

NBSIR 85-3223

Data Sources for Parameters Used in Predictive Modeling of Fire Growth and Smoke Spread

Daniel Gross

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899

September 1985

1985

U.S. DEPARTMENT OF COMMERCE QC IREAU OF STANDARDS 100 -U.56 #85-3223

NBSIR 85-3223

DATA SOURCES FOR PARAMETERS USED IN PREDICTIVE MODELING OF FIRE GROWTH AND SMOKE SPREAD

Daniel Gross

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899

September 1985

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Table of Contents

Introduction .	••••		••	 ••••	• • • •	• • • •	. 1
Thermophysical	Properties .		¢ 9	 • • • • •	• • • •	• • • •	• 2
Fire Responses	of Combustible	Conten	ts.	 	• • • •	• • • •	. 4
References		6 9 6 6	• •	 • • • • •	• • • •	• • • •	. 5
Tables			0 ¢	 		• • • •	. 8

Page

List of Tables

Page

Table 1 - Input Parameters Specified in Selected Fire Growth Models	8
Table 2 - Thermal Conductivity, Specific Heat and Thermal Inertia of Selected Inorganic and Organic Materials	9
Table 3 - Thermal Properties of Assorted Materials (Room Temperature)	21
Table 4 - Total Normal Emissivity of Various Surfaces	22
Table 5 - Sources of Fire Response Data on Fournishings and Contents	23
Table 6 - Burning Rate Data for Selected Combustible Contents	24
Table 7 - Thermochemical Data for Selected Organic Materials	34

Abstract

Sources of data needed for predictive modeling of fire growth by FAST and ASET, two computer codes developed at the Center for Fire Research, are identified for a few selected materials. Data includes thermophysical properties of compartment lining materials and burning rates and combustion product generation rates for typical combustible contents.

Keywords: ASET: Burning rate; Combustion products; FAST: Fire models; Fire properties; Heat release; Smoke generation; Thermal inertia; Thermal properties

v

.

.

Data Sources for Parameters Used in Predictive Modeling of Fire Growth and Smoke Spread

D. Gross

Introduction

There is a need to assemble, in convenient form, available data on materials and products which could serve as input for predictive models of fire growth, smoke transport, and ultimately, "smoke hazard development." These data, which are often referred to as "properties" or "fire properties," generally refer to two principal groups of products: (a) burning items, i.e. furnishings and contents, constituting the combustible "fuel" in an assumed fire scenario, and (b) materials and products comprising the enclosing compartment surfaces. In addition to such material-related data, models also require specified values of coefficients which describe the heat and mass flow processes; these are not associated with specific materials or products. In the more detailed deterministic models there are likely to be progressive ignitions of the combustible contents and the materials comprising the enclosing surfaces, so it is critical to know and understand what constitutes the likely "reactions to fire" or "responses to temperature, heat and flame" of these products. These are more precise terms than "fire properties," since in most cases, these responses are not essential ("intensive") attributes or properties in the traditional sense; instead, they depend strongly on mass or volume ("extensive attributes") as well as on physical form, environment, exposure, etc.

Conventional thermophysical and thermochemical property data are available in reference sources; they are generally listed for pure or well-characterized materials under steady-state or quasi-steady-state conditions. Measurements are unusually based on idealization of ambient atmosphere and thermal

exposure, usually constant temperature. Properties of inorganic materials are generally available up to elevated temperatures. Organic materials, with or without flame retardant chemicals, experience significant endothermic and exothermic reactions, phase changes, and physical changes (e.g. deformation, cracking, charring) which sometimes limit measurement of thermophysical properties beyond ordinary or moderately elevated temperatures.

Predictive models of fire growth require values for specified input "parameters" in specified formats. These differ among models as shown in Table 1 for three common models used by the Center for Fire Research (CFR) staff [1,2,3]. A somewhat different set of parameters results when individual modelers and users list those parameters which they consider necessary to provide solutions to the energy, mass and species conservation equations governing fire and smoke spread. In many cases, researchers are strongly tied into specific measurements of ignitability, flame spread, heat release and smoke generation using specific test equipment and exposure conditions. Many of these input data are not thermophysical or thermochemical properties, but are process-dependent variables which should logically be computed rather than assumed as input. This distinction between properties (essential attributes) and fire test responses is carried through in the compilations which are to follow.

This brief initial compilation is intended to provide users of the simpler models, FAST and ASET, with information required for computations for a few selected materials. This involves (a) thermophysical properties of the compartment lining materials, and (b) burning rates (mass loss rates) and product generation rates for typical combustible contents.

Thermophysical Properties

Where the thermophysical properties of compartment lining materials are taken into account, it is usually important to know how thermal conductivity (k) and specific heat (c) vary with temperature. Density (ρ) may also vary with temperature but this is usually to a lesser degree, and such data are

usually not measured or compiled. In some cases, thermal conductivity and specific heat may vary by factors of up to five over the temperature range of interest. Where phase changes or chemical reactions occur, the apparent specific heat may undergo a sudden large change. If the actual kinetics of these reactions are not taken into account, an effective value of the specific heat may be used over the appropriate temperature range. Since measurement techniques differ, and since k and c are difficult to measure at elevated temperature, the user should consult the original sources for stated (or unstated) precision estimates and limitations. Total normal emissivity (ε_N) is important, but at the ordinary temperatures where measured values are generally available, and for typical compartment lining materials, the variation is not great.

Table 2 provides tabular and graphical values of thermal conductivity and specific heat for the following materials:

Inorganic

Organic

Clay brick (common)	Wood (pine, spruce, hemlock, redwood)
Concrete, normal weight	Wood (Douglas fir, sugar maple)
Gypsum board, standard	Wood (oak, birch, silver maple)
Gypsum board, Type X	PMMA
Calcium silicate board	PVC
Ceramic fiber	Polystyrene
Mineral fiber	Polystyrene Foam
Steel	

The product koc, sometimes called "thermal inertia", is also listed for information. The room temperature values of k and c for several other materials are given in Table 3. Table 4 lists selected values of total normal emissivity; more complete listings are available in standard reference sources, e.g. [4].

Fire Responses of Combustible Contents

FAST and ASET require as input the burning rate (mass loss rate) and rate of heat release, respectively, of one or more combustible contents. This is not necessarily assumed to be constant so that a graph of burning (or heat release) rate versus time is required. The production rate of gaseous species (e.g. CO, CO, HCN, etc.) and of smoke (particulates) also needs to be specified for FAST. Since additional information on the burning process is also necessary, numerical values cannot be simply tabulated. In this case, sources of data on the burning characteristics of furnishings and contents have been assembled in Table 5 together with a classification as to the type (peak or total) and form (tabular or graphical) in which the data are presented. Some data apply to burning in the open and others to burning inside a compartment where the air may become vitiated in the advanced burning stage. In some cases, heat release rates for objects burning within a compartment may be greater than those in the open due to radiant feedback from heated surfaces. The user should consult those references which provide data in the form desired. The types of products or materials include: chairs, sofas, mattresses, beds, wastebaskets, cross-piles of wood and plastic, bookcases, closets, office furniture, etc. For convenience, Table 6 provides some graphical and tabular values for common furnishings, such as upholstered and plain chairs, sofas, mattresses, closet wardrobes, curtains, televisions, and wastepaper baskets.

