
PUBDCATIONS

NAT'L INST. OF STAND & TECH

AlllDt 3?ab3
NBSIR 85-323b

An NBS Host to Front End Protocol

C. Michael Chernick

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Systems and Network Architecture Division

Gaithersburg, MD 20899

August 1985

U.S. DEPARTMENT OF COMMERCE

QC

BUREAU OF STANDARDS

NBSIR 85-3236
t • »

NATIONAt SUEEAU
qf^- STAND SJ5DS

LlBRjUiT

AN NBS HOST TO FRONT END PROTOCOL
Qc.

/ o

C. Michael Chernick

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology
Systems and Network Architecture Division

Gaithersburg, MD 20899

August 1985

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

An NBS Host to Front End Protocol

C . Michael Chernick

9 August 1985

Table of Contents

Part I - Introduction to the Description 1

1.0 Important Introductory Note 1

2.0 Organization of the Description 1

3.0 Background, Purpose, and Design Goals 1

Part II - HFEP Service Specification 3

1.0 Introduction 3

2.0 Types of Service Primitives 3
3.0 HFEP Services 4

3 . 1 HOPEN Service 4
3.2 HLISTEN Service 6
3 . 3 HDATA Service 7
3.4 HCLOSE Service 9
3.5 HSTATUS Service _ 10

4.0 Time Sequence Diagrams 12
5.0 Appendix A - A Solution to the N + 1 Layer Rendezvous Problem 19

Part III - HFEP Specification 21
1.0 Formal Definition of the HFEP Protocol Machine 21

1.1 Introduction 21
1.2 Data Declarations 21
1 . 3 State Abbreviations 26
1.4 Procedure, Predicate, and Primitive Procedure Declarations 28
1 . 5 Description of Variables 30
1.6 State Transitions 33
1.7 Primitive Procedures and Functions 66

2.0 Time Sequence Diagrams 69
3.0 Network Interface 75
4.0 State Diagram 79
5.0 Appendix A - Protocol Data Unit (PDU) Formats 81

References 86

List of Figures

Figure II-l SEQUENCE OF PRIMITIVES FOR HOPEN ESTABLISHMENT 13
Figure II-2 POSSIBLE SEQUENCE OF PRIMITIVES FOR HDATA SERVICE 14
Figure II-3 POSSIBLE SEQUENCE OF PRIMITIVES FOR HDATA SERVICE 15
Figure I I-4 SEQUENCE OF PRIMITIVES FOR HCLOSE SERVICE 16
Figure II-5 PRIMITIVES FOR LAYER INITIATED HCLOSE SERVICE 17
Figure I I-6 SEQUENCE OF PRIMITIVES FOR HSTATUS SERVICE 18
Figure III-l HFEP HOPEN ESTABLISHMENT 70
Figure III-2 POSSIBLE SEQUENCE OF PRIMITIVES FOR HDATA SERVICE 71
Figure III-3 NORMAL HFEP HCLOSE SERVICE 72
Figure III-4 LAYER INITIATED HCLOSE SERVICE 73
Figure III-5 HFEP HSTATUS SERVICE 74
Figure III-6 HFEP STATE DIAGRAM 80
Figure A-1 HOPEN REQUEST PDU (HOR) 82
Figure A-2 HOPEN CONFIRM PDU (HOC) 83
Figure A-3 HDATA PDU (HDT) 84
Figure A-4 HCLOSE SERVICE PDUS 85

ii

Pari I = to the

1 Introduction

The National Bureau of Standards (NBS) Computer Networking
Program has specified a host-to-front end communications protocol
intended to be used in researching networking protocol
performance. This protocol was developed not as a proposed
standard, but rather to support protocol performance testing.
This report is being piiblished to document the protocol
performance group's research and development into host-to-front
end communications protocols so that it might prove useful to
others wishing to implement this or similar protocols.

2 Qr^anizatiim of the Description

This description of the Host-to-Front End Protocol (HFEP) is
divided into three parts. This, Part I, describes the background,
purpose, and design goals of the HFEP. Part II is the HFEP
Service Specification, which describes the services that the
protocol offers to a user. The last part. Part III, is the HFEP
Specification which describes the protocol mechanisms themselves
using a formal description technique [TennSl] , time sequence
diagrams, state tables and header formats for the protocol data
units (PDU's) employed.

3 Sa2kg££und^ Purpose^ afld IMsign GnalS

Many modern computer communications protocols are complex to
design and build and require large amiounts of host computer
resources (e.g., memory, cpu time, system services). Complexity
in designing, building, and tuning these protocols can often lead
to delay in problem solving using networking, especially in view
of changing technology and communications policy (e.g.,
tariffing). The resource loads imposed by communications software
on a host can be quite large, possibly significantly reducing the
potential computer networking gains.

One method that can be used to reduce the impact of these
drawbacks is the use of so called "Front End" computing systems
(also called "Outboard Processing Elements" (OPE) [Padi84]). Such
systems are usually connected to host computers through very
reliable, high bandwidth computer communications channels. They
off-load many of the tasks involved with maintaining connections
over numerous, possibly highly unreliable, communications
networks. Modern technology, such as single board communications
oriented computers, allows the development of these OPE's at a
reasonable cost. Complex communications protocols can be
programmed into a relatively small number of ROM chips. Already

1

commercial implementations of the ISO transport class 4 [IS8073]
are available on small computers at modest costs. More
implementations supporting a wider variety of underlying network
technology and higher layer protocols can be expected in the
future

.

The NBSY"N4tworking Program is concerned with both the
performance m communications protocols themselves and with their
effect on host computer systems. We are also concerned with
testing methodology for protocol performance measurement. For
these reasons we see merit in using OPE ' s both in direct support
of our research and as a general tool for the networking research
community

.

However, before an OPE can be connected to a host computer, a
host-to-front end protocol (HFEP) must be developed. This
protocol should be flexible enough to allow the off-loading of a
wide variety of communications protocols and yet still be
reasonably simple to avoid overloading the host computer with
tasks possibly just as complex as those off-loaded. (M.
Padilipsky comments further on this problem in a discussion of the
concept of "advantageous to implement" [Padi84].) Since the path
from the host to the OPE is normally extremely reliable (almost on
a par with intra computer path reliability) , the HFEP need not be
overly concerned with host to OPE communications errors. This
greatly simplifies HFEP design and implementation.

To further reduce design effort and enhance capaJbility it was
decided early in the HFEP development (during the Fall of 1984) to
base the design as much as possible on availal>le standards and
products. Thus the current design is based on X.25 technology to
provide the reliable connection oriented service needed for the
host to OPE communications path. A factor in this choice was the
existence of a commercially available X.25 device for our host
computer (a VAX 780). However, while our design is based
primarily on X.25, other reliable, multiplexed and individually
flow controlled network connection oriented technologies could be
used in place of X.25.

2

Par:fe II - seep SerYice Specification

1 . 0 inirQductiQa

Some of the terminology and concepts used in this part of the
description are the sajne or similar to those used in the ISO Open
System Interconnection (OSI) Basic Reference Model (BRM) [IS7498].
It is suggested that the reader become familiar with the material
in the BRM.

The Host Front End Protocol (HFEP) provides a reliable
connection oriented process-to-process communications path between
a host computer and a front end computer (also called an Outboard
Processing Element (OPE) [Padil84]). The HFEP is symmetric i.e.,
the sajne service is provided to the OPE as to the host. While it
provides service that can be used by an upper layer protocol, HFEP
is independent of any particular upper layer protocol such as ISO
Transport. These services are provided by mapping to a lower
layer protocol (in this case Z.25). In addition, HFEP provides
other functionality such as process rendezvous (initial connection
service). Possible future extensions to HFEP service could be
HFEP connection testing (via loopback) and HFEP traffic
monitoring

.

Since the communications path between the host and OPE is
relatively sl^ort and link level error detection and correction is
provided by X.25, HFEP does not provide for error correction and
recovery although error detection and reporting are included. (It
may be decided that underlying Z.25 services are reliable enough
so that even this is not necessary.) It is anticipated that either
the host to OPE link will be essentially error free (after Z.25
link level error recovery) or the link is so error prone as to be
useless. In either case, error recovery techniques above and
beyond Z.25 hardly seem beneficial and would be detrimental to the
design goals of offloading the host and providing high host to OPE
throughput

.

2.0 Types Of Service Primitives

Service provided is described in a manner similar to that
used for Transport [ICST83] . There are four types of primitives,
namely:

a) request (issued by HFEP user to request HFEP service),

b) indication (issued by HFEP to indicate an action),

c) response (issued by HFEP user to respond to an
indication) , and

d) confirmation (issued by HFEP to confirm some request).

3

3 .

0

HFEP Services3.1

HOPEN Service

The HOPEN service is used to establish an HFEP connection and
to transfer a limited amount of user supplied data in each
direction. HOPEN is a confirmed service.
3.1.1

HOPEN . request (uconnid , Ihsap-id , fhsap-id , udata)

The HOPEN. request is issued by a user of HFEP to
attempt to establish an HFEP connection from a local
HFEP Service Access Point (HSAP) to a foreign HSAP.
(Note: The concept of Service Access Points is
discussed in the OSI Basic Reference Model [IS7498]).
The user may include a limited amount of data with the
HOPEN request

.

uconnid - a non-zero identifier assigned by the local
user of the potential HFEP connection to
distinguish this connection request from any
others. (This identifier has local significance
only .

)

Ihsap-id - the local HSAP identifier (an address) which
has end to end significance between the host and
the front end (OPE). This is the address from
which a connection is being requested.

fhsap-id - the foreign HSAP identifier (an address)
which has end to end significance between the host
and the front end (OPE). This is the address to
which a connection is being requested.

udata - a limited sequence (up to 32 octets) of user
supplied data to be delivered by the corresponding
HOPEN indication to the foreign HSAP identified by
fhsap-id.

3.1.2

HOPEN. indication(uconnid, hconnid, Ihsap-id, fhsap-id, rudata)

The HOPEN. indication is issued by an HFEP entity to
an HFEP user to indicate the arrival of a connection
request . The HFEP user must have previously issued an
HLISTEN. request (See HLISTEN Service below.) to the
local HFEP entity to indicate the user's willingness to
accept HOPEN. indications . Two possibilities exist.
Either the previous HLISTEN explicitly indicated a local
HSAP identifier whose value was Ihsap-id or the previous
HLISTEN specified a local HSAP identifier of 0 to

4

indicate it's willingness to accept HOPEN. requests for
any local HSAP identifier. The HFEP entity will only
issue an HOPEN. indication to a user that has HLISTENed
with a local HSAP identifier of 0 in the case where no
other user has explicitly issued an HLISTEN indicating
the same local HSAP identifier. The HOPEN. indication
may include a limited ajnount of user data.

uconnid - an identifier originally assigned by the
local user and included in a HLISTEN. request for
the potential HFEP connection. This identifier
distinguishes this connection indication from any
others. (This identifier has local significance
only.

)

hconnid - an identifier assigned by the local HFEP
entity to distinguish this potential HFEP
connection indication from any others. (This
identifier has local significance only.)

