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Abs tract

A survey of eight alternative liquid metal stored chemical energy

reactions has been made for purposes of comparison with the lithium-

aluminum/water, lithium/sulfur hexafluoride, and other reaction schemes.

The objective of the study was to survey the potential of these eight

reactions as alternate stored chemical energy systems and to develop

priorities for future study. Experimental data on the products of

reaction and kinetics of reaction are presented for: Li/t^O; H
2
/0

2 ),

(Li/H
2
0; Na0

2
/H

2
0; H

2
/0

2 ),
(MgAl/H

2
0; H

2
/0

2 ), and LiAl/CKXjF) . These

data have been collected using thermogravimetry and Knudsen effusion

mass spectrometry, with x-ray diffraction analysis of experimental

products. Among other results, the data show that the aluminum compo-

nent of the fuels is relatively inert to oxidation up to 650 °C. Above

this temperature, materials limitations have hampered the collection of

experimental data.

Thermodynamic analysis has been used to extend the data on each of

the eight reaction schemes, and to predict the chemical reaction which

best represents the complete oxidation of each fuel by the indicated

oxidant at 1100 K. Enthalpies have been calculated for each fuel /ox-

idant combination. Safety considerations are also discussed for each.

Suggestions for future research are given, including suggestions for

overcoming the materials problems encountered in this study.
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I. Introduction

Recently there has been much interest in the use of light metals as

fuel for stored chemical energy devices. A system currently in usage

involves molten lithium metal and sulfur hexafluoride, according to the

reaction.

8Li + SF, -> Li0 S + 6LiF
6 2

[ 1 ]

Under development (1) is a system using lithium aluminum alloy as the

fuel and water as the oxidant, according to the reaction:

LiAl + 2H
2
0 -+ LiA10

2
+ 2H

2
[2a]

The hydrogen liberated is combined with oxygen to yield water:

2H
2
+ °2 H2° [2b]

The water produced in this way is returned to [2a] to complete the

cycle. In our laboratories investigation is continuing of reaction [2a],

which is potentially much more complex than as written (2).

In addition to reaction [2], there are other possible alternate

systems of interest and it is desirable to make a preliminary survey of

these, to determine if certain ones might emerge as clear choices for

further development, or at the least, if others might be eliminated from

further consideration. The fuel/oxidant combinations that have been

suggested are:
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Li/H
2
0; H

2
/0

2
[3]

Li/H
2
0; Na0

2
/H

2
0; H

2
/0

2

MgAl/H
2
0; H

2
/0

2

LiAl/C10
3
F

LiAlMg/C10
3
F

LiBe/C10
3
F

Ll/C
11

F
20

LiB/NF,

[ 4 ]

[5]

[ 6 ]

[7]

[ 8 ]

[9]

[ 10 ]

Combinations [3], [4], and [5] utilize a final stage of combustion in

which hydrogen is burned, in a reaction identical to reaction [2b]

above. Combinations [6] through [10], however, are envisioned as largely

single-stage energy release schemes. To fully evaluate all these candidates

it is desirable to have the following basic information:

(a) identity of the products of fuel/oxidant reaction

(b) an indication of the kinetics, especially the minimum tempera-
ture required for spontaneous combustion and self-sustaining
reaction

(c) an estimate of the enthalpy of reaction

(d) knowledge of toxicity of reaction products

Information collected to date for each of the fuel/oxidant combinations

is summarized in the paragraphs that follow. Most experiments were com-
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pleted using a Mettler 1 thermoanalysis system, except for reaction [6],

which was also investigated mass spectrometrically . Following a presenta-

tion of data for each of the above reaction schemes, a general discussion

and recommendations for follow-up research are given. Results of a

literature search are given in an Appendix (Section XIII).

II. Li/H
2
0; H

2
/0

2

A. Starting Materials and Container Materials

The starting material used for these experiments was finely powdered

lithium metal (-140 mesh, 99.95% pure on a metal basis). This material

had some surface oxidation upon receipt from the vendor, causing it to

have a slightly grayish cast; the contaminants were tentatively identified

as lithium carbide (Li
2
C
2
), lithium hydride, and lithium hydroxide, on

the basis of weak x-ray diffraction peaks. All materials handling

operations involving the lithium metal were completed in a glove box.

Quantitative study of the oxidation of metallic lithium poses

special materials problems. Any container must be capable of withstand-

ing attack by both metallic lithium and the oxidant. Silica glass is

not a suitable container in the presence of both the lithium fuel and

the water oxidant. Graphite and molybdenum are mentioned in the litera-

ture (3, 4) as container materials for lithium alloys; however both are

attacked by oxidants at relatively low temperatures. A nickel-based

alloy would appear to offer promise; however, nickel could

l Certain commercial equipment, instruments, or materials are identified
in this paper in order to adequately specify the experimental procedure.
Such identification does not imply recommendation or endorsement by the

National Bureau of Standards, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.
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be expected to undergo a certain degree of oxidation even at relatively

low temperatures, affecting the results of sensitive thermogravimetric

experiments, and possibly contaminating the sample. BN is a possible

material, but experiments with LiAl (see below) suggest lithium abosrp-

tion. Perhaps the strongest candidate crucible materials for future

work are BeO (5) and MgO; however, as these were not available, all

measurements to date were completed using readily available alumina

crucibles at temperatures below the melting point of lithium metal.

B . Reaction Products

Lithium metal was reacted with water-saturated flowing argon

(30,000 ppm H
2
O) in the thermoanalyzer. At 25 °C, slow reaction of

lithium metal with water produces LiOH.I^O. However the reaction prob-

ably proceeds sequentially, starting with LiOH, as evidenced by x-ray

analysis of samples from different zones within the reaction cell. Near

the bottom of the cell, products were largely LiOH; near the top, the

hydrate was dominant. At 100 °C, the reaction product is almost entirely

LiOH; small amounts of the hydrate are believed to have formed as the

experiment cooled.

