
Reference

l

NBS
Publi-

cations

NBSIR 85-3165

Using the Information Resource
Dictionary System Command
Language

Alan Goldfine

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

April 1985

U S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

... Q C—
j|

100

* U 5 6

80-3165
|

1985

NBSIR 85-3165

USING THE INFORMATION RESOURCE
DICTIONARY SYSTEM COMMAND
LANGUAGE

Alan Goldfine

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

April 1985

U.S. DEPARTMENT OF COMMERCE* Malcolm Baldrige. Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Doctor

USING THE INFORMATION RESOURCE DICTIONARY SYSTEM
COMMAND LANGUAGE

Alan Goldfine

This document introduces and provides exam-
ples of the Command Language of the draft proposed
Information Resource Dictionary System (IRDS) . A
dictionary maintained by the U.S. Air Force is de-
fined in the IRDS and used as a continuing example
throughout the document. The dictionary is popu-
lated, manipulated, and reported on using the pre-
cise syntax of the Command Language. An appendix
to the document provides a complete listing of the
creation of the example. Other appendices provide
indices of all command appearances and all clause
appearances

.

Key words: command language; data dictionary; data
dictionary system; data dictionary system stan-
dard; example book; Information Resource Diction-
ary System; IRDS.

ACKNOWLEDGEMENTS

We wish to thank the U.S. Air Force Air Staff Programs and
Financial Systems Group for their permission to use the Air
Staff Codes and Descriptions (ASCAD) data dictionary as the
continuing example in this book. We also wish to ack-
nowledge the assistance of Frank Spielman of ICST/NBS, form-
erly of the Air Force, for bringing the ASCAD dictionary to
our attention and explaining its characteristics.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. THE GLOBAL EXAMPLE 3

2.1 DESCRIPTION 3

2.2 CREATING AN EMPTY DICTIONARY 6

2.3 POPULATING THE DICTIONARY 6

2.3.1 The Overall Application System Structure .. 7

2.3.2 The Data Entities 10
2.3.3 Describing Input and Output Documents 11
2.3.4 Completing the Population of the Example .. 12
2.3.5 Filling in the Attributes 12
2.3.6 Freezing the Global Example 13

2.4 MANIPULATING THE DICTIONARY 14

2.4.1 Deleting Entities and Relationships 14
2.4.2 Changing the Names of an Entity 14

3. THE DICTIONARY OUTPUT FACILITY 17

3.1 OUTPUT SELECTION 17

3.1.1 Entity Selection 18
3.1.2 Entity Restriction 19
3.1.3 Full Output Selection Examples 20

3.2 SORTING THE ENTITIES 20

3.3 THE GENERAL OUTPUT COMMAND 21

3.3.1 SHOWing All Information 21
3.3.2 Names and Types 21
3.3.3 Attributes of Entities 22
3.3.4 Relationships of Entities 22
3.3.5 Output Counts 23
3.3.6 Complete Command Examples 24

3.4 THE OUTPUT IMPACT-OF-CHANGE COMMAND 24

3.5 THE OUTPUT SYNTAX COMMAND 2 6

-i i i-

4. CUSTOMIZING THE DICTIONARY SCHEMA 27

4.1 CHANGING THE NAME OF A META-ENTITY 27

4.2 CHANGING AN EXISTING ENTITY-TYPE 27

4.2.1 Assigning a New Attribute-Type 28
4.2.2 Modifying a Meta-Attribute 29

4.3 CREATING A NEW ENTITY-TYPE 29

4.3.1 Creating the Meta-Entity 31
4.3.2 Defining the Relationship-Types 31
4.3.3 Specifying the Relationship-Class-Type 31
4.3.4 Assigning Members to the Relationship-Type 32
4.3.5 Creating New Attribute-Types 32
4.3.6 Associating the Appropriate Attribute-Types 32
4.3.7 Installing the Schema Descriptors 33

4.4 THE SCHEMA OUTPUT FACILITY 33

4.4.1 Meta-Entity-Selection 33
4.4.2 Meta-Entity-Restriction 33
4.4.3 Full Selection Example 34
4.4.4 Sorting the Meta-Entities 34
4.4.5 Output Formatting 34
4.4.6 A Complete Example 35

5. IRDS NAMING AND CONTROL FACILITIES 37

5.1 THE VERSIONING FACILITY 37

5.1.1 Defining Versions 37
5.1.2 Using Versions 38

5.2 LIFE-CYCLE-PHASES 38

5.2.1 Defining New Phases 38
5.2.2 Placing Entities in Phases 39
5.2.3 Using Life-Cycle-Phases 39

5.3 QUALITY-INDICATORS 40

5.3.1 Defining Quality-Indicators 40
5.3.2 Assigning Quality-Indicators to Entities .. 41
5.3.3 Using Quality-Indicators 41

5.4 VIEWS 42

5.4.1 Defining VIEWS 42
5.4.2 Placing Entities in VIEWS 42

-iv-

5.4.3
Using Views 43

5.5 CORE SECURITY 43

5.5.1 The Use of Views 44
5.5.2 The Dictionary-User Entity 44
5.5.3 Assigning Views to Dictionary Users 45

6. DICTIONARY ENTITY-LISTS AND PROCEDURES 47

6.1 ENTITY-LISTS 47

6.1.1 Creating Entity-Lists 47
6.1.2 Manipulating Entity-Lists 47
6.1.3 Using Entity-Lists 48
6.1.4 Entity-List Utilities 49

