
»0V 15 386

NAT l INST. OF STAND & TECH

AlllOb 03^324

NBSIR 85-3250

Characteristics and Functions of

Software Engineering Environments
NBS

PUBLICATIONS

Raymond C. Houghton, Jr.

Computer Science Department
Duke University

REFERENCE

Dolores R. Wallace

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

September 1985

U.S. DEPARTMENT OF COMMERCE

QC

100

• U 5 6

85-3250

1985

C.3

L BUREAU OF STANDARDS

NBSIR 85-3250

CHARACTERISTICS AND FUNCTIONS OF
SOFTWARE ENGINEERING ENVIRONMENTS

Raymond C. Houghton, Jr.

Computer Science Department
Duke University

Dolores R. Wallace

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

September 1985

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler. Director

Characteristics and Functions of

Software Engineering Environments

Raymond C. Houghton, Jr. and Dolores R. Wallace

ABSTRACT
As part of the program to provide information to Federal agencies on software tools for improving quality

and productivity in software development and maintenance, data was collected on software engineering

environments. Software engineering environments surround their users with software tools necessary for

systematic development and maintenance of software. The purpose of this report is to characterize

software engineering environments by type and by their relationship to the software life cycle and by their

capabilities, limitations, primary users, and levels of support. This report provides examples of existing

software engineering environments that are available commercially or in research laboratories.

KEYWORDS
framing environments; human factors; life cycle coverage; programming environments; software analysis;

software engineering; software engineering environments; software support; software tools.

FOREWORD
Under the Brooks Act, the National Bureau of Standards Institute for Computer Sciences and Technology

(ICST) promotes the cost effective selection, acquisition, and utilization of automatic data processing

resources within Federal agencies. ICST efforts include research in computer science and technology,

direct technical assistance, and the development of Federal standards for data processing equipment, prac-

tices, and software.

ICST has published several documents on software tools as part of this responsibility and the growing

recognition that the use of software tools and software engineering environments can reduce the effort

necessary to develop and maintain computer software. The guidance is designed to assist Federal agencies

in automating and standardizing their software development and maintenance projects.

This report presents the results of the analysis of data and experience accumulated on software engineer-

ing environments. It characterizes environments and describes their features to enable readers to gain an

understanding of how environments can aid software development and maintenance process. Future ICST
documents will provide guidance in selecting and using software engineering environments.

Certain commercial products are identified in this paper for clarification of specific concepts. In no case

does such identification imply recommendation or endorsement by the National Bureau of Standards, nor

does it imply that the material identified is necessarily the best for the purpose.

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 ENVIRONMENTS AND LIFE CYCLE RELATIONSHIPS 2

2.1 Life Cycle Defined 2

2.2 Life Cycle Coverage 3

2.3 Programming Environments 4

2.4 Framing Environments 5

2.5 General Environments 6

3.0 INTEGRATION 7

3.1 Levels of Integration 7

3.2 User Interface 9

3.3 Database Interface 10

3.4 Binding the Tools in an Environment 10

4.0 HUMAN FACTORS 11

4.1 On-Line Assistance 11

4.1.1 Command Assistance 11

4.1.2 HELP Assistance 12

4.1.3 Error Assistance 12

4.1.4 On-line Tutor 12

4.1.5 On-line Documentation 12

4.1.6 Other Types of User Assistance 12

4.2 Quality Factors 13

4.2.1 Robustness 13

4.2.2 Pitfalls 14

4.2.3 Other Quality Factors 14

4.3 Implementation Techniques 14

4.3.1 Query-in-Depth 14

4.3.2 Contextual Assistance 15

4.3.3 Natural Language 15

4.3.4 Simulation and Prototyping 15

4.3.5 Contextual Mode Switching 16

5.0 ANALYSIS AND SOFTWARE QUALITY 16

5.1 Static Analysis 16

5.2 Dynamic Analysis 17

5.3 Management 18

5.4 Underlying Analysis Features 19

6.0 SUPPORT FOR DIFFERENT TYPES OF USERS 19

6.1 The Manager 20

6.2 The Designer 21

6.3 The Programmer 21

6.4 The Analyst 21

6.5 The Documentation Editor 22

6.6 The Librarian 23

6.7 The Maintainer 23

7.0 SUPPORT FOR APPLICATION 23

7.1 Systems Development 23

7.2 Embedded Systems 24

- v -

7.3 Information Systems 24

7.4 Data Processing Applications 24

7.5 Security-Critical Applications 25

8.0 HARDWARE SUPPORT 25

8.1 Hardware Selection Issues 26

8.2 Benefits Gained by Selecting and Dedicating Hardware 26

8.3 Workstations 26

9.0 LEVELS OF SUPPORT 27

9.1 Levels of Support Based on Project Size 27

9.2 Levels of Support Based on Capability 27

9.3 Levels of Support Based on User Priorities 31

9.4 Generic Support 31

10.0 CONCLUSION 31

11.0 REFERENCES 33

- vi -

1.0 INTRODUCTION
Although the IEEE Standard Glossary of Software

Engineering Terminology [IEEE729] does not

define a software engineering environment, it does

provide a definition for a programming support

environment:

An integrated collection of tools accessed via

a single command language to provide pro-

gramming support capabilities throughout the

software life cycle The environment typically

includes tools for design, editing, compiling,

loading, testing, configuration management,

and project management.

According to Funk & Wagnall’s Standard Desk

Dictionary, environment is "surroundings”. Thus,

a programming environment (or programming sup-

port environment) surrounds the user with the

tools needed to program. Similarly, a software

engineering environment surrounds the user with

the tools needed to systematically develop and

maintain software. Software includes programs,

data (such as test input and output data), and

documentation. Therefore, a programming
environment is a software engineering environment

with limited scope. A typical operating system

might be referred to as a software engineering

environment, but its scope may be even more lim-

ited.

Software engineering environments are popular

research topics because the technology used to

develop them can draw upon many aspects of

software engineering and computer science, includ-

ing systems design, artificial intelligence, language

design and processing, information handling, net-

working and communications, and correctness

issues. As a result, software engineering environ-

ments are a consistent topic at conferences and

workshops. Some recent examples 1
are:

— The NBS Programming Environment
Workshop [NBS78]

— 2 sessions at the 5th International Confer-

ence on Software Engineering [ICSE81] and

several demonstrations [NBS80]

— 2 sessions at the 6th International Confer-

ence on Software Engineering [ICSE82]

— 4 sessions at SoftFair (A Conference on

Software Development Tools, Techniques,

and Alternatives) [Soft83]

— 2 sessions at the 7th International Confer-

ence on Software Engineering [ICSE84]

— The ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical

Software Development Environments

1NBS/ICST was a cosponsor of all of these workshops

and conferences.

[ACM84]

There is a proven cost savings when software

engineering environments are used. In an analysis

of 63 software development projects (ranging from

business applications to process control applica-

tions), Barry Boehm [Boeh8l] found a good corre-

lation between the low, nominal, and high use of

tools and the effort necessary to develop software.

Based on this analysis, use of tools that would

normally be found in a software engineering

environment can reduce the development effort 9-

17%.

The use of a software engineering environment

interacts with other factors that affect software

development. Other analyses by Boehm showed

that (1) the encouraged use of modern program-

ming practices that would result from using an

environment can reduce development effort 9-18%

and (2) the improvement in turnaround time from

using an environment can reduce development

effort 13%. All factors combined, the use of

software engineering environments can reduce

development effort 28-41% [Boeh8l].

A General Accounting Office (GAO) report

[GAO80] endorses the use of software development

automation and concludes that software tools

(such as those found in software engineering

environments) can offer the Federal Government:

(1) Better management control of computer

software development, operation,

maintenance, and conversion,

(2) Lower costs for computer software

development, operation, maintenance,

and conversion,

(3) Feasible means of inspecting both

contractor-developed and in-house-

developed computer software for such

quality indications as conformance to

standards and thoroughness of testing.

The GAO report was based primarily on site visits

to various Government agencies.

The purpose of this report is to characterize

software engineering environments by type, by

their relationship to the software lifecycle, and by

their capabilities, limitations, primary users, and

levels of support. This report provides examples

of existing software engineering environments

The sections that follow address the types of

environments and their relationships to the

software life cycle (Section 2); the features that

affect their development (Sections 3 and 1); tin-

features they provide (Section 5); the orientations

they can have (Sections 6 and 7); the hardware

they can use (Section 8); and the levels of support

they can provide (Section 9).

- 1 -

2.0 ENVIRONMENTS AND LIFE CYCLE
RELATIONSHIPS
One of the most recognized aspects of software

engineering is what is commonly referred to as the

software life cycle. The software life cycle is a

model of the software development and mainte-

nance process. This process includes a series of

transformations and activities from initiation to

retirement, resulting in products as outcomes of

the transformations and activities, where transfor-

mations may be iterated at any time in the life

cycle. Software maintenance, for example, may
include iteration throughout the cycle. Software

products that have reached the retirement stage

are often redeveloped unless there is no longer a

need for the application (for which the products

were originally engineered.) The redevelopment

may include all of the activities and transforma-

tions, and iterations to achieve the desired out-

comes. Because of this phenomenon, the term

” cycle” is used to refer to the "life” of software

products.

Because software products undergo these transi-

tions, software engineering environments attempt
to provide support that will make the transitions

smoother, less costly, and less error-prone.

2.1 Life Cycle Defined

Although the term "phase” is frequently used to

frame the activities and transformations of the

software life cycle process and the documentation
of those activities and transformations, there is no
standard set of phases for the software life cycle.

This document uses a general framework in which
to group the software development and mainte-

nance process according to similar transformations

and activities, and to define the software products

as outcomes of these transformations and activi-

ties. This document uses the following description

of the software development and maintenance pro-

cess as a frame of reference for the characteriza-

tions and features of software engineering environ-

ments:

a. Initiation

- The need for a software system is

conceived.

- A general definition of the

requirements is established.

- Feasibility studies are performed.
- A development plan is defined.

- Cost/benefit analysis is performed.

b. Definition

- A description of the system is

developed including functional and

data requirements.

- The resource constraints (cost,

performance, hardware, etc.) are

established.

- The Validation, Verification, and

Testing (W&T) plan is developed.

- Requirements-based test cases

are generated.

c. High Level Design

- The system architecture (major

parts of the system and data flow

between the parts) is defined.

- Basic algorithms and major data

representations are established.

- Design-based test scenarios

are generated.

- Verification that design satisfies

the requirements is performed.

d. Detailed Design

- The major parts of the system are

further defined.

- Precise algorithms and detailed data

representations are established.

- Design-based functional

test data are generated.

- Test support software is developed.

- Detailed design is verified.

e. Programming

- The detailed design is implemented

into computer code.

- Pieces of code are tested and
integrated with other pieces of

code.

- System testing, performance

evaluation, and acceptance

testing are performed.

f. Operations and Maintenance

- The software system is used.

- Changes are made to the software

as additional requirements are

made or problems are found

(cycle to a. Initiation)

- Regression Testing is performed

(see Section 5.2)

g. Retirement

- The software system has minimal

usefulness.

- Changes to the system begin to

obscure the original requirements

- 2 -

and design.

- The system is expensive to maintain.

- The system is retired, or

- To repeat activities, transformations,

the software process cycles back, to

(a. Initiation).

During software maintenance, changes are made to

the software by re-performing the process of

software development. Maintenance is a

redevelopment process repeating the activities and

transformations indicated in (a. Initiation - e. Pro-

gramming) each time there are any new require-

ments for the software. For example, changes

alTccting the requirements cause a cycle back to

initiation, where a feasibility study of the change

and a development plan for the change should be

performed.

Although the above life cycle has only one explicit

cycle, it is important to note that there are many
implicit cycles. The most notable stems from the

discovery of a needed change during operation and

maintenance. Verification activities that lead to

error discovery in software design descriptions lead

to iteration of previous activities of the process.

Similarly, error discovery or new requirements at

any point of software development or maintenance

lead to implicit cycles requiring iteration

throughout the life cycle.

Since changes and problems cause repetitions of

previous phases, it is easy to understand why
implicit cycles increase the cost of software. On
the other hand, perfection is difficult to attain, so

a certain amount of implicit cycling must be

expected. As mentioned earlier, it is important for

a software engineering environment to support the

transitions from one phase to another. It is also

important for an environment to support implicit

cycling.

A software engineering environment supports the

development of many software products. The
term software refers not only to code but also to

documentation. Software products therefore

include the various forms of code and documenta-

tion. Although there is some disagreement as to

which software products are formally or informally

required in the software life cycle (and, in some
cases, when they should be required), the following

is a list compiled from Federal Information Pro-

cessing Standards Publications [FIPS38,

64,101,106],

a. Initiation

- General definition of the requirements.

- Feasibility Study
- Development Plan
- Cost/Benefit Analysis

b. Definition

- Functional Requirements Document
- Data Requirements Document
- W&T Plan

c. High Level Design

- System/Subsystem Specification

- W&T Plan

d. Detailed Design

- Program Specification

- Data Base Specification

- Test Plan

e. Programming

- Users Manual
- Operations Manual
- Program Maintenance Manual
- Test Analysis Report

f. Operations and Maintenance

- Formal Change Request
- Updated Documentation

Since all these documents are not necessary for all

development efforts, the FIPS PUBs provide flexi-

bility in determining what documentation is

required. For the same reason, software engineer-

ing environments must provide the same flexibil-

ity.

2.2 Life Cycle Coverage

One can see from the diverse list of products and

activities that occur during the software life cycle,

that it is difficult, if not impossible, for an

environment to provide complete support for all

software engineering activities from initiation to

retirement.

An environment may support all phases of

software engineering, in several ways, with varying

degrees of support. An environment may com-

pletely support a methodology that is well defined

for all phases and has features that support auto-

mation. Or, for some phases it may contain gen-

eral tools (such as text processors, editors, and

compilers) along with some methodology-

dependent tools for some activities of software

development and maintenance. Finally, an

environment may support all the activities of all

phases with only general tools. A recent survey of

software engineering methodologies [Porc83 '-up-

ports the claim that no methodology exists for th<

first case. Of 24 methodologies surveyed, only six

- 3 -

can be applied throughout the life cycle. Three of

the six have automation support for some activi-

ties of the life cycle, but none of the methodolo-

gies has a supporting environment for all activi-

ties.

Therefore, it is fairly safe to conclude that

environments that provide full support for the

entire life cycle must contain general tools for

some of the life cycle phases. Because the activi-

ties that occur in latter stages of the life cycle are

so different from the earlier stages, environments

tend to concentrate on either one or the other.

Environments that concentrate on the latter stages

are typically called "programming environments”.

Those that concentrate on earlier stages, where the

system is "framed” by its requirements and design,

are referred to as "framing environments”. It is

important, however, to note that because of impli-

cit looping in the life cycle, framing environments

can provide some support for all "phases” of the

life cycle; but they don’t support all activities in

each of the phases. For example, a framing

environment supports the operation and mainte-

nance phase when it allows changes in require-

ments resulting from errors detected during opera-

tion. However, it is not likely to support regres-

sion testing; that activity is more likely to be

found in a programming environment.

A third type of environment may be described as a

"general” environment. These environments con-

tain basic tools that support all phases of the life

cycle. They typically support more than one pro-

gramming language. They usually have more
advanced tools that support some of the early

phases of the life cycle. Environments that fall

under this class provide a "toolbox” of supporting

capabilities that the user can apply at his or her

discretion.