Rate of heat release is the basic driving force in fire growth so that its measurement and characterization is the most critical input for modeling. Where the heat release rate of the initial burning item has been measured directly, e.g. by a full-scale or bench-scale calorimeter, it can be used directly as input data. Where only the mass loss rate has been measured (or can be estimated), the rate of heat release may be calculated using an appropriate value of heat of combustion. This may be the net heat of combustion from oxygen bomb calorimetry (assuming complete combustion) or an effective net heat of combustion (assuming partial combustion). Where a more exact estimate is called for, the net heat of combustion may be adjusted to take into account the extent to which incomplete combustion results in the formation of char, soot and carbon monoxide. In this case,

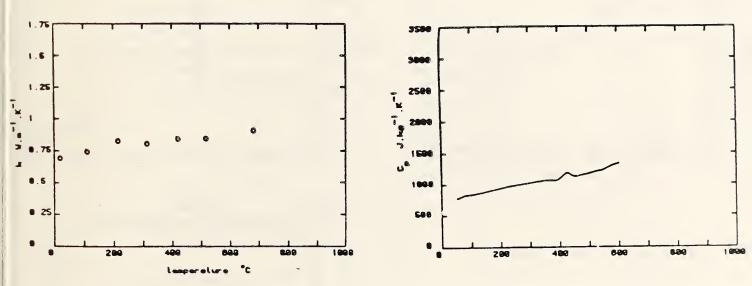
it is necessary to have additional information, including chemical composition and heats of formation, vaporization, and gasification. Some of this information has been assembled for selected generic combustible materials in Table 7. Other values must be assumed or obtained from reference sources.

References

- Jones, W.W., "A Model for the Transport of Fire, Smoke and Toxic Gases (FAST)", NBSIR 84-2934, Sept. 1984.
- Cooper, L.Y., "Estimating Safe Available Egress Time from Fires" (ASET), NBSIR 80-2172, Feb. 1981.
- Rockett, J.A., "Data for Room Fire Models", Combustion Science and Technology, Vol. 40 (1-4), pp. 137-151, 1984.
- Steward, F.R., "Basic Principles of Radiative Transfer" in "Heat Transfer in Fires: thermophysics, social aspects, economic impact", P.L. Blackshear, editor, Scripta Book Co., Wash., D.C., 1974.
- 5. Lawson, J.R., Walton, W.D. and Twilley, W.H., "Fire Performance of Furnishings as Measured in the NBS Calorimeter Part 1", NBSIR 83-2787, Aug. 1983.
- Babrauskas, V., Lawson, J.R., Walton, W.D., and Twilley, W.H., "Upholstered Furniture Heat Release Rates Measured with a Furniture Calorimeter", NBSIR 82-2604, Dec. 1982.
- Babrauskas, V., "Full-Scale Burning Behavior of Upholstered Chairs", NBS TN 1103, Aug. 1979.
- Quintiere, J.G. and McCaffrey, B.J., "The Burning of Wood and Plastic Cribs in an Enclosure", NBSIR 80-2054, Nov. 1980.

- 9. Klein, D.P., "Characteristics of Incidental Fires in the Living Room of a Mobile Home", NBSIR 78-1522, Sept. 1978.
- Babrauskas, V., "Combustion of Mattresses Exposed to Flaming Ignition Sources, Part I, Full-Scale Tests and Hazard Analysis", NBSIR 77-1290, Sept. 1977.
- Babrauskas, V., "Will the Second Item Ignite?", Fire Safety J. <u>4</u>, pp. 281-292, (1981/1982).
- Fang, J.B., "Measurements of the Behavior of Incidental Fires in a Compartment", NBSIR 75-679, March 1975.
- Gross, D. and Fang, J.B., "The Definition of a Low Intensity Fire", Joint RILEM-ASTM-CIB Symp. Proc., NBS SF 361, (1972).
- Waterman, T.E., "Determination of Fire Conditions Supporting Room Flashover", Defense Atomic Support Agency Report DASA 1886, Sept. 1966. (See also NBS-GCR-77-111, June 1976).
- 15. Ahonen, A., Kokkala M. and Weckman, H., "Burning Characteristics of Potential Ignition Sources of Room Fires", Technical Report 285, Technical Research Centre of Finland, June 1984.
- Hagglund, B., Jansson, R. and Onnermark, B., "Fire Development in Residential Rooms after Ignition from Nuclear Explosions", FOA Report C20016-D6 (A3), Nov. 1974.
- 17. Harmathy, T.Z., "Properties of Building Materials at Elevated Temperatures", DBR Paper No. 1080, National Research Council of Canada, March 1983.
- 18. Abrams, M.S., "Behavior of Inorganic Materials in Fire" (reference to measurements by Collet and Tavernier), ASTM STP 685 American Society for Testing and Materials, 1979, pp 14-75.

- 19. "Behavior of Gypsum and Gypsum Products at High Temperatures" (reference to measurements at Statens Provningsanstalt, Stockholm 1980), unpublished report of RILEM Committee PHT-44, March 1982.
- Specification Data for Marinite I, a product of Johns-Manville, Denver, CO. Feb. 1981.
- Specification Data for Kaowool 2600, a product of Babcock & Wilcox, Augusta, GA. Oct. 1978.
- 22. Skinner, D.H., "Measurement of High Temperature Properties of Steel", Melbourne Research Laboratories (MRL 6/10), May 1972.
- 23. _____, "Wood Handbook: Wood as an engineering material", USDA Agriculture Handbook No. 72 rev. 1974.
- 24. Nottage, H.B., "The Thermal Properties of Building Materials Used in Heat Flow Calculations", ASHVE Research Bulletin, Vol. 53, No. 2, Sept 1947.
- 25. Touloukian, Y.S. editor, "Thermophysical Properties of High Temperature Solid Materials; Volume 6; Part II. pp 1022-4, 1967.
- 26. Ho, C.Y., Desai, P.D., Wu, K.Y., Havill, T.N., and Lee, T.Y., "Thermophysical Properties of Polystyrene and Poly (Vinyl Chloride)", CINDAS Report 38, Center for Information and Numerical Data Analysis and Synthesis, W. Lafayette, IN. Aug 1975.
- 27. _____, Fire Protection Handbook, 15th edition, Tables 4-12A,
 4-12B National Fire Protection Association, Quincy, MA 1981.
- Encyclopedia of Polymer Science and Technology, Vol. 13 Thermodynamic Properties. Wiley & Sons 1970.
- 29. Tewarson, A. and Pion, R.F., "A Laboratory-Scale Method for the Measurement of Flammability Parameters", Final Technical Report FMRC Serial No. 22524, October 1977.

