
AlllQE MtmOt

MAn INST Of STANDARDS & TECH H.I.C.

A1 1102461406
May. WHIlam B/Varlficatlon o(public do
OC100 use NO 8S-3285 VISSS C.1 NBS-PUB-

Reference

I-3285

NBS

PUBLICATIONS

Verification of Public Domain
Control Algorithms for Building

Energy Management and Control
Systems

William B. May, Jr.

George E. Kelly

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Building Equipment Division

Gaithersburg, MD 20899

December 1985

nsored by;-gr
!. Naval Civil Engineering Laboratory

100 I. Department of Energy

• U56

85-3285

1985

I

ft

RESEARCH INRCKMATICN
CEIfTER

Cy ^
NBSIR 85-3285 /Q

VERIFICATION OF PUBLIC DOMAIN ^

CONTROL ALGORITHMS FOR BUILDING ^0

ENERGY MANAGEMENT AND CONTROL
SYSTEMS

William B. May, Jr.

George E. Kelly

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Building Equipment Division

Gaithersburg, MD 20899

December 1985

Sponsored by;

U.S. Naval Civil Engineering Laboratory

U.S. Department of Energy

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

^S0
^' •AVjW

m

-:iii

,T

V»w,

-<$-A‘'^ir»

‘a

W

f
^ ^

'^fAMOa 3J.»8W% « i
“ sFkfiiye
JO«T^0P'CW^ yj^3M3'ii
*“ '^'^ ^5T8 Y«''|,:'

4^ ar® ^
„ lii . 0 ijSf

'I..

.;; i'
, (_,_ ;,

'*;'i

ifpM

•'/, 'W''i

•IB'

T-a*̂
1%,: ;-=;r'^

.*(."va

)f^'

''1

arn*iinw J

tHe» .3 •'

:?

mr,/f

:i^ 'Ci3

« a *

• -‘1 "

i'
ft 'r''-‘-i^''

f^,
I V * ? f

' V
I \

30fr3MM00 30 TKJMTHA-lfO 8 U
I^WinidiC' W: u8«iu€

vioMicdtJ t^h*«nigin9 (•nolniM

VDOkandpiiT ornbikAS %Bt

dM .autCs^rtM
3S

IT*
s] « .'^gVi

'lJU. .f

'-if ?'...
L ^ • *•VT* ' *T t

^
... 4

' •; . y^.i

'i 1‘'1

‘-.Ti
. ».

Yio^imxJaJ gn»wo*on3 livO iaveM ,8.U

Y®i m3 >0 mi>ni.fi6Ci 0<3 .i^.Us

m
iL'

<

•a
‘II.

• > • »

|. .u, .

- ar***'^*

,3D«3MJi«00'^0 TM3MT«A«3n^,e.U

0
\avMV^O,.tai)dmA t«eri\3 .COhAOMATS 30 OA^IfOt! JAH0»IA*1

Mi'

ABSTRACT

Software is an important component of building energy management and control

systems (EMCS). It is usually supplied by EMCS vendors in proprietary
packages that do not contain human readable source code. Even when source
code listings are made available on a "limited use" basis, it is difficult for

the user to determine whether the supplied algorithms meet the design
specifications because of the lack of public domain HVAC control algorithms
with which to compare them.

To help overcome the above problem, the National Bureau of Standards developed
and documented eight public domain EMCS supervisory control algorithms. The

testing and verification of these eight algorithms are described in this
report. The algorithms tested cover dry bulb and enthalpy economizer cycles,
optimum and scheduled start/ stop, duty cycling, demand limiting, outside air
supply air reset, and demand supply air reset. For each of these algorithms,
the process of installing the algorithms on an NBS laboratory system is
discussed and a description is given of the tests performed. The results of

these experimental studies are presented, along with any additional
considerations for use of the algorithms that were developed as a result of
the testing program.

Key words: algorithm verification; control algorithms; demand limiting;
duty cycling; economizer cycles; energy management algorithms;
field testing; HVAC control; optimum start/stop; temperature
reset

iii

ACKNOWLEDGEMENTS

The authors of this report would like to acknowledge the assistance of a

number of people and organizations without whose cooperation the results
presented in the report would not have been possible. The work was funded by

the National Bureau of Standards* the U.S. Naval Civil Engineering Laboratory*
Department of Defense* and the U.S. Department of Energy. Dr. Cheol Park
developed many of the public domain algorithms tested in this report. The NBS
Plant Air Conditioning Shop patiently allowed the testing of algorithms on an
air handling unit for which they were responsible and provided assistance with
instrumentation. Warren Hurley provided assistance with instrumentation and
acted as liaison with the Air Conditioning Shop. J.M. Callen provided
invaluable assistance in conducting tests of the duty cycling algorithm.
Special acknowledgement is also due to the occupants of the offices in the
quadrant of building 226 at NBS which was supplied by the air handling unit
used for testing the algorithms* particularly Jan Clark and Laurie Watkins.

iv

TABLE OF CONTENTS
Pa ge

ABSTRACT iii

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES vii

SI CONVERSION FACTORS ix

1. INTRODUCTION 1-1

1.1 EMCS System Used for Verification 1-3

1.2 Air Handling Unit Used for Verification 1-5

2. VERIFICATION OF A DRY BULB ECONOMIZER ALGORITHM 2-1

2.1 Operation of Algorithm 2-1

2.2 Algorithm Installation 2-1

2.3 Corrections to Original Algorithm 2-2

2.4 Testing of Algorithm 2-2

2.5 Considerations in Use of Algorithm 2-4

3. VERIFICATION OF AN ENTHALPY ECONOMIZER ALGORITHM 3-1
3.1 Operation of the Algorithm 3-1

3.2 Installation of Algorithm 3-2

3.3 Corrections to Original Algorithm 3-2
3.4 Testing of Algorithm 3-2

3.5 Considerations for Use of Algorithm 3-4

4. VERIFICATION OF AN OPTIMUM START/STOP ALGORITHM 4-1

4.1 Operation of the Optimum Start/Stop Algorithm 4-1

4.2 Installation of Algorithm 4-4
4.3 Corrections to Algorithm 4-5

4.4 Testing of Algorithm 4-10
4.5 Considerations in Use of the Optimum Start/Start Algorithm 4-12
4.6 Revised Optimal Start/Stop Algorithms 4-16

5. VERIFICATION OF A SCHEDULED START/STOP ALGORITHM 5-1
5.1 Operation of Scheduled Start/Stop Algorithm 5-1

5.2 Installation of Scheduled Start/Stop Algorithm 5-1

5.3 Corrections to Original Algorithm 5-2
5.4 Testing of Algorithm 5-2
5.5 Considerations for Use of Algorithm 5-3

6. VERIFICATION OF A DUTY CYCLING ALGORITHM 6-1
6.1 Operation of Algorithm 6-1
6.2 Installation of Algorithm 6-2
6.3 Corrections to Original Algorithm 6-3
6.4 Testing of Algorithm 6-3
6.5 Considerations for Use of Algorithm 6-4
6.6 Revised Duty Cycling Algorithm 6-5

V

7. VERIFICATION OF DEMAND LIMITING ALGORITHMS 7-1

7.1 Operation of Algorithms 7-1

7.2 Installation of Algorithms 7-2

7.3 Corrections to Original Algorithm 7-4

7.4 Testing of the Algorithm 7-4

7.5 Considerations for Use of Algorithm 7-9

7.6 Revised Demand Limiting Algorithms 7-10

8. VERIFICATION OF AN OUTSIDE AIR SUPPLY AIR RESET ALGORITHM 8-1

8.1 Operation of Algorithm 8-1

8.2 Installation of Algorithm 8-1

8.3 Corrections to Original Algorithm..... 8-2

8.4 Testing of Algorithm 8-2

8.5 Considerations for Use of Algorithm 8-4

9. VERIFICATION OF A DEMAND SUPPLY AIR RESET ALGORITHM 9-1

9.1 Operation of the Algorithm 9-1

9.2 Installation of the Algorithm 9-1

9.3 Corrections to Original Algorithm 9-3

9.4 Testing of Algorithm 9-3

9.5 Considerations for Use of Algorithm 9-5

9.6 Revised Demand Supply Air Reset Algorithm 9-7

10. SUMMARY 10-1

11. REFERENCES 11-1

APPENDIX A SAMPLE IMPLEMENTATION OF OPTIMAL START/STOP ALGORITHM A-1

APPENDIX B SAMPLE IMPLEMENTATION OF DUTY CYCLING ALGORITHM B-1

APPENDIX C SAMPLE IMPLEMENTATION OF DEMAND LIMITING ALGORITHM C-1

APPENDIX D SAMPLE IMPLEMENTATION OF DEMAND SUPPLY AIR RESET ALGORITHM. D-1

VI

LIST OF TABLES

Page

Table I~1 Public domain algorithms tested 1-2

Table 4-1 Optimum start/stop algorithm parameters 4-6

Table 7-1 Description of electrical loads for demand limiting tests... 7-5

Table 8-1 Reset schedule used to test outside air supply air reset

algorithm 8-2

Table 9-1 Results of testing public domain demand supply air reset

algorithm 9-5

LIST OF FIGURES

Page

Figure 1-1 Schematic diagram of NBS laboratory EMCS processors 1-3

Figure 2-1 Results of testing the dry bulb economizer algorithm
between April 7 and April 30* 1985 2-6

Figure 2-2 Performance of dry bulb economizer algorithm 2-7

Figure 2-3 Enthalpy differences as a function of outside temperature
(April 7-30, 1985) 2-8

Figure 3-1 Performance of enthalpy economizer algorithm 3-5

Figure 3-2 Results of testing the enthalpy economizer algorithm 3-6

Figure 3-3 Enthalpy difference as a function of outside temperature
(May 1-18, 1985) 3-7

Figure 4-1 Optimum start/stop algorithm calculated start and stop
times 4-17

Figure 4-2 Calculated optimum start times versus minimum outside
temperature 4-18

Figure 4-3 Histogram of error in time between occupancy time and
arrival at setpoint 4-19

vii

Figure 4-4 Histogram of error in space temperature at building
occupancy time 4-20

Figure 4-5 Histogram of error in space temperature at time building
is unoccupied 4-21

Figure 6-1 Results from duty cycling algorithm test. 20 minute
interval 6-6

Figure 6-2 Results of testing duty cycling algorithmi 60 minute
interval 6-7

Figure 7-1 Results of testing instantaneous rate demand limiting
algorithm 7-11

Figure 7-2 Results of testing ideal rate algorithm with fixed demand
interval. 7-12

Figure 7-3 Results of testing ideal rate algorithm with fixed demand
interval 7-13

Figure 7-4 Results of testing predictive algorithm with both fixed
and sliding window demand intervals 7-14

Figure 8-1 Results of testing outside air reset algorithm (2-24 to
3-23-85) 8-6

viii

CONVERSION FACTORS FROM ENGLISH TO METRIC (SI) UNITS

Physical
Characteristic

To Convert from To Multiply by

Length ft m 0.3048

Area ft^ m2 0.0929

Velocity m/s mph 0.447

Temperature °F °C = (tj. - 32)/1.8

Temperature
difference °F °c 0.55555

Energy Btu J 1.055 X 10^

Power Btu/hr w 0.293

U-value Btu/hr*ft^*°F W/m^°C 5.678

Thermal
resistance hr’ft^*®F/Btu m^°C/W 0.1761

Pressure in Hg 60°F KPa 3.376

IX

,

..

• ¥^ium^ »o£af*vw»--'*>

}!' -y »'»>/«• f *^~

»

il'K it'p-if 4<^«if 'r|i <• .

Mi>yKtliiii/~»i
'^VH r

vji'
%ti’

- ' ^ -4U«^

^ *‘^.'^W||pM te|^

4ii»9r ' %^ip • - y . * - ^|r«<|iii

"K

* ‘'•S'.*
1
*>> * * . *\ (KH* » f 7

' <^'ltll3ltlfc#Q.MlA^

'

. . .
.'.

• 7 -'t3 m
i: W' 0^ 1 ;« , ,

1
,

#01^-^.,^
'''^'

*

'/j|

',

’

''*'
"(•^F'o'V ,' _

* iwuo

V • - »‘V«

#11 1^4 3^t«i £ »H>tt*Tl

1. INTRODUCTION

A computer-based building energy management and control system (EMCS) relies

heavily on computer software to utilize efficiently the heating, ventilating,

and air conditioning (HVAC) equipment in the building. HVAC control software

is available in proprietary or system dependent packages, usually supplied
with a EMCS system supplied by a particular vendor. However, if listings of

the software source are not supplied, the EMCS owner or HVAC designer will not

know if the EMCS system can meet the HVAC design specifications. Even if the

control algorithms used are known, there is not much HVAC control algorithm

software in the public domain to use for baseline comparison purposes. This

report describes the field testing of non-proprietary algorithms developed at

the National Bureau of Standards (NBS) in the NBS building management and

controls laboratory.

EMCS control strategies fall into at least two categories. Direct control (or

Direct Digital Control, DDC) refers to strategies and algorithms that control

the building equipment directly without the use of conventional pneumatic or

electronic local analog control, implementing lower level functions such as

closed loop control of valves, dampers, and actuators. Supervisory or
management strategies control the building in a broader sense, managing
equipment systems by methods such as selecting setpoints, and choosing optimum
operating times as a function of variables including electrical demand, time,
weather conditions, occupancy, and heating and cooling requirements.

This report describes the testing of several types of supervisory control
strategies. These are listed in table 1-1. The algorithms were all developed
at NBS and are therefore in the public domain. The description of the
development and operation of the algorithms has been fully described in a

series of reports [1,2,3, 4, 5].

The testing described in this report was intended only to verify that the
algorithms developed would function as expected when installed on an actual
EMCS system controlling HVAC equipment in an actual building. No attempt has
been made to quantify the amount of energy saved by using the algorithms since
the instrumentation on the HVAC equipment was not sufficient to measure enough
variables to calculate energy values. In general the tests were carried out on
a single building air handling unit and any energy conservation results would
be of limited general value for evaluating the usefulness of these algorithms
for energy conservation.

The EMCS algorithms were all tested using an actual EMCS system developed in

the laboratory at NBS. This EMCS is described in section 1.1 below. The EMCS
was connected to and controlled an air handling unit in an actual building.
The air handling unit is described in section 1.2 below. The first step in the
testing procedure for the algorithms was to install the algorithm in the NBS
EMCS with the goal of controlling some aspect of the air handling unit
operation. It should be kept in mind that once the algorithm was installed on

1-1

the specific EMCS systems it was no longer considered to be the actual general
algorithm but was then considered to be an implementation of the generalized
algorithm. If problems were encountered while installing or initially testing
the algorithm implementation* an attempt was made to modify the implementation
to correct the problem. Problems which appeared to be of a fundamental nature
are described in the report.

table 1-1. public domain algorithms tested

algorithm name purpose software
level

1. Dry Bulb Economizer reduce cooling load with outside
air using value of outdoor dry
bulb temperature.

field
processor

2. Enthalpy Economizer reduce cooling load with outside
air using comparison of outside
and return air enthalpies.

field
processor

3. Optimiim Start/stop start and stop HVAC equipment so

that comfort conditions are only
central
EMCS

maintained during the occupied
period.

computer

4. Scheduled Start/stop start and stop HVAC equipment at
scheduled times of day on
selected days of the week.

field
processor

5. Duty Cycling reduce energy use by turning off
equipment for short periods of

time during times of lower
loads.

field
proce ssor

6. Demand Limiting minimize electrical demand
charges by turning off
electrical loads if certain
electrical demand limits are
exceeded.

central
EMCS
computer

7. Outside Supply Air Reset adjust setpoint of supply air
temperature from an air handling
unit to match loading by using
outside air temperature as an
indirect indicator of load.

field
processor

8. Demand Supply Air Reset adjust setpoint of supply air
temperature from an air handling
unit to match loading by
using measurements of space
load.

field
proce ssor

1-2

Chapters 2 through 9 of this report are each concerned with one of the

algorithms in table 1-1. Each chapter begins with a brief description of the

operation of the algorithm and this is followed by a discussion of what steps

were involved in installing the algorithm on the EMCS system and using the
algorithm to control the air handling unit. Any changes that were made to the

original algorithms as described in the original reports are noted in a

separate section in each chapter. Following the description of changes* each

chapter contains a description of the nature of verification testing used for

each algorithm. Results of verification testing are included in each chapter
in the form of tables* plots* and descriptions. Another section in the chapter
for each algorithm contains considerations for use of the algorithm which were
developed in the course of testing. The considerations take the form of either
suggestions and rules for determining values for algorithm parameters or

general observations about the usage of the algorithm.

1.1 EMCS System Used for Verification

The Building EMCS used for verification testing of the public domain
algorithms was not a commercial or proprietary system. It was developed in-

house by staff of the NBS building systems and controls program. The system
utilized distributed computer processors arranged in a hierarchy as shown in

figure 1-1.

+

+ + +

I field
I

I processor I

+ +

I

+ h h

Imultiplexer

I

+ +

+ +

I central I

I control I

I unit I

I computer I

I (ecu) I

+-+-+-+-+-+-+

+ 111 +
+

1

+
1

+

1 1

1

1

1 field 1

1 processor 1

1 field 1

1
processor I

1 field 1

1 processor I

1 field 1

1
processor 1

1 I 1

+ +

1

Imultiplexer

I

Imultiplexer

I

Imultiplexer

I

Imultiplexer I

+ 1- + + + + + +

figure 1-1. schematic diagram of NBS laboratory EMCS processors

1-3

The multiplexers shown in figure 1-1 are microcomputers used to receive
signals from the sensors of the EMCS and convert them into digitally coded
numbers. The sensors include thermistors, pressure transducers, dew point
sensors, and switch contacts. The multiplexers are connected to the next level
in the hierarchy, the field processor, by a serial communications line. The
multiplexers can send reports on the state of the EMCS sensors up to the field
processors upon receiving a command to do so from the field processors. The
field processors can also send commands to control digital and analog outputs.
Upon receiving such commands the multiplexer will control digital switches or

relays or set signals on analog outputs. The output devices connected to the
multiplexer include motorized bi-directional pressure regulators for pneumatic
control of valve and damper actuators, and electrical relays.

The field processors shown in figure 1-1 are also microcomputers. These
devices contain software to communicate with the multiplexers and make control
decisions based on information from the sensors connected to the multiplexers.
The field processor software contains implementations of EMCS control
algorithms. The most important algorithm in the field processor is used to
provide DDC of the valves and dampers on an air handling unit to maintain the
supply air temperature at a setpoint.

The central control unit computer (CCU) shown in figure 1-1 is connected by
serial communication lines to all of the field processors. The CCU computer is

used to allow collection and storage of historical data from the EMCS sensors,
detect and display alarm conditions, control configuration of the field
processors, and allow EMCS algorithm parameters used by the field processors
to be changed.

The field processors and multiplexers were constructed at NBS from
commerically available computer circuit boards inserted into a bus. Signal
conditioning hardware was constructed from commercial integrated circuits and
discrete components. The software in the field processor was written
completely at NBS in the language FORTRAN IV and microprocessor assembly
language. Changes to algorithms were made by altering the source program and
reconstructing the field processor software on a separate computer. The
revised field processor software was then loaded into the field processor. The
CCU computer was a commercial minicomputer with a proprietary disk operating
system. The EMCS software on the CCU computer was written in FORTRAN 77.

The last column in table 1-1 shows where each of the EMCS algorithms was
installed in order to run tests. The majority of the algorithms were
implemented in the field processor software. Software for changing algorithm
parameters for each of the algorithms was installed on the CCU computer.

1 -4

1.2 Air Handling Unit Used for Verification

The air handling unit used in the algorithm testing is one of seven air

handlers located in the attic mechanical room of one of the office/laboratory

buildings on the campus of NBS in Gaithersburg, MD, The unit provides
approximately 9.4 m3/s of primary air to 39 office modules (total of 618 m2
floor area) located on the building perimeter. Three fluid-to-air heat
exchange coils are contained within the air handler, two of the coils
providing pre-heat with steam, and the remaining coil cooling the air stream
with chilled water. Air entering the unit is a mixture of return and outside
air controlled by dampers. The flow of steam or water through the coils was
controlled by pneumatically actuated valves connected to the EMCS. The outside
air dampers were also pneumatically actuated and under control by the EMCS.

The offices in the building supplied by the air handling unit contained
induction terminal reheat type local conditioning equipment with a hot water
heating coil under the control of a local thermostat. Conditioned air from the
air handling unit was supplied through the terminal reheat unit. Return air to

the air handling unit was taken from return ducts located in the ceiling of
the halls in the building. Each office had grills over the door to allow air
flow from the room to the return duct.

l/ftB -A:|r

- M r*^

'^r* » ^ 'V.?*- .

;# t-**. i(

.^^,/ |). f< r ‘i4 «

%.U

•fv
f ' f tJfv

•ft* ecu co«j^it^{.»
^ t<lM3 S%C£ ’

^4^i^i<[.4*4f iQR 4# fil[ld

ifi 'v.i«*M' t>ir CM tUl4 |»roc««iiije'^

'

^ w • « fc> »f •« a ii R v
^

^s.ik4'4 ih*^o « bUfr Risai'l
'

« ^yx0g9hiLm'i <i»,c'oit4»

^ V J 'oeadr v«t ft It-HOi.;' xj

R# p»s^y»»4t»r« Tti#f t'H

i limk
M 994 Will »4 4*1 rViTiRH 7;» f>iM

cl ft* BJkCurithaf ivt^Tjl

«.% t!nr cb«H|Xaf al^ordtl
us t])4 ecu cw^utai:^

2.

VERIFICATION OF A DRY BULB ECONOMIZER ALGORITHM

A dry bulb economizer algorithm is used to reduce the need for mechanical
cooling in a building when the outside air is in general cooler than the air

in the building spaces. This algorithm is usually applied to the control of an

air handling unit supplying air at a setpoint temperature to building zones.

The air handling unit will have dampers which can be controlled to cause air

entering the air handling unit to come from the air returning from the

building interior or from the outside or from a mixture of the two. The dry
bulb economizer algorithm uses a measured value of the outside air dry bulb

temperature to determine when outside air should and should not be used for

cooling. A detailed description of the public domain dry bulb economizer
algorithm developed at NBS may be found in a previous report [4].

2.1 Operation of Algorithm

Operation of the dry bulb economizer algorithm is described completely in

reference [4]. However, a brief description of the algorithm operation will be

given here. The dry bulb algorithm uses one measured value from the EMCS, the
outside dry bulb temperature. In addition the algorithm is assumed to be able
to access the current supply air setpoint temperature for the air handling
unit. Two algorithm parameters must be supplied and these are the changeover
temperature and the minimum temperature. The algorithm has four possible
output decisions. These are:

1. lock outside air dampers closed and use mechanical cooling.
2. lock outside air dampers closed and do not use mechanical cooling.
3. lock outside air dampers open and also use mechanical cooling.
4. allow outside air dampers to be modulated and do not use

mechanical cooling.

If the outside temperature is greater than the changeover temperature then
decision 1 above is made. If the outside temperature is less than the minimum
temperature then decision 2 is made. If the outside temperature is less than
the changeover temperature, greater than the minimum temperature and greater
than the supply air setpoint then decision 3 is made. If the outside
temperature is less than the changeover temperature, greater than the minimum
temperature, and less than the setpoint then decision 4 is made.

2.2 Algorithm Installation

The public domain dry bulb economizer algorithm was installed on the NBS
laboratory EMCS. The algorithm was installed in a field processor by
integrating it into the field processor software. The algorithm reported in
reference [4] was originally implemented in FORTRAN 77. In order to install
the algorithm in the field processor software, the algorithm had to be
rewritten in FORTRAN IV, the high level language used to implement algorithms

2-1

in the field processor. Other than this change, the algorithm was not
modified. The algorithm was installed in a FORTRAN IV subroutine which was
called by an air handling unit control task. The air handling unit controller
performed direct digital control of the valves and dampers in the air handling
unit and provided automatic sequencing between control of the valves and
dampers under changing load conditions. The four actions described in section
2.1 were implemented as:

1. lock outside air dampers closed and use mechanical cooling: outside
air dampers were forced closed and were not allowed to be used for
cooling. The cooling coil was selected for DDC.

2. lock outside air dampers closed and do not use mechanical cooling:
outside air dampers were forced closed and were not allow to be used
for cooling.

3. lock outside air dampers open and also use mechanical cooling:
outside air dampers were forced open and the cooling coil was
selected for DDC.

4. allow outside air dampers to be modulated and do not use mechanical
cooling: the cooling coil valve was forced closed and the outside
air dampers were selected for DDC.

2.3 Corrections to Original Algorithm

No problems were discovered with the original dry bulb economizer algorithm °as

written. Therefore no corrections were made to the algorithm.

2.4 Testing of Algorithm

The testing of the public domain dry bulb economizer algorithm consisted of

allowing the algorithm to operate in the NBS laboratory EMCS field processor
which was controlling an actual air handling unit with direct digital control.
The air handling unit was supplying air to actual offices during the testing.
The unit was instrumented with temperature sensors in the supply, return,
outdoor, and mixed air, dew point sensors in the outdoor and mixed air, and
relative humidity sensors in the supply and return air. In addition, the
cooling coil valve and outside air dampers were instrumented with position
sensors. Data were taken from these sensors and others at five minute
intervals and recorded on the EMCS central computer.

2.4.1 Test Description

For evaluation of the dry bulb economizer algorithm data were collected
continously from the NBS laboratory EMCS between April 7 and April 30, 1985 at
five minute intervals, resulting in over 6700 data readings. During this
period outside air temperatures varied between 25 F and 90 F. The changeover

2-2

temperature for the algorithm was set at 68 F, and the minimum temperature was

set at 42 F.

2.4.2 Economizer Algorithm Performance

The public domain dry bulb economizer algorithm was actually installed in the

NBS laboratory EMCS in April 1984, and had been operating continously in the

control of the test air handling unit connected to actual building spaces
since that time without any difficulties.

Figure 2-1 presents results of testing the dry bulb economizer during the

period between April 7 - 30, 1985. During that time, the state of the outside
air dampers was recorded every five minutes. In preparing figure 2-1, the
outside air dampers were assumed to be in one of four possible states. These
states were completely open, completely closed, between half open and fully
open, and between half open and fully closed. Figure 2-1 contains four
histograms to indicate the number of times that the outside air dampers were
in each of the four states. The number of occurrences of each outside air
damper state is plotted as a function of the outside dry bulb temperature. The
figure shows that when the outside air temperature was between 60 and 66 F the

outside air dampers were always open.

Theoretically, if the algorithm were operating properly, the outside air
damper should always be closed above the changeover temperature and open just
below the changeover temperature. In figure 2-1, a slight overlap of the two
histograms is observed. There were 5 occurences where the temperature was
between 67.0 F and 67.5 F and the damper was closed, and 46 occurrences where
the temperature was between 67.5 F and 68.0 F where the damper was closed.
There were 8 occurrences where the temperature was between 68.5 F and 69.0 F

and the dampers were open, and 23 occurrences where the temperature was
between 68.0 and 68.5 F and the dampers were open. These errors total 82
occurrences. This represents approximately one percent of the testing period.
Unfortunately, the data shown do not represent only the performance of the dry
bulb algorithm, but also include the effects of errors in the EMCS control of
the air handling unit.

The performance of the algorithm in keeping the dampers closed when the
outside air temperature is below the minimum temperature can also be observed
in figure 2-1. There were no occurrences where the outside air dampers were
open at all when the dry bulb temperature was below the 42 F minimum
temperature.

Figure 2-1 illustrated that the public domain dry bulb economizer algorithm
performed as expected. In order to evaluate the performance of the algorithm
in minimizing energy consumption, figure 2-2 was prepared. Figure 2-2 has
histograms for- the four states of the outside air damper as did figure 2-1,
but the frequency in figure 2-2 is plotted as a function of the measured
difference between the outside air and return air enthalpies (enthalpies were

2-3

calculated from dry bulb temperaturei barometric pressure, and either dew
point or relative humidity). Theoretically, if a perfect enthalpy economizer
algorithm were being employed instead of this particular dry bulb economizer
algorithm, the outside air damper should always be closed when the outside air

enthalpy was greater than the return air enthalpy and open when the outside
air enthalpy was just below the return air enthalpy temperature. In figure 2-2

it may be observed that the dampers were not open when the outside air
enthalpy was greater than the return air enthalpy, but the dampers were often
closed when the outside air enthalpy was below the return air enthalpy. This

area of the damper closed histogram below the zero enthalpy difference point
represents a wasted potential for energy savings of this type, or
approximately eight percent of the test period. This waste is due to three
effects. The first effect is from possible errors in the EMCS control of the

air handling unit external to the dry bulb economizer algorithm. The second
effect is from a possible poor choice of the changeover temperature, and the
third effect is due to the basic assumptions made by the dry bulb economizer
that the outside air remains at a constant moisture content.

Figure 2-3 is a plot of the difference in enthalpy between the outside and
return air as a function of the outside air temperature for all data taken
during the test period. If the moisture content of the return air and the
outside air were constant the relationship between the two variables would be

a straight line.- The figure shows that the relationship is reasonably linear
but that there is a spread in the enthalpy differential for any dry bulb
temperature of approximately two Btu per pound of air. This spread indicates
that it is not possible to obtain perfection with the dry bulb economizer
algorithm and that the performance of the algorithm relative to the ideal
depends on the statistics of the weather.

Figure 2-3 also shows that for the test period, a zero enthalpy differential
approximately corresponds to an outside dry bulb temperature of 72 F. This
indicates that for this test period, a changeover temperature of 72 F would
probably have resulted in better dry bulb algorithm performance.

2.5 Considerations in Use of Algorithm

2.5.1 Parameter Selection

The proper changeover temperature for the dry bulb economizer algorithm
depends on the weather conditions for a building and the building loads (which
determine the return air temperature variations). If data which allow
calculation of outside and return air enthalpy are available a plot such as
shown in figure 2-3 can aid in selection of the changeover temperature. The
ideal changeover temperature will change with time and can either be left at a

constant value or adjusted with time. Some sophisticated EMCS systems may be
able to adjust this parameter automatically.

2-4

The minimum air temperature is a compromise between the occurrence of

equipment damage due to freezing and maximum energy conservation. In the
testing, the air handling unit loads did not require a significant amount of

cooling at temperatures below the selected minimum. In buildings with large
internal loads, the lowest minimum temperature which will prevent freezing
would be desirable to minimize energy consumption.

2-5

220

m
00

o o oO GO ^
C\1 f—I I—

I

o o
CM

OO O
CXO

O
MO

O
-:a-

O O
CM

S3DN3HHnD00 30 H3aWTlN

c

<
TO
c
03

u
c.
<
c
CJ

a
3

0)

M3

n
ob

03

U
0)

N

C
c

03

3
03

0)

Q£

I

CN

3
U
3
C.0

2-6

OUTSIDE

AIR

TEMPERATURE

(F)

o o O O O o o o
VO -=r CM O CO VO -=r CM
OJ CM CM CM (—

1

1—

1

r—

1

rH

o
CO

o
\o

o o^ OJ
o

s3DNa>ranDoo 30 aaawnN

53

OJ

U
o
N

II

u

5:

2-7

OUTSIDE

-

RETURN

ENTHALPY

(BTU/LB)

LO
ON

! O
1 CTn

—i LT\

J CO

-i

^ O
-! CO

I LO

. in— VO

o

LO
Ln

o
LO

b3
ce:

3H
<
0£
U
Cu
S
bi
H

U
^ 2

c/3

H
3
O

LO
(V^

'
~ o—

' CO

LO
C\J

VO CM CM VO OO O
I—

I

I

CM

(9T/nxa) AdTVHINH N9rU39 - HQISinO

2-8

Figure

2-3.

Enthalpy

difference

as

a

function

of

outside

temperature

(April

7-30,

1985)

3. VERIFICATION OF AN ENTHALPY ECONOMIZER ALGORITHM

An economizer algorithm is used to reduce the need for mechanical cooling in a

building when the outside air is in general cooler than the air in the

building spaces. This algorithm is usually applied to the control of an air

handling unit supplying air at a setpoint temperature to building zones. The

air handling unit will have dampers which can be controlled to cause air

heated or cooled in the handling unit to come from the air returning from the

building interior or from the outside or from a mixture of the two. An
enthalpy economizer algorithm compares the enthalpy of the outside air with
the enthalpy of the air returning from the building spaces to determine when
outside air should and should not be used for cooling. A detailed description

of the public domain enthalpy economizer algorithm developed at NBS may be

found in a previous report [4].