Ihsap-id - the local HSAP identifier (an address) which
has end to end significance between the host and
the front end (OPE). This is the address for
which a remote connection was requested.

fhsap-id - the foreign HSAP identifier (an address)
which has end to end significance between the host
and the front end (OPE). This is the address from
which a connection was requested.

rudata - a limited sequence (up to 32 octets) of user
supplied data included with the corresponding
HOPEN . request

.

.1.3 HOPEN. response (hconnid, udata)

The HOPEN. response is issued by a user of HFEP to
indicate his willingness to accept a connection. A
previous HOPEN. indication must have arrived indicating
hconnid as the HFEP assigned connection identifier, an
HFEP connection from a local HSAP (HFEP Service Access
Point) to a foreign HSAP. The user may include a
limited amount of data with the HOPEN. response

.

hconnid - an identifier assigned by the local HFEP
entity to the potential HFEP connection to
distinguish it from any others. (This identifier
has local significance only.)

udata - a limited sequence (up to 32 octets) of user
supplied data to be delivered by the corresponding
HOPEN. confirm to the foreign HSAP.

5

3.1.4 HOPEN . confirmCuconnid , ticoimid , rudata)

The HOPEN. confirm is issued by an HFEP entity to an
HFEP user to indicate the arrival of a connection
confirm. The HFEP user must have previously issued an
HOPEN, request to the local HFEP entity to indicate the
user's desire to initiate a HFEP connection. The
HOPEN. confirm may include a limited aimount of remote
user data.

uconnid - an identifier originally assigned by the
local user and included in a HOPEN . request for the
potential HFEP connection. This identifier
distinguishes this connection indication from any
others. (This identifier has local significance
only .

)

hconnid - an identifier assigned by the local HFEP
entity to distinguish this potential HFEP
connection indication from any others. (This
identifier has local significance only.)

rudata - a limited sequence (up to 32 octets) of remote
user supplied data included with the corresponding
HOPEN . response

.

3 . 2 HLISTEN Service

The HLISTEN service is associated with the HOPEN service and
is used to inform the local HFEP entity that the issuer wishes to
be notified (via an HOPEN. indication) of arriving HOPEN connection
requests. (See Appendix A for a discussion of the N + 1 Layer
rendezvous problem.) HLISTEN is of local significance only since
no HFEP Protocol Data Units (PDUs) can be sent directly as a
result of an HLISTEN. request . HLISTEN. request is the only service
primitive associated with the HLISTEN service.

If for some reason (perhaps lack of local resources) the
HLISTEN. request cannot be honored by the local HFEP entity, an
HCLOSE . indication with a user connection identifier of uconnid
will arrive subsequently.

3.2.1 HLISTEN. request (uconnid , Ihsap-id)

The HLISTEN. request is issued by a user of HFEP to
indicate his willingness to accept an indication for a
connection. The local HFEP entity places the Ihsap-id
in its internal tables. When a subsequent connection
request arrives for this Ihsap-id, the HFEP entity can
determine to which local user the indication should be
delivered. As a special case, Ihsap-id can be 0 to

6

inform the local HFEP entity that this local user will
accept delivery for any Ihsap-id.

uconnid - a non-zero identifier assigned by the local
user of the potential HFEP connection to
distinguish this HLISTEN. request from any others.
This identifier will be returned to the HFEP user
with any subsequent HOPEN. indications that arrive.
(This identifier has local significance only.)

Ihsap-id - the local HSAP identifier (an address) which
has end to end significance between the host and
the front end (OPE). A future HOPEN . request for
Ihsap-id can be delivered to this user. If the
value of Ihsap-id is 0 this user will accept an
indication for any local HSAP.

3.3 HDAIA SerYice

The HDATA Service is the primary method of transmitting and
receiving HFEP user data across the host -front end boundary.
HDATA is a non-confirmed service consisting of two primitives,
HDATA. request and HDATA. indication. An HFEP connection must have
been previously established before user data can be sent or
received.

The data stream is composed of a sequence of HFEP service
data units (HSDU's). Each HSDU is itself a sequence of user
supplied octets. The end of an HSDU is marked by an END OF HSDU
(EOHSDU) flag. User data may (but need not) be buffered at the
transmitting (or receiving) HFEP entity until an EOHSDU is
indicated. The HFEP HDATA service guarantees that data will be
delivered in order. That is, the order that a user presents data
to HFEP via an HDATA. request primitive at one end of an HFEP
connection is the same order that data are delivered at the other
end of the connection by an HFEP. indication. Both the sequence of
octets within an HSDU and the sequence of HSDU's in an HFEP
connection is preserved.

Often an entire HSDU is not sent with one HDATA. request but
rather is sent with several HDATA. requests . For example, an HSDU
of 300 octets could be sent as one HDATA. request marked with the
EOHSDU flag, or it could be sent as 2 HDATA. requests of 100 octets
each followed by an HDATA. request of 100 octets marked with the
EOHSDU flag. Data delivered to the user at the receiving end may
be fragmented differently than that sent to the transmitting end
by the transmitting user. Thus an HSDU of 300 octets originally
sent as a single HDATA . request of 300 octets marked with the
EOHSDU flag could be delivered with one HDATA. indication of 300
octets marked with the EOHSDU flag, or it could be delivered as 2
HDATA. indications of 100 octets each followed by an
HDATA. indication of 100 octets marked with the EOHSDU flag.

7

However, fragmentation never occurs across HSDU boundaries. Thus,
data that must be kept logically intact across the HFEP interface
must be sent within a single HSDU.

3.3.1 HDATA. request (hconnid,udata, eohsduf)

The HDATA. request primitive is issued by an HFEP
user to transmit data to the other side of a previously
opened (via HOPEN primitives) HFEP connection. User
data may be buffered by the transmitting side if the
eohsduf (end of HSDU flag) is false.

hconnid - an identifier returned by one of the HOPEN
primitives to uniquely indicate which connection
is to be used for the data transmission.

udata - the user data to be transmitted. Udata is a
(non-null) sequence of octets the contents of
which are completely ignored by the HFEP entities
(i.e., data transparency is provided).

eohsduf - a flag which if set indicates that this
HDATA. request contains the last (and perhaps only)
user data that is to be delivered to the remote
HFEP entity as part of the current HSDU. If
eohsduf is false, this HDATA. request contains
either the initial or a middle portion of an HSDU.
If eohsduf is false, data may not actually be
transmitted or delivered to the remote HFEP user
until a subsequent HDATA. request is issued with
eohsduf set true.

3.3.2 HDATA. indication(hconnid, rudata, eohsduf

)

The HDATA. indication primitive is used to indicate
to an HFEP user that data has arrived from the remote
side. The connection must have previously opened using
the HOPEN service. Data delivered to the user by the
local HFEP entity may not necessarily be of the same
sequence length as that delivered to the remote HFEP
entity due to fragmentation by the HFEP service.
However, if the eohsduf (end of HSDU flag) is set, then
this indication is the last (or perhaps only)
HDATA. indication for an HSDU sent by the remote user.

hconnid - an identifier returned by one of the HOPEN
primitives to uniquely indicate which connection
is to be used for the data indication.

8

rudata - the user data being delivered. Rudata is a
(non-null) sequence of octets the contents of
which are completely ignored by the HFEP entities
(i.e.

,

data transparency is provided).

eohsduf - a flag which if set indicates that this
HDATA. indication contains the last (and perhaps
only) user data that is to be delivered to as part
of the current HSDU. If eohsduf is false, this
HDATA. indication contains either the initial or a
middle portion of an HSDU. If eohsduf is false,
additional remote user data is yet to be delivered
as part of the current HSDU.

3 . 4 HCLQSE SfiZYiGfi

The HCLOSE service is used to terminate the use of an HFEP
connection. It is also used to indicate that one side of an
"opening" connection (a connection in the process of being
established) refuses to open the connection. It is a nonconfirmed
service. Any user data that has been previously sent using the
HDATA. request primitive may be lost. After issuing an
HCLOSE . request or receiving an HCLOSE . indication for a given
connection, a user may not issue further HDATA. requests nor expect
to receive any further HDATA. indications . A user specified
disconnection reason (an unsigned binary number) and a limited
amount of user data may be sent with the HCLOSE service.

3.4.1 HCLOSE . request (uconnid , hconnid , ureason , udata)

The HCLOSE . request primitive requests the removal
of an HFEP connection, the refusal of one side to open a
connection (in the case where a HOPEN. indication has
been received) or the cancellation of an HLISTEN. request
for the connection identifier uconnid.

uconnid - an identifier previously assigned (in an
HOPEN. request or an HLISTEN. request) by the local
user of the HFEP to distinguish this connection
(or potential connection) from any others.

hconnid - an identifier assigned by the local HFEP
entity to distinguish this connection (or
potential connection) from any others.

ureason - an unsigned binary number specifying the
user's reason for closing or refusing the
connection. Ureason is limited to 16 bits. This
number will be delivered to the other side of the
(perhaps potential) connection with the
HCLOSE . indication primitive.

9

udata - a limited sequence of (up to 32) octets of user
supplied data to be delivered to the other side of
the (perhaps potential) connection with the
HCLOSE . indication primitive.

3.4.2 HCLOSE . indication(uconnid , hconnid , reason , rureason , rudat a)

The HCLOSE . indication service is used to inform an
HFEP user that an HFEP connection is being dissolved or
that a potential connection cannot be opened. The
reason for the disconnection is supplied by the local
HFEP entity. In the case of a remote user initiated
HCLOSE . request , the remote user's reason for issuing an
HCLOSE . request along with any data he may have supplied
are delivered to the local HFEP user.

uconnid - an identifier assigned by the user to
distinguish this connection (or potential
connection) from any others.

hconnid - an identifier assigned by the local HFEP
entity to distinguish this connection (or
potential connection) from any others.

reason - an unsigned binary number (16 bits) specifying
the reason for the disconnection. '

rureason - an unsigned binary number specifying the
remote user's reason for closing or refusing the
connection. Rureason is limited to 16 bits. This
number was specified by the remote user in his
HCLOSE . request . NOTE: rureason has no meaning if
reason indicates that this HCLOSE . indication was
not a remote user initiated disconnection request

.

rudata - a sequence of up to 32 octets of remote user
supplied data in an HCLOSE . request . NOTE: rudata
has no significance if reason indicates that this
HCLOSE . indication was not a remote user initiated
disconnection request.

3.5 HSIAIUS Service

The HSTATUS service is used to determine information about
the state of the local HFEP entity associated with a given
connection id. The connection can be identified by either a user
supplied connection identifier uconnid or a connection id
(hconnid) previously supplied by an HFEP entity. The HSTATUS
service is a confirmed service. Only one HSTATUS request can be
outstanding at a time. HSTATUS requests are processed locally and
expeditiously (i.e., as received and before subsequent HDATA

10

service primitives). The status returned reflects the recent
state of the local HFEP connection entity.