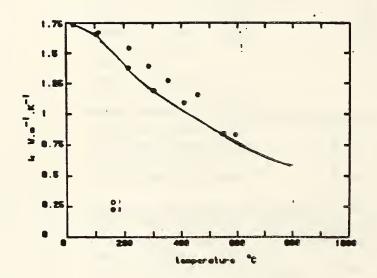

			Harvard V
Compartment Materials	FAST	ASET	(H 05.2)
Density	Х		Х
Thermal Condustivity	Х		X
Specific Heat	Х		Х
Emissivity	Х		Х
Combustible Contents			
Burning (mass loss) rate	Х		
Heat release rate		X	
Area of fire	X		
Fire growth rate		X	X
Production rate of species ^a	X	X	Х
Density			Х
Thermal Conductivity			Х
Specific Heat			Х
Emissivity			X
Heat of Combustion	X	X	Х
Heat release fraction	Х		X
Heat of reaction (pyrolysis			X
Ignition temperature			X
Pyrolysis temperature			X
Air/fuel mass ratio			X
Fire spread parameter			X
Heat and Mass Flow Processes			
Fractional radiation heat loss rate		X	
Fractional conductive heat loss rate		Х	
Heat transfer coefficient			X
Flow (discharge) coefficient			X
Plume entrainment coefficient			Х
Flame extinction coefficient			Х

^aSpecies: N₂; O₂; CO₂; HCN: HCl; THC; H₂O; smoke; %LC₅₀; smoke ND; HCl ND

Table 2. Thermal Conductivity, Specific Heat and Thermal Inertia of Selected Inorganic and Organic Materials

Material: Clay Brick (Common) Density: 1900 kg/m³ (120 pcf)

Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{\frac{k^{\rho}c}{J^{2}}}{s m^{4} \kappa^{2}}$
20	0.72	750	$ \begin{array}{r} 1030 \times 10^{3} \\ 1140 \\ 1370 \\ 1940 \\ \sim 2560 \end{array} $
100	0.75	800	
200	0.8	900	
500	0.85	1200	
800	0.9	~ 1500	



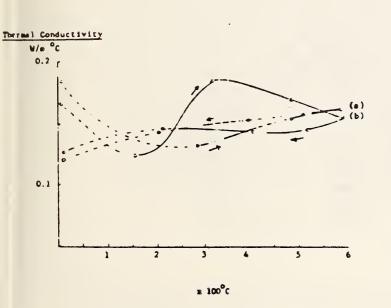
Ref. 17

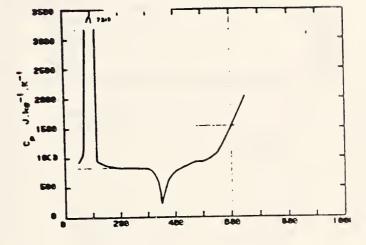
Material: Concrete, normal weight

Density: 2200 kg/m³ (140 pcf)

Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{\frac{k\rho c}{J^2}}{s m^4 K^2}$
20 100 200 500 800	1.75 1.70 1.38 0.90	1000 1200 1200 1500	3850 x 10 ³ 4490 3640 2970
800	~ 0.6	~ 1500	~ 1980

253 ; 1000 -DO R Concerting Thermol Copocity, Btu / Ib *F Temperature, *F 400 600 800 1000 1200 -1 QI 700 100 200 300 400 500 600


Ref. 17, 18

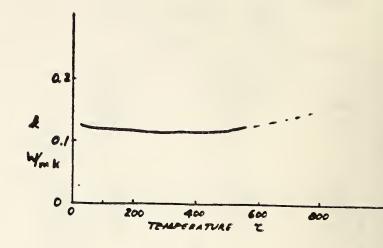

FIG. 23-Specific thermal capacity for different types of concrete [49].

Temperature, *C

Material	: Gypsum Board	A. B.	Standard Type X	1. / entrie for	st.	
Density:	: Gypsum Board (A): 790 kg/m ³ (B): 770 kg/m	(49 pcf) (48 pcf)	f fcf=	pornas		
	A. Stand	ard			В. Туре Х	
Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{k\rho c}{J^2}$ sm ⁴ K ²	k	с	kpc
20 100 200 500	0.18 0.15 0.13 0.15	900 900 800 900	128 x 10 ³ 107 82 107	0.16 0.13 0.13 0.17	900 900 800 900	111 x 10 ³ 90 80 118

- Brmarks : (a) Plasterboard (790 kg/m³).
 (b) Plasterboard incorporating lass than 5% glass fibre (770 kg/m³).
- Meference : Report 7040 384C Statens Provingsanstalt, Stockholm' (1980).

 $d(20^{\circ}c) \approx \frac{0.18^{\circ}}{790(900)} = 2.25 \times 10^{-7}$ $m \frac{0.18}{770(900)} = 2.60 \times 10^{-7}$


Ref. 17,19

Material: Calcium Silicate Board (Marinite I)

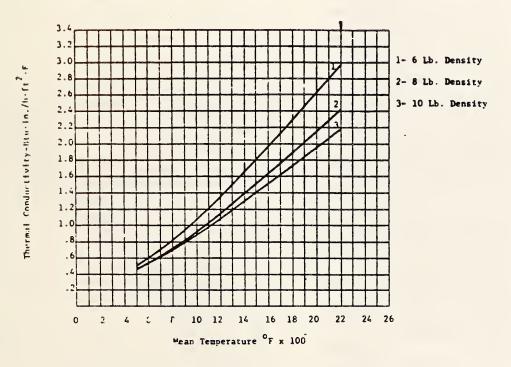
Density: 740 kg/m³ (46 pcf)

Thermal Conductivity (Btu-in. sq. ft.//F/hr.)

k
0.88
0.82
0.81
0.80
0.79
0.80
0.81
0.83
0.86

Specific Heat

Temperature *F	Specific Heat Btu/°F/Ib.
200	0.28
400	0.30
600	0.32
800	0.34

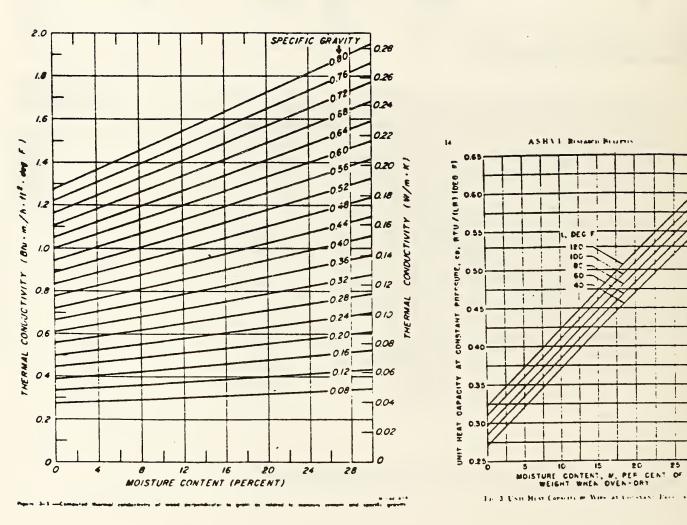

Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{L_{J^2}^{k^{\rho}c}}{s m^4 K^2}$
20	0.13	1120	$ 108 \times 10^{3} 104 112 127 ~178 $
100	0.12	1170	
200	0.12	1260	
500	0.12	1430	
800	~ 0.15	~ 1600	

Material: Ceramic Fiber (Kaowool 2600 Modules)

Density: 130 kg/m³ (8 pcf)

Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{\frac{k^{\rho}c}{J^2}}{s m^4 k^2}$
20	0.030	1050	$\begin{array}{r} 4.1 \times 10^{3} \\ 5.5 \\ 9.0 \\ 16.7 \\ 29.5 \end{array}$
100	0.040	1050	
200	0.065	1060	
500	0.12	1070	
800	0.21	1080	

*Thermal Conductivity - Kaowool 2600 Modules



"The above thermal conductivity values of Kaowool modules are slightly lower due to a slight compression of the modules.

