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ABSTRACT

Second-order sensitivity analysis methods are developed for analyzing the

behavior of a local solution to a constrained nonlinear optimization problem

when the problem functions are perturbed slightly. Specifically, formulas

involving third-order tensors are given to compute second derivatives of

components of the local solution with respect to the problem parameters. When

in addition, the problem functions are factorable, it is shown that the

resulting tensors are polyadic in nature.

Keywords: Second-order sensitivity analysis, high-order methods, Nth

derivatives, polyads, tensors.
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1. INTRODUCTION

In an earlier paper (Jackson and McCormick (1984)) the structure taken by

N-dimensional arrays of N th partial derivatives of the special class of

factorable functions was examined. The N-dimensional arrays (or tensors as

they are sometimes called) turn out to be computable naturally as the sum of

generalized outer product matrices (polyads). For the benefit of the reader

unfamiliar with polyads and factorable functions, some of the material in that

paper is repeated here.

This natural polyadic structure has important computational implications

for solving problems associated with nonlinear programming. It means for

example that with some minor modification to existing software routines, high-

order derivatives can be calculated efficiently, making previously intractable

techniques that require them, again worthy of consideration. In the disser-

tation by Jackson (1983) from which most of the material in this paper is

taken, these implications were pursued for second-order sensitivity analysis

and high-order methods for solving the problem:

minimize f(x),

x e Rn

( 1 . 1 )

subject to g(x) > 0,

for i-1, ..., m, when f(x) and g(x) are factorable functions.

The ability to compute third derivatives efficiently provides ready

access to second-order nonlinear programming sensitivity information. In

Section 3 of this paper, second-order sensitivity analysis methods are devel-

oped for analyzing the behavior of a local solution to (1.1) when the problem

functions are perturbed slightly. Section 3 begins by summarizing results

from first-order sensitivity analysis which provide formulas for the first

derivatives of the components of the local solution with respect to the

problem parameters. Also developed are formulas, iravolving third-order
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tensors, for computing the second derivatives of the local solution with

respect to the problem parameters. In addition, the polyadic structure of the

tensors is investigated and displayed, and techniques for manipulating these

three-dimensional arrays, capitalizing on this special structure, are

developed. In general, this type of array manipulation is straightforward but

time-consuming and requires significant computer storage. It is shown that

these difficulties are ameliorated when the special structure of factorable

functions is exploited. Examples of the use of these formulas for estimating

the solution to perturbed problems using Taylor series approximations are

also given.

Loosely, a factorable function is a multivariable function that can be

written as the last of a finite sequence of functions, in which the first n

functions in the sequence are just the coordinate variables, and each function

beyond the n^ is a sum, a product, or a single-variable transformation of

previous functions in the sequence. More rigorously, let [fj(x), f2(x), ...,

fx,(x)] t>e a finite sequence of functions such that f£:Rn + R, where each

fi(x) is defined according to one of the following rules.

Rule 1

.

For 1*1, ..., n, f^(x) is the value of the i^ Euclidean coordinate:

f^x) * X£.

Rule 2

.

For i*n+l, ...» L, fi(x) is formed using one of the following compos-

itions:
a. ) f i (x ) - fj(i)(x) + fk(i)(x); or

b. ) f i(x ) - fj(i)(x) • fk (i)(x); or (1.2)

c. ) f i(x) * T i [f j(i)(x)]

;

where j(i) < i, k(i) < i, and is a function of a single variable. Then

f(x) » fL,(x) is a factorable function and [fi(x), f2(x), ..., fk(x)] is a

2



factored sequence . Thus a function, f(x), will be called factorable if it can

be formed according to Rules 1 and 2, and the resulting sequence of functions

will be called a factored sequence or, at times, the function written in

factored form.

Although it is not always immediately grasped, the concept of a factor-

able function is actually a very natural one. In fact, it is just a

formalization of the natural procedure one follows in evaluating a complicated

function. Consider for example the function

f(x) = a^x [sinb^x] [expcTx]
, (1.3)

where a,b,c and x are (2 x 1) vectors. The natural approach to evaluating

this function for specific values of x^ and X2 is first to compute the quanti-

ties within the parentheses, then to apply the sine and exponential functions,

and finally to multiply the three resulting quantities. This might be done in

stages as follows.

f l
* X 1 f8 f6 + f

7

f 2 * x 2 f 9 - cifi

f3 - aifi f 10 - C2f2

f4 - a2f

2

*11 * f9 + flO

f 5 - f3 + f 4 f 12 * sin(fg)

f6 * bifi f 13 * exp(fn)

f
7 - b 2 f

2

f 14 " f5 * f 12

f 15 » f 13
* f

i4

9

This is one possible factored sequence for the function in (1.3).
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For completeness, we also note here that a Factorable Programming

problem may be compactly (though less transparently) written as

minimize f^x)
x e Rn

subject to < fi(x) < U£,

for i = 1 , L-l, where it is possible that l± = —» and/or ui * +00
, and

where fj.(x) » xi, for i < n, and ff(x) is defined recursively for i > n as

i-1 i-1 p

ft(x) - ^
Up[fp(x)l + ^ ^

V^
p
[f
p (x)J Wp_

q
[f,(x)l,

A

where U, V, and W are functions of a single variable.

In order to appreciate fully the value of factorable functions the con-

cept of an outer product matrix mist be introduced. An (m x n) matrix A is

called an outer product matrix if there exists a scalar a, an (m x 1) vector

a, and an (n x 1) vector b such that

A aabX

.

The expression aab£ is called an outer product or a dyad . Note that a dyad

is conformable since the dimensions of the product are (m x 1 ) ( 1 x 1 ) ( 1 x n),

which yields the (m x n) outer product matrix A as desired. A useful property

of outer product matrices is that, if kept as dyads, matrix multiplication

with them is simplified to inner products alone, saving the computations

required to form the matrices involved. For example,

Ac » aa[b^c] ,

d^A =* [d^-ajab^, and

AF »aa[bT F],

where c is (n x 1) ,
d is (m x 1) and F is (n x m).

4



It is well-known (see for instance McCormick (1983)) that factorable

functions possess two very special properties that can be exploited to produce

efficient (fast and accurate) algorithms: i) once written in factorable form,

their gradients and Hessians may be computed exactly, automatically, and

efficiently; and ii) their Hessians occur naturally as sums of dyads whose

vector factors are gradients of terms in the factored sequence. The first of

these properties has eased the task of providing the derivatives of a

nonlinear programming problem to a computer code that solves it, and has the

potential eventually to trivialize it. The second has obviated the task of

multiplying a matrix by a vector, reducing it to a series of inner products,

as noted above, which in many cases results In less effort.

Since the discovery of factorable functions, the theory of Factorable

Programming has been further developed and refined in a variety of ways.

Ghaemi and McCormick (1970) developed a computer code (FACSUMT), which

processes the functions in a factorable program and provides the interface to

the SUMT nonlinear programming code developed originally by Mylander et_ al .

(1971). An early version of this code is described in Pugh (1972).

Recently the routines from FACSUMT that process the problem functions in

factorable form have been separated out into a "stand-alone " package (FACT IN)

that can be used with any nonlinear programming system to provide automati-

cally the values of the functions, gradients and Hessians at a point. The

basic requirement of FACTIN is that the user write the functions of the prob-

lem in factorable form.

Once the problem Is written in factorable form, the routines in FACTIN

automatically calculate the exact first and second derivatives of the

functions for use in the optimization algorithm.
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It is important to understand that the derivative calculations performed

by the FACTIN code are not estimations, but mathematically exact calculations.

Furthermore, they are also compact, since factored sequences mimic hand calcu-

lations, and thus this technique is different from symbolic manipulation tech-

niques for differentiation, which tend to produce large amounts of code. The

techniques used in Factorable Programming are efficient exploitations of the

special structure inherent in factorable functions and their partial deriva-

tive arrays. Moreover, while it is true that some symbolic dif ferentiaters

also can recognize functions which can be described similarly as a sequence of

rules, each of which can be differentiated, the similarity ends there. Such

symbolic dif ferentiaters continue to differentiate the rules, without exploit-

ing the polyadic structure of the result. See,e.g., Kedem (1980), Rail

(1980), Wengert (1964), Reiter and Gray (1967), Hillstrom (1982), and Warner

(1975). It is this latter effort which provides the real value of factorable

functions, and which therefore separates the two techniques. More on Factor-

able Programming codes and the Factorable Programming system (FACTPROG) under

development at the National Bureau of Standards is given in Jackson and

McCormick (1984).