3.1 Operation of the Algorithm

Operation of the enthalpy economizer algorithm is described completely in

reference [4]. However, a brief description of the algorithm operation will be

given here. The enthalpy algorithm uses four measured values from the EMCS in

order to be able to determine enthalpies of the outside air and the return air

temperature from the building spaces. The four measured values are for the
outside dry bulb temperature, the return air dry bulb temperature, the outside
rela-tive humidity or dew point temperature and. the return air relative
humidity or dew point temperature. In addition, the algorithm is assumed to be

able to access the current supply air setpoint temperature for the air
handling unit. One algorithm parameter, the minimum temperature, must be
supplied. The algorithm has four possible output decisions. These are:

1. lock outside air dampers closed and use mechanical cooling.
2. lock outside air dampers closed and do not use mechanical cooling.
3. lock outside air dampers open and also use mechanical cooling.
4. allow outside air dampers to be modulated and do not use

mechanical cooling.

If the outside air enthalpy is greater than the return air enthalpy by at
least a small differential (set at 0.5 Btu/lb of air during the testing) then
decision 1 above is made. If the outside temperature is less than the minimum
temperature then decision 2 is made. If the outside air enthalpy is less than
the return air enthalpy by at least a small differential, greater than the
minimum temperature and greater than the supply air setpoint then decision 3

is made. If the outside air enthalpy is less than the return air enthalpy by
at least a small differential temperature, greater than the minimum
temperature, and less than the setpoint then decision 4 is made.

3-1

3.2

Installation of Algorithm

The public domain enthalpy economizer algorithm was installed on the NBS
laboratory EMCS. The algorithm was installed in a field processor, integrated
into the field processor software. The algorithm reported in reference [4] was
originally implemented in FORTRAN 77. In order to install the algorithm in the

field processor software, the algorithm had to be rewritten in FORTRAN IV, the
high level language used to implement algorithms in the field processor. The

subroutine used by the algorithm for psychrometric calculations was shortened
by removing a section which allowed calculations to be performed in either
English or SI units, leaving only the English units calculations. Other than

these changes, the algorithm as originally published [4] was not modified. The

algorithm was installed in a FORTRAN IV subroutine which was called by an air

handling unit control task. The air handling unit controller performed direct
digital control of the valves and dampers in the air handling unit and
provided automatic sequencing between control of the valves and dampers under
changing load conditions. The four actions described in section 3.1 were
implemented as:

1. lock outside air dampers closed and use mechanical cooling: outside
air dampers were forced closed and were not allowed to be used for
cooling. The cooling coil was selected for DDC.

2. lock outside air dampers closed and do not use mechanical cooling:
outside air dampers were forced closed and were not allow to be used
for cooling.

3. lock outside air dampers open and also use mechanical cooling:
outside air dampers were forced open and the cooling coil was
selected for DDC,

4. allow outside air dampers to be modulated and do not use mechanical
cooling: the cooling coil valve was forced closed and the outside
air dampers were selected for DDC.

3.3

Corrections to Original Algorithm

No problems were discovered with the original enthalpy economizer algorithm as

written. Therefore no corrections were made to the algorithm.

3.4

Testing of Algorithm

The testing of the public domain enthalpy economizer algorithm consisted of

allowing the algorithm to operate in the NBS laboratory EMCS field processor
which was controlling an actual air handling unit with direct digital control.
The air handling unit was supplying air to actual offices during the testing.
The unit was instrumented with temperature sensors in the supply, return,
outdoor, and mixed air, dew point sensors in the outdoor and mixed air, and
relative humidity sensors in the supply and return air. In addition, the
cooling coil valve and outside air dampers were instrumented with position

3-2

sensors. Data were taken from these sensors and others at five minute

intervals and recorded on the EMCS central computer.

3.4.1 Test Procedure

For evaluation of the enthalpy economizer algorithm, data were collected
continously from the NBS laboratory EMCS between May 2 and May 18, 1985 at

five minute intervals, resulting in over 3700 data readings. During this
period outside air temperatures varied between 43 and 85 F. The minimum
temperature parameter for the algorithm was set at 42 F.

3.4.2 Economizer Algorithm Performance

Figure 3-1 presents results of testing the enthalpy economizer during the
period between May 2 - 18, 1985. During that time, the state of the outside
air dampers was recorded every five minutes. In preparing figure 3-1, the
outside air dampers were assumed to be in one of four possible states. These
states were completely open, completely closed, between half open and fully
open, and between half open and fully closed. Figure 3-1 contains four
histograms to indicate the number of times that the outside air dampers were
in each of the four states. The number of occurrences of each state is plotted
as a function of the measured difference between the outside air and return
air enthalpies (enthalpies were calculated from dry bulb temperature,
barometric pressure, and-either dew point or relative humidity).
Theoretically, if the algorithm were operating properly, the outside air
damper should always be closed when the outside air enthalpy is greater than
the return air enthalpy and open when the outside air enthalpy is just below
the return air enthalpy temperature. In figure 3-1 it may be observed that in

some cases the dampers were open when the outside air enthalpy was greater
than the return air enthalpy, and also that the dampers were sometimes closed
when the outside air enthalpy was below the return air enthalpy. However, the
algorithm allowed a differential of 0.5 Btu/lb of air around the zero
difference in enthalpy point. With one exception, all of the situations where
the damper is in the wrong position lie within this differential. There was
one data point where the enthalpy difference was between 0.5 and 0.75 Btu/lb.
These results indicate that the algorithm performed properly in selecting
whether or not to use outside air for cooling.

In section 2, which described testing of a dry bulb economizer algorithm, the
number of occurrences of each outside air damper state were plotted as a

function of the outside dry bulb temperature. For consistency, the enthalpy
economizer results are also plotted in this form in figure 3-2. The figure
shows that there is no single dry bulb temperature where the outside air
damper is always closed above this temperature and always open just below this
temperature. Instead, for this particular test period, there was a spread of
temperatures between 66 F and 74 F for which the outside air damper could be
either in the open or closed position.

3-3

The performance of the algorithm in keeping the dampers closed when the
outside air temperature is below the minimum temperature can be observed in

figure 3-2. There were no occurrences where the outside air dampers were open
at all when the dry bulb temperature was below the 42 F minimum temperature.

Figure 3-3 is a plot of the difference in enthalpy between the outside and
return air as a function of the outside air temperature for all data taken
during the test period. If the moisture content of the return air and the
outside air were constant the relationship between the two variables would be

a straight line. The figure shows that the relationship is reasonably linear

but that there is a spread in the enthalpy differential for any dry bulb
temperature of approximately two Btu per pound of air. Figure 3-3 can be

compared to figure 2-3 which is the same type of graph for a different period
of time. In both figures the spread in enthalpy difference is similar. Figure
2-3 showed that a zero enthalpy differential approximately corresponded to an
outside dry bulb temperature of 72 F. In figure 3-3. the zero enthalpy
difference approximately corresponds to 70 F.

3.5 Considerations for Use of Algorithm

3.5.1 Parameter Selection

There are no parameters to select for the public domain enthalphy economizer
algorithm other than the minimum temperature which can be set one time and
left unchanged. The dry bulb economizer algorithm has parameters which have an
optimum value that depends on the weather conditions and which will change
with time. This is the advantage of an enthalpy economizer algorithm over a

dry bulb economizer algorithm.

3.5.2 Usage Constraints

The disadvantage of the enthalpy enconomizer compared to a dry bulb
economizer is that additional instrumentation for the measurement of air
moisture content is required. At least one additional temperature sensor and
two moisture measurement sensors must be installed. During the operation of

economizer algorithms on the NBS laboratory EMCS, a number of problems were
encountered in maintaining the moisture sensors. These problems usually
involved the measurement of high humidity air which caused failure in the
sensors. Regular maintenance was required for dew point sensors to keep them
clean. A decision must usually be made which involves the comparison of an
incremental energy savings resulting from the use of an enthalpy economizer
algorithm over a dry bulb economizer algorithm with the increased costs of
installation and maintenance of moisture measurement sensors.

3-4

220

SHONa^nooo ao aaawriN

u

iC

3-5

OllTSIDl':

-

Rl'TURN

AIR

KNTIIALPY

(HTIJ/LB)

1—^—

r

-! CT\

IS\
-4- OO

r
r
r

h
r
r
u
Iw
I-

a
w
O
u

-L OO

j-

-J.

-k O
_r >-

- .-5-

—i:
^

Y VO

•H
S-i

o
00

OJ

M
•r^

E
O
c
o
u
D

.-_J- O
.t VO

7
4

t
I

r
u

h

L
i_

t

F
i_

L

[d Z Cb z
OS C iJ w
o z < eu

S E- z o

-
;/ “i-

.1

LO

cn z Cb z
cn <: hJ w
bJ z < z
hJ H Z O

—^ o

4- LT\
J- PO

Im
<U

u
3
00

c
4- o
> on

LO
C\J

o
CM

o O O o o
CM O GO VO -=T

CM CM t

—

t
(—

!

rH

o
C\J

oo o
oo

o
VD

o
(\i

S33N3^HnDD0 30 H3aKflN

3-6

OUTSIDE

AIR

TEMPERATURE

(F)

LT
CC

CO

I

a

C
OJ

CJ

II

u

ic

(31/aia) AdTVHiNa Mnniaa - aaisino

3-7

OUTSIDE

AIK

TEMPERATURE

(F)

4. VERIFICATION OF AN OPTIMUM START/STOP ALGORITHM

An optimum start/stop algorithm is used to reduce heating and cooling
requirements and fan/pump electrical energy by turning off the HVAC system
whenever it is not required. The criterion for whether or not space
conditioning is required is usually whether or not the building is occupied.

Then the optimum start/stop algorithm must determine the time to start the

HVAC equipment so that a desired occupied space temperature is achieved just

before the start of the occupied period. In addition* the algorithm must
determine the time to stop the HVAC equipment so that the space temperature
does not drift from the occupied setpoint until the building is unoccupied.

This algorithm can be applied to HVAC systems with central air handling units

where the air handling unit is to be shut off during unoccupied hours or to
systems with local zone heating equipment such as perimeter radiation where
the local equipment is either shut off or the local space temperature setpoint
for the local equipment control is changed (setback) for unoccupied hours.

All optimum start/stop algorithms perform the functions described above but
the specific method used to calculate start and stop times can take many
different forms. The complexity of the methods used varies from a simple
linear correlation for start time as a function of indoor temperature and
outdoor temperature with manually entered parameters to techniques involving
modeling of the building and HVAC systems with adaptive determination of all
parameters. A public domain optimum start/stop algorithm was developed at NBS
and is described in a previous report [3]. The NBS public domain algorithm is

intended to provide adaptive determination of parameters and uses two simple
models for the behavior of a building zone when the HVAC system is on or off
to predict the start and stop times.

4.1 Operation of the Optimum Start/Stop Algorithm

The public domain optimum start/stop algorithm was originally implemented in
the language FORTRAN 77 in the form of a FORTRAN subroutine. The descriptions
that follow will describe this implementation. The optimum start/stop
algorithm subroutine is executed periodically at regular intervals. The
reciprocal of the interval is the number of times per hour the optimum
start/stop routine is called. This is the program variable NPTHR. The
algorithm subroutine is called with three arguments which are the space
temperature, the outdoor air temperature, and the time of day, which are
obtained from the EMCS before calling the routine. The values of space and
outdoor temperature are stored for a full day. Inside the algorithm a
time scale is used which is different than the time of day. The internal time
units are decimal hours, but the point at which the internal time (XTIME) is
zero is the approximate midpoint between the start time and the stop time
(near midday rather than midnight).

4-1

When the algorithm first starts* it must run for at least one day before any

determination of the optimum start or stop time is made. The algorithm cannot

be started at any time during the day. It must be started during the occupied
period of the day. During the initial day of operation, the optimum start/stop
algorithm turns off the HVAC system at the time of day when the building is to

become unoccupied. The building space temperature is then monitored, and when
the space temperature changes by a certain small value, the algorithm
determines a value for the off-period dead time (TDEDOF) which is the
difference in time between this point and the time the system was actually cut

off. After the HVAC system has been shut off, the temperature of the space
will drift upward or downward depending on the building and the weather.
During the initialization phase, the algorithm does not attempt to calculate a

start time. The time to start the system during initialization is an algorithm
parameter. The initial start time should be early enough to start the HVAC
system under any load conditions. After the HVAC system is started at the
initial start time the algorithm monitors the space temperature. When the
space temperature begins to move toward the setpoint, the algorithm calculates
the on-period dead time (TEDEON) as the difference between the start time and
the time at which the space temperature changes by a specified small value.
When the space temperature reaches the occupied setpoint, the initialization
is over and the algorithm program begins normal operation.

The optimum start/stop algorithm assumes that the variation of space
temperature as a function of time can be described by a first order linear
differential equation whose solution is an exponential function with a time
constant and a steady state value. The parameters for any one exponential
equation can be determined from two data points. The time constant for the
equation is a function of the building structure and equipment capacity. The
steady state value which the space temperature is assumed to approach after a

long time depends on the outdoor air temperature and internal load. The
behavior of the system after the HVAC system is started can be modeled by a

start-up exponential equation, and the behavior of the system after the system
is stopped can be modeled by a shut-down exponential equation. The
intersection of these two equations is used to determine the equipment start
time

.

After each start-up, the program tries to determine the parameters for the
start-up equation based on the behavior of the space temperature during the
start-up period. The steady-state value is assumed to be 1.5 times the space
setpoint temperature for heating, and 0.5 of the space setpoint temperature
for cooling. The program determines the start-up time constant from two data
points within the start-up period (at times X(l) and X(2)). These points are
arbitrarily assumed to be located 1/3 and 2/3 of the way into the start-up
period. Once the start-up equation parameters are determined, the space
temperature can be predicted for any time during the start-up period. The
algorithm assumes that the time constant for the next start-up period will be

the same as the time constant for the previous start-up period.

4-2

After the start-up, the algorithm also recalculates the internal time
coordinates (using the new start time), determines the minimum and maximum
outdoor temperatures from the previous 24 hour period, and determines the time

interval in which the next start time is assumed to be located.

During the occupied period after HVAC system start-up, the optimum start/stop

algorithm only compiles outside temperature data. The stop time for the
current day is always the shut-down dead time calculated from the previous day

subtracted from the scheduled time at which the building becomes unoccupied.
As the HVAC system is stopped each day, a new dead time is determined in the

same way as during the initialization described above.

Once the HVAC system is turned off, the optimum start/stop algorithm must
determine the next start time. In order to determine the start time, the
algorithm must have an equation for the current shut-down period. As with the

start-up equation, two parameters describe the equation and two data points
are required to determine the parameters. The time for the first data point
(stored in variable X(3)), is arbitrarily selected as the the internal time
of day one quarter of the way between the time where the space temperature
reacted to the previous shut-down and the time for the previous start-up. No
start-time calculations are performed until this time is reached. When the
time for the first data point (X(3)) is reached, the corresponding space
temperature is stored (as Y(3)). After the first data point is determined, a

determination of the shut-down equation parameters is made each time the
algorithm is executed. The current space temperature is used for the second
data point (Y(4)) along with the current time (X(4)), The two data points
are used to determine the shut-down time constant which describes the behavior
of the space temperature up to the current time. It is assumed that this value
of the time constant can be used to determine space temperatures up to the
occupancy time. The shut-down equation steady state temperature parameter or
temperature at **infinity** time (TINF) depends on the trend of the space
temperature since shut-down. If the space temperature is increasing, the
previous day*s maximum outside temperature is used as the TINF. If the
temperature is decreasing, the previous day's minimum outside temperature is
used as the TINF.

At each algorithm execution past the X(3) time, the algorithm has equations
available to predict the shut-down and start-up space temperature behavior.
The point in time for the optimum start is where the two equations intersect.
A special subroutine (ROOT) is used to find the intersection of the two
equations. The inte’rval to search for an intersection was previously
calculated. Both the start-up and shut-down curves will each have two points
corresponding to where they cross into and out of this search interval. These
intersection points can be used to determine if the equations cross within the
interval. If both limit intersection points for one curve lie above the limit
intersection points for the other, there is no intersection. The root
subroutine will be unable to produce a solution. Otherwise, the routine will
determine the crossing point. If the two curves are very similar in slope, (or

4-3

if one slope is very large) the routine may require a large number of

iterations to find the answer.

Once the intersection of the unoccupied and start-up equations is determined,

this intersection can be compared to the current time. If the times are the

same or the intersection time has passed, the HVAC system is started. After
the space temperature has responded, a new start-up dead time is calculated
and the cycle of algorithm calculations begins again.

4.2 Installation of Algorithm

The public domain optimum start/stop algorithm was installed on the NBS
laboratory EMCS. The algorithm was installed on the central control computer
rather than on the field processor. Since the original algorithm
implementation was written in FORTRAN 77 and. the field processor software was
largely written in FORTRAN IV, installing the algorithm in the central
computer avoided problems with translation. A loss of communication between
the central computer and the field processor would have resulted in the
optimum start/stop algorithm being unable to function. However, a scheduled
start/stop algorithm installed in the field processor ensured that a start and
stop would take place at a scheduled time if the optimum start/stop algorithm
did not issue a start or stop command. The placement of the algorithm at the
central level also allows coordinated start/stop control of all HVAC
equipment.

A single air handling unit (described in the introduction) was used as the
HVAC equipment to be started and stopped by the optimum start/stop algorithm.
The air handling unit fan control start and stop relays were connected to
digital outputs under the control of the EMCS field processor. Application
software in the field processor was used to perform the sequence of operations
necessary to start up and shut down the air handling unit. The shut down
consisted of stopping the supply and return fan, shutting all dampers and
valves, and disabling direct digital control of valves and dampers. Start up
consisted of starting the supply and return fans and enabling direct digital
control of valves and dampers.

Two special support subroutines were used with the optimum start/stop
algorithm. One of these was used to obtain the current outdoor and space
temperatures from the field processor. The space temperature sensor was
located in one of the 39 offices supplied with air by the air handling unit.
This office was assumed to be representative of all of the offices. The
outside air temperature sensor was located just within the outside air dampers
for the air handling unit. The disadvantage of this location is that during
the period when the air handling unit was not operating, this temperature
sensor was not directly exposed to outside air since the dampers were closed
and there was no air flow through the dampers. Since minimum outside air
temperatures usually occur during unoccupied hours, it is likely the minimum

4-4

outside air temperatures used during the optimum start/stop algorithm tests

were not strictly correct.

Another special support subroutine used with the optimum/start stop algorithm

provided the algorithm the ability to start and stop the air handling unit.
The routine sent a command to the field processor to start the software which

started up or shut down the air handling unit. The software had safety
features installed to prevent the unit from being started or stopped within
one minute of having been previously stopped or started.

The main program described in reference [3] was designed for testing the
optimum start/stop algorithm in a programming environment. This routine was
modified to operate in an EMCS environment. The original program contained a

programming loop which endlessly read outdoor and space temperatures from a

file and executed the optimum start/stop algorithm. A delay was placed in this

loop to restrict execution of the algorithm to regular intervals as specified
in the algorithm parameters. Temperatures were obtained directly from the EMCS
rather than a file. An output file was used to write messages on the status of

the algorithm and values of calculated start and stop times.

A file was also used to load all algorithm parameters when the algorithm was
started. The parameter file contained the parameters listed in table 4-1. Many
of the parameters in the table are easily determined such as the
identification number,for the space temperature sensor* the identification
number for the outside air temperature sensor* the identification number of

field processor* the time of day the'building is occupied* the time of day the
building becomes unoccupied* the initial start-up time* and the initial season
mode (heating season or cooling season). The assignment of values to other
parameters is more complicated. These parameters are defined and discussed in
section 4.5.1.

4.3 Corrections to Algorithm

As the public domain optimum start/stop algorithm was studied during the
course of installation and testing* a number of problems were uncovered. These
problems were either due to errors in the computer program or to deficiencies
in the original implementation of the algorithm which caused the algorithm to
fail in unforeseen situations. Corrections and additions were made to the
implementation of the algorithm until the algorithm was able to run properly
in control of an actual air handling unit. The following sections describe the
modifications which were made to the algorithm.

4.3.1 Conversion of Internal Constants to Externally Assigned Parameters

The optimum start/stop algorithm* as originally implemented, had a number of
parameters which required recompilation of the computer program to change.
These parameters were placed in FORTRAN common areas and assigned values which
were read from a parameter file on program initialization. The parameters
which were previously internally assigned included the sample (execution)

4-5

frequency for the algorithm and a number of parameters used for mathematical
comparisons in the program. The parameters read from the parameter file are
described in section 4.5.1.

table 4-1 optimum start/stop algorithm parameters

parameter
1. number of times per hour for the algorithm to execute.
2. identification mnnber for space temperature sensor.
3. identification number for outside air temperature sensor.
4. identification number of field processor.
5. time of day building becomes occupied, (decimal hours)
6. time of day building becomes unoccupied, (decimal hours)
7. initial start up time.
8. space temperature setpoint. (F)

9. minimum desired space temperature. (F)

10. maximum desired space temperature. (F)

11. temperature differential around maximum or minimum space
temperature to prevent oscillation when limits of space
temperature are exceeded. (F)

12. initial season mode* heating season or cooling season.
13. minimum differential for intersection of start-up and shut'

down curves in root finding subroutine. (F)

14. differential for determining when the time for the first
data point for calculation of the shut-down time constant has
been reached. (F)

15. change in space temperature to define shut-down dead time.
16. change in space temperature to define start-up dead time.
17. allowed variation in space temperature around the space
setpoint. (F)

used in test

12

11016
11011

2

7.75
18.00
6.00

73.00
50.00
90.00

i

1.00

heating
0.10

0.06

(F) 0.25

(F) 0.25

5.00

rs) 17.167

4.3.2 Problems with Calculation of Time Constants

During testing of the optimum start/stop algorithm it was observed that under
certain conditions the mathematical computation of the constants for the
start-up or shut-down equations would involve division by zero or taking the
logarithm of a number less than or equal to zero. To prevent algorithm
failures, it was necessary to add insert tests of the variables involved to
insure that an arithmetic fault would not. be generated. The time constants are
computed in the FORTRAN functions YONNEW and YOFF and this is where the tests
were inserted. A FORTRAN parameter (EPSTAD) was used as a lower limit for the
value of the time constant. If the time constant was less than this value, it
was set to the lower limit. Changes were also made to cause the algorithm to
output warning messages if either of the time constants were computed as zero.

4-6

4.3.3 Determination of previous unoccupied period maximum and minimum outdoor

air temperatures.

The original algorithm, as published, had an error on the initialization phase

of the algorithm. At each system start-up. the algorithm determines the
maximum and minimum outdoor air temperatures from the unoccupied period just
ending. A subroutine (MAXMIN) determines these values. This subroutine
searched the previously stored data from the start of the unoccupied period on
the preceding day to the start of the current occupied period. These search
limits were fixed within the subroutine. During the initial cycle of the
algorithm, or the first time this maximum/minimum search is made, there is no

existing data between the start-up time and the occupancy time. This section
of the stored data area is undefined. The undefined area is included in the
search and therefore the maximum and minimum temperatures determined could be

incorrect. To correct this problem, the MAXMIN subroutine was altered to
include as subroutine arguments the search limits for locating the maximum and
minimum values within the temperature storage array. The first time the MAXMIN
routine is called the search limits are between the start of the occupied
period on the previous day to the current time of day.

4.3.4 Problems with HVAC Equipment Failing to Obey Start/Stop Commands

The optimum start/stop algorithm, as originally written, used a logical
variable to control the HVAC equipment under start/stop control. It was
assumed that when the logical variable was set to true the equipment would
start and when the variable was set to false the equipment would stop. In a

real EMCS it is to be expected that equipment will not always obey commands,
due to communication failure, power failure, or HVAC equipment failure. Most
EMCS have a method of verifying that when a command is issued the equipment
actually responds. An alarm of some sort is usually generated when the
equipment does not respond.

In the original optimum start/stop algorithm, if the equipment did not respond
the algorithm would still assume that the equipment was going to respond. This
can result in gross errors in the start and stop time calculations. An example
of this would be if a command was issued by the algorithm to start an air
handling unit and for some reason the unit did not start. The algorithm is
then waiting for the space temperature to begin to change. Since the unit did
not start, the space temperature will not change. Eventually it will be
noticed that the unit did not start and it may be manually started. The manual
start will cause the space temperature to change, but the change may have
occurred much later than it might have. This will cause the start-up dead time
to be excessively large, causing an error in the start-time calculated for the
next day.

The original optimum start/stop algorithm was modified to allow it to respond
properly to situations where HVAC equipment fails to follow commands from the
algorithm. A logical variable ALARM was added to the software and placed in a

4-7

FORTRAN common area where it is assumed that the EMCS software will set the

variable to a true state if the HVAC equipment fails to respond to command. If

the ALARM variable is in the true condition and the algorithm is waiting for
the space temperature to react following a start or stop action* then the
algorithm will reset internal control variables to prevent internal variables
from being recalculated and will set internal status variables to the correct
state. Calculations for the start and stop times will then use the values of

the internal variables for the previous day. These changes were made in the
main algorithm subroutine* OFTSS.4.3.5

Improvement to Allow Restart of Algorithm without Initialization

The optimum start/stop algorithm* since it is adaptive* requires an
initialization period to determine initial values for the internal variables
used to calculate start and stop times. Once the initial values of internal
variables are determined* modifications are made to the variables each day to

adapt to changing conditions in the weather and the building. If it were
necessary to stop and restart the algorithm* such as during maintenance or
failure of the EMCS computer* then the algorithm as originally written would
have to go through the two-day initialization period after it was re-started.
This would result in the loss of potential energy savings.

To avoid this* the optimum start/stop algorithm was modified so that critical
internal variables would be written to a storage file once each day. Another
modification was made to cause the algorithm to try and find a critical
variable initialization file when the algorithm was restarted and if such a

file was found* read values for the internal variables from the file and
bypass the initialization period. These modifications made the testing of the
algorithm easier since it was not always necessary to reinitialize after a

test or after any interruption of a testing period.

4.3.6

Preventing the Setback Controller from Operating During Occupancy

The optimum start/stop algorithm includes a controller (on-off controller) to

maintain a minimum (or maximum) temperature in the building space during
unoccupied hours by starting and stopping the HVAC equipment if the space
temperature exceeds limits. During testing of the optimum start/stop algorithm
it was determined that under certain unusual circumstances the on-off
controller became active during occupied hours. Additions were made to the
main algorithm subroutine to prevent the on-off controller from becoming
active during occupied hours.

4.3.7

Limitation to Prevent Excessively Early Stop Time

During the spring and fall when the space temperature does not change very
much after the HVAC equipment is shut down* the optimum start/stop algorithm

4-8

may determine a shut-down dead time which is very large. In this case, the

next day the HVAC equipment may be shut down very early. The space temperature

may not degrade to uncomfortable levels before the end of the occupied period,

but the air quality may become unacceptable. In order to avoid this situation,

an additional parameter was added to the optimum start/stop algorithm to limit

the stop time from being excessively early. If the calculated stop time is

before the time specified by this p^mmeter, which is read from a parameter
file, then the stop time is set to this stop time limit. This change was made
in the main subroutine of the optimum start/stop algorithm, OPTSS.

4.3.8 Automatic Switching between Heating and Cooling Modes

The public domain optimum start/stop algorithm was originally designed to

operate in a defined season. The heating season was defined as the time of

year when the space temperature drops after HVAC system shut down and the
cooling season was defined as the time of year when the space temperature
climbs after shut down. When the algorithm, as originally written, is exposed
to situations where the space temperature behavior after shut down is not
strongly rising or falling, the start time becomes difficult to determine.
This is due to the following two types of problems.

When the weather conditions that a building is exposed to become mild, the
space temperature in the building tends to remain constant after system shut

down. When the HVAC equipment is started up, the start up time before building
occupancy is very small since the space temperature is already near the
setpoint. In the extreme case, on a plot of space temperature versus time, the

start up curve becomes a near vertical line at the occupancy time and shut
down curve becomes a horizontal line at the space setpoint. The subroutine to

determine the intersection (ROOT) will then require a large number of

iterations to find the intersection. The maximum number of iterations in the

original algorithm was too small and this maximum was increased. When the
maximum number of iterations is reached without a solution, the root is

assumed to be at the leftmost boundary of the previously determined search
limits for finding the root.

If the optimum start/stop algorithm is in heating mode and the weather becomes
warm, it is possible that the start-up and shut-down equations may not have an
intersection within the search interval. In the original algorithm, the root
would then be selected as the leftmost boundary of the previously determined
search limits for finding the root. Additions were made to the algorithm to
allow the algorithm to respond in a different manner to this situation. After
the changes, whenever the root subroutine is unable to find a root in the
interval, the mode of the algorithm is changed from heating to cooling or
cooling to heating and a second attempt is made to find the root. The reason
that this works is that the start-up equation parameters depend on the mode of
the algorithm. The steady-state temperature for the start-up equation is 0.5

multiplied by the space setpoint for cooling and 1.5 multiplied by the space
setpoint for heating. By switching the mode of the equation, the start-up

4-9

curve is approximately rotated about the space temperature setpoiutt resulting
in an intersection of the start-up and shut-down curves for the new algorithm
mode. This change to the optimum start/stop algorithm results in it being
unecessary to manually change the season mode of the algorithm. Changes were
made in the main optimum start/stop algorithm subroutine* OPTSS* and in the

root finding subroutine, ROOT.

4.4 Testing of Algorithm

Testing of the public domain optimum start/stop algorithm was begun on July

27, 1984, using a building emulator rather than an actual building. The
building emulator is a computer connected to the NBS laboratory EMCS which
uses a simulation computer program to control signals on analog and digital
inputs to the EMCS in response to control signals from the EMCS. The emulator
was designed to emulate the response of a real air handling unit in a

building. Use of the emulator had the advantage that any problems with the
algorithm did not affect actual building occupants, and weather and occupancy
conditions could be completely controlled. Testing using the emulator pointed
out most of the problems described in section 4.3, and continued until
November 21, 1984.

The optimum start/stop algorithm was tested on an actual building air handling
unit for a period starting on September 20, 1984. Some problems were observed
during the acutal building tests. All modifications to the original optimum
start/stop algorithm were completed by October 2, 1984. Testing took place
on the completed algorithm during the period from October 2 to December 10,

1984, with only one interruption due to a plant outage. The parameters used in

testing on the actual building are listed in table 4-1.

4.4.1 Test Procedure

One assumption made during the development of the public domain optimum
start/stop algorithm was that the space temperature in a building with
equipment controlled by the algorithm remains at the space temperature
setpoint throughout the occupied period. When the algorithm was tested on the
actual building, it was observed that the space temperature drifted between
68.5 and 77 F, depending on the time of day and weather conditions. Section
9.4.1 describes the local control equipment in the building used for testing.
This local equipment did not operate in an ideal manner and did not maintain
the space at a fixed setpoint. Another observation about the behavior of the
space temperature is that the temperature in the room would change by two or
three degrees F if the door to the office were closed rather than open.
Closing the door caused the amount of air flow through the office to change.
In order to test the optimum start/stop algorithm a setpoint of 73 F was used
with a allowance of 5 F on either side of the setpoint as being acceptable.

4-10

Another assumption made in developing the optimum start/stop algorithm was

that the space temperature will change appreciably during the unoccupied
period, at least during the winter or summer. The space temperature did not

drop very low during unoccupied hours with the air handling unit was off

throughout the testing period, even with outside air temperatures of 25 to

30 F. This was probably due to two major reasons. First, the offices in the

building contain a reheat coil which still operated when the air handling unit

was off. This would prevent the space temperatures from dropping very low. The

reheat coil setpoint was manually controlled and could not be setback during

unoccupied hours. A second reason is that the air handling unit under control

was not the only unit in the building, and at least one other air handling
unit was left running throughout the unoccupied period to provide essential

ventilation! This meant that the space used for testing the optimum start/stop
algorithm was indirectly conditioned, even when the test air handling unit was
off.

For purposes of testing the optimum start/stop algorithm, data were collected

from the air handling unit and from the optimum start/stop algorithm output
for the period when the algorithm was controlling the air handling unit
between October 2 and December 12, 1985.