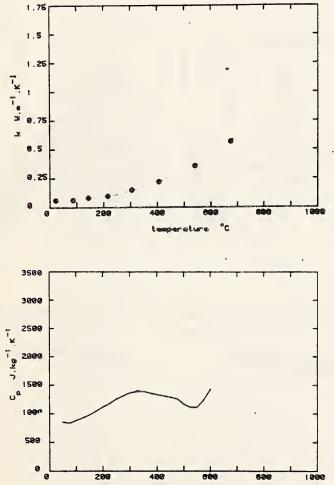
Material: Wood; Plywood

Dry Density: Species:		510 kg/m ³ (32 p Douglas Fir; Su Maple		640 kg/m ³ (4 Oak; Birch;	
Moisture Content %	k c kpc W/m KJ/kgK <u>J²</u> s m ⁴ K ²	k c W/m K J/kgK	$\frac{kpc}{J^2}$ s m ⁴ K ²	k W/m_K	$\frac{c}{J/kgK} = \frac{k\rho c}{\frac{J^2}{s m^4 K^2}}$
0 10 20	$\begin{array}{cccc} 0.11 & 1210 & 53 \times 10^3 \\ 0.12 & 1630 & 78 \\ 0.14 & 2050 & 115 \end{array}$	0.13 1210 0.15 1630 0.17 2050	80 x 10 120 180	³ 0.15 0.18 0.20	1210 120 x 10 1630 190 2050 260

c increases approx. 5% for each 10°C rise in temperature above 20°C.

÷.

ŝ


30

Ref. 23, 24

Material: Mineral Fiber (Thermafiber)

Density: 130 kg/m^3 (8 pcf)

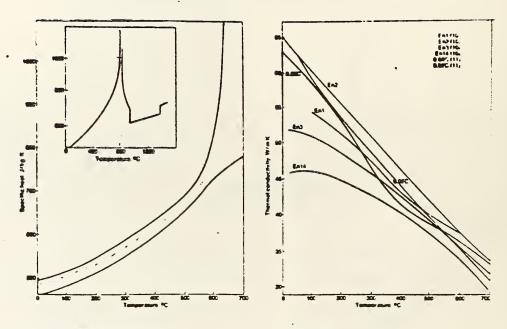
Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/Kg K	$\frac{\frac{k\rho c}{J^2}}{s m^4 \kappa^2}$
20	0.036	900	$4.2 \times 10^{3} \\ 4.2 \\ 7.8 \\ 47 \\ \sim 234$
100	0.036	900	
200	0.050	1200	
500	0.30	1200	
800	~0.9	~ 2000	

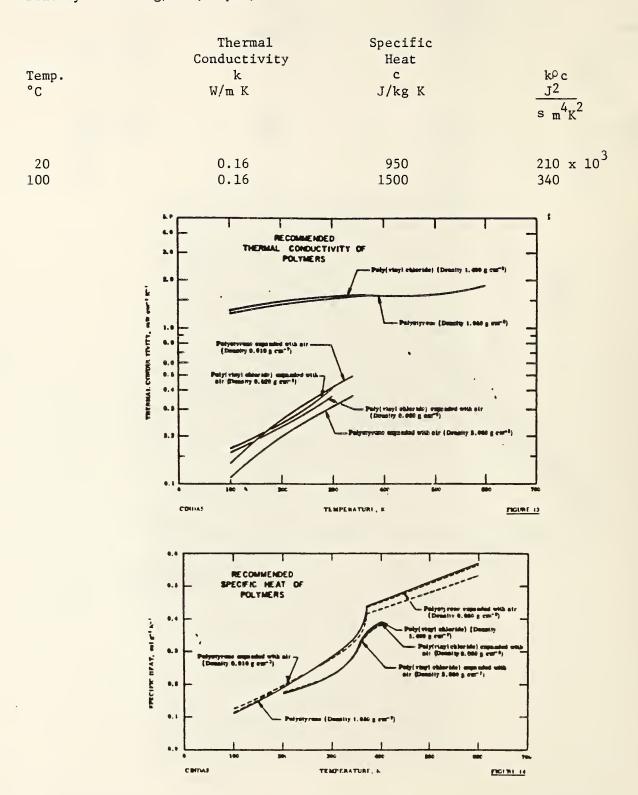
Ref. 17

Material: Steel

Density: 7850 kg/m³ (490 pcf)

Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{\frac{k^{\rho}c}{J^2}}{s m^4 \kappa^2}$
20	62	480	$234 \times 10^{6} 232 216 207 ~236$
100	59	500	
200	53	520	
500	40	660	
800	~ 30	~ 1000	

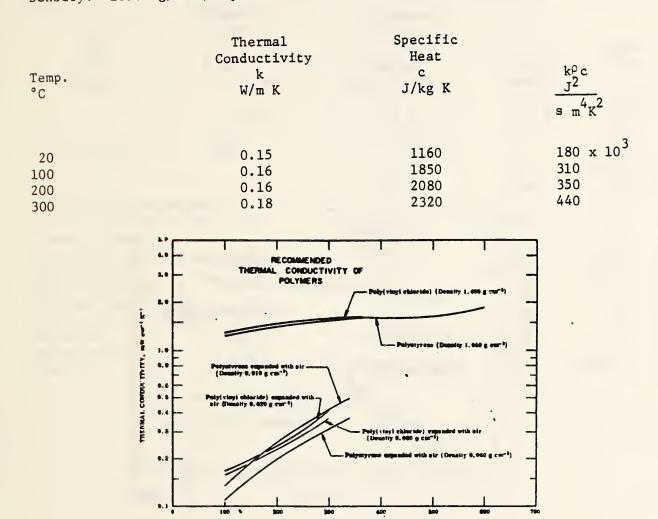


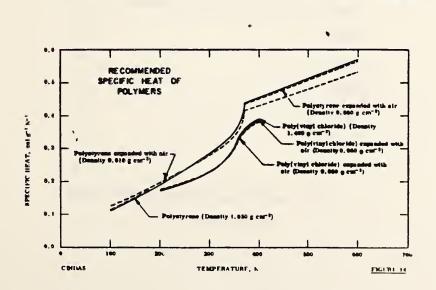

Figure 1. Effect of testingentiums on apacelic basis of Structures ensuits receiver (acres of previates results) (10) (11) (12) Intel Electronic effect of previationdiminent (12) 1141 Naura 2. Thermai annauchring vorum sinipertiert ler covernet essen.