6.2 PROCEDURES 49

6.2.1 Creating Procedures 50
6.2.2 Using Procedures 51
6.2.3 Procedure Utilities 52

7. THE IRD TO IRD INTERFACE 5 3

7.1 EXPORTING TO AN EMPTY DICTIONARY 53

7.2 EXPORTING TO AN EXISTING DICTIONARY 54

8. MISCELLANEOUS TOPICS IN THE CORE 55

8.1 SETTING SESSION DEFAULTS 55

8.2 DISPLAYING SESSION RELATED INFORMATION 55

8.3 OBTAINING HELP 56

8.4 ENTERING THE PANEL INTERFACE 57

8.5 EXITING THE IRDS 57

9. IRDS MODULES 5 9

9.1 ENTITY LEVEL SECURITY 59

9.1.1 Securing Entities 59
9.1.2 Changing the Security of Entities 60

9.2 APPLICATION PROGRAM (CALL) INTERFACE 61

9.3 SUPPORT OF STANDARD DATA MODELS 61

-v-

APPENDIX A: COMPLETE LISTING OF EXAMPLE CREATION 63

APPENDIX B: INDEX OF ALL COMMAND APPEARANCES 75

APPENDIX C: INDEX OF ALL CLAUSE APPEARANCES 79

REFERENCES 84

-vi-

1 . INTRODUCTION

This document is designed to accompany the specifica-
tion of the Information Resource Dictionary System (IRDS)
[l]f [2], [3], [4].

The Core IRDS specifies two direct user interfaces: a
menu-driven "Panel" Interface, designed to support interac-
tive processing, and a Command Language that may be used in
either a batch or interactive mode. This volume introduces
and provides examples for the Command Language.

Although the Command Language is completely described
in the Core IRDS Specifications, the Backus-Naur notation
used is not designed for tutorial purposes. In this docu-
ment, we illustrate a "real world" Information Resource Die
tionary example, and show how such a dictionary could be po
pulated, manipulated, and reported on using the Command
Language

.

We assume that readers of this document will be refer-
ring to the Command Language syntax in the IRDS Specifica-
tions, and that they are familiar with the contents of A
Technical Overview of the Information Resource Dictionary
System [5]

.

- 1 -

2. THE GLOBAL EXAMPLE

2.1 DESCRIPTION

We will base our global example on the dictionary main-
tained by the U.S. Air Force to support its Air Staff Codes
and Descriptions (ASCAD) application. The database for the
ASCAD application contains "all common (corporate) data ele-
ments which are codes and their respective descriptions."
Figure 2-1 illustrates the overall structure of the ASCAD
dictionary, expressed in terms of the Core IRDS System-
Standard Schema.

MODULE ELEMENT

Figure 2-1. Overall Structure of IRDS Application

The full ASCAD dictionary contains many thousands of
entities, but our examples will be restricted to a small
subset of this. We will populate the (initially empty) dic-
tionary with the collection of 34 entities illustrated by
Figure 2-2.

- 3 -

SYSTEM

Figure 2-2 (Part 1

)

-4-

id-25000

processes-

Figure 2-2 (Part 2)

- 5 -

Note that many of the entities in this diagram appear
to be of types not in the Core System-Standard Schema. We
will initially assign these entities to Core System-Standard
Schema entity-types. In Chapter 4, we will demonstrate how
to define new entity-types.

2.2 CREATING AN EMPTY DICTIONARY

We begin by creating the empty dictionary Example, and
associating with it the Core System-Standard Schema:

CREATE DICTIONARY Example
SCHEMA IS STANDARD;

2.3 POPULATING THE DICTIONARY

Although our principal concern in this document is to
provide examples of IRDS Command Language usage, we will do
so in a way that demonstrates the basic capabilities of such
a system, and that also illustrates reasonable dictionary
construction and usage techniques. Therefore, we will popu-
late the dictionary in a largely top-down manner, first del-
ineating the "broad picture" of the overall application
structure, then returning to fill in the detailed properties
of the individual components. First, we sketch in the ASCAD
system/subsystem/procedure hierarchy. The flow of execution
and control between components of this "process" hierarchy
(and associated programs and modules) can then be document-
ed. We next outline the structure of the application's
data, by documenting its file/record/element hierarchy.
These skeletal data descriptions are then integrated into
the system hierarchy by specifying the appropriate usage in-
formation. Similarly, we introduce the descriptions of in-
put and output documents used by the application. Finally,
we fill in the gaps by describing the user-specified attri-
butes of the application's individual entities. (Several
audit attributes are automatically assigned by the IRDS
directly upon establishment of an entity.)

- 6 -

2.3.1 The Overall Application System Structure.

As we see from Figure 2-2, our subset of the ASCAD da-
tabase contains one system, three subsystems, and seven pro-
cedures. Using the Core IRDS System-Standard Schema, we
represent each of these with the entity-type SYSTEM. In
Chapter 4, we will show how the dictionary can be customized
to explicitly represent the unique characteristics of sub-
systems and procedures. We begin by creating u8, the entity
representing the entire application system. We will define
description and external security requirement attributes for
u8

:

ADD ENTITY u8
ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME =

ASCAD-Database- In format ion-System
WITH ATTRIBUTES

DESCRIPTION =

"This system provides the necessary tools
for maintaining the Air Staff Codes and
Descriptions (ASCAD) Database. The ASCAD
Database contains all common (corporate) data
elements which are codes and their respective
descriptions. The tools provide the
capability

:

1. To control access to the database
a. single record at a time
b. groups of records

2. To update the tables in the database
3. To produce reports from the database
4. To create tapes containing database

information
5. To display information online.",

SECURITY = "datamgr";

u8 contains three subsystems; we will define u8-20
here, and leave the definitions of u8-30 and u8-40 to the
complete command listing in Appendix A.