4.4.2 Test Results

During the test period, recordings were made of the temperatures and actuator
positions in the building space and air handling unit every five minutes. In

addition, the optimum start/stop algorithm output information describing
results of calculations and timing of start/stop events was saved. A
compilation was made each day of several important criteria used in evaluating
the optimum start/stop algorithm*s performance. These were the number of
iterations required to find the intersection of the start-up and shut-down
curves for the start time, the calculated start time, the difference between
the actual and setpoint space temperature at the time of building occupancy,
the difference between the occupancy time and the time that the building space
reached the setpoint, the calculated stop time, the difference between the
actual and setpoint space temperatures at the time the building was
unoccupied, and the maximum and minimum measured outdoor air temperatures for
the day.

During the testing period, the algorithm in general operated properly, with a

few instances where a start or stop time was unusual. Figure 4-1 is a plot of

the calculated start and stop times over the testing period. The upper curve
is the stop time, which always lies slightly below the time when the building
was considered unoccupied at 18:00. The lower curve is the calculated start
time which, with two exceptions, lies below the time when the building was
considered occupied at 7:45, which is marked with the dashed line. The first
early start time is during the initialization of the algorithm. The second
early start time is at 3:00. This occurred after an instance where the start
of the HVAC system on the previous day did not cause the space temperature to

4-11

change appreciably for 4.5 hours after start-up. This resulted in a large
calculated start-up dead time. The algorithm assumed that the same dead-time
was valid for the next day and started the system 4.5 hours early. The
algorithm was able to recover by the next day however. At the end of the test

period the algorithm also started the system early but was not able to recover
and began to start the system progressively earlier each day until the
algorithm was stopped manually. This data is not shown in figure 4-1.

Figure 4-2 is the same start time data shown in figure 4-1 plotted versus the

minimum outside air temperature measured during previous unoccupied period.

There is no clear trend visible in the data* illustrating that the building
space temperature behavior does not appear to be sensitive to the outside air
temperature.

Two criteria were used to determine the performance of the algorithm in

selecting a reasonable start time. The first of these is the difference
between the occupancy time and the time that the space temperature actually
arrived at the setpoint. Figure 4-3 is a histogram of the number of
occurrences of various magnitudes of this difference using 5 minute bins.

A

negative number for the difference indicates that the space temperature
reached the setpoint before the occupancy time. This figure shows that much of

the time the algorithm was within 5 minutes of the correct start time.
Occasionally the setpoint was reached fairly late.

A different way to present the start time performance of the algorithm is by
using the criterion of the difference between the space temperature and the
space temperature setpoint at the time of building occupancy. Figure 4-4 is a

histogram of this difference for start-ups during the test period using 0.25 F

bins. A negative value of error indicates a space temperature below the
setpoint of 73 F. This plot shows that in only one case was the space
temperature out of the allowable limits of 68 to 78 F during the testing, but
was usually one to four degrees F low.

The stop time selection performance of the optimum start/stop algorithm is

shown in figure 4-5. This figure is similar to figure 4-4 but shows a

histogram of the difference between the space temperature and the setpoint at

the time when the building is unoccupied. The error appears to be evenly
distributed around the zero error point with all errors within 4 F of the
setpoint.

4.5 Considerations in Use of the Optimum Start/Stop Algorithm

In general the test results show that the public domain start/stop algorithm
does operate, but is subject to occasional failures. Further improvements to

the algorithm would probably remove such instances. The building used and the
test conditions to which the algorithm were exposed were certainly not
adequate to test the algorithm completely. The testing did show that the
algorithm was able to function in this limited case however and shows promise

4-12

of determining the optimum start and stop times in other buildings. The

following sections discuss any conclusions that were reached on the selection

of values for optimum start/stop algorithm parameters and general usage of the

algorithm beyond any recommendations given in reference [3].

4.5.1 Parameter Selection

The optimum start/stop algorithm has a large number of parameters which must

be assigned values. Fortunatelyt since the algorithm is theoretically
adaptive, it is not necessary to assign values to parameters which describe

the building and the HVAC equipment in the building. The parameters which must
be given values determine how stable and how accurate the algorithm will be.

In the descriptions below, an epsilon is defined as a small number which is

used to determine if two numbers are close enough to be considered the same.

Several of these are used in the algorithm.

4. 5. 1.1 Selection of algorithm sampling rate

The algorithm sampling rate is the number of times per hour that the optimum
start/stop algorithm will execute. The most important criterion for selection
of the sampling rate is the time the building takes after start-up to reach
the setpoint. This time will be a maximum in the winter and summer and can
conceivably become zero in the spring or fall. In order for the optimum
start/stop algorithm to operate properly, there must be a least four space
temperature samples within the start-up period. If there are less than three
samples, then the time constant calculated for start-up will be zero and the
building will be started at the occupancy time. At some times of the year as

winter or summer is approached, starting the building at the occupancy time
will be unacceptable. The time required to start-up at this time of year
should have at least four data points within in it. For example, if the start-
up time before occupancy is 15 minutes, then the sample interval should be
less than or equal to five minutes and the sampling rate would be 12 times per
hour.

Another less important consideration in selection of the sampling rate is the
minimum acceptable resolution of the start or stop time. For example, during
the testing of the algorithm, a sampling rate of 12 times per hour was used.
The algorithm executed every five minutes and therefore the start and stop
times could be selected only to the nearest five minutes. This means that if
the algorithm does not pick exactly the correct start time, it will be in
error by five minutes, ten minutes, or other multiples of five minutes. If too
great a rate is used, the EMCS will be slowed by excessive processing.

4-13

4. 5.

1.2

Selection of epsilon for ROOT subroutine

The ROOT subroutine is used to determine the optimum start time by finding the

intersection of the start up and shut down equations. The subroutine will go

through a series of iterations until a point in time is found where the
temperature predicted by the start-up equation and the temperature predicted
by the shut down equation are sufficiently close. The minimum closeness
required is the epsilon for the ROOT subroutine. If this value is too small*
an excessive number of iterations will be required to find the intersection.
If the epsilon is too large* this will limit the accuracy of the start time
determination.

4. 5.

1.3

Selection of epsilon for shut-down dead time

The epsilon for shut-down dead time is the amount of change in the space
temperature that is allowable after the HVAC equipment is shut down while the
building is still occupied. The shut-down dead time is the time required for
the space temperature to change by the amount of the epsilon after shut down.
If the value selected is too small* the potential savings from optimum stop of

HVAC equipment may be limited. If the value is too large* then occupant
comfort at the end of the occupied period may suffer.

4. 5.

1.4

Selection of epsilon for start-up dead time

The epsilon for start-up dead time is used to determine the amount of time
after HVAC system start up that is required before the space temperature
begins to respond. It is defined as the change in space temperature that must
occur before the dead time is calculated. If this value is too large* then
calculated dead times are likely to be excessive* resulting in earlier starts
than necessary. If the value is too small* calculated dead times may be
unrealistically small* causing start times which are later than they should
be.

4. 5.

1.5

Selection of epsilon for Y(3) vs. X(3) determination

The epsilon for determining whether or not the time for the first data point
for the shut down equation (X(3)) has been reached is defined as the
interval of time in decimal hours away from the X(3) point within which the
current time must be for the algorithm to take the current value of space
temperature as the value to use in figuring the shut down equation. If this
epsilon is too small* the X(3)*Y(3) point can be passed without detection by
the algorithm. If the epsilon is too large* the value of space temperature
used for the data point could be* for example* a time that is several minutes
away from the correct X(3) time value. The proper value for this epsilon
should be larger than half of the sampling time interval but less than the

4-14

largest time interval that would result in an excessively large deviation of

the space temperature Y(3) from the space temperature exactly at time X(3).

4. 3.

1.6

Selection of minimum and maximum space temperatures

The minimum and maximum space temperature parameters are used for two
purposes. The optimum start/stop algorithm contains a controller to maintain
the space temperature during unoccupied hours within some limits. If the space

temperature during the unoccupied period is higher than the maximum space
temperature or lower than the minimum space temperature* then the setback or

on-off controller becomes active* turning on the HVAC equipment until the
space temperature is within the minimum or maximum temperature by another
parameter (DELY). The minimum and maximum temperatures are also used in the

calculation of the time interval within which the ROOT subroutine looks for
the intersection of the start up and shut down equations. The values selected
should be equal to the maximum and minimum temperatures that will avoid
problems in the building space due to condensation* overheating* freezing or

similar difficulties.

4. 5.

1.7

Selection of epsilon for tolerance. in space temperature setpoint

The epsilon for the space temperature setpoint is used to determine the end of

the start up period. When the difference in temperature between the current
temperature and the space setpoint is less than this epsilon* the space
temperature is considered to be within the limits acceptable for the occupied
period. If the building in which the optimum start/stop algorithm is being
operated has local zone controls which keep the space temperature at a

constant value within a small tolerance* then the space temperature setpoint
epsilon can be small. If the space temperature drifts between wide limits,
then the epsilon should be chosen to correspond to the limits of drift.

4. 5.

1.8

Selection of earliest allowable shut-down time

Under conditions of light loading or mild weather* HVAC equipment may be shut
down in a building and the space temperature will remain constant or will not
change for hours. On the basis of space temperature* the optimum stop time
could then be hours before the end of occupancy. However* if the building
relies on the HVAC equipment for ventilation air* or moisture removal*
premature shut down could cause occupant discomfort. The earliest allowable
shut down time is a parameter which is used to prevent the optimum start/stop
algorithm from shutting down the HVAC equipment before a certain time-of-day
after which no occupant discomfort will result due to insufficient ventilation
or odor/moisture removal. This value may be estimated but will most likely
have to be determined by trial and error.

4-15

4.5.2 Constraints to Usage of Algorithm

The public domain optimum start/stop algorithm* as modified from the original

algorithm described in reference [3]» will determine the optimum start and

stop times for HVAC equipment. The optimum start and stop times are chosen on

the basis of space temperature alone* and factors* such as ventilation*
removal of space contaminants* and space relative humidity* are not directly
taken into account. Based on the limited testing of the algorithm discussed in

this chapter* it appears that the algorithm can be expected to fail under some
unusxial conditions* where failure is defined as either prediction of start or

stop times which are grossly wrong or not causing any start or stop actions at

all. Further work is necessary to test the algorithm under a wider variety of

conditions to determine the circumstances under which the algorithm may fail
and modify the algorithm to prevent failures. The testing described in this
report has shown* however* that the algorithm does basically perform as
expected in predicting start and stop times.

4.6 Revised Optimal Start/Stop Algorithms

Because many changes were made in the original optimal start/stop algorithm* a

FORTRAN 77 listing of the revised algorithm* as implemented on the NBS
Laboratory EMCS* is included in Appendix A. The changes made* most of which
have been discussed in this report* are summarized in comment statements at

the beginning of the program. In addition* modifications to actual lines of
code are indicated with a comment showing when the addition* deletion or
change was made.

4-16

(S)iH) 3WII dOIS HO IHVIS

4-17

Figure

4-1.

OpLiimiiu

start/stop

algoriLlini

calculated

start

and

stop

times

3WIX XHVXS

4-18

MINIMUM

OUTSIDE

TEMPERATURE

(F)

LT\

O

LT\m
a
X

o
on

m
cu

o
C\J

>

LTN

O
(—

I

LO

C

LTS
I

ZC

o
pH

I

X

un
pH

I

c
CM

I

zc

saoMa^noDo jo aaaKriN

4-19

TIME

ERROR

IN

REACHING

SETPOINT

(MIN)

u

I

!

CO

I

L

I

VO

S33N3'»Hn3D0 30 H39WflN

OJ

s

>.
o
c
ca

a
3
a
a
o

ao
c
•H
-a

3O

CO

OJ

sr
I<
<u

3
00
•H
tu

4-20

SPACE

T.

ERROR

AT

OCCUPANCY

TIME

(F)

i

i. - ^

I i

o m o ir\ o LO o LO O LO C
LO -=r m m CM CM 1

—
1 (—1

saoNa^mooo JO aaawfiN

4-21

SPACl!!

T.

KRROR

AT

UNOCCUPIED

TIME

5. VERIFICATION OF A SCHEDULED START/STOP ALGORITHM

A scheduled start/stop algorithm is used to start and stop specific pieces of

equipment or lighting loads at predetermined times of day. Such an algorithm

must not only be able to schedule control of loads, but must also be able to

resolve conflicts with other algorithms which may control the same loads. The

scheduled start/stop algorithm may contain its own conflict resolution section

or it may use a lower level load control algorithm in common with other
algorithms.

A public domain scheduled start/stop algorithm was developed at NBS and is

described in a previous report [2]. The algorithm in that report was referred

to as a time-of-day control algorithm, which is intended to be a broader
category of algorithms than scheduled start/stop algorithms. Time-of-day
control is considered to extend to control of events rather than loads, where

an event may be a single execution of an algorithm, control of a series of

loads, or starting a periodic execution of an algorithm, as well as the

control of a single load. The following sections describe the testing of the

public domain scheduled start/stop algorithm for the control of the stopping
and starting of an air handling unit.

5.1 Operation of Scheduled Start/Stop Algorithm

The operation of the public domain scheduled start/stop algorithm is described
in reference [2]. However, a brief description of the algorithm will be given
in this section. The algorithm is assumed to have access to information which
has been previously stored about loads or events to be controlled, the day of

week and time of day to control the event or load, and the nature of the
control (for example stop, start, cycle once). The algorithm is assumed to
execute periodically and at each execution examines the control time for each
of the loads which are scheduled. If the difference between the current time
and the control time is within a tolerance (such as one minute), the algorithm
will initiate the event. The control over events is assumed to have a priority
associated with it. If an algorithm other than the scheduled start/stop
algorithm is attempting to control an event, it must have a higher priority
than the scheduled start/stop algorithm in order to successfully control the
event.

5.2 Installation of Scheduled Start/Stop Algorithm

The scheduled start/stop algorithm was installed on the NBS laboratory EMCS.
The algorithm was installed in a field processor, integrated into the field
processor software. The public domain scheduled start/stop algorithm developed
at NBS was described in reference [2] in a general form. An example
implementation was written in the high level computer language FORTRAN
(FORTRAN IV) as a subroutine and was used as the test algorithm. This
subroutine was listed and documented in reference [2].

5-1

As originally designed, the scheduled start/stop algorithm as implemented in

the field processor software could schedule up to 25 events to occur on a

selected day of the week at any time of day with a resolution of one minute.
Each event could be scheduled for multiple times as long as the times were
greater than one hour apart.

5.3 Corrections to Original Algorithm

No problems were discovered with the original scheduled start/stop algorithm
as originally written. Therefore, no corrections were made to the algorithm
during the testing.

5.4 Testing of Algorithm

The public domain scheduled start/stop algorithm was tested by allowing an
actual air handling unit, which is described in the introduction, to be shut

down and started up each day so that the unit was off during the unoccupied
period of the building. The NBS laboratory EMCS field processor contained
software to start and stop the air handling unit. The air handling unit
start/stop software was scheduled for execution using the scheduled start/stop
algorithm.

5.4.1 Test Procedure

The scheduled start/stop algorithm was used to start and stop the air handling
unit for three separate periods of time. The first test period extended from
September 5, 1984 to September 20, 1984. Following this period, tests were
performed on the optimum start/stop algorithm and the scheduled start stop
algorithm served as a backup to ensure that the air handling unit would start
if the optimum start/stop algorithm did not start or stop the unit before a

certain times of day. Following optimum start/stop algorithm testing, the
scheduled start/stop algorithm was used between December 11, 1984 and January
22, 1985. The third period of testing of the algorithm occurred between
February 14, 1985 and March 23, 1985. Altogether there were 92 days of testing
with one start and one stop per day. The start was usually scheduled for 06:00
and the stop for 18:00 on all days of the week.

The NBS laboratory EMCS central computer was able to receive an alarm report
from the field processor whenever the air handling unit was started or
stopped. The alarm reports were stored in a file and displayed on an alarm
console along with the exact time of occurrence of the event. The time reports
made it possible to verify that the scheduled start and stop did occur at the
correct time as scheduled.

5-2

5.4,2 Test Results

The evaluation of the performance of the scheduled start/stop algorithm was
based on whether or not the algorithm caused the air handling unit to be

stopped and started at the correct time. On all 92 days of testing, it was
observed that the unit was always started and stopped on time.

5.3 Considerations for Use of Algorithm

The public domain scheduled start/stop algorithm performed as expected. Since

it is not a complex algorithm, this is not snprising. No attempt was made to

load the algorithm by . scheduling the maximum number of events. Also no testing
of the algorithm in conjunction with the duty cycling algorithm took place
using the actual air handling unit.

5-3

fey^b»jiYH;ra 1*44 ^>*V51
^ ,«fjbi:

r#

mdiitQ^lX io »*0 -xol *ffoidis'ir*bi«*|i|||| IS>^

iT^>' (!t

illi ,:f#M^i:f5!.!'k!f€^
mdsitoglB #4a ^o J

vJiou gffiXbx^'Kia iaa4d*
^

i-7rsjj^ «4-^ -^*^6 *c{j 44i v i^oiaaci^t^o* al (faitoil* «

;a

ni4-

.

'!-,*.4 ,

r.,;

-.ivr j^SE

. . 1
f V

:
»j

:
i.

r** cttt*4 wf altoir^. «».

r» *e4*eti<i«9, t#''bir •tof''^'^

. ,}H UK i*i; (hif' ttaea««>i «(!'.' w ;.

U ^o*t«ltt*4

.

I ni^» tb« «ir h*a4littg wile
- ^

’'u i|L* * -• b«4at*4 St *tt/ ^ t<j|f ™

IfiS
. «is' *'? ' tb* ii't b4ndlW- -J

» *
,; ')!H -‘’If “iT

>*1

''W

* ^

tfl.
.‘

'’^:k'

't
4^ 'I#.;,

,«*• f^f;i.od •»t«t#td'^«r<nifv^;;4

^

V

n jHiriddt t^Mtt y'lltm']
/';fj

« «« »c*rtt Utop
r"

*(6 * 4»*>

«

4 i;
y if,| u*.i. pf ^|14 ,

*t'*p|^.

fi,f'.'<ft •fcit'l 'b* woit b#f"6t4 4
• V«

‘ *“ ^®#»' .'t'iy
'

.t!|

^ Mji »»Vvi Jf4|^u4rt ni
if 4t/.f;4t Atb«' o*<urrf4 b4k^*«4"^t; R

1^4 • w4Vi» l',jf for '04-1

* t* ft»nU4 •« ilani 3r«V'ort '>/'*

*(i^rTriwM r. <

^ r4Kjf'4J

%« v»it w*< *^*rpf4 or.

!• *^4 4\4flmy*d *4,',)»•.
* tk* !Twr«t» tti* tl»*

>t4ii"t -144 >t«f 4i4 i/tcaruct thp^fc'’*
,. 4

*

w'.'t

6. VERIFICATION OF A DUTY CYCLING ALGORITHM

A duty cycling algorithm is used to reduce the energy consumption of a fan,

pump, or other energy consuming device when the load that the device is

supplying is smaller than the capacity of the device. By reducing the time
that the device is operating, the energy consumption is reduced and hopefully

the load is still supplied by intermittent operation of the device. A public

domain duty cycling algorithm was developed at NBS and was described in a

previous report [2]. This is the algorithm that was tested.

6.1 Operation of Algorithm

The operation of the public domain duty cycling algorithm is described in

reference [2]. However, a brief description of the algorithm will be given in

this section. The algorithm is designed to cycle several loads on and off over
a fixed period called the duty cycle interval. The phase of a load is the time
which elapses after the beginning of the duty cycle interval before the load

is turned off. The off-period of a load is the time that the load remains off

before it is turned on. These duty cycle parameters are stored in a table and
are retrieved from the table for each load. The off period for a load is then
adjusted by the algorithm as a function of a measured value from the EMCS such
as outside air temperature. The algorithm calls a software routine called a

load controller to turn each load off after a delay equal to the phase and
back on again after a delay equal to the phase plus the off-period.

The load controller is used to coordinate control of loads with other load
control algorithms such as demand limiting and scheduled start/stop. This
coordination is accomplished through the use of a priority structure for the
control of loads. The load control algorithm also provides a way to implement
avoidance of loads being on for less than a minimum on-period, off for less
than a minimum off-period, or off for more than the duty cycle off-period
because the load has been previously turned off by another algorithm. The load
controller uses an EMCS dependent routine to actually turn the loads on and
off with a certain priority.

The parameters to be supplied for the duty cycling algorithm for each load to

be cycled are:

1. phase - time interval between start of duty cycle interval and turning
off of the load, in percentage of the duty cycling interval.

2. off-period - amount of time that the load is to be off at design
conditions, in percentage of the duty cycling interval.

3. enable adjustment - a logical true if the off-period is to be adjusted
as a function of an associated analog variable, or a logical false if the
off-period is to remain constant at the design value.

6-1

4. design point - a value of an assocated analog variable at which the
off-period equals the value described in 2 above.

5. low point - a value of an associated analog variable lower in

numerical value than the design point at which the off-period becomes
zero.

6. high point - a value of an associated analog variable higher in
numerical value than the design point at which the off-period becomes
zero.

6.2 Installation of Algorithm

The duty cycling algorithm was installed on the NBS laboratory EMCS. The
algorithm was installed in a field processor* integrated into the field
processor software. The public domain duty cycling algorithm developed at NBS

was described in reference [2] in a general form. An example implementation
was written in the high level computer language FORTRAN (FORTRAN IV) as a

subroutine and was used as the test algorithm. This subroutine was listed and
documented in reference [2].

As originally designed* the duty cycling algorithm example implementation
could control up to 16 single digital outputs. Tests were originally run using
a test device with lights which could be cycled on and off. The objective of
the testing described in this report was to test algorithms on actual HVAC
equipment. The only equipment available for duty cycling at NBS was a single
air handling unit* and this unit was eventually used for testing. However*
cycling of an air handling unit is much more complicated than the cycling of a

simple load. Cycling off an air handling unit includes the stopping of at
least one and possibly two fans* closing of outside air dampers* and shutting
all the valves for the heat exchangers in the unit. To stop the fans in the
NBS air handling unit* it was necessary to provide a one second pulse on one
digital output* and to start the fans* a one second pulse was required on
another digital output. Due to the requirements for control of the NBS air
handling unit* it was necessary to make changes to the digital output control
software in the field processor. By introducing the concept of a special
digital output point which when encountered would cause the air handling unit
to be controlled* it was possible to avoid any changes in the duty cycling
algorithm load controller. Two additional control modes were added to the air
handling unit control software in the field processor. One mode was used to
cause the air handling unit to cycle off when the air handling unit control
software next executed, and the other mode indicated that the air handling
unit was currently cycled off. To allow a scheduled stop of the air handling
unit to override duty cycling, appropriate digital output control priority
values were selected.

6-2

6.3 Corrections to Original Algorithm

One problem appeared in the example FORTRAN implementation of the duty cycling

algorithm as listed in reference [2]. This was not an error in the basic
algorithm but was a machine dependent problem which resulted in an overflow of

an integer variable which contained the length of the off-period in seconds in

the FORTRAN used for the programming. Previous testing of the example duty
cycling implementation had been performed using artifically short duty cycle

intervals of five minutes or less. When a duty cycle interval of 20 minutes
was used, the algorithm did not function correctly. The problem was corrected
by using a floating point real variable in place of the integer variable
originally used for the off-period length.

6.4 Testing of Algorithm

The public domain duty cycling algorithm was tested by cycling an actual air

handling unit installed in an operating building. The air handling unit used
is described in the introduction section. In order to avoid any potential
discomfort to building occupants during the testing, testing was restricted to

a Sunday when the building was unoccupied. Only one day of testing was
performed due to scheduling constraints.

The duty cycling parameters used for the testing of the algorithm were either
20 minutes or 60 minutes for the duty cycling interval, 33 percent for the
design off-period, and 0 percent for the phase. The adjustment of the off-
period in response to changes in an associated analog variable was enabled,
using the outside air temperature as the associated variable. The design point
at which the off-period was a maximum was set at 40 F. The low point and high
point were set at 32 F and 60 F, respectively.

6.4.1 Test Procedure

The test procedure consisted of running the duty cycling algorithm for two
test periods and recording temperatures in the air handling unit and one of
the offices supplied by the air handling unit. The first test period was on
March 24, 1985, starting at approximately 15:30 hours and lasting for
approximately two hours. For this first test, the duty cycle interval was
fixed at 20 minutes.

The second test period began at midnight on March 24, 1985, and lasted
approximately seven hours. For this test the duty cycle interval was set at 60
minutes

.

6-3

6.4.2 Test Results

Figure 6-1 is a plot of the space temperature, supply air temperature, and
outdoor air temperature during the first test period. The outdoor air
temperature remained constant during the test at approximately 40 F. The
supply air setpoint for the unit was 65 F. as indicated by the supply air
temperature curve at time 0 on the figure. For each off-period in the duty
cycle interval, the fan remained off for approximately 6.5 minutes. While the

fan was off. of course, the supply air temperature is not really meaningful.
In the air handling unit used for the test, the supply air temperature during
the off-period is the temperature of stagnant air in the vicinity of the
supply fan. When the fan was turned back on after the off-period, the supply
air temperature approached a lower value which was not the supply air
setpoint. The setpoint was not reached due to a limitation in the NBS DDC
control hardware. Before the duty cycling test, the valve on the heating coil

in the air handling unit was open approximately 20 percent. When the unit was
cycled off. this valve was closed. The control hardware can overshoot the
closed position on the valve. During the 13 minutes that the air handling unit
was on, the error in setpoint was insufficient to cause the heating valve to

be reopened. In general the DDC control system was designed for continuous
rather than intermittent operation. During the test interval, for the NBS
building, figure 6-1 shows that the space temperature did not change. The
offices in the building were, however, unoccupied.

Figure 6-2 shows the results for the second test period, which are very
similar to the results shown in figure 6-1. As with the previous test, the
outdoor air temperature remained constant, the supply air setpoint was not
reached, and the space temperature was essentially unaffected. A very slight
oscillation was noted in the space temperature of less than 0.5 F. Note that a

period of nearly three hours was required before the heating valve opened and
returned the supply air temperature to the setpoint. Had the test been
performed at a different time of the year, or under occupied conditions, it is

likely that the control system would have returned the supply air temperature
to the setpoint during the duty cycle interval.

In neither of the duty cycling tests, unfortunately, did the outside air
temperature change enough to cause a substantial change in the duty cycle off-
period. This feature was tested on a building emulator device connected to the
NBS laboratory EMCS before the actual testing was performed.

6.5 Considerations for Use of Algorithm

In general, the public domain duty cycling algorithm performed as expected.
The air handling unit was cycled on and off at the proper times. Deficiencies
in the EMCS DDC control system caused the supply air temperature to be offset
from the setpoint. The following sections present any conclusions about
parameter selection or general usage reached in addition to the information
presented in reference [2].

6-4

6.5.1 Parameter Selection

Unfortunately, insufficient experiments were performed to provide guidelines

on the selection of duty cycling parameters in addition to those in reference

[2]. Additional testing under several conditions of space load, with
variations in the parameters, and observations on the results of changes in

the parameters would be required to produce definitive guidelines for
parameter selection.

6.3.2 Usage Constraints

An issue important to the use of duty cycling of HVAC equipment is whether the

cycling causes damage to the equipment. Unfortunately, the test period was
insufficient to allow any potential damage to appear. During the test period
no signs of damage were observed. The control software to start and stop the
air handling unit included safeguards which prevented the fan from being
restarted less than one minute after being stopped and prevented the fan from
being stopped less than one minute after it had been started.

6.6 Revised Duty Cycling Algorithm

An example implementation of the revised duty cycling algorithm is contained
in Appendix B of this report.

6-5

TT- I
!

I

1—I—

r

o
"!

1

“T—]—!—pr ^ r

r
i

VO

o
,

on

! O
1 CM

L I

! oo

r 1

! I

- I

“
• w

! I S
r H
i

' 2
r ' g
!

I z:
. u
i H

1

I
,

h :

u
u
<
w

u
3
<
Qi
u
0^
:z
Ed
H
aM
<

Oi
CL,

3
C/2

on

c\j

1

CO

•T3

O
tH

U-l

U-i 0)

o Q.

Ed
DC
3H
<
qc
Ed
PL,

S
Ed
H
PC
h-l

<
PC
ooQ
3
O

j
C7V

O
ICO

!

I

J ^

o

_J o
;VO

o
un

_i o
, on

i o— Cli

c/2

Ed
H3
Z

in
CN

O
cn

m

r\j

i>-
oo
VO

VO
VO VO

CM
VO

o
VO

03
LPv

VO
irv LO

OVJ

LO
o
un

co VO CM
L3-

cc
on

i S33^03a

6-6

Figure

6-1.

Results

from

duty

cycling

algorithm

test.

20

minute

Interval.

I I 'I'"!
I

I ; I I

I

I I I
1

I

TT T

X

T
I

X

O
GO

LT\ O LPi O
tr^ VO VO

LO O
LT\ LO

J S33H03Q

6-7

l-'i^nri*

6-2.

Rusult.s

ol

I
ost

Ing

ciiiLy

cycling

algoriLhni,

60

mimiLe

Interval

7. VERIFICATION OF DEMAND LIMITING ALGORITHMS

Demand Limiting Algorithms are used to minimize electrical utility charges

associated with electrical demand. The development of public domain algorithms

in this area resulted in the production of several different demand limiting

algorithms. A detailed description of the algorithms may be found in a

previous report [5]. The algorithms developed were instantaeous rate, ideal

rate with fixed demand interval, predictive with fixed demand interval, and

predictive with sliding window demand interval.

7.1 Operation of Algorithms

The operation of the demand limiting algorithms is well described in reference

[5]. However, a brief description of the algorithms will be given in the
following paragraphs. All of the algorithms monitor an electrical demand
measuring device to determine current electrical demand. The output of the
algorithms is a specification of how much electrical power need to be shed or

restored at a particular time. Along with the demand limiting algorithms, a

load control algorithm was developed which takes this demand limiting output
specification and attempts to control electrical loads to shed or restore the

appropriate amount of power. By dividing the algorithms into load control and

demand parts, it becomes unnecessary for the demand limit algorithms to have
any knowledge of the loads that are under control. Also, the same load control
algorithm can be used for all the different demand limiting algorithms.

The instantaneous rate demand limiting algorithm is the least complicated of

the algorithms. It monitors the instantaneous electrical demand and if the
demand is above an upper **high limit,** calls for the shedding of demand equal
to the difference between the limit and the excessive demand. When the demand
drops below a lower **high limit,** a call for restoration of demand is made.

The ideal rate demand limiting algorithm requires that the utility or some
other source generate a demand interval reset signal which divides time into
demand intervals. Often the demand charges are based on the highest total
energy used in any demand period as an approximation of real peak demand.
The ideal rate algorithm assumes that there is a maximum amount of energy that
can be used in a demand interval and that the cumulative energy rises in a

linear fashion from zero at the start of the interval to the maximum at the
end of the interval. This is the 'ideal rate' energy curve. The measured
cumulative energy use is compared to the 'ideal rate' energy curve and if the
measured rate of energy increase is higher then demand must be shed. If the
measured rate of energy increase falls below the 'ideal rate' then demand may
be restored.

The predictive demand limiting algorithms make a prediction of what the
cumulative energy use will be at the end of the demand interval, either fixed
or sliding window, based on the trend in demand in the early part of the

7-1

interval. The predictive algorithm developed uses a simple linear prediction.

If the predicted energy exceeds a maximum then demand must be shed.

The load control algorithm which was developed to support the demand limiting
algorithms must have information on the electrical loads which are under
demand limit control. This information includes the nominal power of the load,

the load name* the maximum off time* the minimum off time* the minimum on
time* the load activation delay* and the load priority. These parameters are

discussed in section 7.5.1. The load control algorithm uses these parameters
to select which loads should be shed in order to accomplish a specified demand
shedding or restoration goal. The decision is based on the load priority and
the power of the load. Loads may be ineligible for shedding if they have been
on less than the minimum on time. Loads may be ineligible for restoration if

they have been off less than the minimum off time. If loads are at the same
priority* the algorithm has features to shed loads at the same priority in a

certain order and restore them in the same order. The order for shedding is

rotated so that loads at the same priority are not always shed in the same
order. One other feature is that the algorithm will automatically restore a

load if it has been turned off for an interval greater than the specified
maximum off time.