C. Kinetics

The finely powdered lithium metal used in these expeiments is

highly reactive at room temperature in spite of the thin surface coating.

This is evidenced by rapid reaction when deliberately exposed to the

atmosphere. When placed in contact with water, violent reaction ensues,

and explosion occurs due to spontaneous ignition of the evolved hydrogen.
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In the thermoanalyzer experiments, the reaction was purposefully

set up to proceed in controlled fashion. Reaction curves at 25 and

100 °C are shown in Fig. 1. The 25 °C curve shows a nearly linear seg-

ment from 0 to 1500 min. of reaction time, implying that reaction con-

trol in the early stages is not associated with build-up of a product

layer, but rather may be linked to the rate of supply of the water

vapor. The second half of the 25 °C curve is nonlinear. This could be

due to the influence of the product layer of LiOH.l^O, but is more

likely to be due to the increased diffusion path required for vapor to

reach the powders in the bottom of the cell. The reaction was stopped

prior to completion. Theoretically completion would have occurred at a

fractional weight gain of 5.1 (compared with 3.7 at the termination of

the experiment). This number assumes complete conversion to LiCOlQ.l^O-

By contrast, at 100 °C, the entire curve appears to be nonlinear.

This suggests influence of the product layer (in this case LiOH) . The

reaction appears to have terminated in spite of the fact that the theoret-

ical fractional weight gain of 2.5 was not reached. This probably

indicates that the surface contamination of the Li powdered starting

material is more severe than the x-ray analysis suggested. Future

experiments will employ a much more nearly pure lithium powder.

D. Enthalpy

Thermodynamic data for calculation of the enthalpy of oxidation of

molten lithium metal by ^0 are available in the JANAF tables (6).

Enthalpy production in kcal per gram of fuel plus oxidant can be cal-

culated, if the lithium oxidation reaction is combined with burning of

the evolved hydrogen and recycling of water thus produced:



- 11 -

Li + H
2
0 -> LiOH + (1/2)H

2 [ 11 ]

(1/2)H
2 + (l/4)0

2
> (1/2)H

2
0 [ 12 ]

Li 4- (1/2)H
2
0 + (l/4)0

2
LiOH (combined reaction) [13]

The calculated value 2 at 1100 K (827 °C) is 3.5 kcal/g. If LiOH did not

form, the combined reaction would be:

for which the enthalpy yield is 4.8 kcal/g. Clearly there is a heavy

energy penalty paid by loss of hydrogen in the cycle to form LiOH.

E. Safety Considerations (7 )

Lithium metal reacts exothermically with the moisture in human tis-

sue, causing both thermal and chemical burns. An explosion hazard

exists when the metal is exposed to moisture of any form, or to any

other oxidizing material. When heated in air or burned it emits toxic

fumes of Li
2
0 and LiOH. It reacts with nitrogen at high temperatures.

III. Li/H
2
0; Na0

2
/H

2
0; H

2
/0

2

A. Starting Materials

The Li/H
2
0 part of the reaction scheme has been discussed above.

The role of Na0
2

is to provide oxygen for the second stage burning of

hydrogen.

2A11 energy yield calculations in this report are listed in terms of

kcal per gram of fuel plus oxidant.

2Li + (l/2)0
2
+ Li

2
0 [14]
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The Na0
2

used in these experiments was indicated by the vendor to

be 95% NaC^. X-ray powder diffraction analysis of the starting material

which consisted of pale yellow granules, yielded a very complex pattern

containing peaks for NaOH, NaO^Cl) and several unidentified peaks.

B. Reaction Products

NaC^ was placed in a platinum cell in the thermoanalyzer. The

sample was brought to temperature (25 or 100 °C) and then a stream of

flowing water-saturated argon (30,000 ppm l^O) was introduced. At the

conclusion of the 100 °C experiment the sample was x-rayed. This was

not possible for the 25 °C experiment, which produced liquid; apparently

the Na0
2

(or the NaOH produced from it) is deliquescent at 25 °C. The

100 °C experiment yielded predominantly NaOH; the lesser amount of

Na0H.H20 present is thought to have formed as the experiment cooled.

C. Kinetics

Reaction curves for Na02/H20 at 25 and 100 °C are shown in Fig. 2.

The 25 °C curve consists of two linear weight gain portions. Interest-

ingly the slope increases for the later segment. This is interpreted as

follows. During the early 25 °C segment, the reaction involves loss of

oxygen and gain of water:

2Na0
2
+ 3H

2
0 + 2(Na0H.H

2
0) + (3/2)

0

2
[15]

The theoretical fractional weight gain for this reaction is 0.06, which

is near the change in slope for the 25 °C curve. During the later

segment of the 25 °C reaction curve in Fig. 2, the product is thought to

be the deliquescent liquid observed at the conclusion of the experiment,

produced according to the reaction:
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Na0H.H
2
0 + H

2
0 -> (NaOH, H

2
0) (£) [16]

Possibly formation of the liquid results in increased accessibility by

the gas, explaining the increased slope.

At 100 °C, the reaction of Na0
2
with water vapor produces a nearly

linear weight loss as would be expected from the reaction:

2Na0
2 + H

2
0 + 2NaOH + (3/2)

0

2 [17]

This reaction would yield a theoretical weight loss of 0.27. The 100 °C

reaction apparently terminates at less than this value, reflecting the

presence of the NaOH impurity noted in the x-ray analysis of the start-

ing materials.

D. Enthalpy

If the sodium superoxide reaction is combined with the lithium/water

oxidization reactions, we have the following:

(l/3)Na0
2 + (1/6)H

2
0 + (l/3)Na0H + (l/4)0

2
[18]

Li + (1/2)H
2
0 + (l/4)0

2
-> LiOH [19]

(l/3)Na0
2 + (2/3)H

2
0 + Li + (l/3)NaOH + LiOH [20]

(combined reaction)

An enthalpy of formation for Na0
2

at 298 K can be estimated as -62.7 k < . 1 1 .
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Neglecting the heat required to bring the oxygen from the first stage up

to 1100 K, the total energy release in reaction [20] is -2.2 kcal/g.