In the sections in this chapter, the typical charac-

teristics of programming, framing, and general

environments are discussed by presenting several

examples of each. The example discussions are

limited to the life cycle characteristics of the

environments. Further discussion of other charac-

teristics of many of these environments does occur

in later chapters.

2.3 Programming Environments

Programming environments concentrate on the

activities that are performed during the latter part

of the life cycle. These environments provide

features that are oriented toward a programming
language (usually a high level language) with par-

ticular emphasis on coding, debugging, and testing

of programs.

The programming environment that has received

the most attention recently is the Ada 2 Program-

ming Support Environment (APSE). Buxton lists

the requirements for the APSE in the STONE-
MAN report [Buxt80]. Although the requirements

emphasize full life cycle coverage, the APSE’s that

are currently or nearly available primarily support

the programming phase. It is anticipated that

future Ada environments will provide full life cycle

coverage for a well defined DoD-wide software

development methodology [Free83] which is

currently being defined. The APSE is also dis-

cussed in Sections 3.1 and 9.3.

Examples of four other programming environments

are Toolpack [Cowe83], Interlisp [Teit8l], Cedar

[Teit84], and Smalltalk-80 [Love83j. Toolpack is a

portable, Fortran-oriented programming environ-

ment that is currently under development. Inter-

lisp is an environment that is very much language

dependent and is intended for use by Lisp experts.

The Cedar environment emphasizes the use of

parallel operation, multiple windows on a screen,

and user interaction with a mouse pointing device.

Cedar supports the use of an "industrial strength”

Pascal-like programming language called the

Cedar Programming Language. Smalltalk-80 is a

single-user, single-language environment that sup-

ports object-oriented programming using the

Smalltalk language.

A very promising area of research in programming
environments is incremental development. Nor-

mally program construction is done sequentially

using the editor, compiler, linker, and loader.

Each sequence is completed before the next one is

started and the objects passed from one sequence

to the next are syntactically complete, executable

programs. Incremental development synthesizes

these sequences so that they do not have to be

completed and the objects passed can be program

fragments.

For example, syntax-directed editing combines

features of a compiler with the editor. As a pro-

gram is entered, lexical and syntactical analyzers

process and direct the statements entered. The
result is that much of the compiling is done as

each statement is entered. Two examples of

syntax-directed programming environments are the

Cornell Program Synthesizer (CPS) [Teit81a] and

POE [Fisc84]. CPS generates PL/CS programs;

PL/CS is an instructional dialect of PL/I. POE
generates Pascal programs.

Figure 2.1 shows the template for a conditional

statement that is generated by CPS. "Condition”

and "statement” are placeholders that a user is

expected to fill in. CPS has templates for each

statement type; thus, the user enters a

2Ada is a registered trademark of the U.S. Government

Ada Joint Program Office

- 4 -

syntactically correct program that is partially

compiled as it is entered.

IF (condition)

THEN statement

ELSE statement

Figure 2.1 CPS’s Template for a

Conditional Statement

A step further toward incremental development is

obtained when the environment allows incremental

compilation. That is, a user is allowed to execute

program fragments. An example of an environ-

ment with this capability is Magpie [Deli84]. Mag-
pie generates Pascal programs. It allows the user

to execute a subset of the Pascal statements that

have been entered. Magpie also provides syntax-

directed editing.

Incremental development can also be extended

further into design. An example of an environ-

ment that provides this capability is the CDL2
Laboratory. Each source unit (program fragment)

is characterized by one of the following develop-

ment stages:

modified - recently edited and changed.

compatible - the interface fits into the

environment, but the unit may still contain

internal ambiguities or conflicts; i.e., it is not

yet consistent.

consistent - compatible with the outside, and
free of internal ambiguities and conflicts.

complete - consistent and fully constructed;

precondition for coding.

coded - complete and code generated.

Thus, a user can design program structures that

are compatible and consistent, but not complete or

coded.

2.4 Framing Environments

Framing environments concentrate on the early

stages in the life cycle. Studies have shown that if

software can be well defined (i.e., eliminate as

many errors as possible) in the early stages of

software development, a tremendous savings of

resources can be realized in the later stages of the

life cycle [Boeh8l]. Therefore, it is not surprising

that environments have been developed that con-

centrate on these more crucial stages of software

development. Framing environments include the

following examples.

SDS
(the Software Development System) [Alfo8l]

is a methodology and support environment

for developing very large, complex, real-time

systems. The methodology consists of four

major tasks:

(1) Data Processing Systems Engineering

(DPSE) - translate systems objectives into a

consistent, complete set of subsystem func-

tional and performance requirements (uses

techniques based on verification graphs, petri

nets, finite state machines, and graph models

of decomposition for expressing require-

ments),

(2) Software Requirements Engineering Metho-

dology (SREM) - express functional and per-

formance requirements as a graph model in

Requirements Statement Language (RSL)

and analyze with the Requirements

Engineering Validation System (REVS),

(3) Process Design Engineering - translate

requirements into a process design language,

verify design, and evolve the design into

code,

(4) Verification and Validation - perform at all

stages.

The SDS environment contains tools that

start at the top system level and emphasize

support for the decomposition and allocation

of functional and performance requirements.

SARA
(System Architects’ Apprentice) [Estr78] is a

computer-aided design environment which

supports a structured, multi-level design

methodology for the design of hardware or

software systems. It comprises a number of

language processors and tools for assisting

designers using the SARA methodology,

together with a user-interface capability for

assisting designers using the SARA system.

The fundamental tool in the SARA environ-

ment is the graph model simulator [Razo80

During top-down refinement of a design, the

simulator is used to test consistency between

the levels of abstraction.

DREAM
Design Realization, Evaluation and Model-

ling System [Ridd8l] is a software engineer-

ing environment that is oriented to the

development of concurrent systems using

DREAM Design Notation (DDN). DDN is a

language that can be used to model a total

system including hardware, software, and

other processes. The model reflects the

externally observable characteristics of a

- 5 -

system and is an adequate basis for prepar-

ing implementation plans. The DREAM sys-

tem tools include a data base core that stores

DDN fragments, bookkeeping tools (entry

and retrieval), and decision-making tools for

paraphrasing (a re-structured presentation),

extraction (simulation), and consistency

checking.

There has been much discussion [ACM82] on the

benefits of prototyping. Prototyping provides a

working model of a system and provides immedi-

ate feedback from potential users. If the working

model is developed early in the life cycle, it can

short-circuit many of the life cycle’s implicit loops.

An example of an environment that supports the

development of prototypes is the Unified Support

Environment:

USE
(Unified Support Environment) [Wass83]

supports the User Software Engineering

methodology. The methodology in-

volves users early in development and
addresses user interactions with informa-

tion systems. The tools in the environ-

ment include: the Troll relational data-

base (underlies and is used by other

tools), RAPID (rapid prototyping tool

oriented to the development of informa-

tion systems), PLAIN (a procedural

language oriented to the development of

information systems), Focus (screen-

oriented editor and browser), and IDE (a

software management and control tool).

It is important to note that in all of the above
examples of framing environments, a methodology
for the use of the environments has been stressed.

Because framing environments stress the develop-

ment of specifications and models, the techniques

used are very specific and well defined. Conse-

quently, the environment contains tools that are

very specialized.

2.5 General Environments

General environments are environments that do
not necessarily fit in the programming or framing

environment category. They contain basic tools

(editors, text processors, etc.) that support all

phases of the life cycle, but they may also have
advanced tools only for certain phases. They usu-

ally don’t require a specific software methodology,

but can be adapted to most methodologies. Exam-
ples of general environments include the following:

ARGUS
[Stuc83] is a general environment that con-

tains specific tools for software design,

management, and testing. Six toolboxes are

available: the management toolbox

(scheduling tools, action item tracking tool,

electronic spread sheet, and phone list

update and retrieval system); the designer’s

toolbox (software design capabilities with a

graphics/forms based approach); the

programmer’s toolbox (language-based,

project-specific code template capabilities

provided by a customizable editor and
language specific syntax generation macros);

the verifier’s toolbox (analysis tools); the

configuration toolbox (general editing selec-

tion and formatting tools); and the utility

toolbox (general editing and communication

tools). Argus is also discussed in Sections 3.2

and 6.

SPS-1

(Software Productivity System) [Boeh84] is a

prototype environment that will eventually

lead to the development of a full production

version. The components of SPS-1 include: a

master project database (composed of a

hierarchical file system, a source code control

system, and a relational database), general

utilities (including a screen editor, forms

package, and a report writer), office automa-

tion and project support (including a tool

catalog, mail system, text editor/formatter,

calendar handler, forms manager, interoffice

correspondence package), and software

development tools (including a requirements

tracing tool, SREM, also part of the SDS
environment discussed in Section 2.4, pro-

gram design language, and a Fortran-77

analyzer).

UNIX3

[Kern8l] is sometimes referred to as a pro-

gramming environment, but does not fit well

into that category because of its generality.

UNIX contains a multitude of basic tools

(well over a hundred) that in general are not

oriented to any specific programming
language or to any specific life cycle phase.

Consequently, UNIX is often used as a build-

ing block to build more specific environ-

ments. This aspect of UNIX is discussed

further in Section 3.1.

Platine

[Metz83] is an environment that consists of a

methodology (the Platine methodology) and

a set of tools (the Platine tools). The metho-

dology consists of defining a software struc-

ture hierarchy, which produces typed

abstract objects which are then associated

with one of the following elements: source,

listing, binary, map, nomenclature, or status.

The methodology also includes the

8UNDC is a trademark of AT&T Bell Laboratories

- 0 -

production of software (merging of the ele-

ments), project management, and evolution.

The environment includes LSTR (for the

specification of real-time embedded systems),

SDL (for system design representation),

Metacomp (a compiler generator), EPCS (a

project management tool), a formatter, a

screen editor, a documenter, a mail system,

crossrf (a data dictionary cross referencer),

complex (a complexity measure), a

configuration controller, and a comparator.

From the above examples, one can see that the

emphasis of a general environment is to provide

the user with a toolbox that can be applied to all

phases of software development.

3.0 INTEGRATION
When an environment closely unites its major

functions or activities, it is considered to be

integrated. An interface carries information

between the user and the environment, or between

the environment and the tools which it invokes.

The level of integration increases according to the

amount of information conveyed, and the services

automatically performed when an interface is

invoked. Since there are many interfaces in an

environment, there are many ways to achieve

integration. User acceptance of an environment

usually requires that the user interface be

integrated; that is, the environment keeps track of

what the user does and provides appropriate ser-

vices. For an environment to perform efficiently

on a computer system, the interface to the

machine must be integrated. Environments con-

tain tools that often communicate with other

tools. This communication is sometimes facili-

tated through an integrated database interface.

The following sections discuss a more orderly way
in which integration may be viewed, i.e. "levels”

of integration. The two most important interfaces

in an environment, the user interface and the

database interface, are discussed. Finally, some of

the issues associated with "loose integration” and

"tight integration” are presented.

3.1 Levels of Integration

A way in which to view the interfaces in an

environment is to model a system as a series of

abstract levels similar to the model shown in Fig-

ure 3.1. The users are at the top level. Each
lower level has features and characteristics that

are less powerful in terms of software engineering.

The lowest level is the machine, i.e., the computer
hardware itself. The intermediate levels of the

model are the software engineering environment.

Without an environment, the machine and the

user interface would be the same, resulting in the

user interface that early computers had in the

1940’s and that a few "bare-bones” micros have

today.

The requirements for the Ada Programming Sup-

port Environment (APSE) [Buxt80] defines a

hierarchical model with levels of integration. The
hierarchical model is a four level model:

level 3 - (Full APSE), a set of tools for full

Ada programming support (life cycle, docu-

mentation, and management)

level 2 - (Minimal APSE), minimal tool set

(editor, translator, linker, debugger,

configuration manager)

level I - (Kernel APSE), supports database

interactions, communications, and run-time

level 0 - the host level

Each level is viewed as a ring as shown in Figure

3.2. Users communicate primarily with the level-3

tools. Tools in each lower level communicate pri-

marily with tools in the level immediately above

or immediately below.

Some of the implementations of level-2 APSE’s
either developed or undergoing development

top level (users)

t

(user interface)

A

intermediate level

t

1

intermediate level

t

A

I

A

intermediate level

software

engineering

environment

r

(machine interface)

1

bottom level (machine)

Figure 3.1 Software Engineering Model

- 7 -

level 3

level 2

level 1

level 0

level 1

level 2

level 3

top level

(users)

t

(user interface)

1

software

engineering

environment

t

(machine interface)

1

bottom level

(machine)

overlying

environment

t

(UNIX interface)

i

UNIX tools

T

(Procedure UNIX
calls)

I environment

UNIX
primitives

Figure 3.2 Hierarchical Model of the APSE
Figure 3.3 UNIX as an Underlying

Environment

include:

- The Data General Corporation/Rolm

Ada Development Environment (ADE)
- Ada Integrated Environment [Inter82]

- Ada Language System [Wolf8l]

- Olivetti/Danish Datamatics Centre/Christian

Rovsing Ltd.

It is expected that these and other future Ada
environments will eventually include level-3 capa-

bilities [Tayl84], There is also a proposed stan-

dard interface to level-1 [CAIS83],

Many environments use existing systems as an

intermediate level. The system most often chosen

is the UNIX Environment. Examples of environ-

ments that have UNIX at a lower level include

SPS, ARGUS, Toolpack [Cowe83], USE [Wass83],

and Joseph [Ridd83]. Figure 3.3 depicts an

environment containing UNIX.

The user communicates directly with the overlying

environment and may even be unaware that UNIX
is at a lower level. However, most overlying

environments provide an ability to communicate

directly (an escape) to UNIX. The overlying

environment uses the UNIX interface to invoke

UNIX tools and the UNIX tools communicate with

the underlying UNIX primitives.

UNIX is chosen as an underlying environment for

several reasons:

(1) UNIX Primitives. UNIX is available on

many machines because the UNIX primitives

are small in number and easy to define. The
only major obstacle to portability is the

availability of a C compiler because most of

the UNIX tools are written in C. Since the

overlying environment relies on UNIX, it can

be made available on all the machines that

UNIX runs on (within memory and disc limi-

tations, of course).

(2) UNIX tools. UNIX contains over 100 tools.

These tools can be used as building blocks to

the overlying environment, thus eliminating

a lot of development of basic underlying

environment functions.

(3) UNIX Interface. The UNIX interface is

called the shell. The shell is in many
respects a very high level language (VHLL),

- 8 -

because it allows the user to use tools within

the environment as objects. This is accom-

plished in a manner similar to a

programmer’s use of variables in a high level

language. The output from one tool can be

directed (piped) as input to another tool. It

is this capability that makes the underlying

UNIX tools suitable for building blocks to an

overlying environment. In fact, one could

argue that UNIX is more suited for building

than it is for direct use due to the resulting

"unfriendliness” of the interface. This issue

is discussed further in the next section.

(4) UNIX File System. Because UNIX files are

defined as strings of characters, the UNIX
file system can be used as an underlying

database. The shell allows the file system to

be defined hierarchically and the files can be

easily manipulated. Consequently, the pro-

ducts of software engineering can easily be

tagged, stored, and retrieved from the file

system in a manner similar to a hierarchical

database.

