C FILE WITH DIRECTIVES FOR THE FULL SCREEN EDITOR
OPEN(5,FILE='SCTFSE', STATUS='NEW')
LB=LL**2/64+1
LB1=LL/64+1
C COMPUTE NUMBER OF LARGE PAGES
NLP=(LL*(2*LC+2*LL20+55)+20*LL12+2*(LB+LB1)+65539)/65536
PRINT *, 'COMPUTED NLP=', NLP
IF(LL.LT.99999, OR. LC.LT. 9999, OR. LL12 GT 99999, OR. LL20 GT 999)

76
1 STOP 10
WRITE(5,6) LL, LC, LL12, LL20
C IF NUMBER OF LARGE PAGES IS GIVEN
IF(NLP1.NE.0) NLP=NLP1
IF(NLP. GT. 28. OR. NTL. GT. 599940) STOP
C ASSIGN TIME LIMITS (IF NOT GIVEN) AND PRIORITIES
IF(NLP. LE. 5) THEN
 IF(NTL. EQ. O) NTL=500
 IF(NTL. LE. 900) THEN
 JCAT='P2'
 ELSE IF(NTL. LE. 3600) THEN
 JCAT='P3'
 ELSE
 JCAT='P5'
 END IF
ELSE IF(NLP. LE. 10) THEN
 IF(NTL. EQ. O) NTL=900
 IF(NTL. LE. 3600) THEN
 JCAT='P3'
 ELSE
 JCAT='P5'
 END IF
ELSE IF(NLP. LE. 20) THEN
 IF(NTL. EQ. O) NTL=900
 IF(NTL. LE. 900) THEN
 JCAT='P4'
 ELSE
 JCAT='P5'
 END IF
ELSE
 IF(NTL. EQ. O) NTL=5000
 JCAT='P5'
END IF
IF(PRI. NE. 'XX') THEN
 IF(PRI. LT. JCAT) THEN
 PRINT *, 'ASSIGNED PRIORITY TOO LOW'
 PRINT *, 'PRI=', PRI, ',', JCAT=', JCAT
 STOP
 ELSE
 JCAT=PRI
 END IF
END IF
OPEN(4, FILE='SCTRES', STATUS='NEW')
WRITE(4,*) 'RESOURCE, TL=', NTL, ', LP=', NLP, ', JCAT=', JCAT,
1 ', NT=', NT, ',',
PRINT *, 'PRIORITY ', JCAT, ', TIME LIMIT ', NTL, ', ', NT, ', TAPE'
STOP
4 FORMAT(E12.5)
5 FORMAT(3I4)
6 FORMAT('REPLACE/LLG/', I5, '/ALL QUIET', '/', 'REPLACE/LCG/', I4,
1 '/ALL QUIET', '/', 'REPLACE/LL12G/', I6, '/ALL QUIET', '/,
2 'REPLACE/LL20G/', I3, '/ALL QUIET', '/', 'QUIT')
END
SUBROUTINE RUNT1(LL12, LL20)

THIS SUBROUTINE DETERMINES THE NUMBER OF PATCHES AND THE DISTRIBUTION
NEIGHBORING PATCHES IF ICORR = 2 OR 3

DIMENSION NPHI(100)
DIMENSION XR1(5000), XR2(5000), XR3(5000), THETA(5000), PHI1(5000)
COMMON /PARAM/ RAD, ALPHA, BETA, DT, DTM1, THDIR
COMMON /ICOM/ IX, IS, IS1, NTOT, N1, N2, N3, NI, ISKIP, IPATCH, ICORR
COMMON /CONST/ C, CM1, PI, TOP