This is significantly less than the -3.5 kcal/g calculated earlier for

the Li/l^O; H
2
/O

2
combination. However it may be that there are advantages

associated with use of a solid as the oxidant source rather than a

compressed gas.

E. Safety Considerations (7 )

Hazards associated with lithium are noted in the discussion of

Li/^O above. Sodium superoxide has much the same toxicity as NaOH,

which it forms upon contact with moisture. Contact with skin could be

expected to cause burns and ulceration; inhalation of the mist or powder

could cause damage to the upper respiratory tract and lungs. Heating

could cause violent decomposition. Contact with moisture or reducing

agents could result in explosion.

IV. MgAl/H
2
0; H

2
/C>2

A. Starting Materials

Magnesium aluminum alloy of 50/50 atomic ratio was prepared in the

NBS metals processing lab by melting high purity magnesium and aluminum

together under a halide flux and casting the melt into a steel chill

mold. The resulting ingot was very brittle and was easily crushed in a

mortar and pestle in a glove box. A (-200, +400) sieve fraction was

then prepared for the experiment and stored in the glove box until use.

An x-ray diffraction pattern showed characteristic peaks for A^Mg^

with a few additional unidentified peaks of low intensity.
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B. Reaction Products

The powdered alloy was placed in an alumina cell in a glove gox and

transferred to the thermoanalyzer system. Next the specimen was brought

to 650 °C in an argon atmosphere. At this temperature the specimen was

completely melted, according to the Mg-Al phase diagram (8). Next,

argon saturated with water at 25 °C (30,000 ppm l^O) was flowed contin-

uously over the sample. At the conclusion of reaction the gray, porous

sample was cooled, removed and x-rayed. The x-ray powder pattern showed

strong peaks for aluminum metal and MgO (periclase). Apparently only

the magnesium component of the molten alloy was oxidized, as there were

no peaks for A^O^, MgA^O^ or any other aluminous phases.

C. Kinetics

Rate data for the oxidation of molten MgAl by water vapor are shown

in Fig. 3. The meaning of the step in the weight gain curve at about

100 minutes of reaction time is not clear. However the two segments of

this curve on either side of the break have substantially linear portions,

suggesting that diffusion through a product layer of increasing thickness

is not a controlling factor during most of the reaction. The reaction

appears to slow to a very low rate as the fraction reacted approaches

0.30. This is in agreement with the x-ray analysis, which indicates

essentially all the Mg has been oxidized; complete oxidation of the Mg

to periclase would correspond to a fractional weight gain of 0.31, very

close to that observed; on the other hand, complete oxidation of both

the magnesium and the aluminum would result in a fractional weight gain

of 0.62.

D. Enthalpy

Referring to the system Mg-Al- 0-H, at least three possible oxidation

reactions involving the 1:1 alloy and water could occurr. These nre
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summarized below:

2MgAl + 5H
2
0 -> MgO + MgAl

2
0
4 + 5H

2
[21a]

5H
2 + (5/2)0

2
-> 5H

2
0 [21b]

2MgAl + 5H
2
0 -> 2MgO + A1

2
0 + 5H

2
[22a]

5H
2 + (5/2)0

2
+ 5H

2
0 [22b]

MgAl + H
2
0 -* MgO + A1 + H

2
[23a]

H
2
0 + (l/2)0

2
+ H

2
0 [23b]

To complete enthalpy calculations for these reactions an estimate for

the enthalpy of formation of molten MgAl was made using the ideal solu-

tion approximation. Calculated enthalpy release values for the three

reaction pairs are respectively, -3.8, -3.8, and -2.2 kcal/g. Clearly,

formation of spinel (reaction [21a] vs. reaction [22a]) affects the

energy yield very little. Reaction [23a] has been included because it

is the one observed, and clearly its occurrence instead of [21a] or

[22a] results in substantially lower energy yield. Presumably at some

higher temperature the aluminum component will begin to react according

to reaction [21a] or [22a].

E. Safety Considerations (7 )

Hazards data are not available for MgAl alloy. Aluminum is not

regarded as a poison, although inhalation of finely divided powders can

damage the lungs. Magnesium on the other hand can cause chemical gas
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gangrene if it enters the body, due to generation of hydrogen. Fine

magnesium powder readily ignites by exposure to spark or flame.

V. LiAl/C10
3
F

A. Starting Materials

The starting material for these experiments was powdered LiAl.

The material as received was packed under argon and visually showed no

signs of surface contamination—all surfaces were bright and shiny.

X-ray analysis showed only peaks of LiAl. All manipulations involving

this material were done in a glove gox through which a continuously

purified argon atmosphere was recirculated. The material used in these

experiments was a (-200, +400) sieve fraction. Transfer to the thermo-

analyzer was accomplished in a glove bag, flushed repeatedly with purified

argon

.

The CIO^F (perchloryl fluoride) was obtained from the vendor in

cylinders containing either 100 g or 250 g. Principal impurities were

N
3

, 0
3

, CO
2 , ^0 and HF (see section on mass spectrometry).

Gas was run through a corrosive gas regulator and then through a

column containing NaOH pellets and molecular sieve, and finally through

a flowmeter and then into the thermoanalyzer. The CIO^F, a very dense

gas, was piped directly into the crucibles in the thermoanalyzer exper-

iments. Provision was made for mixing the CIO^F with continuously var-

iable amounts of argon. However, all thermoanalyzer experiments reported

were carried out using a flow of pure CIO^F since it was discovered that

the reactions proceeded in controlled fashion so that no argon dilution

was necessary. Although argon was used to flush the balance components
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during the experiments, it is estimated that the effective partial

pressure of CIO^F over the specimens during these experiments was close

to 1 atmosphere.