UNIX is not the only environment that is chosen

as an underlying environment. Many environments

rely on operating systems, for example Platine

[Metz83] incorporates text processing and editing

tools from Digital Equipment Corporation’s

VAX/VMS. An interesting environment that is

based on the book, "Software Tools” by Ker-

nighan & Plauger [Kern76], is called the Software

Tools Virtual Operating System (STVOS) [Hall80].

STVOS has a structure similar to UNIX, except

that most of its tools are written in a portable

subset of Fortran. Since Fortran is highly port-

able, STVOS has a long list of machines and
operating systems that it runs with.

3.2 User Interface

As shown in Figure 3.1, the user interface is the

interface between the user and the software

engineering environment. One way that a user

perceives an integrated interface is by how well

the system is human engineered. Many of the

issues associated with human engineering are

addressed in Section 4. However, the most impor-

tant issue associated with the user interface is pri-

marily an interaction issue. That is, does the

environment keep track of what a user is doing

and does it provide services that are in context

with the user’s current state? In many respects,

this issue is a research issue in artificial intelli-

gence and expert systems, but current environ-

ments can address this issue to a limited extent.

Section 2.3 addressed how programming environ-

ments can provide incremental development ser-

vices that are in context with a programming

language. However, a more basic way to provide

this service is to have a menu interface.

Historically, command interfaces have been used

for software systems because they are simpler to

implement and easy to update and modify. Menu
interfaces have been avoided because they often

are too slow to appear on the screen. A user’s per-

formance and attention span are easily affected

while waiting for the menu to be placed on the

screen. These issues are implementation issues

and do not necessarily apply to today’s technol-

ogy. Intelligent terminals, user workstations, and

single user microcomputer systems make menu
systems easier to implement and can provide a

large flow of information between an environment

and a user. In fact, a bit-mapped terminal allows

a menu to "pop” on the screen with almost no per-

ceived delay.

If a menu interface is well engineered, a user per-

ceives a well integrated system because he or she

has available all options needed at any usage state

and no more. This greatly reduces the amount of

conditioning required for a user to become familiar

with a system. It can also put the user in the

right frame of mind for the task that is being

accomplished.

An example of a software engineering environment

that has a well-engineered user interface is Argus.

Figure 3.4 shows the menu that appears on the

screen when a user first initiates the system. The
user has several options available. The menu
choices at the top of the screen never change and

are always available. The menu options in the

middle of the screen change depending upon what
state the user is in. If software is being designed,

then the user would select the designer’s toolbox.

This selection causes a menu in which only design

options are available, the system helps the user get

into a designing frame of mind by not distracting

the user with options that are available in the

other toolboxes.

UNIX is an example of an environment that is

command oriented. It was mentioned previously

that UNIX has over 100 tools available to the

user. Each tool is invoked with a different com-

mand. Most of these commands have a series of

parameters that are associated with them. The
combined functionality of these tools makes UNIX
a very powerful environment, but unfortunately

most users of UNIX tap only a small part of this

power. The reason is that users tend to learn a

minimal subset of UNIX, a subset that will just

barely solve most of their problems. The fact that

another tool may solve a problem better may
never be discovered by the user. Consequently, a

lot of UNIX’s power goes virtually unused

The previous section mentioned that UNIX under-

lies many environments. Many of these environ-

ments help to harness some of that unused power

- 9 -

{Global Commands}
& Repaint Screen Q uit

! System Command H elp

* WELCOME TO ARGUS *

M anagement Tools

D esign Tools

P rogrammer’s Tools

V erifier’s Tools

C onfiguration

U tilities

Enter Function:

Figure 3.4 The Top Level ARGUS Menu

of UNIX by specifically choosing features that are

oriented to software engineering applications. It is

likely that some of the features chosen would
never be used by the average software engineer.

3.3 Database Interface

Tools may exist at the same level in the environ-

ment or they may be at different levels. This sec-

tion concentrates on the interface between tools

and the database. The database, in this context,

is the repository where a tool deposits its output

or gets its input, unless of course, there is another

interface with the database. For example, if an

editor is part of the environment, it will likely

receive input from both the user and the database,

but its output will definitely go to the database.

The products stored in a database can include

requirements and design specifications, high and
low level programs (load modules, assembly pro-

grams, etc.), test input and output, documenta-
tion, etc. Associated with each item in the data-

base may be a number of attributes such as the

type of an item, stage of development, time of last

update, access rights, author, version number,

length of item, disk or memory address of item,

etc. The interface to the database can be environ-

ment specific or it can be implemented by an

available, possibly commercial, database manage-

ment system, file system, or library system.

The database in CDL2 [Baye8l] is environment

specific and central to the environment. The
information stored in the database forms a hierar-

chy according to authorship and language con-

structs. The top levels provide a hierarchy by

module ownership; the bottom levels correspond to

some construct of the programming language.

Another example of an environment specific data-

base is the one that is used in FASP [Steu84].

FASP is a large scale environment that is hosted

on five mainframe Control Data Corporation

(CDC) computers. The database in FASP consists

of the following libraries:

source library

object library

test library

interface data library

production data library

documentation library

The interface data library contains information

such as linkages to external object programs or to

shared source code. The production data library

contains modification histories and other manage-
ment information. FASP manages these libraries

as a whole rather than as distinct parts. For

example, there is one-to-one correspondence

between the products in the object library and the

products in the source library.

SPS [Boeh84], on the other hand, has a master

project database that includes the UNIX hierarchi-

cal file system, the UNIX source code control sys-

tem (SCCS), the Ingres relational DBMS, and the

IDM-500 database machine. The UNIX file system

is used to store the products of software develop-

ment. SCCS is used to track successive updates of

each product. Ingres and IDM-500 are used to

keep track of the relationships between the pro-

ducts. Because SPS uses four independent tools

with four distinct interfaces, some integration of

the interfaces has been done. The integration of

these tools is an example of the building block

capability that was previously mentioned as an

advantage of using UNIX as an underlying

environment.

3.4 Binding the Tools in an Environment

In a sense, the database is a tool that is used by

other tools and therefore is the interface between

two tools. This section generally discusses the

interface among all tools in the environment.

- 10 -

The interface in an environment can be loosely or

tightly bound to, or integrated with, a software

development methodology. As mentioned previ-

ously, most framing environments are oriented to

a development methodology. Therefore, one can

expect that these environments are tightly bound

to a methodology. The outputs of a tool are

expected as input by the next tool in a format

consistent with a given methodology. If an inter-

face is tightly bound to a software development

methodology then the functions provided by the

environment are tightly integrated. There is an

order to the environment that should be followed

and may even be forced by the tools because the

input to one tool is highly dependent on the out-

put from another tool.

'Fight integration has the advantage that it

encourages the correct use of a methodology. It

can greatly reduce the number of management
controls that are necessary to ensure that all the

various software products are developed and, in

some cases, even check their correctness. The
disadvantage is that a tightly integrated environ-

ment lacks flexibility. If a user wants to introduce

a new methodology or a change to the current

methodology, the environment may not be flexible

enough to support it.

If an interface is loosely bound to a software

development methodology then the functions pro-

vided by the environment are loosely integrated.

The tools in the environment are not dependent

on one another and no order is expected. Most
general environments are loosely integrated. As
one would expect, the advantages and disadvan-

tages are opposite to those of tight integration.

Loose integration is methodology independent but

requires management control to ensure a metho-

dology.

Programming environments may be loosely or

tightly integrated. In particular, if an environ-

ment is highly language dependent then it is prob-

ably tightly integrated. For example, tools in the

environment may be highly dependent on the pro-

ducts produced by a syntax analyzer or graph gen-

erator.

Examples of tightly integrated environments

include CDL2 [Baye8l], POE [Fisc84], Interlisp

[Teit8l], CPS [Teit81a], and USE [Wass83].

Examples of loosely integrated environments

include SPS [Boeh84], Toolpack [Cowe83], STVOS
[Hall80], UNIX [Kern8l], and ARGUS [Stuc83],

4.0

HUMAN FACTORS
As the advantages of software engineering environ-

ments are realized and the demand for environ-

ments increases, the quality of an environment will

become an increasingly important issue. From a

user viewpoint, quality is often measured in terms

of the human factors that are addressed by the

environment. If it is difficult to understand how

to use an environment or if becoming an expert

user requires a lot of conditioning, it is likely that

an environment will not be widely used.

In the past, human factors were not always con-

sidered an important issue for computer operating

systems. Many systems that measure poorly in

terms of human factors, including most traditional

operating systems, have withstood the test of time.

It is important however, to distinguish who the

real users of these systems are. The real users are

the systems programmers or system "gurus”.

They are the experts on how to best use the capa-

bilities of a system and they are, for many appli-

cations, the interface between the user and the

system.

Software engineering environments, on the other

hand, should not require a system expert as an

interface between the software engineer and the

environment. The operating system, either alone

or via the software engineering environment,

should be naturally oriented to software engineer-

ing; the user should be able to make full use of the

operating system without unnecessary condition-

ing. In other words, the software engineer should

only need minimal exposure to the operating sys-

tem to be productive and should not have to get

used to special system modes, exceptions, quirks,

bugs, etc.

This section discusses some of the factors that

reduce the amount of conditioning that is neces-

sary to make full use of a system, whether an

operating system or a full software engineering

environment. In particular, this section presents

ways to provide on-line assistance; some quality

factors; and finally, implementation techniques.

4.1 On-Line Assistance

Since the early days of the University of Illinois’

PLATO educational system, computer systems

have provided on-line assistance to the point

where it is now offered on most mainframe sys-

tems, many minicomputer systems, and even a few

microcomputer systems. Users of computer sys-

tems have become accustomed to the convenience

of on-line assistance.

On-line systems provide a wide range of assistance

to users varying from simple command assistance

to elaborate and detailed tutoring (Houg84| The

sections that follow discuss and exemplify the

types of assistance provided by systems.

4.1.1 Command Assistance

Command assistance is the most common type of

assistance provided by on-line systems This assis-

tance can be obtained through various access

- 11 -

methods such as the issuance of a HELP com-

mand, pressing an explanation key, or typing a

question mark [Rell8l] . In each of these cases, a

command must be specified along with the request

for help. For example, on the Digital Equipment
Corporation’s VAX/VMS Operating System, if a

user wants print assistance, then the command
HELP is typed followed by PRINT. Figure 4.1

shows the result of typing HELP PRINT on the

VAX. The example shows that a brief explanation

of the print command is presented followed by a

list of possible parameters that can be specified

with the print command. Note that more detailed

assistance is also available on each of the possible

parameters.

4.1.2

HELP Assistance

Command assistance is valuable only if a user

knows the name of the command on which assis-

tance is needed. For example, it may be that a

user is unsure whether assistance is needed for the

commands: PRINT, WRITE, TYPE, LIST, or

DUMP. Rather than guess at commands, many
systems provide a way of determining the com-

mands that are available on the system. For exam-
ple, on many systems the user may type HELP
HELP (or just HELP) to determine the type of

assistance that is provided on the system.

HELP PRINT

PRINT
Queues one or more files for printing,

either on a default system printer or

on a specified device.

Format:

PRINT file-spec[,...]

Additional information available:

Parameter Qualifiers:

/AFTER=absolute-time
/DEVICE=device-name[:]
/NOHOLD (D)

Figure 4.1 Print help on the VAX/VMS

4.1.3 Error Assistance

Error messages issued by a system are usually very

brief and frequently need further clarification by a

user. There are systems that provide further on-

line assistance for error messages. For example, a

user may request the meaning of an error by typ-

ing ”HELP ERROR <code>”, where <code> is

some code identifier for the error that occurred.

4.1.4 On-line Tutor

One of the most difficult problems for a new user

of a system is simply getting started. Lists of

commands and command descriptions do not help

the new user because for many systems the

amount and depth of the information is too

advanced for the beginner. A new user needs a

step-by-step tutorial introduction with exercises

and a capability to try out various commands
without doing harm to oneself or any other users

on the system. An example of a system that pro-

vides this capability is the SIGMA message pro-

cessing service [Roth79]. This system includes a

tutor with on-line lessons, on-line exercises, a pro-

tected mode for exercises, and a toggle which

allows the user to switch back and forth from the

tutorial to the exercise mock-up of the system.

4.1.5 On-line Documentation

Another approach to on-line assistance is to make
traditional user documentation available on-line.

With retrieval mechanisms, this type of assistance

has the advantage of ensuring assistance and user

documentation are one and the same [Pric8l]. An
example of a system that provides this capability

is UNIX. UNIX provides a command called

”man” (short for manual) that retrieves from one

to several pages of manual documentation (the

editor documentation is 7 pages). Figure 4.2 is an

example of the documentation provided for the

UNIX ”cmp” command [UNDC42].

One problem with on-line documentation is that

many times the depth of the information provided

is invariant. This means that a more experienced

user who is only interested in a specific aspect of a

command must wade through all the documenta-

tion to get the information desired. This problem

can be alleviated somewhat by allowing more

sophisticated retrievals on a command. An exam-

ple of a system that provides this capability is

IBM’s Time Sharing Option (TSO). The TSO
allows the user to enter a keyword (such as

”SYNTAX”) that narrows the scope of the docu-

mentation that is provided.

4.1.6 Other Types of User Assistance

Many other types of user assistance are described

by Relies [Rell81a], They include:

- 12 -

CMP(l) UNIX Programmer’s Manual CMP(l)

NAME
cmp - compare two files

SYNOPSIS
cmp

[
-1

j [
-s

]
filel file2

DESCRIPTION
The two files are compared. (If filel is the standard

input is used.) Under default options, cmp makes no comment
if the files are the same; if they differ, it announces the

byte and line number at which the difference occurred. If

one file is an initial subsequence of the other, that fact is noted.

-s Print nothing for differing files; return codes only.

SEE ALSO
diff(l), comm(l)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different

files, and 2 for an inaccessible or missing argument.

Figure 4.2 On-Line Documentation for the UNIX "cmp” Command

Question or Prompt Assistance - explanation

of a displayed question or prompt.

Example Presentation - Presentation of an

example of a correct or valid input.

Definition Assistance - Explanation or

definition of a term.

Menu Assistance - Presentation of a list of

allowable commands.

System Status Displays - Presentation of

various system parameters, such as swapping

ratios or system performance metrics.

News - Displays of news that is of interest to

system users.

4.2 Quality Factors

In each case, the information presented to the user

must be developed properly or the purpose for pro-

viding the information will not be achieved. Simi-

larly, any of the features of a software engineering

environment, should be directly applicable to the

user’s task and provide minimal distraction. The
following sections discuss some of the quality fac-

tors that should be addressed in the development

of an environment.

4.2.1 Robustness

Fenchel [Fenc8l] provides an important list of

quality attributes that are necessary for a system

to be robust. These attributes promote productive

use and user acceptance of systems. They include:

Availability - To promote user confidence in

a system, it should always be accessible at

any point during user interaction. It should

never leave a user in an uninterruptable or

dead state.

Accuracy - The information provided to a

user must be accurate and up-to-date. Inac-

curate information will cause a user to lose

some confidence and trust in a system.

Repeated inaccuracies will cause a user to

lose all trust in a system.