Further extensions of Factorable Programming theory were provided by

Shayan (1978), who developed an automatic method for computing the m^-order

directional derivative of a factorable function and noted that the efficiency

of a solution technique can be evaluated when the functions are factorable by

counting basic operations and basic functions. This is a more accurate mea-

sure of efficiency than the technique of counting the number of "equivalent

function evaluations" discussed by Miele and Gonzalez (1978).
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As was mentioned earlier, Hessians of factorable functions possess a

natural dyadic structure which can be exploited. This structure was used in

Emami (1978) to develop a matrix factorization scheme for obtaining a general

ized inverse of the Hessian of a factorable function. Ghotb (1980) also capi

talized on this structure and provided formulae for computing a generalized

inverse of a reduced Hessian when it is given in dyadic form. Sofer (1983)

has extended this last concept further, by utilizing the dyadic structure to

obtain computationally efficient techniques for constructing a generalized

inverse of a reduced Hessian and updating it from iteration to iteration.

Another direction was pursued by DeSilva and McCormick (1978), who

developed the formulae and methodology to utilize the input to general

nonlinear programs in factorable form to perform first-order sensitivity

analysis on the solution vector.

Some last comments on notation are required. There are unavoidable

complications in the theory that follows that require subscripted subscripts.

In some cases these are used. In other cases, subscripted subscripts are

replaced with subscript functions. For example, ij i(j). The choice in

each case was made on the basis of clarity of resulting formulae. Also In

what follows, all vectors are assumed to be column vectors, and, where not

otherwise stated, differentiation is with respect to the vector x (xj
, X2,

•••» xn
)T. Lastly, we use 3 and 7 to indicate partial differentiation, and d

and D indicate total differentiation.

7



2. THE SPECIAL STRUCTURE OF TENSORS OF FACTORABLE FUNCTIONS

2.1 Background and Notation

One fundamental value of factorable functions lies in the simple and

computationally efficient forms that result for their Hessians. In tact

factorable programming is based on the existence of, and the simplified

operations that result from, these simple forms. The seminal result, (Fiacco

and McCormick (1968), pp 184-188), is that the Hessian of a factorable

function can be written as the sum of dyads, or outer products, of gradients

of functions in the factored sequence. As was shown in Jackson and McCormick

(1984) and will be summarized here, this basic result may be generalized, but

first it is necesssary to generalize the concepts of Hessian and dyad.

Let A e R^ 1
x X nN^

? and let A^,...,!^ denote the (i^
, 1n) c ^

element of this array. For the purposes of this paper, A is called the

N^-order tensor of a multivariable function f(x) if

N
Ai!»•••»% * 3 f(x)/3xi

N ...3xi 1
.

Note that gradients and Hessians are tensors of order 1 and 2 respectively.

An N-dimensional array A is called a generalized outer product matrix if

there exists a scalar a, and an ordered set of vectors a^
, ..., sn (where each

a^ is (nk x 1)) such that each element of A is generated by the product of the

scalar a and certain specific elements of the vectors aj
, ..., aN as follows

A ilf ...,iN " a * a l.*i * *•* * aN,%>

for ij. 1, ...» ni ; •••; In * 1* •••» njj, where ak,ik represents the (iit)
c h

element of the (n^ x 1) vector a^.

8



The scalar and set of vectors which generate a generalized outer product

matrix taken together are called a polyad and are written

(a.-ai ••• aN ). ( 2 . 1 )

where order is important, i.e. the vector in position j is associated with the

jth dimension. A polyad containing N vector factors is called an N-ad . Also,

an expression containing a sum of polyads is called a polyadic , and an

expression containing a sum of N-ads is called an N-adic . (The actual addi-

tion here is performed as a direct sum of the associated generalized outer

product matrices.) When vector factors in a polyad are repeated, exponential

notation is used, as, e.g., in the case of the symmetric N-ad, (a:[a] N ). Note

that the representation of a generalized outer product matrix by a polyad is

not unique. For example, (a/y:[aiY] *** a
fl)

generates the same N-dimensional

array of numbers as does (2.1) for any nonzero scalar Y . Finally, note that a

2-ad of the form (a:ab) is equivalent to the more familiar dyad of the form

aab? , and the two will be used interchangeably.

Because the concepts of generalized outer product matrix and polyad are

so fundamental to what follows, an example is included to help in

understanding them. Consider first the dyad (10:a^a2) where ai » (4, 3, 2,1)?,

and “ (3,2,1)?. The generalized outer product matrix of order 2 generated

by this dyad is the (4 x 3) array

If the vector a3 = (2,1)T is added to form the triad (10:a ia2a3), the result

120 80 40

90
j)

60
0

30

60 40 20

0

30 20 10

9



is a generalized outer product matrix of order 3 with dimensions (4 x 3 x 2).

To form this three-dimensional array, the outer product between the matrix

above and the vector is formed. Thus the matrix above is multiplied by 2

to obtain the front matrix in the three-dimensional array and by 1 to obtain

the back matrix. These are:

—

240 160 80 120 80 40

180 120 60 90 60 30

120 80 40 60 40 20

60 40 20 30 20 10

Front Back

2.2 The First and Second Order Cases

In this section, the special polyadic structure of the gradient and the

Hessian of a factorable function is exhibited.

Theorem 1

.

(Monadic Gradients)

Let f(x) be a factorable function in Rn , let [f^(x), f2 (x), ..., f^(x)]

be a factored sequence for f(x), and assume that all functions are once con-

tinuously differentiable. Then the gradient Vf(x) VfL(x) can be written as

a sum of outer product matrices of the form (a:ai), where a^ is a gradient of

a factored-sequence function and the scalar a is composed of a product of

f actored-sequence functions and first derivatives of the single-variable

0 0

transformations, Tj., used in the factored sequence.

Proof

.

See Jackson (1983).

The result given in Theorem 2 below is a formalization of a result which

appeared without proof in McCormick (1983).

10



Theorem 2. (Dyadic Hessians)

Let f ( x ) be a factorable function in Rn ,
let [fi(x), f2(x), ...» fL(*)]

be a factored sequence for f(x), and assume that all functions are twice con-

tinuously differentiable. Then the Hessian V2f(x) = V2fL ( x ) Can be written as

a sum of outer product matrices of the form (a:aia2), where ai and a2 are

gradients of factored—sequence functions and the scalar a is composed of a

product of factored-sequence functions and first and second derivatives of the

single-variable transformations, Ti, used in the factored sequence.

Proof

.

See Jackson (1983).

Although the proofs of Theorems 1 and 2 are not included, the monadic and

dyadic structure of the gradient and Hessian of a factorable function are

exhibited by displaying the gradients and Hessians of the forms in (1.2) as in

Tables 1 and 2.

In order to clarify these concepts, consider again the illustrative

function in (1.3). Table 3 is a display of the gradient and Hessian of this

function. The entries in each column are the summands In the expressions for

the gradient and Hessian. For example,

Vf » [sin[bT x] ]
[expfcTx] ]a + [aTx] [cos [bTx]

]
[exp [cTx] ]b

+ [aT x] [sin[bT x]
]
[exp [cTx] ] c,

or, in polyadic notation

Vf » ([sin[bTx]
]
[exp[cT x]

]
:a) + ( [a^x] [

cos [bT x]
]
[exp [cTx]

]
:b)

+ ( [a^x] [sintb^x]
]
[exp [c^x]

]
:c)

.

The table also Illustrates the lef t-to-right , tree-like structure of the deri-

vatives involved. From the table it can be seen that both the gradient and

Hessian naturally have the polyadic structure discussed above. Notice too

that the vectors in the monads and dyads are drawn from the set {a,b,c}, each

of which is the gradient of a factored sequence function in (1.4).
11



TABLE 1

GRADIENTS OF FACTORABLE FUNCTION FORMS*

Rule fi Vfi

I ~xl ®I

2a fj(i) + fk(i) Vfj(i) + Vfk(i)

2b fj(i) * fk(i) Vfk(i)fj(i) + 7fj(i)fk(i)

2c TllfjU)] 7fj(i)Ti(fj(i)j

TABLE 2

HESSIANS OF FACTORABLE FUNCTION FORMS*

Rule fi

1 xi ®nxn

2a fj(i) + fk(i)

2 2
7 fj(i) + 7 fk(i)

2b fj(i) * fk(i)

2 T
fj(i) 7 fk(i) + 7fk(i) 7fj(i)

2 T
+ fk(i) 7 fj(i) + 7fj(i) 7fk(i)

2c
• 2 • • T
Ti[fj(i)J 7 fj(i) + 7fj(i)Ti[f j(i)]Vfj(i)

*Notation: T[f] * 3T/3f, T [f J
* 32T/3f2, and =» the unit vector in R n .