B. Reaction Products

Initially, experiments were conducted in alumina crucibles; however

these were unsatisfactory above 700 °C, owing to the corrosiveness of the

molten alloy. Crucibles of LiA102 have been fabricated and these appear

to offer promise for application in higher temperature experiments.

Additionally MgO and BeO offer promise. Boron nitride crucibles were

fabricated and tested in contact with LiAl at 800 °C. They seem to hold

up to attack by the molten alloy well, except for a slight discoloration,

which may be associated with diffusion of Li. Also a steady and extensive

weight gain of the crucible occurred during preliminary tests under an

atmosphere of purified argon. As we have no explanation for or solution

to this problem, use of the BN crucibles was discontinued. Calcia-

stabilized zirconia and silica glass crucibles were employed for the

mass spectrometric studies, with mixed results. All other experiments

reported employed alumina crucibles.

At the conclusion of the LiAl/ClO^F experiments, crucibles were

removed and placed in an inert atmosphere. X-ray mounts were prepared

in the glove box and x-rayed under flowing N
2

. Results of x-ray analysis

are indicated in Table 1, below.

As can be seen from Table 1, experimental results vary greatly

depending upon experimental conditions. The following generalizations

can be made, however, for the range of conditions investigated ( 350—

650 °C, P
cl0 F

= 1 atm; or, 900 °C, P
cl0 p

= 10~ 5
atm).
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(1) Fluorides (Li.AlF,
,
A1F„ , LiF) appear to be by far the dom-

3 b 3

inant reaction products.

(2) Chlorides may form during initial stages of oxidation 3 (see

discussion of kinetics) but are relatively minor phases in the

end products.

(3) The lithium in the alloy is preferentially oxidized leaving

behind aluminum which behaves as though inert (see also dis-

cussion of MgAl oxidation).

(4) The occurrence of oxides as oxidation products is limited in

these experiments to low partial pressures of CIO^F and/or

high temperatures.

C. Mass Spectrometry

i) Outline of Method

In this technique, the Li-Al alloy contained in a Knudsen cell is

exposed to CIO^F introduced into the cell through a gas inlet system.

At appropriate temperatures, reaction products undergo vaporization into

the source of the mass spectrometer where the gaseous products are ion-

ized and mass analyzed. The major advantage of this method is that it

can in principle detect gaseous reaction products. A second advantage

is that the number of collisions of reactant vapor with the condensed

phase may be controlled at a low value so that the kinetics of the

process can be substantially solved.

In the present measurements, however, it was found that reaction

rates are quite slow even up to temperatures as high as 1000 °C so that

modifications in the experimental arrangement to enhance reaction rates

will be advantageous.

3 0xidation is here used in the generic chemical sense.
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ii) Vaporization Considerations

At low temperatures some of the reaction products may be relatively

non-volatile so that they will not be detected by mass spectrometric

analysis. On the basis of data in the literature, the metal chlorides

are more volatile than the metal fluorides while the metal oxides are

non-volatile up to temperatures of 1000 °C or so. Also, because the

halides will form a salt solution, complexing to form interhalide com-

pounds may influence the volatity of the solution. For example, forma-

tion of LiAlCl^ would greatly reduce the pressure expected from forma-

tion of AlCl^.

iii) Experimental set-up

These measurements were made using a fused silica effusion sampler.

The Li-Al alloy was contained in a calcia-stabilized zirconia cup sup-

ported within the effusion sampler. The CIO^F was delivered to the gas

inlet tube through a small leak valve. The Li-Al alloy was loaded into

the zirconia cell in a dry-box then transferred to the mass spectrometer

under argon to reduce the reaction of the Li-Al alloy with ambient water

vapor

.

An effusion orifice of 1 mm diameter was used in the effusion

sampler. This proved to be too large as the CIO^F reacted much less

rapidly with the Li-Al alloy than expected.

The control valve was attached to the CIO^F cylinder in the dry box

so the CIO^F was diluted with Ar during the earlier parts of the experiment.

iv) Analysis of CIO^F

Mass spectrometric sampling of the commercial CIO^F gas showed

predominant peaks at m/e values of 104, 102, 85, 83, 69, 67, 53, and 51

37 35 +
corresponding to the Cl and Cl isotopes of the species CIO^F ,
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C10^
+

, C102
+

, and C10
+

. Except for C10^F
+

,
these peaks are due to frag-

mentation of the CIO^F during the ionization process using electrons at

30v. Besides the CIO^F, Ar which was introduced from the dry box instal-

lation of the regulator was also observed. By comparing the mass spectrum

with the CIO^F gas flow on or off, it was determined that the CIO^F also

contained a small amount (perhaps a percent or so) of air (N^,
, CC^

,

and 1^0). The had apparently partially reacted with the steel

35
cylinder and produced slight traces of HF (mass 20), H Cl (36), and

37
H Cl (38). However, it is not likely that the contamination had sig-

nificant effect on the reaction of CIO^F with the alloy.

v) Reaction of Li-Al Alloy with CIO^F

The first mass peaks due to reaction of CIO^F with the Li-Al alloy

were observed at 420 °C. These peaks were Li
+

from fragmentation of

LiCl(g), LiCl
+

from ionization of the LiCl(g) and L^Cl"*", from ioniza-

tion of the L±^Cl^(g) parent.

One might expect Al-Cl species in this temperature range but none

were observed, in spite of the fact that loss of volatile substances is

indicated by the analogous thermogravimetric experiment. It is clear

from the presence of both LiCl(g) and that a condensed halide

phase was formed on the sampler.