Consistency - It is important that informa-

tion have a consistent presentation, reading

level, scope, and length. It is unreasonable

to expect users to tolerate various presenta-

tion formats, the use of sophisticated termi-

nology or "buzz-words”, varying scope of

- 13 -

coverage from one request to another, or

overwhelming detail for certain assistance

requests.

Completeness - All details should be covered.

A user should not be surprised by a system.

All system features, commands, parameters,

and consequences of these should be covered

and explained.4.2.2

Pitfalls

A paper by I. A. Clark [Clar8l] discusses several

pitfalls that one should avoid in the development
of a system. Some of the pitfalls are very specific

to the simulation environment discussed in the

paper, but many are generalizable and include the

following:

Confronting a User with a Solid Block of

Text - Being confronted with a solid block of

text is neither helpful nor reassuring to a

user. Information presented to a user should

be stylized so that a user can recognize at a

glance the significance of the format and
grouping of words. It is better to start each

sentence on a new line than to present a user

with a paragraph of right and left justified

text.

Pitching the Reading Level too High - Pitch-

ing the reading level too high tends to dis-

tract the user from the real problem that the

system is being used for. Clark recommends
the use of the ”fog index”, a measure of rea-

dability, [Gunn59] as a rough and ready

yardstick for measuring the reading level. A
recent study by Roemer and Chapanis
[Roem82] supports this position. They found

by experimentation that regardless of ability,

subjects preferred the 5th grade reading level

of a tutorial where the study involved 5th,

10th, and 15th grade reading levels. They
concluded that the most sensible approach in

designing computer dialogues is to use the

simplest language, especially when the dialo-

gue involves instruction or procedures. Also,

well-designed, human-engineered dialogues

can greatly improve users’ attitudes toward

computers.

Timing Instructions to the User - Users

prefer concise and direct instructions. If a

user is told to perform an action, it is likely

the user will perform it. This can cause

problems if the system is in some special

mode, such as a tutorial or instructional

mode, and is not prepared to perform the

directed action.

4.2.3 Other Quality Factors

Although Clark and Fenchel cover many of the

quality factors, there are two outstanding factors

that should be mentioned [Shne80] [Rell81b]

.

Communication Overload - When a system

communicates with a user, the communica-
tion should be brief, direct, and concise. If it

is not, then it is likely that the users will be

overloaded with too much information. Com-
munications should follow the ’’seven plus or

minus two” rule [Mill56]. That is, they

should not introduce, in general, more than

seven concepts in a single frame. If it is

necessary to provide more detail, then the

information should be structured using the

query-in-depth design technique that is dis-

cussed in the next section.

Anthropomorphization - Communications
should not be anthropomorphized. For
example, the message

When you type the command ’’Lo-

gout”, I will abort your job

contains two anthropomorphic references.

The use of ”1” and ’’abort” ascribe human
attributes and conduct to a computer operat-

ing system. References such as these cause

users to view such a system as something

other than the tool it really is. A better mes-

sage would be

Logout terminates a session.

Another anthropomorphic issue that should

be avoided in communications is placing

blame on the user. Messages should reflect

system limitations and not a user’s inade-

quacy. For example, a misdial on the tele-

phone often yields the following communica-
tion from the phone company:

We are sorry, but the number you have

dialed ...

In this message, the phone company is apolo-

gizing for its inability to make sense out of

the number dialed, even though it is likely

that the dialer is at fault.

4.3 Implementation Techniques

This section presents some of the techniques that

can be used in the development of systems that

incorporate human factors.

4.3.1 Query-in-Depth

Levels of help or query-in-depth is a popular issue

in the implementation of systems. It is mentioned

in several references [Rell8l] [Fenc8l] [Roth79].

One would expect that many future systems will

implement this capability. The advantage that

- 14 -

this capability provides is that a user can obtain

successively more detailed assistance if it is needed

simply by asking for it. Relies and Price [Rell81b]

demonstrated a system with this capability at the

5th International Conference on Software

Engineering. In their system, the user requests

assistance by typing ”?”. Further use of ”?” pro-

vides the user with more in-depth explanations

until the user reaches the lowest level, at which

point, a person and a phone number is provided.

4.3.2 Contextual Assistance

Assistance that is context sensitive is another

popular technique. Unlike query-in-depth, contex-

tual assistance can be found in many systems

today. For example, the Digital Equipment
Corporation’s TOPS-20 operating system will on

request complete the name of a command or file if

enough characters have been typed to make the

request non-ambiguous. On the other hand, if the

request is still ambiguous (not enough characters

have been entered) then a user can request a

display of the available options. This means that

the system must be able to determine at any point

in the user-machine dialogue a menu of choices

that are available.

Query-in-depth and contextual assistance are

capabilities that can provide a very powerful help

system when they are used together. In the previ-

ous example [Rell81b], notice that both capabilities

are provided. If the system had not kept track of

the user’s entries then the second request for assis-

tance would have produced the same message as

the first.

Fenchel and Estrin [Fenc82] have furthered this

technique whereby assistance is integrated into the

grammar that is processed by a combined parser

generator and an integral help generator. This

work has been integrated into the SARA support

environment. With this approach, the integral help

generator has a concise representation of the user

interface available to it, so contextual assistance is

easily generated.

4.3.3 Natural Language

Communication by natural language is limited by

a system’s ability to make inferences. When a

statement cannot be logically resolved, inferences

must be made. For example, the following request

will require an inference.

Find all processes that communicate with

procl.

List the processes that begin with the letter
» rpn

Is the second request related to the first request or

not? In this case, it is obvious that it is. Why
process the first request if it is not. An inference

would not have to be made if the second request

was phrased as follows.

List only those processes that begin with the

letter ”T”.

The ability to make inferences requires knowledge

of the task being performed and of the person per-

forming the task. If inferences are not made, then

clarifications must be requested by the system.

Users may prefer to deal with a concise command
language or selections from menus than to ” train”

a natural language interface. It is therefore espe-

cially important to test thoroughly natural

language communications to insure user accep-

tance before releasing a system.

4.3.4

Simulation and Prototyping

Clark [Clar8l] discusses the use of software simu-

lation in product development. In particular, a

prototype of a system was developed that simu-

lated the user interface. Many problems, including

those discussed in Section 4.2.2, were discovered

early in the development of the product. Since

errors or changes are much more costly in the later

stages of development, this is a cost-savings tech-

nique.

Wasserman and Shewmake [Wass82] have also

reported success with a similar technique for the

development of information systems. They have a

development methodology and a supporting

environment built around the development of pro-

totypes. The methodology includes the following

steps:

Requirements Analysis (activity and data

modeling)

External Design (interface design)

Creation of a "Facade” (prototype of user

interaction)

Informal Specification of the System Opera-

tion

Database Design (relational)

Creation of a System Prototype (some or all

functions)

System Design

Implementation

Testing and/or Verification

The environment includes tools for constructing

prototypes. Some of these tools feature screen-

oriented editing and browsing, and software

management and control.

There are also several production environments

that can be used to develop prototypes. Several of

these were demonstrated at the first Soft! air

Conference and include the following CAP
[Bass83], Proto-Cycling Zajo83j, Index (Rub<x3l,

- 15 -

and PRIDE [Bryc83],

4.3.5 Contextual Mode Switching

When a person uses a software engineering

environment, the user will be in one of three

modes: using mode, learning mode, or software

engineering mode. A user is in "using mode”
when the thought process is focused on how to use

the environment to perform the software engineer-

ing task. For example, if a user is editing a

document,” using mode” would focus the thought

process on the command to insert or delete words,

lines, etc., instead of the material to be edited. As
a user becomes proficient with an environment,

"using mode” can almost become subconscious,

like a typist using a typewriter.

A user is in "learning mode” when the thought

process is focused on acquiring skills for the "using

mode” . The rest of the time the user is in

"software engineering mode”, that is, the user’s

thought process is on developing software. Con-

textual mode switching occurs when a user goes

from one mode to another. For example, if a user

does not know how to use an environment feature

then he or she goes from "software engineering

mode” to "using mode” to "learning mode” back

to "using mode” and finally back to "software

engineering mode”. Mode changing can

significantly decrease performance. For example,

Clark [Clar8l] found that in some cases mode
switching can cause users to forget why they went
into "learning mode” in the first place.

One way to make mode changing less disruptive is

to place using and learning information on the

screen simultaneously with the problem. A system

that provides this windowing capability is the

Automated Interactive Simulation Modeling
(AISIM) system [Aust82], For example, when a

designer is editing a flow-diagram, the command
"MENU” can be issued to have a menu drawn to

the left of the diagram. With both the menu and

the diagram on the screen, there is not as much
disruption as there would be if the diagram was
replaced by the menu. Other systems that provide

a similar capability include Cedar [Teit84] and

Apple’s Lisa and Macintosh.

Another way to ease mode switching is to provide

contextual assistance as described in Section 4.3.2.

5.0 ANALYSIS AND SOFTWARE QUAL-
ITY

In this section, the taxonomy developed for FIPS
PUB 99 [FIPS99] is used as a basis for presenting

various analysis and quality features. Whereas the

taxonomy is concerned with a broad range of

features offered by all types of software develop-

ment tools, the scope of this section will narrow on

static analysis, dynamic analysis, and management

features that are appropriate for software analysis

and quality assurance.

In a software engineering environment, analysis

should be provided to whatever extent is possible.

For example, if the environment supports the

development of requirements and design

specifications, then those analysis features that are

appropriate for these specifications should be pro-

vided. This is particularly important since detect-

ing errors as early as possible in the life cycle is a

proven cost savings technique. In this case, the

environment should provide the analysis even if

the results are incomplete. For example, it may
not be possible to audit software completely until

all the code is available and compiled. In this

case, the auditing feature should provide as much
detail as possible pertaining to what is available.

5.1 Static Analysis

Static analysis features specify operations on the

subject without regard to its executability

[Howd78]. The subject can be a specification

language, a high level language, or even documen-
tation. Static analysis features describe the

manner in which the subject is analyzed.

Auditing

Conducting an examination to determine

whether or not predefined rules have been

followed. Examining source code to deter-

mine whether or not certain standards are

complied with is an example of this feature.

Auditing could include such checks as finding

missing parts of a system and identification

of poor and dangerous software engineering

practices.

Completeness and Consistency Checking

Assessing whether or not an entity has all its

parts present and if those parts are fully

developed and externally and internally con-

sistent [Boeh78]. In order to test automati-

cally for completeness and consistency of

requirements and designs, a formal

specification language is required. The
environments associated with PSL/PSA
[Teic77] and SREM [Alfo8l] are examples

that provide these capabilities. Environments

which use formal proofs to demonstrate con-

sistency of specifications and code have also

been developed for critical applications such

as computer security. Examples include

AFFIRM [Thom8l] and Gypsy [Ambl77].

Complexity Measurement
Determining how complicated an entity (e.g.,

routine, program, system, etc.) is by evaluat-

ing some number of associated characteris-

tics [McCa76] [Hals77]. The following

characteristics can impact complexity:

instruction mix, data references, structure

- 16 -

and control flow, number of interactions and

interconnections, size, and number of compu-

tations.

Cross Reference

Referencing entities to other entities by logi-

cal means. Although cross references are

easily generated from symbol tables, they are

not often used because of the massive

amount of information they contain. Even
cross reference listings of small programs are

quite lengthy. This problem can be allevi-

ated somewhat by retrieval mechanisms

associated with a management feature called

a data dictionary. This feature is presented

in Section 5.3.

Interface and Type Analysis

Checking the interfaces between system ele-

ments for consistency and evaluating

whether or not the domain of values attri-

buted to an entity are properly and con-

sistently defined. Environments that support

specification languages and strongly-typed

high level languages such as Ada and Pascal

almost always provide these features. How-
ever some of these languages support

separate compilation of procedures which

can delay interface checking until the pro-

cedures are linked. This is not a recom-

mended practice because it uncovers errors

very late in the development process. With
knowledge of the design and data

specifications, both analyses can be per-

formed earlier in the development process.

Scanning

Examining an entity sequentially to identify

key areas or structure. Examining source

code and extracting key information for gen-

erating documentation is an example of this

feature.

Statistical Profiling

Performing statistical data collection and
analysis of statement types. Statistical

profiling can provide useful information to

language designers and managers. Managers
can use this information to determine pro-

gramming style among their staff. For

example, the data could show that a pro-

grammer avoids certain advanced constructs

or overuses poor constructs such as GO TO
statements. Language designers and stan-

dards committees find statistical profiles use-

ful in identifying popular and unpopular

language constructs. The usefulness of sta-

tistical profiles is emphasized in a classic

paper by Knuth [Knut7l],

Structure Checking

Detecting structural flaws within a program.

Structure checking is a common feature

offered by many compilers. Results of a sur-

vey of compilers [NBS418] found occurrences

of the following types of structure checking

in Fortran and Cobol compilers: unreachable

statements, null-transfer statements (i.e., a

branch to the next statement), null-body

loops, empty programs, and self-transfer

statements. In addition to these types of

structure checking, there are also tools that

check for violation of structured program-

ming constructs (e.g., COBOL STRUCT
[FSWE80]), and in some cases restructure

code (e.g., The Engine [Lyon8l]).

I/O Specification Analysis

Analyzing the input and output

specifications in a program usually for the

generation of test data. Analyzing the types

and ranges of data that are defined in an

input file specification in order to generate

an input test file is an example of this

feature.

Reference Analysis

Detecting errors in the definition and use of

data. To check completely for this type of

error, it is necessary to generate a program

graph and to check data references on each

path. With this level checking, errors such

as variables defined but never used, variables

used but never defined, and variables defined

and then subsequently redefined before being

used can be checked on all paths through a

program. The tool which promulgated this

technique is DAVE [Oste76] which has been

made part of the analysis capability of Tool-

pack [Cowe83].

5.2 Dynamic Analysis

Dynamic analysis features specify operations that

are determined during or after execution takes

place [Howd78a], Dynamic analysis features differ

from those classified as static by virtue of the fact

that they require some form of symbolic or

machine execution. Dynamic analysis is the tech-

nique used to derive meaningful information about

a program or system’s execution behavior.

Assertion Checking

Checking of user-embedded statements that

assert relationships between elements of a

program. An assertion is a logical expression

that specifies a condition or relation among
program variables. Checking may be per-

formed with symbolic or run-time data

Assertions, which can be implemented as

special comments, are useful as an under-

standing mechanism. Assertions can be used

to declare relationships or states that are

assumed to be true at certain points in a

program. Thus, a programmer can use

- 17 -

assertions for debugging. Assertions can also

represent relations or states assumed true at

a higher level of abstraction. Using asser-

tions in this manner allows one to test con-

sistency between a design specification and

the code. If assertions are placed in the code

so that there is a mapping from each asser-

tion to each design or requirements

specification, then assertions can be used to

compute design or requirements coverage.

Assertion checking is provided by RXVP80
[Saib8l] and the NBS Fortran-77 Analyzer

[NBS359]

.

Coverage Analysis

Determining and assessing measures associ-

ated with the invocation of program struc-

tural elements to determine the adequacy of

a test run [Fair78]. Coverage analysis is use-

ful when attempting to execute each state-

ment, branch, path, or iterative structure in

a program. Since coverage analysis yields

actual testing metrics, its most important

impact is that it encourages programmers to

develop testable programs. That is, in order

to get a high percentage of program cover-

age, a programmer must try to make all

parts of the program accessible for testing.