12



TABLE 3

MONADIC AND DYADIC TERMS IN GRADIENT
AND HESSIAN OF ILLUSTRATIVE FUNCTION*

f Vf

(summands

)

V2f

(summands

)

(sin[bTx}exp[cTx] :a)

(cos [bTx]exp[cTx ] :ab)

(sin[bTx]exp [cTx] :ac)

(cos [bT x]exp [cT x] :ba)

aTxsin[bTx]exp [c^x] (aTxcos [bTx]exp [cTx] :b) (-aTxsin[bTx]exp [cTx] : bb)

(aTxcos [bTx]exp [cT x] : be)

(sin[bT x]exp [cT x] :ca)

(a^xsintb^xjexp [c^x] :c) (aTxcos [bTx]exp[cTx] :cb)

(a^xsin[bTx]exp [cT x] : cc)

*N «B

»

Since the meaning is clear, we have dropped a level of parentheses in

these expressions to be able to fit the table on one page. The same comment

holds for Table 4.

13



2.3 The N^-Order Case

The next theorem is fundamental to operations with higher derivatives of

factorable functions, and provides the necessary tool to use in proving that

a.11 tensors of factorable functions are polyadics in gradients of factored-

sequence functions

.

Theorem 3. (Differentiation of Polyads)

Let f(x) be a factorable function in Rn , let [f^Cx), f2(x), ...» fL(x)]

be its factored sequence, and assume that all functions are members of CN+ 1

•

Consider the N-ad

( ci . a
j 32 ... afj ) ,

where the aj are gradients of factored-sequence functions and a is a scalar

composed in general of a product of factored-sequence functions and deriva-

tives (no higher than order N) of the single-variable transformations used in

forming the factored sequence. The gradient of this N-ad is the sum of (N+l)

ads, each term of which has the structure defined above.

Proof

.

Because the proof of this theorem illustrates the technique of polya-

dic differentiation, its salient features are included here. For convenience

write fi for fi(x). Then the scalar a is of the form

a - H n £ ,

l

where

Hi - frU) ££ 3k(Z)
{
T s (Jt)[ f r(i)]}/3f^j,

for values of r(Jt), s(Z), and k(Jl) which respectively define, for the

factor of a, the factored-sequence function, the transformation, and the

14



level of the derivative of the transformation used. Note that k(£) < N.

By the chain rule of differentiation.

where

and

H or

Va - l He i,

l

9
k(« )+ 1

{Ts(i)(£ra)1 }/3 £
W«+1

>

Cjt - Vf r (jt).

Furthermore, since the aj in the N-ad are gradients of factored-sequence

functions, Vaj can be written by the previous theorem as the sum of outer

product matrices of order 2 in gradients of f actored-sequence functions as

follows:

T

\ bp3pqbq =
\ (3pq*bpbq),

(p,q)elj (p,q)elj

where Ij » {(p,q) |
bp 3pqbq is a term in the dyadic representation of Vaj

}

and Spq » 3qp , is of the same form as a. Then, by straightforward term-by-

term differention and collection of terms (see Jackson and McCormick (1984)),

it can be shown that the gradient of the N-ad is

v ( a:a
l
a2

*** aN> * l (Yz:ai *** aNci)
l

+ l (a8
pq

:bp
••• aNbq )

(p,q)eli

+
I ( a8

pq
:a

l
*** aN—

l

b
p bq)*

(p.q)elN

which is a sum of (N+l)—ads in gradients of factored sequence functions with

leading scalars of the proper form, and the result is proven.

15



Now the main theorem on the structure of high-order tensors of factorable

functions can be given.

Theorem 4 . (Polyadic Tensors)

Let f(x) be a factorable function in Rn , let [f^(x), f2(x), fL(x)]

be a factored sequence for f(x), and assume that f(x) e CN and f^(x) e CN » for

i*l, . .., L. Then the Nth-order tensor of f(x) can be written as the sum of

generalized outer product matrices of the following special form. Let

(a:ai ••• a^) be a polyad associated with one of the outer product matrices.

Then each a^ is the gradient of some function in the factored sequence, and

the scalar a is a product of functions in the factored sequence and deriva-

tives of the single-variable transformations used in defining the functions in

the sequence. Only derivatives 3^T[fJ/3f^, for 1 < k < N, are used.

Proof

.

The proof is a straightforward application of Theorem 3 and induction;

the reader is referred to Jackson and McCormick (1984) for the details.

At this point another example is offered to help illustrate these ideas.

To keep matters as simple as possible, the same illustrative function in

(1.3), whose gradient and Hessian were displayed in Table 3, will be used.

Calculation of the third-order tensor of this function is a therapeutic

exercise, but only the final result is given here in Table 4. The terms in

the Hessian from Table 3 are also included in Table 4 to make it easier to see

the lef t-to-right, tree-like connections among successive gradient terms.

Notice that the vectors that make up each triad are once again drawn from the

set {a,b,c} and that the scalar multiples in the triads are products of

f actored-sequence functions (e.g., a^x, sin[bTx]
, exp[cTx]) and first and

second derivatives of the transformations (e.g., cosfbTx], -sin[bTx]). Notice
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TABLE 4

DYADIC AND TRIADIC TERMS IN HESSIAN AND THIRD
ORDER TENSOR OF ILLUSTRATIVE FUNCTION

V2f

(summands

)

V3f

(summands

)

(cos [b^xjexp [c^x] :ab)
(-sin[bTx]exp [cT x] :‘abb)

(cos [b^xjexp [c^x] :abc)

(sin[bTx]exp [cTx] : ac)
(cos [bTx]exp [cT x] :acb)
(sin[bTx jexp [cTx] : acc)

(cos [bTx]exp[cT x] :ba)
(-sin[bT x]exp[cT x] :bab)

(cos [bTxjexp [cT x] :bac)

(-aTxsin[bTx]exp [cTx] :bb)
(-sin[bTx]exp[cT x] :bba)

(-a^xcos [bTxjexp [c^x] :bbb)

(-aTxsin[bTx]exp[cT x] :bbc)

(aTxcos [bTx]exp[cT x] :bc)
(cos [bT x]exp [cTx] :bca)

(-aTxsin[bTx]exp[cT x ] :bcb)

(-aTxcos [bTx]exp[cT x ] :bcc)

(sin[bTx]exp[cT x] :ca)
(cos [bTx]exp [cT x] :cab)

(sin [bT x jexp [cTx] :cac)

(aTxcos [bTx]exp(cTx] :cb)
(cos [bT x]exp [cT x ] :cba)

(-aTxsin[bTx]exp [cT x ] :cbb)
(-aTxcos [bTx] exp [c^x] : cbc)

(a^xsin[bTx]exp [c^x] : cc)
(sin[bTx]exp [cT x] : cca)

(-aTxcos [bTx jexp [c^x] :ccb)
(a^xcos [bTx]exp [cTx] : ccc)
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too that the only new calculations needed to form V^f are the third deriva-

tives of the single variable transformations: sin, cos, and exp.

There are several computational advantages to be stressed here. One

advantage is a result of the symmetry of partial derivatives, i.e.,

/Sx^Sxj 3x^ =* 3-^f /3xj 3xk3x£, etc. Because of this symmetry, every triad in

the V3f column in Table 4 whose vector factors are the same, disregarding

order, has the same associated scalar. For example, abb, bba, and bab, all

have the same associated scalar: [-sin[ b^-x]
]
[exp [c^x]

]
. Thus only six

distinct scalars need to be computed to form V^f. Moreover, because of what

may be called the "persistence property" of the derivatives of sin and exp in

this example , the calculation of these six scalars is also simplified. That

is, all derivatives of exp are equal and alternating derivatives of sin are

equivalent except for their signs. This too can be exploited to reduce

computational effort. Finally, since the vector factors in the triads are

members of the same set from which the dyads in the Hessian and the monads in

the gradient are formed, a computer code that calculates these need only store

a, b, and c, and a set of pointers for each monad, dyad, and triad indicating

which vector is required for each position. Of course, these pointers can be

packed to save storage.

The current versions of the factorable programming input routines

(FACSUMT and FACT IN) take advantage of each of the above in computing the

gradients and Hessians. Work is underway to extend these codes to capitalize

on the polyadic structure of factorable function tensors and compute high-

order derivatives in the efficient manner discussed above. See Jackson and

McCormick (1984) for more on this current work.
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3. SECOND-ORDER SENSITIVITY ANALYSIS IN NONLINEAR PROGRAMMING

3.1 Basic First-Order Sensitivity Results

One application of the results in Section 2 is in obtaining high-order

sensitivity information for nonlinear programming problems, although only the

second-order case is considered in this paper. Sensitivity analysis in

nonlinear programming is concerned with analyzing the behavior of a local

solution when the problem functions are perturbed slightly. This perturbation

might be due to- an inexactness with which certain parameter values in the

problem are calculated or because the optimization model was parameterized and

one is interested in the solution for a variety of values of the parameters.