Ref. 22

Material: Pol	ymethyl methacrylate		
Density: 1180	kg/m^3 (74 pcf)		
Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{k\rho c}{J^2}$ sm ⁴ k ²
20 100	.15 .16	1300 1800	$230 \times 10^{3}_{340 \times 10^{3}}$
	Liperral Conductivity al Sec Carl K, M 16 		

Material: Polyvinyl Chloride

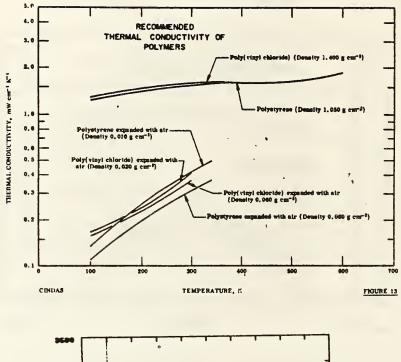

Density: 1400 kg/m³ (87 pcf)

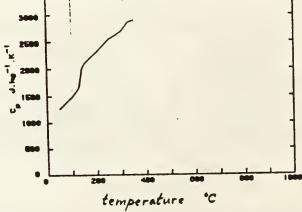


Material: Polystyrene (solid)

CENIDAS

Density: 1050 kg/m³ (65 pcf)


TEMPERATURI, P


FIGURE 13

Material: Polystyrene Foam

Density: 34 kg/m³ (2 pcf)

Temp. °C	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{\frac{k\rho c}{J^2}}{s m^4 K^2}$
20	0.036	1150	1.4×10^{3}
100	~ 0.05	1500	~ 2.6 x 10 ³

Ref. 17, 26

Table 3. Thermal Properties of Assorted Materials (Room Temperature)

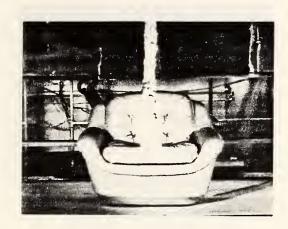
.

	Density p kg/m3	Thermal Conductivity k W/m K	Specific Heat c J/kg K	$\frac{k\rho c}{\int_{J}^{2}}$ sm ⁴ K ²
				2
Air	1.3	0.024	1000	0.03×10^{3}
Insulation	50	0.040	800	1.6×10^{3}
(rock or glass fiber)				2
Fiber insulation board (wood or cane)	240	0.05	1250	15×10^3
Vermiculite plaster	720	0.25	900	160×10^{3}
Gypsum plaster	1700	0.8	840	1140×10^{3}
Glass (soda-lime)	2500	1.2	750	2250×10^{3}
Urethane foam, rigid	24	0.023	1600	0.9×10^{3}
Urethane foam, flexible	50	0.040	1700	3.4×10^{3}
Hardboard	1000	0.20	1250	240×10^{3}
Carpet and pad	300	0.1	1400	42×10^{3}
Aluminum	2700	200	900	490000 x 10 ³

Table 4. Total Normal Emissivity of Various Surfaces

Material	Temp.	ε _N
Asbestos board Clay brick	20 20	0.96 0.93
Clay blick	1000	0.5
Concrete	20	0.94
Glass	20	0.95
Gypsum	20	0.90
Aluminum	100	0.09
Aluminum, oxidized	500	0.3
Steel, rough, oxidized	20-400	0.95
Paint (all colors)	100	0.95
Wood (many species)	20	0.90

		Type of									Smoke	e							
		Burning	Mas	Mass Loss			Heat	Release		%		1				Gases		E	
Product or Material	No.	0=0pen C=Compt.	Tot.	Peak Rate	Graph	Tot. 1	Peak Rate	Peak Eff. Rate H of C (Graph		0.D. 0.D. Tot. Peak		Ext. Coeff. (Ext. CO Coeff. Graph Peak		CO ₂ O ₂ Peak Min.	2 In. Gra	Graph Irrad.	. Ref.
Upholstered chairs/easy chairs	5	0		×	×	×	×	X	х	x		-		×	×	┢	-	×	2
Plain chairs	80	0		Х	X	×	X	X	Х	X				X	X			×	
Sofas	e	0		Х	Х	x	×	X	x	×				X	X			×	
Mattresses	2	0				х	х		х						×			X	
Bookcases	-	0					x									-			
Closets	6	0		Х	Х	x	X	Х	Х	x				×	X			×	
Upholstered chairs, sofas	13	0		Х		X	X	X	Х	X		-			×	Х	X	X	9
Upholstered chairs	16	C	Х	Х	X			X					X	X	X	X	X X	X	-
Wood cribs	10,4	C,0		Х												X	X	X	8
Plastic cribs	10,4	c,0		×												x	X	×	
Wood cribs	Ś			X	X					Х		X		X	×	X	X	X	6
Upholstered chairs	1	U		×	X					×		x		X	X	X	X	×	
Wastebasket (plastic)/contents	1	c		x						×		X		x			X	×	
Mattresses	10	J	X	X	x							-	×	X	×	×	XX	×	10
Office furniture	19	0		х										:	 - -			×	11
Upholstered chairs	16	ບ		X	(typ)	calc.	calc.		calc			X		(typ)				X	12
Wood Cribs	9	J	And the set of the set of	×		calc.	calc.		calc			×		(typ)				×	
· Wastebasket/contents	22	C		x													-	X	13
Upholstered chairs	9	υ		×												 		!	14
Sofas, couches	28	υ		×															
Beds	ę	U		×											×		×		
Television sets	e	υ υ	X	X		×	×	×	x			X		X				X	15
Wastebasket (plastic)/contents	4	ပ				×	x		×		×	×		×		_		×	
Curtains	2	U	X			×	×	×	×			X		X		_		x	
Upholstered chairs	٣	U	×		(typ)	×	X	X	×		-	X		×				×	
Christmas trees	ę	С				X	×		X			×		×				×	
Upholstered chairs	28	ల		Х				;				-			Ī				16
Upholstered sofas	2	C		х							-	-	-			-			