NBS Special Publication 500-88 [NBS88] lists

40 tools that provide this feature.

Regression Testing

Rerunning test cases which a program has

previously executed correctly in order to

detect errors spawned by changes or correc-

tions made during development or mainte-

nance. Environments provide regression

testing through a capability to automatically

"drive” the execution of a program through

its input test data and report discrepancies

between the current and prior output.

Simulation

Representing certain features of the behavior

of a physical or abstract system. Simulation

of the user interface is a capability that is

built into some software engineering environ-

ments, such as USE [Wass83].

Timing

Reporting actual CPU, wall-clock, or other

times associated with parts of a program.

Tracing/Debugging

Tracking or monitoring the historical record

of execution of a program either to increase

understanding of its behavior or to detect

and correct errors. Environments can offer

many tracing and debugging features includ-

ing: breakpoint control, data flow tracing,

and path flow tracing.

5.3 Management

Management features aid the management or con-

trol of software development. There are three

major types of management features.

Configuration Control

Aiding the establishment of baselines for

configuration items, the control of changes to

these baselines, and the control of releases

to the operational environment.

Project Management
Aiding the management of a software

development project. Where configuration

control aids all participants in the software

development process, project management
features primarily aid the project manager.

Common project management features

include cost estimation, resource estimation,

and scheduling. Cost estimation has been

the subject of concentrated research which

has resulted in many cost models [DACS79],

TRW’s SPS incorporates the COCOMO cost

model [Boeh8lj. Scheduling is closely associ-

ated with both cost and resource estimation

and deals with software engineering person-

nel and activities. Environments with these

project management features commonly pro-

vide milestone charts, personnel schedules,

and activity diagrams as output.

Information Management
Aiding the organization, processing, accessi-

bility, modification, and dissemination of

information that is associated with the

development of a software system.

There is much information associated with the

development of a software system. Since much of

the information requires special features in an

environment to handle the different types of data,

information management is further subdivided.

Data Dictionary Management
Aiding the development and control of a list

of the names, lengths, representations, and

definitions of all data elements used in a

software system. Data dictionary systems

have been available for years [NBS3] but

their potential in a software engineering

environment has not been fully realized.

Data dictionary systems can be a valuable

tool over the entire life cycle of systems and

software [FIPS76]. For example during the

requirements definition phase, information is

collected about data type and usage require-

ments. This information can then be used in

the production of data descriptions for indi-

vidual software packages and procedures,

and in conjunction with other analysis capa-

bilities (such as cross reference and reference

analysis).

- 18 -

Documentation Management
Aiding the development and control of

software documentation. Many of the static

and dynamic analysis features previously

mentioned automatically develop documen-

tation that if properly used can significantly

reduce documentation costs.

Code Management
Providing and controlling access to files con-

taining programs or parts of programs. Code
management is essential for large software

development. The UNIX environment

includes a tool called "make” [Feld79] which

effectively manages code, but can be

extended to other software products such as

specifications and documentation. Make
reads a specification of the structure of a

program and puts together an up-to-date

version of the program based on its

specification.

Code management can also provide a way to

avoid redundant coding by identifying the

functionality of programs or program frag-

ments. Code management can keep track of

the functionality and retrieve information

about programs that provide capabilities of

interest to the software engineer. Although
capturing the functionality of a program
fragment is a current subject of research, an

interim solution can be implemented through

keyword specification and retrieval in a

manner similar to library systems. A recent

paper [Lecl82] describes a browse documen-
tation system that is similar in concept.

Specification Management
Aiding the development and control of

requirements and design specifications.

Specification management is somewhat
methodology dependent because usually

there are formal procedures for the definition

and use of the specifications. However, the

environment may or may not include con-

trolling elements such as review and appro-

val mechanisms, required record keeping of

scope changes, strategy changes,

justification, and rectification.

Test Data Management
Aiding the development and control of

software test data. Test data management is

necessary to provide the dynamic analysis

feature of regression testing.

5.4 Underlying Analysis Features

Many of the features presented in Sections 5.1,

5.2, and 5.3 imply the existence of more primitive

features in the environment. These underlying

features could be thought of as an intermediate

level in the model discussed in Section 3.1 and as

shown in Figure 5.1.

A list of underlying analysis features includes the

following.

data base management - support informa-

tion management and project management
features.

graph generation, graph analysis, and
data flow analysis - support complexity

measurement, structure checking, and refer-

ence analysis by constructing, traversing,

and analyzing a specification of the program

graph.

profile generation - supports complexity

measurement and statistical profiling.

comparison - supports regression testing

and configuration management.

lexical analysis, syntax analysis, seman-
tic analysis, parsing, and symbol table

generation - support most all of the

analysis features that deal with programs.

instrumentation - supports assertion

checking, coverage analysis, and timing

analysis.

6.0 SUPPORT FOR DIFFERENT TYPES
OF USERS
Software engineering may involve the participa-

tion of many people performing many different

tasks. Division of labor and specialization of func-

tion is the means by which chaos is avoided in a

software engineering project. In addition, a tree-

like hierarchy diminishes the need for detailed

communication among all the participants; for

large projects, small teams should be at the lowest

levels of the hierarchy. For small projects, one per-

son may of course have responsibility for many
different tasks.

Brooks [Broo75] defines two organizers in the

team: a producer and a technical director. The
role of the producer includes:

- assembling the team
- dividing the work
- establishing the schedule

- acquiring resources

- establishing the pattern of

communication and reporting

- ensuring that team stays on schedule

The role of the technical director includes:

- requirements analysis and specification

- developing high level designs

- specifying the interfaces

- sketching the internal structure

- 19 -

documentation editor

librarian

maintainer(s).

top level (users)

t

(user interface)

l

intermediate level

t

1

T

1

static analysis,

dynamic analysis,

and management
features

t

i

underlying analysis

features

T

i

software

engineering

environment

T

1

intermediate level

t

(machine interface)

l

bottom level (machine)

Figure 5.1 An Environment with

Intermediate Levels of Analysis

- solving technical problems
- ensuring technical quality.

For small projects, the technical director and the

producer may be the same person.

Other members of the team can be chosen from

the following:

designer(s)

programmer(s)

analyst(s)

Once again, it is possible that in small teams the

technical director may also be an analyst, a

designer, and a constructor. It is also possible that

other team members may also play different roles.

Regardless of the division of labor or the speciali-

zation of function, an environment should provide

support for all the players. In particular, an

environment should orient its support to the

player that is currently using the system. For

example, if the user is the documentation editor

then office automation features should be

emphasized and other features of the environment

should be "hidden”. Even if a user is wearing

several "hats”, such as the technical director who
may at one time or another play all the roles, then

the environment should emphasize the features

that are associated with the hat that the user is

currently wearing.

An example of an environment that explicitly

divides its features into toolboxes that are oriented

to the different players is ARGUS [Stuc83]. Figure

3.4 shows the top level menu for ARGUS which

essentially asks the user to identify the role he or

she is currently playing. Once the role has been

identified, then the lower level menus include

choices appropriate to the role. One particularly

interesting aspect of ARGUS is the screen-oriented

editor that is available in each of the toolboxes.

Although this editor has a basic set of commands
available in all toolboxes, special commands
become available depending on which toolbox is

currently active. For example, if the user is in the

designer’s toolbox then graphics commands are

available so that the user can draw boxes, circles,

arrows, etc. If the user is in the programmer’s

toolbox then commands that place language con-

structs, such as if-then-else or while-loop, on the

screen are available for selectable programming

languages.

The following sections discuss the duties of the

various players and the features that they would

expect to find in a software engineering environ-

ment.

8.1 The Manager

Brooks’ producer [Broo75] is usually considered the

manager of a software engineering project

although it is quite likely that the technical direc-

tor will occasionally get involved with this role.

The manager acquires resources and allocates work

according to the resources that are acquired. The

resources can include people, hardware, software,

and dollars. In addition, the manager worries

about the "health” of the project, e.g.: Are people

- 20 -

happy with their current roles? Are they commun-
icating? Are they on schedule? Does the software

engineering environment give them the support

they need?

In Section 5.3, features that aid the management
and control of a software development project

were presented. The features that are of particu-

lar interest to the manager are those described

under project management. With the advent of

microcomputers, many new tools have become
available that are targeted for the manager and

will be expected in software engineering environ-

ments. These tools include:

Electronic Spreadsheet - allows the user to

retrieve information such as scheduling and

cost data from the database, to manipulate

this information, and to present it in column
or graphic format.

Calendar Management System - allows the

user to define and manipulate personal calen-

dars, to set up reminders for future appoint-

ments, to print future schedules of appoint-

ments, travel, or other calendar events.

Telephone Book - allows the user to insert,

delete, update, and retrieve phone numbers,

may even perform auto-dialing.

Thought Organizer - assists the user in

developing, organizing, manipulating, and
reviewing facts, strategies, and concepts.

6.2

The Designer

It is generally recognized that a designer works at

two different levels of design. Freeman [Free83a]

defines the two levels as follows:

Architectural Design - determining the

underlying structure of the problem from the

requirements specification. When this struc-

ture becomes clear, an internal design of the

system is devised. This design is necessarily

at a gross level of detail. The parts of the

system and their relationships, the basic

algorithms that the system will use, and the

major data representations and organizations

that will be needed are all primary elements

of the design at this stage.

Detailed Design - adding more detail to the

major parts of the design. Precise algo-

rithms and data structures are spelled out.

Interfaces between parts are detailed.

Hardware selections not made at the archi-

tectural level are made. Detailed design (as

well as architectural design) may require

several levels of refinement. This stage stops

short of spelling out all programming details

(e.g., housekeeping and local data struc-

tures).

In the early stages of design, it is quite likely that

the technical director will be the only team

member performing design. However, as the need

for lower level designs begins to emerge, other

members of the team may become involved with

design.

Since an important goal of the designer is to docu-

ment the system that is going to be implemented,

techniques for communicating the design play an

important role. Graphics, very high level

languages, and text are the normal means for this

communication. Environments should support all

three, but at a minimum it should support text.

The two levels of design define two possible levels

of support in the environment. Architectural

design is supported by tools that assist the high

level functional specification of the design. Exam-
ples include SARA [Estr78], DREAM [Ridd8l],

PSL/PSA [Teic77], AISIM [Aust82] and the tools

associated with design methods such as the Parnas

Method [Parn72], HIPO [Stay 76], and Structured

Design [Your75]. Architectural design is also sup-

ported by tools that support the high level

specification of data flows within a system. Exam-
ples include the tools associated with Object-

Oriented Design [Booc83] and the Warnier/Orr
Method [Warn74].

Like architectural design, detailed design is sup-

ported by tools that assist the low level

specification of functions and data. Tools associ-

ated with the many program design languages,

such as Ada PDL [Priv82] or Caine, Farber, and
Gordon’s PDL [Cain75], assist low level

specification of function. Tools associated with

the Jackson Method [Jack75] or Object-Oriented

Programming [Love83] assist the low level

specification of data flow.

6.3 The Programmer

Of all the members of the software development

team, the programmer is the member who tradi-

tionally receives the most support from software

engineering environments. In Section 2 a pro-

gramming environment was defined as one that

concentrates on the activities that are performed

during the latter part of the life cycle. These are

the activities performed by the programmer.

The programmer is supported by features that are

oriented toward a programming language with

particular emphasis on coding, debugging, and

testing of programs.

6.4 The Analyst

The analyst performs validation, verification, and

testing (W&T) which is a process of review,

analysis, and testing that is employed throughout

the software life cycle to ensure the production of

- 21 -

quality software [FIPS101]. When a team member
is in the role of an analyst, development of

software is not done. Instead, analysis of what has

been developed is done. For example, require-

ments specifications are checked for consistency

and completeness, software designs and programs

are validated to insure that they meet the require-

ments, programs are verified to insure that they

implement the design, test cases are checked for

completeness, and test results are checked for

correctness. All errors that are discovered are

recorded and reported to the appropriate team
member.

The tools and techniques of the analyst are

described in NBS Special Publication 500-93

[NBS93], which is a technique and tool reference

guide for software VY&T. The tools and tech-

niques include:

algorithm analysis

analytic modeling

assertion generation

cause-effect graphing

code auditor

comparator

control structure analyzer

cross-reference generator

data flow analyzer

execution time analyzer

formal reviews

round-off analysis

inspections

interactive test aids

interface checkers

mutation analysis

peer review

units checking

regression testing

requirements analyzer

requirements tracing

software monitor

functional testing

symbolic execution

test coverage analysis

test data generators

test support facilities

walkthroughs.

Although many of the tools in this list are dis-

cussed in Section 5, some, such as walkthroughs,

peer review, and inspections, are methodologies.

It is important for an environment to provide

basic support for methodologies as well as analysis

tools.

0.5 The Documentation Editor

By necessity, the technical director, designers, pro-

grammers, and analysts create documentation.

Often, these team members fill the role of the

documentation editor whether or not they have

good writing skills. This can have a significant

affect on the acceptance of the software system

that is developed by the team, particularly if user

documentation has a high level of technical jargon

in it and the users are not versed in the area.

This leads to some of the same issues that were

discussed in Section 4.1 regarding on-line assis-

tance for users.

Therefore, if the team has a member with good

writing skills that can take the role of documenta-

tion editor, the system developed is more likely to

be acceptable to the users. Another advantage is

that system documentation will also be much
clearer, e.g., the programmer gets better design

documentation, the maintainer gets a better

maintenance manual. Since the documentation

editor needs to understand the system being docu-

mented, it is also possible that the documentation

editor will discover parts of the system that are

weakly specified and need further work.

The tasks of the documentation editor include the

following:

- rework documentation
- add references

- insure consistency

- oversee the mechanics of production.

To fulfill these tasks, the documentation editor

needs office automation capabilities. In particular,

editing, word processing, text formatting, and
document preparation facilities are important to

the documentation editor.

The UNIX environment contains a number of

capabilities that are useful to the documentation

editor. The ”me” macro package provides ways to

declare logical parts of a document, such as titles,

authors, abstract, table of contents, section head-

ings, paragraphs, and index. In addition to the

”me” macro package, UNIX includes a tool called

”eqn” for mathematical expressions and ”tbl” for

tables. All of these tools combine to make docu-

ments that are typesetter quality.

Other document preparation tools found in UNIX
include:

refer - find and insert literature references

in documents

pic - generate graphics (boxes and arrows

in documents
style - analyze the writing style of

a document
diction - print wordy sentences

explain - thesaurus

spell - report possible spelling errors.

- 22 -

6.8 The Librarian

Section 3.1 states that the database is the reposi-

tory where tools in the environment deposit out-

put or get input. Because the development of a

software system can generate a lot of information

for the database, a librarian is needed to maintain

the database. It is the librarian’s job to purge the

database of inactive information and to insure

there are ample backup copies. If the inactive

information is important, then the librarian

archives it on tape and/or stores it away in

printed hardcopy.

The librarian is also responsible for maintaining

the product library. The product library is essen-

tially a hard copy version of the most important

parts of the database. It contains the most recent

versions of each product generated by the team.

It should include specifications, designs, programs,

test data, and all associated documentation.