For additional information on this topic, see Armacost and Fiacco (1974),

Armacost and Fiacco (1978), Fiacco (1980) and especially Fiacco (1983) and its

excellent bibliography. The parametric problem is written

P(e): minimize f(x,e),
x e Rn (3.1)

subject to gi(x,e) > 0,

for i»l, ...» m, where e is an (r x .1) vector of parameters. The more general

version of the sensitivity problem includes equality constraints, but these

are not included here for simplicity. The ideas and results presented in this

section generalize readily to the equality-constrained problem.

The essence of sensitivity analysis in nonlinear programming Is the

application of the Implicit Function Theorem (see, e.g. Bliss (1946) to the

Karush-Kuhn-Tucker (KKT) necessary conditions for the problem, P(e), in (3.1).
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First, define the Lagrangian for P(e) as

m
L(x,u,e) = f(x,e) - l uigi(x,e).

i-1

Then, assuming continuous differentiability in x of the problem functions, the

KKT conditions for P(e) are that there exists a feasible point, x, for (3.1)

and associated vector of Lagrange multipliers, u, such that

VL(x,u,e) - 0,

uiSi(x » e ) * (3.2)

ui > 0,

for i = 1 , . . . , m.

The statement of the first-order sensitivity results given in Theorem 6

below also requires that the second-order sufficient conditions (SOSC) hold

at a particular solution x, of P(e) (which is just (3.1) for a specified

vector of parameter values, e). These conditions may be written as follows.

Theorem 5. (SOSC)

Let x be a feasible point for P(e) and assume that the functions of

P(e) are twice-continuously differentiable in x in a neighborhood of x. Let

(x,u,e) be a triple that satisfies the KKT conditions in (3.2) and define

B - (i
| gi(x,e) - 0},

and
D * {i

|
ui > 0}

.

Further, suppose that

d^ V^L(x,u,e )d > 0,

for all d * 0, such that

T A A
d Vg^(x,e) > o, for all i e B,

and

T
d ^gi(x,e) * 0, for all i e D.

Then x is a strict local minimizer for P(e).
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The earliest known reference to these conditions is Pennisi (1953),

although it was almost 15 years (see McCormick (1967), and Fiacco and

McCormick (1968)) before they were more fully developed and exploited.

The following theorem can be viewed as the basic result in nonlinear

programming sensitivity analysis.

Theorem 6. (First-Order Sensitivity)

Let x be a feasible point for P(e) and assume that

i.) the functions in (3.1) are twice-continuously differentiable in x and

the cross-partial derivatives exist and are jointly continuous in

x and e in a neighborhood of (x,e);

ii.) the second-order sufficient conditions (Theorem 5) for a local

A A A
minimum of P(e) hold at x, with associated Lagrange multipliers u,

iii.) the gradients of the binding constraints, i.e., Vg
i (x,e), i e B, are

linearly independent ; and

iv.) u^ > 0 for all i e B.

Then, for e in asuf f iciently small neighborhood of e, there exists a unique,

once-continuously differentiable vector function

y(e) » [x(e)T
,
u(e)T]T

}

satisfying the KKT conditions for P(e), with

y(e) - [x(e)T ,
u(e)T]T

>

such that x(e) is a locally unique isolated minimizer for P(e). Furthermore,

the first partial derivatives of x(e) and u(e) with respect to e can be

obtained from the equation

Y - -M-lN, (3.3)
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where

3xi 3xi
• • • ' —

3 e i
3e r

• •

•

• 0

0 0

•

3xn

• •

3xn
3e^ 3e r

3ui 3ui

3ei

•

3e

m 0

0 0

•

3um

0 0

3um
3ei 3e r

2

-

-

2

7 L

T

“Vgl -Vg2 . » • “7gm 7exL

T
uiVgi

T

gl 0 . . . 0 ui7egi

T
U27g2 0 §2 • . . 0 and N =* u2?eg2

• • • • • •

• • • • • •

•

T

• • • • •

T
0 0 . • • gm

with all quantities in M and N evaluated at (x , u ) .

Proof . See Fiacco (1983).
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3.2 Development of the Second-Order Equation

The result in (3.3) provides a direct way of calculating first-order

sensitivity information and is the point of departure for the work given here,

which begins with the following theorem due to Fiacco (1983).

Theorem 7

.

(Higher-Order Sensitivity)

Let x be a feasible point for P(e) and assume conditions (i) through

(iv) in Theorem 6. Assume also that all (k+l) st-order partial derivatives in

x and all (k+l)st-order cross partial derivatives in x and e exist and are
A A

jointly continuous in x and e in a neighborhood of (x,e). Then in a

sufficiently small neighborhood of e, the vector function y(e) is k times

continuously differentiable.

Proof

.

The proof follows directly from the fact that if the Jacobian, M, of

the KKT conditions in (3.2) is nonsingular, and if the functions involved

possess the appropriate degree of differentiability, the Implicit Function

Theorem (see Bliss (1946), p. 270) guarantees the existence of the higher-

order partial derivatives. Nonsingularity of M for (3.2) was shown in Fiacco

and McCormick (1968). Thus the theorem is proved by direct application of the

Implicit Function Theorem.

If this high-order sensitivity information is to be used, it is necessary

also to develop a convenient mechanism for. calculating it. This is done next

for the case when k = 2. Consider the matrix equation in (3.3) and rewrite

it as

MY - -N.

The (i,j) c^ element of this matricial equation is

I ^is ^s j
* “Nij ,

s
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and the total derivative of this equation is obtained using the product rule

as follows:

or

r ,

3Vi ‘Mis
,

dN
1;1

l UK
1 + de“ 1

- - 3TT
1

•

3ek

3Yr WJ-si r ^
l Mis “ l 7

dMis dNij

3ek de^ S J de^
(3.4)

Next, the chain rule is required in finding the right-hand-side (rhs) in (3.4)

since each element of the M and N matrices is a function of each element of x,

u, and e. Hence,

dM is a y
3Mis 3yt

+
3Mis

dek *
t 3 yt 3ek 3 ek

and

dNij^
^ y

3Ni^ 3yt
+

dek *
l 3Yt 3ek

+ 3ek

Using these and the fact that Ysj 3ys/3ej, the rhs in (3.4) can thus be

written

i
1

1 Sr Ytk + Sf +
1 ^ Yck + S1 •

Now consider the left-hand-side (lhs) in (3.4) more closely. It can be

written

a
2

_ r M _i_ys_

s
iS 3ek 3(=j

which is of the form

” I ^iS Ag-ife,

which in turn gives the (i,j,k) c h element of the three-dimensional array that

results from the matrix multiplication of M and the kth (counting from front

to rear) two-dimensional matrix of A that is parallel to the xz-plane in r3 .
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Observe

(3.4) by H -

3_yi

3e
j
3e^

that 3^yi/3ek3 £
j

can b® obtained by premultiplying both sides of

M“l. Then

3N
V rr r ? --- + li-i + V --- + -~i l

t
Hir

s t 3yt 3 £k 3ek 3 £
j t 3yt 3 £k 3 £k

(3.5)

which is the (i,j,k) th element of the three-dimensional array of second

partial derivatives of y 3 [x(e)T, u(e)T]T with respect to e.

It is desired next to write (3.5) using array notation. Because these

operations are performed in three-space, however, some new notation must be

developed before this Is rewritten. In order to motivate the new notation,

consider a multivariable function f(x). It is perhaps clear In this case what

is meant by Vf, V2f and V3f; i.e., Vf is a vector that is written down the

page, V2f requires taking the gradient of each element of Vf and writing that

result across the page to form a two-dimensional matrix , and thus to form V^f

one would take the gradient of each element of V2f and write that result Into

the third dimension (into the page, say). Hence if M is a matrix, it should

be clear what Is meant by VM; i.e., take the gradient of each element of M and

write the result into the third dimension.

But, if y is a vector in R^, there are three possible orientations

parallel to the coordinate planes In for the matrix usually notated as Vy.

These are shown* in Figure 1. In order clearly to differentiate among these,

the notation will be used. Thus V{»} operates on the argument by

taking Its gradient into the third dimension. Note that

Vy * V{ y }
* V{yT}.

Whereas the elements of these vectors are the same, their orientations in

*A11 graphs were produced using DATAPLOT as described in Filliben (1981).
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FIGURE 1

POSSIBLE ORIENTATIONS OF A MATRIX IN THREE-SPACE

three-space are not. These, too, are shown in Figure 1. The same comments

apply with regard to total differentiation, for which the notation d{ •} will

be used. This notation, of course, is only used for an operation from R^ to

r3; analogs exist for higher dimensions.