ADD ENTITY u8-20 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = ASCAD-Database-Update
WITH ATTRIBUTES

DESCRIPTION (START = 100 INCREMENT = 10)

"This subsystem provides the capability for
the Air Staff to update the contents of the
ASCAD Database.",

- 7 -

SYSTEM-CATEGORY = "subsystem”,
SECURITY = "datamgr";

The attribute-type SYSTEM-CATEGORY allows these SYSTEM enti-
ties to be identified as "subsystems". In describing text
attributes, the starting line number and increment value can
be specified to override the IRDS default.

Since the IRDS views a relationship, not as an attri-
bute of a single entity, but as a totally different struc-
ture that links two distinct entities, we must use the ADD
RELATIONSHIP command to connect u8 with its three subsys-
tems :

ADD RELATIONSHIP
u8 SYSTEM-CONTAINS-SYSTEM U8-20;

Likewise with u8 containing u8-30 and u8-40.

In a similar manner, we define u8-20-10, u8-20-20, and
U8-20-30 as PROCEDURES contained in u8-20, and U8-30-10,
U8-30-20, U8-30-30, and u8-30-40 as PROCEDURES contained in
u8-30 (see Appendix A)

.

PROCEDURE U8-20-30 contains PROGRAM uS-20-30-10, which
calls MODULE md-00772, which in turn calls MODULE md-00771:

ADD ENTITY U8-20-30-10
ENTITY-TYPE = PROGRAM

DESCRIPTIVE-NAME = ASCAD-Update

;

ADD ENTITY md-00772
ENTITY-TYPE = MODULE

DESCRIPTIVE-NAME = generalized-ASCAD-update

;

ADD ENTITY md-00771 ENTITY-TYPE = MODULE
DESCRIPTIVE-NAME = general i zed-mrds

;

ADD RELATIONSHIP
U8-20-30-10 PROGRAM-CALLS-MODULE md-00772;

ADD RELATIONSHIP
md-00772 MODULE-CALLS-MODULE md-00771;

ADD RELATIONSHIP
U8-20-30 SYSTEM-CONTAINS-PROGRAM u8-20-30-10;

- 8 -

The I RDS uses the GOES-TO relationship-type to document
instances where there is a known flow of execution between
two PROCESS entities. Thus:

ADD RELATIONSHIP
U8-20-10 SYSTEM-GOES-TO-SYSTEM U8-20-20;

ADD RELATIONSHIP
U8-20-20 SYSTEM-GOES-TO-SYSTEM U8-20-30;

ADD RELATIONSHIP
U8-20-30 SYSTEM-GOES-TO-SYSTEM U8-20-20;

ADD RELATIONSHIP
u8-3 0-20 SYSTEM-COMES-FROM-SYSTEM U8-30-10;

ADD RELATIONSHIP
U8-30-30 SYSTEM-COMES-FROM-SYSTEM U8-30-20;

ADD RELATIONSHIP
U8-30-20 SYSTEM-COMES-FROM-SYSTEM U8-30-30;

In the last three commands, we used the SYSTEM-COMES-FROM
-SYSTEM inverse name of the SYSTEM-GOES-TO-SYSTEM
relationship-type. Note that to use this optional formula-
tion, which is available for all relationship-types (and is
really just a convenience for the user) , the member entities
must be specified in the appropriate order. For example,
"x GOES-TO y" is equivalent to "y COMES-FROM x .

"

An option within commands specifying relationships is
the use of the relationship-class-type clause. This alter-
nate formulation allows the user to identify a
relationship-type by writing COMES-FROM instead of SYSTEM-
COMES-FROM-SYSTEM say, or CONTAINS instead of PROGRAM-
CONTAINS-MODULE . This is certainly more convenient, and
presents no problem if both member entities have already
been defined, since their types will be known to the IRDS.
In this case, the user does not have to repeat the informa-
tion. Thus we have the command:

ADD RELATIONSHIP
U8-30-40 COMES-FROM U8-30-30;

On the other hand, if an entity specified as part of a rela-
tionship has not been previously defined, its type must be
included within the ADD RELATIONSHIP command, in order for

- 9-

the IRDS to have enough information to automatically create
the entity. As an example of this syntax, we implicitly de
fine the two PROGRAMS contained within PROCEDURE U8-30-30:

ADD RELATIONSHIP
U8-30-30 CONTAINS NEW PROGRAM U8-30-30-10;

ADD RELATIONSHIP
U8-30-30 CONTAINS NEW PROGRAM U8-30-30-20;

Entities u8-30-30-10 and U8-30-30-20 are now established.

We can then quickly specify:

ADD RELATIONSHIP
U8-30-30-10 GOES-TO U8-30-30-20;

2.3.2 The Data Entities.

The ASCAD application data can be viewed as a

FILE/RECORD/ELEMENT hierarchy, containing several levels of
FILES to represent its database structure. FILE fd-05031
contains fd-25091, and FILE fd-05007 contains fd-00103 and
fd-25093, as well as fd-25091 (see Figure 2.2). We can de-
clare this using the same techniques as in the previous sec-
tion (see Appendix A)

.