DTH=PI/(N1-1)
SDTH2=SIN(DTH*.5)
TH=PI
IS=2
NPHI(1)=1
NPHI(N1)=1
N1H=(N1+1)/2
DPH=1.
IF(IPATCH.EQ.0) THEN
 NPHX=1
 IF(NPHX.LT.N3) GO TO 90
 DO 100 I=2, N1H
 TH=TH-DTH
 TH=SIN(TH)
 NPH=(N2-N3)*STH+N3+.5
 IF(NPH.GT.NPHX) NPHX=NPHX*2
 NPHI(I)=NPH
 IS=IS+NPHX
 DPH=AMIN1(DPH, STH*SIN(PI/NPHX))
 CONTINUE
 ELSE
 DO 105 I=2, N1H
 TH=TH-DTH
 TH=SIN(TH)
 NPH=(N2-N3)*STH+N3+.5
 NPHI(I)=NPH
 IS=IS+NPH
 DPH=AMIN1(DPH, STH*SIN(PI/NPH))
 CONTINUE
END IF
IF(MOD(N1, 2).EQ.1) N1H=N1H-1
DO 110 J=1, N1H-1
 NPH=NPHI(N1H)
 NPHI(J)=NPH
 IS=IS+NPH
 N1H=N1H-1
110 CONTINUE
DT1=1.6*RAD*CM1*AMIN1(SDTH2, DPH)
IF(DT.EQ.0.) THEN
 DT=DT1
ELSE
 IF(DT1.LT.DT) THEN
PRINT 3, DT, DT1
NI=NI*DT/DT1
DT=DT1
END IF
END IF
DTM1=1./DT
PRINT *, 'NUMBER OF PATCHES IS ', IS
C RETURN IF NO NEIGHBORING-PATCH CORRECTIONS ARE GOING TO BE MADE
IF (ICORR. LT. 2. OR. ISKIP. EQ. 1) THEN
 LL12=1
 LL20=1
 RETURN
END IF
C CHECK IF ARRAYS ARE BIG ENOUGH TO CALCULATE THE NUMBER OF NEIGHBORING
PATCHES
IF (IS. GT. 5000) STOP 5
IS1=IS-NPH
TH=PI
IN=1
XR1(1)=0.
XR2(1)=0.
XR3(1)=-RAD
THETA(1)=PI
PHII(1)=0.
NP2=1
NP3=NPHI(2)
INB2=1
INB3=2
DPHII=TOPI
DPHI3=TOPI/NP3
DO 200 I=2, N1-1
 TH=TH-DTH
 STH=SIN(TH)
 CTH=COS(TH)
 RSTH=RAD*STH
 RCTH=RAD*CTH
 NP1=NP2
 NP2=NP3
 NP3=NPHI(I+1)
 INB1=INB2
 INB2=INB3
 INB3=INB2+NP2
 DPHII=DPHII
 DPHI2=DPHI3
 DPHI3=TOPI/NP3
 PHI=0
DO 190 J=1, NP2
 IN=IN+1
 CPH=COS(PHI)
 SPH=SIN(PHI)
 XR1(IN)=RSTH*CPH
 XR2(IN)=RSTH*SPH
 XR3(IN)=RCTH
 THETA(IN)=TH
```
PHII(IN)=PHI
PHI=PHI+DPHI2

190   CONTINUE

200 CONTINUE
XR1(IS)=0.
XR2(IS)=0.
XR3(IS)=RAD
THETA(IS)=0.
PHII(IS)=0.
DL1=DTH*RAD
NMAX=0
IN=1
NPNT=0
NP=0
DO 240 I=1,IS
   X=XR1(I)
   Y=XR2(I)
   Z=XR3(I)
   TH=THETA(I)
   PHI=PHII(I)
   NM=1
   IF(NP.EQ.0) THEN
      NP=NPH
      IN=IN+1
   END IF
   NP=NP-1
   DO 220 J=1,IS
      DR=SQRT((X-XR1(J))**2+(Y-XR2(J))**2+(Z-XR3(J))**2)
      IF(J.EQ.1.OR.J.EQ.IS) RMAX=1.5*DTH*RAD
      IF(DR.GT.RMAX) GO TO 220
      NM=NM+1
      NPNT=NPNT+1
   220 CONTINUE
   IF(NM.GT.NMAX) NMAX=NM

240 CONTINUE

PRINT *, 'NUMBER OF COLUMNS NEEDED IS ',NMAX-1,
1 ' TOTAL NUMBER OF NEIGHBORING PATCHES IS ',NPNT
LL12=NPNT
LL2O=NMAX
RETURN
3 FORMAT(' GIVEN DT=',E9.2, ' GREATER THAN "MINIMUM" DT=',E9.2)
END

C
SUBROUTINE FARFL
C
COMMON /PARAM/ RAD, ALPHA, BETA, DT, DTM1, THDIR
COMMON /ICOM/ IX, IS, IS1, NTOT, N1, N2, N3, NI, ISKIP, IPATCH, ICORR
COMMON /CONST/ C, CM1, PI, TOPI
READ(2, 1) T1, T2
```
C COMPUTE FIRST TIME OF ARRIVAL IF T1 = 0
IF(T1.EQ.0.) T1=RAD*CM1*(1.-2.*SIN(.5*THDIR))-DT
C COMPUTE LAST TIME IF T2 = 0
IF(T2.EQ.0.) T2=(NI-5)*DT-RAD*CM1
READ(2,2) N
NMAX=(T1+RAD*CM1)/DT+4.
NMIN=(T1-RAD*CM1)/DT-3.
NTOT=NMAX-NMIN+1
PRINT *, 'NTOT=', NTOT
RETURN
1 FORMAT(E12.5)
2 FORMAT(2I4)
END
PROGRAM PERF
COMPUTES MIE SCATTERING FOR A PERFECT CONDUCTOR
PARAMETER(NW=8192, NTM=3000, NT4=1200)
CHARACTER XLAB*30, YLAB*30, PTLAB1*80, PTLAB2*80, SBLAB*80
REAL PTI(NTM), TI(NTM), AMP1(NTM), AMP2(NTM), WW(NW),
 S1(NW), S2(NW), S3(NW), S4(NW)
DIMENSION PI(5, NT4), P(NT4), TAU(5, NT4), X(NT4)
COMPLEX FT1(NH), FT2(NW), FAC, EYE
COMMON/PERAR/ANGLE(5), AG1R(5, NW), AG1T(5, NW),
 AG2R(5, NW), AG2T(5, NW)
2 BES(NT4), ENEU(NT4), RA(NT4), E1A(NT4), RB(NT4), E1B(NT4),
3 PTI, TI, AMP1, AMP2, WW, FT1, FT2, S1, S2, S3, S4, P, TAU, X
COMMON/VAR/ NANGL, RHO, EM
DATA XLAB/'C*TIME (METERS)' /, YLAB/'INTENSITY'/
DATA PTLAB1/'SCATTERED INTENSITY, HORIZONTAL POLARIZATION'/
DATA PTLAB2/'SCATTERED INTENSITY, VERTICAL POLARIZATION'/
DATA C/3.EB/, EYE/(0.1, 0.1)/
CM1=1. /C
READ(*, I1PLOT
OPEN(7, FILE='PERFSV', FORM='UNFORMATTED')
READ(*, 1) CTMAX, CTMIN, R1, ALPHA, BETA
READ(*, 2) NT, NSTAR, NANGL
CDT=(CTMAX-CTMIN)/(NT-1)
IF(NANGL.GT.5) STOP 1
IF(NSTAR.GT.NW) STOP 8
IF(NT.GT.NTM) STOP 3
READ(*, (ANGLE(I), I=1, NANGL)
READ(*, 1) DW, WMAX
NREC=1
CTIM=CTMIN
DO 90 I=1, NT
 PTI(I)=CTIM
 TI(I)=PTI(I)*CM1
 CTIM=CTIM+CDT
90 CONTINUE
CALL ONEGA(WW, WMAX, NSTAR, DW)
 B2A2C2=(BETA**2-ALPHA**2)*C**2
 BAC=-(BETA-ALPHA)*C**2.
 ABC=-(ALPHA+BETA)*C
 BC2=BETA*C**2
 ABC2=ALPHA*BC2
 MMAX=WMAX*R1/C+7.
 IF(MMAX.GT.NT4-2) THEN
 PRINT *, 'MMAX ', MMAX
 STOP 20
 END IF
 IX=0
10 DO 100 IW=2, NSTAR
 RHO=R1*WW(IW)/C
 EM=RHO+7.
 M=EM+.5
 IF(M.GT.NT4-2) STOP 21
 IX=IX+1
100 CONTINUE
CALL BESRJ(RHO, 5, M+2, 1, BES, NCALC)
IF(NCALC .NE. M+2) THEN
 PRINT *, 'ERROR IN COMPUTATION OF BESSEL FUNCTIONS ', NCALC
 STOP 10
END IF
CALL BESRY(RHO, 5, M-2, 1, ENEU, NCALC)
IF(NCALC .NE. M+2) THEN
 PRINT *, 'ERROR IN COMPUTATION OF NEUMANN FUNCTIONS ', NCALC
 STOP 11
END IF
C COMPUTATION OF SCATTERING COEFFICIENTS
CALL SCACO
C COMPUTATION OF MONOCHROMATIC FIELDS
CALL FLD(IW, M)
100 CONTINUE
TL=SECOND()-TL
PRINT *, 'TIME TO COMPUTE MONOCHROMATIC FIELDS IS ', TL, ' SECONDS'
DO 210 IANG=1, NANG
 FT1(I)=0.
 FT2(I)=0.
 DO 200 I=2, NSTAR
 W=WW(I)
 WRC=W*R1/C
 FAC=CMPLX(B2A2C2, BAC*R1)/CMPLX(ABC2-W**2, ABC*W)**2
 FAC=FAC*CMPLX(COS(WRC), SIN(WRC))
 FAC=BC2*FAC/W
 FT1(I)=EYE*CMPLX(A01R(IANG, I), A01I(IANG, I))*FAC
 FT2(I)=EYE*CMPLX(A02R(IANG, I), A02I(IANG, I))*FAC
200 CONTINUE
TL=SECOND()
CALL VINUFT(TI, AMP1, NT, NSTAR, WW, 1, FT1, S1, S2, S3, S4, -1)
TL=SECOND()-TL
PRINT *, 'TIME TO COMPUTE A FOURIER TRANSFORM IS ', TL, ' SECONDS'
WRITE(7) AMP1
C COMPUTE OTHER POLARIZATION UNLESS THETA = 0, 180
IF(ANGLE(IANG), NE. 0 . AND. ANGLE(IANG), NE. 180.) THEN
 TL=SECOND()
 CALL VINUFT(TI, AMP2, NT, NSTAR, WW, 1, FT2, S1, S2, S3, S4, -1)
 TL=SECOND()-TL
 PRINT *, 'TIME TO COMPUTE A FOURIER TRANSFORM IS ', TL, ' SECONDS'
 WRITE(7) AMP2
END IF
210 CONTINUE
REWIND 7
DO 300 IANG=1, NANG
 WRITE(SBLAB, 3) ALPHA, BETA, R1, ANGLE(IANG)
 IF(ANGLE(IANG), NE. 0 . AND. ANGLE(IANG), NE. 180.) THEN
 READ(7) AMP2
 READ(7) AMP1
 ELSE
 READ(7) AMP1
 END IF
END IF
DO 220 I=1, NT
 AMP1(I)=AMP1(I)**2
300 CONTINUE
CONTINUE
IF(IPLOT.EQ.1.OR.IPLOT.EQ.2) THEN
 CALL DRAW4(1,2,16,12,44,72,XLAB,YLAB,PTLAB1,SBLAB)
 CALL DRAW4A(1,1,NT,' ',0,0,PTI,AMP1,0.,0.)
 CALL DRAW4B(1,0,0,NT,PTI,AMP1,2.,2.)
END IF
IF(IPLOT.EQ.0.OR.IPLOT.EQ.2) THEN
 CALL DRAW3(1,2,16,12,44,72,XLAB,YLAB,PTLAB1,SBLAB)
 CALL DRAW3A(1,1,NT,' ',0,0,PTI,AMP1,0.,0.)
 CALL DRAW3B(1,0,0,NT,PTI,AMP1,2.,2.)
END IF
IF(ANGLE(IANG).NE.0. AND. ANGLE(IANG).NE.180.) THEN
 DO 260 I=1,NT
 AMP2(I)=AMP2(I)**2
 CONTINUE
 IF(IPLOT.EQ.1.OR.IPLOT.EQ.2) THEN
 CALL DRAW4(1,2,16,12,44,72,XLAB,YLAB,PTLAB2,SBLAB)
 CALL DRAW4A(1,1,NT,' ',0,0,PTI,AMP2,0.,0.)
 CALL DRAW4B(1,0,0,NT,PTI,AMP2,2.,2.)
 END IF
 IF(IPLOT.EQ.0.OR.IPLOT.EQ.2) THEN
 CALL DRAW3(1,2,16,12,44,72,XLAB,YLAB,PTLAB2,SBLAB)
 CALL DRAW3A(1,1,NT,' ',0,0,PTI,AMP2,0.,0.)
 CALL DRAW3B(1,0,0,NT,PTI,AMP2,2.,2.)
 END IF
END IF
END IF
CONTINUE
CLOSE(7)
CALL Q5PURGE('LFN=','PERFSV','STATUS=',ISTAT)
IF(ISTAT.GT.0. AND. ISTAT.NE.1402) STOP 4
CALL Q5DEFINE('LFN=','PERFSV')
STOP
1 FORMAT(E12.5)
2 FORMAT(14)
3 FORMAT('ALPHA = ',F5.2,' ',BETA = ',F5.2,' ,
1 'RAIUS = ',F4.2,' , ANGLE = ',F4.0)
END