7.2 Installation of Algorithms

Each of the demand limiting algorithms described above was installed on the

NBS laboratory EMCS. The algorithms were installed on the central control
computer rather than on the field processor. Since the original algorithm was
written in FORTRAN 77 and the FID software was written in FORTRAN IV* this was
much easier than implementing the algorithm in the field processor. A loss of

communications between the central computer and the field processor would have
resulted in the demand limiting algorithm being unable to function. However*
the placement of the algorithm at this level allows control of demand using
all loads available on the system.

All of the other algorithms were tested using actual building spaces and
equipment. However* in the test building there were no electrical demand
meters available and it would have been difficult to obtain permission to
control sufficient electrical loads to test the algorithms. To allow testing
of the algorithms on realistic hardware* a special demand emulation device was
used. This device consisted of eight light bulbs which could be turned on and
off by actuation of relays. In addition* relay contacts were closed when
current flowed through the bulbs allowing the status of the loads to be
determined. The control relays were connected to eight digital outputs on an
NBS lab EMCS field processor multiplexer and the status relays were connected
to eight digital inputs on the multiplexer. Thus the EMCS could control the
loads and determine their status. The electrical supply to the demand
emulation device was routed through a watt-hour meter which had an internal
contact closure device. Each change of state of the contact (open to closed or
closed to open) indicated that 0.5 watt-hours of energy had been used. This

7-2

contact was connected to a special counter input on the EMCS field processor

multiplexer. The EMCS was then able to coixnt the contact closures and openings

to determine electrial energy use by the demand emulation device. The demand

was determined by taking two readings of the meter to get an energy used
within the interval between the readings, and dividing the difference in the

readings by the time interval. The only disadvantage of using the demand
emulator device was that the electrical loads could only be turned on in steps

and did not have demands that varied with time as might be experienced in an

actual building with electrically powered heating and cooling equipment.

Two special subroutines in FORTRAN 77 had to be written to allow the original
algorithms as listed in [5] to control the loads and obtain measured
electrical demand. The subroutine to obtain demand requested the current point
data base from the field processor and e^mined the state of the counter input

connected to the watt-hour-meter mentioned above for the demand emulation
device. The demand was calculated by subtracting the value of the counter at

the previous time the subroutine was called from the current counter value and
dividing by the time since the subroutine was last called. The disadvantage of

this approach is that if power consumption was low and the demand subroutine
was called with too high a frequency, the demand values might not be accurate.
In the testing, thirty seconds was allowed to elapse between counter readings.
In the original demand limiting algorithms, demand was read from a file. This
step was replaced with a call to the demand determination subroutine. As an
additional benefit, the demand determination subroutine placed values of the
digital inputs in a FORTRAN common block variable which was accessible for
determining the state of the loads.

The load control subroutine allowed the digital outputs connected to the field
processor to be turned on or off by the calling program. The original load
control algorithm subprogram used an array of logical variables to represent
the states of the digital outputs. The appropriate variable was set to be true
or false to control the load. This scheme was replaced with a call to the load
control subroutine. The original logical variables were then set depending on
the state of the load status input variables determined by the call to the
demand determination subroutine.

The demand reset signal for determining the start of the demand interval was
obtained by monitoring the state of a digital output in the field processor.
This output was assumed to be pulsed on and then off by an external
controller (see section 7.4).

One additional change was made to the demand limit algorithms to allow them to
operate on the EMCS. The original algorithms contained a program loop which
endlessly checked demand and calculated required demand adjustments. A delay
was placed in the loop to restrict the execution of the algorithm to once
every thirty seconds.

7-3

7.3 Corrections to Original Algorithm

Other than the changes required to adapt the demand limiting algorithms to use

on a specific real EMCS> no corrections were made to the algorithms. One
correction was made* however* to the load control algorithm. The original
algorithm assumed that all loads could be restored by a demand limiting
algorithm if they were off* even if the load had been turned off by another
means and had not been directly shed by the algorithm. The testing of the
algorithms on the EMCS required that the loads be externally controlled to
simulate changes in demand and therefore this characteristic was unacceptable.
To correct the problem* an additional logical variable array was added to the

program. There was a logical variable for each load under control. This
variable was initially set false. If the load were on and then shed by the
demand limit algorithm* the logical variable would be set to true. Only if the

variable were true* then* could the demand limiting algorithm attempt to turn

on the load to restore electrical demand. The logical variable name used was
SHED.

7.4 Testing of the Algorithm

In order to test the demand limiting algorithms using the demand emulator
device it was necessary to be able to drive the device to produce a specific
demand profile. This could have been done manually by turning the lights in
the device on and off. Instead* a special program was written which was
designed to run in parallel with the demand limiting algorithms on the central
EMCS computer. This special program turned the lights in the demand emulator
on and off in a pattern which could be read from data in an input file. This
program was also capable of generating the demand interval reset signal at any
desired interval.

In order to allow parallel control of the digital outputs connected to the
demand emulator device* it was necessary to use the concept of digitial output
control priority which is built into the EMCS software. Any output in the
field processor can be controlled at a priority level from one to 128 where
one is the highest priority. The priority may be unconditionally set, or
alternatively* the priority may be requested. If control is requested at a

certain priority level and the output is currently controlled at a higher
priority* then the control request is rejected. If the load is currently
controlled at a priority lower than the requested priority then the control
action is taken. For the demand emulator device, the demand emulation program
turned on outputs at an unconditional priority of ten and turned them off at

an unconditional priority of three. The demand limit load control algorithm
requested outputs to be turned off or on with a priority of four. This
effectively made the demand limit algorithm unable to turn on loads that the

demand emulation program had turned off. Only if the demand limit algorithm
had turned off a load could it be turned on by the demand limit algorithm.

7-4

7.4.1 Test Procedure

Each of the algorithms listed in section 7.1 were- tested individually. The

predictive algorithms were actually combined into a single routine which could

use either fixed interval or sliding window metering, and was able to switch
from fixed interval to sliding window if the demand interval reset signal was
lost

.

A specific pattern of demand was prepared and used to drive the demand
emulator device program for all tests. The demand curve used is shown in
figure 7-1 as the solid line. The eight lights in the emulator were turned on

in sequence and then turned off in the same sequence. At one point all lights
were turned on for a brief period to produce a demand spike. The tests were
accelerated to reduce the duration of testing* with the duration of each test
being approximately one half hour. The demand limiting algorithms were set to

execute periodically with a period of thirty seconds. The demand interval used
for all tests was two minutes. Table 7-1 contains the description of the
electrical loads used as input to the algorithm for all tests.

table 7-1. description of electrical loads for demand limiting testsi

.

ID ITEM PRIORITY NOMINAL DELAY MINIMUM MINIMUM MAXIMUM
POWER OFF-TIME ON-TIME OFF-TIME

(min) (min). (min)

1 BULB No. 1 1 125.00 0.00 0.00 0.50 10.00
2 BULB No. 2 2 125.00 0.00 0.00 0.50 1.00
3 BULB No. 3 3 125.00 0.00 0.00 0.50 10.00
4 BULB No. 4 2 125.00 0.00 0.00 0.50 10.00
5 BULB No. 5 1 125.00 0.00 0.00 0.50 10.00
6 BULB No. 6 2 125.00 0.00 1.00 0.50 1.50
7 BULB No. 7 1 125.00 0.00 0.00 0.50 10.00
8 BULB No. 8 2 125.00 0.00 0.00 0.50 2.00

7.4.2 Test Results

The maximum demand that the demand emulator device was capable of producing
was 1050 watts. In all tests it was assumed that the goal for the demand
limiting algorithms was to keep demand below 700 watts. In tests where a
demand interval was used, either sliding or fixed, the goal was to keep the
integrated energy use during the demand interval below 23.33 watt-hours which
was the product of the 700 watt demand and the two minute demand interval.

7-5

7 .4.2.1 Instantaneous Rate Algorithm

Figure 7-1 shows the results from testing the instantaneous rate demand
limiting algorithm as described in section 7.4.1. The solid line represents
the theoretical demand that would have been present if no demand limiting had
been applied. It shows a series of step functions which would result from each
of the eight light bulbs being turned on or off by the demand emulator. The
dashed curve represents the electrical demand measured at each execution of

the demand limiting algorithm (thirty second intervals). The algorithm was
operated with the specification that the maximum demand be lower than 700
watts but higher than 600 watts. The figure shows that the measured demand
follows the theoretical demand until the theoretical demand exceeds 600-700
watts and then oscillates around 700 watts. Since the resolution of demand
control is only 125 watts (the power consumed by one bulb), these results are
acceptable because the amplitude of the oscillation is approximately of this

magnitude. A system with a larger number of loads than eight would allow a

greater demand control resolution and would allow better control around the

maximum demand limit.

7. 4. 2. 2 Ideal Rate Algorithm

Figure 7-2 shows results of testing the ideal rate algorithm as described in

section 7.4.1. As in figure 7-1. the solid line represents the theoretical
demand if no demand limiting were applied and the dashed curve represents
electrical demand measured at thirty second intervals when the demand limiting
algorithm is executed. The parameters for the ideal rate algorithm are
different than for the instantaneous rate algorithm. The ideal rate algorithm
was assumed to operate with a fixed demand interval, and the size of the
demand interval, two minutes, was an algorithm parameter. A second parameter
was the sampling period or time between successive executions of the
algorithm. To establish the ideal rate of energy increase during the demand
period, three additional parameters are required. These are the maximum power
for the demand period, the offset, and the difference between the minimum and
maximum energy curves. The product of the maximum power and the demand
interval determines the endpoint of the ideal rate curve on a plot of energy
versus time. The endpoint at the start of the demand interval is determined by

the offset, which is in terms of energy. The area on an energy vs time plot
within which the measured cumulative energy is allowed to fall is determined
by the difference parameter. For the actual testing, the maximum power was 700
watts, the offset was 0.25 watt-hours, and the difference between the minimum
and maximum energy curves was 0.5 watt-hours. Figure 7-3 is a plot of
integrated energy versus time for each of 12 demand intervals during the test
period. The dashed line represents the ideal rate curve. The ideal rate line
passes between 0.25 watt-hours at the beginning of the demand interval and
23.3 watt- hours (product of 700 watts and 2 minutes) at the end of the demand
interval. The solid line represents the measured integrated energy use during
the demand intervals which begins at zero for each interval. The algorithm was
successful in limiting demand since the solid lines either fall below or

7-6

follow the dashed lines in all demand intervals. The demand interval beginning

at 12.5 minutes in figure 7~3 is shorter than the other intervals due to an

early demand reset signal.

In figure 7-2, which shows the actual demand rather than integrated energy, it

may be observed that the demand oscillates with a period of approximately four

minutes. The demand interval is equal to half of one period. During a half

period, the oscillation generally moves from a maximum to minimum or from a

minimum to a maximum, resulting in an average demand (between 600 and 700

watts) when the theoretical demand (i.e., without demand limiting) exceeds

these values. The oscillation in demand in figure 7-2 is then more
advantageous in reducing fixed interval demand charges than it might at first

appear from the large swings in the measured demand.

7. 4. 2. 3 Predictive Algorithm

The predictive algorithm which was tested was able to work with two types of

demand intervals, fixed interval and sliding window. The algorithm is capable

of switching between the two when the demand interval reset signal is lost. In

order to test the algorithm under both types of demand interval, the demand
profile shown in figures 7-1 and 7-2 was repeated twice for the predictive
algorithm, as shown by the solid line in figure 7-4. The predictive
algorithm testing was begun with a demand reset signal appearing every two
minutes and the algorithm used fixed interval demand periods. At approximately
30 minutes into the test the demand reset signal was no longer sent and the
predictive algorithm switched to the use of a sliding window demand interval
for the remainder of the test.

The parameters for the predictive algorithm were the demand interval length,

which was two minutes, the maximum and minimum demand levels allowed in a

demand period, which were set at 700 and 600 watts to be consistent with tests

of the other algorithms, and the sampling period of the algorithm, which was
0.5 minutes. The predictive algorithm attempts to predict the magnitude of

integrated energy (integral of power with time) at the end of the demand
period and sheds or restores loads to cause the prediction to be less than the
maximum and more than the minimum energy parameters (product of maximum and
minimum demand parameters and the demand interval). The first half of figure
7-4 shows the result of testing the predictive algorithm with a fixed demand
interval. As with the ideal rate algorithm test results, there is an
oscillation of demand as the specified demand limit of 700 watts is reached,
and the period of oscillation is observed to be approximately four minutes.
The magnitude of the oscillation is generally larger than with the ideal rate
algorithm. As with the ideal rate, the oscillation results in an average
demand during the demand interval which is between 600 and 700 watts whenever
the theoretical demand (i.e., without demand limiting) exceeds these values.

Beginning at approximately 30 minutes into figure 7-4, the results of testing
the predictive algorithm with a sliding window demand interval are shown. The

7-7

demand during the sliding window testing has the same oscillatory
characteristics as during the fixed interval testing* but with a greatly
increased amplitude. During the period of heaviest demand all of the loads are

shed and restored to limit demand. The algorithm apparently produces the
drastic oscillations in order to produce smaller integrated energy during the
sliding demand periods. It is possible that the oscillatory behavior of the

demand would be reduced in a system with a larger number of loads or in a

system where the theoretical demand profile was not as rapidly changing as the
profile used during this test. Unfortunately* time did not permit testing. out
these possibilities.

7. 4. 2.4 Load Control Algorithm

The demand limit algorithm testing also resulted in tests of the load control
algorithm. The criteria for judging the load control algorithm are whether
loads were reasonably selected for shedding or restoring based on a shed or
restore target* and whether the algorithm adhered to parameters for maximum
off-time* minimum off-time* and minimum on-time.

From study of the diagnostic output listings from the tests and the load
control algorithm parameters in table 7-1* the following observations were
made

:

1. The maximum off-time limit appears to work properly.' During the
intantaneous rate test* load 6 was shed and restored after being off for 1.5

minutes which is the specified maximum off-time. Load 8 was subsequently shed

to reduce demand restored from load 6.

2. The minimum off-time limit appears to operate correctly. During the
instantaneous rate test* load 6 was shed and was not restored until it had
been off for one minute* the specified minimum off-time* even though the
demand limit algorithm was requesting that demand be restored and only load 6

had been shed.

3. No conclusion is possible about the minimum on-time limit since the limit
was set at 0.5 minutes* the sampling period of the algorithm.

4. Some problems were observed during the predictive algorithm testing with a

sliding demand window when the algorithm made requests to shed a large amount
of demand which exceeded the full load demand of the demand emulator. In this
case* the algorithm made requests to shed the same load more than once. This
was due to the nature of the modifications made to the load control algorithm
where status variables were used to indicate which loads were on and which
were off. These were not updated until the next execution of the load control
algorithm. Thus* the load control algorithm had no indication that loads shed
dur.ing the same sampling period had already been shed. The only result,
however* was a wasteful increase in the amount of commands sent to the field
processor

.

7-8

7.5 Considerations for Use of Algorithm

In general, the demand limiting algorithms, with the possible exception of the

predictive with sliding window demand interval, appeared to work well. The

scope of the testing was, however, not sufficient to predict that the

algorithms will operate properly under all conditions of loading.7.5.1

Parameter Selection

This section is intended to document conclusions reached about the assignment

of values to algorithm parameters as a supplement to guidelines given in

reference [5].

7. 5.

1.1

Instantaneous Rate Algorithm

The maximum and minimum demand are the parameters for the instantaneous rate

algorithm. It was observed that the actual demand exceeded the maximum demand
at times. Therefore if it is important that a certain demand figure not be

exceeded, a slightly lower maximum value should be used than the actual
desired maximum. The maximum demand parameter value seems to serve as a

baseline value around which the demand will oscillate when loads are being
shed and restored.

7. 5. 1.2 Ideal Rate Algorithm

The parameters for the ideal rate algorithm and a fixed demand interval are

the demand interval, the sampling rate, the maximum power in the interval, the

ideal rate curve offset, and the difference between the minimum and maximum
energy curves. Due to the limited different selections of parameters used
during the testing, no additional conclusions were reached about parameter
selection for this algorithm except the recommendation that the sampling
period for the algorithm should be less than one quarter of the demand
interval.

7. 5. 1.3 Predictive Algorithm

The parameters for the predictive algorithm used with fixed or sliding demand
interval are the demand interval, the sampling rate, and the maximum and
minimum power in the interval. Due to the limited different selections of
parameters used during the testing, no additional conclusions were reached
about parameter selection for this algorithm.

7-9

1 , 5.2 Usage Constraints

The selection of which of the demand limiting algorithms to use depends on the

demand metering technique used by the local utility. All of the algorithms
tested appeared to work as designed in limiting the demand for the set of
loads used for testing. For a small number of loads* all the algorithms
produced some oscillation in demand. The predictive algorithm with sliding
window demand interval, however, produced very large oscillations, and,
because of this, it is recommended that this algorithm not be implemented
unless field tests are carried out to determine if the level of demand
oscillation which results is within acceptable limits for a particular
application.

7.6 Revised Demand Limiting Algorithms

Appendix C contains listings of a specific implementation of the demand limit
and load control algorithms as used for testing. Changes to the original
programs are delineated in areas separated from the rest of the computer code
by dashed lines.

7-10

(SIIVW) aNVWHQ

7-11

1100

T T
I

•V£)

iCM

h

i

,

; I i

,
;

,

i

,

i
I

.
,

' i ‘ 1 1 ! 1 ’ ‘ ‘ ' ' ^ O
o o o o o o o o o o o
o o o o o o o o o o
o CO VO LO -=r m CM 1—

1

(sxiVM) QNvwaa

7-12

Figure

7
2.

Results

of

testing

ideal

rate'al

goritlim

with

fixed

demand

Interval

(HM) A0H3N3 a3IV333INI

7-13

liguro

7-3.

Results

of

testing

Ideal

rate

algorithm

with

fixed

demand

Interval

'
'

,

I

^ I

I i 1 ! 1 I L, i I I i ,1.1 ! — I ^ (3

o o o o o o o o oo o o o o o o o oo
1

ON CO LO -=r on C\J

(SllVM) aNVW3Q

7-14

Figure

7-4.

Results

of

testing

predictive

algorlthn,

with

both

fixed

and

sliding

window

demand

Intervals

8. VERIFICATION OF AN OUTSIDE AIR SUPPLY AIR RESET ALGORITHM

A reset algorithm installed on a building EMCS is used to change the setpoint

of a control loop as a function of a measured variable. When the measured
variable is outside air temperature and the setpoint is for the supply air

temperature of a building air handling unit, the algorithm is referred to as a

supply air reset algorithm. A public domain supply air reset algorithm was
developed based on the assumption that the correct setpoint temperature for

the air supplied to building zones could be determined as a function of the

outside air temperature. A detailed description of the public domain algorithm
that was developed is found in a previous report [1].

8.1 Operation of Algorithm

Operation of the public domain outside air reset algorithm is described in

reference [1]. However, a brief description .of the algorithm will be given in

this section. The algorithm is designed to change the values of one or more
setpoints according to a predetermined schedule table of setpoints as a

function of measured outside air temperatures. The table contains three values
of setpoint for three values of outside air temperature. If the outside air
temperature is below the first table entry of air temperature, then the
setpoint is constrained to the value of the setpoint for the first table
entry. If the outside air temperature is above the outside air temperature for

the third table entry, then the setpoint is constrained to the value of the
setpoint for the third table entry. If the outside air temperature is between
the outside air temperatures for the first and second table entries then the

setpoint is interpolated between the setpoints for the first and second table
entries. If the outside air temperature is between the outside air
temperatures for the second and third table entries then the setpoint is

interpolated between the setpoints for these two table entries. If the
setpoint is plotted as a function of outside air temperature, the result is

four straight line segments.

8.2 Installation of Algorithm

The outside air supply air reset algorithm was installed on the NBS laboratory
EMCS. The algorithm was installed in a field processor and integrated into the
field processor software. The public domain outside air supply air reset
algorithm developed at NBS was described in reference [1] in a general form.
An example implementation was written in the high level computer language
FORTRAN (actually FORTRAN IV) as a subroutine and was used as the test
algorithm. This subroutine was listed and documented in this reference.

The setpoints controlled by the reset algorithm were used by the field
processor air handling unit control software in DDC control of an air handling
unit. The valves and dampers of the air handling unit were adjusted to
maintain the air leaving the unit at the desired supply air setpoints.

8-1

8.3 Corrections to Original Algorithm

No problems were discovered with the originial outside air supply air reset

algorithm as originally written. Therefore no corrections were made to the
algorithm during the testing.

8.4 Testing of Algorithm

The public domain supply air reset algorithm was tested by controlling the
supply air setpoint temperature of an actual air handling unit installed in an
operating building as a function of the measured outside air temperature. The
air handling unit that was used is described in the introduction. The
algorithm was allowed to control the setpoint continuously for a period of

approximately two months using several reset schedules. Measurements were made
of the outside air temperature* the supply air temperature* and the air
temperature and activity of the reheat coil in one office to evaluate the
operation of the algorithm.

8.4.1 Test Procedure

Continuous measured data from a one month interval where the supply air reset
algorithm used the same reset schedule every day were selected to evaluate the
algorithm. This period was from February 24 through March 23* 1985. The reset
schedule used during the test period contained the values given in table 8-1.

During the test period* a scheduled start/stop algorithm was also stopping the
air handling unit at 18:00 (6:00 p.m.) hours every day and starting the unit
up at 4:00. When the air handling unit was stopped* the supply air temperature
was not meaningful because no air was passing through the air handling unit.

Therefore only data collected while the air handling unit was operating were
used for algorithm test evaluation.

table 8-1. reset schedule used to test outside air supply air reset algorithm

outside air temperature (F) | supply air temperature (F)

40 I 66

72 1 60

90
1 55

8-2

8.4.2 Test Results

Since the outside air supply air reset algorithm adjusts the supply air

temperature as a function of the outside air temperaturei it is reasonable to

assume that a plot of measured supply air temperature as a function of

measured outside air temperature would be useful in determining if the

algorithm is operating as expected. Unfortunately, such a plot will also
include the effects of the local control system, in this case a direct digital

control system controlling a chilled water valve, an outside air damper, and a

steam heating coil.

Figure 8-1 is a plot of measured supply air temperature versus measured
outside air temperature for the test period. Data were taken approximately
every five minutes, but data for each day between 18:00 and 4:00 on the next
day were omitted since the air handling unit was not operating during these

time periods. The solid line drawn on the plot represents the outside air
reset schedule as given in table 8-1. Theoretically, all points on the plot
should fall along this line.

The bulk of the points in figure 8-1 do follow a wide pattern which definitely
falls aloag the schedule line. However, there are three distinct
discrepancies, the first of which is that a large number of points lie above
the schedule in two patterns. A second discrepancy is the group of points
which lie below the reset schedule, and the third discrepancy is the large
spread in the points which do follow the schedule.

Unfortunately, as mentioned above, the results in figure 8-1 describe the
performance of the DDC control system as well as the reset algorithm
performance. Based on observations of the DDC system, it is known that two
problems exist with this system. The first is that in order to minimize
oscillations, the control system is tuned in such a way that it fairly
sluggish to changes in load or setpoint. The second problem is that when
sequencing occurs between the fully open or closed position of one valve and
the fully closed or open position of the next valve in the sequence, there can
be a sizable delay before the next valve responds. The size of this delay
depends on the past history of the valve control actions. These valves are
controlled by control signals that cause a change in valve position rather
than a change in absolute position. A shut down of the air handling unit, such
as occurred each day, compounds the problem, because all valves are driven to
the closed position and the valve actuator system (in this case, a motorized
pressure regulator) can physically overshoot. If the overshoot occurs, a

number of control actions will be required to return the valve to the point
where it is just starting to open.

In figure 8-1, the discrepancies where the supply air temperature is greater
than the scheduled valves are caused by sluggish sequencing when the heating
load on the air handler is decreasing. On days when the outside air
temperature was below 45 F prior to air handling unit start-up and rose during

8-3

the dayi the air handling unit usually began to sequence from the steam valve
to the outside air damper when the outside air temperature reached 45 F.

Hovever* there was usually a delay after the steam valve closed and before the
outside air dampers opened. This delay allowed the supply air temperature to

temporarily rise* sometimes as high as 70 F. This situation occurred often
during the test period and accounts for most of the points in figure 8-1

leading upward from the main group starting at an outside air temperature of

45 F.

On warmer daySt the air handling unit would make a transition from outside air
dampers to the chilled water coil and the delay in sequencing resulted in the

smaller number of points leading upward from the main group around an outside
air temperature of 60 F.

Occasionally! there was a condition where there was a delay in the opening of

the valve for the steam coil under cold conditions and this allowed the supply
air temperature to drop below the setpoint temporarily. This caused the
grouping of points in figure 8-1 below the schedule line between outside air
temperatures of 35 and 40 F.

The main group of points in figure 8-1 does follow the schedule line with
considerable spread. The spread is probably caused by the sluggish DDC control
when faced with changes in setpoint or loading. The nature of the control
could cause the actual supply air temperature to lag behind the setpoint
temperature by as much as two degrees! which is the width of the spread on the

points clustered around the reset schedule line.

Taking into account the behavior of the DDC controller! it appears that the
data in figure 8-1 indicate that the public domain outside air supply air
reset algorithm did perform as expected. Unfortunately! the algorithm was not
run during other test periods having a larger range of outside air
temperatures. Only a portion of the reset schedule was used. However in tests
using a building emulator device connected to the NBS laboratory to simulate a

building under a wide range of outside air temperatures! the supply air
temperature predicted by the emulator followed the specified reset schedule.

8.5 Considerations for Use of Algorithm

In general! the public domain outside air supply air reset algorithm performed
as expected. Unfortunately! the HVAC system connected to the NBS laboratory
EMCS was not able to fully benefit from energy savings possible from use of
the algorithm because of poor local control of the building offices by
terminal reheat units. This problem was encountered in testing of the demand
supply air reset algorithm and is discussed in section 9.4.

8-4

8.3.1 Parameter Selection

The parameters for the outside air reset algorithm determine the reset
schedule to be used by the algorithm. The selection of the proper schedule is

important since the control of the supply air temperature is an open loop type

of control. If the supply air temperature selected by the algorithm is

improper for the load conditions in the building* the algorithm will not
correct the setpoint. Only the entry of a revised reset schedule will correct

the problem. It was difficult to develop a schedule for the building used for
testing of the algorithm since the local zone reheat controllers did not
change the amount of reheat as a result of changes in supply air temperature
and the proper supply air temperature for various outside air temperature was
difficult to determine (see section 9.4).

The air handling unit used for testing has traditionally been controlled at a

constant setpoint of 65 F in the winter and 60 F in the summer. The use of the
outside air reset algorithm would at least allow the change in setpoint from
summer to winter and winter to summer to be automated. This could be
accomplished by setting the three outside air temperatures to a small range of

outside air temperatures corresponding to summer-winter transition* such as

65* 68* and 70 F. The corresponding setpoints in the reset schedule table
might then be 65* 62* and 60 F. The result would be a constant setpoint of 65
F in the winter (outside temperature below 65 F)* and a constant setpoint of
60 F in the summer (outside air temperature above 70 F).

8.5.2 Usage Constraints

The use of an outside air supply air reset algorithm is only justified if the
HVAC system will use less energy with the algorithm than without it. If the
local zone heating and cooling equipment is not working properly or is not
properly controlled* the benefits from the reset algorithm will be greatly
reduced. If the local equipment is operating properly* the use of the
algorithm should save both cooling energy and local zone heating (such as
reheat energy) as the supply air temperature will be more closely matched to
the zone heating and cooling loads.

8-5

(J) 3HniV^3<IHHl HIV AlHHnS

m
CO

I

pn
CN

Im
0
u
<
CM

1

CM

e
j=

o
00

0)

T3
•H
CO

u
3
O

00
c

3
CO

cu

oi

I

00

0)
)-l

3
00

8-6

9. VERIFICATION OF A DEMAND SUPPLY AIR RESET ALGORITHM

A reset algorithm installed on a building EMCS is used to change the setpoint

of a control loop as a function of a measured variable. When the setpoint is

for the supply air temperature of a building air handling unit providing air

to one or more building zones and the measured variable is the heating or

cooling requirements of the zones* the algorithm is usually referred to as a

demand supply air reset algorithm. A public domain demand supply air reset
algorithm was developed based on the assumption that the zone heating or

cooling demand can be determined by measurements and that the best setpoint

temperature of the supply air to building zones can be determined as a

function of the zone demand. A detailed description of the public domain
algorithm developed can be found in a previous report [1].

9.1 Operation of the Algorithm

Operation of the public domain demand reset algorithm is described in

reference [1]. However, a brief description of the algorithm will be given in

this section. The algorithm is designed to change the values of one or more
setpoints as a function of the measured zone demand. Readings are taken from
instrumentation in one or more zones and summed or averaged over a time period
which is selectable as an algorithm parameter. The algorithm does not specify
the nature of the data- taken from the zone* since this data will depend on the

zone characteristics and local heating and cooling equipment. After enough
samples have been taken* the algorithm will calculate* for each of the
selected zones* a value referred to here as the “demand*** which represents the

percentage of the maximum heating or cooling capacity for the local equipment
used over the past sampling period in each zone. Depending on the HVAC
system, one of the zones is then selected as having the zone demand which will
be used to calculate a new supply air setpoint. For example* with a constant
volume air handling unit and terminal reheat units in the zones* the zone with
the smallest amount of reheat will be used as the representative zone. The
calculation of the new setpoint is made using equations which are dependent on
the HVAC system type. Once the new setpoint had been calculated and reset* the
sampling of the zone instrumentation begins again for another sampling period.

9.2 Installation of the Algorithm

The demand supply air reset algorithm was installed on the NBS laboratory
EMCS. The algorithm was installed in a field processor and integrated into the
field processor software. The algorithm* which was developed at NBS, is
described in reference [1]. An example implementation was written in the high
level computer language FORTRAN (actually FORTRAN IV) as a subroutine. This
program was listed and documented in reference [1].

The setpoints controlled by the reset algorithm were used by the field
processor air handling unit control software in DDC control of an air handling

9-1

unit. The valves and dampers of the air handling unit were adjusted to

maintain the air leaving the air handler at the supply air setpoints.

The specific HVAC system type used for the testing of the demand supply air
reset algorithm was a constant volume air handling unit with terminal reheat
units in the zones. The reheat coils in the zones were theoretically
modulating hot water coils controlled by a local thermostat with the
thermostat sensor exposed to the zone air. The thermostat and hot water valve
were pneumatic devices# without any possible adjustments other than an
uncalibrated setpoint selection knob. It was observed# however# that in
actual practice the hot water coils were either on or off# even though the
control was theoretically modulating. This was attributed to an overly large

proportional gain built into the local thermostat. The local instrumentation
selected to indicate reheat coil activity was a pressure switch which closed a

contact at a certain pressure. The switch activation pressure was adjusted to

correspond to the midpoint of the pressure range for the reheat valve. Thus an
open valve would produce a closed contact and a closed valve would result in
an open contact. This contact was connected, as a digital input on the NBS
laboratory EMCS. Due to limitations in time and the difficulty of
instrumenting all of the 39 zones supplied by the air handling unit# it was
decided that instrumenting a single zone would be adequate to test the
algorithm for basic functionality.

The specific details of the algorithm operation followed the general approach
outlined in section 9.1. A data point was taken from the reheat coil
instrumentation described above every fifteen seconds. The control period for
reset was set at 1200 seconds# resulting in a total of 80 data points for each
control period. If the reheat coil were on constantly# each time the reheat
coil sensor was sampled# the contact would be closed# giving a total of 80
contact closures. If the reheat coil operated 50 percent of the time# the
sensor would have a closed contact half of the time or 40 contact closures
would be counted. By dividing the total amount of contact closures during the
control period by the maximum (80)# the percentage of the maximum reheat coil
usage was determined for each control period. The sampling time and the
control period were parameters for the algorithm.