To maintain the database and the product library,

the librarian must have archiving and cataloging

facilities in the environment. In addition to these

facilities, the librarian also needs recovery facilities

should parts of the database be accidently deleted

or otherwise lost. Finally, to recognize inactive

parts of the database, the librarian needs database

access histories and usage summaries.

6.7 The Maintainer

The software maintainer performs those activities

required to keep a software system operational and

responsive after it is accepted and placed into pro-

duction [FIPS106]. There are three maintenance

categories [NBS106]:

Perfective maintenance - includes all

changes, insertions, deletions, modifications,

extensions, and enhancements which are

made to a system to meet the evolving

and/or expanding needs of the user.

Adaptive maintenance - consists of any effort

which is initiated as a result of changes in

the environment in which a software system

must operate.

Corrective maintenance - refers to changes

necessitated by actual induced or residual

errors in a system.

The process of implementing a change to a

software system requires a set of steps that is simi-

lar to the original development of software. In

other words, maintenance has a life cycle similar

to the one presented in Section 2.1. The number
of steps in the maintenance process depends on the

magnitude of the change. If the change is the

correction of a residual error in the system, then it

is unlikely that the design of the system will be

changed. However, if the change is a major

enhancement, then the maintenance process should

include all of the following steps:

1. Determination of need for change

2. Submission of change request

3. Requirements analysis

4. Approval/rejection of change request

5. Scheduling of task

6. Design analysis

7. Design review

8. Code changes and debugging

9. Review of proposed code changes

10. Testing

11. Update documentation

12. Standards audit

13. User acceptance

14. Post installation review

15. Completion of task.

Judging from the previous list of steps, one can see

that the maintainer should have access to the

same software engineering environment as the ori-

ginal developers had. Unfortunately, in many
cases this is not the case. Often software is turned

over to a maintenance organization and the

environment remains behind with the developers.

The US Department of Defense has recognized this

problem and one of the goals of the APSE is to

eliminate it. If the APSE is GFE (government

furnished equipment), the environment used by

the developers and maintainers will be the same.

7.0 SUPPORT FOR APPLICATION
Some environments, e.g., programming environ-

ments, are oriented to specific types of users on a

software development team. This section contin-

ues the discussion of environments that have a

specific orientation; but the orientation will be to

a specific type of target software. That is, the

environment is specifically oriented toward

developing software that is for a certain applica-

tion.

7.1 Systems Development

A system is an integrated whole that is composed
of diverse, interacting, and specialized structures

and subfunctions [IEEE729]. The parts of a sys-

tem, i.e., subfunctions, or the entire system can

consist of hardware, software, or even people.

Environments, which themselves may be referred

to as systems, that deal with the development of

systems provide capabilities that allow the charac-

terization of the subsystems no matter what they

consist of. In order to provide these capabilities,

systems development environments deal with a

system at a very high level and can be in most

cases classified as framing environments Two
examples of systems development environment

DREAM and SARA, are discussed in the section

on framing environments, Section 2.4

- 23 -

Another example of a systems development

environment that was briefly mentioned in Section

3.3.5 is the Automated Interactive Simulation Sys-

tem (AISIM) [Aust82]. AISIM is applicable to the

design and analysis of proposed systems as well as

to the operational analysis of existing systems.

The characteristics of systems that can be modeled

using AISIM include procedural operations, paral-

lel processing, shared resources, operational load-

ing, process communication, and interconnected

networks. To build a model, AISIM provides a set

of "entities” that are used to describe the system

in terms which are understood by the simulation

system. The following are examples of AISIM
entities:

Process - a description of the logic of the

operations, decisions, or activities of the

system being modeled

Primitive - logical function that is used to

define a process

Item - a transient data element such as a

message

Queue - an ordered holding area for items

Resource - an object necessary to perform a

process

Scenario - the environments in which a

system must perform

Load - the affects on the system by the

outside world.

Other entities include constants, variables, and
tables.

AISIM is a command oriented system. At the

highest level (the READY level), the user can issue

commands which invoke certain system functions

or descend to a lower level. If the user descends to

a lower level, then a new set of commands
becomes available. Examples of lower levels

include the design level and the analysis level. At
the design level, commands are available to define

the system model by creating, modifying, or delet-

ing entities. This level includes two editors: (l) a

process editor which allows the user to describe

the logical flow of a process graphically and
(
2

)
an

architecture design editor which allows the user to

define the layout and interconnection of the physi-

cal aspect of a network including its various

processes.

At the analysis level, the user can exercise the

model by simulation. This level includes com-
mands which allow the user to modify scenarios

and loads to see the effects they have on the sys-

tem being modeled. In addition, commands are

available to view the outputs of the simulation.

7.2 Embedded Systems

Embedded systems are systems that are an

integral part of larger systems. The key charac-

teristic of environments that support the develop-

ment of embedded systems is that they allow the

development of software for machines i.e., target

machines, that may not be present in the develop-

ment environment. Two examples of environ-

ments for developing embedded systems are FASP
and APSE. FASP was briefly described in Section

3.3 and APSE was briefly described in Section 3.1.

FASP is a general environment and APSE is a

programming environment.

7.3 Information Systems

Environments that support the development of

information systems provide capabilities for

developing software that must process and manage
large amounts of data. In addition, information

systems must communicate the data that they

contain. Therefore, addressing human factors is

very important in information systems develop-

ment.

Because human factors play such an important

role in information system development, environ-

ments should contain tools that allow rapid

development of prototypes so that feedback from

the end user of the information system can be

obtained early in development. In particular,

environments should support [Blum82]:

Screen and report formatting - capabilities to

produce a set of user interfaces which resem-

ble those of the final system.

Partial and incomplete implementation -

features that allow the identification and

implementation of a subset of the total sys-

tem.

Selective implementation - features such as

screen managers, data base managers, and

report generators that allow the development

of specific components of the total system.

Each of the above features allow the user to

quickly piece together parts of an information sys-

tem.

An example of an environment that supports the

development of information systems and that

includes rapid prototyping tools is USE [Wass82]

(See Section 4.3.4).

7.4 Data Processing Applications

Environments that are oriented toward the

development of data processing (DP) applications

are a popular topic in DP literature [Mart82]

[Rin82] [Z0 II8O]. These environments are often

called application generation or program genera-

tion systems [Blum82]:

- 24 -

Application generation system - an interpre-

tive system that is molded to a specific DP
environment. A user of the system types in

a specification of the application desired and

the system responds by interpreting the

specification and performing the desired

function.

Program generation system - provides the

same capability as an application generation

system but instead of interpreting the user’s

request, a program written in a language

such as COBOL, PL/I, or MUMPS is pro-

duced that performs the desired function.

Typical functions that are generated include data-

base management and update, report generation,

retrievals, graphics, statistical analysis, and screen

layouts.

A simple example of a specification that generates

a table that summarizes sales information by
account number might be:

SUM SALES
BY ACCOUNT
TABLE

Simple specifications can usually be provided to a

generation system in any order, thus making the

specification non-procedural. For more complex
applications, such as screen control or the develop-

ment of complex reports, the user would be

required to use procedural constructs. In cases

such as this, the application generation environ-

ment may prove to be more cumbersome then

traditional software development environments.

7.5 Security-Critical Applications

Development of systems for security-critical appli-

cations such as defense communications requires

special techniques. Environments have been

developed within the research community to sup-

port some special, formal techniques. Formal
techniques support mathematical proof of con-

sistency between a specification of a system and a

lower level specification of the same system, e.g., a

model specification and a high level design

specification or mathematical assertions about a

program and the program itself.

Formal verification increases confidence that the

lower level specification is correct because it sym-
bolically evaluates and ” tests” the lower level

specification with many more cases than normal

testing can. However, even with the special tools

that have been developed, formal verification is

still so labor intensive that it has previously been

used only for special defense applications, such as

the development of "secure” operating systems

[Perr84].

Three examples of environments that provide

verification features are summarized by London

and Robinson [Lond80]:

Affirm

The Affirm system developed at the USC
Information Sciences Institute, is for the

algebraic specification and verification of

abstract data types and Pascal-like programs

which use these types in expressions and

assertions. A natural deduction theorem

prover uses powerful rewrite rule facilities

and user-directed proof steps to prove pro-

gram verification conditions and properties

of data types. Additional features include

tools for the analysis of algebraic

specifications and a library of data types.

Experiences include the specification and

partial proof of a large file updating module
and the proof of several high-level properties

in the application areas of protocols and

security kernels.

Gypsy
The Gypsy system is located at the Univer-

sity of Texas at Austin. Gypsy is a language

for both specifying and implementing pro-

grams. Important applications to date have

been for communication systems, for which

Gypsy has special-purpose language con-

structs and proof rules. The verification sys-

tem maintains the complete state of a sys-

tem as it is being developed (both

specifications and implementation). If any

part of a system is changed, the system can

identify the proofs that must be redone.

This incremental approach reduces much of

the effort in verifying programs.

HDM
The verification system at SRI International

is based on the Boyer-Moore theorem prover

and on HDM (Hierarchical Development
Methodology). The Boyer-Moore theorem

prover proves theorems in a theory based on

recursive functions and inductively defined

objects. HDM is a methodology for formally

specifying, implementing, and verifying pro-

grams. The computational model of HDM is

a hierarchy of abstract machines. The
verification system is intended to be used

with many different implementation

languages. It currently works for Modula
and a subset of Jovial J73.

References for the three systems include.

[Thom8l], [Ambl77], and [Robi77]

.

8.0 HARDWARE SUPPORT
Stucki formulates the software paradox Stuc83

The software community has done an excel-

- 25 -

lent job of attempting to automate everyone’s

job except their own.

The software engineering environments that have

been discussed in this report provide some evi-

dence that the ’’software community” is attempt-

ing to automate. However, in terms of the use of

hardware, the paradox still lives on. Most
software engineering environments use traditional

hardware, i.e., common line-oriented terminals and

printers attached to mainframe computers.

Meanwhile, innovators are taking advantage of the

hardware ” revolution” for other applications and

providing systems that use graphics, voice, point-

ing devices, workstations, and microcomputers.

Applications for which this is particularly true

include computer aided VLSI design tools, systems

for the handicapped, automobile design, office

automation, airplane design, and personal com-

puter applications.

8.1

Hardware Selection Issues

There are several reasons why software engineer-

ing environments use traditional hardware. One
reason is portability. Building or buying a

software engineering environment is a major

investment and tying it to any particular

hardware may limit its potential usefulness which

thereby may limit the received benefits to an

organization. Consequently, developers of

software engineering environments tend to choose

hardware conservatively.

Another reason for using traditional hardware is

methodology. Because software engineering is still

an emerging field, the disciplines are not yet well

defined. In order to take advantage of hardware

features such as graphics, the environment
developer must know what graphics primitives to

provide in the environment. Since there is little

agreement between methodologies on what primi-

tives are necessary or what they should look like,

the environment developer must either generalize

or choose a specific methodology which once again

may limit an environment’s potential benefit.

The need for minimal communication between the

host computer and the users has also impacted the

use of traditional hardware. Because host comput-

ers have to service many users, it is important

that communications between the host and any

single user be kept as low as possible. This is usu-

ally referred to as a low bandwidth between the

host and the users. To take advantage of modern
hardware, such as bit-mapped terminals that pro-

vide color graphics and multiple windows, pointing

devices, and voice input and output devices, a

higher bandwidth is needed between the user and

the host computer. Normally, to obtain this

higher bandwidth, a computer processor is dedi-

cated to a single user. An example of this is

presented in the next section.

8.2 Benefits Gained by Selecting and Dedi-

cating Hardware

If the environment developer chooses specific

hardware and dedicates a computer processor to a

single user, the results can be dramatic. An exam-

ple of this is the Symbolics 3600 Lisp Machine.

The Symbolics 3600 Lisp Machine is a single user

environment that not only uses specific hardware,

but also standardizes on the Lisp programming
language and the methods associated with its use.

Some of the features provided by the Symbolics

3600 include the following:

- mouse pointing device with three

function buttons

- multi-window screen displays (including a

mouse documentation line and a status

line)

- color graphics

- window scrolling

- menus
- file handling

- networking capabilities

- a message facility and a mail system
- help keys (for obtaining on-line assistance)

- a Lisp subenvironment that includes:

- Zmacs, to create Lisp source code and

to compile functions and files (a language

oriented screen editor that includes its

own help system and windowing operations)

- Lisp Listener, to run Lisp code

- Debugger, to examine the Lisp Environment

(a highly interactive debugger)

- Inspector, to inspect and modify Lisp data

structures.

Because the Symbolics 3600 is single-user, it pro-

vides much higher performance when compared to

Lisp Environments on shared mainframe comput-

ers.

As the above example shows, choosing specific

hardware allows the developer to take full advan-

tage of the hardware’s capabilities. The environ-

ment developer does not have to design the

environment around traditional hardware and a

high bandwidth can be provided between the com-

puter processor and the user.

8.3 Workstations

One way to breach the hardware gap is to incor-

porate workstations with dedicated processors into

the environment. If the user has a workstation

instead of a standard terminal, then theoretically a

high band-width can be provided between the

workstation and the user while maintaining a low

bandwidth between the workstation and the host

computer.

- 26 -

Gutz, Wasserman, and Spier [Gutz8l] have pro-

posed a similar type of environment. The works-

tations in this proposed environment have the fol-

lowing features:

- 1 megabyte memory
- 32 bit computer processor

- graphics capability

- multiple-character fonts

- reverse video

- variable intensity

- multiple windowing capability

- color

- full-page text display

- 40 megabyte hard disk

- standard floppy disk

- audio input/output

- pointing device (mouse, tablet, or light pen).

The workstations communicate with one or more
host computers which provide archiving, database,

and other input/output services. However, all this

capability may not be necessary. Many organiza-

tions are using personal computers, such as the

IBM PC, to off-load the demand on their main-

frames and minicomputers. It may be possible in

certain circumstances to incorporate personal com-
puters as workstations in an environment.

Management of documentation and code that is

distributed among several workstations is not a

trivial task. Leblang and Chase [Lebl84] propose

the following set of five "managers”, part of what
they call a distributed workstation environment,

to handle this problem:

(1) a history manager to maintain source code

control

(2) a configuration manager to maintain pro-

gram and sub-program relationships and to

configure the system being developed

(3) a task manager to relate source changes to

higher level activities

(4) a monitor manager to watch for user-defined

dependencies

(5) an advice manager to disseminate general

project information.

9.0

LEVELS OF SUPPORT
Previous sections discussed the types of environ-

ments, the features they provide, and the factors

that affect their development. Another factor that

impacts their development is the intended level of

support that can be provided by an environment.

This section presents three classifications for levels

of support where each has a slightly different

orientation and concludes with a list of generic

capabilities that are important for all environ-

ments to have.

9.1
Levels of Support Based on Project Size

A paper by Howden [Howd82] proposes a four level

classification that is life cycle oriented and

includes increased use of tools and techniques

based on project size. Howden assumes that stan-

dard operating system features, such as compiling,

editing, debugging, and file management, are part

of each environment. Although it is not stated in

the paper, the items which are considered "unsup-

ported” can be supported by these standard

features. Howden’s four level classification is

presented in Table 9.1.

A recent survey by Hecht [NBS82] shows that as

project size increases so does the use of tools.

Therefore, Howden’s four levels based on project

size parallels current practice.