SUBROUTINE SCACO
PARAMETER(NW=9170, NT=3600, NT4=1200)
DIM. PTI(NT4), TI(NT), AMP1(NT), AMP2(NT), WW(NW),
1 SI(NW), S2(NW), S3(NW), S4(NW)
DIMENSION F1(5,NT4), F2(NT4), TAU(5,NT4), X(NT4)
COMPLEX FT1(NT4), FT2(NW), FAC, EYE
COMMON/PERAR/ANGLE(5), AG1R(5,NW), AG1I(5,NW),
1 AG2R(5,NW), AG2I(5,NW),
2 BES(NT4), ENU(NT4), RA(NT4), EIA(NT4), RD(NT4), EIB(NT4),
3 PTI, TI, AMP1, AMP2, WW, FT1, FT2, S1, S2, S3, S4, PI, P, TAU, X
COMMON/VAR/ NANGL, RHO, EM
IERR=0
M=EM
CALCULATION FOR PERFECTLY CONDUCTING SPHERE
DO 82 I=1,M
 AV=1

ATER=(AY+1.)*BES(I+1)-RHO*BES(I+2)
BTER=(AY+1.)*ENEU(I+1)-RHO*ENEU(I+2)
A2=ATER**2
FRAC=1./(A2+BTER**2)
RB(I)=-A2*FRAC
EIB(I)=ATER*BTER*FRAC
ATER=BES(I+1)
BTER=ENEU(I+1)
A2=ATER**2
FRAC=1./(A2+BTER**2)
RA(I)=-A2*FRAC
EIA(I)=ATER*BTER*FRAC
82 CONTINUE
RETURN
END