Five other parameters were used by the demand supply air reset algorithm to

calculate a supply air setpoint from the percentage of maximum reheat coil
usage. These are specified minimum reheat coil usage in percent# the specified
maximum reheat coil usage in percent# the reset gain# the minimum supply air
setpoint# and the maximum supply air setpoint. The goal of the algorithm is to

adjust the supply air temperature so that the observed percent reheat coil
usage remains between the specified minimum and maximum reheat values. This
is accomplished with a simple proportional control loop with the reheat coil
percent of use as the measured or process variable and the change in the air
handler's supply air setpoint# relative to the current setpoint as the output
variable. The reset gain parameter is multiplied by an error term to yield the
correction to the current supply air setpoint. This error term is defined as
the current reheat value minus the specified maximum reheat value if the

9-2

current reheat value is above the maximum or is defined as the current value

minus the specified minimum reheat value if the current value is below the

minimum. Once the correction has been determined, it is added to the current

setpoint to produce the new setpoint. The new supply air setpoint is compared

to the maximum and minimum supply air setpoint parameters and constrained to

be within these limits. If the current reheat value is between the minimum
and maximum specified values, no correction to the supply air setpoint is made
(this is equivalent to assuming that the error term is zero).

The implementation example of the demand supply air reset algorithm listed in

reference [1] was not written in a completely general form. The number of

zones and the identification of the digital inputs to use for the reheat coil

sensors were not designated as algorithm parameters but were written directly
into the computer program. These two values had to be changed in order to test

the algorithm.

9.3 Corrections to Original Algorithm

One correction to the original public domain demand supply air reset algorithm
as listed in reference [1] was made before testing of the algorithm. The
original algorithm mistakenly determined the correction to the current supply
air setpoint by multiplying the reset gain by the specified minimum percentage
of reheat capacity rather than by the error between the setpoint and the
minimum. This calculation was changed to use the error instead.

9.4 Testing of Algorithm

The public domain supply air reset algorithm was tested by controlling the
supply air setpoint temperature of an actual air handling unit installed in an
operating building as a function of the measured reheat demand in one zone
supplied by the air handling unit. The air handling unit that was used is
described in the introduction. The algorithm was allowed to control the
setpoint continuously for a period of approximately two weeks using several
different sets of demand reset parameters. Measurements were made of the
outside air temperature, the supply air temperature, and the air temperature
in one office to evaluate the operation of the algorithm.

9.4.1 Test Procedure

It was discovered, while testing the demand supply air reset algorithm, that
the local reheat coil control in the zone which was being monitored did not
operate as expected. Theoretically, the amount of time that the reheat coil
was operating should vary as a function of three variables. First, changing
the reheat coil thermostat setpoint upward should cause the coil to operate
more of the time and changing the setpoint downward should cause it to operate
less. Secondly, any changes in the zone load due to changes in transmission

9-3

loads or internal loads should cause the reheat time to go down with decreased
heating loads or increased cooling loads, or it should cause the reheat time
to go up with increased heating loads or decreased cooling loads. Thirdly, an
increase in the supply air temperature should cause the zone to move towards
higher zone air temperatures and therefore lower the amount of reheat.
Similarly a decrease in supply air temperature should cause the zone to move
towards a lower zone air temperature and should raise the amount of reheat.

By varying the supply air temperature and thermostat setpoint and recording
the activity of the reheat coil, it was discovered that the reheat coil
essential is activated in pulses of approximately one to two minutes duration.
The duration of the pulses seems to vary slightly but the variation in pulse
width could not be correlated with any other variables. It was found that
changes in the supply air temperature, while having an effect on the room
temperature, as would be expected, had no significant effect on the pulse
width or frequency of the reheat coil activity. Changes in the thermostat
setting of the reheat control did have an effect on the reheat coil activity.
If the thermostat were moved toward a setting of higher room temperature, the
frequency of the reheat coil pulses was found to increase. If the setting were
moved toward a lower room temperature the pulse frequency decreased.
Effectively the reheat coil in this room injected a constant amount of energy
into the zone, regardless of supply air temperature or load conditions if the
thermostat setting was kept constant. Increasing the thermostat setting, for
example, simply increased the rate of energy injection. The reason for this
behavior is assumed to be due in part to a large proportional gain in the
reheat controller, which causes reheat valve position to oscillate between the
open and closed positions.

Due to the problems with the zone reheat coil, it was not possible to actually
minimize reheat by changing the supply air temperature. Therefore the test
procedure consisted of operating the system with the demand supply air reset
algorithm operating and changing algorithm parameters and observing the
results. Since the behavior of the reheat coil was predictable (constant
output), it is to be expected that, if the specified reheat demand maximum and
minimum values were not properly set to bracket the reheat coil's measured
constant demand, then the algorithm would drive the setpoint to the high or
low setpoint limit at a rate which would depend on the control parameters
used.

9.4.2 Test Results

The results of testing the public domain demand supply air reset algorithm
with a zone containing an improperly working reheat coil are presented in
table 9-1. The table shows the parameters that were used and the starting
dates and times that the parameters were changed. In all cases the supply air
setpoint was initially placed at hO F. The algorithm immediately began to
cause the supply air setpoint to ramp upward or downward at a constant rate
until either the high or low setpoint limit was reached and then caused the

9-4

setpoint to remain at the limit. The only changes in this behavior were
whether the ramp was up or down and the time required for the setpoint to make
a transition from 60 F to the upper or lower limits. This duration of the ramp

is noted in the last column of table 9-1.

In the second row of table 9-lt when the reheat target was set at 20 to 25

percent, this was obviously higher than the measured reheat coil usage as

measured in percentage of maximum capacity. The algorithm attempted to raise
the amount of reheat to reach a point between 20 to 25 percent by lowering the

supply air temperature. It took four hours to reach the limit of 55 F. When
the reheat target was lowered to 15 to 20 percent in the third row of table 9-

1. the algorithm again lowered the setpoint but since the error in reheat
demand was smaller than for the previous case* it took approximately twice as

long to reach the lower limit. Additional lowering of the reheat demand target
caused the duration of the ramp to increase to 23 hours for a reheat demand
target between 12 and 17 percent. Lowering the target still further to the 10

to 15 percent range caused the target range to lie below the measured reheat
coil demand. The algorithm* in order to lower the amount of reheat* moves the
setpoint toward the upper setpoint limit as indicated in row 1 of table 9-1.

table 9-1. results of testing public domain demand supply air reset algorithm

control period = 1200 seconds* reset gain = 0.05 F/percent of capacity

starting Z reheat capacity ramp duration of
date time min max destination (F) ramp (hrs)

5-3 16:30 10 15 66 8
5-6 10:35 20 25 55 4
5-8 12:15 15 20 55 8

5-13 11:37 13 18 55 15
5-15 13:30 12 17 55 23

9.5 Considerations for Use of Algorithm

In general* the public domain demand supply air reset algorithm performed as
expected with the HVAC system that was controlled. Unfortunately* it was not
possible to determine if the algorithm would have provided a direct benefit in
reducing the energy used by the air handling unit due to the poor performance
of the local zone reheat system. The following section discusses any
conclusions reached on selection of algorithm parameters or usage of the
algorithm based on the testing of the demand supply air reset algorithm. It
should be kept in mind that the conclusions are based on the specific
implementation involving the control of the supply air temperature for a

constant volume air handling unit with terminal reheat.

9-5

9.5.1 Parameter Selection

The parameters used for the demand supply air reset algorithm either control

the desired local controller's activity, the range of allowed supply air
setpoints, or the determination of a new supply setpoint from the local
controller's measured activity.

The parameters determining the range of supply air setpoints are usually
dependent on the specific building and HVAC system. During the testing, the
maximum and minimum setpoints used were based on the setpoints for winter and

summer operation traditionally used for the air handling unit being
controlled. The maximum and minimum values selected were expanded slightly
beyond the constant setpoints to give the algorithm an adequate working range
to minimize reheat activity.

The parameters control period and sampling interval are used to make a

determination of the local zone equipment activity. Only one set of values for

these parameters was used during the algorithm testing. The control period was
chosen as the interval over which it was desired that the setpoint be
adjusted. The sampling interval was chosen to be fairly small. In the test
case, a digital status point was being monitored. In order to capture the true
behavior of the zone equipment, the sampling time had to be at least twice the
maximum frequency of the zone equipment activity. In this case the reheat
coils were observed to pulse with an approximate frequency of 0.5 cycles per
minute. The sampling interval then should have been less than one minute.
Dividing the control period by the sampling interval produces the number of

samples taken in the control period. If this number is small, it limits the
resolution of the zone equipment activity. If the number of samples is 20. for
example, the maximum resolution is 5 percent of the maximum zone equipment
capacity

.

The specified maximum and minimum reheat values and the reset gain are
specific to a given application involving a reheat system, but should have
counterparts in most implementations. The reset gain is used to convert the
deviation in zone equipment activity from the specified maximum and minimum
values into a change in the supply air setpoint. Only one value was used
during the testing. Since the control of the setpoint does not have to be
highly dynamic, the gain was chosen to be small in order to produce a gradual,
non-oscillatory response to changes in the reheat coil activity. The behavior
of the algorithm in controlling the supply air setpoint was very smooth, which
would be expected since the local equipment activity was essentially constant.
The specified maximum and minimum reheat values determine the desired value
for zone equipment activity. During the testing, unrealistic values were used
to verify that the algorithm was operating as expected. In control of a system
where the local equipment control was working properly, these parameters would
be chosen to be close to zero. The specified minimum reheat value should,
however, be greater than zero by an amount that is greater than the possible

9-6

resolution of local equipment activity. The latter* in turn* is dependent
upon the sampling interval and sampling period. The closeness of the specified

maximum and minimum reheat values to each other depends on the behavior of the

local control equipment. Local equipment activity readings which indicate
that the local equipment control is well behaved and the equipment functions
as expected would imply that the specified maximum and minimum activity values
should be chosen to be close together.

9.5.2 Usage Constraints

The use of a demand supply air reset algorithm is only justified if the HVAC
system will use less energy with the algorithm than without it. If the local
zone heating and cooling equipment is not working properly or is not properly
controlled* the use of the reset algorithm will provide little benefit. If the
local equipment is operating properly* the use of the algorithm should save
local zone heating and cooling energy (such as reheat energy) as the supply
air temperature will be more closely matched to the zone heating and cooling
loads. The use of the demand supply air reset requires adequate
instrumentation of the zones to be of greatest benefit. The testing of the
algorithm used sensors in only a single zone. This would be inadequate in any
building where the loads in the zones supplied by the same air handling
equipment are dissimilar. For some types of local zone equipment the
instrumentation of the zone to determine local equipment activity may not be
practical.

9.6 Revised Demand Supply Air Reset Algorithm

Because of errors found in the original demand supply reset algorithm
contained in reference [1]* a revised listing of the algorithm* as implemented
in this testing program* is provided in Appendix D.

9-7

Lii !^- vf'l

'jfS.'
- '’i

?a •i'

•M

'I

ins»i)n»q'M %i. 4ajpi 1*9^1 %9 molSulo99y
^

lo ’'8a=sff*«tJfX’.7''%'tf^ hem Isrra^'OJ: aaiSqMm% »A} aoqa
oi *mtm' 3iisti»y: mumiaim t»o«

''’^^fir«i^i4*f»« l033n<R» ,Uaol I

IX»v..5 ti HySaQii intm^iep^ adi;'JadJ
v]|

^ 4 tumda ']

rs,i™»a* -
: r . - A.

. fe,,„ ,1,

H.
041

j

'•*'.v:'
ii'i', .'i

'.M f‘

,

.

,,

,-*';4
j3,o;f0 .

,' Jo« fS
i ^ A. *‘-i . ^ • f a'h .1

1

.«!irxF (1^
f' ^

?ifc.V4l

• ^eisixiiaoO •istaV 5 « 2»(
(1 , ^

r*H

.11^1 'ft ,jp^‘'''''t,£.;.AM^ ut«i!,v»ii**i*|

nv>->d(!»« fjif'aso^'. ;:- 8ri:e*» liaa go^i»»a e.-^o03 on Iiha goxista £^.^<

itfiiooa i»ftjS iMSiiai »iil oa ^I»»ai» im>« »4 4Xio nTtu3m%p<iP^3 tiM

, '^ii;i-.-p *jJX#ii:i-:^ Hr'l#:* *.^ ril >?rW=^9f

^ ft <»:.»»# s >0' 4 *,^TO3vw

Vj !itiffi' «’
.p ^;»iv'r crT4

”' 'TO
• . aVV --i * i 4fc« 1*4 R0 JtC l««lt

*'A 'vj'fcjf »V|Pil: '<1

,v i* , /'•*> .

_ ^-•'»' .'^Ar JWjAi
" ''*w^V'

4 CUf5cidij»t4t

^
p*%.,.*%m «.i0l ««4 00 .4 ««f ««a4 . vS« i •i»0)t 'MXO''0i^n

4i'>«friiH • 0ynf9, b«^ §4^

iiiii^.^»0.. ik9 vam ^'ift. if M«4d tK *^... * t .tiiipr^^

tt00^ *f4H'fii«4 oMiJNwii «o4

€%$f\y aii »«eri^i*L,. i»0 lf ona •*•
• (4 Hjlt.ait. f^f^po.ifrt 4«4 rt molhj 1k«v« to

I* W,' muiXL'iik^rA^i to ?C94w*< x ^r«4^'l7_.
AlMr«|||«a i» O* cai4 rnttinity* Thm

UH ^ WO V03ry tJ»C'c:;a.

»*?* A»«ti«<i«wi!>-i *•« «w«00 ti 4>Uy cootan
lit valvii# v*ttx-wiai» tha Uoixtd

ftli* r«.*ilex* titrt^Ml lt^ i*i valu»£ 4 rr« 40^
1
}'

•'J o,^Wia:i.«4»
.
T» :.i»otro4. oi m tj^lf««

> f^opw^Xf. P*rniift*r»

f .'fteJ <‘«|kfl«f fnl'u#
lu i’Hjii i« gr««tiii tUo poyaibi^/wr<

“Ifti'A' l-e

10 . SUMMARY

This report has described the testing and verification of eight supervisory
control algorithms* which were previously developed for Energy Management and
Control Systems (EMCS) by the National Bureau of Standards. The algorithms
tested covered dry bulb and enthalpy economizer cycles* optimum and scheduled
start/stop* duty cycling* demand limiting* outside air supply air reset* and
demand supply air reset.

The algorithms* which were described previously in reports [1*2*3 ,4*5]* were
evaluated using an EMCS system developed in the laboratory at NBS. For each
algorithm* the process of installing the algorithm on the NBS laboratory
system was discussed and a description given of the tests that were carried
out to evaluate its performance. The results from these experimental studies
were presented* along with any additional considerations for use of the
algorithms that were developed as a result of the testing program.

Four of the algorithms - dry bulb and enthalpy economizer cycles* scheduled
start/stop and outside air supply air reset* performed as they were designed
to without any significant changes. The remaining algorithms all required
some code modifications in order to perform properly. For these algorithms*
the changes that were made were discussed and a listing of the revised program
code* as specifically implemented on the NBS laboratory EMCS system* was
provided in appendixes.

10-1

mspiff

5fl''Wl>w»| f;^ doirfy;'. »»«i/3xttt|lir‘

frS>f«i6«^ji»«. Wi>> lttr«i:iq[^“''

illi': 'ti'tJUSf* '%|f*'8i»<|l3tf6'' «$«;il4td f^ab *<ioSn\3Tid3b
^

;AT ... -1 mV* wfM.i**ka

7^t

iB

^’9i;«;W xLm^^rbiii% 9t»v d^Jedv «9iiiid»lTt^l«r' «it vil

% 3'« ..«d4 t>!>^oX9«»irittB»:tsi^« 99KI as aniffl k»d»#i»v» '

l$i9 .sdiXicsia j

.'iaiikt «d:i 14 09^i« «'

^

49»vitra«io aAv^ tttJ'A^
’

•dXotsT 9dt‘.. t;tX iia»«r*9»^ ol. ivo
^'r:^i')a 9.9ii t|^« diiv gaalt' 't>39v

9di la «,M bt^olaai^voitga »«dilt(iila
1*^" o“

*

P9 !» '' ^ .%

baXfi'biBXba xg^iao^oa* f^Xaddaii iutm dXu4 « •|iuid)J|:'3t»gia *il} l« khqY
bap!^gXli9b #faw, ^tw^3''’-w *1*9 tl* gMUkti/a ,^hOA qa^AAl-xagp

XIa ecX(,iJ;)og^ili 8aiaig«99 vdX .••geAd.9 ISAdilXffgit t'l* ^ooidTlv
aaad) icVY a j al aBoXXA^iHbaa abod aao*

. i

'''"'

fdj lo |M»XJfiii.t ^ l9A«uu9tB^ at»v «^i«t atair ^sdJ^MBAasdsi add. .'/

o' edw «a97«^ iiSiUfi ic'tarfdnodAi fi€Y add 00 gad««««iY«i * «9loo
• •liiti:0Q«4q0 oi ^Abif«ait^

11. REFERENCES

[1] May, W. B., “Control Algorithms for Building Management and Control
Systems - Hot Deck/Cold Deck/Supply Air Reset, Day/Night Setback,
Ventilaton purging, and Hot and Chilled Water Reset,** Nat Bur. Stand.
(U.S.) NBSIR 84-2846, March 1984.

[2] May, W. B., **Time of Day Control and Duty Cycling Algorithms for Building
Management and Control Systems,** Nat. Bur. Stand. (U.S.) NBSIR 83-2713,
June 1983.

[3] Park, C., **An Optimum Start/Stop Control Algorithm for Heating and
Cooling Systems in Buildings,** Nat. Bur. Stand. (U.S.) NBSIR 83-2720, May
1983.

[4] Park, C., Kelly, G. E., and Kao, J. 7., **Economizer Algorithms for Energy
Management and Control Systems,** Nat. Bur. Stand. (U.S.) NBSIR 84-2832,
February 1984.

[5] Park, C., **Demand Limiting Algorithms for Energy Management and Control
Systems,** Nat. Bur. Stand. (U.S.) NBSIR 84-2826, February 1984.

11-1

® v# '.‘

mMaxsrum^.xl

'iS^e •^Tjds'i'ioiiiA ioij'aotJ^ *^***

l)M -soA a03aii:lfl»T,>%':a^

^ Ai««i (.«.A)',..^y,

a^lMivA tol,»a(^4iiN>aiA *>»* ^ smiT »JC .A 4*lC VCtj
^tI;tS'“C8 Hi8'«IL(*a*AV,lM[i*;>A .tw« .i** .«««iat8 iaiJooO t*aa j0»«08aa*M

5*«rv” ''^.’\i'^ 'flrai,' ' »CA9X •o0l»
*'‘^' -** ‘ “ ''”

"T" ' :r--" 'J

«4Sit<^jXA Xo'ffJfoa f038\jiA48 a»»i^(|0 nA‘*p^*.» «A^tjCc5
t,6lis^t9 iXBiM C«.A) .^a»^8 .t*»i *J»1 .ajtlAXiaA aX lataattS gailooia .,

/ '' s’;- ;
lA

*?V- . .;, t'

f)

C^IJ

^T«aA iroi «ivti(^ lioflA Taai «.T at t^AA Aon «•! •«) «tXX*A t*? tiisA CA3

rtCeX'-^a Ijstii^li.e^o) .Aail^A 'i^sA lotjaot) ba» ja«ji»tMI«M ;._^

. 4 .A8ei - *.> . -^

irs,. •'. - * •
, ^

-^ * >

Jot^03 &«» 3a#ow>ajia»K 3®1 wfcrfJitoflA |4tX3iaiiJ ^0»<a«(r «*9 .ila^ C83‘^

.A8»X *A£IS-AA AXtiK (.«*A) .b0*3« *»b« 43»I ‘*’,t»*3it«

f

--4-

‘ ^ J ',

i-tl

M .MM.

APPENDIX A. SAMPLE IMPLEMENTATION OF OPTIMAL START/STOP ALGORITHM

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

irkitie**irk*irk********ic*irk***’irk*irk-frk*********irk*ic***irk*-k*ic-irlrk**-fc***-irk*ieic

OPTSS : OPTIMUM START AND STOP CONTROL ALGORITHM

MAR. 3, 1983 C.P.

MODIFIED JULY 27, 1984 -

(W.B. MAY)

MODIFIED AUG. 2, 1984 -

(W.B. MAY)

MODIFIED AUG. 13 1984 -

(W.B. MAY)

MODIFIED AUG. 24 1984 -

(W.B. MAY)

MODIFIED AUG. 29 1984 -

(W.B. MAY)

MODIFIED AUG. 30, 1984 -

(W.B. MAY)

NPTHR passed through COMMON from main
program.
Check for zero time constants in YONNEW
MAXMIN subroutine arguments now include

range of search.
Determination of max,min outdoor temps,

modified to use different search range

on first pass of algorithm.
All comparison criteria (epsilons)placed
in common block for external assignment
Ability to respond to start/stop failure
alarms is added. Flags are set to bypass
parameter updating and response waiting.
Added warm start capability. After the

"morning" calculations are done,

parameters are saved in a file. If the

program is restarted, it attempts to

read parameters from this file. If not

successful, the normal cold start is

used.
Added additional statement to improve
above change and prevent multiple reads
of the save file. Also added if clause to

prevent the on-off controller from
running in the daytime.
Added additional variables to be saved in
save file to ensure correct operation.

MODIFIED SEP. 27, 1984 - Additional precautions added against division
(W.B. MAY) by zero, algorithm failure at low loads.

MODIFIED OCT. 01, 1984 - Added limit to earliest stop time AND ...

(W.B. MAY) added ability to switch between heating and
cooling mode. If the algorithm cannot find the
root of the start-up and shut-down curves,
the mode is switched, which changes the YSS and
flips the start-up curve about the time axis
at the setpoint temperature, allowing a root
to be found.

DAYCNT TRUE IF THE DAYTIME CONTOLLER OPERATES
FALSE IF THE DAYTIME CONTROLLER DOES NOT OPERATE

DELY TEMPERATURE DIFFERENCE

A-1

C EPS
C EPSOFF
C EPSON
C EPSSET
C EPSX
C FSYSON
C

C HEAT
C

C ICYCLE
C ITDOWN
C ITIME
C IT>«LX

C ITOFF
C ITON
C ITSET
C ITUNOC
C ITDP
C MAINTN
C

C NMAX
C NPTHR
C PARTON
C

C SWI
C* TAUOFF
C TAUON
C TBEGIN
C TDEDOF
C TDEDON
C TEMP
C TIME
C TIMEX
C TOA(*)
C TOCC
C TOFF
C TOUT
C TSTART
C TDNOC
C X(I)
C XD
C XDATAC*)
C XOCC
C XOCCl
C XOFF
C XSTART
C XDNOC
C XDNOCl
C Y(I)
C YDATAC*)
C YINF

POSITIVE SMALL NUMBER FOR ACCURACY USED IN ROOT
POSITIVE SMALL NUMBER
POSITIVE SMALL NUMBER
POSITIVE SMALL NUMBER
TOLERANCE DETERMINED BY SAMPLING FREQUENCY
TRUE IF THE SYSTEM OPERATES AT FULL POWER
FALSE IF THE SYSTEM IS OFF
TRUE FOR HEATING M)DE
FALSE FOR COOLING MODE
NUMBER OF CYCLES (ONE CYCLE PER DAY)

INDEX NUMBER WHERE TEMPERATURE DECAY BEGINS
INDEX NUMBER OF MODIFIED TIME OF DAY
MAXIMUM NUMBER OF ITERATIONS TO OBTAIN A ROOT USED IN ROOT
INDEX NUMBER WHERE X»XOFF
INDEX NUMBER WHERE X=XSTART
INDEX NUMBER WHERE TEMPERATURE REACHES THE SET POINT
INDEX NUMBER WHERE X'XUNOC
INDEX NUMBER WHERE TEMPERATURE RISE BEGINS
TRUE IF THE ON-OFF CONTROL IS NEEDED
FALSE IF THE ON-OFF CONTROL IS NOT NEEDED
TOTAL NUMBER OF SAMPLES A DAY
NUMBER OF SAMPLES IN ONE HOUR
TRUE IF THE SYSTEM OPERATES WITH A PARTIAL CAPACITY
FALSE IF THE SYSTEM IS OFF
EVERT CONTROL SWITCHES (l«=0,...,7)

SYSTEM TIME CONSTANT DURING THE OFF-PERIOD
SYSTEM TIME CONSTANT DURING THE ON-PERIOD
ORIGIN OF X-COORDINATE (MILITARY TIME)
DEAD TIME DURING THE OFF-PERIOD
DEAD TIME DURING THE ON-PERIOD
INDOOR OR INTERIOR SURFACE TEMPERATURE
TIME OF DAY (MILITARY TIME)
MODIFIED TIME OF DAY IN SCALAR
OUTDOOR TEMPERATURE
BEGINING TIME OF OCCUPANCY (MILITARY TIME)
OPTIMJM STOP TIME (MILITARY TIME)
DRY-BULB OUTDOOR TEMPERATURE
OPTIMJM START TIME (MILITARY TIME)
BEGINING TIME OF UNOCCUPANCY (MILITARY TIME)
MJDIFIED TIME OF DAY WITH ITS ORIGIN AT TBEGIN
X-VALUE WHERE Y-VALUE IS EQUAL TO YSET
MODIFIED TIME OF DAY (X-VALUE)
BEGINNING TIME OF OCCUPANCY IN X-COORDINATE
PAST VALUE OF XOCC
OPTIMJM STOP TIME IN X-COORDINATE
OPTIMJM START TIME IN X-COORDINATE
BEGINNING TIME OF UNOCCUPANCY IN X-COORDINATE
PAST VALUE OF XOCC
TEMPERATURE
TEMPERATURE (Y-VALUE)
STEADY-STATE TEMPERATURE AS X GOES TO INFINITY DURING

c THE OFF-PERIOD
c YMAX MAXIMIM TEMPERATURE
c YMIN MINIMJM TEMPERATURE
c YSET SET POINT TEMPERATURE (TARGET TEMPERATURE)
c

c

YSS STEADY-STATE TEMPERATURE AS X GOES TO INFINITY DURING

THE ON-PERIOD
c

C *ir***icicieieieirk***icic**ic*irk***icrkirkirk**icicicic*:lcic-i:’St^irkie**ic’k**irlrk****-k*******i:

C

SUBROUTINE OPTS S(TIME, TEMP, TOUT)
LOGICAL SWO , SWl , SW2 , SW3 , SW4, SW5 , SW6 , SW7 ,HEAT, MAINTN, PARTON,

& FSYSON,DAYCNT
LOGICAL ALARM ;*** ADDED 8-13-84 ***

LOGICAL OPENED,WARMST ;*** ADDED 8-24-84 ***

LOGICAL RETRY ;*** ADDED 10-01-84 ***

EXTERNAL FYDIF
C PARAMETER (NPTHR=4,NMAX=NPTHR*24) original statement replaced by:

PARAMETER (NPTHRX=60,NMAX=NPTHRX*24) ;*** 7-27 -84 NPTHRX is max NPTHR
DIMENSION XDATA(0:NMAX),YDATA(0:NMAX) ,TOA(0:NMAX)
COMMON /XY/ X(4),Y(4),X0CC,XDN0C,YSET

& /CNST/ TAUON,TAUOFF,YINF,YSS,XD
& /LIMIT/ YMIN,YMAX,HEAT, MAINTN, FSYSON,DAYCNT,XSTART
& /TSET/ TSTART,TOFF,TOCC,TUNOC,TBEGIN
COMMON /CLIM/ TUNOMX ;*** ADDED 10-01-84 ***

COMMON /FREQ/ NPTHR ;*** ADDED 7-27-84 ***

C COMMON /MSG/ MLU ;*** ADDED 7 - 27 -84 ***

COMMON /MSG/ MLU,ALARM ;*** ADDED 8-13-84 ***

COMMON /EPSLON/ EPS, EPSX,EPSOFF, EPSON,EPSSET;*** ADDED 8-02-84 ***'

NAMELIST /RESULT/X, Y, XOFF , XSTART , TAUON , TAUOFF , TDEDON , TDEDOF

,

& YSS , YINF , ICYCLE, ITIME , ITOFF, ITUNOC, ITDOWN, ITON, ITUP , ITSET

,

& TBEGIN,TOFF,TDNOC,TSTART,TOCC
Q*ieieitiCicie*’i:irkieie'k^ic'ki(i<'icicicici(-i<ici<irki(’k'i('i;^ic’krk'i:'k’kicic'kicicicie'icici('k-irfrk*irkicirk'k'k-icicic-Xi; -XX -kic:k-i:*-k’icic-k

NAMELIST/DEBUG/TAUOFF, YINF, OFFL,OFFR,ONL,ONR,IFLAG, ITER,HEAT ;debugging

C NAMELIST / SAVE /XOFF ,
X, Y, XSTART , TOAMAX, TOAMIN, XLEFT ,

XRIGHT ,

C &TDEDON,TBEGIN,YSS ;*** ADDED 8-24-84 *** REPLACED 8-30-84 ***—
NAMELIST / SAVE/TBEGIN , TDEDOF , XOFF , ITDOWN, X, Y, XSTART , TOAMAX, TOAMIN

,

&XLEFT,XRIGBT,ITON,TDEDON, ITUP, ITSET, YSS, YINF ;*** ADDED 8-30-84 ***

C

C DATA EPS,ITMAX/0.005,20/ *** REJCVED 8-02-84 ***

C DATA SWO/. TRUE. /,EPSOFF, EPSON, EPSSET/3*0. 25/*** REMOVED 8-02-84 ***

DATA ITMAX/50/,SW0/ .TRUE./ ;*** ADDED 8-02-84 ***

C

C INITIAL CONDITIONS
C

C EPSX=0.5/NPTHR *** REMOVED 8-02-84 ***

IF (SWO) THEN
ICYCLE=0
SWl =. FALSE.
SW2=. FALSE.
SW3=. FALSE.

o

n

n

n

oooo

o

o

o

non

SW4=. FALSE.

SW5*=. FALSE.
SW6 = . FALSE.
SW7=. FALSE.
MAINTN». FALSE.
PARTON=. FALSE,
FSYSON=. FALSE.
DAYCNT=.TRUE.
ALAR^^. FALSE. ;*** ADDED 8-13-84 ***

CHANGE TIME COORDINATES

CALL XCOORD(XSTART,TSTART,TBEGIN,l)
CALL XC00RD(X0CC,T0CC,TBEGIN,1)
CALL XCOORD(XDNOC,TDNOC,TBEGIN,l)
CALL XC00RD(XDN0MX,TDN0MX,TBEGIN,1) ;*** ADDED 10-01-84 ***

TRY TO INITIALIZE PARAMETERS > ADDED 8-24-84 ***

CALL OPSAVECOPENED, 'OLD ')
9 ADDED 8-24-84 ***

IF (OPENED) THEN ADDED 8-24-84 ***

READ(2,SAVE) 9 ADDED 8-24-84

CLOSE(2) •

9 ADDED 8-24-84 iUrtWf

SW0=.FALSE. • irirk
9 ADDED 8-29-84 ***

SW1=.TRUE. • ***
9 ADDED 8-24-84 ***

ICYCLE*! • kick
9 ADDED 8-24-84 **

WARMST-.TRUE. • kkk ADDED 8-24-84
WRITE(MLU,FMT="(1X, 'PARAMETERS TAKEN FROM FILE')”) ;-<r**ADDED 8-.

ELSE • Hritie
$ ADDED 8-24-84 ***

WARMST». FALSE. • ±^rit ADDED 8-24-84 ***

ENDIF •**
> ADDED 8-24-84

ENDIF

STORE INPUT DATA AS ARRAYS IN TERMS OF INDEX TIME

CALL XCOORD(TIMEX,TIME,TBEGIN,l)
ITIME=TIMEX*NPTHR
TOA(ITIME)=TOUT
XDATA (ITI ME)=TI MEX
YDATAC ITIME) =TEMP
X(4)=XDATA(ITIME)
Y(4)“YDATA(ITIME)

TURN OFF THE SYSTEM AT THE BEGINNING OF UNOCCUPANCY OF INITIAL
CYCLE

IF(SWO.AND.ABS(XDATA(ITIME)-XUNOC) .LT.EPSX) THEN
DAYCNT=. FALSE.
ITOFF=ITIME
ITUNOC=ITIME

A-4

o

o

o

o

non

SW0-. FALSE.