Now with this notation, the matrix form of (3.5) is written:

2
Veey - -M-1 [VyM Ve {y} Ve y + VeM Ve y + V

yN Ve {y} + Ve N] , (3.6)

where, letting p =» (n + m),

2

Veey is (p x r x r)

M-1 is (p x p x 1)

VyM is (p x p x p)

Ve {y} is (p x 1 x r)

Vey is (p x r x 1)

^
eM is (p x p x r)

VyN is(pxrxp)

VeN is (p x r x r)

and the multiplication in three-space is carried out so that each array within

the brackets on the rhs of (3.6) is (p x r x r). This (p x r x r) array must
26



then be pre mu It ip lied by M" 1
, a (p x p x 1) array. This mult iplication is

effected by premultiplying each of the r matrices of dimension (p x r) by

M" 1
,
resulting in r matrices of dimension (p x r), or a (p x r x r) array

2

again, as required by Veey. More on three-dimensional array multiplication

(including graphical depictions) is given in Section 3.5.

Observe that (3.3) could have been differentiated directly using the

techniques for differentiation of matrices as given in Marlow (1978). He uses

Kronecker products and a special two-dimensional representation of three-

dimensional arrays for performing this kind of differentiation. A disad-

vantage of this approach is that whatever special structure that exists in the

three-dimensional arrays is lost in the process. This "structural integrity"

is maintained in the approach given here, allowing the more detailed analysis

given in the next section.

There has been some previous work in second-order sensitivity analysis.

Dembo (1982) derived a computationally efficient technique for getting an

approximation to the second derivative with respect to e of the vector func-

tion y, correct to terms of order two. By contrast, (3.6) is exact. Also, a

result for the geometric programming problem for the case where e is a scalar

was provided by Kyparisis (1983).

The material in the remainder of this section addresses the issue of

computational efficiency when the problem functions are factorable. Sections

3.3 and 3.4 are admittedly rather detailed. The reason for including them is

twofold: to illustrate the special polyadic structure of the tensors in

nonlinear programming sensitivity analysis, and to stimulate more research

in these areas. It is not necessary to wade through this material for each
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second-order sensitivity calculation. Ultimately this will be performed

automatically by the Factorable Programming system of programs being developed

at the National Bureau of Standards.

3.3 Structure of the Three-Dimensional Arrays

While the formula in (3.6) may be mathematically succinct, it may not be

obvious how the polyadic structure of derivatives of factorable functions can

assist in its calculation. To understand how these calculations are per-

formed, it is necessary to investigate further the structure of the three-

dimensional arrays involved. These are: VyM, VeM, VyN, and VeN. Since

VeN is the simplest of these. It is considered first. Strictly speaking, the

(i,j,k) c^ element of VeN is

( 7eN)ijk
3eit3ej3xi

ui-n
3 Si-n

j

i < n

i > n.

This can be thought of as taking the gradient with respect to £ of each

element of N into the third dimension, and thus can be pictured as a parti-

tioned rectangular parallelepiped as shown in Figure 2. The partitioning,

which is due to the parts in y, separates VeN into an 3 "upper” part which is

VeexL and a "lower” part which Is just a stack of constraint Hessians with

respect to e . This more detailed structure Is shown in the exploded view of

VeN given in Figure 3.
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V,

FIGURE 2

BASIC PARTITIONED STRUCTURE OF V.N

FIGURE 3

EXPLODED VIEW OF STRUCTURAL DETAILS
OF V.N

29



The next simplest array to portray is VyN. This is a three-dimensional

array that has four parts, again a result of the two parts in y, arranged as

shown in Figure 4. These partitions are described mathematically as:

i<n, k<n

2
3 gi-n i>n, k<n

i<n, k>n

i>n , k>n , i»k

0 otherwise

These are depicted graphically in the exploded view in Figure 5, where the

different orientations of the various matrices and vectors in three-space

are more easily grasped.

The next three-dimensional array to consider is V
£M. This too is par-

titioned into four smaller three-dimensional arrays, but with an orientation

that differs from The basic structure of the parts is shown in Figure 6,

and each element of the array is defined in the following equations:

3
3 L i<n, j <n

3e]c3xj3xi

i<n, j>n

(VeM)ijk

u i>n, j <n

dgj-n

3ek
i>n, j>n , i-j

0 otherwise
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FIGURE 4

BASIC PARTITIONED STRUCTURE OF V,N

-VUi

Vgi

EXPLODED VIEW OF STRUCTURAL DETAILS
OF VyN
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The three-dimensional orientation of these matrices and vectors is shown in

more detail in Figure 7.

The last three-dimensional array to be depicted is VyM, the most compli-

cated, with eight parts that result from differentiating three times with

respect to the partitioned vector y. The eight parts are shown in Figure 8,

and the mathematical statement of the (i,j,k) c^ element for each case is given

below.

33l i<n, j <n, k<n
3xk3xj 3xi

9

—
a
2

3 8.1 -n

3xk3xt
9 i<n, j>n. k<n

( VyM ) i j k.
“

ui-n
a
2

3 g i-n

3xfc3xj
9 i>n, j<n, k<n

3gi-n
3xk

9 i>n , j >n

,

k<n, i=*j

a
2

3 gk-n i<n, j <n. k>n
3xj3x£

9

0 9 i<n, j>n. k>n

3gi-n

3xj
9 i>n, j <n. k>n , i=k

0 9 i>n, j>n. k>n

— 0 9 otherwise •

these structures are shown in detail in Figure 9.
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V.

FIGURE 6

BASIC PARTITIONED STRUCTURE OF V,M

FIGURE 7

EXPLODED VIEW OF STRUCTURAL DETAILS
OF V,M
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BASIC PARTITIONED STRUCTURE OF V,M

FIGURE 9

EXPLODED VIEW OF STRUCTURAL DETAILS
OF V,M

34



3.4 Polyadics In Second-Order Sensitivity Analysis

3.4.1 The Dyadics In the Second-Order Terms

Although the material in the previous section provided insight into the

three-dimensional' structure of the second-order sensitivity analysis formula

in (3.6), it still may not be clear how the natural polyadic structure of

tensors of factorable functions can assist in the evaluation of the formula.

To see this, it is first necessary to show that each substructure exhibited in

Figures 3, 5, 7, and 9, is a polyadic, and then to demonstrate how the multi-

plication with Vey (or Ve { y }

)

is to be carried out. This section addresses the

former of these activities by providing proofs that factorable functions of

(x,e) have polyadic derivatives. Section 3.5 addresses the latter.

First notice that if the functions of the problem given in (3.1) are

factorable in x and e, so too is the Lagrangian of that problem factorable in

x and e. Then the task of this section reduces to considering some function

f(x,e) - fL(x,e), with factored sequence [fi(x,e), f2(x,e), ..., fL(x,e)]

formed using the following modification to the rules given in (1.2).

Rule 1

.

For i < n,

fi(x,e) - x£.

Rule 2. For i > n, either

a. ) f i(x,e) » f j (i)(x,e ) + fk(i)(x,e); or (3.7)

b. ) f i(x, e) » fj(i)(x,e) • fk(i)(x,e); or

c. ) f i(x,e) - Ti[f j(i)(x,e),e];

where j(i) < i, and k(i) < i, and the derivatives with respect to e of the T<

are themselves factorable functions in e. For convenience, in the rest of

this section, let j(i) * j , k(i) * k, and drop the arguments (x,e) and

t f j(i)(x,e)l • Thus, e.g., Ti[f j(i)(x,e),e] - T i#
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The gradients with respect to x of the forms in (3.7) are given in

Table 5. Calculation of the Hessians with respect to x of these forms is

straightforward and the result is given in Table 6. Notice that there is no

difference between Table 6 and Table 2. Therefore Theorem 2 applies here and

it is possible to write V2f(x,e) as a sum of dyads of the appropriate form.

The calculation of the matrix of second partial derivatives of f±(x,e)

with respect to x and e is slightly more complicated by the fact that T^ is a

composite function of f(x,e) and e. This requires the chain rule to obtain

the second derivative matrix. Hence,

2 • • T .T

DexTi = DelTiVfj] - T i7exf j + Vf-jT^f-j + 7fj7eTi .

With this, the formulae for the matrix of second partials of f^ with respect

to x and £ can be written as in Table 7. The first appearance of these

formulae was in deSilva and McCormick (1978).

It should be apparent from Table 7 that an inductive argument paralleling

2

that used in the proof of Theorem 2 would yield the fact that Vexf can also

2

be written as the sum of dyads'. The difference is that for Vexf ,
the first

vector in the dyads is a gradient with respect to x of a f actored-sequence

function, and the second vector is a gradient with respect to e of a factored-

sequence function or a derivative of a single-variable transformation.

This result implies that the submatrices of second-order derivatives

which appear in the arrays VyM, VeM, VyN, and VeN on the rhs of (3.6) and in

Figures 3, 5, 7, and 9, are all dyadics. What remains is to show that the

subarrays of third-order derivatives, in these same four arrays, are triadics.