SUBROUTINE FLD(IW, LMAX)
PARAMETER(NW=8192, NTM=3000, NT4=1200)
REAL PTI(NTM), TI(NTM), AMP1(NTM), AMP2(NTM), WW(NW),
S1(NW), S2(NW), S3(NW), S4(NW)
DIMENSION PI(5, NT4), P(NT4), TAU(5, NT4), X(NT4)
COMPLEX FT1(NW), FT2(NW), FAC, EYE
COMMON/PERAR/ANGLE(5), AG1R(5, NW), AG1I(5, NW),
AG2R(5, NW), AG2I(5, NW),
BES(NT4), ENEU(NT4), RA(NT4), EIA(NT4), RB(NT4), EIB(NT4),
PTI, TI, AMP1, AMP2, WW, FT1, FT2, S1, S2, S3, S4, P1, P, TAU, X
COMMON/VAR/ NANGL, RHO, EM
DO 3 J=1, NANGL
THETA=ANGLE(J)*1.745329251994E-2
P(1)=COS (THETA)
PI(J, 1)=1.
TAU(J, 1)=P(1)
P(2)=1.5*P(1)**2-.5
PI(J, 2)=3.*P(1)
TAU(J, 2)=4.*P(2)-1.
DO 2 L=3, LMAX
EL=L
P(L)=(2.*EL-1.)/EL*P(1)*P(L-1)-(EL-1.)/EL*P(L-2)
PI(J, L)=P(1)*PI(J, L-1)+EL*P(L-1)
2 TAU(J, L)=EL*(EL+1.)*P(L)-P(1)*PI(J, L)
3 CONTINUE
DO 4 L=1, LMAX
EL=L
4 X(L)=(2.*EL+1.)/(EL*(EL+1.))
M=EM+.0001
DO 6 J=1, NANGL
AG1R(J, IW)=0.
AG1I(J, IW)=0.
AG2R(J, IW)=0.
AG2I(J, IW)=0.
DO 6 L=1, M
AG1R(J, IW)=AG1R(J, IW)+X(L)*RAD(L)*PI(J, L)+RB(L)*TAU(J, L))
AG1I(J, IW)=AG1I(J, IW)+X(L)*EIA(L)*PI(J, L)+EIB(L)*TAU(J, L))
AG2R(J, IW)=AG2R(J, IW)+X(L)*RB(L)*PI(J, L)+RA(L)*TAU(J, L))
85
\[AG2I(J, IW) = AG2I(J, IW) + X(L) \times (EIB(L) \times PI(J, L) + EIA(L) \times TAU(J, L)) \]

CONTINUE
RETURN
END
PROGRAM PERFPLT(INPUT, OUTPUT)
C

C PLOTS PREVIOUSLY CALCULATED SCATTERED FIELDS
CHARACTER XLAB*30, YLAB*30, PTLAB1*80, PTLAB2*80, SBLAB*80
DIMENSION PTI(3000), AMP01(3000), AMP02(3000),
1 T1(3000), T2(3000), T3(3000), T4(3000), AMP1(3000), AMP2(3000),
2 AMP3(3000), AMP4(3000), ANGLE(5)
LOGICAL TWO, NEWT1, NEWT2
CHARACTER*4 QL1, QL2, QL3, QL4, SL(4)
CHARACTER*40 L(6)
DATA XLAB/'C*TIME (METERS)' /*, YLAB/'INTENSITY' /*
DATA PTLAB1/'SCATTERED INTENSITY, HORIZONTAL POLARIZATION' /*
DATA PTLAB2/'SCATTERED INTENSITY, VERTICAL POLARIZATION' /*
DATA C/3.E8/,. NEWT1,. NEWT2/2*. FALSE. /
READ *, QL1, QL2, QL3, QL4, CT1, CT2, IPILOT, INVER, (L(I), I=1, 6)
PRINT *, 'COMPARISON OF PLOTS PRODUCED BY PERF WITH THOSE',
1 ' PRODUCED BY SCAT, IF ANY'
PRINT *, 'QUALIFIERS', QL1, QL2, QL3, QL4
DO 100 I=1, 6
 PRINT 4
 PRINT *, L(I)
100 CONTINUE
PRINT 4
IF(CT1. NE. 0. . AND. CT2. NE. 0. . AND. CT1. GT. CT2) THEN
 PRINT *, 'INITIAL TIME ', CT1, ' GREATER THAN FINAL TIME ', CT2
STOP 10
END IF
IF(CT1. NE. 0.) NEWT1=TRUE.
IF(CT2. NE. 0.) NEWT2=TRUE.
CALL Q5ATTACH('LFN=', 'PERFSV')
OPEN(7, FILE='PERFSV', FORM='UNFORMATTED', STATUS='OLD')
READ 1, CTMAX, CTMIN, R1, ALPHA, BETA
READ 2, NT, NSTAR, NANGL
CDT=(CTMAX-CTMIN)/(NT-1)
IF(NANGL. GT. 5) STOP 1
IF(NT. GT. 3000) STOP 3
READ *, (ANGLE(I), I=1, NANGL)
READ 1, DW, WMAX
NREC=1
NQ=0
IF(QL1. NE. 'NO') THEN
 NQ=NQ+1
 SL(NQ)=QL1
 CALL Q5ATTACH('LFN=', 'SCFL'/QL1)
 OPEN(8, FILE='SCFL'/QL1, STATUS='OLD',
 1 ACCESS='DIRECT', FORM='UNFORMATTED', RECL=2400)
END IF
IF(QL2. NE. 'NO') THEN
 NQ=NQ+1
 SL(NQ)=QL2
 CALL Q5ATTACH('LFN=', 'SCFL'/QL2)
 OPEN(9, FILE='SCFL'/QL2, STATUS='OLD',
 1 ACCESS='DIRECT', FORM='UNFORMATTED', RECL=2400)
END IF
IF(QL3. NE. 'NO') THEN

87
NQ=NQ+1
SL(NQ)=QL3
CALL Q5ATTACH('LFN=', 'SCFL'/GL3)
OPEN(10, FILE='SCFL'/GL3, STATUS='OLD',
1 ACCESS='DIRECT', FORM='UNFORMATTED', RECL=2400)
END IF
IF(GL4. NE. 'NO') THEN
NQ=NQ+1
SL(NQ)=QL4
CALL Q5ATTACH('LFN=', 'SCFL'/GL4)
OPEN(11, FILE='SCFL'/GL4, STATUS='OLD',
1 ACCESS='DIRECT', FORM='UNFORMATTED', RECL=2400)
END IF
DO 500 IANG=1, NANG
WRITE(SBLAB, 3) ALPHA, BETA, R1, ANGLE(IANG), (SL(I), I=1, NQ)
IF(ANGLE(IANG). NE. 0. . AND. ANGLE(IANG). NE. 180.) THEN
TWO=. TRUE.
IF(INVER. EQ. 1) THEN
READ(7, END=600) AMP02
READ(7) AMP01
ELSE
READ(7, END=600) AMP01
READ(7) AMP02
END IF
ELSE
TWO=. FALSE.
READ(7, END=600) AMP01
END IF
CTIM=CTMIN
DO 210 I=1, NT
AMP01(I)=AMP01(1)**2
PTI(I)=CTIM
CTIM=CTIM+CDT
210 CONTINUE
IF(NEWT1) THEN
DO 222 I01=1, NT
IF(PTI(I01). GE. CT1) GO TO 223
222 CONTINUE
PRINT *, 'FINAL TIME ', CT1, ' TOO LARGE'
STOP 10
ELSE
I01=1
END IF
223 IF(NEWT2) THEN
DO 224 I02=NT, 1, -1
IF(PTI(I02). LE. CT2) GO TO 225
224 CONTINUE
PRINT *, 'FINAL TIME ', CT2, ' TOO SMALL'
STOP 10
ELSE
I02=NT
END IF
225 IF(I01. GT. 1) THEN
DO 226 I3=I01, I02
AMPO1(I3-I01+1)=AMPO1(I3)
PTI(I3-I01+1)=PTI(I3)