SW2-.TRUE.
WRITE(MLD,FMT="(5X, ' SWO SYSTEM OFF AT TEE FIRST CYCLE')")

ENDIF
C

C TURN OFF THE SYSTEM AT THE BEGINNING OF UNOCCUPANCY AFTER INITIAL

C CYCLE
C

IF(SWl.AND.XDATAdTIME).GE.XOFF) TEEN
DAYCNT=. FALSE.
ITOFF«ITIME
SW1-. FALSE.
SW2-.TRUE.
WRITE(MLU,FMT»”(5X, ' SWl SYSTEM OFF')")

ENDIF

DETERMINE DEAD TIME DURING IHE OFF-PERIOD

IF(SW2 .AND.ABS(YDATA(lTIME)-YDATA(ITOFF))

.

TDEDOF«=XDATA(ITIME) -XDATACITOFF)

XOFF=XUNOC-TDEDOF
IF(XOFF . LT . XUNOMX) XOFF=XUNOMX
ITDOWN=ITIME
SW2». FALSE.
SW3-.TRUE.
SW4“.TRUE.
WRITE (MLU,FMT»"(5X, ' SW2 DECAY/RISE

ELSE IF (SW2. AND.ALARM) THEN
SW2-. FALSE.
SW3“. FALSE.
SW4».TRUE.
ALARM-. FALSE.

ENDIF

GE.EPSOFF) THEN

;*** ADDED 10-01-84 ***

RESPONSE OCCURS')")
*** ADDED 8-13-84 ***
*** ADDED 8-13-84 ***
*** ADDED 8-13-84 ***

*** ADDED 8-13-84
*** ADDED 8-13-84 ***

MAINTAIN MraiMIM LEVEL OF OPERATION

IF(SW3) THEN ;*** REPLACED 8-29-31 ***

IF(SW3.AND.(.NOT.DAYCNT)) THEN ;*** ADDED 8-29-84 ***

IF((HEAT. AND. (Y(4) .LE.YMIN)) .OR. (.NOT. (HEAT) .AND.
& Y(4).GT.YMAX)) THEN

IF(ICYCLE.GE.l) XSTART-XLEFT-TDEDON
MAINTN-.TRUE.
SW3-. FALSE.
WRITE(MLU,FMI="(5X, ' SW3 ON-OFF CONTROLLER TAKES OVER')")

ENDIF
ENDIF

C

C FIND THE INTERSECTION OF ON- AND OFF-TEMPERATURE CURVES
C

IF(ICYCLE.GE.l) THEN
IF(ABS(XDATA(ITIME)-X(3)).LT.EPSX) THEN

A-5

o

o

o

o

o

Y(3)»YMTA(ITIME)
ENDIF

IF((.NOT.MAINTN) .AND. (XDATA(ITIME) .GT.X(3) .AND.XDATA(ITIME)
& .LT.XSTART).AND.(ABS(Y(3)-Y(4)) .GT.EPSSET)) THEN;*** REMOVED 9-27-84 *

IF ((.NOT . MAINTN) .AND . (XDATA (ITIME) . GT . X (3) .AND . XDATA (ITIME)

& .LT.XSTART)) THEN ;** ADDED 9-27-84 ***

IF(HEAT) THEN
IF(Y(4).GE.Y(3)) THEN
YINF=TOAMAX

ELSE
YINF=TOAMIN

ENDIF

C IF(Y(4).LE.Y(3)) THEN-
C YINF=TOAMIN
c else
C YINF=TOAMA.X
C ENDIF
C ENDIF
C

;*** removed 9-27 -SA ***

REMOVED 9-27-84 ***
irkie REMOVED 9-27-84 ***

REMOVED 9-27-84 'A"i' 'X'

REMOVED 9-17 -BA ***
icirk REMOVED 9-27-84 ***

REMOVED 9-27-84 ***
ickk REMOVED 9-27-84 Tit**

XL=XLEFT
XR=XRIGHT
RETRY = .FALSE. ;** ADDED 10-01-84 **

C CALL ROOT(XL,XR,EPS,ITMAX,FYDIF,XROOT,IFLAG);*** REPLACED 8-14-84 **

CALL ROOT (XL , XR , EPS , ITMAZ, FYDIF' XROOT , IFLAG , ITER)

OFFL-YOFF(XL)
OFFR-YOFF(XR)
ONL=YONNEW(XL)
ONR=YONNEW(XR)
WRITE (MLU, DEBUG)

debugging *

8-1-84 *

*
*

*
Q*ie*icirkicic*irkirk'k*ieieirk*ifkifk**iciirirk'k’iric1cirtrkic^rkic'kicicirtrk*irk'ic

IF(IFLAG.NE.l) THEN
XSTART*XROOT-TDEDON

ELSE
IF(.NOT. RETRY) THEN
RETRY - .TRUE.
CALL CHMDDE(HEAT,YSS,YSET)
CALL ROOT(XL,XR, EPS, ITMAX,FYDIF, XROOT, IFLAG, ITER) ;ADDED 10-1-84

** ADDED 10-01-84 **

** ADDED 10-01-84 **

** ADDED 10-01-84 **

OFFL=YOFF(XL)
OFFR=YOFF(XR)
ONL»YONNEW(XL)
ONR=YONNEW(XR)
WRITE (MLU, DEBUG)

debugging *

8-1-84 *

*
*

Q*****'****'**'**'****'*************************************•*

IF (IFLAG. NE.l) THEN
XSTART = XROOT - TDEDON

ELSE

** ADDED lO-Oi-84 **

** ADDED 10-01-84 **

** ADDED 10-01-84 **

A-6

n

n

n

o

o

o

CALL CHMDDE(HEAT,YSS,YSET)
ENDIF

ENDIF
IF (RETRY. AND. IFLAG.EQ.l) THEN

XSTART = XLEFT-TDEDON
ENDIF

ENDIF
ENDIF
CALL XC00RD(XSTART,TSTART,TBEGIN,2)

ENDIF

TRUN ON THE SYSTEM AT OPTIMJM START TIME

IF (SWA.AND. XDATA(ITIME).GE. XSTART) THEN
FSYSON-.TRUE.
ITON-ITIME
MAINTN-. FALSE.
SWA=. FALSE.
SW5-.TRUE.
WRITE(MLU,FMT=”(5X, ' SWA SYSTEM ON AT FULL POWER')")

ENDIF

DETERMINE DEAD TIME DURING THE ON-PERIOD

;** ADDED 10-01 -8A **

;** ADDED 10-01-8A **

;** ADDED 10-01-8A **

;** ADDED 10-01 -8A **

;** ADDED 10-01-8A **

C

C

C

C

IF(SW5 .AND.ABS(YDATA(ITIME)-YDATA(ITON)) .GE.

TDEDON*=XDATA (ITIME) -XSTART
ITUP*ITIME
SW5-. FALSE.
SW6 = .TRUE.

WRITE (MLU,FMT="(5X, ' SW5 UPRISE/DECAY
ELSE IF (SW5. AND.ALARM) THEN

FSYSON=. FALSE.
DAYCNT=. TRUE.
SW5=. FALSE.
SW7=. FALSE.
ALAR>^ .FALSE.

ENDIF

EPSON) THEN

RESPONSE OCCURS')")
*** ADDED 8-13-8A ***

*** ADDED 8-13-8A ***
*** ADDED 8-13-8A ***
*** ADDED 8-13-8A ***

*** ADDED 8-1 3 -8A ***

*** ADDED 8-13-8A ***

TURN OFF THE SYSTEM NEAR THE BEGINNING OF OCCUPANCY AND CALL
THE DAYTIME CONTROLLER

IF(SW6 .AND.((ABS(YDATA(ITIME)-YSET) .LE. EPS SET)
& .OR. (HEAT. AND. YDATA(ITIME) .GE.YSET)
& .OR.(.NOT.HEAT.AND.YDATA(ITIME) .LE.YSET))) THEN

FSYS0N=. FALSE.
DAYCNT=. TRUE.
ITSET=ITIME
SW6 = . FALSE.
SW7=.TRUE.
WRITE (MLU, FMT="(5X, ' SW6 DAYTIME CONTROLLER TAKES OVER')")

ELSE IF (SW6. AND.ALARM) THEN ;*** ADDED 8-13-8A *•**

A-

7

non

o

rs

o

n

FSYSON=. FALSE.
DAYCNT=.TRDE.
SW6 = . FALSE.
SW7=. FALSE.
ALARM=.FALSE.

ENDIF

*** ADDED 8-13-84 ***
*** ADDED 8-13-84 ***
*** ADDED 8-13-84 ***
*** ADDED 8-13-84 ***
*** ADDED 8-13-84 ***

COMPUTE X- AND Y-VALDES BASED ON PREVIOUS OBSERVATION
AND UPDATE THEM USING NEW TOCC AND TUNOC

IF(SW7) THEN
CALL XC00RD(X0FF,T0FF,TBEGIN,2)
WRITE (MLU, 900)
WRITE (MLU, RESULT)
WRITE (MLU, 900)
XOCCl=XOCC
XUNOCl=XUNbC
IF(TUNOC.GT.TOCC) TEEN

TBEGIN=0 . 5*(TUNOC+TOCC)
ELSE

TBEGIN=0 . 5*(TUNOC+24 .+T0CC)
IF(TBEGIN.GE.24.) TBEGIN-TBEGIN-24.

ENDIF
CALL XCOORD(XOCC,TOCC,TBEGIN,l)
CALL XCOORDCXUNOC, TUNOC, TBEGIN.l)
CALL XCOORD(XUNOMX,TUNOMX,TBEGIN,l) ;*** ADDED 10-01-84 ***

Kl»(ITSET-ITUP)/3+ITUP
K2-=(ITSET-ITDP)*2/3+ITUP
IF(ICYCLE.EQ.O) THEN
K3-(IT0N-ITUN0C)/4+ITUN0C
ISTART=XUN0C1*NPTHR
IEND»TIMEX*NPTHR

ELSE
K3= (ITON-ITDOWN) / 4+ITDOWN
ISTART=XUNOC*NPTHR
IEND=XOCC*NPTHR

ENDIF
X(1) -XDATACKI) +XOCC-XOCC1
X(2)-XDATA(K2)+X0CC-X0CC1
X(3) »XDATA(K3) +XUNOC-XUNOC1
Y(1)=YDATA(K1)
Y(2)-YDATA(K2)
Y(3)=YDATA(K3)
XSTART=XSTART+XOCC-XOCCl
XOFF*XOFF+XDNOC-XUNOCl
CALL XCOORD(XSTART,TSTART,TBEGIN,2)
CALL XCOORD(XOFF,TOFF,TBEGIN,2)
CALL XCOORD(XOFF, TOFF, TBEGIN.l) ;** ADDED 10-01-84 **

DETERMINE MAXIMIM AND MINIMUM OUTDOOR TEMPERATURES

added 8-02-84 ***

;*** ADDED 8-02-84 ***

added 8-02-84 ***

j*** added 8-02-84 ***

A-8

noon

onvooooooo

ooo

oon

nno

C CALL MAXMIN(TOA,TOAMIN,TOAMAX,KMAX) *** RE^S)VED 8-02-84 ***

C CALL MAXMIN(TOA,TOAMIN,TOAMAX,ISTART,IEND);*** ADDED 8-02-84 ***

IF(.NOT.WARMST)
& CALL MAXMIN(TOA,TOAMIN,TOAMAX,ISTART, LEND) ;*** ADDED 8-24-84 ***

COMPUTE CONSTANTS FOR ON- AND OFF-PERIOD TEMPERATURE EQUATIONS

IF (HEAT) THEN
YSS'l .5*YSET
YINF=TOAMIN

ELSE
YSS«0.5*YSET
YINF»TOAMAX

ENDIF

DETERMINE XLEFT AND XRIGHT

CALL XLTRT(XLEFT, XRIGHT)
ICYCLE=ICYCLE+1
SW7 = . FALSE.
WRITE (MLU, FMT="(5X, ‘--SW7—CALCULATIONS FOR NEXT CYCLE DONE')")
WRITE (MLU, 900)
WRITE (MLU, RESULT)
WRITE (MLU, 900)

SAVE PARAMETERS IN FILE FOR WARM START ;*** ADDED 8-24-84 ***

CALL 0PSAVE(OPENED, 'RENEW ')

IF (OPENED)THEN
WRITE (2, SAVE)
CLOSE (2)

ELSE
WRITE (MLU , FMT=" (IX ,

' PARAMETERS
ENDIF

ENDIF

;*** added 8-24-84 ***

;*** ADDED 8-24-84
;*** added 8-24-84
;*** ADDED 8-24-84 ***

;*** ADDED 8-24-84 ***

NOT SAVED IN FILE ')") ;***ADDED 8-24-84
ADDED 8-24-84 ***

RESET SWITCH SWl AT THE BEGINNING OF NEXT CYCLE

IFdCYaE.GE.l.AND.ABS(TIME-TBEGIN) .LT.EPSX) SW1 = .TRUE.

FORMAT STATEMENTS

DO FORMAT(80(.'*')/)

RETURN
END

y.-*************************

XCOORD : X-COORDINATE TRANSFORM

noon

C IFLAG =1 FOR TRANSFORM OF TIME OF DAY INTO X-VALTJE

*2 FOR TRANSFORM OF X-VALDE INTO TIME OF DAY

SUBROUTINE XCOORD(X, TIME, TBEGIN, IFLAG)
IF(IFLAG.EQ.l) THEN

IFCTIME. GE. TBEGIN.AND. TIME. LE. 24.) THEN
X»TIME-TBEGIN

ELSE
X=TIME+ (24 .-TBEGIN

)

ENDIF
ELSE

TIME=X+TBEGIN
IFCTIME. GE. 24.0) TIME=TIME-24.0

ENDIF

RETURN
END

Q **A *' ** * <fVf****************ilH(r*******T)r***^ihi^**<f'Jc*i^Vf»Vr*<f*VHc*******ilr*******

C

C FYDIF : TEMPERATURE DIFFERENCE
C

C

C YONNEW UPDATED TEMPERATURE DURING THE HEAT-UP PERIOD
C YOFF TEMPERATURE DURING THE COOL-DOWN PERIOD
C

C ***********

*

* *ilt**^lr**************'»*')llr**'illr*********ir*Vf*'j^*Vir*'V^Vc'»Ti!c*******^H>:*

c

FUNCTION FYDIF (XX)
C

C TEMPERATURE DIFFERENCE BETWEEN YONNEW AND YOFF
C TO BE USED IN DETERMINATION OF INTERSECTION, XROOT
C

FYDIF=YONNEW(XX)-YOFF(XX)
RETURN
END

C

C

C

C

C

C

YONNEW, YOFF : THE ON- AND OFF-PERIOD TEMPERATURES

FUNCTION YONNEW(XX)
LOGICAL WRZERU,WRZERD
COMMON /XY/ X(4),Y(4),X0CC,XUN0C,YSET

& /CNST/ TAUON,TAUOFF,YINF,YSS,XD
COMMON /MSG/ MLD, ALARM ;*** ADDED 7-27-84
DATA WRZERU/ .TRUE./ ,WRZERD/. TRUE./
PARAMETER (EPSTAD=0 .033

)

;*** added 7-30-84 ***

AND CHANGED 8-13-84 ***

;*** added 7-30-84 ***

;*** added 7-27-84 ***

A-10

o

o

o

o

o

o

o

ooo

c

THE ON-PERIOD TEMPERATURE WITH ADJUSTMENT

ARGLOG = (YSS-Y(1))/(YSS-Y(2)) i*** ADDED 9-27-84 ***

IF(ARGLOG.GT.O.O.AND.ARGLOG.NE.1)THEN ;*** ADDED 9-27-84***

TAU0N“(X(2)-X(1))/AL0G(ARGL0G) ;*** ADDED 9-27-84 ***

—TAU0N-(X(2)-X(1))/AL0G((YSS-Y(1))/(YSS-Y(2))) ;*** REMOVED 9-27 ***

ELSE j
ieitrk ADDED 9-27-84

TADON - 0.0 j*** ADDED 9-27-84 ***

ENDIF
IF (TADON . LT. EPSTAU)THEN • •k'frk

1 ADDED 7-27-84 ***

TADON»EPSTAD ADDED 7-27-84 irkie

IF(WRZERD)THEN > ADDED 7-30-84 •kirk

WRZERD«=. FALSE. •***
> ADDED 7-30-84 kkk

WRITE(MLD,FMT=”(1X, '*** WARNING *** The Start-up time constant is

zero.')") ’*** ADDED 7-27-84 kkk

ENDIF > ADDED 7-30-84 kkk

ELSE •**ie
> ADDED 7-30-84 kkk

WRZERD».TRDE. » ADDED 7-30-84 kkk

ENDIF •**
t ADDED 7-27-84 kkk

XD-X (1) -TAUON*ALOG ((YSS-YSET) / (YS S-Y (1))

)

X1P»=X(1)+X0CC-XD
YONNEW'YS S- (YSS-Y(1)

)*EXP ((XlP-XX) /TADON

)

RETURN

ENTRY YOFF(XX)

THE OFF-PERIOD TEMPERATURE

IF(Y(3) .NE.Y(4))THEN ;*** ADDED 9-27-84 ***

TAUOFF= (X(4) -X(3)) /ALOG((Y(3) -YINF) / (Y(4) -YINF)

)

ELSE
TAUOFF “0.0

ENDIF
IF (TAUOFF . LT . EPSTAD)THEN
TAUOFF=EPSTAU
YOFF = Y(4)
IF(WRZERD)THEN
WRZERD=. FALSE.
WRITE(MLU,FMT="(1X, '*** WARNING

>s zero. '
)”)

ENDIF
ELSE
WRZERD=.TRUE.

• 'kirk ADDED 9-27-84 kkk
*kkk
9 ADDED 9-27-84 kkk

* kkk
9 ADDED 7-27-84 kkk

ADDED 7-27-84 kkk
• kkk
9 ADDED 9-27-84 kkk
• kkk ADDED 7-30-84 kkk
•

) ADDED 7-30-84 kkk

The shut-dovn time constant i
•kkk ADDED 7-27-84 kkk

ADDED 7-30-84 kkk
•

> ADDED 7-30-84 k-kk

ADDED 7-30-84 kkk

—ENDIF ;*** ADDED 7-27-84 *** *** REMOVED 9-27-84 ***

YOFF= (Y (3) -YINF) *EXP ((X(3) -XX) /TAUOFF) +YINF
ENDIF ;*** ADDED 9-27-84 ***

RETURN
END

icicieic'icirkie'icieicicrkieicit’k’krk'k^eicicicirklc’kic’krk’k'irklc'kicielrirkicic'ic'kirkic'k'kierkit'icirkic-k-k-k-fciric-kirkic-k-k

A-11

noo

non

oors

ooo

nan

C ROOT ; FIND A ROOT OF A FDNCTTION F(X)=0 IN A GIVEN INTERVAL
C BY THE REGDLA-FALSI METHOD
C

C REFERENCE :

C CARNAHAN, LUTHER, AND WILKES
C ” APPLIED NUMERICAL METHODS ", JOHN WILEY, 1969, P.193
C

C THE ORIGINAL PROGRAM WAS MODIFIED IN FORTRAN??

.

C

C

C EPS
C FX
C IFLAG
C

C

C ITMAX
C . XL
C XR
C XROOT
C

C *******•
C

C SUBROUTINE ROOT(XL,XR,EPS, ITMAX, FX,XROOT, IFLAG)** REPLACED 8-13-84
SUBROUTINE ROOT(XL,XR, EPS, ITMAX,FX,XROOT, IFLAG, ITER)

C

COMMON /MSG/ MLU, ALARM ;*** ADDED ?-2?-84 AND CHANGED 8-13-84 ***

SET LEFTMOST AND RIGHTMOST FUNCTION VALUES

FXL=FX(XL)
FXR=FX(XR)

CHECK FOR PRESENCE OF A ROOT

IFLAG=0 ;*** MOVED FROM BELOW 8-1-84 ***

IF(FXL*FXR.LT.O.) THEN

BEGIN REGULA FALSI ITERATION

DO 10 ITER=1 , ITMAX
X2“(XL*FXR-XR*FXL) / (FXR-FXL)
FX2»FX(X2)

CHECK FOR CONVERGENCE

IF(ABS(FX2) .LE.EPS) GOTO 20

KEEP RIGHT OR LEFT SUB INTERVAL

IF(FX2*FXL.LT.O.) THEN

A POSITIVE SMALL NUMBER FOR ACCURACY
SCALAR FUNCTION VALUE
0 IF FINDING A ROOT IS SUCCESSFUL
1 IF FINDING A ROOT IS NOT SUCCESSFUL
2 IF MAXIMJM ITERATIONS EXCEEDED *** ADDED 8-1-84 ***

MAXIMJM NUMBER OF ITERATIONS
LEFT-M)ST X-VALUE
RIGHT-MOST X-VALUE
A REAL ROOT

A-12

o

o

o

XR-X2
FXR=FX2

ELSE
XL=X2
FXL=FX2

ENDIF
10 CONTINUE

IFLAG-2 ;*** ADDED 8-1-8A ***

ELSEIF (FXL*FXR.EQ.O.) THEN
ITER«1
IF(FXL.EQ.O.) THEN
X2=XL
FX2=0

.

ELSE
X2=XR
FX2=0

.

ENDIF
ELSE

IFLAG=1
RETURN

ENDIF
20 XR00T=X2
CCC IFLAG=0 THIS LINE MOVED TO BEGINNING 8-1-84

C

RETURN
END

Q * * *** »*ieirk**ie*ic***irkirkit**icie'k*ic***irk**ic*ieirie***ieic*ic***irk****irtc*ic1rlHrk-tc

C

C XLTRT : LEFTMOST AND RIGHTMOST X-VALUES FOR THE SUBROUTINE, ROOT
C

C

c DX TIME INCREMENT
c N NUMBER OF INTERVALS
c XL LEFT-MOST VALUE OF X
c XR RIGHT-MOST VALUE OF X
C

C

SUBROUTINE XLTRT(XL,XR)
LOGICAL HEAT
COMMON /XY/ X(4),Y(4),X0CC,XUN0C,YSET

& /LIMIT/ YMIN,YMAX,HEAT,MAINTN,FSYSON,DAYCNT,XSTART
COMMON /MSG/ MLU, ALARM ;*** ADDED 7-27-84 AND CHANGED 8-13-84 ***

TIME BASIS IS HOUR, AND TIME INCREMENT IS 5 MIN.

DX=5./60.
N=(XOCC-XUNOC)/DX
XX=X(2)
DO 10 1=1,

N

A-13

IF(HEAT) THEN
IF(YONNEW(XX).LE.YMIN) GOTO 20

ELSEIF(YONNEW(XX).GE.YMAX) THEN
GOTO 20

ENDIF
XX=XX-DX

10 CONTINUE
20 XL=XX

XR=XOCC
WRITE (MLU,FMT="(5X,'XLEFT=' ,F10.4,5X, ‘XRIGHT=' ,F10.4/)")XL,XR

C

RETURN
END

C

C MAXMIN : EVALUATION OF MAXIMUM AND MINIMUM VALDES
C

C

C A ARRAY VALUES
C AMAX MAXIMUM VALUE OF ARRAY VALUES
C AMIN MIMINUM VALUE OF ARRAY VALUES
C lEND INDEX NUMBER OF ENDING OF SEARCH
C ISTART INDEX NUMBER OF START OF SEARCH
C

C

C SUBROUTINE MAXMIN(A,AMIN, AMAX,NMAX) *** REMOVED 8-02-84 ***

SUBROUTINE MAXMIN(A,AMIN,AMAX, ISTART, lEND) ;*** ADDED 8-02-84 ***

C DIMENSION A(0:NMAX) -*** REMOVED 8-02-84 ***

DIMENSION A(0;*) ;*** ADDED 8-02-84 ***

C COMMON /XY/X(4) ,Y(4) ,XOCC,XUNOC,YSET *** REMOVED 7-27-84 ***
Q**Vf*********'***'***'»*********************'*^*******'jhfc****'****•*****•****

NAMELIST/DEBUG/AMIN , AMAX, ISTART, lEND
Qic*irkie**icieitie*rkirk***ie****rk*icieie**:****ie^c**'iric*ie-*c’kie*’krk-ieierk****rk'k*-irk’kie*ieicic*ic

C KFTER=NMAX/24 *** REMOVED 7-27-84 ***

C ISTART=XUNOC*NPTHR *** REMOVED 8-02-84 ***

C IEND=XOCC*NPTHR *** REMOVED 8-02-84 ***

C AMIN»A(ISTART- 1) *** REMOVED 8-02-84 ***

C AMAX=A(ISTART- 1) *** REMOVED 8-02-84 ***

AMIN=A(ISTART) ;*** ADDED 8-02-84 ***

AMAX=A(ISTART) ;*** ADDED 8-02-84 ***

DO 10 I-ISTART, lEND
IF(A(I) .LT.AMIN) AMIN=A(l)
IF(Ad).GT.AMAX) AMAX=A(l)

10 CONTINUE
C**^c****************-k-i(-k**-i:*ic-i:i:****ie*ie*irk***iic***ie*****icic*-kicirk*****irk**

WRITEd , DEBUG)

c

RETURN

A-14

END

C 1e A *ic*ieirirk*^rkic*-k*ic****if***ie'k**ic****icirkicitie**ic**icic**i(****icirlrkirkirirki:ic'f:’iri:-k

C

C ONOFF : THE ON-OFF CONTROL ALGORITHM
C

C

SUBRODTINE ONOFF(TEMP)
LOGICAL HEAT,MAINTN,FSYSON,DAYCNT,PARTON
COMM)N /LIMIT/ YMIN , YMAX,HEAT, MAINTN,FSYSON,DAYCNT,XSTART

& /ONOFFC/ PARTON.DELY
C

IF (HEAT) THEN
IF (TEMP. LE. YMIN) PARTON= .TRUE.

IF(TEMP.GE.YMIN+DELY) PARTON*. FALSE.
ELSEIF (TEMP. GE.YMAX) THEN

PARTON=.TRDE.
ELSEIF (TEMP. LE.YMAX-DELY) THEN

PARTON=. FALSE.
ENDIF

C

RETURN
END

SUBROUTINE CHMODE (HEAT, YSS,YSET)

C This routine is used to flip-flop modes from heating mode to cooling
C mode and vice-versa. The steady state start-up temperature, YSS, is
C also calculated. This entire routine ** ADDED 10-01-84 **

LOGICAL HEAT
REAL YSS,YSET

C flip mode
IF (HEAT) THEN
HEAT = .FALSE.

ELSE
HEAT = .TRUE.

ENDIF
C redetermine YSS

IF (HEAT) THEN
YSS=1.5*YSET

ELSE
YSS=0.5*YSET

ENDIF
RETURN
END

C

C OPTEST: TEST VERSION OF MAHI PROGRAM OF OPTIMUM START/ STOP CONTROL
C FOR BOTH HEATING AND COOLING SEASONS
C

A-15

O'

O'

O'

P'

PROGRAM OPMAIN

C

C

C

LOGICAL HEAT , MAINTN , FSYSON , DAYCNT , PARTON ,WASDAY , INITDN , SO , DC
LOGICAL ALARM
INTEGER DAY,WRKDAY,HOLDAY
COMMON/ SELECT/IFIDC,IDTEMP,IDTODT, TEMP, TOUT, NDELAY
COMMON /XY/ X(4),Y(4),X0CC,XDN0C,YSET

/CNST/ TADON,TAUOFF,YINF,YSS,XD
/LIMIT / YMIN , YMAX,HEAT , MAINTN , FSYSON , DAYCNT , XSTART
/ONOFFC/ PARTON,DELY
/TSET/ TSTART,TOFF,TOCC,TDNOC,TBEGIN

COMMON /CLIM/ TUNOMX ;*** ADDED 10-01-84 ***

COMMON /FREQ/ NPTHR
COMMON /MSG/ MLU,ALARM
COMMON /EPSLON/ EPS, EPSX, EPS OFF, EPS ON, EPS SET
NAMELIST /OUTPUT/ TIME, TEMP, TOUT, SO, DC, TSTART, TOFF, TOCC,TUNOC,TB
DATA WASDAY/.TRUE./,WRKDAY/1/,HOLDAY/0/

KLU=1
ILU=2
OPEN(ILU,FILE='OPTSS.INI/50 ' , RECL=80 , SHARE* ' SRO' , STATUS* ' OLD'

,

>IOSTAT*IOPSTAT)
IF (lOPSTAT . NE . 0)THEN
CALL CONtSG(48, '**ERROR** CANNOT FIND OPTSS INITIALIZATION FILE.')
PAUSE
GO TO 1000
ENDIF
READ(ILU,*) NPTHR
READ(ILU,*)IDTEMP
READ (ILU, *)IDTOUT
READ (ILU, *)IFIDC
READ (ILU, *)TOCC
READ (ILU, *)TUNOC
READ (ILU,*)TSTART
READ (ILU, *)YSET
READ (ILU,*)YMIN
READ (ILU,*)YMAX
READ(ILU,*)DELY
READ (ILU, *)HEAT
READ (ILU,*)EPS
READ(ILU,*)EPSX
READ(ILU,*)EPSOFF
READ (ILU,*)EPSON
READ (ILU,*)EPS SET
READ (ILU,*) TUNOMX
DAY*WRKDAY
CLOSE (2)

INITDN*. FALSE.
CALL CONtBG(24, 'INITIALIZATION COMPLETE.')

open log file

A-16

1000 OPEN (MLU, FILE* 'OPTSS.DAT ' ,RECL=132,SHARE=' SWO' ,IOSTAT=IOPSTAT)

IF (lOPSTAT .NE . 0) IHEN
CALL CONtBG(28,'**WARNING** CANNOT OPEN FILE*)

OPEN(MLU,FILE*’ C: ' ,RECL=80,SHARE=* SWO* , IOSTAT=IOPSTAT)

ENDIF
C get space and outside air temperatxire and time

CALL OASTAT (TIME, TEMP, TOUT)
IF(.NOT.INITDN)THEN

TBEGIN-TIME
INITDN=.TRUE.

ENDIF
C maintain minimum requirement during non-working days

IF(DAY.EQ.HOLDAY) THEN
MAINTN-.TRUE.
CALL ONOFF(TEMP)

ELSE
CALL OPTS S(TIME, TEMP, TOUT)
IF ((.NOT.WASDAY). AND. FSYSON) CALL AHUC START ')

IF(WASDAY.AND.(.NOT.(DAYCNT.OR.FSYSON)))CALL AHU(* STOP ')

WASDAY= (DAYCNT . OR. FSYSON)
ENDIF

TB-TBEGIN
SO-FSYSON
DC=DAYCNT
WRITE (1, OUTPUT)

CLOSE (MLU)
CALL DELAY(NPTHR)
GO TO 1000
END

SUBROUTINE DELAY(NPTHR)

INTEGER HMS(3), SECOND
C NAMELIST /DEE/ DEL, PAST, SCHED, LEFT, H^S

DATA SECOND/ 2/

C get number of seconds since start of hour
RETURN
END

SUBROUTINE OASTAT(TIME, TEMPO, TOUTC)
Qs=SSBBSSSSSSSSSSBSSaSSSSaSSSSSSSSSSSSSSSSSS&:s:S=I=S:CCSCSSSSCSSBSSSS:BB=S==SS=EC===

LOGICAL so, DC
INTEGER DEST
INTEGER STATUS,FUNCTION,NDELAY,MS
REAL*8 FID(8)
LOGICAL IWAIT,IPAUSE, ICHANGE
CHARACTER*! 22 NORESPONSE
COMMON/CONTRO/IWAIT, IPAUSE, ICHANGE
COMMDN/SELECT/IFIDC, IDTEMP , IDTOUT, TEMP , TOUT,NDELAY

A-17

o

o

o

o

DATA FID/' FIDl ','FID2 ','FID3

#' FID4 '
,

' FIDS '
,

' FID6 '
,

' FID7 '
,

' FIDS '

/

NAMELIST /INPUT/ TIME, TEMP, TOUT, SO, DC, TSTART, TOFF, TOCC,TUNOC,TB
DATA MS/ 1 /, FUNCTION/Y' 000 80013'/

DATA NORESPONSE/ 'NO RESPONSE FROM FID I/O TASK'/

DATA IFDNC/2/
100 READ (3,INPUT,ERR=900,END=9999)

RETURN
900 WRITE(5,FMT="(' READ ERROR ON LU #3')")

GO TO 100

9999 STOP
END

SUBROUTINE AHU(COMMAND)

CHARACTER*6 COMMAND
LOGICAL IWAIT,IPAUSE,ICEANGE .