Now, FILE fd-25091 contains four RECORDS. We create
one, rd-25091:

ADD ENTITY rd-25091 ENTITY-TYPE = RECORD
DESCRIPTIVE-NAME = Countries/States;

ADD RELATIONSHIP
fd-25091 FILE-CONTAINS-RECORD rd-25091;

We now use rd-25091 as a template for the construction
of the other three RECORD entities by employing the COPY
ENTITY command:

- 10 -

COPY ENTITY
rd-25091 WITH RELATIONSHIPS TO rd-25311
DESCRIPTIVE-NAME = Countr ies/States-NK

;

COPY ENTITY
rd-25091 WITH RELS TO rd-25310
DNAME = Countr ies/States-Key

;

COPY ENTITY
rd-25091 WITH RELS TO rd-25345
DNAME = Countr ies/States-Key-PR;

Since each of the last three RECORDS is contained in the
same FILE (fd-25091) as is rd-25091/ we were able to use the
WITH RELATIONSHIPS option on the COPY ENTITY command.

In our subset of the ASCAD dictionary/ RECORD rd-25091
is comprised of the six ELEMENTS dd-01093, dd-01092/
dd-01333, dd-01325, dd-02075, and dd-01021. The last five
of these ELEMENTS also constitute RECORD rd-25311. Appendix
A contains the commands defining these ELEMENTS and their
relationships

.

We define ELEMENT dd-02200, which is contained in both
rd-25310 and rd-25345:

ADD ENTITY dd-02200
ETYPE = ELE DNAME = Action-Code

ADD REL rd-25310 CONTAINS dd-02200

ADD REL rd-25345 CONTAINS dd-02200

In the last six commands, we have used several of the valid
abbreviations listed in Section 4.3 of the Core Standard
IRDS Specifications [1].

2.3.3 Describing Input and Output Documents.

There are two more entities in our application,
DOCUMENTS representing input forms and output reports:

ADD ENTITY id-25000 ENTITY-TYPE = DOCUMENT
DESCRIPTIVE-NAME = ASCAD-Table-Change-Reques t

;

- 11 -

ADD ENTITY od-25000 ETYPE = DOC
DNAME = ASCAD-Table

;

2.3.4 Completing the Population of the Example.

The process and data hierarchies are linked together,
along with the DOCUMENTS, by PROCESS relationships.

ADD RELATIONSHIP
u8 SYSTEM-PROCESSES-FILE fd-05031;

ADD REL U8-40 SYSTEM-PROCESSES-FILE fd-05007;

ADD REL U8-20-30-10 PROCESSES fd-05007;

ADD REL U8-20-10 PROCESSES id-25000;

ADD REL U8-20-20 PROCESSES id-25000;

ADD REL uS-20-30-10 PROCESSES id-25000;

ADD REL od-25000 PROCESSED-BY u8-40;

2.3.5 Filling in the Attributes.

Having sketched in the overall structure and interrela-
tionships of the application dictionary, our next step is to
go back and use MODIFY ENTITY and MODIFY RELATIONSHIP com-
mands to fill in the attributes of the individual com-
ponents .

For example, each ELEMENT in the dictionary has associ-
ated with it a number of characteristics. We can document,
in addition to the ELEMENT'' s general description, its data
class and external security requirements, among other pro-
perties, e .g . :

MODIFY ENTITY dd-01093
WITH ATTRIBUTES

DESCRIPTION = "A shared data field occupied by
either entry-code or state-code",

SECURITY = "datamgr"

,

DATA-CLASS = "alphanumeric",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "cntry-st-code"

,

- 12-

ALTERNATE-NAME-CONTEXT = "pll")

;

In this command , IDENTIFICATION-NAMES is an example of an
attr ibute-group-type , a sequence of related attribute-types
whose attributes are frequently or always used together to
document a property of an entity. We are assigning an al-
ternate name, (sometimes referred to as an "alias" or
"synonym") to the ELEMENT dd-01093. "Cntry-st-code" is used
as the alternate name of dd-01093 in PL-1 programs; if there
were FORTRAN programs that referred to dd-01093, the ELEMENT
might have an alternate name of CSC093 in that context.
Although they are linked together in IDENTIFICATION-NAMES,
ALTERNATE-NAME and ALTERNATE-NAME-CONTEXT are individual
attribute-types, and attributes of these two types can be
defined and accessed separately.

An entity can have several alternate names and, as can
be seen from the MOD ENTITY commands for fd-25091, rd-25091,
rd-25311, and rd-25345 in Appendix A, alternate names need
not be unique in the dictionary, or even for entities of a
given type.

A feature of the IRDS is that a relationship between
two entities can itself have attributes. For example, it's
useful to be able to specify the relative position of an
ELEMENT within a RECORD, e.g.:

MODIFY RELATIONSHIP rd-25091 CONTAINS dd-01092
WITH ATTRIBUTES RELATIVE-POSITION = 3;

Appendix A includes all the MODIFY commands necessary
to fully specify the attributes of all entities and rela-
tionships .

2.3.6 Freezing the Global Example.

Our global application dictionary example is now in
place, with the complete specification given by the commands
in Appendix A. The example will be considered "frozen," in
the sense that any change to its content made by a future
example of command usage will be considered local to that
example

.