226 CONTINUE
END IF
NTP=I02-I01+1
IF(QL1. NE. 'NO') THEN
READ(8,END=600) T1
READ(8) AMP1
DO 240 NT1=1,300
 IF(AMP1(NT1).LT.0.) GO TO 245
240 CONTINUE
245 NT1=NT1-1
IF(NEWT1) THEN
 DO 252 I1=1,NT1
 IF(T1(I1).GE.CT1) GO TO 253
252 CONTINUE
 ELSE
 I1=1
 END IF
253 IF(NEWT2) THEN
 DO 254 I2=NT1,1,-1
 IF(T1(I2).LE.CT1) GO TO 255
254 CONTINUE
 ELSE
 I2=NT1
 END IF
255 IF(I1. NE. 1) THEN
 DO 256 I3=11,I2
 AMP1(I3-I1+1)=AMP1(I3)
 T1(I3-I1+1)=T1(I3)
256 CONTINUE
 END IF
NT1=I2-I1+1
END IF
IF(QL2. NE. 'NO') THEN
READ(9,END=600) T2
READ(9) AMP2
DO 260 NT2=1,300
 IF(AMP2(NT2).LT.0.) GO TO 265
260 CONTINUE
265 NT2=NT2-1
IF(NEWT1) THEN
 DO 272 I1=1,NT2
 IF(T2(I1).GE.CT1) GO TO 273
272 CONTINUE
 ELSE
 I1=1
 END IF
273 IF(NEWT2) THEN
 DO 274 I2=NT2,1,-1
 IF(T2(I2).LE.CT2) GO TO 275
274 CONTINUE
 ELSE
 I2=NT2
 END IF
END IF
IF(I1. NE. 1) THEN
 DO 276 I3=I1, I2
 AMP2(I3-I1+1)=AMP2(I3)
 T2(I3-I1+1)=T2(I3)
 276 CONTINUE
END IF

NT2=I2-I1+1
END IF

IF(QL3. NE. 'NO') THEN
 READ(10, END=600) T3
 READ(10) AMP3
 DO 280 NT3=1, 300
 IF(AMP3(NT3). LT. 0.) GO TO 285
 280 CONTINUE

NT3=NT3-1
IF(NEWT1) THEN
 DO 292 I1=1, NT3
 IF(T3(I1). GE. CT1) GO TO 293
 292 CONTINUE
ELSE
 I1=1
END IF

IF(NEWT2) THEN
 DO 294 I2=NT3, 1,-1
 IF(T3(I2). LE. CT2) GO TO 295
 294 CONTINUE
ELSE
 I2=NT3
END IF

IF(I1. NE. 1) THEN
 DO 296 I3=I1, I2
 AMP3(I3-I1+1)=AMP3(I3)
 T3(I3-I1+1)=T3(I3)
 296 CONTINUE
END IF

NT3=I2-I1+1
END IF

IF(QL4. NE. 'NO') THEN
 READ(11, END=600) T4
 READ(11) AMP4
 DO 300 NT4=1, 300
 IF(AMP4(NT4). LT. 0.) GO TO 305
 300 CONTINUE

NT4=NT4-1
IF(NEWT1) THEN
 DO 312 I1=1, NT4
 IF(T4(I1). GE. CT1) GO TO 313
 312 CONTINUE
ELSE
 I1=1
END IF

IF(NEWT2) THEN
 DO 314 I2=NT4, 1,-1

90
IF(T4(I2).LE.CT2) GO TO 315

314 CONTINUE
ELSE
 I2=NT4
END IF

315 IF(I1.NE.1) THEN
 DO 316 I3=I1, I2
 AMP4(I3-I1+1)=AMP4(I3)
 T4(I3-I1+1)=T4(I3)
 END DO
316 CONTINUE
END IF

IF(NT4=I2-I1+1) THEN
 CONTINUE
 END IF
END IF

IF(NREC=NREC+2) THEN
 NM1=NT1/20+4
 NM2=NM1+1
 NM3=NM2+1
 NM4=NM3+1
END IF

IF(IPL0T.EQ.1 OR IPL0T.EQ.2) THEN
 CALL DRAW4(1,1,16,12,44,80,XLAB,YLAB,PTLAB1,SBLAB)
 CALL DRAW4A(1,1,NTP, ' ', 0,0,PTI,AMP01,0.,0.)
 IF(QL1.NE.'NO') CALL DRAW4A(1,1,NT1, ' ', 0,NM1,1,T1,AMP1,0.,0.)
 IF(QL2.NE.'NO') CALL DRAW4A(1,1,NT2, ' ', 1,NM2,2,T2,AMP2,0.,0.)
 IF(QL3.NE.'NO') CALL DRAW4A(1,1,NT3, ' ', 2,NM3,3,T3,AMP3,0.,0.)
 IF(QL4.NE.'NO') CALL DRAW4A(1,1,NT4, ' ', 3,NM4,4,T4,AMP4,0.,0.)
 CALL DRAW4B(1,0,0,0,3000,PTI,AMP01,2.,2.)
END IF

IF(IPL0T.EQ.0 OR IPL0T.EQ.2) THEN
 CALL DRAW3(1,1,16,12,44,80,XLAB,YLAB,PTLAB1,SBLAB)
 CALL DRAW3A(1,1,NTP, ' ', 0,0,PTI,AMP01,0.,0.)
 IF(QL1.NE.'NO') CALL DRAW3A(1,1,NT1, ' ', 0,NM1,1,T1,AMP1,0.,0.)
 IF(QL2.NE.'NO') CALL DRAW3A(1,1,NT2, ' ', 1,NM2,2,T2,AMP2,0.,0.)
 IF(QL3.NE.'NO') CALL DRAW3A(1,1,NT3, ' ', 2,NM3,3,T3,AMP3,0.,0.)
 IF(QL4.NE.'NO') CALL DRAW3A(1,1,NT4, ' ', 3,NM4,4,T4,AMP4,0.,0.)
 CALL DRAW3B(1,0,0,0,3000,PTI,AMP01,2.,2.)
END IF