Table 5. Sources of Fire Response Data on Furnishings and Contents

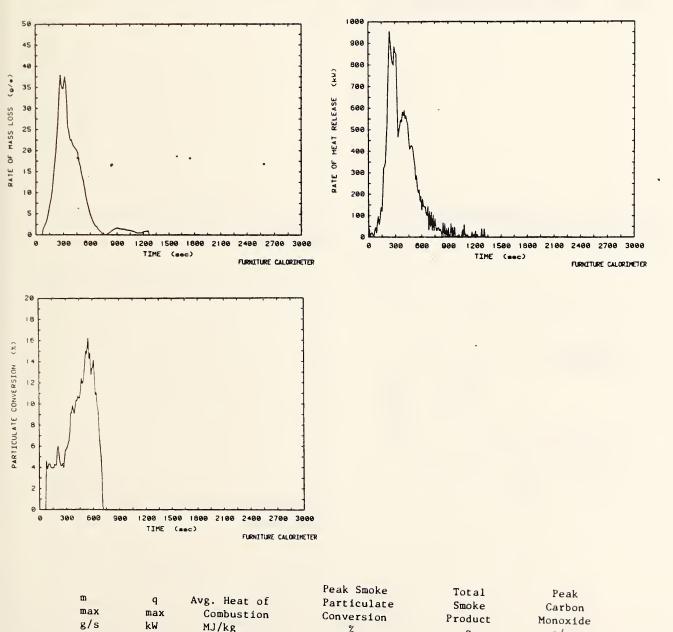
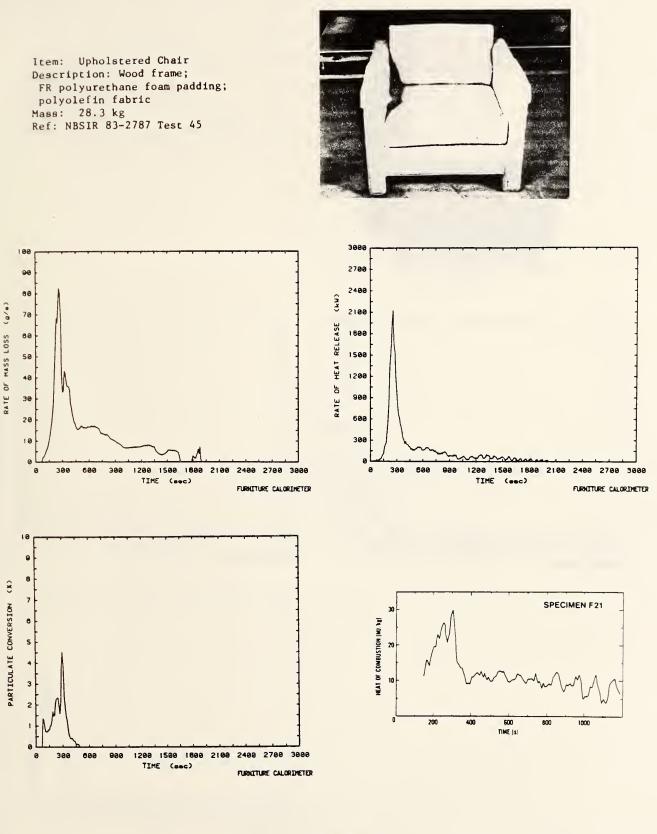

*See list of references for complete citation

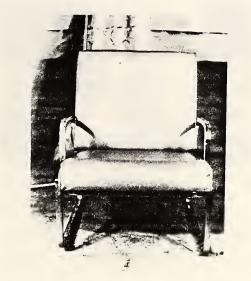
Table 6. Burning Rate Data for Selected Combustible Contents

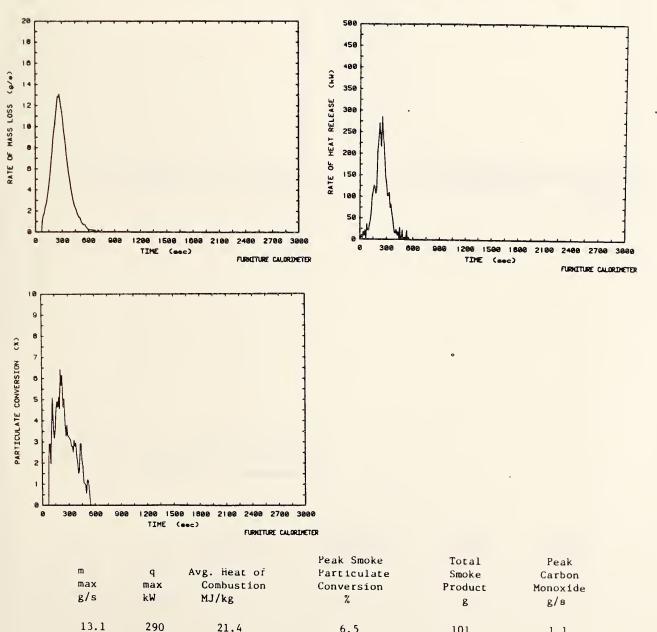
	Page
Upholstered Chair, Molded PS Frame	25
Upholstered Chair, Wood Frame	26
Upholstered Chair, Metal Frame	27
Upholstered Sofa, Wood Frame	28
Mattress, Wood Boxspring	29
Wardrobe Closet	30
Curtains	31
TV Set	32
Wastepaper Basket with Contents	33

Item: Upholstered Chair Description: Molded PS frame; Polyurethane foam padding; PU/polyolefin fabric Mass: 11.5 kg Ref: NBSIR 83-2787 Test 48



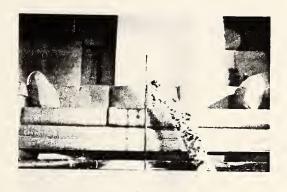
g/s	kW	MJ/kg	%	g	g/s
38.0	960	33.3	16.2	774	3.1

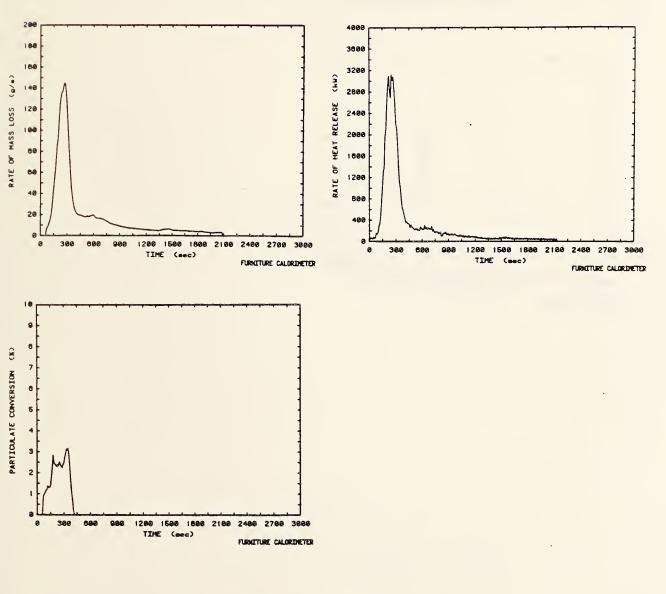

•



m max g/s	q max kW	Avg. Heat of Combustion MJ/kg	Peak Smoke Particulate Conversion %	Total Smoke Product 8	Peak Carbon Monoxide g/s
82.5	2100	18.1	1.7	213	1.3

Item: Plain Chair Description: Metal Frame; Solid PU foam cushions; Plastic fabric Mass: 15.5 kg (1.9 kg combustible) Ref: NBSIR 83-2787 Test 53