With time, the ratio of LiCl^/L^Cl"*" gradually increased. This

probably showed that LiF was also forming in the condensed phase and

reducing the activity of LiCl. At 600 °C, L^f"*" from the fragmentation

of Li
2
F
2
was observed in the mass spectrum. Over the temperature range

from 600-900 °C ions corresponding to parent molecules LiCl, L^C^,

LiF, and L±2^2 were observed. It did not appear that any A1 bearing

species were formed in the gas phase.
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At the conclusion of the experiment, the Li-Al alloy still had a

• powdery appearance even through it had been heated several hundred

degrees above the melting point.

An x-ray diffraction pattern of the residue revealed the presence

of LiAlC^ with perhaps an equal amount of unreacted A1 (see Table 1).

vi) Al-CIO^F Interaction

Because A1 bearing species were not observed from the Li-Al alloy,

a mass spectrometric experiment was carried out using only powdered A1

in the effusion cell. The purpose of this experiment was to see if it

was possible to form A1 bearing species by reactions with CIO^F. Near

500 °C species corresponding to the halide ions A1F
+

, A1C1
+

, A1F2
+

,

A1C1F
+

, Al^
+

,
AlF^Cl"*", AIC^f"*", and AlCl^"*" were observed. Because of

the number of complex species in the vapor phase, the existence of a

condensed phase at this temperature consisting of mainly AIF^ seems

likely. The duration of the experiment during which Al-halide species

was generated was quite short. All of the A1 bearing species decreased

with time and increasing the CIO^F flow rate and the temperature had no

effect on increasing their intensity. This seems to indicate that the

chlorination and fluoridation processes took place at only selected

sites in the A1 powder which were gradually depleted or lost, perhaps

because of oxidation.

At 760 °C, most of the A1 halide peaks had vanished except for

A1F2
+

which is a major fragmentation product of AlF^Cg). The experiment

was terminated after a brief heating period at 800 °C. Visual examina-

tion of the residue at the conclusion of the experiment revealed that

most of the sample still had a powdery texture but a few small spheres

resulting from melting the sample were also present. Since the sample
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was heated to about 150 °C above the melting point of Al, the powdery

texture of the sample must result from an oxide skeleton on the outside

surface of each grain in the powder. The sample initially weighed

118 mg and gained 2.2 mg during the experiment, despite loss of the

halides, indicating that a small amount of oxidation took place.

D. Kinetics

Thermogravimetric rate data for the reaction of LiAl with CIO^F are

shown in Fig. 4 at temperatures of 350, 450, 550 and 650 °C. It is

presumed on the basis of the Li-Al phase diagram (9) that the LiAl was

solid during these experiments. With the exception of the 350 °C ex-

periment, rate curves all initially show a rapid weight gain at a nearly

steady rate. This continues until a weight fraction gain of between 0.5

and 0.7 has been reached. At this point the rate of weight gain decreases

for a short time and then increases again. This behavior is especially

pronounced in the 650 °C experiment, where a small weight loss with time

is apparent, followed by an increase in the rate of weight gain. This

weight loss (and possibly, as well, the temporary decrease in rate of

gain at all four temperatures) is best interpreted as due to formation

of a volatile reaction product, most probably AlCl^. Continued reaction

leads to a similar ultimate weight gain of between 0.9 and 1.1 for

experiments at all four temperatures, 350, 450, 550 and 560 °C (see

Table 1) . This is true in spite of the fact that the products are

somewhat different in each case. Table 2 lists hypothetical reactions

of LiAl with Cl, 0 and F and combinations thereof, together with theo-

retical weight gains. These reactions have been derived with the aid of

thermodynamically calculated equilibrium phase compatibilities shown in

Fig. 7. Calculated weight gains are highly variable, but the partial

fluorination reactions [26] and [27] of Table 2 best approximate the
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experimental products observed (Table 1). The fractional weight gains

calculated for these reactions are 0.56 and 1.12, respectively, encompas-

sing the range observed.

It seems likely from the curves in Fig. 4 that more than one reac-

tion has occurred during the oxidation of LiAl by CIO^F. It also seems

likely that early stage condensed phase products undergo subsequent

reaction with time to yield a new generation of products. In future

experiments, reacion of LiAl with CIO^F will be completed at higher

temperatures, where hopefully a rapid approach to equilibrium will

eliminate many of these complications. It is hoped that mass spectro-

meter measurements will be carried out at higher pressures of CIO^F

using a transpiration system.

E. En thalpy

From Table 1 it can be seen that the reaction products at tempera-

tures of 650 °C and below differ greatly, depending upon temperature.

Further, oxidation of the alloy is far from complete, and the majority

of the aluminum component of the alloy appears to have remained in the

metallic state. The reaction products suggest disequilibrium among

themselves; for example, Li_AlF,
,
A1F. and LiF are not in stable equili-

3 6 3

brium together. The principal difficulty then is in extrapolating these

limited results to a higher temperature such as 1100 K, at which oxida-

tion could be expected to be much more complete, so that a meaningful

enthalpy yield calculation can be done.

The LiAl/ClO^F reaction can be described by the five component

chemical system Li-Al-Cl-O-F. Fortunately thermodynamic data are avail-

able for many of the end-member compounds in this system and so a pre-

liminary thermodynamic analysis can be completed. This results in an
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estimated equilibrium reaction for complete oxidation which can be used

to calculate enthalpy yield. The thermodynamic analysis was completed

as follows. Fig. 5 depicts graphically the compositional regions of

interest in the three principal quaternary subsystems contained within

the five component system. Fig. 6 shows calculated phase compatibilities

for important ternary reciprocal systems in Fig. 5. These compatibilities

are schematic and indicate major features of phase equilibria which are

consistent with known thermodynamic data, according to the reactions in

Table 3. On the basis of Fig. 6, Fig. 7 has been constructed. This

shows calculated equilibrium relations at 1100 K for the phase regions

shown in Fig. 5. Based on Fig. 6 and 7, Fig. 8 has been constructed,

showing calculated equilibrium relations at 1100 K among phases most

likely to form as products of complete reaction of LiAl and CIO^F. The

reaction suggested by Fig. 8 is:

2LiAl + C10
3
F -> A1

2
0
3
+ LiF + LiCl [74x]

It should be emphasized that there is no direct experimental evidence

yet in support of this reaction: however on purely thermodynamic grounds

it is the favored reaction. To complete the enthalpy calculation, data

for LiAl were estimated using the ideal solution approximation. The

resulting value of enthalpy yield for this reaction is 3.8 kcal/g.