IF(TWO) THEN
 DO 320 I=1, NT
 AMP02(I)=AMP02(I)**2
320 CONTINUE

 IF(IO1.NE.1) THEN
 DO 326 I3=IO1, IO2
 AMP02(I3-IO1+1)=AMP02(I3)
326 CONTINUE
 END IF

 IF(QL1.NE.'NO') THEN
 READ(8,END=600) T1
 CALL READ(IO,AMPl)
 DO 340 N1=1,300
 IF(AMPl(N1).LT.0.) GO TO 345
540 CONTINUE
345 NT1=NT1-1
 IF(NEWT1) THEN
 DO 352 N1=1,NT1
352 CONTINUE
91
IF(T1(I1).GE.CT1) GO TO 353
352 CONTINUE
ELSE
I1=1
END IF
353 IF(NEWT2) THEN
DO 354 I2=NT1,1,-1
IF(T1(I2).LE.CT2) GO TO 355
354 CONTINUE
ELSE
I2=NT1
END IF
355 IF(I1.NE.1) THEN
DO 356 I3=I1,I2
AMP1(I3-I1+1)=AMP1(I3)
T1(I3-I1+1)=T1(I3)
356 CONTINUE
END IF
NT1=I2-I1+1
END IF
IF(QL2.NE.'NO') THEN
READ(9,END=600) T2
READ(9) AMP2
DO 360 NT2=1,300
IF(AMP2(NT2).LT.0.) GO TO 365
360 CONTINUE
365 NT2=NT2-1
IF(NEWT1) THEN
DO 372 I1=1,NT2
IF(T2(I1).GE.CT1) GO TO 373
372 CONTINUE
ELSE
I1=1
END IF
373 IF(NEWT2) THEN
DO 374 I2=NT2,1,-1
IF(T2(I2).LE.CT2) GO TO 375
374 CONTINUE
ELSE
I2=NT2
END IF
375 IF(I1.NE.1) THEN
DO 376 I3=I1,I2
AMP2(I3-I1+1)=AMP2(I3)
T2(I3-I1+1)=T2(I3)
376 CONTINUE
END IF
NT2=I2-I1+1
END IF
IF(QL3.NE.'NO') THEN
READ(10,END=600) T3
READ(10) AMP3
DO 380 NT3=1,300
IF(AMP3(NT3).LT.0.) GO TO 385
380 CONTINUE
END IF
380 CONTINUE
385 NT3=NT3-1
IF(NEWT(1)) THEN
 DO 392 I1=1,NT3
 IF(T3(I1).GE.CT1) GO TO 393
 CONTINUE
ELSE
 I1=1
END IF
393 IF(NEWT2) THEN
 DO 394 I2=NT3,1,-1
 IF(T3(I2).LE.CT2) GO TO 395
 CONTINUE
ELSE
 I2=NT3
END IF
395 IF(I1.NE.1) THEN
 DO 396 I3=I1,I2
 AMP4(I3-I1+1)=AMP4(I3)
 T3(I3-I1+1)=T3(I3)
 CONTINUE
END IF
NT3=I2-I1+1
END IF
IF(QL4.NE.'NO') THEN
 READ(11,END=600) T4
 READ(11) AMP4
 DO 400 NT4=1,300
 IF(AMP4(NT4).LT.0.) GO TO 405
 CONTINUE
400 NT4=NT4-1
IF(NEWT1) THEN
 DO 412 I1=1,NT4
 IF(T4(I1).GE.CT1) GO TO 413
 CONTINUE
ELSE
 I1=1
END IF
413 IF(NEWT2) THEN
 DO 414 I2=NT4,1,-1
 IF(T4(I2).LE.CT2) GO TO 415
 CONTINUE
ELSE
 I2=NT4
END IF
415 IF(I1.NE.1) THEN
 DO 416 I3=I1,I2
 AMP4(I3-I1+1)=AMP4(I3)
 T4(I3-I1+1)=T4(I3)
 CONTINUE
END IF
NT4=I2-I1+1
END IF
NREC=NREC+2
NM1 = INT(NT1 / 20 + 4)
NM2 = NM1 + 1
NM3 = NM2 + 1
NM4 = NM3 + 1

IF (IPILOT.EQ.1 .OR. IPILOT.EQ.2) THEN
 CALL DRAW4(1, 1, 16, 44, 80, XLAB, YLAB, PTLAB2, SBLAB)
 CALL DRAW4A(1, 1, NT1, '0', 0, 0, PTI, AMP02, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL1 .NE. 'NO') CALL DRAW4A(1, 1, NT1, '0', NM1, 1, T1, AMP1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL2 .NE. 'NO') CALL DRAW4A(1, 1, NT2, '1', NM2, 2, T2, AMP2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL3 .NE. 'NO') CALL DRAW4A(1, 1, NT3, '2', NM3, 3, T3, AMP3, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL4 .NE. 'NO') CALL DRAW4A(1, 1, NT4, '3', NM4, 4, T4, AMP4, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 CALL DRAW4B(1, 0, 0, 0, 3000, PTI, AMP02, 0, 0, 0, 0, 0, 0, 0, 0, 0)
END IF

IF (IPILOT.EQ.0 .OR. IPILOT.EQ.2) THEN
 CALL DRAW3(1, 1, 16, 44, 80, XLAB, YLAB, PTLAB2, SBLAB)
 CALL DRAW3A(1, 1, NT1, '0', 0, 0, PTI, AMP02, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL1 .NE. 'NO') CALL DRAW3A(1, 1, NT1, '0', NM1, 1, T1, AMP1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL2 .NE. 'NO') CALL DRAW3A(1, 1, NT2, '1', NM2, 2, T2, AMP2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL3 .NE. 'NO') CALL DRAW3A(1, 1, NT3, '2', NM3, 3, T3, AMP3, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 IF (QL4 .NE. 'NO') CALL DRAW3A(1, 1, NT4, '3', NM4, 4, T4, AMP4, 0, 0, 0, 0, 0, 0, 0, 0, 0)
 CALL DRAW3B(1, 0, 0, 0, 3000, PTI, AMP02, 0, 0, 0, 0, 0, 0, 0, 0, 0)
END IF