[NOTE: At a future time the HSTATUS service might be
extended to include remote HFEP status inquiries and HFEP data
echoing. (This would add end-to-end significance to the HFEP
service.) However, they are not included now, since these
extensions are both unnecessary to HFEP operation and complex to
design and implement ,

]

3.5.1 HSTATUS . request (uconnid , hconnid)

The HSTATUS . request primitive is used to determine
the status of the local HFEP connection entity indicated
either by uconnid (the user assigned connection
identifier) or by hconnid (the HFEP assigned connection
identifier). One, but not both of these identifiers
must be specified (i.e., have a non-zero value).

uconnid - an identifier assigned by the user to
distinguish this connection (or potential
connection) from any others. If uconnid is zero,
then hconnid is the connection identifier for
which status is requested.

hconnid - an identifier assigned by the local HFEP
entity to distinguish this connection (or
potential connection) from any others. If hconnid
is zero, then uconnid is the connection identifier
for which status is requested.

3.5.2 HSTATUS . response (uconnid, hconnid, hstatus)

The HSTATUS . response primitive is issued by the
HFEP entity to confirm the HSTATUS . request and to convey
the status of the local HFEP connection as identified by
uconnid and hconnid. The status reflects the state of
the HFEP protocol entity immediately after the
HSTATUS . request was issued and before the
HSTATUS. response was issued.

uconnid - an identifier, previously supplied
to the HFEP entity to distinguish this HFEP
connection (or potential connection) from ajiy
others

.

hconnid - an identifier, previously supplied
by the HFEP entity to distinguish this HFEP
connection (or potential connection) from any
others

.

11

listatus - a structured set of data (the exact
format of which is currently unspecified) which
indicate the current (or very recent) state of the
local HFEP protocol machine for the HFEP
connection entity identified by uconnid and
hconnid. Included in hstatus are the state of the
protocol machine, variables associated with the
augmented state machine, and identifiers used to
distinguish HFEP and lower layer connections.
Also included are local IPC identifiers (to aid in
possible debugging).

4.0 Time Sequence Diagrams

The following pages contain time sequence diagrams that
illustrate the time relationships among the HFEP primitives. Time
is considered to be increasing from top to bottom in these
diagrams. The HFEP user interfaces for the two communicating peer
entities are indicated by the vertical lines in the diagrams.

12

SEQUENCE OF PRIMITIVES FOR HOPEN ESTABLISHMENT

FIGURE II-l

13

POSSIBLE SEQUENCE OF PRIMITIVES FOR HDATA SERVICE

FIGURE II-2

m

HFEP

LAYER

eohsdu) ^

(not eohsou)
^

HDATA.
{[^COtio.7

(not eohsclu) ^

^ eohsdu)

POSSIBLE SEQUENCE OF PRIMITIVES FOR HDATA SERVICE

FIGURE II"3

15

Ques^

HFEP

LAYER

SEQUENCE OF PRIMITIVES FOR HCLOSE SERVICE

FIGURE II-4

PRIMITIVES FOR LAYER INITIATED HCLOSE SERVICE

FIGURE II-5

17

HFEP

LAYER

SEQUENCE OF PRINITIVES FOR HSTATUS SERVICE

FIGURE II-6

18

5 . 0 Appendix A

A Solution to Tlie N+1 Layer Rendezvous Problem

In general, the problem of rendezvous (i.e., matching peer
connection requests) can be solved in several ways suggested in
the ISO Reference Model. The Service Access Point Identifier
(SAP-ID) of a service provider (at the N+1 Layer) can be
"compiled" into a table within the N layer connection manager so
that as remote connection requests arrive they can be assigned to
their proper peer entity. Alternatively, remote connection
requests for a given SAP-ID can be held in abeyance at the N layer
until a local user requests a connection specifying that same
local SAP-ID. A third, and in this author's opinion, superior
method for matching peer connection requests, is to require local
peer entities at the N+1 layer to register their N Layer SAP-ID 's

(NSAP-ID's) dynamically with the N protocol entity provider before
remote connection requests arrive for that NSAP-ID. This method
allows flexibility in providing services, yet appears to be
straight forward to implement as well as being conservative of
resources

.

In this method a user at the N+1 level makes a request
(N_Listen) to the N Layer to register its NSAP-ID. When a remote
connection request arrives for this NSAP-ID, it is relatively
straight forward for the N Layer to match the connection request
to the previously registered matching NSAP-ID. The N+1 layer user
who registered the NSAP-ID receives an N_Connection indication and
issues an N_Connection response to indicate his acceptance (or
rejection) of the connection. If accepted, the N_Connection
proceeds and data transfer presumably follows to accomplish
whatever service the N+1 layer is to provide. When the N+1 peer
entities decide to sever the connection, one (or perhaps both) of
them issue an N_Close (or N_Disconnect) request. The N_Close (or
N_Disconnect) request not only severs the N_Connection but also
removes the NSAP-ID entry from the N Layer's tables. Newly
arriving remote connection requests for that NSAP-ID will be
rejected. An N+1 layer entity must issue another N_Listen for
that same NSAP-ID to allow for further connections.

To allow for multiple simultaneous connections to a given
NSAP-ID, multiple N_Listens for the same NSAP-ID can be requested
by one or more N+1 Layer entities. For each successful N_Listen
request, the N Layer entity will make an entry into its tables
indicating the NSAP-ID and the necessary corresponding Inter
Process Communication (IPC) information to allow notification of
the correct local process (an N+1 entity).

19

Arriving remote connection requests for this NSAP-ID will be
assigned by the N Layer entity to any entry in its tables that a)
contains the requested NSAP-ID and b) the state of any machine
associated with that entry indicates that it is available for
connection. The N layer entity can choose any entry which meets
these criteria.

If no such entry is available, the N layer entity must
transmit a PDU indicating the connection is refused, (Note: If
some entry in its tables contains the requested NSAP-ID, but its
state indicates that it cannot be assigned to a new connection,
the N layer entity could refuse the connection but indicate as a
reason "Requested Service Currently Unavailable.")

This method for matching NSAP-IDs would seem to provide all
of the functionality required for current HFEP objectives.
However a slight modification is useful for providing additional
services and conserving resources. The N_Listen request can be
modified to allow for the specification of a range of NSAP-IDs
rather than just one. Such a facility is useful for "monitoring"
connection requests for services that are not provided at the N+1
layer. Incoming connection requests could be noted and then
refused by an N+1 layer "monitoring" entity. By allowing a single
N+1 entity to accept connection requests for multiple NSAP-IDs
through the use of a single entry in the N layer tables, HFEP
resources (e.g., table space, buffers) can be conserved compared
to resources required if each NSAP-ID needed its own individual N
layer entry.

For HFEP, it is sufficient to allow (as a special case) an
NSAP-ID of zero the following special meaning. If, in trying to
match NSAP-ID 's contained in incoming connection request PDUs with
entries in its tables (as described above), an HFEP entity cannot
otherwise make a match and there exists an entry with an NSAP-ID
of zero, then the local process associated with that entry should
be notified of the connection request.

20

Part III - HFEP Specification

1 Formal Definition of the HFEP Protocol Machine

1 . 1 Introduction

A formal specification of the HFEP is composed of nine parts:
data declarations, state definitions, declarations of procedures,
initialization of variables, descriptions of timers, the state
transitions of the finite state machine, definitions of procedures,
descriptions of primitive operations, and definition of header formats.

1.2 Data Declarations

/* */

{declarations of constants used in the specification }

const EMPTY = empty;
HDT_HDR_SIZE = hdt_hdr_size

;

MAX_PACK_SIZE = max_pack_size

;

NULL = null;
NULL_DATA = null_data;
NET_DISCON = net_discon;
NET_RESET = net_reset

;

NET_RSTRT = net_rstrt

;

SAP_UNDEFINED = sap_undefined

;

UNDEFINED = undefined;
USER_CLOSE = user_close;

type boolean = (

false,
true

) ;

pdu_type= ({

HOR,

(boolean values}

types of HPDU and values of HPDU.ptype }

21

HFEP Protocol MacMne Data Declarations

HOC,
HDT,
HCRI,
HCRD

) ;

Pdu =

record
ptype
version
data
hlength
sh.sap_id
dlisap_id
treason
Imreason
teofsdnf

end;

{All possible HPDU fields referenced in this
(specification. However, not all fields are in
{any given HPDU.
: pdu_type;
: int_type;
; data_type;
: int_type

;

: sap_type

;

: sap_type;
: int_type;
: int_type

;

: boolean

}

}

}

macbine = {variables local to the finite state machine}
record
m_lhsap_id
m_fhsap_id
m_uconnid :

m hconnid :

: sap_type;
: sap_type;
int_type

;

int_type

;

{local hfep service access pt. ident.)
{ foreign hfep service access pt . ident .

}

{user assigned id for this machine)
{hfep assigned id for this machine)

rdtlen : int_type

;

reohsdu : boolean;
rbuf : buf_type

;

{length of current receive data pdu)
{true if this pdu ends a receive hsdu)
{buffer of data from network)

tdtlen : int_type;
teohsdu : boolean;
tbuf : buf_type

;

tmore : boolean;
tpdulen : int_type;

cr_udata : data_type

end;

{length of current transmit data pdu)
{true if this pdu ends a transmit hsdu)
{buffer of data from user)
{true if more data to be transmitted)
{number of octets in current)
{transmit packet)
{user data to be delivered as part)
{of hopen)

{ define interface events }

22

HFEP Protocol Machine Data Declarations

interface [from tJ:HOPEN. request (

uconnid : int_type

;

lhsap_id : sap_type

;

fhsap_id : sap_type

;

udata : data_type
)] ;

interface [to U :HOPEN. indication (

uconnid : int_type

;

hconnid : int_type

;

lhsap_id : sap_type

;

fhsap_id : sap_type

;

rudata : data_type
)] ;

interface [from U:HOPEN. response (

hconnid : int_type

;

udata : data_type
)] ;

interface [to U:HOPEN. confirm (

uconnid : int_type

;

hconnid : int_type

;

rudata : data_type
)] ;

interface [from U:HLISTEN. request (

uconnid : int_type

;

lhsap_id : sap_type
)] ;

interface [from UrHDATA. request (

hconnid : int_type

;

udata : data_type;
eohsduf : boolean

)] ;

interface [to U:HDATA. indication (

hconnid : int_type

;

rudata : data_type;
eohsduf : boolean

)] ;

interface [from U:HCLOSE . request (

uconnid : int_type

;

23

HFEP Protocol Macliine Data Declarations

hconnid : int_type

;

ureason : int_type

;

udata : data_type
)] ;

interface [to U :HCLOSE . indication (

uconnid : int_type

;

hconnid : int_type

;

reason : int_type

;

rureason : int_type;
rudata : data_type

)] ;

interface [from TJ:HSTATUS . request (

uconnid : int_type

;

h.connid : int_type
)] ;

interface [to U :HSTATUS . response (

uconnid : int_type

;

liconnid : int_type

;

hstatus : status_type
)] ;

interface [to N;NDIS. request]

;

interface [to N:NCON. request]

;

interface [to NrNINTERRUPT, request (

Data : data_type
)] ;

interface [to N:NDATA. request (

Data : data_type;
Mbit : boolean

)] ;

interface [from N:NDATA. indication (

HPDU : Pdu;
Mbit : boolean

)] ;

interface [from N:NINTERRUPT. indication (

HPDU : Pdu

24

HFEP Protocol Macliiiie Data Declarations

)] ;

interface [from N :NCON. confirmation]

;

interface [from N:NDIS. indication]

;

interface [from N:NRESET. indication]

;

interface [from N:NRSTRT. indication]

;

/* */

25

HFEP Protocol Machine State Abbreviations

1 . 3 State Abbreviations

The following section defines the collections of states which will
be used as state abbreviations in the "current state" field of a finite
state machine transition. The last two statements of the section define
the initial and final states; the finite state machine is in the initial
state when it is first created, and when the final state is reached, the
machine logically ceases to exist.