F. Safety Considerations (7 )

Safety hazards associated with LiAl are similar to those associated

with Li as noted above, although reaction with moisture is considerably

less vigorous at room temperature. Perchloryl fluoride is a highly

toxic gas which causes symptoms of asphyxiation and poisoning similar to
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CO, although recovery is said to be rapid provided exposure has not been

prolonged. The gas has a sweet odor, but this cannot be relied upon to

indicate toxic concentrations. Perchloryl fluoride is readily absorbed

through the skin. Although nonflammable, it does support combustion, as

it is a powerful oxidizer. When heated to decomposition, it emits highly

toxic fumes of chlorides and fluorides.

VI. LiAlMg/C10
3
F

A. Enthalpy

At the time of writing, experiments have not yet been completed in

this system, owing to lack of available starting material. Therefore

enthalpy yield estimates must be made solely on the basis of preliminary

thermodynamic analysis. The fuel/oxidant reaction is represented by the

6-component system Li-Al-Mg-Cl-O-F. The phase equilibrium topology is

of course impossible to represent in three dimensions; nonetheless,

progress can be made by consideration of the six quaternary reciprocal

systems shown in Fig. 9. By calculation of the reactions in Table 4,

the schematic ternary phase compatibilities shown in Fig. 10 have been

derived. From additional reactions in Table 4 and compatibilities in

Fig. 10, construction of Figs. 11 and 12 was made possible. Fig. 11

pertains to progressive chlorination, fluorination or oxygenation of

fuel. Fig. 12 relates to the equilibrium products of complete reaction.

Table 5 gives some postulated equilibrium reactions involving progressive

reaction of LiAlMg fuel with Cl, F, 0 and combinations thereof.

Based on the above considerations, the following is thought to rep-

resent complete reaction of LiAlMg alloy (1:1:1 atomic) with ClO^F:
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4LiAlMg + 3C10
3
F -* MgF

2
+ LiF + 3LiCl + 2MgAl

2
0
4
+ MgO [134]

The calculated enthalpy yield for this reaction at 1100 K is 3.6 kcal/g.

B. Safety Considerations (7 )

Safety hazards are similar to those noted for LiAlMg/ClO^F above.

VII. LiBe/C10
3
F

A. Enthalpy

Because of the toxicity of beryllium and beryllium compounds, ex-

periments have not been conducted on the oxidation of lithium-beryllium

alloy by C10
3
F. Hence any estimate of enthalpy release must rely soley

upon thermodynamic estimates of the actual reaction. A thermodynamic

analysis of the five component system Li-Be-Cl-O-F was completed as

follows. Fig. 13 shows the three quaternary subsystems of interest.

Based on reactions in Table 6, the ternary phase compatibilities in

Fig. 14 have been constructed. Based on these compatibilities and

additional reactions in Table 6, the schematic quaternary phase com-

patibilities in Fig. 15 have been derived; these show the results of

progressive chlorination, f luorination, or oxygenation of LiBe fuel

(Table 7 lists equilibrium reactions involving LiBe fuel with various

combinations of Cl, 0 and F) . Fig. 16 indicates calculated compati-

bilities among likely reaction products. The reaction postulated on the

basis of thermodynamic data for complete oxidation of LiBe by PCF is:

8LiBe + 3C10
3
F -* 8BeO + Li

2
0 + 3LiF + 3LiCl [169]

The enthalpy relased by this reaction at 1100 K would be 4.6 kcal/;-.
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B. Safety Considerations (7 )

Lithium and beryllium do not form stable intermetallic compounds

together (10) and would be expected to be present together in fuel as

the chemically uncombined metals. For a discussion of Li safety hazards,

see Li/l^O above. Beryllium is highly toxic both in metallic form and

in compound form. Many of the beryllium salts have high vapor pressures,

especially when heated. Symptoms of exposure usually involve respiratory

distress of varying severity; symptoms may be delayed for several years

after exposure. Chronic berylliosis can lead to death from respiratory

and cardiac failure. In addition to harm incurred by inhalation, beryl-

lium and its compounds also act on the skin, causing lesions and tumors.

Beryllium by itself does not present an explosion hazard, however the

admixed lithium in the fuel obviously does. For a discussion of per-

chloryl fluoride safety refer to LiAl/ClO^F above.

VIII. Ll/C
11

F
20

A. Starting Materials

The fluorocarbon compound was not obtainable from commercial

suppliers; the closest molecular weight compound available was the

structurally similar double ring compound C-qF^, an apparently stable,

clear liquid. Experiments have not yet been completed due to the neces-

sity of installing a special furnace with a boiling chamber for the

liquid oxidant on the thermoanalyzer. It is hoped that loan from anoth-

er facility of a water vapor furnace (which would also provide 1 atm of

Pu for the Li/H o 0 and MgAl/Ho 0 experiments) will provide a solution
u z z

to this experimental problem.
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B. Enthalpy

In the absence of experimental data, it is again necessary to

utilize thermodynamic estimates in arriving at an oxidation reaction for

the enthalpy calculation. The system Li-F-C provides a compositional

representation of the Li/C^^F^Q reaction. By using calculated reactions

in Table 8, Fig. 17 can be constructed, showing schematic phase compati-

bilities at 1100 K. On this basis, the thermodynamically estimated oxi-

dation reaction is:

C
11

F
20

+ 20Li "* 11C + 20LiF [176]

As no enthalpy data have been located for it is necessary to

make an estimate. This can be done by extending the procedures used for

estimating properties of hydrocarbon molecules. A very approximate value

of 900 kcal/mole is obtained in this way for 298 K. The calculated en-

thalpy yield at 298 K is 3.1 kcal/g. Presumably the value at 1100 K

would be somewhat higher.