2 2
Those subarrays, arising from the block V L in M and the block VexL in N, are

3 3 3 3 3
7 L, VxexL, 7£xxl > and VeexL. The first case, V L, is uncomplicated by
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TABLE 5

GRADIENTS OF FACTORABLE FUNCTION FORMS

IN SENSITIVITY ANALYSIS

Rule fi Vfi

1 xi el

2a fj + fk Vf
j

+ Vfk

2b f
j

* fk £
j
7£

k.
+ £k7£j

2c Ti Ti7£j

TABLE 6

HESSIANS OF FACTORABLE FUNCTION FORMS
IN SENSITIVITY ANALYSIS

Rule fi
2

V fi

1 Xi °Tixn

2a f
j

+ fk
2 2

V fj + V fk

2b f
j

’ fk

2 T 2 T
fjV fk + VffcVfj + fk7 fj + VfjVfk

0
2c Ti

• 2 . • T
TiV fj + VfjTiVfj

37



TABLE 7

HESSIANS WITH RESPECT TO x AND e OF FACTORABLE
FUNCTION FORMS IN SENSITIVITY ANALYSIS

Rule fi
2

7exf i

1 xi Onxr

2a f
j

+ fk
2 2

7exf j
+ 7exfk

2b f
j

* fk

2 T 2 T
f
j
7exfk + vfk7efj + fk7exfj + vfj vefk

2c Ti[fj,e]
2 t .T

iiWj + Wjii’gfj * Wj’cTi

derivatives with respect to e, and thus is a triadic by Theorem 4. The proofs

for the other cases are in the same vein as the proof of Theorem 2 and require

that the formulae for the third derivatives with respect to x and e respec-

tively be derived for the forms in Tables 6 and 7. These are developed next.

3.4.2 The Triadic Form of V^xxf

3

The first step in showing that Vexxf is triadic is to apply the operator

De {*} to each factorable function form in Table 6. This is straightforward

for cases 1 and 2a. It Is also straightforward for 2b, but since this case

represents the first use of the new notation, it is developed below.

r
2 T 2 T, 3 2 T

DelfjV fk + VffcVfj + fkV fj + VfjVfk }
- fjVexxfk + V fkVe {

fj }
+VfkVe {Vfj}

T 3 2
+ 7fjVe {Vfk }

+ fkVexxfj + V fjVe {fk |

+ VfjVe {
Vf^} + VfkVe {Vfj}.
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The n»re complicated case is 2c, which is a result of the fact that, as

• • •

noted earlier, each T* (and hence T* and Ti) is a composite function of f(x,e)

and e, requiring the chain rule to calculate the total derivative. This is

shown below.

2 T 3 2 #

DE {Ti.V fj + VfjiiVfj} -TiVexxfj + V fjDslTtl + MvfjjTiVfj

T • • T
+ TfjDejiilVfj + WjTivs [7fj}. (3.8)

However, using the chain rule,

De (fi} - + Ve{ii},

and (3.9)

- TlVe{fj} + 7e{ii}.

After using (3.9), the rhs of (3.8) becomes:

3 . . 2 2

TiVexxfj +T"i7 fjMfj} + 7 fjVe{Ti}

T T
+ Ve(Vfj }TiVf j

+ Vfj'TiVelfjJVfj

+ Vf
j
Vc {iI}Vfj

+ VfjTiVe {
Vf

j }

.

3

These third-derivative formulae for Vexxf are collected in Table 8. The

3
proof that Vexxf is triadic is a straightforward application of induction to

the factored sequence and mimics the argument used in the proof of Theorem 2.

3
The result is that Vexxf 0311 be written as the sum of triads of the form

(a:aia2a3)

,

where

a\ is (n x 1)

,

a2 is (n x 1)

,

a3 is (r x 1),
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TABLE 8

THIRD-ORDER TENSORS WITH RESPECT TO x, x, AND e OF FACTORABLE
FUNCTION FORMS IN SENSITIVITY ANALYSIS

Rule fi
3

7exxf

i

1 Xi Onxnxr

2a f
j

+ fk
3 3

7exxf j
+ 7exx^k

2b fi • f

j

3 2 T
fj vexxfk + 7 fk7e{fj} + 7fk7e{ 7fj}

T 3 2
+ Vf

j
7e{ vfk} + fk7exxfj + 7 fj 7e{fk}

+ Vfk7e {Vf£l + Vfk7e{7fj}

2c Tilfj.e]
.3 2 2

TiVexxfj +T*iV fjVeJfj} + V fjVe {Ti}

T T
+ 7£ (7f J |Ti7£j + 7fj Tt7e (fj }7f j

T • • T
+ 7fj 7e{Ti}Vfj + VfjT

i

7e {
Vf

j }

and a is a product of factored sequence functions and first, second, and third

derivatives of the single-variable transformations used in forming the fac-

tored sequence. Also, the vector factors ai and a2 are gradients with respect

to x of a factored sequence function, and ay is a gradient with respect to e

of a f actored-sequence function or of a first or second derivative with

respect to f of one of the single-variable transformations in the factored

sequence

.
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3
3.4.3 The Triadic Form of Vx£xf

Just as in the previous section, the key step in the proof here is to

compute the derivatives with respect to x of the forms in Table 7. Again this

process is straightforward, if tedious, for cases 1, 2a, and 2b, but case 2c

presents some complications, and is therefore developed in detail. Thus,

• 2 ..T .T.3 2 . ..T
D{TiWj + Vf-jTiVefj + 7fjVeTil -TiVxexfj + ’exfjDfii} + V{ Vf

j jT^tf j

+ VfjDfiilVgfj + VfjTiV{

V

e f
jT

} (3.10)

•T .T

+ VfjD{VeTi} + VeTiV{Vfj}.

But, using the chain rule,

D(Ti} -T^fj}

d{T±} - *T lv{ fj } (3.11)

•T • #T

D{Vef i} - VeTi V{ fj }
-

Substituting (3.11) into (3.10) yields the final form given in Table 9,

which also contains the formulae for the other cases. Here too it is easy to

see that the same inductive argument used in Theorem 2 results in a triadic
3

form for Vxexf made of triads of the form

(a:aia2a3)

,

where

ai is (n x 1),

a2 is (r x 1),

a3 is (n x 1)

,

and a is a product of factored-sequence functions and first, second, and third

derivatives of the single-variable transformations. In this case, ai and a 3
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TABLE 9

THIRD-ORDER TENSORS WITH RESPECT TO x, e, AND x OF FACTORABLE
FUNCTION FORMS IN SENSITIVITY ANALYSIS

Rule fi
3

^xexf

i

1 Xi Onxrxn

2a fj + fk
3 3

^xexf j
+ ^xex^k

2b f
j

* fk

3 2 T
fj^xex^k + ^ex^kW^j} + k^{ j }

T 3 2
+ VefjV{Vfk} + fk^xex^j + ^ex^j^l^k}

T T
+ VfjVfVgfk} + VefkVfVfj}

2c Tiffj.e]
.3 2.. ..T
Tl’xexfj + VexfjTiv{fj} + 7{7fj}Ti7e fj

• • • T • • T
+ 7fj Ti7{fj}7t fj + 7fjT

7

e fj

}

T T
+ 7f

j
7eT ^ 7{ f

j }
+ 7tT 17{7fj }

are gradients with respect to x of factored-sequence functions and a2 is the

• gradient with respect to e of a f actored-sequence function or of a first or

second derivative of a Tf.

It is instructive to note that the result in this section could also be

obtained more directly by utilizing the triadic structure exhibited in Section
3

3.4.2 for Vexxf . Because of the symmetric nature of partial derivatives, that

3
array and the one of this section, Vxexf , contain the same entries, in

3
different arrangements. In fact, Vxexf can be obtained from the former by

interchanging the first two vector factors of each triad in its triadic
3

expansion, thereby exhibiting the triadic form for Vxexf immediately.
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3
3.4.4 The Triadic Form of V£exf

This is the last case to be considered, and also the most difficult of

them. As in the previous sections, the formulae for forms 1, 2a, and 2b are

straightforward, but for 2c,

2 T t .3 2 # # t

De(il?exfj + 7£jil7efj
+ 7f

j
7eTi} * Ti.7ggxf j

+ VexfjDe (Ti} + 7g(7f
j
jT^gf

j

+ 7fjDe {Ti}7e fj
+ 7fjT^7e {

7

e fj

}

•T .T
+ 7fjDe {7eTl} +

• • •

Both D e {Ti} and Dc {T ^ }
were calculated In (3«9)« The third special

computation needed is, using the chain rule again,

.T .T

Del^e^i} * + ^{VgT^}.

Substitution gives the formulae for the third partials in Table 10.

3
The inductive argument demonstrating the triadic nature of Veexf can now

go through as before, bearing in mind the assumption in (3.7) that the

derivatives with respect to f of the single-variable transformations, T^, used

in forming the factored sequence are themselves factorable functions in e.