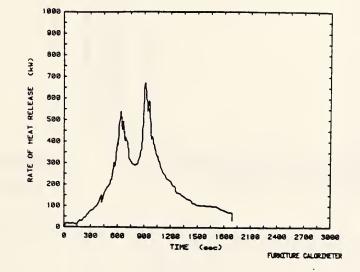




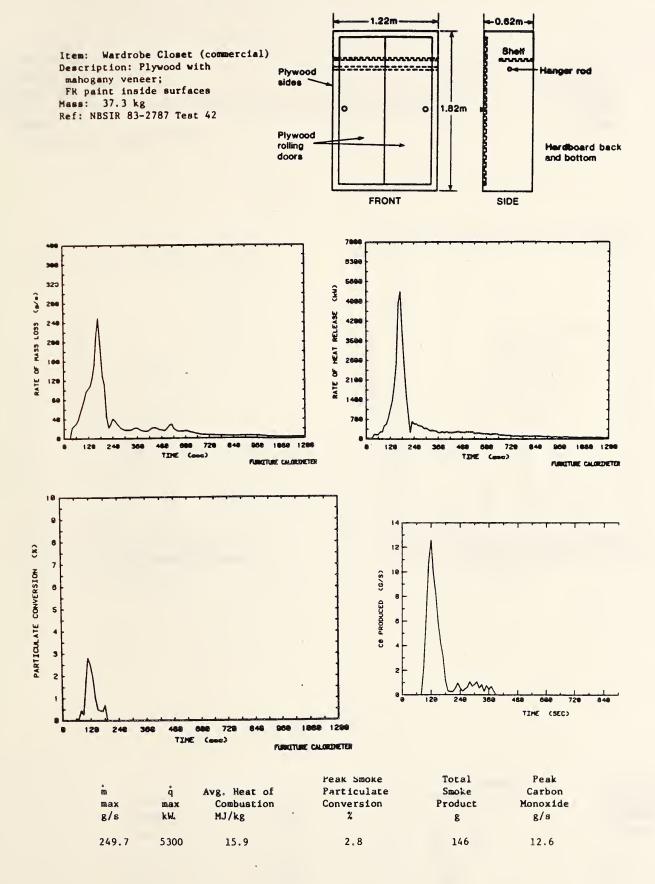
6.5

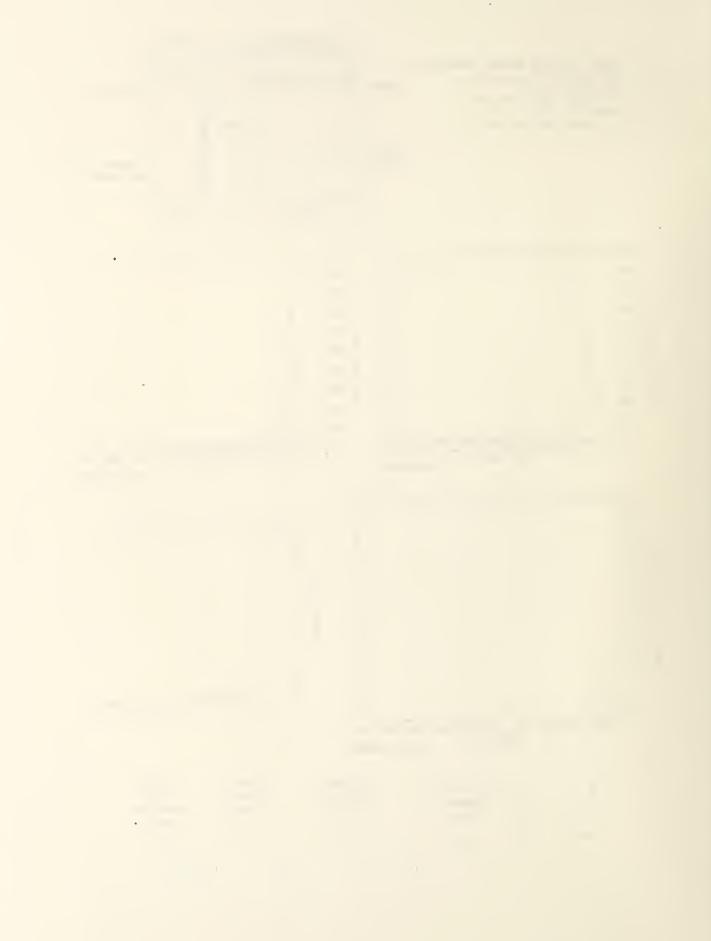
101

Item: Upholstered sofa Description: Wood frame; FR polyurethane foam padding; polyolefin cover fabric Mass: 51.5 kg Ref: NBSIR 83-2787 Test 38

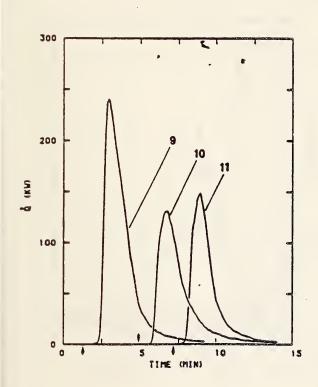


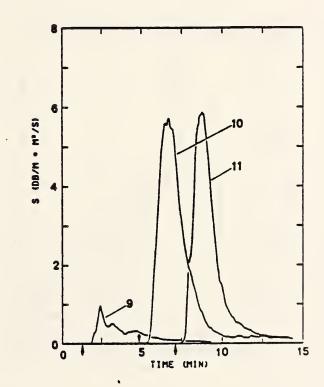
m max g/s	q max kW	Avg. Heat of Combustion MJ/kg	Peak Smoke Particulate Conversion %	iotal Smoke Product g	Peak Carbon Monoxide g/s
145.3	3200	18.9	3.2	558	4.5


Item: Mattress/Boxspring Description: Wood boxspring; Mattress: 40% cotton felt; 40% PU foam; 20% sisal cover Mass: 62.4 kg Ref: NBSIR 83-2787 Test 67



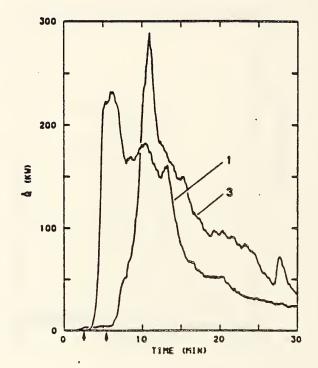
m max g/s	q max . kW	Avg. Heat of Combustion MJ/kg	Peak Smoke Particulate Conversion %	Total Smoke Product 8	Peak Carbon Monoxide g/s
	660				1.6

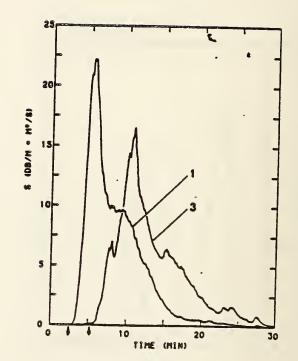




Item: Curtains	
Description: 2	Mass
9: Cotton 0.31 kg/m ²	1.87 kg
10: Cotton (39%); Polyester (16%); Acrylic (45%) 0.23 kg/m ²	1.43 kg
11: Same	1.43 kg
Ref: VTT Research Report 285	