26

HFEP Protocol Machine State Abbreviations

/• */

state any_state = (

HCLOSED,
HWFNC,
HWFOC,
HWFHRESP,
HOPEN

,

HWFCRD

,

HWFNDIS
);

net_open = (

HWFNC,
HWFOC,
HWFHRESP,
HOPEN

,

HWFCRD
);

close_ok = (

HWFOC,
HWFHRESP,
HOPEN
);

initial = HCLOSED;
final = HCLOSED;

/* * /

27

HFEP Protocol Mach.ine Declarations

1.4 Procedure, Predicate, and Primitive Procedure Declarations

Ttie following section defines tlie subroutines and functions used in
the specification. A function returns a value; a procedure returns no
value. The type of the value returned by functions is declared, as is
the type of each formal parameter. All functions and procedures used in
this definition are "primitive." They will be described later, but their
operation will not be defined since the details are implementation
dependent. Predicates are single Pascal statements which are boolean-
valued and have no side effects. Predicates are used only in enabling
conditions

.

28

HFEP Protocol Machine Primitive Procedure Declarations

/•

procedure data_release (dt :data_type)

;

procedure deliver (buf :buf_type; eohsdu : boolean)

;

procedure flush_sdu (nsdu:Pdu);
procedure merge (buf :buf_type; dt :data_type; resv:int_type)

;

procedure release_buf (buf :buf_type)

;

function get_len (buf :buf_type) : int_type;
function buildhdr (buf :buf_type ; udata_len : int_type

;

eohsdu: boolean; maxpack: int_type) : int_type;
function get_data (buf :buf_type ; len: int_type) : data_type;

function min (x:int_type; y:int_type) :int_type;

function pduHCRD (Dhreason : int_type;
Dureason : int_type;
Dudata : data_type) : data_type;

function pduHOC (Cfhsap : sap_type;
Clhsap : sap_type

;

Cudata : data_type) : data_type;
function pduHOR (Rlhsap : sap_type;

Rfhsap : sap_type

;

Rudata : data_type) : data_type;
function get_status : status_type;
function unique_id : int_type;

/*

*/

primitive

;

primitive

;

primitive

;

primitive

;

primitive

;

primitive

;

primitive;
primitive

;

primitive

;

primitive

;

primitive

;

primitive

;

primitive

;

primitive

;

*/

29

HFEP Protocol Machiiie Varia±>les

1.5 Description of Variables

Tbe following section defines the two initialization procedures,
initialize_machine and initialize_global . These procedures assign the
initial and default values to the variables used in the specification.
Following the formal definition of the procedures is a list of the
variables with some short text comments explaining their uses.

30

HFEP Protocol Macliine Variables

/. */

procedure initialize_macliiiie

;

begin
m_llisap_id := SAP.UNDEFINED;
m_fbsap_id := SAP_UNDEFINED;
m_uconnid := 0;
m_liconnid : = 0

;

rdtlen := 0;
reohsdu := false;
rbuf : = EMPTY

;

tdtlen := 0;
teobsdu := false;
tbuf := EMPTY;
tmore := false;
tpdulen ;= 0;
cr_udate : = EMPTY

;

end;

/* */

cr_udata - User data to be delivered as part of HOPEN service.

m_fbsap_id Foreign (HFEP peer) HFEP service access point identifier.

m_bconnid - Connection identifier assigned to the current HFEP state
machine by the HFEP entity.

m_lhsap_id - Local HFEP service access point identifier.

m_uconnid - Connection identifier assigned to the current HFEP state
machine by the HFEP user.

rbuf - The receive buffer. Holds data from the network before
it is delivered to the user.

rdtlen - Length of current receive HFEP protocol data unit.
Decremented as additional data packets arrive. Used
for determining the end of an HFEP HDT.

reohsdu - Boolean variable set true if pdu currently being
received is the last pdu of an HFEP service data unit.

31

HFEP Protocol Macliine Variables

tbuf - The transmit buffer. Holds data from the user before it
is sent to the network.

tdtlen - Length of the current transmit data pdu (HDT)

.

teohsdu - Boolean variable set true if pdu currently being trans-
mitted is the last pdu of an HFEP service data unit

.

tmore - Boolean variable set true if more data is to be trans-
mitted as part of the current transmit data pdu than can
fit in the current Z.25 packet.

tpdulen - Number of octets in the current transmit packet. (Not to
be confused with the number of octets in the current
transmit pdu.)

32

HFEP Protocol Machine State Transitions

1.6 State Transitions

The following series of state transitions constitute the body of
the specification — it defines a finite state machine implementing a
half-connection . Each state transition is written in the specification
language which has been described earlier, and is followed by some short
comments explaining the transition and its function in the protocol
specification.

If the finite state machine is in some state and an input event
occurs for which no transition is specified, then that input event
should be ignored, i.e., no action should be taken and the finite state
machine should remain in the same state.

33

HFEP Protocol Macliine State Transitions

/ * * /

1. < HCLOSED > < (1)

begin

end;

<HWFNDIS> [from N : NDIS . indication]

/»

ENABLING CONDITION:

*/

A NDIS . indication event occurs at the Network interface; this
indicates a disconnection on the Network connection.

CURRENT STATE:

The HFEP machine is
open.

ACTION

:

No action is taken.

in the HWFNDIS state. A Network connection is

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

34

HFEP Protocol Machine State Transitions

/. */

2. <HCLOSED> < (1) <HCLOSED> [from U: HCLOSE . request

]

begin

end;

/• */

ENABLING CONDITION:

An HCLOSE. request event occurs at the User interface; this indicates
the user's desire to cancel an HLISTEN. request event for the HFEP
service access point identifier m_lhsap_id.

CURRENT STATE:

The HFEP machine is in the HCLOSED state.

ACTION :

No action is taken.

RESULTANT STATE:

The HFEP machine remains in the HCLOSED state.
The HFEP machine disestablishes its m_lhsap_id and m_uconnid as

provided by the user. (Note: In most implementations, the HFEP machine
could now be deleted.)

35

HFEP Protocol Machine State Transitions

/* */

3. <HCLOSED> < (1) <H¥FNDIS> [from N :NRESET . indication]

begin
[to N: NDIS. request]

end;

/* * /

ENABLING CONDITION:

A NRESET . indication event occurs at the Network interface. This
indicates an error on the Network connection.

CURRENT STATE:

The HFEP machine is in the EWFNDIS state. A Network connection is
open.

ACTION

:

A NDIS. request event is sent to the Network to disconnect the network
connection.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

36

HFEP Protocol Machine State Transitions

/• V
4. <HCLOSED> < (1) <H¥FNDIS> [from NtNRSTRT. indication]

begin

end;

/• */

ENABLING CONDITION:

A NRSTRT indication event occurs at the Network interface; this
indicates an error on the Network connection.

CURRENT STATE:

The HFEP machine is in the HWFNDIS state. A Network connection is
open.

ACTION :

No action is required.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

37

HFEP Protocol Maoliine State Transitions

/ * /

5. <HCLOSED> < (1) <HWFCRD> [from U: HCLOSE . request

]

begin
[to N: NDIS . request

]

end;

/* */

ENABLING CONDITION:

An HCLOSE event occurs at tbe User interface; tbis indicates the
user's desire to close an HFEP connection.

CURRENT STATE:

The HFEP machine is in the HWFCRD state. The peer machine has
indicated that it wishes to close the HFEP connection and the local HFEP
machine is awaiting the reason for the close.

ACTION

:

The Network disconnect request is made to terminate the connection.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

38

HFEP Protocol Machine State Transitions

*/

6. <HCLOSED> < (1) <net_open> [from N :NDIS . indication]

begin
[to U: HCLOSE . indication (

uconnid : = m_uconnid

,

hconnid := m_hconnid,
reason := NET_DISCON,
rureason := NULL,
rudata := NULL_DATA)]

end;

/* */

ENABLING CONDITION:

A NDIS . indication event occurs at the Network interface; this
indicates an HFEP protocol error or Network error, because the NDIS
indication was not expected from this state.

CURRENT STATE:

The HFEP machine is neither in the HWFNDIS nor in the HCLOSED state.
A Network connection is open.

ACTION :

The HFEP machine informs the user via an HCLOSE . indication event that
the HFEP connection is being terminated.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

39

HFEP Protocol Maohine State Transitions

/* */

7. <H¥FCRD> < (1) <HWFCRD> [from N: NDATA, indication]
((rdtlen =0) and
([from N : HPDU

.
ptype] = HDT))

begin
rdtlen := [from NiHPDU.blengtli] ;

flnsb_sdu([from N:HPDUl);
if [from N:Mbit] then

begin

rdtlen := rdtlen - MAX_PACK_SIZE + HDT_HDR_SIZE

;

end
else

begin
rdtlen := 0;

end
end;

/* */

ENABLING CONDITION:

An NDATA event occurs at tbe Network interface; this indicates the
arrival of some Network data. The HFEP machine is not yet processing an
HFEP HDT pdu since rdtlen equals zero, but a new HDT has arrived.

CURRENT STATE:

The HFEP machine is in the HWFCRD state; therefore it is prepared to
receive data and discard it until an HCRD pdu arrives.

ACTION

:

The length of the current HFEP HDT pdu is extracted and placed in
rdtlen. The X.25 packet can then be discarded using primitive procedure
flush_sdu. If more data is to follow as part of the current HFEP HDT,
the amount of remaining data is recomputed and stored into rdtlen.
Otherwise, rdtlen is reset to zero in anticipation of either the next
HDT to arrive or an HCRD.

40

HFEP Protocol Machine State Transitions

RESULTANT STATE:

The HFEP machine remains in the HWFCRD state.

41

HFEP Protocol Machine State Transitions

/* */

8. <H¥FCRD> < (1) <H¥FCRD> [from N: NDATA . indication]
(rdtlen > 0)

begin
flush_sdu([from N:HPDU.datal)

;

if [from N:Mbit] then
begin

rdtlen := rdtlen - MAX_PACK_SIZE

;

end
else

begin
rdtlen := 0;

end
end;

/* * /

ENABLING CONDITION:

An NDATA event occurs at the Network interface; this indicates the
arrival of some Network data. The HFEP machine has already started
processing an HFEP HDT pdu since rdtlen is not equal to zero.

CURRENT STATE:

The HFEP machine is in the H¥FCRD state; therefore it is prepared to
receive data.

ACTION

:

The X.25 packet is discarded using primitive procedure flush_sdu. If
more data is to follow as part of the current HFEP HDT, the amount of
remaining data is recomputed and stored into rdtlen. Otherwise, rdtlen
is reset to zero in anticipation of either the nezt HDT to arrive or an
HCRD.