Medium projects were assumed to have the follow-

ing characteristics: 2 year development time,

$2,000,000 project budget, 15-20 year system life-

time, sophisticated users, and a staff of 7 program-

mers and 1 manager plus additional support staff.

While large projects were assumed to have these

characteristics: 3-5 year development time,

$20,000,000 project budget, 10 year system life-

time, unsophisticated users, and a staff of 70 pro-

grammers and 5-7 managers plus additional sup-

port staff.

The Level I environment was considered to con-

tain the minimum set of tools and methods

without which it would be "foolish” to attempt to

carry out a medium scale development. The Level

II environment contains tools and methods for

assisting the users in the more important parts of

software development. Level III requires that the

Level II tools be compatible. Level IV is an ela-

boration of the Level III tools with features to

handle large scale development including an

integrated archiving facility.

9.2

Levels of Support Based on Capability

Branstad, Adrion, and Cherniavsky [Bran8l] pro-

pose levels of support that are based strictly on

increased levels of tool capability. The levels,

which are presented in Table 9.2, provide a way of

gauging the level of support provided by an

environment.

The Minimal System (Dl) contains features com-

mon to most operating systems. The Basic System
(D2) augments Dl with a database and features to

support the management of code and documenta-
tion. "Make”, which is included in D2, is a capa-

bility found in UNIX which configures programs or

documentation [Feld79] . The Full System (D3)

completes coverage for the entire life-cycle. The
Advanced System (D4) is claimed to be more a

goal then a reality. It fully integrates all t h ••

features of D2.

- 27 -

Level I Level II Level III Level IV

project

size

medium medium medium and

large

large

cost $35,000 $200,000 $300,000 $3,000,000

requirements

tools and

techniques

unsupported

data flow

diagrams or

structure

charts

supported

data flow

diagrams or

structure

charts

supported

data flow

diagrams or

structure

charts

supported

data flow

diagrams or

structure

charts

design

tools and

techniques

unsupported

design,

automated

data

dictionary

supported

design,

automated

data

dictionary

supported

design,

automated

data

dictionary

supported

design,

automated

data

dictionary

coding

tools

simple

source code

control

source code

control,

configuration

management
tools

source code

control,

configuration

management
tools

source code

control,

configuration

management
tools

verification

tools and

techniques

comparator,

unsupported

test plan and
test data

generation

comparator,

coverage

analyzer,

test

harness

comparator,

coverage

analyzer,

test

harness

comparator,

coverage

analyzer,

test

harness

management
tools and

techniques

manual
milestone

or Gantt

charts

automated

project

control

automated
project

control

automated
project

control

other

features

compatible

tools,

database

compatible

tools,

database,

integrated

archiving

facility

Table 9.1 Levels of Support Based on Project Size

- 28 -

Standard Level

Features

Additional Support for

Critical Applications

Dl - Minimal

System

Translation

Cross-Reference

Trace

Audit

Optimization

File Comparison

Text Editing

Range Checking

Type Analysis

Assertion Checking

Formatting

D2 - Basic

System
Dl
Information Repository

Separate Compilation

Make
Interface Analysis

Version Control

Data Dictionary

Test Coverage

Data Flow Analysis

Structure Analysis

Complexity Measurement
Performance Monitor

D3 - Full

System
D2
Requirements Specification

Requirements Analysis

Design Specification

Design Analysis

Test Harness

Automated Documentation

Automated Project Control

Symbolic Evaluation

Proof of Correctness

D4 - Advanced
System

D3 with Information

Interfaces Specified and

Full Integration

Table 9.2 Levels of Support Based on Capability

- 29 -

Management,
Transformation, and

Input/Output Features

Static Analysis

and Dynamic Analysis

Features

Required Configuration Control

Ada Library Management
Formatting

Compilation

Optimization

Editing

Command Assistance

Error Assistance

Type Analysis

Cross Reference

Tracing/Debugging

Interface Analysis

Important Specification Management
Data Dictionary Management
Test Management
Cost Estimation

Scheduling

Tracking

Syntax-Directed Editing

Menu Assistance

Auditing

Structure Checking

Reference Analysis

Timing Analysis

Tuning Analysis

Regression Testing

Coverage Analysis

Useful Ada Package Management
On-Line Tutor

Definition Assistance

Statistical Profiling

Complexity Measurement
Completeness Checking

Consistency Checking

Assertion Checking

Table 9.3 Levels of Support by User Priorities

- 30 -

9.3 Levels of Support Based on User Priori-

ties

During the development of a report for the Ada
Joint Program Office that defines a taxonomy of

tool features for the Ada environment [NBS2625],

reviewers were asked to prioritize the features in

the taxonomy. The priorities were to be esta-

blished from a user’s perspective at four levels:

required, important, useful, and unnecessary.

None of the tool features was placed in the last

category. Table 9.3 lists the features in each of

the remaining three categories.

9.4 Generic Support

Most current environments would not measure
well in terms of complete coverage as defined in

Sections 9.1, 9.2, and 9.3. This is especially true

for programming and framing environments

because they do not emphasize complete life cycle

coverage. Even Ada environments that either are

available today or are being developed do not

completely match the base-level "required”

features presented in Section 9.3. Part of the

problem is that environments are still found pri-

marily in research organizations and have yet to

make the transition to common practice.

Many research questions must be answered before

environments can make that transition to common
practice. However, even without a consensus on
the support that should be provided by an
environment, it is possible to define the generic

capabilities that are important for all environ-

ments to have. These are:

editing - to support the development of

documentation, programs, and project com-
munications.

compilation - to support the translation of

program to lower level languages.

formatting - to support the development of

documentation and more formal project

communications.

debugging - to support the dynamic analysis

of programs.

integrated user interface - to promote user

productivity and user acceptance of the

environment.

database - to support information manage-
ment, version control, and maintenance.

These capabilities are referenced consistently

throughout this report, e.g., in examples of exist-

ing environments, among development issues, and

finally, when in the levels of support.

10.0 CONCLUSION
This report has presented information, with exam-

ples, that characterizes and describes software

engineering environments. Software engineering

environments provide software tools to aid in the

systematic development and maintenance of all

the products associated with software systems;

hence the report has made frequent reference to

software engineering environments as systems.

Existing and emerging software engineering

environments provide such tools with varying

degrees of interdependence among them, for

differing tasks and users, with different levels of

completeness or concentration.

In this report the software engineering environ-

ments have been discussed within the framework

of a complete software development and mainte-

nance life cycle, in which iteration or repetition

through an entire or partial cycle, may occur. The
framework also clarifies the relationships among
the many tasks of software engineering and thus

places emphasis on broad categories of tasks that

can be supported by automation. Some of these

categories include the following:

- management of software projects

- development, maintenance of software

systems
- improvement of the quality of software

products

- increased productivity of project personnel.

The examples in this report indicate that many
environments provide some software project

management assistance but none yet provide all

the tools necessary to plan, schedule, monitor and
control over the entire software life cycle. Simi-

larly, within the technical tasks, most environ-

ments tend to provide generic support for most
tasks or to focus heavily on certain types of tasks,

such as those for designing a software system or

for programming and analyzing a system. Hence,

examples in this report refer to "framing environ-

ments” or "programming environments.” Again,

no examples were found that provide comprehen-
sive technical coverage of all tasks expected to

occur in development and maintenance although

several are comprehensive for their areas of con-

centration. Also, almost every type of task that is

performed within software engineering can be

found in at least one environment.

Many of the environments provide service to

analyze the software, either statically or dynami-
cally. Some of these tools can be applied to early

software products, such as requirements or design

specifications. Other tools help to organize test

libraries or software configurations. All of these

contribute to the quality of the software products

- 31 -

This report has addressed the requirements to

make a software engineering environment readily

usable by software engineers of varying levels of

expertise. Examples portrayed different kinds of

on-line help systems and user features that contri-

bute to user acceptance of a software engineering

environment. Only after acceptance and usage

can a software engineer reap the potential benefits

of software engineering environments.

This report has also shown that various other fac-

tors may affect the design and capabilities of the

software engineering environment. Some of these

include hardware considerations and the type of

applications the environment will be used to

develop. The target computer’s processing units

might impact operating speed of some of the func-

tions the environment is expected to perform.

Also, hardware accessories, such as a pointing dev-

ice for command control, may drive the design of

some environments. Speedy transmission of vast

amounts of data for an information system may
require a different type of environment for its

development from an environment intended to be

used in developing an embedded system.

This report has defined generic capabilities that

are important for all environments to have. There

are varying levels of support that add on to these

capabilities. The types of support are frequently

tailored to satisfy a specific group of users. Even
if a complete environment with the highest sup-

port level were developed, it is likely that it would
serve only a small part of the software engineering

community.

- 32 -

11.0 REFERENCES
(ACM82)

"Special Issue on Rapid Prototyping,”

Working Papers from the ACM SIGSOFT
Rapid Prototyping Workshop, Software

Engineering Notes
,
Vol. 7, No. 5, December

1982.

[ACM84]
"Proceedings of the ACM
SIGSOFT/S1GPLAN Software Engineering

Symposium on Practical Software Develop-

ment Environments,” Software Engineering

Notes
,
Vol. 9, No. 3, May 1984.

[Alfo8l]

M. W. Alford and C. G. Davis, "Experience

with the Software Development System,”

Software Engineering Environments
,

H.

Hunke, Editor, North-IIolland, 1981.

[Ambl77]

A. L. Ambler, et al, ” Gypsy: A Language

for Specification and Implementation of

Verifiable Programs,” Software Engineering

Notes
,
March 1977.

[Aust82]

W. P. Austell, Jr., M. D. Deshler, and J. W.
Hearne, "Automated Interactive Simulation

Model (AISIM),” CDRL 104, Contract No.

F19628-79-C-0153, Hughes Ground Systems

Group, Fullerton, CA, February 1982.

[Bass83]

P. Bassett and J. Giblon, "Computer Aided
Programming (Part I),” Proceedings of Soft-

Fair, (IEEE Order No. 83CH1919-0), July

1983.

[Baye8l]

M. Bayer, et al, "Software Development in

the CDL2 Laboratory,” Software Engineering

Environments
,

H. Hunke, Editor, North-

Holland, 1981.

[Blum82]

B. Blum and R. Houghton, "Rapid Prototyp-

ing of Information Management Systems,”

Working Papers from the ACM SIGSOFT
Rapid Prototyping Workshop, Software

Engineering Notes, Vol. 7, No. 5, December
1982.

[Booc83]

Grady Booch, "Object-Oriented Design,”

Tutorial on Software Design Techniques,

Fourth Edition, IEEE No. EHO205-5, 1983.

[Boeh78]

B. W. Boehm, J. R. Brown, H. Kaspar, M.
Lipow, G. J. MacLeod and M. J. Merritt,

Characteristics of Software Quality, North-

Holland Publishing Company, NY, 1978.

[Boeh8l]

Barry W. Boehm, Software Engineering

Economics, Prentice-Hall, 1981.

[Boeh84]

Boehm, Barry W. et al, ”A Software

Development Environment for Improving

Productivity,” Computer
,
Vol. 17, No. 6,

June 1984.

[Bran81]

Martha A. Branstad, W. Richards Adrion,

and John C. Cherniavsky, ”A View of

Software Development Support Systems,”

Proceedings of National Electronics Confer-

ence, Chicago, IL, October, 1981.

[Broo75]

F. P. Brooks, Jr, The Mythical Man-Month,

Addison-Wesley Pub. Co., 1975.

[Buxt80]

J. Buxton, "Requirements for Ada Program-

ming Support Environments: STONEMAN,”
U.S. Department of Defense, Washington,

DC, February 1980.

[Bryc83]

M. Bryce, ” PRIDE - Automated Systems

Design Methodology,” Proceedings of Soft-

Fair, (IEEE Order No. 83CI 11919-0), July

1983.

[Cain75]

S. H. Caine and E. K. Gordon, ”PDL: A
Tool for Software Design,” Proceedings of

the National Computer Conference, 1975.

[CAIS83]

"Draft Specification of the Common APSE
Interface Set (CAIS), Version 1.1,”

KIT/KITLA CAIS Working Group for the

Ada Joint Program Office, NTIS AD-
A134825, September 1983.

[Clar8l]

I. A. Clark, "Software Simulation as a Tool

for Usable Product Design,” IBM Systems

Journal, Vol. 20, No. 2, 1981.

[Cowe83]

Wayne R. Cowell, and Leon J. Osterweil,

"The Toolpack/IST Programming Environ-

ment,” Proceedings of SoflFair, (IEEE Order

No. 83CH1919-0), July 1983.

[DACS79]
"Quantitative Software Models,” Data and

Analysis Center for Software, SRR-1, March
1979.

[Deli84]

Norman M. Delisle, David E. Menicosy, and

Mayer D. Schwartz, "Viewing a Program-

ming Environment as a Single Tool,”

Proceedings of the ACM SIGSOFT/ SIG-

PLAN Software Engineering Symposium on

- 33 -

Practical Software Development Environ-

ments, Gaithersburg, MD, April 1984.

[Estr78]

G. Estrin, ” A Methodology for Design of

Digital Systems - Supported by SARA, Age:
1,” Proceedings of the National Computer
Conference, June 1978.

[Fair78]

R. E. Fairley, "Tutorial: Static Analysis and
Dynamic Testing of Computer Software,”

Computer, April 1978.

[Feld79]

S. I. Feldman, "Make - A Program for Main-
taining Computer Programs,” Software -

Practice and Experience, Vol. 9, 1979.

[Fenc8l]

R. Fenchel, "An Integral Approach to User

Assistance,” Proceedings of the Conference

on Easier and More Productive Use of Com-
puter Systems, ACM Order No. 608811, May
1981.

[Fenc82]

R. S. Fenchel and G. Estrin, "Self-Describing

Systems Using Integral Help,” IEEE Tran-

sactions on Systems, Man, and Cybernetics,

March-April 1982.

[FIPS38]

Guidelines for Documentation of Computer
Programs and Automated Data Systems,

National Bureau of Standards FIPS PUB 38,

February 1976.

[FIPS64]

Guidelines for Documentation of Computer
Programs and Automated Data Systems for

the Initiation Phase, National Bureau of

Standards FIPS PUB 64, August 1979.

[FIPS76]

Guideline for Planning and Using a Data
Dictionary System. National Bureau of

Standards FIPS PUB 76, August 1980.

[FIPS99]

Guideline: A Framework for the Evaluation

and Comparison of Software Development
Tools, National Bureau of Standards FIPS
PUB 99, March 1983.

[FIPSlOl]

Guideline for Lifecycle Validation,

Verification, and Testing of Computer
Software, National Bureau of Standards

FIPS PUB 101, June 1983.

[FIPS106]

Guideline on Software Maintenance,

National Bureau of Standards FIPS PUB
106, June 1984.

[Fisc 84]

C. N. Fischer, et al, "The Poe Language-

Based Editor Project,” Proceedings of the

ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical

Software Development Environments, Gaith-

ersburg, MD, April 1984.

[Free83a]

Peter Freeman and Anthony I. Wasserman,
"Ada Methodologies: Concepts and Require-

ments,” ACM Sigsoft Software Engineering

Notes, Vol. 8, No. 1, January 1983.

[Free83b]

Peter Freeman, "The Fundamentals of

Design,” Tutorial on Software Design Tech-

niques, Fourth Edition, IEEE No. EHO205-5,
1983.