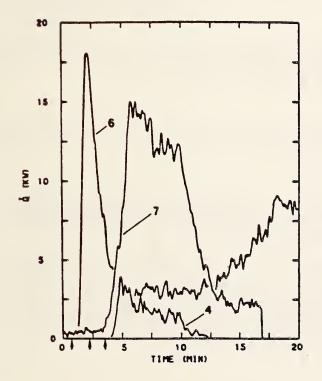
•





	" Mass Loss kg	q max KW	Total Smoke Produced <u>dB</u> .m ³	Effective Heat of Combustion mJ/kg
9:	1.7	240	100	14
10:	1.3	130	670	13
11:	1.3	150	590	12

Item: TV Set
Description:
1: 24" Black & White (1960s); wood cabinet
3: 26" Black & White (1960s); wood cabinet
Ref: VTT Research Report 285


Mass: 32.7 kg Mass: 39.8 kg

		Mass Loss kg	q max KW	Total Smoke Produced <u>dB</u> .m ³ m	Effective Heat of Combustion mJ/kg
1:	•	10.2	230	6700	14
3:		10.2	290	6300	15

Item: Wastepaper basket with contents Description: 4: Polyethylene basket 0.63 kg plus shredded paper 0.20 kg 6: Polyethylene basket 0.53 kg plus shredded paper 0.20 kg 7: Polyethylene basket 0.53 kg plus milk cartons 0.40 kg Ref: VTT Research Report 285

	. I	lass Loss Kg	q max KW	Total Smoke Produced <u>dB</u> .m ³
4: 6: 7:	.	-	4 18 15	6 82 46

Materials	
Organic)
Selected	
for	
Data	
Thermochemical	
Table 7	

Combustion Fuel	MW	Chemical Formula	Mase	Mass Fraction H 0	tion 0 N	Heat of Combustion ^a MJ/kg Gross Net	mbustion ^a g Net	Heat of b Formation Kcal/mole	Stoichiometric Air-Fuel Mass Ratio ^a	Effective Heat of Gasification ^c MJ/Kg
Charcoal	12	U	1,000			32.8	32.8	0	11.47	
Methane	16	CH	.750 .250	.250		55.5	50.0	-17.9	17.24	
Polyethylene	28	c ₂ H ₄	.857	.143		46.4	43.3	-12.2	14.75	2.32
Polypropylene	42	c ₃ H ₆	.857	.143		46.4	43.3	-19.3	14.75	2.03
Polystyrene	104	C ₈ H ₈	.923	.077		41.5	39.8	8.3	13.24	1.70
Polytetrafluorethylene	100	c_2F_4	.240		°760(F)	F) 5.0	5.0	-196.1	2.76	
Polyvinyl chloride	62.5	C ₂ H ₃ C ^k	.384	.048	.568(568(C&) 17.1	16.4	-22.6	6.07	2.47
는 Polyoxymethylene	30	CH ₂ 0	.400 .067		.533	16.9	15.6	-40.9	4.60	2.43
PMMA	100	c ₅ H ₈ 0 ₂	. 600	. 600 . 080 .	.320	26.6	24.9	-105.8	8.27	1.63
Cellulose	162	C ₆ H ₁₀ O ₅	.444	.062 .494	494	17.5	16.1	-230.3	5.10	3.55
Sucrose	342	$c_{12}^{H_{22}} c_{11}^{H_{21}}$.421	.064 .515	515	12.5	11.1	-857.5	4.83	
Polycarbonate	254	$c_{16}^{H_{14}0_{3}}$.756	.055 .189	.189	31.0	29.8	-103.3	9.76	2.07
Acrylonitrile	53	c ₃ H ₃ N	.679	.057	.264	32.2	31.0	15.8	9.75	
Melamine (Formíca)	162	C ₆ H ₆ N ₆	.444	.037	.519	19.3	18.5	-20.0	6.38	-
Nylon 6	113	C ₆ H ₁₁ NO	.637		.097 .142 .124	31.7	29.6	-83.2	9.96	
Polyurethane (rigid) GM-25	130.3	c _{6.3} H _{7.1} NO _{2.1}	.580	.055	.258 .107	23.9	22.7	-100.0	7.43	1.19
Polyurethane(flexible) 285	285	C _{14.33} ^H 24.94 ⁰ 4.63 ^N .602 .088 .260 .049	₃ ^N .602	. 088	.260 .049	26.6	24.6	-393.6	9.79	1.23

Ref 27 Ref 28 Ref 29

င် မိုးစ

NBS-114A (REV. 2-80)			
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No.	3. Publication Date
BIBLIOGRAPHIC DATA SHEET (See instructions)	REPORT NO. NBSIR-85/3223		September 1985
4. TITLE AND SUBTITLE			
Data Sources for I	Parameters Used in Pi	redictive Modeling of Fin	re Growth and
	arameters used in Fi	ledictive Modering of Th	e growen and
Smoke Spread			
5. AUTHOR(S)			
Daniel Gross			
6 REREORMING ORGANIZA	TION (If joint or other than NE	as see instructions)	. Contract/Grant No.
. FERFORMING ORGANIZA		ss, see instructions/	. Contraco Grant No.
NATIONAL BUREAU OF	STANDARDS		
DEPARTMENT OF COMM		8	. Type of Report & Period Covered
WASHINGTON, D.C. 2023	4		
9. SPONSORING ORGANIZAT	TION NAME AND COMPLETE	ADDRESS (Street, City, State, ZIP)	
10. SUPPLEMENTARY NOTE	S		
Document describes a	computer program; SF-185, FI	PS Software Summary, is attached.	
Martin Contraction of the Contra		t significant information. If docume	nt includes a significant
bibliography or literature	survey, mention it here)		it incluees a significant
Sources of data no	eeded for predictive	modeling of fire growth	by FAST and ASET,
two computer codes	s developed at the Ce	enter for Fire Research,	are identified
		ncludes thermophysical pi	
		ing rates and combustion	
	combustible contents		product generation
iaces for cypical	combuscible concents	2 •	
12. KEY WORDS (Six to twelv	e entries; alphabetical order; a	capitalize only proper names; and se	parate key words by semicolons)
ASET: Burning rate	e: Combustion product	ts; FAST; Fire models; Fi	ire properties:
ficat icitase, smo	-	al inertia. Thermal prope	ortiec
13. AVAILABILITY	-	al inertia; Thermal prope	erties
	-	al inertia; Thermal prope	
🔀 Unlimited	-	al inertia; Thermal prope	14. NO. OF
	-	al inertia; Thermal prope	
For Official Distribut	-	al inertia; Thermal prope	14. NO. OF PRINTED PAGES
	ke generation; Therma		14. NO. OF PRINTED PAGES 40
	ke generation; Therma	al inertia; Thermal prope	14. NO. OF PRINTED PAGES 40
Order From Superinter 20402.	ke generation; Therma ion. Do Not Release to NTIS ident of Documents, U.S. Gove	rnment Printing Office, Washington,	14. NO. OF PRINTED PAGES 40
Order From Superinter 20402.	ke generation; Therma ion. Do Not Release to NTIS ident of Documents, U.S. Gove		14. NO. OF PRINTED PAGES 40
Order From Superinter 20402.	ke generation; Therma ion. Do Not Release to NTIS ident of Documents, U.S. Gove	rnment Printing Office, Washington,	D.C. 14. NO. OF PRINTED PAGES 40 15. Price