RESULTANT STATE:

The HFEP machine remains in the H¥FCRD state.

42

HFEP Protocol Machine State Transitions

/
. */

9. <HWFNDIS> < (1) <H¥FNDIS> [from N: NDATA. indication]

begin
flush_sdu([from N:HPDU])

end;

/. */

ENABLING CONDITION:

An NDATA event occurs at the Network interface; this indicates the
arrival of some Network sdu.

CURRENT STATE:

The HFEP machine is in the HWFNDIS state; therefore it is awaiting a
Network disconnect event

.

ACTION

:

The Network sdu (data) is discarded using primitive procedure
flush_sdu.

RESULTANT STATE:

The HFEP machine remains in the HVFNDIS state.

43

HFEP Protocol Macliine State Transitions

/* V
10. <HCLOSED> < (1) <HWFCRD> [from N: NDATA. indication]

((rdtlen =0) and
([from N:HPDU.ptypel = HCRD))

begin
[to U: HCLOSE . indication (

uconnid := m_uconnid,
bconnid : = m_hconnid

,

reason : = USER_CLOSE

,

rnreason := [from NtHPDU.hureason]

,

rndata := [from N :HPDU. data])]

;

[to N: NDIS. request]

end;

/* * /

ENABLING CONDITION:

An NDATA event occurs at the Network interface; this indicates the
arrival of some Network data. The HFEP machine is not yet processing an
HFEP HDT pdu since rdtlen equals zero, but a HCRD has arrived.

CURRENT STATE:

The HFEP machine is in the HWFCRD state; therefore it is prepared to
receive data and discard it until an HCRD pdu arrives.

ACTION

:

The HFEP machine informs the user via an HCLOSE. indication event that
the HFEP connection is being terminated. A NDIS. request event is sent to
the Network to disconnect the network connection.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

44

HFEP Protocol Machine State Transitions

/ • */

11. <HOPEN> < (1) <HOPEN> [from N: NDATA . indication]
((rdtlen =0) and
([from N:HPDU.ptype] = HDT))

begin
merge (rbuf, [from N:HPDU.data] .NULL)

;

rdtlen := [from NrHPDU.hlength]

;

reohsdn := [from N:HPDU.heofsduf]

;

if [from N:Mbit] then
begin

rdtlen := rdtlen - MAX_PACK_SIZE + HDT_HDR_SIZE

;

end
else

begin
deliver (rbuf , reohsdn)

;

release_buf (rbuf)

;

rdtlen := 0;
end

end;

/* */

ENABLING CONDITION:

An NDATA event occurs at the Network interface; this indicates the
arrival of some Network data. The HFEP machine is not yet processing an
HFEP HDT pdu since rdtlen equals zero, but a new HDT has arrived.

CURRENT STATE:

The HFEP machine is in the HOPEN state; therefore it is prepared to
receive data.

ACTION

:

The Network data is merged into the receive buffer. If more data is to
follow as part of the current HFEP HDT, the amount of remaining data is
recomputed and stored into rdtlen. Otherwise, the data received is

45

HFEP Protocol Maoliine State Transitions

delivered to the user using primitive procedure deliver and rdtlen is
reset to zero in anticipation of the next HDT to arrive.

RESULTANT STATE:

The HFEP machine remains in the HOPEN state.

46

HFEP Protocol Machine State Transitions

/• */

12. <HOPEN> < (1) <HOPEN> [from N: NDATA . indication]
(rdtlen > 0)

begin
mergeCrbuf , [from N:HPDU.data] .NULL)

;

if [from N:Mbit] then
begin

rdtlen := rdtlen - MAZ_PACK_SIZE

;

end
else

begin
deliver (rbuf , reohsdu)

;

release_buf (rbuf)

;

rdtlen := 0;
end

end;

/ * */

ENABLING CONDITION:

An NDATA event occurs at the Network interface; this indicates the
arrival of some Network data. The HFEP machine has already started
processing an HFEP HDT pdu since rdtlen is not equal to zero.

CURRENT STATE:

The HFEP machine is in the HOPEN state; therefore it is prepared to
receive data.

ACTION :

The Network data is merged into the receive buffer. If more data is to
follow as part of the current HFEP HDT, the amount of remaining data is
recomputed and stored into rdtlen. Otherwise, the data in the receive
buffer is delivered to the user using primitive procedure deliver and
rdtlen is reset to zero in anticipation of the next HDT to arrive.

RESULTANT STATE:

47

ms

i,. HFEP Protocol' Macliiiie ^

j" The HFEP machine remains in the HOPEN state.

Jfli

4. .liv'W.. «?:

'mM

«o tit J *.lx«f

_

K
ittm £#idll;i atoxlT Yif^i

- aiiimz ^t^a^Ubrt
^ * j « fcffa

^ eelij

-:.
^ ol|(0d"

•: (
^

'

, ip ; 0^* H aeitflw.""'''
<txtt0 - f ‘'

rt*®'' ‘..J; :5 Jha»
I/:.

’

II r itiiaiy
. „ ,....-j,,- .

, .i'-"' <! • ' .' I i't is -

ifortiauoo o«ij;aAm

, . ,. ,.,
^

sa 'i® ‘^ •

'
ti‘

. || i'

extj '^!?s^#3tK>i|)a4i im^^-4J94fU Jitow^eH erfj <tttfOOo ^£W»v» ATAf03|,'aA
'

e«;.fc4sCjfm ft'iJI e^CT M%<ivf9U e«o« lo HmwX'itm
ot^IJMCtpe ito« *i asl^ht •oai® <rT>^ Tcait tSTOI oa jxxl^aeo^

—

"

;8TATa>?^^3i

0^1^4<|49ftiis «:fc

* m nano® IM» .:! ait «3:amiil£ff
.
^!

ai^«b 0YlTO8ltt.J

jBBBhIi* :»,. '!

II

Q ^ ^'±1
,j54|Is 1

' •srf'^ 0 -«ytf1 t»3i«m iJt mtitb i(to#tf *tt edT
ai Vd^iMat 1^ iliad'-ft't'GB titi '.aa'iiifo to a« -voiXat

jiSfV^ao^^ »cl^ tti w^Jtb tMEtf .aaXj^b? la»toPa ham bm^uq^oomti
ftfljj. Ti5?tXai> ftttwbaoo^^ '»vi,:fl«i7:q J|4iiia taao b^teviXab ml

-bif TCtK o-scan »4^ %o aoi4j»qioxt<w arl '>ia3 Ctt 4<ia«t isnixibt

/l7 ,, ,,

; 'v.'
' ijy.ij

vir, : ^ ’s j,;

:mT8 Ti^TJOaSiCl

HFEP Protocol Machine State Transitions

/ • */

13. <HOPEN> < (1) <HOPEN> [from U: HDATA . request

3

begin
merge(tbuf , [from U:udata] ,HDT_HDR_SIZE)

;

tdtlen := get_len(tbuf)

;

teohsdu := [from U:eohsduf3;
if (teohsdu = true) or (tdtlen >= MAZ_PACK_SIZE - HDT_HDR_SIZE)then

begin
tpdulen := buildhdr(tbuf , tdtlen , teohsdu , MAX_PACK_SIZE)

;

if tdtlen > tpdulen - HDT_HDR_SIZE
then tmore := true
else tmore := false;

[to N: NDATA. request
(Data := get_data(tbuf, tpdulen)

,

Mbit := tmore)];

tdtlen : = tdtlen - tpdulen + HDT_HDR_SIZE

;

while tdtlen > 0 do
begin

tpdulen := min(tdtlen,MAX_PACK_SIZE)

;

if tdtlen > tpdulen
then tmore := true
else tmore ;= false;

[to N: NDATA. request
(Data := get_data(tbuf , tpdulen)

,

Mbit := tmore)];

end;
end

tdtlen := tdtlen - tpdulen;
end

/* * /

ENABLING CONDITION:

A HDATA event occurs at the User interface; this indicates the arrival
of some user data.

49

HFEP Protocol Machine State Transitions

CURRENT STATE:

The HFEP machine is in the HOPEN state; therefore it is prepared to
receive data.

ACTION

:

The User data are merged into the transmit buffer. Space is reserved
in the buffer for an HDT header of size HDT_HDR_SIZE . The length of the
data is derived by primitive function get_len; The variable teohsdu is
set true if the user has indicated that these data are the end of an
HFEP service data unit. If the user has not indicated the end of an
HFEP service data unit and there are not enough data to fill a packet
(after allowing for the HDT header) then no further action is performed.
The data are held in anticipation of further data to complete the
service data unit.

If either the user has indicated end of HSDU or there are enough data
to fill a packet, then primitive function buildhdr is called to
construct an HDT header. The packet is sent by an NDATA request. If
there are further data to be sent, the Mbit is set in the packet.
Additional packets of maximum size MAZ_PACK_SIZE are sent until there
are no data left to be sent.

RESULTANT STATE:

The HFEP machine remains in the HOPEN state.

50

HFEP Protocol Machine State Transitions

/• * /

14. <HWFCRD> < (1) <H¥FCRD> [from U: HDATA . request

3

begin
data_release([from U:Data3)

end;

/ * */

ENABLING CONDITION:

An HDATA. request event occurs at the User interface; this indicates
the user's desire to send data.

CURRENT STATE:

The HFEP machine is in the HWFCRD state, has received an HCRI pdu
indicating the peer machine's desire to close, and is awaiting an HCRD
pdu containing the reason for the close.

ACTION:

The HFEP machine invokes the primitive procedure data_release to
discard the user's data since the other side is closing. [Note: As a
local implementation matter, the user may be informed via an
HSTATUS . indication that the data is discarded because his peer is
closing .

]

RESULTANT STATE:

The HFEP machine remains in the HWFCRD state.

51

HFEP Protocol Machine State Transitions

/* * /

15. <HCLOSED> < (1) <HCLOSED> [from U: HLISTEN. request

]

begin
m_uconnid := [from Urnconnid]

;

m_hconnid : = unique_id

;

m_lhsap_id := [from U:lhsap_id]
end;

/* * /

ENABLING CONDITION:

An HDATA. request event occurs at the User interface; this indicates
the user's desire to await an HOPEN. indication event for the HFEP
service access point identifier lhsap_id.

CURRENT STATE:

The HFEP machine is in the HCLOSED state.

ACTION

:

The HFEP machine establishes its m_lhsap_id and m_uconnid as provided
by the user. A unique hconnid, provided by primitive function unique_id,
is assigned to the machine.

RESULTANT STATE:

The HFEP machine remains in the HCLOSED state.

52

HFEP Protocol Machine State Transitions

/. */

16. <HWFNC> < (1) <HCLOSED> [from U: HOPEN. request

]

begin
m_uconnid := [from Uruconnid];
m_hconnid := unique_id;
m_lhsap_id := [from U:lhsap_id];
m_fhsap_id := [from U:fhsap_id];
cr_udata := [from U:udata];
[to N: NCON. request

]

end ;

/* % /

ENABLING CONDITION:

An HOPEN . request event occurs at the User interface; this indicates
the user's desire to open an HFEP connection from local SAP_identifier
lhsap_id to the peer SAP_identifier fhsap_id.