- 13 -

2.4 MANIPULATING THE DICTIONARY

2.4.1 Deleting Entities and Relationships.

An entity cannot be deleted from a dictionary if it is
a member of a relationship. To delete the DOCUMENT id-25000
say, we must first remove it from all its relationships.
The most obvious way is to simply:

DELETE RELATIONSHIP U8-20-10 PROCESSES id-25000;

DEL REL U8-20-20 PROCESSES id-25000;

DEL REL U8-2Q-30-10 PROCESSES id- 2 50 00;

By using the relationship-selection-clause in the DELETE
RELATIONSHIP command, we could have specified the relation-
ship removal in one step:

DEL REL
SELECT ALL RELATIONSHIPS FOR id-25000;

In any case, having deleted its relationships, we can
then remove the entity itself:

|

DELETE ENTITY id-25000;

2.4.2 Changing the Names of an Entity.

It's sometimes necessary to change an entity's access
or descriptive name. For example, to change the access name
od-25000 to rpt-25000, we could say:

MODIFY ACCESS-NAME od-25000
TO rpt-25000;

- 14 -

3. THE DICTIONARY OUTPUT FACILITY

The three IRDS output commands have very general for-
mats; each can be used for applications ranging from the
ad-hoc querying of a dictionary to the generation of highly
structured, written reports. These commands, GENERAL
OUTPUT, OUTPUT IMPACT OF CHANGE, and OUTPUT SYNTAX have the
same overall structure, which we can represent as

command- imperative
output- select ion
output- formatting
output-rout ing

;

Output-selection is the selection of the precise list
of dictionary entities that will comprise the output. The
syntax for this selection is the same for all three com-
mands, and is discussed in Section 3.1.

Output-formatting is the specification of the precise
information to be displayed, and the format of the display.
It includes entity sort information, discussed in Section
3.2, and the "show" options. These differ for the three
output commands, and will be illustrated in the individual
discussions of each command.

The optional output-routing is simply

ROUTE TO destination , destination . .

.

where destination is implementor defined.

3.1 OUTPUT SELECTION

The output-selection clauses allow the user to select
the list of entities to be output. This section will illus
trate one selection mode, namely the inclusion of the selec
tion criteria within the output command itself. A user can
also specify entity-lists and procedures; these techniques
will be discussed in Chapter 6.

- 17-

The user specifies selection criteria by first identi-
fying the overall category of entities desired (entity
selection) , and then narrowing this list using combinations
of restriction criteria. Thus, our command representation
becomes

command- imperative
SELECT entity-selection WHERE entity-restriction
output- forma ting
output-routing

;

3.1.1 Entity Selection.

There are four alternatives for the initial entity
selection

:

(1) The collection of all entities accessible to a
given user can be specified by

|
SELECT ALL ENTITIES

(2)

Selection can be made according to the strings of
characters representing access names. For example, to select
all entities whose access names begin with "u8-", followed
by any single character, followed by "0", we could specify

1
SELECT ENTITIES WITH ACCESS-NAME = u8-?0

(3)

Selection can be made according to the strings of
characters representing descriptive names. To select all en-
tities whose descriptive names contain the string "Budget''
and end with the string "SM", we could specify

|
SELECT ENTITIES WITH DESCRIPTIVE-NAME = *Budget*SM

(4)

Finally, entities can be selected according to how
they are related to a specified entity. For example, to
specify all entities that are related to (i.e., members of
at least one relationship whose other member is) either
rd-25091 or rd-25311, we could say

- 18-

SELECT ENTITIES DIRECTLY RELATED TO rd-25091,
rd-25311

To specify all entities that are contained, directly or in-
directly, in u8, we can say

SELECT ENTITIES RELATED TO u8 VIA CONTAINS

3.1.2 Entity Restriction.

A typical entity-restriction is composed of a boolean
combination of restriction clauses. Some illustrations are

|
ENTITY-TYPE = FILE, RECORD, ELEMENT

which specifies a restriction to entities of one of three
entity-types;

NO RELATIONSHIPS EXIST

which identifies "orphan" entities;

|
SECURITY = "datamgr"

and

DATE-ADDED >= "830609000000"

which restrict to entities with these attributes;

DESCRIPTION = "*database*"

which finds entities whose descriptions contain the string
"database"; and

- 19 -

|
DESCRIPTIVE-NAME ''LENGTH >= 32

and

|
DESCRIPTION" LINES >= 10

which test for entities whose descriptive name length and
number of description lines satisfy the given criteria.

3.1.3 Full Output Selection Examples.

Putting some of these clauses together, we can have

|
SELECT ALL ENTITIES WHERE DESCRIPTION = " *database* "

|

SELECT ALL ENTITIES WHERE
ENTITY-TYPE = FILE AND DESCRIPTION = " *database*

"

SELECT ENTITIES WITH ACCESS-NAME = u8-?0
WHERE NO RELATIONSHIPS EXIST AND
(DATE-ADDED >= "830609000000"

OR SECURITY = "datamgr")

3.2 SORTING THE ENTITIES

Since the output commands produce basically a list of
selected entities and associated data, it"s often important
to specify a specific sort sequence for the entities.