This is required since

.T

7e(7eTi}

appears in the last term of Table 10. Except for orientation in three-space,

this is just the Hessian with respect to e of the function T^ff j(x,e ),e ]

.

So

0

long as Ti is factorable in e , its Hessian is a dyadic in gradients with

respect to e of its factored sequence, and the statements regarding the

3 3
triadic nature of Veexf go through as before. Thus it is true that VeGx f can
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TABLE 10

THIRD-ORDER TENSORS WITH RESPECT TO x, e, AND e OF FACTORABLE
FUNCTION FORMS IN SENSITIVITY ANALYSIS

Rule fi
3

^eexf

i

1 Xi Onxrxr

2a f
j

+ fk
3 3

^eexf j
+ ^eex^k

2b f
j

’ fk

3 2 T
fj^eex^k + ^ex^k^effj} + ^x^k^el^e^j}

T 3 2
+ VefjVe {Vxfk} + fk^eex^j + ^sx^ j^el^k}

T T
+ Vf

j
Ve {Vef^} + Ve f]cVe {Vfj}

2c
.3 2 2

Ti^cex^j + ^exfjTiVe { fj }
+ VexfjVe {Ti}

• • T • • • T
+ 7*{ TfjjTiVefj + »fj Tive {*3 }Vt £j

T • • T
+ vfj?e{Ti} vefj + jTiVe {

Ve fj }

• #T «T «T
+ VfjVeTi Ve {fj} + Vf-jVe {VeTi} + VeTiVe {Vfj}

be written as the sum of triads of the form

where

0

(a:aia2a3) ,

a^ is (n x 1 ),

a2 is (r x 1 ),

33 is- (r x 1 ) ,

and a is a product of factors as before, with additional factors included from

the factored sequences for the T^'s. The last item of note is that here ai is
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a gradient with respect to x of a factored-sequence function for f(x), and ^

and a3 are gradients with respect to e of a f actored-sequence function for

f(x) o£ a gradient with respect to e of a derivative of a Tf, 0£ a gradient

with respect to e of a factored-sequence function or transformation for one of

the single-variable transformations in the factored sequence for f(x).

3.5 Array Multiplication with Generalized Outer Product Matrices

In the previous section, the polyadic nature of the arrays in (3.6) was

exhibited. This section takes up the notion of multiplying these generalized

outer product matrices by Y =* Vey, which appears In (3.6) with two different

three-space orientations; viz., Vey which is (p x r x 1) and Ve {y} which is

(p x 1 x r). Multiplication is one area wherein Factorable Programming,

through the natural polyadic nature of the function derivatives involved,

offers a potentially great computational saving over alternative approaches.

Consider for instance the case of multiplication of a dyad and a matrix,

(a:ab) * F * (aab^)F,

where a is (n x 1), b is (m x 1), F is (m x n) and a is a scalar. Of course

one method of computing this is to form (aa)b^ which requires n(m+l) multipli-

cations, then to multiply the result by F, requiring nm malt ip li cat ions and

n(m-l) additions. A far more efficient way, however, is to form c = b^F,

requiring the same nm miIt ip li cations and n(m-l) additions, but now store the

result in the dyadic form as

(a:ac) * aacT ,

thus saving the n(m+l) multiplications required to form the dyad explicitly.

In fact, one of the basic tenets of Factorable Programming Is that certain
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matrices need never be formed explicitly, since all required calculations can

be performed with the dyadic structures. This of course offers a potentially

great computational saving.

It only needs demonstrating, therefore, how to perform the

multiplications in (3.6). Consider then multiplication between a generalized

outer product matrix of order 3, a triad, and a two-dimensional matrix in

three-space. Since there are three possible orientations for a two-

dimensional matrix in three-space, one could guess that there are six ways to

perform the multiplication depending on whether the matrix is pre- or post-

multiplying the three dimensional array. This is of course the case, and

these multiplications are illustrated in Figure 10, where in each case the

matrix post-multiplies each similarly oriented matrix-slice of the three-

dimensional array. A similar situation obtains for pre-multiplication.

FIGURE 10

THREE WAYS TO MULTIPLY A THREE-DIMENSIONAL

ARRAY BY A MATRIX
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Jus t as with the multiplication of a dyad and a matrix, these three

multiplications are simplified when the three-dimensional array is stored as a

triadic and it is desired to store the result as a triadic also. Let one of

the triads be (a:abc) and the matrix be F, and consider the post-

multiplication of each each matrix-slice by F. Then the result of the

multiplications in Figure 10 is just

i.) (a:a[bTF]Tc)

,

ii.) (a:ab[cT F]T) , and

iii.) (o:ab[cT F]T)

.

(That which appears at first to be an error in (iii) is in fact a result of

the simple fact that the vector in the third position, associated with the

third dimension, is involved in defining two sets of slabs: one set with the

vector a in the first dimension, and one set with the vector b in the second

dimension).

One use of this ability to multiply polyads and matrices is in further

exploiting the polyadic structure of the matrices in (3.6). It has been shown

(McCormick (1983)) that both M and in (3.6) can be written in dyadic form.

Let, therefore, -M”l in (3.6) be written in symmetric dyadic form as

-1 m T m
“M l aiaiai =» l (aiiaiai).

i-1 i-1

In the unconstrained case, (3.6) becomes

2 -13
Veex * -M 7 LVe {x}Vex,

3
and since it has been shown that V L is triadic, let

3 n
7 L » l (0j :bjbjbj )

.

j-1
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Then, for this unconstrained case,

2 m m
Veex - l (<x±:a±a±) l (3j rbjbjbj )Ve {

x }Vex.
i-1 j-1

Application of (ii) yields

2 m m t
Veex “ I ( ai-*aiai) J (0 j

;bj [bj

?

ex]bj ) ve(x} ,

i-1 j»l

and application of (iii) yields

2 m m T T
veex - I C ai :

a

i ai ) J (3j : bj [bjVex] [bj

V

ex] )

.

i-1 j-1

Similar rules obtain for premultiplication and yield, using the associative

law also.

2mm T T
7eex * l l ( aiSj [aibj ] :ai [bj

V

ex] [bj

V

ex] )

,

i-1 j-1

the efficiency of which should be apparent. As an aside, if it were desired,

as it was in a recent application of this technique to a problem for the

Department of Energy, to produce each frontal slab of this in turn, the of

these is given by

id n T T
l l (ai0j[aibj]ai

t ic: [bjVex] [bjVex]),
i-1 j-1

where, as before, a^ ^ denotes the k ch element of the vector a^

.
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3»6 Parameter Tensors of the Optimal Value Function

In this section, formulae are developed for the tensors (through order 3)

of the optimal value function f*(e) = f[x(e),e] of problem P(e) given in

(3.1). Armacost and Fiacco (1975) were the first to extend basic first-order

results for the right-hand-side perturbation problem to the general parametric

problem in (3.1), and also developed the second-order results given below in

Theorem 8. Fiacco (1983) gives a complete treatment of all cases for all the

variations of (3.1). Our interest is in providing results for the third-order

tensor of f*(e) and we begin with the first and second-order cases. Theorem 8

is due to Armacost and Fiacco (1975).

Theorem 8 . (First- and Second-Order Changes in f*(e) for P(e).)

Let x be a feasible point for P(e) and. assume conditions (i) through

(iv) in Theorem 6. Then, for e in a sufficiently small neighborhood of e

a) f *(e) - L*.

b) Vef*(e) - Ve L

m
» Vef - l uiVegi

i-1

T
* Vef - u Veg, and

2 2 2
c) Veef*(e) - VygLVgy + VggL

2 T 2
* ^xe^Vgx - Vgg Vgu + VggL

Proof

.

See Fiacco (1983).
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It is easy to see from their forms and from the results given in the

2

previous section that Vef*(e) is monadic and V£gf*(e) is dyadic. The result

for the third-order tensor of f*(e) is given in the following.

Theorem 9 . (Third-Order Changes in f*(e) for P(e).)

If the conditions of Theorem 8 hold and all third-order partial deriva-

tives in x and third-order partial derivatives in x and e exist and are con-

tinuous in x and e in a neighborhood of (x,e), then

3 2 2 3 3 3
Veee f*(e) » Vy£L7eey + VyyeLVe {yj'Vey + 7£ygLV£y + Vg££L + Vy££LV£ y

2 2 3 3 3
“ VxeLVeex + ^xxeL^e{x} Vex+ V^gLVgj u} Vex + 7£x£LV£x

T 2 T T 3
“ veeu ” }Ve{x}V£u - Vg{veg }Veu + Ve geL,

3
and Vgggf*(e) is a triadic.

Proof

.

Straightforward differentiation of (c) in Theorem 8 gives the formula

3

for Vgggf*(e). The proof of its triadic structure is also straightforward

using the results of the previous sections.