500 CONTINUE
600 STOP
1 FORMAT(E12.5)
2 FORMAT(I4)
PROGRAM CURCHK
PARAMETER(LL=LLG)
C LCG, LL12G, AND LL20G NOT NEEDED
DIMENSION CJTH(900, 10), CJPH(900, 10), T(900)
DIMENSION NPCH(10), CJA(LL)
CHARACTER GAL*4, XLAB*30, YLAB*30, TITLE*80, SUBT*80
COMMON /PASS/ N1, N2, N3, IS, IPATCH, RAD, C, DT1
DATA XLAB/'C TIME/', YLAB/'SURFACE DENSITY/', TITLE/'SURFACE CURRENT DENSITY/', DATA C/3. E8/
C READ INFORMATION FOR CURRENT CHECK
C READ *, GAL, IPLDT, IPRINT, NN
IF(NN.GT.10) STOP 1
READ *, (NPCH(I), I=1, NN)
READ *, CT1, CT2, IPATCH
C READ IN VALUES OF CONSTANTS FOR THE PULSE
C READ 4, DT, RAD, ALPHA, BETA
READ 5, N1
READ 5, N1, N2, N3
CALL RUNT2
IF(DT.EQ.0.) DT=DT1
IF(NI.EQ.0) NI=6.*RAD/(C*DT)
CDT=C*DT
NI1=CT1/CDT+1.
NI2=CT2/CDT+1.
CALL Q5ATTACH('LFN=', 'SCSV'/GAL)
OPEN(2, FILE='SCSV'/GAL, STATUS='OLD', ACCESS='DIRECT',
1 FORM='UNFORMATTED', RECL=IS*8)
IF(NI2.EQ.1) NI2=NI
IF(NI1.GE.NI2. OR. NI12.GT.900) THEN
 PRINT *, 'NI1=', NI1, ', NI2=', NI2, ', CT1=', CT1, ', CT2=', CT2
 STOP 2
END IF
NI1=NI2-NI1+1
NK=NI1/12+2
NK1=NK+1
TT=(NI1-1)*CDT
DO 200 I=NI1, NI2
 READ(2, REC=I*2-1) CJA(I; IS)
 DO 110 N=1, NN
 CJTH(I, N)=CJA(NPCH(N))
 CONTINUE
 READ(2, REC=I*2) CJA(I; IS)
 DO 120 N=1, NN
 CJPH(I, N)=CJA(NPCH(N))
 CONTINUE
 T(I)=TT
 TT=TT+CDT
200 CONTINUE
IF(IPRINT.NE.0) THEN
PRINT *, 'INPUT FILE SCIN', QAL
PRINT *, 'DT=', DT, ' ALPHAD=', ALPHA, ' BETA=', BETA,
1 ' NI=', NI, ' N1=', N1, ' N2=', N2, ' N3=', N3
DO 220 N=1, NN
 NU=NPCH(N)
DO 210 I=NI1, NI2
 PRINT 2, NU, I, CJTH(I,N), CJPH(I,N)
210 CONTINUE
PRINT 3
220 CONTINUE
END IF
IF(IPRINT.NE.1) THEN
 DO 250 N=1, NN
 WRITE(SUBT,1) QAL,NPCH(N)
 IF(IPLT.NE.1) THEN
 CALL DRAW3(1, 7, 8, 15, 23, 33, XLAB, YLAB, TITLE, SUBT)
 CALL DRAW3A(1, 1, NI, ' 1', NK, 0, T(NI), CJTH(NI, N), 0. 0)
 CALL DRAW3A(1, 1, NI, ' 2', NK, 0, T(NI), CJPH(NI, N), 0. 0)
 CALL DRAW3B(1, 0, 0, NI, CJA, T, 2., 2.)
 END IF
 IF(IPLT.NE.0) THEN
 CALL DRAW4(1, 7, 8, 15, 23, 33, XLAB, YLAB, TITLE, SUBT)
 CALL DRAW4A(1, 1, NI, ' 1', NK, 0, T(NI), CJTH(NI, N), 0. 0)
 CALL DRAW4A(1, 1, NI, ' 2', NK, 0, T(NI), CJPH(NI, N), 0. 0)
 CALL DRAW4B(1, 0, 0, NI, CJA, T, 2., 2.)
 END IF
250 CONTINUE
END IF
STOP
1 FORMAT('QUALIFIER ','A4', ' PATCH NUMBER ', I4)
2 FORMAT(1X,21B,2(3X,1PE16.9))
3 FORMAT(////)
4 FORMAT(E12.5)
5 FORMAT(3I4)
END
SUBROUTINE RUNT2
C THIS SUBROUTINE DETERMINES THE NUMBER OF PATCHES AND
C DT FROM THE PATCH DISTRIBUTION ON THE SPHERE
C COMMON /PASS/ N1, N2, N3, IS, IPATCH, RAD, C, DT1
C PI=4.*ATAN(1.)
 DTH=PI/(N1-1)
 SDTH2=SIN(DTH*.5)
 TH=PI
 N1H=(N1+1)/2
 DPH=1.
 IS=2
IF(IPATCH.EQ.0) THEN
 NPHX=1
 NPHX=NPHX*2
 IF(NPHX.LT.N3) GO TO 90
 DO 100 I=2, N1H