If no sort-clause is specified, the entities are
displayed in the order they are retrieved. If we want to
sort by entity-type, within entity-type by assigned access
name, and for entities with a given assigned access name by
the DATE-CREATED attribute, the sort clause would be

- 20-

SORT
SEQUENCE = ENTITY-TYPE, ASSIGNED ACCESS-NAME,
DATE-ADDED

For any sort parameter, we can specify ascending or descend-
ing order. Thus,

SORT SEQUENCE = ENTITY-TYPE, ASSIGNED ACCESS-NAME,
(DATE-ADDED DESCENDING)

would list entities of the same type, with the same assigned
access name, in reverse chronological order.

3.3 THE GENERAL OUTPUT COMMAND

3.3.1 SHOWing All Information.

All information about selected entities can be
displayed using the SHOW ALL option. Therefore, to generate
what amounts to a dump or catalog of the dictionary con-
tents, we can

OUTPUT DICTIONARY
SELECT ALL ENTITIES
SHOW ALL;

3.3.2 Names and Types.

To limit the display to the access or descriptive names
of the entities, we would say

SHOW ACCESS-NAME

or

SHOW DESCRIPTIVE-NAME

respectively

.

If we're only interested in finding out the entity-type
of each selected entity, we would say

SHOW ENTITY-TYPE

3.3.3 Attributes of Entities.

The SHOW ALL clause automatically displays all attri-
butes of each selected entity. If we're not using SHOW ALL,
we can still display all attributes by including

SHOW ALL ATTRIBUTES

Likewise, we can specify that no attributes are to be
displayed

:

SHOW NO ATTRB

just certain attributes:

SHOW ATTRB SECURITY, FREQUENCY,
DESCRIPTION (1 THROUGH 5)

or all attributes except certain ones:

SHOW ALL ATTRB EXCEPT DESCRIPTION

3.3.4 Relationships of Entities.

The amount of information that can be output concerning
the relationships of the selected entities is highly vari-
able. All relationship information can be displayed by

SHOW ALL RELATIONSHIPS

- 22 -

perhaps limited as to direction, as in

SHOW ALL FORWARD RELS

or

SHOW ALL INVERSE RELS

We can narrow the display of relationships either by expli-
cit inclusion

SHOW RELS RECORD-CONTAI NS-ELEMENT
RECORD-CONTAINED-IN-FILE

or by explicit exclusion

SHOW ALL RELS EXCEPT CONTAINS, PROGRAM-CALLS-MODULE

|

All attributes of relationships will be displayed, unless we
explicitly suppress them, as in

SHOW RELS CONTAINS AND NO ATTRIBUTES

3.3.5 Output Counts.

Finally, we can use the SHOW clause to provide various
counts of the displayed information, as with

SHOW ALL ATTRIBUTES
SHOW ALL RELS
SHOW ENTITIES 'COUNT , ATTRIBUTES 'COUNT

RELATIONSHIPS 'COUNT

- 23 -

3.3.6 Complete Command Examples.

Putting together the various combinations, we have such
examples of the GENERAL OUTPUT command as

OUTPUT DICTIONARY
SELECT ALL ENTITIES WHERE

DESCRIPTION = "*secur i ty*" OR
DESCRIPTION = "*password*”

SORT SEQUENCE = ENTITY-TYPE, ACCESS-NAME
SHOW ACCESS-NAME
SHOW ATTRB DESCRIPTION;

and

OUTPUT DICTIONARY
SELECT ENTITIES ACCESS-NAME = id-25000, od-25000
SHOW "DOCUMENT REPORT'8 ON FIRST PAGE
SHOW RELS PROCESSED-BY
SHOW RELS "COUNT;

Note that the last example specifies a report title.

3.4 THE OUTPUT IMPACT-OF-CHANGE COMMAND

A simple, "find all" application of this command might
ask for a list of all entities affected by a change to enti-
ty u8. This could be specified as

OUTPUT IMPACT
SELECT ENTITIES ACCESS-NAME = u8;

More complex select clauses can be specified as for the
GENERAL OUTPUT command. Note that the absence of a SHOW
clause implies the display of just the access names of the
impacted entities.

If we wanted to include a title, we could include some-
thing like

- 24 -

SHOW "A CHANGE TO SYSTEM u8 WOULD AFFECT THE
FOLLOWING ENTITIES:"

If we wanted to restrict the list to impacted FILE,
RECORD, and ELEMENT entities, say, we would specify

SHOW ONLY FILE, RECORD, ELEMENT

To specify the display of the descriptive names of the
impacted entities, and for these entities, the name of the
person who added the entity to the dictionary, we could say

SHOW DESCRIPTIVE-NAME
SHOW ATTRIBUTE ADDED-BY

Thus, a more realistic example of this command would
be

:

OUTPUT CUMULATIVE IMPACT
SELECT ENTITIES WITH ACCESS-NAME = u8-?0
WHERE ENTITY-TYPE = SYSTEM

SORT SEQUENCE = (ACCESS-NAME ASCENDING)
SHOW ATTRB LAST-MODIFIED-BY

;

As applied to our example dictionary, this command would
generate the display of a single list of those SYSTEM enti-
ties that would be affected by a change to any of the enti-
ties u8-20, u8-30, and u8-40. Thus, the output would be the
list of entities

u8 U8-20-10, U8-20-20, U8-20-30, U8-30-10, U8-30-20,
U8-30-30, U8-30-40

where, for each of these output entities, the name of the
person who last modified that entity is also displayed.