CURRENT STATE:

The HFEP machine is in the HCLOSED state.

ACTION

:

The user parameters are stored in the state machine and the primitive
procedure unique_id is called to generate unique identifier for this
machine. Finally, a network connection request is made to provide a
network connection on which to build an HFEP connection.

RESULTANT STATE:

The HFEP machine enters the HWFNC state.

53

HFEP Protocol Machiiie State Transitions

/* */

17. <HCLOSED> < (1) <net_open> [from N:NRESET. indication]

begin
[to U: HCLOSE . indication (

uconnid : = m_nconnid

,

hconnid : = m_bconnid

,

reason := NET_RESET,
rureason := NULL,
rndata := NULL_DATA)];

[to N: NDIS. request]

end;

/* */

ENABLING CONDITION

:

A NRESET. indication event occurs at the Network interface; this
indicates an error on the Network connection.

CURRENT STATE:

The HFEP machine is neither in the HWFNDIS nor in the HCLOSED state.
A Network connection is open.

ACTION

:

The HFEP machine informs the user via an HCLOSE . indication event that
the HFEP connection is being terminated. A NDIS. request event is sent to
the Network to disconnect the network connection.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

54

HFEP Protocol Machine State Transitions

/ • */

18. <HCLOSED> < (1) <net_open> [from N:NRSTRT. indication]

begin
[to U:

end;

HCLOSE . indication (

Ticonnid := m_uconnid,
hconnid := m_hconnid,
reason := NET_RSTRT,
rureason := NULL,
rudata := NULL_DATA)]

/* * /

ENABLING CONDITION:

A NRSTRT. indication event occurs at the Network interface; this
indicates an error on the Network connection.

CURRENT STATE:

The HFEP machine is neither in the HWFNDIS nor in the HCLOSED state.
A network connection is open.

ACTION

:

The HFEP machine informs the user via an HCLOSE . indication event that
the HFEP connection is being terminated. The NRSRT . indication event
indicates that the Network connection has been broken.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

55

HFEP Protocol Machine State Transitions

/* * /

19. <HOPEN> < (1) <HWFHRESP> [from U: HOPEN. response]

begin
[to N: NDATA. request

(Data := pduHOCC
m_fhsap_id,
m_lhsap_id,
[from U:ndata]
).

Mbit := false)]

end;

/* * /

ENABLING CONDITION:

An HOPEN. response event occurs at the User interface. This indicates
that the user wishes to complete the opening of an HFEP connection.

CURRENT STATE:

The HFEP machine is in the HWFHRESP state.

ACTION

:

The HFEP machine invokes the primitive function pduHOC to build an HOC
HFEP protocol data unit, which includes the user data. The pdu is sent
to the peer HFEP machine using an NDATA request.

RESULTANT STATE:

The HFEP machine enters the HOPEN state.

56

HFEP Protocol Machine State Transitions

»/

20. < same_state > < (1) <any_state> [from U: HSTATUS . request

]

begin
[to U: HSTATUS . response

(uconnid := m_uconnid,
hconnid := m_h.connid,
hstatus := get_status)]

end ;

*/

EKABLING CONDITION:

An HSTATUS . request event occurs at the User interface; this indicates
the user's desire to determine the status of the HFEP machine.

CURRENT STATE:

The HFEP machine is in any state.

ACTION :

The User and HFEP assigned connection identifiers are copied to the
User Interface and the HFEP machine invokes the primitive function
get_status to determine and return current status to the user.

RESULTANT STATE

:

The HFEP machine remains in its current state.

57

HFEP Protocol Machine State Transitions

/* */

21. <HWFNDIS> < (1) <Close_ok> [from U: HCLOSE

.

request

]

begin

end;

release_buf (rbuf)

;

[to N: NINTERRUPT. request (Data := HCRI)];
[to N: NDATA . request (Data := pduHCRD(

USER_CLOSE

,

[from U: ureason]
[from U: udata]
),

Mbit := false)
]

/* * /

ENABLING CONDITION:

An HCLOSE . request event occurs at the User interface; this indicates
the user's desire to close an HFEP connection.

CURRENT STATE:

The HFEP machine is in one of the close_oh states. A network
connection exists and the other HFEP entity must be informed and the
user data delivered.

ACTION

:

The primitive procedure release_buf is called to discard any data
stored in the receive buffer. An interrupt (expedited data one octet
long) is sent to the peer machine to inform it that it may start
discarding data in anticipation of an HCRD, which includes the user's
reason for the closing of the connection. The HCRD is then sent.

RESULTANT STATE:

The HFEP machine enters the HWFNDIS state.

58

HFEP Protocol Machine State Transitions

/• * /

22. <HWFCRD> < (1) <close_ok> [from N: NINTERRUPT » indication]
([from N:HPDU.ptype] = HCRI)

begin
release_buf (rbuf

)

end ;

/ * */

ENABLING CONDITION:

An NINTERRUPT event occurs at the Network interface, indicating the
arrival of some Network interrupt data containing an HFEP HCRI pdu. The
HCRI indicates the peer HFEP's desire to close the connection.

CURRENT STATE:

The HFEP machine is in one of the close_ok states. A network
connection exists.

ACTION

:

The primitive procedure release_buf is called to discard any data
stored in the receive buffer. [Note: As a local implementation matter,
an HSTATUS. indication may be issued to inform the user that an HCLOSE is
expected.

]

RESULTANT STATE:

The HFEP machine enters the HWFCRD state in anticipation of an HCRD
pdu, which includes the peer entity's reason for the closing of the
connection.

59

HFEP Protocol Macliine State Transitions

/% * /

23. <HCLOSED> < (1) <H¥FNDIS> [from N: NINTERRUPT . indication]
([from N:HPDU.ptype] = HCRI)

begin

[to N: NDIS. request]

end;

/* * /

ENABLING CONDITION

:

An NINTERRUPT event occurs at the Network interface, indicating the
arrival of some Network interrupt data containing an HFEP HCRI pdu. The
HCRI indicates the peer HFEP's desire to close the connection.

CURRENT STATE:

The HFEP machine is in the HWFNDIS state. It has sent out an HCRI to
indicate to the peer machine that it wishes to close the connection.

ACTION

:

A NDIS. request event is sent to the Network to disconnect the network
connection.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

60

HFEP Protocol Macliiiie State Transitions

/ • * /

24. <HWFOC> < (1) <H¥FNC> [from N: NCON. confirmation]

begin

[to N: NDATA. request
(Data := pduHOR(

m_lhsap_id,
m_fhsap_id

,

cr_udata
),

Mbit := false)]

end;

/* */

ENABLING CONDITION:

An NCON confirmation event occurs at the Network interface to indicate
that a network connection is now open.

CURRENT STATE:

The HFEP machine is in the HWFNC state. It has been awaiting a network
connection.

ACTION

:

Primitive function pduHOR is invoked to construct an HOR HFEP pdu to
convey to the peer machine the desire to open an HFEP connection. An
NDATA. request event containing the HOR is sent via a Network data
request

.

RESULTANT STATE:

The HFEP machine enters the HCLOSED state.

61

HFEP Protocol Machine State Transitions

/* */

25. <HOPEN> < (1) <HWFOC> [from N: NDATA . indication]
((rdtlen =0) and
([from N : HPDU

.
ptype] = HOC))

begin

[to U: HOPEN. confirm (

uconnid := m_uconnid,
hconnid : = m_hconnid

,

rudata := [from N: HPDU. data]
)]

end;

/* */

ENABLING CONDITION:

An NDATA event occurs at the network interface indicating the arrival
of an HOC pdu.

CURRENT STATE:

The HFEP machine is in the H¥FOC state.

ACTION

:

The HFEP machine informs the user via an HOPEN. confirmation event that
the HFEP connection is now established.

RESULTANT STATE

:

The HFEP machine enters the HOPEN state.

62

HFEP Protocol Machine State Transitions

/• * /

26. <HWFHRESP> < (1) <HCLOSED> [from N: NDATA. indication]
((rdtlen = 0) and
([from N ; HPDU

.
ptype] = EOR))

begin

m_lhsap_id := [from N:HPDU. dhsap_id]

;

m_fhsap_id := [from N:HPDU. shsap_id]

;

[to U; HOPEN. indication (

uconnid := m_uconnid,
hconnid : = m_hconnid

,

lhsap_id := m_lhsap_id,
fhsap_id := m_fhsap_id,
rudata := [from N: HPDU. data]

)]

end;

/* */

ENABLING CONDITION:

An NDATA event occurs at the Network interface. This indicates the
arrival of some Network data containing an HFEP HOR pdu.

CURRENT STATE:

The HFEP machine is in the HCLOSED state. It has been awaiting the HOR
after the user had performed an HLISTEN. request

.

ACTION

:

An HOPEN. indication user event is sent to the user interface, after
the destination and source sap_id's are copied to the local state
machine as m_lhsap_id and m_fhsap_id, respectively. The lhsap_id must be
copied (although set as part of the HLISTEN. request transaction) for the
case in which it was originally specified as zero, i.e., willing to
accept connections for any local sap_id.

63

HFEP Protocol Machiiie State Transitions

RESULTANT STATE:

Tlie HFEP machine enters the HWFHRESP state.

64

HFEP Protocol Machine State Transitions

*/

27. <HCLOSED> < (1) <HVFNC> [from U: ECLOSE . request

3

begin
[to N: NDIS. request]

end;

/. V
ENABLING CONDITION:

An HCLOSE event occurs at the User interface; this indicates the
user's desire to close an HFEP connection.

CURRENT STATE:

The HFEP machine is in the HVFNC state awaiting the opening of a
network connection.

ACTION

:

The Network disconnect request is made to terminate the connection.

RESULTAJfT STATE:

The HFEP machine enters the HCLOSED state.

65

HFEP Protocol Machine Primitive Procedures and Functions

1 . 7 Primitive Procedures and Functions

/ * */

The following describe the effects of primitive functions and
procedures used in the specification. The exact nature of the
operations remain undefined since they depend on the nature of the
implementation

.

procedure data_release (dt :data_type)

;

This primitive discards any data associated with dt. All storage for dt
can be reused as the data are not needed.

procedure deliver (buf :buf_type; eohsdu : boolean)

;

This primitive, using a [to U:HDATA. indication] interface event,
delivers any data associated with buf to the user. The User is informed
that an end of HFEP service data unit has occured if eohsdu is true.

procedure flush_sdu (nsdu:Pdu);

This primitive discards the Network service data unit associated with
nsdu. All resources (primarily storage) associated with nsdu can be
reused as they are no longer needed.

procedure merge (buf :buf_type; dt :data_type ; resv : int_type)

;

The merge primitive removes all data from dt and places (concatenates)
it at the the end of buf after reserving space for resv octets of data.
This space is normally reserved for header information in a transmited
HDATA pdu.

procedure release_buf (buf :buf_type)

;

Primitive procedure release_buf frees all resources (primarily storage
for data) associated with buffer buf. These resources are no longer
needed

.