3.7 Second-Order Sensitivity Results in Use

The direct use of first- and second-order sensitivity results is in

estimating the solution and nultiplier vectors for P(e) as the problem is

perturbed away from P(e). This estimation is done using the Taylor series

approximations to two and three terms:

y(e) - y(e ) + V£y(£)(e-<0, (3.12)

y(e) - y(e ) + V£y(e)(e-e) + j
Vg £y(e)(e-£)(e-e), (3.13)
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where the multiplication in the third term on the rhs of (3.13) is understood

2

to be inner product multiplication that reduces the dimension of Veey.

To illustrate this idea as well as some of the other ideas in this

section, consider the following parameterized nonlinear programming problem:

minimize f(x,e) =* x^x + e^exp(£ 2a^x)

.

x e Rn

A A

At e 0, the solution by inspection is at x a 0. Since L(x,u,e) =» f(x,e)

for this problem, the first-order sensitivity equation, Y * reduces to

2-12
Vex(e) - -(V f) Vexf.

Also

T
Vf * 2x + [eiS2exp(£2a x)]a,

^f 21 + a[eiS2exp(£2a^x) ]a^

,

and

V^xf - a[exp(£2a
T
x)] [£2, £l£2a

T
x + £ l ] -

Since (2I)"
1

- |l, (^f)" 1
can readily be obtained using the Sherman-

Woodbury-Morrison formula (see McCormick (1983), p. 70) that gives the

inverse of a matrix perturbed by a dyad. This formula is

(A + ucv^ ) ^“A A ^u[c( 1 + v^A ^ uc )
^ ]v^A ^

.

Using this, and letting c » £i£ 2exp(£ 2a x)

,

(^f)" 1
- (21 + aca

T
)

_1
= jl r/4 ,

« T >”1
|
T

al(- + 2a a) Ja .

c
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Evaluating these at x 0 and £ = 0 yields

and

Therefore

vjxf . 0.

Vsx(e) = 0,

and the first-order sensitivity analysis approximation (3.12) gives no

additional information as the problem is perturbed away from x » 0. This

problem is ideally suited then for a second-order sensitivity analysis using

equations (3.13) and (3.6). But since V£x(e)=0, (3.6) reduces to

v£ex(e) - -(V
2
f

)

-i
Vgexf

.

Using the formulae developed in the proof of Theorem 3,

Ve (exp[e 2a
T
x] :a[0, £i£ 2a

T
x]

T
) + Ve (exp [£ 2a

T
x] :a[£ 2 , e l

]

T
)

, r T
,

, T ,T ,

T

,T n* (exp[£ 2a x]:a[£ 2 , e^a x] [0, a x] )

+ (exp[£ 2a
T
x] :a(0,a

T
x]

T
[£ 2 ,ei]

T
)

+ (exp[£2a^x] :a[£2, £l e 2a
^
x ]^t0, a^x]^)

+ (exp [£ 2a
T
x] :a[0, 1 ]

T
[ 1 ,0]

T
)

+ (exp[£ 2a
T
x] :a[l,0]

T
[0,1

]

T
).

7
3

fv£EXr
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Notice the triadic nature of this tensor and the frequency of occurrence of

certain terms. Evaluating these at x = 0 and e * 0 yields

- a :ae2ej) + (l:aeie2)>

where e^ is the i ctl unit vector in Rn . The second partial derivatives with

respect to e of the solution vector are given by —

-

vj ex(e) = -(^fCx)) ^gexf (x)

- jl[(l:ae2ei) + (l:aeie2)]

(- j:ae2ei) + (- |:aeie2)«

Substituting this into (3.13) gives the second-order estimation

x(e) - x(e) + Vex(e)(£-e) + jVe ex(e)(e-£)(e-e),

which at e * 0 becomes

x(e) - x(0) + Vex(0)e + jV§ex(0)ee.

Since x(0) is the solution to the original problem, x(0) = x = 0. Further-

more, V
£x(0) was shown above to vanish also. Thus

‘ x(e) « |v^ ex(0)ee

* |[(- |:ae2ei) + (- |:aeie2)]ee

(- 4£2e i:a) + (-

- (- |eie 2 :a). (3.14)
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For a more concrete example of this technique, let a = (1,2)^ and perturb

the problem by e = (-1.902, .1)T . The solution to this new problem is calcu-

lated in Jackson and McCormick (1984) using Halley's third-order method of

tangent hyperbolas , and is (.1, .2)T . However, an estimate is given by (3.14),

without having to solve the new nonlinear programming problem. The approxima-

tion is

x(e) - (- j(-l .902) ( .1) : [1,2]
T

)

- (.0951, .1902)t ,

which of course is much better than the first-order approximation, x(e) = 0.

Another use of the second-order sensitivity formulae is in solving

implicitly defined optimization problems. Consider for example the optimiza-

tion problem
max F(p,q) - x*(p,q) + y*(p,q) + pq

(p,q)

where (x*,y*) is defined implicitly as the solution of

min G(x,y) - (x - y + 3pq) 2 + (x - (p - q) 2 )
2

.

(x,y)

The analytic solution of this problem is easily obtained as

x*(p,q) - (p - q) 2 ,

y*(p»q) (p - q) (p - q )
2 + 3pq*

Substituting, the other problem becomes

max 2p2 + 2q 2 ,

(p,q)

with solution (p*,q*) * (0,0).

Let e = (pjq)3-* The solution of the maximization problem will be accom-

plished in one iteration of Newton's method using the second-order sensitivity

formulas

.
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It is required to compute

Now

And

2 -1

£o~t^ee F(e0 )] VeF(So)

VeF - 7ex* + Vy* + [q,p]T »

2 2 2

veeF * 7eex* + 7eey* +
0 1

1 0

Let z denote [x,y]T « Then from first-order sensitivity analysis

2-1
VgZ* = —(7ggG) VezG •

Now

and

2
7zzG

1 1

( 2 )

[

1 ,- 1 ]
+

-1 0
( 2 )

[

1 , 0 ]

(4)(pq) [1,-1]

.

2 -1
The most natural representation of (VZZG) is in dyadic form and is

2 1 1

7ezG “
-1

(2) [3q,3p] +
0

0 1

(l/2)[0,-l] +
-1 1

( 1 / 2 )[ 1 , 1 ]

The second-order sensitivity formula (3.6) can be rewritten (conceptu-

ally) in this case as

2 2 -1
r 3 3 23 3

Vee z* = -(VggG)
[ ( 7ezzG ) ( 7ez*) + ( 7zzz^) (7gz*) + VgezG + (7 zg zG) (

V

e z* ) ]

For this problem the only term multiplying the inverse which does not vanish

3

is Vgg zG, a (2 x 2 x 2) matrix.
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Its triadic form is

7eezG = (6:[1,-1 ]
t

[
1,0]T[0,1]T) + (6: [ 1 ,-l]T [0, 1

]T
[ 1 ,0]T)

+ (-4:[l,0]T[l,-l]T[i,-i]T).

Suppose [p0 »qo ] - [2,1]. Then

VcZe^o

0 1 1

» - (l/2)[0,-l] + (1/2) [1,1] +
-1 1 -1

(2) [3,6]

(4) [1,-1]

.

Therefore

and thus
vex0

* - (2,-2]T, 7
ey0

* = [5,41*2,

VeF0 - [2,-2]* + [5,4]T + [1,21*2 - [8,4]T.

The second-order sensitivity formulas yield

-[ 7zzGf
1

[
7ezzG ]

- -[(1/2: [0,-1 1*2 [0,-1 1*2) + (1/2 : [ 1,1 ]T
[ 1 ,1 1*2)

]

* [(6:[1, -11*2(1, QJT[0,1]T) + (6:[1,-1]T[0,1I*2[1,01T)

+ (-4: [ 1,01*2 [ 1 ,-l]T [ i ,-l JT) ]

.

To illustrate the computation, one of the six product terms will be computed

(-1/2: [0,1]T[ 0 ,-1]T) * (6:[1,-1]T[1,0]T[0,1]T)

- (—(1)( 1/2) (6) [0,-1] [1,-1]T:[0,-1]T[1,0]T[0,1]T)

- (-3: [0,1]T[i,0]T[ 0 ,i]T.

U

In all, the resulting triadic form has the following terras:

(-3:[0, -1]*2(1, 01*2[0, 11*2)

+ (-3:(0,-1]*2[0,1]T[1,0]T)

+ (2:[l,l]T[l
>
-l]T[l,-UT).
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From this.

and

2

^eeyo* “

Thus

Combining

,

e o

as desired.

7e ex0
* - (2:[1,-1]T[1,-1]T)

(2:[1,-1)T[1,-1JT) + (3: [0,1]T
[ 1

,0]T) + (3: [ 1 ,0 ]T
[ 0 , 1

]

T
)

2 2 2 0 1 4 0
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