[FSWE80]
Federal Software Exchange Catalog, General

Services Administration, GSA/ADTS/ C-

80/3, FSWEC-80/0118, September 1980.

[GAO80]
"Wider Use of Better Computer Software

Technology Can Improve Management Con-
trol and Reduce Costs,” Comptroller

General’s Report to the Congress, U.S. Gen-
eral Accounting Office, FGMSD-80-38, April

29, 1980.

[Gunn59]

R. Gunning, How to Take the Fog Out of

Writing, Dartnell Press, Inc., Chicago, 1959.

[Gutz8l]

Steve Gutz, Anthony I. Wasserman, and
Michael J. Spier, "Personal Development
Systems for the Professional Programmer,”

Computer, Vol. 14, No. 4, April 1981.

[Hall80]

Dennis E. Hall, Deborah K. Scherrer, and

Joseph S. Sventek, "A Virtual Operating

System,” Communications of the ACM
,
Vol.

23, No. 9, September 1980.

[Hals77]

M. H. Halstead, Elements of Software Sci-

ence, Elsevier - North Holland Pub. Co.,

New York, 1977.

[Howd78]

W. E. Howden, ”A Survey of Static Analysis

Methods,” Tutorial: Software Testing and

Validation Techniques, IEEE Cat. No.

EH0138-8, 1978.

[Howd78a]

W. E. Howden. ”A Survey of Dynamic
Analysis Methods,” Tutorial: Software Test-

ing and Validation Techniques, IEEE Cat.

No. EH0 138-8, 1978.

- 34 -

[I Iowd 82
]

William E. Ilowden, "Contemporary

Software Development Environments,” Com-
munications oj the ACM

,
Vol. 25, No. 5,

May 1982.

[1 Ioug84j

R. Houghton, "Online Help Systems: A Con-

spectus,” Communications of the ACM
,
Vol.

27, No. 2, February 1984.

[ICSE81]

Proceedings of the 5th International Confer-

ence on Software Engineering, (IEEE Order

No. 81-CH1627-9), March 1981.

[ICSE82]

Proceedings of the 6th International Confer-

ence on Software Engineering, (IEEE Order

No. 82-CH1795-4), September 1982.

[ICSE84]

Proceedings of the 7th International Confer-

ence on Software Engineering, (EEEE Order

No. 84-CH2011-5), March 1984.

[IEEE729]

IEEE Standard Glossary of Software

Engineering Terminology, IEEE Std 729-

1983.

[Inte82]

"System Specification for Ada Integrated

Environment, Type A,” Intermetrics, Inc.,

IR-676-2, November 1982.

[Jack75]

M. A. Jackson, Principle of Program Design,

Academic Press, 1975.

[Kern76]

B. Kernighan and P. Plauger, Software

Tools, Addison-Wesley Pub. Co., 1976.

[Kern8l]

Brian W. Kernighan and John R. Mashey,
"The UNIX Programming Environment,”

Computer
,
Vol. 14, No. 4, April 1981.

[Knut7l]

D. Knuth, "An Empirical Study of FOR-
TRAN Programs,” Software-Practice and
Experience

,
1971.

[Lebl84]

David B. Leblang and Robert P. Chase, Jr.,

"Computer-Aided Software Engineering in a

Distributed Workstation Environment,”
Proceedings of the ACM SIGSOFT/ SIG-
PLAN Software Engineering Symposium on

Practical Software Development Environ-

ments, Gaithersburg, MD, April 1984.

[Lecl82]

Y. Leclerc, S. W. Zucker, and D. Leclerc, "A
Browsing Approach to Documentation,”

Computer
,
June 1982.

[Lond80]

R. L. London and L. Robinson, "The Role of

Verification Tools and Techniques,” Software

Development Tools by W. E. Riddle and R.

E. Fairley, Springer-Verlag, 1980.

[Love83]

Tom Love, "Experiences with Smalltalk-80

for Application Development,” Proceedings

of SoftFair, (IEEE Order No. 83CIU919-0),

July 1983.

[Lyon8l]

M. J. Lyons, "Salvaging Your Software

Asset,” Proceedings of the National Com-
puter Conference, May 1981.

[Mart82]

James Martin, Application Development

Without Programmers, Prentice-Hall, 1982.

[McCa76]

T. J. McCabe, ”A Complexity Measure,”

IEEE Transactions on Software Engineering,

Vol SE-2, December 1976.

[Metz83]

J. J. Metzger and A. Dniestrowski, "Platine:

A Software Engineering Environment,”

Proceedings of SoftFair, (IEEE Order No.

83CH1919-0), July 1983.

[Mill56]

G. Miller, "The Magical Number Seven, Plus

or Minus Two: Some Limits on our Capacity

for Processing Information,” Psychological

Review
,
Vol. 63, 1956.

[NBS3]

B. Leong-Hong and B. Marron, "Technical

Profile of Seven Data Element Dictionary/

Directory Systems,” National Bureau of

Standards, NBS SP 500-3, February 1977.

[NBS78]

Martha A. Branstad and W. Richards

Adrion, Editors, ”NBS Programming
Environment Workshop Report,” National

Bureau of Standards, NBS SP 500-78, June

1981.

[NBS80]

R. Houghton, Editor, Proceedings of the

NBS/IEEE/ACM Software Tool Fair,

National Bureau of Standards, NBS SP 500-

80, October 1981.

[NBS82]

Herbert Hecht, "Final Report: A Survey of

Software Tools Usage,” National Bureau of

Standards, NBS SP 500-82, November 1981

[NBS88]

R. Houghton, "Software Development

Tools,” National Bureau of Standards Spe-

cial Publication 500-88, March 1982

- 35 -

[NBS93]

Patricia B. Powell, Editor, "Software Valida-

tion, Verification, and Testing Technique

and Tool Reference Guide,” National Bureau

of Standards, NBS SP 500-93, September

1982.

[NBS106]

Roger J. Martin and Wilma M. Osborne,
” Guidance on Software Maintenance,”

National Bureau of Standards, NBS SP 500-

106, December 1983.

[NBS359]

"Fortran 77 Analyzer User Manual,”

National Bureau of Standards, NBS GCR
81-359, 1981.

[NBS418]

M. Shadad and E. Libster, "Compiler

Features: A Survey,” National Bureau of

Standards, NBS GCR 82-418, December
1982.

[NBS2625]

Raymond C. Houghton, Jr., ”A Taxonomy of

Tool Features for the Ada Programming
Support Environment (APSE),” National

Bureau of Standards, NBSIR 82-2625, Febru-

ary 1983.

[NBS3113]

Raymond C. Houghton, Jr., "Annotated

Bibliography of Recent Papers on Software

Engineering Environment”, National Bureau
of Standards, NBSIR 85-3113, February

1985.

[Oste76]

L. J. Osterweil and L. D. Fosdick, "DAVE -

A Validation Error Detection and Documen-
tation System for FORTRAN Programs,”

Software-Practice and Experience
,
October

1976.

[Parn72]

D. L. Parnas, ”On the Criteria to be Used in

Decomposing Systems into Modules,” Com-
munications of the ACM

,
December 1972.

[Perr84]

T. Perrine, J. Codd, and B. Hardy, ”An
Overview of the Kernelized Secure Operating

System (KSOS),” 7th DoD/NBS Computer
Security Conference, National Bureau of

Standards, September 1984.

[Porc83]

Maria Porcella, Peter Freeman, and Anthony
I. Wasserman, "Ada Methodology Question-

naire Summary,” ACM Sigsoft Software

Engineering Notes, Vol. 8, No. 1, January

1983.

[Pric8l]

L. Price, "Using Offline Documentation

Online,” Proceedings of the Conference on

Easier and More Productive Use of Computer
Systems, ACM Order No. 608811, May 1981.

[Priv82]

J. P. Privitera, "Ada Design Language for

the Structured Design Methodology,”

Proceedings of the AdaTEC Conference,

October 1982.

[Raxo80]

R. Raxouk and G. Estrin, "Modeling and
Verification of Communication Protocols in

SARA: X.21 Interface,” IEEE Transactions

on Computers
,
December 1980.

[Rell8l]

N. Relies, N. Sondheimer, and G. Ingargiola,

"Recent Advances in User Assistance,”

Proceedings of the Conference on Easier and

More Productive Use of Computer Systems,

ACM Order No. 608811, May 1981.

[Rell81a]

N. Relies and L. A. Price, ”A User Interface

for Online Assistance,” Proceedings of the

5th International Conference on Software

Engineering, March 1981.

[Rell81b]

N. Relies and L. A. Price, "Sample Output:

A User Interface for Online Assistance,”

Proceedings of the NBS/IEEE/ACM
Software Tool Fair, NBS Special Publication

500-80, R. Houghton, ed., October 1981.

[Ridd8l]

W. E. Riddle, ”An Assessment of Dream,”

Software Engineering Environments
,

H.

Hunke, Editor, North-Holland, 1981.

[Ridd83]

William E. Riddle, "The Evolutionary

Approach to Building the Joseph Software

Development Environment,” Proceedings of

SoftFair, (IEEE Order No. 83CH1919-0),

July 1983.

[Rin82]

N. Adam Rin, "An Interactive Applications

Development System and Support Environ-

ment,” Automated Tools for Information Sys-

tems Design, H. Schneider and A. Wasser-

man, Editors, North-Holland, 1982.

[Robi77]

L. Robinson and K. N. Levitt, "Proof Tech-

niques for Hierarchically Structured Pro-

grams,” Communications of the ACM
,
April

1977.

[Roem82]

J. M. Roemer and A. Chapanis, "Learning

Performance and Attitudes as a Function of

the Reading Grade Level of a Computer-

Presented Tutorial,” Proceedings of the

- 38 -

Conference on Human Factors in Computer

Systems, Washington DC Chapter of the

ACM, March 1982.

[Roth79]

J. Rothenberg, "On-Line Tutorials and

Documentation for the SIGMA Message Ser-

vice,” Proceedings of the National Computer

Conference, 1979.

[Rube83]

Burt L. Rubenstein and Richard A. Car-

penter. "The Index Development Environ-

ment Workbench,” Proceedings of SoftFair,

(IEEE Order No. 83CH1919-0), July 1983.

[Saib8l]

S. H. Saib, J. P. Benson, C. Gannon, and W.
R. DeHaan. "RXVP80: A Software Docu-

mentation, Analysis, and Test System,”

Proceedings of the NBS/IEEE/ACM
Software Tool Fair, NBS Special Publication

500-80, R. Houghton, ed., October 1981.

[Shne80]

Shneiderman, B., Software Psychology:

Human Factors in Computer and Information

Systems
,

Winthrop, Cambridge, Mass.,

1980.

[Soft83]

Proceedings of SoftFair, A Conference on

Software Development Tools, Techniques,

and Alternatives, (IEEE Order No.

83CH1919-0), July 1983.

[Stay 76]

J. F. Stay. ”HIPO and Integrated Program
Design,” IBM Systems Journal

,
Vol. 15, No.

2, 1976.

[Steu84]

H. G. Steubing, ”A Software Engineering

Environment (SEE) for Weapon System
Software,” IEEE Transactions on Software

Engineering, Vol. SE-10, No. 4, July 1984.

[Stuc83]

Stucki, Leon G.,”What about CAD/CAM for

Software? The ARGUS Concept,” Proceed-

ings of SoftFair, (IEEE Order No.

83CH1919-0), July 1983.

[Tayl84]

Richard N. Taylor and Thomas A. Standish,

"Steps to an Advanced Ada Programming
Environment,” Proceedings of the 7th Inter-

national Conference on Software Engineer-

ing, (IEEE Order No. 84CH2011-5), March
1984. ”[Teic77]” D. Teichroew and E.

Hershey III, "PSL/PSA: A Computer-Aided

Technique for Structured Documentation of

Information Processing Systems,” IEEE
Transactions on Software Engineering

,
Vol

SE-3, No 1, 1977.

[Teit8l]

Warren Teitelman and Larry Masinter, "The
Interlisp Programming Environment,” Com-
puter

,
Vol. 14, No. 4, April 1981.

[Teit81a]

T. Teitelbaum and T. Reps, "The Cornell

Program Synthesizer: A Syntax-Directed

Programming Environment,” Communica-
tions of the ACM, Vol. 24, No. 9, September

1981.

[Teit84]

W. Teitelman, ”A Tour Through Cedar,”

Proceedings of the 7th International Confer-

ence on Software Engineering, (IEEE Order

No. 84CH2011-5), March 1984.

[Thom8l]

D. H. Thompson, et al, "Specification and

Verification of Communication Protocols in

Affirm,” ISI/RR-81-88, USC/Information Sci-

ences Institute, February 1981.

[UNIX42]

UNIX PROGRAMMER" S MANUAL, 4.2

Berkeley Software Distribution, Virtual

VAX-11 Version, Department of Electrical

Engineering and Computer Science, Univer-

sity of California, Berkeley, California 94270,

August, 1983.

[Warn74]

J. Warmer, Logical Construction of Pro-

grams
,
Van Nostrand Reinhold, 1974.

[Wass82]

A. Wasserman and D. Shewmake, "Rapid
Prototyping of Interactive Information Sys-

tems,” Working Papers from the ACM SIG-

SOFT Rapid Prototyping Workshop,

Software Engineering Notes, Vol. 7, No. 5,

December 1982.

[Wass83]

Wasserman, Anthony I, "The Unified Sup-

port Environment: Tool Support for the User

Software Engineering Methodology,”

Proceedings of SoftFair, (IEEE Order No.

83CH1919-0), July 1983.

[Wolf81]

Martin I. Wolfe, et al, "The Ada Language

System,” Computer
,
Vol. 14, No. 6, June

1981.

[Your75]

E. Yourdon and L. Constantine, Structured

Design
,
Yourdon Press, New York, 1975

[Zajo83]

P. C. Zajonc and K. J. McGowan. "Proto-

Cycling: A New Method for Application

Development Using Fourth Generation

Languages,” Proceedings of SoftFair, (IEEE
Order No. 83CH1919-0), July 1983.

- 37 -

eedings of a

Order No. 473800, March 1980.

38

NBS-1MA (REV, 2 -60)

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSI R-85/3250

2. Performing Organ. Report No.

644

3. Publication Oate

September 19, 1985

4. TITLE AND SUBTITLE

Characteristics and Functions of Software Engineering Environments

5. AUTHOR(S)
Raymond C. Houghton, Jr, and Dolores R. Wallace

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

S. Type of Report & Period Covered

research
10/1/84 - 9/19/85

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

National Bureau of Standards
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

Q J Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

As part of the program to provide information to Federal agencies on software tools for
improving quality and productivity in software development and maintenance, data was
collected on software engineering environments. Software engineering environments sur-
round their users with software tools necessary for systematic development and mainte-
nance of software. The purpose of this report is to characterize software engineering
environments by type and by their relationship to the software life cycle and by their
capabilities, limitations, primary users, and levels of support. This report provides
examples of existing software engineering environments that are available commercially
or in research laboratories with the features and characteristics they provide.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon v

framing environments; human factors; life cycle coverage; programming environments;
software analysis; software engineering environments; software support, software tools

13. AVAILABILITY

|y~~] Unlimited

[|
For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

|j£] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

44

15. Price