- 25 -

3.5 THE OUTPUT SYNTAX COMMAND

The OUTPUT SYNTAX command is basically a simplified
version of the GENERAL OUTPUT command that displays its out
put in the form of a sequence of BEGIN ENTITY and BEGIN
RELATIONSHIP pseudo-commands. Each pseudo-command produced
in this way is syntactically consistent with the correspond
ing ADD ENTITY or ADD RELATIONSHIP command. Thus, there is
little need in the OUTPUT SYNTAX command for additional for
matting; the principal function of the SHOW clause is to
specify the relationships that are to be displayed.

An example of the command is;

OUTPUT SYNTAX
SELECT ALL ENTITIES WHERE

ENTITY-TYPE = DOCUMENT
SORT SEQUENCE = (ACCESS-NAME ASCENDING)
SHOW ALL RELATIONSHIPS AND NO ATTRIBUTES;

Applied to our example dictionary, this command would pro-
duce a display something like;

BEGIN ENTITY id-25000 ENTITY-TYPE = DOCUMENT
DESCRIPTIVE-NAME = ASCAD-Table-Change-Request
WITH ATTRIBUTES

ADDED-BY = " John-Smi th "

,

DATE-ADDED = "840331194053",
© © o

SECURITY = "datamgr";

BEGIN U8-2O-10 PROCESSES id-25000;

BEGIN U8-20-20 PROCESSES id-25000;

BEGIN U8-20-30-10 PROCESSES id-25000;

BEGIN ENTITY od-25000 ENTITY-TYPE = DOCUMENT
© © «

SECURITY = datamgr;

BEGIN u 8 - 4 0 PROCESSES od-25000;

- 26-

4. CUSTOMIZING THE DICTIONARY SCHEMA

The objects and their interrelationships specified in
the Core IRDS System-Standard Schema may not precisely match
the requirements of a given organization. The documented
properties of certain real-world entities that are to be
modeled may not match anything in the System-Standard Sche-
ma, desirable relationship-types may not be present, etc.
Therefore, the IRDS allows an organization to fully custom-
ize the System-Standard Schema. This feature, called "ex-
tensibility,” permits the definition of new entity-types,
relationship-types, attr ibute-types , and other schema ob-
jects. The Command Language itself is not modifiable in the
Core IRDS.

4.1 CHANGING THE NAME OF A META-ENTITY

Perhaps the simplest application of extensibility is
for an organization to change the name of an entity-type,
attribute-type, or other meta-entity.

The ASCAD dictionary refers to PROGRAMS as "opera-
tions." If we want to accommodate this usage, we could very
easily rename PROGRAM by specifying

MODIFY META-ENTITY-NAME FROM
PROGRAM TO OPERATION;

4.2 CHANGING AN EXISTING ENTITY-TYPE

Although the collection of entity-types provided by the
System-Standard Schema will probably be adequate for most
applications at most organizations, the specific charac-
teristics of these entity-types will often require customi-
zation. We will first show how we would create a new
attribute-type and associate it with a given entity-type.
Then we will illustrate the modification of an entity-type's
meta-attributes.

- 27 -

4.2.1 Assigning a New Attribute-Type.

When we defined the FILE entities in our continuing ex-
ample, we applied to them only DESCRIPTION, SECURITY,
IDENTIFICATION-NAMES, and NUMBER-OF-RECORDS attributes.
Suppose it were important to record, and then select enti-
ties based upon, the storage medium (tape, disk, etc.) or
the retention (temporary, permanent) of the FILES. We could
accomplish this by defining the attribute-types MEDIUM and
RETENTION, and then associating them with the FILE entity-
type.

An attribute-type is an example of a meta-entity.
Therefore, we define the two new attribute-types by:

ADD META-ENTITY MEDIUM
META-ENTITY-TYPE = ATTRIBUTE-TYPE

?

ADD META-ENTITY RETENTION
META-ENTITY-TYPE = ATTRIBUTE-TYPE?

We now associate these attribute-types with the
entity-type FILE. That is, we inform the IRDS that MEDIUM
and RETENTION are to be allowable attribute-types for FILES.
This association is done by establishing meta-relationships
between the meta-entity FILE and each of the meta-entities
MEDIUM and RETENTION:

ADD META-RELATIONSHIP
FROM FILE TO MEDIUM
WITH META-ATTRIBUTES

SINGULAR/PLURAL = SINGULAR;

ADD META-RELATIONSHIP
FROM FILE TO RETENTION
WITH SING/PL = SINGULAR?

Note the use of the meta-attribute SINGULAR/PLURAL on the
meta-relationship to specify that only one MEDIUM attribute
and one RETENTION attribute can be assigned to a given FILE.
Note also that the establishment of these two meta-
relationships automatically "installs" the respective new
meta-entities

.

- 28-

If we later decide to undo this change with respect to,
say, the RETENTION attribute-type, we would first remove the
meta-relationship, then remove the meta-entity itself:

DELETE META-RELATIONSHIP
FROM FILE TO RETENTION;

DELETE META-ENTITY RETENTION;

4.2.2 Modifying a Meta-Attribute.

The table in Section 9.7 of the Core IRDS Specifica-
tions lists the meta-attribute-types associated with each
meta-entity-type. A given entity-type (a meta-entity of
type entity-type) such as FILE or PROGRAM has associated
with it a number of meta-attribute-types such as ADDED-TO-
SCHEMA-BY , ALTERNATE-META-ENTITY-NAME, and MAXIMUM-NAME-
LENGTH. The values of these meta-attribute-types (the
meta-attributes) then define the characteristics of the
entity-type. We notice from the table that the meta-
attribute-type MAXIMUM-NAME-LENGTH is optional for entity-
types. Suppose we wanted to ensure that all ELEMENTS had
assigned access names of length no greater than 16 charac-
ters (while allowing their descriptive names to be of arbi-
trary length). What we would need to do is to modify the
characteristics of the meta-entity ELEMENT by changing the
value of MAXIMUM-NAME-LENGTH:

MODIFY META-ENTITY ELEMENT
WITH META-ATTRIBUTES

MAXIMUM-NAME-LENGTH = 16;

The IRDS will check the contents of the dictionary to make
sure that no existing ELEMENT has an assigned access name
longer than 16 characters.