C. Safety Considerations (7 )

For a discussion of Li safety hazards, see Li/l^O above. Data are

not available for the obtained, but the related compound C-|
2

F
20

is a highly stable molecule which has been used to develop a synthetic

blood substitute.

IX. LiB/NF
3

A. Starting Materials

NF^ has been obtained from a commercial source in small cylinders.
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Principal impurities are stated by the vendor as N
3

> HF, NO and 1^0. A

source of LiB has been located but the material has not yet been procured,

and so there are not experimental data on the reaction at this point in time.

B. Enthalpy

In the absence of experimental data on the LiB/NF^ reaction, thermo-

dynamic analysis of the system Li-B-N-F (Fig. 18) is essential. Using the

reactions in Table 9, the schematic 1100 K ternary phase relations in Fig. 19

have been calculated. Fig. 20 gives calculated compatibilities among product

phases at 1100 K. Table 10 gives reactions for progressive degrees of oxida-

tion of LiB fuel by NF^. The suggested reaction for complete oxidation of

LiB by NF^ is

:

3LiB + 2NF
3

-* 3LiF + BN [185]

Boron trifluoride (BF^) is a gas even at relatively low temperatures, and

so this would not be a desirable reaction. However by simply adding excess

lithium to the fuel, in principle the following reaction could be obtained:

2Li + LiB + NF
3
+ 3LiF + BN [186]

Depending upon the kinetics, BF
3
might still form as an intermediate product,

but the equilibrium final partial pressure would be very low. Although LiB

is known as a stable compound, thermochemical data were not available. It has

been assumed that at 1100 K it would be molten, and the ideal solution approxima-

tion has been applied to give an enthalpy of formation of 0.0 kcal. The enthalpy

yield of reaction [180] can then be calculated as 4.6 kcal/g.

C. Safety Considerations (7 )

Handling properties and toxicity of the compound LiB apparently
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have not found their way into appropriate compendiums
, but it is reason-

able to assume that the comments made above under discussion of safety

for Li and LiAl fuels would also apply here. The compound is used in

pyr otechnical devices, and so there may be a potential explosion hazard.

With regard to NF^ , it is a colorless gas with a moldy odor and a high

toxicity similar to HF. It could therefore be expected to be extremely

corrosive to the respiratory tract and skin. Prolonged exposure may

cause skeletal changes.

X. Summary and Discussion

In terms of energy release/unit mass, ranking of various stored

energy reactions is as in Table 11, which includes for reference, two

schemes not otherwise discussed in this report:

Mg + H
2
0 -* MgO + H

2
[187a]

H
2 + (l/2)0

2
-* H

2
0 [187b]

2A1 + 3H
2
0 -> A1

2
C>

3
+ 3H

2
[188a]

3H
2
+ (3/2)0

2
-* 3H

2
0 [188b]

Several points should be made regarding the ranking in Table 11. First,

direct experimental evidence for several of these reactions has not yet

been obtained, due in part to materials limitations. Although we are

optimistic that these will soon be overcome, in the meantime the ranking
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in Table 11 may have only limited practical significance. An example is
<d

the reaction Li/^O [14]. Theoretically it should be high on the list

at 4.8 kcal/g. However in practice this yield may not be achieved due

to formation of LiOH, which irreversibly ties up hydrogen in the water

cycle, and reaction [13], with an enthalpy yield of 3.5 could prevail

instead. Also there are presumably other factors such as safety to be

considered. The high toxicity of beryllium makes the practicality of

utilizing reaction [169] questionable. On the other hand, it could

probably be said that since fuel or oxidant or both are inherently

chemically unstable, all of the reaction schemes involve some degree of

toxicity to human tissue or other safety hazards, and suitable safeguards

must be employed with any reaction scheme to eliminate the possibility

of containment failure or runaway reaction. For example, lithium metal

exposed to moist air at room temperature rapidly generates hydrogen.

Perchloryl fluoride has a toxic effect similar to CO. NF^ is not only

toxic but extremely hazardous under pressure. When all such factors are

considered, undoubtedly the Mg/^O, MgAl/^O and Al/^O schemes pose the

least safety hazard; however the latter two fuels may require very high

temperature operation to overcome the kinetic barriers to oxidation of

the aluminum. In terms of safety the LiAl/H^O scheme is also high on

the list, as LiAl is much less reactive than lithium upon exposure to

air. Furthermore from a practical viewpoint, there may be other factors

to consider besides enthalpy yield. For example, although the Li/C.j

and Li/^O; NaC^/^O schemes rank low in Table 11, there may be certain

advantages associated with not having to store gaseous oxidizers.

Additional experimental work is necessary at higher temperature,

than attained to date in order to verify the reactions presented in
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Table 11. Evidence to date suggests several of the reactions are kin-

etically hindered at temperatures below 650 °C. We are optimistic that

the materials limitations encoutered in this preliminary study will be

overcome, so that relevant experimental data on high temperature kinetics

and phase equilibria can be systematically gathered in the near future.

XI. Future Work

The highest priority involves finding suitable container materials

so that thermogravimetric experiments can be extended to higher tempera-

tures. Rod stock of high density MgO has been obtained and is being

fabricated into crucibles. Also beryllia crucibles will be machined to

order by a vendor equipped to do this safely. Crucibles of LiA102 have

already been fabricated. We are optimistic that use of one or more of

these materials will allow us to extend the temperature range of exper-

imentation into the 650-1000 °C region.

After the container problem is solved the first priority will be to

determine if the oxidation reactions can be made to go to completion,

and if so what the minimum temperature is at which this will occur.