CHARACTER*8 TNAMES
COMMDN/TASKS/TNAMES(25)

COMMON/ CONTRO/IWAIT , IPAUSE , I CHANGE
IF(COMMAND.EQ.' START ')THEN
WRITE (1,FMT="(IX, '*** START AIR HANDLING UNIT ***')")

ELSE IFCCOMMAND.EQ.'STOP ')THEN
WRITE(1,FMT="(1X, '*** STOP AIR HANDLING UNIT ***')")

ELSE
WRITE (1,FMT="(IX, '*** UNKNOWN AIR HANDLING UNIT COMMAND ***')")

ENDIF
RETURN
END

SUBROUTINE OPSAVE (OPENED, STATUS)

FILE OPENING SUBROUTINE FOR PERKIN ELMER MINICOMPUTER.
MAY BE SYSTEM DEPENDENT

LOGICAL OPENED
CHARACTER*6 STATUS
OPEN(UNIT=2,FILE='OPTSS.SAV ', STATU S=STATUS, RECL=80 , SHARE- ' SRW ',

&ERR-900)
OPENED-. TRUE.
RETURN

900 OPENED-. FALSE.
RETURN
END

A-18

APPENDIX B. SAMPLE IMPLEMENTATION OF DUTY CYCLING ALGORITHM

SUBROUTINE DUTCYC

C This routine is the main routine to cause duty cycling of electrical

C loads connected to digital outputs to occur. Based on the contents
C of a duty cycle table, the routine causes digital outputs currently
C on to be turned off for certain periods of time to save energy.

C The routine LDCONT is used to create an interface to the loads.

C

C VARIABLE DEFINITIONS:
C

C COMMON BLOCK DUTYCT: The duty cycle table. It is loaded from the CCU.

C LOAD “ array of load ID nimibers to be duty cycled (MDX # and point #)

C PCPHAS - array of phase times for the loads (% of duty cycle interval)
C PCOFF - array of off-period times for the loads(2 of duty cycle interval)
C ADJUST - logical array, 1 if off-period is to be dynamically adjusted
C DCAMUX - array of MUX ID nxmibers for the analog values used for adjustment
C DCAPNT - array of Point ID' s for the analog values used for adjustment
C DCADES - array of values for the adjustment analog value at the design point
C DCALO - array of lower values of the adjustment analog at minimum off-period
C DCAHI - array of higher values of the adjustment analog at min. off-period

C DCMAST -

C DCI
C DELTA
C FRAC
C H,M,S,TS-
C lEDOS
C PHASE
C REDUC
C STATUS -

C TIM)FF -

C TPHASE -

C TTO
C

task ID number for duty cycler task (passed in common block)
duty cycle interval obtained from task manager task table
design minus current analog value for off-period adjustment
difference between design and high (low) adjustment analog values
task execution interval times from task table (hrs. , mins., etc.)
argument for task interval utility routine, holds task status
two part integer containing phase for current load in mins, and sec
reduction in off-period when duty cycle adjustment is made
status of request to load controller to turn load off and on
two part integer containing off-period for current load (min., sec.)
absolute phase in seconds for current load
absolute off-period in seconds for current load

INTEGER LOAD, PCPHAS, PCOFF, TTO, TPHASE
BYTE ADJUST, DCAMUX, DCAPNT
REAL DCADES, DCALO, DCAHI, DCI
REAL*8 ANAI
REAL DELTA, FRAC
INTEGER REDUC, LOAD, PHASE(2) ,TIM0FF(2) , STATUS
BYTE CNTRL,SCANO,SCMAST,SCSLAV,ONOFFT,TSKMAX, DCMAST
BYTE H,M,S,TS
COMMON /TSKINT/H , M, S , TS
COMMDN/TSKLNK/CNTRL(2) , SCANO , SCMAST, SCSLAV(16)

,

^NOFFT(16), TSKMAX, DCMAST
C0MMDN/DUTYCT/L0AD(16) ,PCPHAS(16) ,PC0FF(16) ,ADJUST(16) ,DCAMDX(16)

,

#DCAPNT(1 6) , DCADES(16) , DCALO(16) , DCAHI (16

)

COMMDN/ANALOG/ANAI (1 ,3 2)

B-1

c

I=DCMAST
CALL TLOG(I,1,0.)

CALL TLOG(10,1,0.)

C determine duty cycle interval DCI

CALL TSKCHK(DCMAST,IEDOS)
DCI=M*60+S

C read duty cycle loads and parameters from table-

DO 1000 1=1,16
IF(LOAD(I).LE.O)GO TO 1000
BW0RK=DCI*PCOFF (I) / 1 00

.

TTO=KWORK
RW0RK=DCl *PCPHAS (I) / 1 00

.

TPHASE=RWORK
Q-k-h’irk'kirkic'irkie'kicirk'kicicicirkicicicirkicirkifk'kitifkicirlc

R = TTO
CALL TLOG(10,TPHASE,R)

IF(ADJUST(I).EQ.0)GO TO 500
C adjust PCOFF and PCPHAS if required

M=DCAMJX(I)
S»DCAPNT(I)
DELTA»DCADES(I)-ANAI(M, S)

IF (DELTA .LE . 0)FRAC=DCADE S (I) -DCAHI (I

)

IFCDELTA. GT. 0)FRAC=«DCADES(I)-DCALO(l

)

IN » FRAC
CALL TLOG(10,IN,DELTA)

(]******;»:************•************

IF(FRAC.EQ.O)GO to 500
FRAC=DELTA/FRAC
REDUC=TTO*FRAC
tphase=tphase+reduc
TTO=TTO-REDDC

C Call load controller to turn load on and off
500 TIMDFF(1)-TTO/60

TIMOFF (2) “TTO-TIM3FF (1) *6 0
PHASE (1)“TPHASE/6

0

PHASE (2) -TPHASE-PHASE (1) *6

0

(}it***:«r*illr'*'*^4r***ilr'**'**«*'*'«r**'*'iH^

R = LOAD(I)
CALL TLOG(10,4,R)

Q****irk-k-k-k*-k’k-k-kie-kic-k-k-trk-k-irk-k**-k-trk-ic-k-ic-k-k'*:-irk

CALL LDC0NT(L0AD(I), PHASE,TIMOFF, 5, STATUS)
1000 CONTINUE

C Check status and take appropriate action
ccc
C In this version, no status check is made. Status check becomes
C important when demand limit control is added to the FID.

B-2

o

o

C If records of duty cycling are to be kept, this routine must also C

C keep track of the actual time that loads are cycled off C

CC
R“STATUS
I-DCMAST
CALL TLOG(I,0,R)

CALL TLOG(10,0,R)
TBTTKriprT^iw^pr^prTif^BTwTiRrTwriifair^pfipf pfiPfiRr^^TBnpr <Hr^R>jPr jR»<pf«pr «Ri«w »prTPPTiPTPfTpr^r<^

RETURN
END

SUBROUTINE LDCONT(LOAD, PHASE, TIMDFF, PRIOR, STATUS)

C This is the load controller routine. It is used by routines which
C control electrical loads controlled by digital outputs. The routine
C performs the following functions. 1: checks to see if the load is

C currently under control by a routine with a higher priority than
C the routine requesting control; 2: Checks to see if minimum off-time
C criteria are satisfied; 3: Checks for a violation of minimum on-time
C criteria; 4: controls the load by the use of two currently unused
C floating on-off control tasks.
C

C VARIABLE DEFINITIONS:

C CURPRI - current priority level that digital output to be controlled is at

C DOPRI - array containing current control priority of all digital outputs
C INUSE - logical array indicating if an on-off task is reserved
C LOAD - ID number of the load to be cycled off
C MINOFT - minimum value of the off-period to avoid equipment damage
C NEGPRI - negative of PRIOR, used to turn on load and request a priority check
C ONAGIN - relative time interval from present before load is turned back on
C PHASE - relative time interval from present before load is turned off
C PRIOR - priority that load is to be controlled under
C STATUS - status of request for load control:
C status = 0 , loads successfully controlled
C status * 1 , load control rejected due to low priority request
C status - 2 , off-time less than minimum specification
C TIMDFF - off-period for load
C

BYTE DIGO , DOPRI , DIGIN , ON , OFF
INTEGER L0AD,PHASE(2) , TIMDFFC 2) , PRIOR, STATUS, MINOFT
INTEGER ONAGIN (2) , L0AD2 , CURPRI , NEGPRI
BYTE MUXPNT(2)
COMMDN/DIGITA/DIGO(1 , 24) , DOPRI (1,24), DIGIN (1,16)
EQUIVALENCE (L0AD2 , MUXPNT(1))

DATA MINOFT/ 2/, OFF/ 0/, ON/ 1/
C priority check

LOAD2=LOAD
I2=MUXPNT(1)
I1=MUXPNT(2)

B-3

IF(I1.NE.O)GO TO 80

CURPRI = D0PRI(1,23)
GO TO 90

80 CURPRI=D0PRI(I1,I2)
90 IF(PRIOR.LE.CDRPRl)GO TO 100

STATU S=1

RETURN
C minimum on-time check

100 CONTINUE
cc
C Minimum on-time checking is not implemented in this version. When C

C demand limit control is added to the FID, this routine must check to C

C see if the load to be turned off has been on long enough to avoid C

C damage to equipment or satisfy other criteria. If demand limit is C

C trying to turn off a load, the duty cycler may just have ttirned a C

C load on. A minimum on time must elapse, so the time until the load C

C is turned off, the phase, must be adjusted. If duty cycle is trying C

C to turn off a load, and demand limit has just released a load, then C

C there must also be a minimum on time, and the phase must be adjusted.

C

cc
C— minimum off-time check
C Minimm off time becomes important when the percent off time becomes C

C too small and there is the risk of equipment damage as equipment is C

C turned off and then on again a short time later. Currently, minimum C

C is set at 2 MINUTES. C

IF(TIMDFF(1).GE.MIN0FT)G0 TO 200
STATU S*2

RETURN
C set load to turn off and then on

200 NEGPRI=-PRIOR
C CALL TO SUBROUTINE DELAYD(MOTSK, OUT, PRIOR, ONOFF , MIN , SEC, NTS

)

Q**************************************

R = LOAD
CALL TLOG(10,5,R)

Q*'k*iririrk**rk***ific*ieic*ie*i(ieieie*ic*rkiirk***ie'krkie

CALL DELAYD(2,L0AD,NEGPRI,0FF,PHASE(1) ,PHASE(2) ,0)

ONAGIN(1)'PHASE (1)+TIMDFF (1

)

ONAGINC 2)*PHASE(2)+TIM)FF(2)

CALL DELAYD(2,L0AD,NEGPRI,0N,0NAGIN(1),0NAGIN(2) ,0)

STATU S'O
RETURN
END

QsS=SS:S5SSBSSSSS:SSSSa«S8SBSBBSBSSSSeSBSSSX:XSSeSSSBS:SSSSSXSS=S83=SSSBSSSSSSSSSSSSSa==

SUBROUTINE DELAYD(M0TSK, OUT, PRIOR, ONOFF, MIN, SEC, NTS)

C this routine is called to turn a load off or on, after a specified time
C interval. An available on-off task is found, where DOTSK is the number
C of the highest on-off task which can be used to control the load. OUT is
C the digital output to control, PRIOR is the priority to control the load
C under, ONOFF is 1 to turn on a load, 0 to turn it off, and MIN and SEC

B-4

C are the time interval that should elapse before the output is controlled

C COMMON BLOCK ONOFF contains a table of on-off task parameters that are

C set before the task can be used.

C

INTEGER PRIOR, OUT, MDTSK
BYTE H,M,S,TS,TSK, ONOFF
BYTE DONOFF, INUSE
INTEGER MIN,SEC,IPR,DNUM
BYTE CNTRL ,

SCANO , SCMAST, SCSLAV, ONOFFT, TSKMAX,DCMAST

COMMDN/TSKINT/H, M, S, TS

COMMDN/ONOFF/DNUMQ6) ,DONOFF(16) ,INUSE(16) ,IPR(16)

COMMON/ TSKLNK/CNTRLC 2) , SCANO, SCMAST,SCSLAV(16) ,

^NOFFTC 16) , TSKMAX, DCMAST
DATA NOOTSK/16/.

C find unused on/off task pair
ITSK“0

DO 1000 1=MDTSK, NOOTSK
IF(INUSE(I).NE.O)GO TO 1000
ITSK=I
GO TO 2000

1000 CONTINUE
ITSK=16

2000 INUSE(ITSK)=1
C set parameters in on-off task table

INUSE (ITSK)»1
IPR(ITSK)“PRIOR
DNUM(ITSK)“OUT
DONOFF (ITSK)“ONOFF

C cause on-off task to execute after a delay time

TS“NTS
H“0
l^MIN
S=SEC
CALL TSKEDT(0NOFFT(ITSK) ,-1,1)

RETURN
END

SUBROUTINE TL0G(NTASK,BEGEND,RN)
C»«

C This routine is used to store information for the task log. The number
C of the task, a code to indicate beginning or end of the task, and a

C number which may be set to a meaningful value by the task, are all
C written to the log buffer.
C

BYTE 1C,TSL0T(32) ,LF,CR
INTEGER BEGEND,III
BYTE ANFLAG,DFLAG,STOPCR,ONDLOG,ONTLOG,INIT
BYTE TBUFFR,TRESET,TENABL
COMMDN/FLAGS/ANFLAG(l,3 2) ,DFLAG(1 ,24) , STOPCR, ONDLOG

, ONTLOG ,
INIT

COMMON/TL0G/TBUFFR(6 08) , TRESET ,NBYTE , TENABLC 25

)

COMMDN/TIME/MS(9)

B-5

DATA LF/123/,CR/125/
IF (ONTLOG . EQ . 0)RETURB
IF(TENABL(NTASK) .NE.l .AND.NTASK.GT.O)RETDRN
IF (TRESET . EQ . 1) NBYTE=0
IF(NBYTE.GT.600)GO TO 9000
TRESET=0
IF(NBTTE .NE , 0)TBDFFR (NBYTE)=LF
III = BEGEND
IF(BEGEND.GT. 999)111=999
IF(BEGEND.LT.-99)III=-99
RRR = RN
IF(RN.EQ.1.)RRR=0. 99999
CALL RDI6EC
ENCODE(TSLOT,l)MS(9),JB(8),MS(7),MS(6),MS(5),MS(4),MS(3),MS(2),‘
#MS (1) ,NTASK , 1 11 , RRR

1 F0RMAT(2I1,*;',2I1,' |

' ,211
,

'

.

'
,311 ,

' T' ,I3,I3,1X,G9.3)
TSLOT(31)=CR
TSLOT(32)=38
DO 500 1=1,32
NBTTE=RBYTE+1
TBDFFRC KBYTE) *TSLOT (I

)

500 CONTINUE
RETURN

9000 TBUFFR(608)=38
TBUFFR(606)=64
RETURN
END

B-6

APPENDIX C. SAMPLE IMPLEMENTATION OF DEMAND LIMITING ALGORITHM

M)DIFIED BY W.B.MAY FOR ACTUAL TESTING OF ALGORITHM ON EMCS
JUNE 5, 1985

DLISMAIN : Demand limiting main program for instantaneous
rate method

c

c
c ^

January 12, 1984 C.P.

c

c DELAY Delay time to start (min)
c DELP The amount of power to be shed or restored (kW)
c ID Identification number of a load
c INITST True for initial start
c False when no initial start is needed
c ITIME Number of samples taken from the beginning of sampling
c LDNAME Load name
c LOADON True if the load is turned on
c False if the load is turned off
c MAXOFF Maximum off-time of a load (min)
c MINOFF Minimum Off-time of a load (min)
c MINON Minimum on-time of a load (min)
c NL Maximum number of loads (=50)
c NLD Total number of loads
c PDATA Measured power data (kW)
c PLOAD Nominal power of a load (kW)
c PMAX Maximum power allowed in a demand limit period
c (kW)
c PMIN Minimum power allowed in a demand limit period
c (kW)
c PRILOW Lowest global priority
c PRIOR Global priority of a load
c The highest priority is 1 and the lowest priority is
c PRILOW.
c PRT True if printing of detailed information of load status
c is desired.
c False if short print-out is desired.

LOGICAL LOADON,INITST,PRT
REAL MAXOFF,MINOFF,MINON
INTEGER PRIOR, PRILOW
CHARACTER LDNAME*15
PARAMETER (NL=50)
COMMON /BKl/ DMDP,TSAMPL,PMAX,PMIN,PDATA

& /BK3/ MAXOFF(NL),MINOFF(NL),MINON(NL),PRIOR(NL),
& LDNAME(NL) ,PLOAD(NL) ,DELAY(NL) ,INITST

C-1

& /BK4/ NLD,ID(NL),LOADON(NL),PRILOW,LPRIOF(NL,NL),
& LPRLOW(NL),LPRION(NL,NL),PRT
NAMELIST /INPUT/ PMAX.PMIN ,PRILOW,PRT, INITST
& /OUTPUT/ ITIME,PDATA,DELP

INTEGER SLICE
PARAMETER (SLICE =30)
EXTERNAL REPLY

CALL INIT
CALL ENABLE (2, REPLY)
CALL CONMSGC 23, 'INITIALIZATION COMPLETE')

C

C

C . Read input data files and print then.

C

OPEN(7 , FILE= ' INPUTIS . / 55 '

)

OPEN(8 , FILE= ' LOADTABL ./ 55 '

)

C OPEN(9,FILE='INPUTPWR')

REWIND 7

REWIND 8

C REWIND 9

C

READ (7, INPUT)
PRINT INPUT
PRINT 4000
1=1

10 READ (8,1 000, END=20) ID(I) ,LDNAME(l)
READ(8,*) ID(I),PRI0R(I),PL0AD(I),DELAY(I),MIN0FF(I),

& MIN0N(I),MAX0FF(I)
PRINT 2000, ID(I),LDNAME(I),PRI0R(I),PL0AD(I),DELAY(I),MIN0FF(I),

& MIN0N(I),MAX0FF(I)
1=1+1

GOTO 10

20 NLD=I-1
C

C Read power signal from a meter in real control
C

ITIME=0
C30 READ(9,*,END=999) PDATA
C

C

C READ ACTUAL POWER LEVEL FROM FID
C

30 CALL DEMAND(5,1 ,2,PDATA)
C

C

C

IF(ITIME.EQ.1441) ITIME=1
PRINT 3000

C-2

c

C Instantaneous rate method
C

CALL DLIS(DELP)
C

C Control loads based on priorities, minimum on/off-times
C and maximum on-times of loads.
C

CALL LDONOF(DELP)
PRINT OUTPUT
IF(.NOT.PRT) THEN
PRINT 5000, (ID(I), 1=1, NLD)

PRINT 6000,(LOADON(I),I=1,NLD)
ENDIF
ITIME=ITIME+1
DELP=0.0

C

C

C REAL TIME WAIT
C

CALL WAIT(SLICE,2,IS)
TSAMPL = FLOAT(SLICE)/60.

C

GOTO 30
C

1000 F0RMAT(I3,1X,A15)
2000 FORMAT(I5,1X,A15,I3,5F10.2)
3000 FORMAT(80('-•)/)

4000 F0RMAT(//T4,'ID' , T9, 'ITEM' ,T21, 'PRIORITY' ,T30, 'PLOAD'

,

& T40, 'DELAY' ,T50, 'MINOFF' ,T60, 'MINON' ,T70, 'MAXOFF'/)
5000 FORMAT(20I4)
6000 FORMAT (20L4)
C

999 STOP
END

C

C DLIS : Demand limiting using instantaneous rate method
C

c

c
c _

January 12, 1984 C.P.

c DELP The amount of power to be shed or restored (kW)
c PAVG Average value of current and past powers
c PDATA Measiired power data (kW)
c PLAG Time- lagged power (kW)
c

c

PMAX Maximian power allowed in a demand limit period
(kW)

c

c

PMIN Minimum power allowed in a demand limit period
(kW)

C-3

C RESET Triie when a reset signal is on.

C False vhen the reset signal is off. —

c

SUBROUTINE DLIS(DELP)
LOGICAL RESET
DIMENSION PLAG(0:1)
COMMON /BKl/ DMDP,TSAMPL,PMAX,PMIN,PDATA
NAMELIST /OUTISW/ PAVG,PMAX,PMIN
DATA RESET/. TRUE./

C

IF(RESET) THEN
PLAG(0)=0.0
PLAG(1)=0.0
RESET*. FALSE.

C

ELSE
PLAG(0)=PDATA
PAVG= (FLAG (0) +FLAG (1)) / 2

.

IF(PAVG.GT.PMAX) THEN
DELP*PMAX-PAVG
PRINT 1000,-DELP

ELSEIF(PAVG.LT.PMIN) THEN
DELP*PMIN-PAVG
PRINT 2000, DELP

ENDIF
C

PRINT OUTISW
C

PLAG(1)=PLAG(0)
ENDIF

C

1000 FORMAT(/5X,' POWER TO BE SHED' ,F10 .2
, ' ')

2000 FORMAT(/5X, '++++++ POWER TO BE RESTORED' ,F10. 2, '+++++'

)

C

RETURN
END

C MODIFIED BY W.B. MAY FOR ACTUAL TESTING OF ALGORITHM ON EMCS

C JUNE 5, 1985
C ****-kii;****’kirk*******1t*it*****-irk*******-lrk*-irk********-k-ic-ie-k*-k***ic**-k-k-trk**

C

C DLRFMAIN : Demand limiting main program for the ideal rate method
C with fixed interval metering
C

C January 12, 1984 C.P.

C

C

C

C DELAY Delay time to start (min)
C DELP The amount of power to be shed or restored (kW)

C-4

c DIFF Difference between maximum and minimum energy levels

c (kWh)

c DMDP Demand period (min)

c ID Identification nxmiber of a load

c INITST True for initial start

c False when no initial start is needed
c IRESET 1 for on- status of the reset signal of demand metering
c 0 for off-status of the reset signal

c ITIME Nimiber of samples taken from the beginning of sampling
c LDNAME Load name
c LOADON True if the load is turned on
c False if the load is turned off

c MAXOFF Maximxim off-time of a load (min)

c MINOFF Minimum off-time of a load (min)

c MINOR Minimum on-time of a load (min)

c NL Maximum number of loads (=50)

c RLD Total number of loads
c OFFSET Offset at the beginning of each demand period (kWh)

c PDATA Measured power data (kW)

c PLOAD Nominal power of a load (kW)

c PMAX Maximum power allowed in a demand limit period
c (kW)

c PRILOW Lowest global priority
c PRIOR Global priority of a load
c The highest priority is 1 and the lowest priority is

c PRILOW.
c PRT True if printing of detailed information of load status
c is desired.
c False if short print-out is desired.
c RESET True when a reset signal is on.

c False when the reset signal is off.
c TSAMPL Sampling period (min)

LOGICAL RESET, LOADON,INITST,PRT
REAL MAXOFF,MINOFF,MINON
INTEGER PRIOR , PRILOW
CHARACTER LDNAME*15
PARAMETER (NL=50)
COMMON /BKl/ DMDP,TSAMPL,PMAX,DIFF, OFFSET, PDATA

& /BK2/ RESET, IRESET,ENCAL
& /BK3/ MAXOFF(NL) ,MINOFF(NL) ,MINON(NL) ,PRIOR(NL)

,

& LDNAME(NL),PLOAD(NL),DELAY(NL),INITST
& /BK4/ NLD,ID(NL) ,LOADON(NL) , PRILOW, LPRIOF(NL,NL)

,

& LPRLOW(NL),LPRION(NL,NL),PRT
NAMELIST /INPUT/ DMDP,TSAMPL,PMAX,DIFF, OFFSET, PRILOW, PRT, IN ITST

& /ODTPUT/ ITIME, PDATA, IRESET,DELP

INTEGER*2 COUNTS
INTEGER DIGITIN,DIGITOUT

C-5

COMMDN/DISPLY/DIGITIN(16) ,DIGITOUT(24) , COUNTS (8)

INTEGER SLICE
EXTERNAL REPLY

CALL INIT
CALL ENABLE (2, REPLY)
CALL CONIBGC 23 , ' INITIALIZATION COMPLETE ')

C

C Read input data files and print them.
C

OPEN(7,FILE='INPUTRF./55'

)

OPEN(8,FILE=’LOADTABL./55'

)

C 0PEN(9 ,FILE* ' INPUTPWR')

REWIND 7

REWIND 8

C REWIND 9

C

READ (7, INPUT)
PRINT INPUT
PRINT 4000

SLICE » TSAMPL * 60
IRESET * 0

1*1

10 READ (8,1 000, END*20) ID(I) ,LDNAME(I)
READ(8,*) ID(I),PRI0R(I),PL0AD(I),DELAY(I),MIN0FF(I),

& MINON(I) ,MAX0FF(I)
PRINT 2000, ID(l),LDNAME(l),PRIOR(l),PLOAD(I),DELAY(l),MINOFF(l),

& MIN0N(I),MAX0FF(I)
I-I+l
GOTO 10

20 NLD“I-1
C

C Read power and reset signals from a meter in real control
C

ITIME=0
C30 READ(9,*,END*999) PDATA, IRESET

C READ ACTUAL POWER LEVEL FROM FID
C

30 CALL DEMAND(5,1,2,PDATA)
IF (DIGITOUT (1 6) . EQ . 1 .AND . IRESET . EQ . 0) THEN

IRESET * 1

ELSE IF (IRESET. EQ.l) THEN
IRESET = 0

ENDIF
C

IF (ITIME.EQ.O. AND. IRESET.NE.l) GOTO 30
IF(ITIME.EQ.1441) ITIME=1

C-6

PRINT 3000
C

C Ideal rate method using the fixed interval metering
C

CALL DLRF(DELP)
C

C Control loads based on priorities, minimm on/o££-times
C and maximum on-time s of loads.
C

CALL LDONOF(DELP)
PRINT OUTPUT
IF(.NOT.PRT) THEN

PRINT 5000, (ID(I), 1=1, NLD)
PRINT 6 000 , (LOADONC I) , 1=1 , NLD

)

ENDIF
ITIME»ITIME+1
DELP-0.0

C REAL TIME WAIT
C

CALL WAIT(SLICE,2,IS)
GOTO 30

C

1000 F0RMAT(I3,1X,A15)
2000 FORMAT(I5,1X,A15,I3,5F10.2)
3000 FORMAT(80(’-')/)

4000 FORMAT (//T4, 'ID' , T9, 'ITEM' ,T21 , 'PRIORITY' ,T30,'PLOAD'

,

& T40,' DELAY' , T50 ,
' MINOFF

'
,T60,'MINON' ,T70, 'MAXOFF'/)

5000 FORMAT(20I4)
6000 FORMAT(20L4)
C

999 STOP
END

C

C DLRF : Demand limiting using ideal rate method with
C fixed interval metering
C

C January 12, 1984 C.P,
C

C DELP The amount of power to be shed or restored (kW)
C DIFF Difference between maximum and. minimum energy levels
C (kWh)
C DMDP Demand period (min)
C E The amount of energy used from the beginning of
C a demand limit period to the current time (kWh)
C EM&.X Maximtjm energy level allowed at sampling instant
C (kWh)
C EMIN Minimum energy level allowed at sampling instant
C (kWh)

C-7

o

r>

o

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

ENCAl Energy used from the beginning of demand period to the
sampling instantCi.e. , the latest value of E) (kWh)

IRESET 1 for on-status of the reset signal of demand metering
0 for off- status of the reset signal

H Ntnaber of samples in a demand limit period
NINT Maximum number of samples in a demand limit period (=60)
OFFSET Offset at the beginning of demand period (kWh)
PDATA Measured power data (kW)

PMAX Mazimtsa power allowed in a demand limit period
(kW)

PWR

RESET

TSAMPL

Average value of power at current and past sampling
instants (kW)

True when a reset signal is on.

False when the reset signal is off.

Sampling period (min)

SUBROUTINE DLRF(DELP)
LOGICAL RESET
PARAMETER (NINT=6 0)

DIMENSION P(0:NINT),E(0:NINT)
COMMON /BKl/ DMDP, TSAMPL, PMAX, DIFF, OFFSET, PDATA

& /BK2/ RESET, IRESET, ENCAL
NAMELIST /OUTRFI/ I, PWR, ENCAL, EMAX, EMIN
DATA ICYCLE,IFLAG/0,l/,E(0)/0.0/

Bypass when the reset signal is missed and resume the normal
operation when the reset signal appears

IF(IFLAG.EQ.2) THEN
IF (IRESET. EQ.l) THEN

IFLAG=1
ICYCLE=0

ELSE
PRINT 3000
RETURN

ENDIF
ENDIF

Reset the counting of samples

IF(IRESET. EQ.l .AND. IFLAG.RQ.l) THEN
N»DMDP/TSAMPL+0 .01

RESET*. TRUE.
NN»0

ENDIF
C

C Set all energy stock values zero at the end of demand period
C except the initial cycle
C

IF(RESET) THEN

C-8

o

o

o

IF(ICYCLE.EQ.O) THEN
P(0)-=PDATA
ENCAL=0.0
ICYCLE*!

ELSE
P(I)“PMTA
ENCAL=EN GAL+ (P (I) +P (I-l)) / 2 . *TSAMPL/ 6 0

.

P(0)»P(I)
ENDIF
I-O
DO 10 K»0,N

10 E(K)=0.0
RESET*. FALSE.

C

C Calculate average power and determine the power to be shed
C or restored.
C

ELSE
P(I)=PDATA
E(I)*(P(I)+P(l-l))/2.*TSAMPL/60.+E(l-l)
ENCAL=E(I)
EMAX*(PMAX-6 0 . 0*OFFSET/DMDP) *(I*TSAMPL/60.) +OFFSET
EMIN*EMAX-DIFF
IF(I.LT.N) THEN
P(I)=60.*(E(I)-E(I-1))/TSAMPL
PWR»P(I)
IF(E(I).GT.EMAX) THEN

DELP-PMAX-60 . *OFFSET/DMDP-P(l)
PRINT 1000,-DELP

ELSEIF(Ed).LT.EMIN) THEN
DELP*PMAX-6 0 . *OFFSET/DMDP-P (I

)

PRINT 2000, DELP
ENDIF

ENDIF
ENDIF

C

PRINT OUTRFI
1=1+1

NN=NN+1

Set a flag to bypass the calculation when the reset signal misses

IF(NN.GT.N) THEN
NN=NN-1
IFLAG=2
PRINT 3000

ENDIF
C

1000 FORMAT(/5X, ' POWER TO BE SHED' ,F10 .2
,

' ')

2000 FORMAT(/5X, '+++++ POWER TO BE RESTORED' ,F10 .2 ,'+++++'

)

3000 FORMAT(' 1 1 1 ! Ill MISSING RESET SIGNAL 111!!'/)

C-9

c

RETURN
END

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

MODIFIED BY W.B.
JUNE 6, 1985

MAY FOR ACTUAL TESTING OF ALGORITHM ON EMCS

DLFFSMAIN: Demand limiting main program for predictive method

January 12, 1984 C.P.