66

HFEP Protocol Machine Primitive Procedures and Functions

function get_len (buf :buf_t3rpe) : int_type;

The primitive function get_len returns the length in octets of the data
stored in buffer buf. This length does NOT include any reserved space for
header octets.

function buildhdr (buf :buf_type ; udata_len:int_type; eohsdu: boolean;
maizpach : int_type) : int_t]7pe;

Primitive function buildhdr builds an HFEP data pdu (HDT) header at the
beginning of buffer buf. The HDT includes udata_len octets of data. The
end of HFEP service data unit flag is set in the header if eohsdu is
true. The maiximum packet size that can be sent is indicated by mazpack.
Buildhdr returns the number of octets (both HDT header and user data) in
the packet being built

.

function get_data (buf :buf_type ; len : int_type) : data_type;

Primitive function get_data returns the first len octets of data
(possibly including user data as well as header) from buffer buf. The
data returned is removed from buf.

primitive min (z:int_type, y:int_type);

The min primitive returns the lesser of its two arguments.

function pduHCRD '(Dhreason : int_t3rpe;
Dureason : int_t3rpe;
Dudata : data_type) : data_t5rpe;

Primitive function pduHCRD builds an HFEP HCLOSE - request (HCRD) pdu
which is returned as its value. The reason Dhreason and user specified
reason Dureason as well as the user supplied data Dudata are placed into
the HCRD.

function pduHOC (Cfhsap : sap_type;
Clhsap : sap_type

;

Cudata : data_type) : data_type;

Primitive function pduHOC builds an HFEP HOPEN confirm (HOC) pdu which

67

HFEP Protocol Machine Primitive Procedures and Functions

is returned as its value. The foreign and local service access points,
Cfhsap and Clhsap respectively, and user supplied data Cudata are placed
into the HOC. Cfhsap is placed into the source HFEP SAP (SHSAP-ID) of
the HOC and Clhsap is placed into the destination HFEP SAP (DHSAP-ID)

.

function pduHOR (Rlhsap : sap_type;
Rfhsap : sap_type

;

Rudata : data_type) : data_type;

Primitive function pduHOR builds an HFEP HOPEN request (HOR) pdu which
is returned as its value. The local and foreign service access points,
Rlhsap and Rfhsap respectively, and user supplied data Rudata are placed
into the HOR. Rlhsap is placed into the source HFEP SAP (SHSAP-ID) of
the HOR and Rfhsap is placed into the destination HFEP SAP (DHSAP-ID).

function get_status : status_type;

Primitive function get_status returns the status of local HFEP machine.
Status information returned should include, at minimum, all the scalar
information within the HFEP machine record, plus additional information
on the data types and buffers.

function unique_id : int_type;

Primitive function unique_id returns an hconnid that is not in use.
This value is used to identify an HFEP machine uniquely.

68

2.0 Tiffie Sequence Diagrams

Figures III-l througli III-5 are Time Sequence Diagrams that
illustrate the time relationships eunong the HFEP primitives. The
solid arrows on the sides of the diagrajns represent the primitives
themselves. The shaded arrows between the vertical lines
represent the HFEP protocol data units (PDU's) sent between the
communicating peer entities. Time is considered to be increasing
from top to bottom in these diagrams. The HFEP user interfaces
for the two communicating peer entities are indicated by the
vertical lines in the diagrams.

69

HFEP HOPEN ESTRBLISHMENT
FIGURE III-l

70

POSSIBLE SEQUENCE FOR HFEP HDRTR SERUICE

FIGURE 1 1 1-2

71

NORMAL HFEP HCLOSE SERUICE

FIGURE 1 1 1-3

72

\0^

LflVER INITIATED HCLOSE SERUIGE

FIGURE III-4

HFEP HSTRTUS SERUICE

FIGURE III-5

74

3 . 0 lietHQXfc

The X.25 network interface used by the HFEP is described by
three tables. The first of these is entitled "HFEP Network Input
Events". This is a listing of all possible network input events
from an X.25 network that could affect the state of the HFEP
protocol machine. This table relates the generalized network
event najne as used in the formal specification to the
corresponding event naime within an X.25 network. The table
includes commentary about each event.

The second table is entitled "HFEP Network Output Events." It
includes all of the X.25 network events that the HFEP signals to
the network. The event najne as used in the formal specification
is listed along with the corresponding event name as specified by
X.25.

The third table, entitled "X.25 Services Required by HFEP",
lists suggested X.25 operating parajneters and options within all
possible X.25 services allowed by the CCITT X.25 Recommendation
[CCITT80]

.

These parameters and options are suggested to allow
the HFEP to operate properly and reliably over a wide variety of
X.25 equipment and environments. However, since the HFEP
environment is local to a given node on a network, certain of the
parameters could be modified by the implementor. For example, a
maximum packet size of 128 octets is specified. To provide better
HFEP thruput, this could be made considerably larger (e.g., 1024)
if both ends of the HFEP link are capable of generating and
receiving such large packets and sufficient buffering is provided.
However, an HFEP implementation with such large buffers could not
be used to support a remote front end over a public X.25 network
since not all public X.25 networks support packet sizes of more
than 128 octets.

Finally, it should be noted that with little or no
modification the HFEP could be used with network technologies
other than X.25. Any other network technology must provide a
reliable, multiplexed, individually flow controlled communications
path with provision for "expedited data service". The only part
of the HFEP specification that requires a service unique to X.25
is the use of the M (More data) bit. The M bit was used in the
HFEP design to achieve high channel efficiency in the face of
small (128 octet) packets. Its use allows for a multipacket HDATA
pdu with Protocol Control Information (PCI) (also known as a
packet "header") overhead only on the first packet. For
implementations using network technologies allowing larger
packets, multipacket pdu's could be eliminated. The new HFEP
protocol would then be a proper subset of this current one.

75

HFEP NETWORK INPUT EVENTS

HFEP Event Name

NOON . indication

NOON. confirmation

NDIS . indication

NDIS . confirmation

NDATA . indication

NINTRUPT . indication

NINTRUPT . confirmation

NRST . indication

NRSTRT . indication

X.25 Name (DTE side)

(Incoming Call)

(Call Connected)

(Clear Indication)

(DCE Clear Conf.)

(DCE Data)

(DCE Interrupt)

(DCE Interrupt Conf.)

(Reset Ind.

)

(Restart Ind.)

Comments

- Used for creating
HFEP machine (Not
formally part of HFEP)

- Other side requested
disconnect

- Confirmation of
requested disconnection
(Not formally part of
HFEP) (Ignored by HFEP)

- Used for conveying
most PDU's

- Used for HCRI PDU

- (Not formally part of
HFEP) (Ignored by HFEP)

- Indicates error

- Indicates error

76

HFEP NETWORK OUTPUT EVENTS

HFEP Event Name

NOON . request

MOON. response

NDIS . request

IfDIS. response

,RDATA . request

KINTRUPT . request

SINTRUPT . response

X.25 Name (DTE side)

(Call Request)

(Call Accepted)

(Clear Request)

(DTE Clear Conf.)

(DTE Data)

(DTE Interrupt)

(DTE Interrupt Conf.)

Comments

- Sent as part of
initializing HFEP machine

- Not formally part of HFEP

- Used to convey most HFEP
PDU's

- Used to convey HCRI PDU

- Not formally part of HFEP

Z.25 SERVICES REQUIRED BY KEEP

The HFEP uses a minimal subset of Z.25 features (to provide the
maximum compatibility with existing and future equipment) and complies
with Federal Information Processing Standard 100 (FIPS-100) [FIPS83]

.

The following constraints (some of which are also provided by FIPS-100)
are placed on the Z.25 services used in HFEP.

o LAPB Protocol with HDLC Framing is used.

0 Virtual Circuit Service is used. Neither datagram nor permanent
virtual circuit services are used.

o The D (Delivery) Bit is not used.

o The Q Bit not used.

o The Frame Window Size is 7.

o The Packet Window Size is 2.

o The Maximum Packet Size is 128 octets.

o The Host Side is the DTE (Address 03).

o The Front End is the DCE (Address 01).

o No Z.25 "Facilities" Used

Note: The Z.25 features and services used by HFEP are available on all
Z.25 networks. Thus, while performance and reliability might be somewhat
diminished using HFEP over a public Z.25 network, it is possible to do
so. The network address would be inserted in the Z.25 CALL packet.

78

4 . 0 State Dia^raa

Figure III-6 contains the Finite State Diagram (Finite State
Machine) for the HFEP. The states are represented as circles
labeled appropriately. Transitions are indicated by arrows. The
stimulus causing the transition is indicated by the label on the
arrow. The circled number associated with each arrow label
represents the transition number in the formal specification.

79

5.0 Appeadis A - Protocol Data Unit CPDU) Formats

There are five different types of PDU's defined in the HFEP.
Four of these are sent using the normal X.25 data service packets.
One (HCRI) is sent in an X.25 interrupt (expedited data service)
packet . The packet types are

:

HOR - HOPEN Request PDU
HOC - HOPEN Confirm PDU
HDT - HDATA Data Transfer PDU
HCRI - HCLOSE Request PDU (Interrupt)
HCRD - HCLOSE Request PDU (Data)

The formats
through A-4 that

of these pdu's are described
follow on the next few pages.

in Figures A-1

81

HOPEN REQUEST PDU (HOR)
(SENT IN Z.25 DATA PACKET)

<— Z.25 M BIT (MORE DATA MARK)

<—HFEP PDU TYPE IDENTIFIER (4 BITS)
(HOR = 0001)

<—VERSION NUMBER (4 BITS = 0001)

I <—SOURCE HFEP SERVICE ACCESS POINT IDENTIFIER (2 OCTETS)
I (HSAP-ID OF CONNECTION OPENER)
I

I 1 < —DESTINATION HFEP SERVICE ACCESS POINT IDENTIFIER
I I (2 OCTETS) (HSAP-ID OF CONNECTION LISTENER)

V V V V V

l<— LENGTH OF USER DATA IN OCTETS (1 OCTET)
I

I

I

V

I < —USER DATA TO BE DELIVERED
I WITH HOPEN . INDICATION
V

+ -+ + + + + + +

lOlHOR I VER I SHSAP I DHSAP I LENGTH I USER DATA I
<— ONE Z.25

I 1 0001 I I -ID I -ID I I 32 OCTETS (MAZIMUM) I DATA PACKET
+ -+ h + + + + +

I I I I I I

l<_ 1 — > I
< _2- > I

< -2- > I
< -1 ->l< 0 TO 32 OCTETS >1

HOPEN REQUEST PDU CONSISTS OF ONE Z.25 DATA PACKET

Figure A-1

82

HOPEN CONFIRM PDU (HOC)
(SENT IN X.25 DATA PACKET)

<— X.25 M BIT (MORE DATA MARK)

<—HFEP PDU TYPE IDENTIFIER (4 BITS)
(HOC - 0010)

I

<—VERSION NUMBER (4 BITS = 0001)
I

I I <—SOURCE HFEP SERVICE ACCESS POINT IDENTIFIER (2 OCTETS)
I I (HSAP-ID OF CONNECTION OPENER)

< —DESTINATION HFEP SERVICE ACCESS POINT IDENTIFIER
(2 OCTETS) (HSAP-ID OF CONNECTION LISTENER)

V V V V V

I
<— LENGTH OF

I

I

I

V

USER DATA IN OCTETS (1 OCTET)

!
< —USER DATA TO BE DELIVERED

I WITH HOPEN . CONFIRMATION
V

-+ + + + + + +

01 HOC I VER I SHSAP I DHSAP I LENGTH I USER DATA I
<— ONE X.25

1 0010 1 I -ID I -ID I I 32 OCTETS (MAXIMUM) I DATA PACKET

I I I I I I

)<_ 1 — > I <-2-> I <-2-> I <-l ->l< 0 TO 32 OCTETS >l

HOPEN CONFIRM PDU CONSISTS OF ONE X.25 DATA PACKET

Figure A-2

83

HDATA PDU (HDT)

An HFEP DATA PDU (HDT) consists of one or more Z.25 data packets. The
length field of the first packet header indicates the length in octets of
all user data in all the packets that are part of the HDT. The HFEP
DATA PDU is one Z.25 "message". Therefore, all but the last packet of the
HDT are sent with the Z.25 M bit (more data mark) on.