90
TH=TH-DTH
STH=SIN(TH)
NPH=(N2-N3)*STH+N3+.5
IF(NPH.GT.NPHX) NPHX=NPHX*2
IS=IS+NPHX*2
DPH=AMIN1(DPH,STH*SIN(PI/NPHX))
CONTINUE
IF(MOD(N1,2).EQ.1) IS=IS-NPHX
ELSE
DO 105 I=2,N1H
 TH=TH-DTH
 STH=SIN(TH)
 NPH=(N2-N3)*STH+N3+.5
 IS=IS+NPHX*2
 DPH=AMIN1(DPH,STH*SIN(PI/NPHX))
CONTINUE
105 IF(MOD(N1,2).EQ.1) IS=IS-NPH
END IF
IF(DT1=1.6*RAD/C*AMIN1(SDTHP,DFH)) RETURN
END
SUBROUTINE VNUFT(X, Y, N, NU, OM, IOM, FT, DX, CX, SX, JFLAG)
C THIS SUBROUTINE CALCULATES THE FOURIER TRANSFORM OF THE
C FUNCTION GIVEN BY STRAIGHT LINES JOINING THE POINTS GIVEN BY THE
C ARRAYS X, Y. THE NUMBER OF INPUT POINTS IS N. THE FREQUENCY ARRAY OM IS
C PROVIDED AND HAS DIMENSION NU. DX, CX, SX ARE REAL ARRAYS OF DIMENSION N
C THAT ARE USED FOR SCRATCH. THE FOURIER TRANSFORM IS GIVEN BY THE
C COMPLEX ARRAY FT.
C IF IOM=1, INPUT AND OUTPUT OM ARE CIRCULAR FREQUENCIES
C IF IOM=2, INPUT ARRAY IS CIRCULAR FREQUENCY, OUTPUT IS FREQUENCY
C IF IOM=3, INPUT ARRAY IS FREQUENCY, OUTPUT IS CIRCULAR FREQUENCY
C IF IOM=4, INPUT AND OUTPUT OM ARE FREQUENCIES
C JFLAG=+1 IF THE FOURIER TRANSFORM HAS A FACTOR EXP(+IWT)
C JFLAG=-1 IF THE FOURIER TRANSFORM HAS A FACTOR EXP(-IWT)
DIMENSION X(N), Y(N), DX(N), CX(N), SX(N), OM(NU)
COMPLEX FT(NU)
TOPI=8.*ATAN(1.)
TPIN=1./TOPI
IF(IOM.LE.2) GO TO 25
OM(1;N)=OM(1;N)*TOPI
25 NP=N-1
DX(1;NP)=Q8VDELT(X(1;N);DX(1;NP))
NO=1
IF(OM(1).EQ.0.) THEN
NO=2
S=Q8SSUM(Q8VADJM(Y(1;N);NP)*DX(1;NP))
FT(1)=CMPLX(S,0.)
END IF
DX(1;NP)=Q8VDELT(Y(1;N);NP)/DX(1;NP)
DO 70 I=NO,NU
IOM=I
WIN=1./W
CX(1;N)=VCOS(W*X(1;N);CX(1;N))
SX(1;N)=VSIN(W*X(1;N);SX(1;N))
S2R=Q8SSUM(Q8VDELT(CX(1;N);NP)*DX(1;NP))
S2I=Q8SSUM(Q8VDELT(SX(1;N);NP)*DX(1;NP))
S1R=Y(1)*CX(1)-Y(N)*CX(N)
S1I=Y(1)*SX(1)-Y(N)*SX(N)
FT(I)=CMPLX((-S1I+S2R*WIN)*WIN, (S1R+S2I*WIN)*WIN)
70 CONTINUE
IF(IOM.EQ.1. OR. IOM.EQ.3) GO TO 85
OM(1;N)=OM(1;N)*TPIN
85 IF(JFLAG.EQ.1) RETURN
FT(1;NU)=VCONJG(FT(1;NU);FT(1;NU))
RETURN
END
C SUBROUTINE VNUFT(X, Y, N, NU, OM, IOM, FT, SCR, SCR, CX, SX, JFLAG)
C THIS SUBROUTINE CALCULATES THE INVERSE FOURIER TRANSFORM OF THE FUNCTION
C GIVEN BY STRAIGHT LINES JOINING THE POINTS GIVEN BY THE COMPLEX ARRAY FT
C AS A FUNCTION OF THE REAL ARRAY OM. THE NUMBER OF INPUT POINTS IS NU.
C THE INVERSE F.T. IS ASSUMED TO BE A REAL FUNCTION AND GOES IN THE
C ARRAY Y, AND THE REAL ARRAY X IS GIVEN AND HAS DIMENSION N.
C SCR, SCR ARE REAL ARRAYS OF DIMENSION NU AND IS USED FOR SCRATCH.
C IF IOM=1, INPUT AND OUTPUT OM ARE CIRCULAR FREQUENCIES
C IF IOM=2, INPUT ARRAY IS CIRCULAR FREQUENCY, OUTPUT IS FREQUENCY
C IF IOM=3, INPUT ARRAY IS FREQUENCY, OUTPUT IS CIRCULAR FREQUENCY
C IF IOM=4, INPUT AND OUTPUT OM ARE FREQUENCIES
C JFLAG=-1 IF THE INVERSE FOURIER TRANSFORM HAS A FACTOR EXP(-IWT)
C JFLAG=+1 IF THE INVERSE FOURIER TRANSFORM HAS A FACTOR EXP(+IWT)

DIMENSION X(N), Y(N), OM(NU), SCRR(NU), SCR1(NU), CX(NU), SX(NU)
COMPLEX FT(NU)

TOPI=8. *ATAN(1.)
TPIN=1. /TOPI
P1N=2. *TPIN

IF(JFLAG.EQ.1) GO TO 15

IF(IOM.LE.2) GO TO 25

DO 70 I=1,N

 W=X(I)

 IF(ABS(W).LT.1.E-19) THEN
 Y(I)=PIN*Q8SSUM(Q8VADJM(VREAL(FT(I;NU));NU);NU)*Q8VDELT(OM(I;NU);NP)
 ELSE
 WIN=1. /W
 CX(I;NU)=VCOS(W*OM(I;NU));CX(I;NU))
 SX(I;NU)=VSIN(W*OM(I;NU));SX(I;NU))
 S2R=Q8SSUM(Q8VDELT(CX(I;NU);NP);SCR1(I;NP))
 S1I=REAL(FT(I)) *SX(I)+AIMAG(FT(I)) *CX(I))
 Y(I)=PIN*(-S1I+S2R*WIN)*WIN
 END IF

 CONTINUE

IF(IOM.EQ.1 OR IOM.EQ.3) GO TO 85

OM(I;NU)=OM(I;NU)*TPIN

IF(JFLAG.EQ.1) RETURN

RETURN
END
BIBLIOGRAPHIC DATA SHEET (See instructions)

<table>
<thead>
<tr>
<th>1. PUBLICATION OR REPORT NO.</th>
<th>2. Performing Organ. Report No.</th>
<th>3. Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBSIR 86-3362</td>
<td></td>
<td>APRIL 1986</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE

SCAT: A Vector Program to Solve a Transient MFIE

5. AUTHOR(S)

Egon Marx

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

The FORTRAN program SCAT is used to solve the magnetic field integral equation (MFIE) to determine the fields scattered by a perfectly conducting sphere. The incident field is a plane-wave pulse, and a stepping-in-time procedure is used to determine the surface current density induced on the sphere. The program does not take advantage of the special symmetry of the scatterer because it is intended to serve as a verified starting point for more general programs. The output is compared to that of the program PERF, which computes the same fields via a Fourier transform of the monochromatic fields obtained from the Mie formulas. The contributions of the self-patch and neighboring patches to the singular integral are optionally computed by using their expansions in the linear size of the patches. The self-patch term is important for the solution of other integral equations that may be of the first kind. For the MFIE, these corrections are small but not negligible. The program takes advantage of the vector programming features of the CYBER 205.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

- computer programs
- electromagnetic pulse scattering
- magnetic field integral equation
- Mie scattering
- perfectly conducting sphere
- stepping-in-time procedure
- transient electromagnetic fields
- vector programming

13. AVAILABILITY

- Unlimited
- For Official Distribution. Do Not Release to NTIS
- Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF PRINTED PAGES

104

15. Price

$16.95