DELAY
DELP
DMDP
FIXINT

ID
INITST

IRESET

ITIME
LDNAME
LOADON

MAXOFF
MINOFF
MINON
MODE

NL
NLD
PDATA
PLOAD
PMAX

PMIN

PRILOW
PRIOR

PRT

TSAMPL

Delay time to start

The amount of power to be shed or restored
Demand period
True if fixed interval metering is used
False if sliding window metering is used
Identification number of a load
True for initial start
False when no initial start is needed
1 for on- status of the reset signal of

0 for off-status of the reset signal
Number of samples taken from the beginning of

Load name
True if the load is turned on
False if the load is turned off
Maximum off-time of a load
Minimian off-time of a load
Minimum on-time of a load
= 1 for fixed interval metering
= 2 for sliding window metering
Maximum number of loads (=50)
Total number of loads
Measured power data
Nominal power of a load
Maximum power allowed in a demand limit period

Minimum power allowed in a demand limit period

(min)
(kW)

(min)

demand metering

sampling

(min)

(min)
(min)

(kW)

(kW)

(kW)

(kW)

Lowest global priority
Global priority of a load
The highest priority is 1 and the lowest priority is
PRILOW.
True if printing of detailed information of load status
is desired.
False if short print-out is desired.
Sampling period (min)

****’tc*****^-k**-k-k****-k-k*****-k-k-iciei;-fc-k********ic**'k***irk*ie*-ieir»rk*-ic*-kirkirkic

C-10

O'

O’

O’

C

LOGICAL RESET,FIXIST,LOADON,INITST,PRT
REAL MAXOFF,MINOFF,MINON
INTEGER PRIOR, PRILOW
CHARACTER LDNAME*15
PARAMETER (NL=50)
COMMON /BKl/ DMDP,TSAMPL,PMA2,PMIN, PLATA

& /BK2/ FIUNT,RESET, IRESET,PPRED,ENCAL
& /BK3/ MAXOFF(NL),MINOFF(NL),MINON(NL),PRIOR(NL),

LDNAME(NL) ,PL0AD(NL) , DELAY(NL) , INITST
/BK4/ NLD,ID(NL) ,L0AD0N(NL) , PRILOW, LPRI0F(NL,NL)

,

LPBLOW(NL) ,LPRI0N(NL,NL) ,PRT

NAMELIST /INPUT/ DMDP , TSAMPL , PMAX,PMIN , PRILOW, PRT, MODE , INITST

& /OUTPUT/ ITIME,PDATA,IRESET,DELP,FIXINT
DATA FinNT/. FALSE./

C

INTEGER*2 COUNTS
INTEGER DIGITIN,DIGITOUT
COMMDN/DISPLY/DIGITIN(16) ,DIGIT0UT(24) ,COUNTS(8)
INTEGER SLICE
EXTERNAL REPLY

CALL INIT
CALL ENABLE (2, REPLY)
CALL CONJSGC 23, 'INITIALIZATION COMPLETE')

C

C Read input data files and print them.
C

OPEN(7 , FILE= ' INPUTPFS . / 55 '

)

OPEN(8 , FILE= ' LOADTABL . / 5 5 '

)

C OPEN(9,FILE='INPUTPWR')

REWIND 7

REWIND 8

C REWIND 9

C

READ (7, INPUT)
PRINT INPUT
PRINT 4000

SLICE = TSAMPL * 60
IRESET » 0

1=1

10 READ(8,1000,END=20) ID(I) ,LDNAME(I)
READ(8,*) ID(I),PRIOR(I),PLOAD(I),DELAY(I),MINOFF(I)

,

& MINON(I) ,MAX0FF(I)
PRINT 2000, ID(I),LDNAME(I),PRI0R(I),PL0AD(I),DELAY(I),MIN0FF(I),

& MIN0N(I),MAX0FF(I)
1=1+1

C-11

GOTO 10
20 NLD“I-1
C

C Read power and reset signals from a meter in real control
C

ITIME=0
C30 REAL(9,*,END=999) PMTA,IRESET

C READ ACTUAL POWER LEVEL FROM FID
30 CALL DEMAND(5,1,2,PDATA)

IF(DIGIT0DT(16) .EQ.l .AND.IRESET.EQ.O) THEN
IRESET = 1

ELSE IF(IRESET.EQ.l) THEN
IRESET » 0

ENDIF

IFCMDDE. EQ.l. AND. ITIME.EQ.O.AND. IRESET.NE.l) GOTO 30
IF(ITIME.EQ.1441) ITIME»1
PRINT 3000

C

C Predictive method is called using sliding window or fixed
C interval metering
C

CALL DLP(MODE,DELP)
C

C Control loads based on priorities, minimum on/off-times
C and maximum on-time s of loads.
C

CALL LDONOF(DELP)
PRINT OUTPUT
IF(.NOT.PRT) THEN
PRINT 5000, (ID(I), 1=1, NLD)
PRINT 6000,(LOADON(I),I»1,NLD)

ENDIF
ITIME=ITIME+1
DELP=0.0

C REAL TIME WAIT
CALL WAIT(SLICE,2,IS)

C

GOTO 30
C

1000 F0RMAT(I3,1X,A15)
2000 FORMAT(I5,1X,A15,I3,5F10.2)
3000 FORMAT(80('-')/)
4000 F0RMAT(//T4, 'ID' , T9, 'ITEM' ,T21 , 'PRIORITY' ,T30, 'PLOAD'

,

& T40, 'DELAY' ,T50 ,
' MINOFF' ,T60,'MINON' ,T70 ,

' MAXOFF ' /

)

5000 FORMAT(20I4)
6000 FORMAT(20L4)
C

999 STOP

C-12

o

o

o

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

END

DLP : Demand limiting link program for predictive method

January 12, 1984 C.F.

SUBROUTINE DLP (MODE ,DELP)
LOGICAL RESET, FIXINT
COMMON /BKl/ DMDP,TSAMPL,PMAX,PMIN,PDATA

& /BK2/ FIXINT, RESET, IRESET,PPRED,ENCAL

Sliding window metering

IF(M0DE.EQ.2) THEN
CALL DLPSB(DELP)

Fixed interval metering
If the reset signal is missing at the next sampling
instance, the sliding window metering is activated. When
the reset signal is restored, the fixed interval metering
is also restored.

ELSEIF(MODE.EQ.l) THEN
IF(IRESET.EQ.I)' THEN

FIXINT=.TRDE.
ENDIF
IF(FIXINT) THEN

CALL DLPFB(DELP)
ELSE

CALL DLPSB(DELP)
ENDIF

ENDIF

RETURN
END

DLPFB: Demand limiting using predictive method with
fixed interval metering

Jantiary 12, 1984 C.P.

DELP The amount of power to be shed or restored (kW)
DMDP Demand period (min)
E The amount of energy used from the beginning of

a demand limit period to the current time (kWh)
EMAX Maximum energy level allowed in a demand limit period

C-13

o

o

o

EMIN
C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c

c

c

c

c

c

c

c

c

c

"c

c

c

c

c

(kWh)

EMIN Minimum energy level allowed in a demand limit period
(kWh)

ENCAL Energy used during a sampling period (kWh)

EFRED Predicted value of energy use during a demand period
(kWh)

EPS A small positive number (-0.01)

FIXINT True if the fixed interval method is used
False if the sliding window method is used

IRESET 1 for on-status of the reset signal of demand metering
0 for off-status of the reset signal

N Nxmiber of samples in a demand limit period
NINT Maximm number of samples in a demand limit period(^O)
F Power at a sampling instant (kW)

PDATA Measured power data (kW)

PMAX Maximum power allowed in a demand limit period
(kW)

FMIN Minimum power allowed in a demand limit period
(kW)

PPRED Predicted value of average power for a demand limit
period (kW)

RESET True when a reset signal is on.
False when the reset signal is off.

TSAMPL Sampling period (min)

SUBROUTINE DLPFB(DELP),
LOGICAL RESET, FIXINT
PARAMETER (NINT=6 0)

DIMENSION P(0:NINT) ,E(0:NINT)
COMMON /BKl/ DMDP, TSAMPL, PMAX, PMIN, PDATA

& /BK2/ FIXINT,RESET, IRESET, PPRED, ENCAL
NAMELIST /OUTPFI/ I , PPRED, EPRED, EMAX, EMIN, ENCAL
DATA ICYCLE/0/

Reset the counting of samples

IF(IRESET.EQ.l) THEN
N“DMDP/TSAMPL+0 .01

RESET*=.TRUE.

NN“0
ENDIF

Set all energy stock values zero at the end of demand period
except the initial cycle

IF(RESET) THEN
IF(ICYCLE.EQ.O) THEN
P(0)=PDATA
ENCAL=0.0
ICYCLE=1

C-14

o

o

ELSE

P(I)«PMTA
EN CAL“EN CAL+ (P (I) +P (I-l)) / 2 . *TSAMPL/ 6 0

.

P(0)-P(I)
ENDIF
I»0
DO 10 K=0,N

10 E(K)»0.0
RESET*. FALSE.

C

C Predict energy use at the end of demand period and

determine the power to be shed or restored.

ELSE
P(I)-PDATA
E(l)*(P(l)+P(I-l))/2.*TSAMPL/60.+E(l-l)
ERCAL*E(I)
E>ttU=PM^^X*DMDP / 6 0

.

EMIN*PMIII*DMDP/60

.

IF(r.LT.N) THEN
EPRED*(N-I)*(E(I)-E(I-1))+E(I)
PPRED=60 . *EPRED/DMDP
IF(EPRED.GT.EM^) THEN

DELP=60 . *(EMAX-EPRED) / (DMDP-I*TSAMPL)
PRINT 1000,-DELP

ELSEIF(EPRED.LT.EMIN) THEN
DELP*6 0 . *(EMIN-EPRED) / (DMDP-I*TSAMPL)
PRINT 2000, DELP

ENDIF
ENDIF

ENDIF
PRINT ODTPFI
1=1+1

NN=NN+1
C

C Switch over to the sliding window metering when the
C reset signal is not detected.
C

IF(NN.GT.N) THEN
ICYCLE=0
FIXINT=. FALSE.
RESET*. TRUE.
PRINT 3000

ENDIF
C

1000 F0RMAT(/5X,' POWER TO BE SHED' ,F10 .2 ,

' ')

2000 FORMATC/5X, '+++++ POWER TO BE RESTORED' ,F10 .2 ,'+++++'

)

3000 FORMATC ' n ! ! ! !

I

SWITCHED TO SLIDING WINDOW I I ! 1 !
' /)

C

RETURN
END

C-15

o

o

o

n

n

n

C

c

c

c

c

c
p _

DLPSB : Demand limiting using predictive method with
sliding window metering

January 12, 1984 C.P,

V

c DELP The amount of power to be shed or restored (kW)

c DMDP Demand period (min)

c E The amount of energy used from the beginning of
c a demand limit period to the current time (kWh)

c EMAX Maximtan energy level allowed in a demand limit period
c (kWh)
c EMIN Minimum energy level allowed in a demand limit period
c (kWh)
c ENCAL Energy used during a sampling period (kWh)

c EPRED Predicted value of energy use during a demand period
c (kWh)
c N Number of samples in a demand limit period
c NINT Maximum number of samples in a demand limit per iod(=60)
c PDATA Measured power data (kW)

c PLAG Time-lagged power (kW)

c PMAX Maximum power allowed in a demand limit period
c . (kW)

c PMIN Minimum power allowed in a demand limit period
c (kW)
c PPRED Predicted value of average power for a demand limit
c period (kW)
c RESET True when a reset signal is on.

c False when the reset signal is off.
c TSAMPL Sampling period (min)

c

SUBROUTINE DLPSB(DELP)
LOGICAL RESET
PARAMETER (NINT“60)
DIMENSION PLAG(0;NINT) ,E(0:2)
COMMON /BKl/ DMDP,TSAMPL,PMAX,PMIN,PDATA

& /BK2/ FIXINT,RESET, IRESET,PPRED,EN CAL
NAMELIST /OUTPSW/ I .PPRED, EPRED, EMAX,EMIN , ENCAL

Determine the number of samples per demand period

N=DMDP/TSAMPL+0.01

Initialize the regressor vector of power.

IF(RESET) THEN
ICYCLE=0
1=0

C-16

DO 10 K»0,N
10 PLAG(K)»0.0

RESET-.FALSE.
C

C Determine the regressor vector of power in the learning period.
C

ELSEIF (I CYCLE. EQ.O) THEN
PLAG(0)«PDATA
DO 20 K=N-1,0,-1

20 PLAG(K+1)-PLAG(K)
IF(I.EQ.N-l) ICYCLE-1
I-I+l

C

C Predict energy use at the next sampling instance
C and determine the power to be shed or restored.
C

ELSE
PLAG(0)-PDATA
SUM-0.0
DO 30 K=1,N-1

30 SUF^=SUM<-TSAMPL/60.*(PLAG(K)+PLAG(K+l))/2.
E(0)-SUM
E (1) -TSAMPL/ 60 . *(PLAG(0) +PLAG(1)) /2 . +E(0)

ENCAL-E(l)
E(2)«2*E(1)-E(0)
EPRED»E(2)
PPRED-6 0 . *EPRED/DMDP
EMAX»PMAX*DMDP/60

.

EMIN-PMIN*DMDP/6 0

.

IF(EPRED.GT.EMAX) THEN
DELP-6 0 . *(EMAX-EPRED) /TSAMPL
PRINT 1000, -DELP

ELSEIF (EPRED.lt. EMIN) THEN
DELP-6 0 . *(EMIN-EPRED) /TSAMPL
PRINT 2000, DELP

ENDIF
C

PRINT ODTPSW
C

C Shift back the regressor vector by one sample period
C

DO 40 K=N-1,0,-1
40 PLAG(K+1)=PLAG(K)

ENDIF
C

1000 FORMAT(/5X, ' POWER TO BE SHED' ,F10 .2
,

' ')

2000 F0RMAT(/5X, '++++++ POWER TO BE RESTORED' ,F10 .2 ,'+++++'

)

C

RETURN
END

C-17

MODIFIED JUNE 6, 1985 BY W.B. M&Y TO CONTROL FID POINTS.
<:'*i>r****'jlrtfc*****************•****•<:*****************<:*^>r*Tl^******<;*'<f

LDONOF Turn on or off loads

April 29, 1983 C.P.

(min)
(kW)

(min)
(min)

(min)

DELAY Delay time to start
DELP The amount of power to be shed or restored
EPS Small positive number for tolerance(=0.01)
INITST True for initial start

False when no initial start is needed
ISTAT Number of loads which are turned on at an initial stage
ISUM Number of loads turned on during initial cycle
LOADON True if the load is turned on

False if the load is turned off
LPR Local priority of a load
LPRIOF Local priority of a load for shedding
LPRION Local priority of a load for restoring
LPRLOW Lowest local priority level
MAXOFF Maximum off-time of a load
MINOFF Minimum off-time of a load
MINON Minimum on-time of a load
NL Maximum number of loads (=50)

NLD Total number of loads
PLOAD Nominal power of a load (kW)

PRI Global priority of a load
PRILOW Lowest global priority
PRIOR Global priority of a load

The highest priority is 1 and the lowest priority is

PRILOW.
PRT True if printing of detailed information of load status

is desired.
False if short print-out is desired.

SDMPINT Summed nominal power turned on during initial cycle
SUMP Summed nominal power actiially shed or restored at an instant

(kW)
TOFF Off-time of a load (min)
TON On-time of a load (min)
TSAMPL Sampling period (min)

SUBROUTINE LDONOF(DELP)

REAL MAXOFF, MIN OFF, MINON
INTEGER PRIOR, PRI, PRILOW
LOGICAL LOADON, INITST, PRT
CHARACTER LDNAME*15

C-18

on

noon

PARAMETER (NL»50)

DIMENSION TON(NL),TOFF(NL),ISTAT(NL)
COMMON /BKl/ DMDP,TSAMPL,PMAX,PMIN,PDATA
COMMON /BK3/ MAXOFF(NL) ,MIN0FF(NL) , MINON(NL) ,PRI0R(NL)

,

& LDNAME(NL),PLOAD(NL),DELAY(NL),mTST
& /BK4/ NLD,ID(NL),LOADON(NL),PRILOW,LPRIOF(NL,NL),
& LPRLOW(NL),LPRION(NL,NL),PRT
NAMELIST /NAMl/ SUMINT, ISUM, INITST

& /NAM2/ SUMP
DATA EPS/0.01/,IFLAG/0/

LOGICAL SHED(NL)
INTEGER*2 COUNTS
INTEGER DIG‘iTIN,DIGITOUT
COMMDN/DISPLY/DIGITINC 16) , DIGITOUTC 24) , COUNTS (8)

Initialization

IF(IFLAG.EQ.O) THEN
DO 10 1=1, NLD
TON(I)»0.0
TOFF(I)=0.0
LOADON(I)-.FALSE.

SHED(I) » .FALSE.

ISTAT(I)=0
10 CONTINUE
C

C Set up local priority levels for each global priority
C level, PRIOR(I). Two local priority levels are assigned
C in a sequential order, one for turn-off and another for
C turn-on.
C

DO 40 PRI=1,PRIL0W
K=0
DO 20 1=1, NLD
IF(PRI0R(I).EQ.PRI) THEN

K=K+1
LPRIOF(PRI,I)=K

ENDIF
20 CONTINUE

LPRLOW(PRI)=K
KK=LPRL0W(PRI)+1
DO 30 1=1, NLD
IF(PRI0R(I).EQ.PRI) THEN
KK=KK-1
LPRION(PRI,I)=KK

ENDIF
30 CONTINUE

C-19

oo

oooo

oooDooo

non

40 CONTINTIE

IFLAG=1
ENDIF

make loads depend on status inputs
DO 15 I “ 1,NLD
IF(DIGITIN(l).EQ.O) LOADON(I) = .TRUE.

IF(DIGITIN(I).EQ.1) LOADON(l) = .FALSE.

1 5 CONTINUE

Turn on loads during the initial cycle after delay times
are over.

IF(INITST) THEN
ISUM=0
SUMINT=0.0
DO 50 1=1, NLD
IF(TOFFd) .GE.DELAY(I)) THEN
L0AD0N(I)=.TRUE.

control load in FID
CALL DIG0UT(5,l,I+16,.TRUE.,-4)

SUMINT'SUMINT+PLOAD (I

)

ISTAT(I)=1
ENDIF
ISUf^ISDMflSTAT(l)
IF(ISUM.EQ.NLD) INITST= . FALSE.

50 CONTINUE
PRINT NAMl
ENDIF

C

C Shed loads if power decrease is demanded by the
C amount of DELP, and if minimum on-times are passed.
C Start to shed loads with low priority first.
C Assign the highest local priority to the load most
C recently shed.
C

IF(DELP.LT.-EPS) THEN
SUMP=0.0
DO 90 PRI=PRIL0W,1 ,-l

60 DO 80 LPR=LPRL0W(PRI) ,1 ,-l

DO 70 1=1, NLD
IF(PRIORd) .GE.PRI.AND.TONd) .GE.MINONd) .AND.M4X0FF(I).GT.

C-20

& O.O.AND.LOADON(I).AND.LPRIOF(PRI,I).EQ.LPR) THEN
C LOADON (I) » . FALS E

.

C

C control load in FID
CALL DIGODTC 5, 1,1+16,. FALSE. , -4)
SHED(I) » .TRUE.

C

TOFF(I)=0.0
KEY»LPRIOF(PRI,l)
CALL PDSH(KEY,PRI)
SUMP=SUMP+PLOAD (I

)

PRINT 1000,1
GOTO 60

ENDIF
IF(SDMP.GE.-DELP) GOTO 100

70 CONTINUE
80 CONTINUE
90 CONTINUE
100 PRINT NAM2

ENDIF
C

C Restore loads if power increase is allowed by the
C amount of DELP, and if minimum off-times are passed.
C Start to restore loads with high priority first.
C Assign the lowest local priority to the load most
C recently restored.
C

IF(DELP.GT.EPS) THEN
SUMP«0.0
DO 140 PRI=1,PRIL0W

no DO 130 LPR=1,LPRL0W(PRI)
DO 120 1=1, NLD
IF(PRIORC I) . EQ . PRI .AND . TOFF (I) . GE . MINOFF (I) . AND

.

& (.NOT.LOADON(l)).AND.LPRION(PRI,l).EQ.LPR.AND.SHED(l)) IHEN
C LOADON(l) = .TRUE.
C

C control load in FID
CALL DIGOUT(5,l,I+16,.TRUE. ,-4)

SHED (I) = .FALSE.

C

TON(I)=0.0
ISTAT(I)=1
KEY=LPRION(PRI,I)
CALL POP (KEY, PRI)
SUMP=SUMP+PLOAD (I

)

PRINT 2000,1
GOTO no

C-21

ENDIF
IF(SDMP.GE.DELP) GOTO 150

120 CONTINUE
130 CONTINUE
140 CONTINUE
150 PRINT NAM2

ENDIF
C

C Restore loads regardless of priority level, if maximum
C off-times are passed.
C

IF(.NOT.INITST) THEN
DO 160 PRI=1,PRIL0W
DO 160 1*1, NLD
IF(PRIORd) .EQ.PRI.AND.TOFF(I) .GE.M^FF(I) .AND.SHED(I)

& .MD.(.NOT.LOADONd))) THEN
C LOADON(l) = .TRUE.
C

C control load in FID
CALL DIGODT(5,l,I+16,.TRUE. ,-4)

SHEDd) = .FALSE.

C

TON(I)-0.0
KEY=LPRION(PRI,l)
CALL POP(KEY,PRl)
PRINT 5000,1

ENDIF
160 CONTINUE

ENDIF
C

C Print details
C

IF(PRT) THEN
PRINT 3000
DO 170 1*1, NLD

170 PRINT 4000,I,PLOADd),TOFF(I),MINOFFd),TON(I),MINON(l),
& LOADONd) ,PRI0R(I) ,LPRIOF(PRIOR(l) , I) ,LPRION(PRIOR(l) , I)

ENDIF
C

C . Increase on- and off-times by one sample period for
C the use in the next time step
C

DO 180 1*1, NLD
IF(LOADONd)) THEN
TON (I) =TON(I) +TSAMPL
IF(TON(I).GE.2*MINON(I) +24*60) TON(l)=2*MINONd)

ELSE
TOFF(I)=TOFF(I) +TSAMPL
IF (TOFF (I) . GE . 2*MAXOFF(I) +24*60) TOFF (I) *2*MAXOFF(I

)

C-22

ENDIF
180 CONTINUE
C

1000 FORMT(5X, ' LOAD #' ,I5,2X, ' SHED ')

2000 FOBLMAT(5X, •++++++ LOAD , 15 , 2X, ’ RESTORED++++++ ')

3000 FORMAT (/T5, 'I' ,T10, 'PLOAD' ,T21, 'TOFF' ,T29, 'MINOFF' ,T41, 'TON'

,

&T50 ,
' MINON

'
, T56 ,

' STATUS
'

, T63 ,
' PRI

'
, T67

,
’ LPRIOF

'
, T74 ,

' LPRION ' /

)

4000 F0RMAT(I5,5(F9.2,1X),3X,L1,2X,I4,2(3X,I3,1X))
5000 FORMAT(5X, '++++++ LOAD #' ,15, 2X,' RESTORED SINCE ',

& 'THE MAXIMJM OFF-TIME IS PASSED')
C

C

C

C

C

C

C

C

C

C

C

C

C

C

RETURN
END

PUSH : Determine local priority levels for each given
global priority .

Assign the highest local priority to the load
which is most recently shed.

April 27, 1983 C.P.

SUBROUTINE PUSH(KEY,PRI)
LOGICAL LOADON,PRT
INTEGER PRI,PRILOW
PARAMETER (NL»50)
COMMON /BK4/ NLD, ID(NL) ,L0AD0N(NL) ,PRIL0W, LPRIOF (NL,NL)

,

& LPRLOW(NL),LPRION(NL,NL),PRT
DIMENSION ITEMP(NL,NL)

DO 10 1=1, NLD
IF(LPRIOF(PRI,I).LT.KEY) THEN

ITEMP (PRI , I)“LPRIOF (PRI , I) +1

ELSEIF(LPRIOF(PRI,I).GT.KEY) THEN
ITEMP (PRI , I)=LPRIOF (PRI , I

)

ELSE
ITEMP (PRI, I)=1

ENDIF
10 CONTINUE
C

DO 20 1=1, NLD
20 LPRIOF(PRI,l)=ITEMP(PRI,l)
C

RETURN
END

C

C POP : Determine local priority levels for each given

C-23

C global priority .

C

C Assign the lowest local priority to the load
C which is most recently restored.
C
C

C April 27, 1983 C.P.
C

c

SUBROUTINE POP(KEY,PRl)
LOGICAL LOADON,PRT
INTEGER PRI.PRILOW
PARAMETER (NL=50)
COMMON /BK4/ NLD,ID(NL) ,L0AD0N(NL) ,PRIL0W,LPRI0F(NL,NL)

,

& LPRL0W(NL),LPRI0N(NL,NL),PRT
DIMENSION ITEMP(NL,NL)

C

DO 10 1=1, NLD
IF(LPRION(PRI,I).GT.KEY) THEN

ITEMP (PRI , I)=LPRION(PRI , I)-l

ELSEIF(LPRION(PRI,l) .LT.KEY) THEN
ITEMP(PRI,l)=LPRION(PRI,l)

ELSE
ITEMP(PRI , I) =LPRLOW(PRI

)

ENDIF
10 CONTINUE
C

DO 20 I-1,NLD
20 LPRI0N(PRI,I)-ITEMP(PRI,I)
C

RETURN
END

C-24

APPENDIX D. SAMPLE IMPLEMENTATION OF DEMAND SUPPLY AIR RESET ALGORITHM

SUBROUTINE DRESET
C;

:

C This routine is used to reset the supply air setpoint of an air
C handling unit. This version uses the demand determination method, where
C the demand is determined from the measured usage of reheat coils in the

C zones served by the air handler. The setpoint is moved up or down by a

C step change when the reheat usage is outside of specified limits.
C Common block SETPNT contains the set points used by the AHU task,
C which regulates the supply air.
C

C VARIABLE DEFINITIONS:
C

C DRTSKI - task interval(s) at which DRESET executes. From FID task table.
C DRSAMF - sampling period (s)for adjusting setpoint and summing reheat.
C RHMAX - setpoint raised if percentage of total samples with reheat on
C exceeds this value.
C RHMIN - setpoint lowered if percentage of total samples with reheat on
C is less than this value.
C RHSTEP -

C

INTEGER ARSTAT
INTEGER RHZ0NE(2)
BYTE DIGO,DOPRI, DIGIN
REAL TREF
BYTE H,M,S,TS

C

COMMDN/TSKINT/H, M, S , TS
COMMON/DIGITA/DIGOC 1 , 24) , DOPRI (1,24), DIGIN (1,16)
COMMON/ RHDEMA/BHMAX(5) ,RHMIN(5) ,RHSTEP(5) ,DRSAMP
COMMDN/AIRSET/TOAMAX(5) ,TOAMIN(5) ,TRMIN(5) ,TRMAX(5)

#,TOAMID(5) ,TRMID(5) , ARSTAT(5)

COMMON/ SETPNT/TREF(5)

DATA RHZONE/2*0/,MCOUNT/0/,NRHZON/1/
C determine execution interval

CALL LOCK
CALL TSKCHK(7,IEDOS)
DRTSKI=M*60+S
CALL, TLOG(7,1, DRTSKI

)

MAXCNT=DRSAMP /DRTSKI
C determine reheat coil usage

DO 100 I=l,NRHZON
J=I+8
RHZONE (I) =RHZONE (I) +1 -DIGIN (1 , J)

100 CONTINUE
MCOUNT=MCOUNT+l
IF(MCOUNT.LT.MAXCNT)GO TO 9000

D-1

MCOUNT=0
C Determine minimum reheat usage for all zones

IDZ0NE=0
MraRHV=MAXCNT
DO 200 I=1,NRHZ0N
IF(RHZONEd) .GT.KENBHV)GO TO 190
IDZ0NE=I
MINRHV*=RHZ0NE(I)

190 RHZ0NE(I)=0
200 CONTINUE

RHPCT=FLOAT(MINRHV) /FLOAT(MAXCNT)*100

.

C change setpoint value as a function of reheat usage*

CALL TL0G(7,IDZGRE.RHPCr)

C

—

DO 5000 1=1,5
IF(ARSTATd) .NE.2)G0 TO 5000

if air temperature is outside of limits, fix setpoint-
IF (TREF (I) .GT . TRMAX (I))TREF (I)=TRMAX (I

)

IF(TREFd) .LT.TRMINd))TREFd)=TRMINd)
IF(RHPCT.GT.RHMAX(l))GO TO 3000
IF(RHPCT.LE.BHMINd))GO TO 4000

no change in setpoint desired
GO TO 5000

C too much reheat - raise setpoint
3000 ERR0R=RHPCT-RHMAX(l)

TREFd) =TREF(I) +EHSTEP (I)*ERR0R
IF (TREF (I) .GT . TRMAX (I))TREF (I)»TRM4X(I

)

GO TO 5000
C not enough reheat - lower setpoint -

4000 ERROR=RHPCT-BHMINd)
TREF (I) =TREF (I) +RHSTEP (I) *ERR0R
IF(TREFd) .LT.TRMINd))TREF(l)=TRMINd)

5000 CONTINUE
9000 CONTINUE

CALL TLOG(7,0,TREF(D)
CALL UNLOCK
RETURN
END

QsSZSrCSSSStCSSCCSSSKSSKBSSBBBBSSBSasaiSSBSeCIB:

SUBROUTINE TL0G(NTASK,BEGEND,RN)

C This routine is used to store information for the task log. The number
C of the task, a code to indicate beginning or end of the task, and a

C number which may be set to a meaningful value by the task, are all
C written to the log buffer.
C

BYTE MS,TSLOT(32) ,LF,CR
INTEGER BEGEND
BYTE ANFLAG , DFLAG , STOPCR , ONDLOG , ONTLOG , IN IT
BYTE TBUFFR,TRESET,TENABL

D-2

COMMON/FLAGS/ANFLAGC 1,32), DFLAGC 1,24), STOPCR, ONDLOG , ONTLOG , INIT
COMMDN/TLOG/TBUFFR(6 08) , TRESET , NBYTE , TENABLC 25)
COMMDN/TIME/MS(9)
DATA LF/123/,CR/125/
IF (ONTLOG . EQ . 0) RETURN
IF (TENABLC NTASK) .NE.l .AND. NTASK.GT.O) RETURN
IF (TRESET . EQ . 1) NBYTE=0
IF(NBTTE.GT.6 00)GO TO 9000
TRESET=0
IF (NBYTE . NE . 0)TBUFFR (NBYTE) =LF
CALL RDMSEC
ENCODE(TSLOT,l)MS(9),MS(8),MS(7),MS(6),MS(5),MS(4),MS(3),MS(2)

,

#MS(1) ,NTASK, BEGEND,RN
1 F0RMAT(2I1,' :',2I1,' |',2I1,'.',3I1,' T' ,13,13, 1X,G9.3)

TSL0T(31)=CR
TSL0T(32)=38
DO 500 1*1,32
NBYTE*NBYTE+1
TBUFFR(NBYTE) =TSLOT (I

)

500 CONTINUE
RETURN

9000 TBUFFR (6 08) *3

8

TBUFFR (6 06) *6

4

RETURN
END

D-3

NBS-114A (REV. 2-ec)

U.S. DEPT. OF COMM.U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

SHEET (See instructions) NBSIR 85-3285 JANUARY 1986

4. TITLE AND SUBTITLE

VERIFICATION OF PUBLIC DOMAIN CONTROL ALGORITHMS FOR BUILDING ENERGY MANAGEMENT

AND CONTROL SYSTEMS

5. AUTHOR(S)

William B. May, Jr. and George E. Kelly

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

S. Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

U.S. Department of Energy U.S. Naval Civil Engineering Laboratory
1000 Independence Avenue, SW Port Hueneme, CA 93043
Washington, DC 20585

10.

SUPPLEMENTARY NOTES

I I
Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11.

ABSTRACT (A lOO^word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

Software is an important component of building energy management and control

systems (EMCS). It is usually supplied by EMCS vendors in proprietary packages

that do not contain human readable source code. Even when source code listings

are made available on a "limited use" basis, it is difficult for the user to

determine whether the supplied algorithms meet the design specifications because

of the lack of public domain HVAC control algorithms with which to compare them.

To help overcome the above problem, the National Bureau of Standards developed and

documented eight public domain EMCS supervisory control algorithms. The testing

and verification of these eight algorithms are described in this report. The

algorithms tested cover dry bulb and enthalpy economizer cycles, optimum and

scheduled start/stop, duty cycling, demand limiting, outside air supply air reset,

and demand supply air reset. For each of these algorithms, the process of

installing the algorithms on an NBS laboratory system is discussed and a description
is given of the tests performed. The results of these experimental studies are

presented, along with any additional considerations for use of the algorithms
that were developed as a result of the testing program.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

algorithm verification; control algorithms; demand limiting; duty cycling; economizer

cycles; energy management algorithms; field testing; HVAC control; optimum start/stop

temperature reset
13. AVAILABILITY

lx I
Unlimited

I I
For Official Distribution, Do Not Release to NTIS

I I

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C
20402.

14. NO, OF
PRINTED PAGES

141

15. Price

[_XJ Order From National Technical Information Service (NTIS), Springfield, VA. 22161

$16.95

USCOMM-DC 8043-P90