<— Z.25 M BIT (NOT PART OF Z.25 DATA)
(= 0 IF LAST PACKET IN PDU; ELSE = 1)

I < —END OF HSDU FLAG BIT
I

I l<—HFEP DATA PDU TYPE IDENTIFIER (3 BITS)
I I (HDT = 111)
I I

I I I <—VERSION NUMBER (4 BITS = 0001)
I I I

I I I I <—LENGTH OF DATA IN OCTETS OF THIS PDUIII I (3 OCTETS -> HIGH, MID, LOW - 24 BIT NUMBER)

l<—HFEP "USER DATA"
I

V

HFEP DATA I
<- INITIAL Z.25 PACKET

I OF HFEP DATA PDU

1

1 TO 124 OCTETS >1

l< 128 OCTETS (MAZIMUM)

l< — Z.25 M BIT (NOT PART OF Z.25 DATA)
I (= 0 IF LAST PACKET IN PDU; ELSE = 1)
V

+-+ +

I Ml HFEP DATA I
<- ADDITIONAL Z.25 PACKET

II I OF HFEP DATA PDU
+ -+ -+

I I

I < 1 TO 128 OCTETS > I

V V V V V
+-+-+ + + +

I M I E 1 HDT I VER I LENGTH I

1 I 11111 IH-M-L I

+-+-+ + + +

I I I

I < — 1 — > I
< -3 - > I

<

Figure A-3

HCLOSE SERVICE PDUS

The HCLOSE Service requires two PDUs. The first to be sent is the HCRI
PDU, and is sent, NOT in an X.25 data packet but rather in an X.25 interrupt
packet , The interrupt packet is used to avoid normal flow control on an
1.25 connection. The second packet to be sent is the HCRD PDU, and is sent
in an X.25 data packet. The second packet is required because the HCLOSE
service requires the delivery of user data and the X.25 interrupt packet
consists of only one octet. (The above is true for CCITT Recommendation
X. 25-1980. However, future versions of X.25 may allow for longer interrupt
packets .

)

HCLOSE REQUEST PDU (HCRI)
(SENT IN X.25 INTERRUPT PACKET)

l<—HFEP CLOSE REQUEST (INTERRUPT) TYPE IDENTIFIER
I (HCRI = 00000001)
I

V
I-

+

I HCRI I
< X.25 INTERRUPT PACKET (ALLOWS ONE OCTET OF DATA)

I 00000001 I

I |. +

HCLOSE REQUEST PDU (HCRD)
(SENT IN X.25 DATA PACKET)

<— X.25 M BIT (MORE DATA MARK)

<—HFEP PDU TYPE IDENTIFIER (4 BITS)
(HCRD = 0100)

I <—VERSION NUMBER (4 BITS = 0001)
I

I I <—REASON FOR HCLOSE REQUEST (1 OCTET)

<—USER REASON FOR HCLOSE REQUEST (4 OCTETS)
(32 BIT NUMBER — > HIGH, MHIGH, MLOW, LOW)

!<— LENGTH OF USER DATA IN OCTETS (1 OCTET)
I

I I i:7 I I I l<—DATA ASSOCIATED WITH
r’

I : ; i _ -| II I USER INITIATED HCLOSE
V V V V V V V
-+ + + + + 4- 4-

0 1 HCRD I VER I HRSN I HUSER I LENGTH 1 USER DATA I <— ONE X.25
I

1 0100 L I I REASON I I 32 OCTETS (MAXIMUM) I DATA PACKET
-+ + 4- 4- 4- 4- 4_

I

I

I I I I I

1 l<- 1 — >!<_!_> I <_4 _>|<_i _>|< 0 TO 32 OCTETS >l

Figure A-4
85

References

[CCITT80] "CCITT Recommendation Z.25 (1980); Interface Between
Data Terminal Equipment (DTE) and Data Circuit-Terminating
Equipment (DCE) for Terminals Operating in the Packet Mode
on Public Data Networks", International Telegraph and
Telephone Consultative Committee (CCITT) of the
International Telecommunications Union (ITU), 1980.

[FIPS83] "Interface Between Data Terminal Equipment (DTE) and Data
Circuit-Terminating Equipment (DCE) for Operation with
Packet -Switched Data Communications Networks", Federal
Information Processing Standards Publication 100 (FIPS Pub
100), Federal Standard 1041, July 1983.

[ICST83] Specification of a Transport Protocol for Computer
Communications, National Bureau of Standards, Institute
for Computer Science and Technology, January 1983.

[IS7498] "Information Processing Systems - Open Systems
Interconnection - Basic Reference Model", International
Standard 7498, International Organization for Standards.

[IS8073] "Information Processing Systems - Open Systems
Interconnection - Transport Protocol Specification"

,

International Standard 8073, International Organization
for Standardization.

[Padil84] Introduction to Proposed DOD Standard H-FP, M. A.
Padilipsky, RFC 928, December 1984.

[Tenn81] Tenney, Richard, and Thomas Blumer, "An Automated Formal
Specification Technique for Protocols," Report No.
ICST/HLNP-81-15 , National Bureau of Standards, 1981.

86

NBS>114A (RCv. 2-80

f.s. DEPT. OF COMM. 1. PUBLICATION OR

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NR^TR

2. Performing Organ. Report No. 3. Publication Date

August 1985

4. TITLE AND SUBTITLE

An NBS Host to Front End Protocol

5. AUTHOR(S)

C. Michael Chernick

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contracp'Grant No.

8. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, Stote, ZIP)

10.

SUPPLEMENTARY NOTES

I I
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bliography or literature survey, mention it here)

"Front end" processors can be used to "offload" communications processing from

host computers, but protocols are needed to communicate between the host and the

front end processors themselves. This paper describes a generic protocol (denoted

HFEP) for host to (and from) front end communications processors. The HFEP, used

in conjunction with additional, more user oriented protocols, such as ISO Transport

or Virtual Terminal Protocol, can be used to offload these protocols.

The NBS HFEP provides for a reliable, multiplexed, connection oriented services

with a mechanism for process rendezvous. Primitives are defined for opening and

closing connections, transfering data and determining the status of a connection.

The HFEP uses underlying X.25 network technology (although other reliable,

multiplexed and individually flow controlled network connection oriented technologies

could be used.)

12.

KEY WORDS (Six to twelve entries; aiphabetical order; capitalize only proper names; and separate key words by semicolon s,

communications processor; communications protocols; computer networks; front end

processor; OSI Transport; offload; X.25 technology

14. NO. OF
PRINTED PAGES

92

15. Price

$11 .’’0

13.

AVAILABILITY

l
yyl Unlimited

I I
For Official Distribution, Do Not Release to NTIS

I I
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

uicoMM-oc

^190^)

p -Jlk& tM.

M Sii'ts

i» c«»?tt*tiv*’- '* ”®”t

^*«>?»!

sv;

xoHtgilnA.'

#taa^wSS*’104i . 1^3^, mK .d^o ^«oi

P ,, ;
r.; It' 'tg P' 3

-s
g. (f pHL I|i|4t

.1

;CSa»9) i«H»*i#.U»«lM> "ot n. TtoMSorti Prole^W fot,,:

irtttotjj. XatloBai-' iSoTaan of 8tai4a»ta, iBsaltaw
^v'lSK-iJS

9(Xi0no€» esd '1^
M6)

''.i .•^'v

tloB l»roc00ilftg Systems - Owf«
• UtkSio Refereiioe

T4s^. foi^
’"' '

a J>*^to»»>«i »> <t***»**>»*^»'**pe>t ttgi-^g iBW*v^atq

•*la*«*(>ttA5« PtotM,s»i.a.ft 4,8y»^' **'*"•'*n^W'V#t^’‘

9W>»W:»i«9 -W#9

»<1T .no^laQ(l*tq s

q t>Mfl

UP»4ijyi4] lJit^>te»0ilch4tisMil wlji^mesf hfOtPi^d liu

ir
taod

'tsqMl eMT a«svfs<Hffrti e^ioieMo^o fiWS ,JSint

IbMS t^H sdt .no^laQ(l*tq swM6d^^u^m^to bus i/wcn^ {rtKW btf9} oi tw
bs^ofldi

, s

Tt m
IMX

'^yi -} '^i ,

.

t«0^V^»e b«f>fttYO m)>l^oo3 aafcleHin e 2sbtv<nq ^31H ISSH Sifr

ttoqiniht OEI *4 45U2 ,2fc»o^oiq bSlrtsHo isiu afOfn , funolPit'bbi rtJhpi noUo4utr»pa of' ‘

hmt^tUv^iQ^u y^if^ky, s>c oaa. 19M

bo» QTffP-iqo ^0^ baoMsb r»# .«uovxsbo*n leaaonq lot iwfoidMW i /tffw

itiP7>:«4l^»llll^ liUlAt^Ei; Md«f«t04ii44bn6iiuli4T^Hiazakiidtaaa(^^
H S»iB»»<l** (tBMWHitlJli

i

qm wff
boxsTqf^fgw

t& r^,ts

'f'.r'

i?W"
'*

,,i

-« w# •‘I’lrwiiiM Vit» ’»»*«» 9*N> vf'inm (;,.- , ,,

bns Jw*) itf4YO0>eo tstMoeo^ itfo:>oio*Tq *nofti3fawc«»a niiuwY*^ foo)-^wh|ifnwDi
^

'tpofoodjsi as*X ;t*foq|nriT UO ;'»w«s»0Yq

t¥f'ji4iAjfAvA ,ii

1?^ ilii

1 • r
'i'- r?l tHWt«Hi«*U fij]

t»TH *• »%«»C t»>tr0»O yk
JjO.vMimAK^wf .asiI^Q #«*lirt4i¥*n(in«w*v*0 Jt,U H y

> ^OMjS

14 tU ,AV .fc«*l\|f»t*«C'’’.<t»T4^ AtHriiMI n*iHiw«8<»*i »aatnit>«r tr-'O/wM «*"0(g3

-
{

MfMita