Once optimum conditions for reaction are determined, an attempt will be

made to measure enthalpy of reaction directly using DTA.

Simultaneously with these experiments phase equilibrium measurements

will commence. The first experiments will involve heating the predicted

end products of the reactions together in sealed capsules, quenching and

examining to see if they really are in equilibrium as suggested by the

thermodynamically calculated reaction. This will give important information

on solubilities (both liquid and solid) as well.
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It is hoped that mass spectrometric measurement of species vapor

pressures during these reactions can be completed using the NBS trans-

piration mass spectrometry system. This apparatus allows measurements

of species at pressures up to 10 atm, which would more closely simulate

actual reactor conditions. Top priority would be given to the investi-

gation of the LiAl/ClO^F and LiAlMg/ClO^F systems. Also, the (Li + LiB)/NF^

and Li/C-^^F^Q systems might be amenable to investigation by this approach.
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Table 1. X-ray Diffraction Analysis of LiAl/ClO^F Experimental Products

Expt. Max Temp. %Wt. Gain Phases

TGA 650 °C 109.86 a-Li„AlF, , LiF*, A1F 0 , A1Jo 3

(isothermal)

TGA 550 °C

(isothermal)

97.58 Al, 3-Li QAlF., A1F , LiFJO J

TGA 450 °C

(isothermal)

98.52 Al, 8-Li 0AlF, , A1F- , LiF, (LiCl)
J b J

TGA 350 °C

(isothermal)

109.26 Al, A1F
3

, Li
3
AlF

6
,

Mass Spec. 900 °C

(non-isothermal)

— YLiA10
2

, Al

TGA 650 °C

(non-isothermal)

91.69 aLi.AlF, , A1F , Al, LiF
3 b 3

TGA 650 °C 50.43 LiCl, Al, LiAl , yLiA10
2 ,

LiF

Partial React,

(isothermal)

*LiF apparently contains a small amount LiCl in solid solution, as judged by

x-ray line shifts
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Table 10. Progressive Oxidation of LiB by NF^

Reaction # Reaction

[184] 3LiB + NF
3

2B + 3LiF + BN

[185] 3LiB + 2NF
3

-> 3LiF + BF
3
+ 2BN
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Figure 1.
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Thermogravimetric analysis of reaction of powdered lithium
metal with flowing water-saturated argon at 25 and 100 °C.
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Figure 2.

REACTION TIME (MINUTES.)

Thermogravimetric analysis of reaction of powdered sodium
superoxide with flowing water-saturated argon at 25 and
100 °C.
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Figure 3. Thermogravimetric analysis of reaction of powdered MgAl all*'

with flowing water-saturated argon at 650 °C.
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Figure 4 Thermogravimetric analysis of reaction of powdered LiAl alloy

with C10 3 F. (a) 350 °C; (b) 450 °C; (c) 550 °C; (d) 650 °C.
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0 0

Cl

Figure 5. Quaternary reciprocal systems relevant to oxidation of LiAl
alloy by CIO 3 F.
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Figure 6. Calculated phase compatibilities in ternary reciprocal sub-
systems of the system Li-Al-Cl-O-F at 1100 K, 1 atm.
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0

a)

Cl

0

Cl

Outline of 1100 K, 1 atm phase compatibilities relating to

oxidation of LiAl alloy by C10 3F. (a) chlorination and oxy-

genation; (b) fluorination and oxygenation; (c) fluorinat

and chlorination.

Figure 7.
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A1C1

LiCl

Outline of 1100 K, 1 atm phase compatibilities among products
of complete oxidation of LiAl alloy by CIO3F.
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A1C1
A1F

3

Figure 9. Quaternary reciprocal systems relevant to oxidation of

LiAlMg alloy by CIO 3 F.
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Figure 10. Calculated phase compatibilities in ternary reciprocal sub-
systems of the system Li-Al-Mg-Cl-O-F at 1100 K, 1 atm.
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MgCl,

MgF„

Figure 10 continued

.
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Figure 10, continued.
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Figure 11. Outline of 1100 K, 1 atm phase compatibilities relating to
oxidation of LiAlMg alloy by CIO 3F. (a) chlorination;
(b) f luorination; (c) oxygenation.
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A1C1.

a) b)

aici
3

Figure 12. Outline of 1100 K, 1 atm phase compatibilities among productso complete oxidation of LiAlMg alloy by C10 3 F. (a ) chlorina-tion and oxygenation; (b) fluorination and oxygenation;
'
c

' fluorination and chlorination
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F

Figure 13. Quaternary reciprocal systems relevant to oxidation of I.i/lV

mixtures by CIO 3 F.
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LiF (L1
2
BeF

«
) <LiBeF

3
)

Figure 14. Calculated phase compatibilities in ternary reciprocal sub-

systems of the system Li-Be-Cl-O-F at 1100 K, 1 atm.
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C1
F

F

c)

Cl

Figure 15. Outline of 1100 K, 1 atm phase compatibilities relating to

oxidation of Li/Be mixtures by C10 3 F. (a) chlorination and

oxygena tion j ( b ) fluorination and oxygenation, (c) 1 im.i

tion and chlorination.
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Figure 16. Outline of phase compatibilities among products of complete
oxidation of Li/Be by CIO 3 F at 1100 K, 1 atm.
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C

Li LiF F

Figure 17. Calculated phase compatibilities in the system Li-C-F at
1100 K, 1 atm.
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F

Quaternary reciprocal systems relevant to oxidation of LiB

alloy by NF 3 .

Figure 18.
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LiF BF
3

Figure 19. Calculated phase compatibilities in ternary reciprocal sub-

systems of the system Li-B-F-N at 1100 K, 1 atm.
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LiF

Figure 20. Outline of phase
.
compatibilities ajnong products of complete

oxidation of LiB by NF 3 at 1100 K, 1 atm.
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