4.3 CREATING A NEW ENTITY-TYPE

To fully define a new entity-type in the schema, we
need to perform the following steps:

- 29 -

1.

We create the new entity-type, by adding to the sche
ma an entity-type meta-entity.

(At this point, the new entity-type has associated with it
only those attribute-types, such as DATE-ADDED and COMMENTS,
that are common to all entity-types (the meta-attribute-type
COMMON has a value of "yes".) We must explicitly associate
with the entity-type any additional attr ibute-types .

)

2. We construct the set of relationship-types that the
new entity-type is to be a member of, by adding to
the schema the corresponding set of relationship-type
meta-entities

.

3. We assign (if appropriate) each new relationship-type
to its relationship-class-type, by adding a meta-
relationship between the relationship- type and the
relationship-class- type

.

(At this point the two prospective members of each
relationship-type (the new entity-type and an existing
entity-type) will not have been explicitly connected within
that relationship-type.)

4. We assign to each of the new relationship-types the
new entity-type and an existing entity-type (as the
two members of the relationship-type) , by specifying
a set of meta-relationships.

5. We create, if necessary, any new attribute-types that
the new entity-type or any of the new relationship-
types might need, by adding to the schema the
corresponding meta-entities.

6. We link the appropriate attribute-types to the new
entity-type and to the new relationship-types, by
specifying a set of meta-relationships.

7. We install in the schema the new entity-type and the
new relationship-types.

We will illustrate all this with a straightforward
creation of a "DRAWING" entity-type. To simplify the exam-
ple, we will assume that DRAWING is a member of only the
"DOCUMENT-CONTAINS-DRAWING" relationship-type

.

- 30-

4.3.1
Creating the Meta-Entity

ADD META-ENTITY DRAWING
META-ENTITY-TYPE = ENTITY-TYPE
WITH META-ATTRIBUTES

ALTERNATE-META-ENTITY-NAME = DRW
PURPOSE =

"A DRAWING ENTITY REPRESENTS A"
"COLLECTION OF GRAPHIC AND NON GRAPHIC"
" (ALPHANUMERIC) INFORMATION"

;

4.3.2 Defining the Relationship-Types.

By our assumptions, we need to define only the
DOCUMENT-CONTAINS-DRAWING relationship-type

:

ADD META-ENTITY DOCUMENT-CONTAI NS-DRAWING
META-ENTITY-TYPE = RELATIONSHIP-TYPE
WITH

INVERSE-NAME = DRAWING-CONTAINED-DOCUMENT
ALTERNATE-META-ENTITY-NAME = DOC-CON-DRW;

4.3.3

Specifying the Relationship-Class-Type.

This section and the next highlight the important fact
that the character string comprising an IRDS name has no in-
herent meaning. Simply naming a new relationship-type
"DOCUMENT-CONTAINS-DRAWING" does not cause the IRDS to infer
that "DOCUMENT", "DRAWING", or "CONTAINS" are in any way as-
sociated with the relationship-type. We could have named
the relationship-type "xxxxxx", as long as we perform the
next two operations.

Here, we tell the IRDS that DOCUMENT-CONTAI NS

-

DRAWING is a "CONTAINS" r elat ionsh ip-type

:

ADD META-RELATIONSHIP
FROM DOCUMENT-CONTAINS-DRAWING TO CONTAINS;

- 31 -

I

4.3.4
Assigning Members to the Relationship-Type.

We need to tell the IRDS that both the new entity-type
(DRAWING) and the existing entity-type (DOCUMENT) are
members of the relationship-type DOCUMENT-CONTAINS-DRAWING

,

and indicate the relative positions of the two entity-types
within the relationship-type:

ADD META-RELATIONSHIP
FROM DOCUMENT-CONTAINS-DRAWING TO DOCUMENT
POSITION = 1;

ADD META-RELATIONSHIP
FROM DOCUMENT-CONTAINS-DRAWING TO DRAWING
POS = 2;4.3.5

Creating New Attribute-Types.

A DRAWING entity would no doubt need to have available
a collection of attribute-types not in the System-Standard
Schema to describe its lines, shading, color, labels, etc.
We define here only one such attribute-type, COLOR:

ADD META-ENTITY COLOR
META-ENTITY-TYPE = ATTRIBUTE-TYPE;

4.3.6

Associating the Appropriate Attribute-Types.

We must explicitly associate with DRAWING all non-
common attribute-types, such as COLOR. For example:

ADD META-RELATIONSHIP
FROM DRAWING TO COLOR
WITH META-ATTRIBUTES

SING/PL = PLURAL;

- 32 -

4.3.7 Installing the Schema Descriptors

We install DRAWING, then DOCUMENT-CONTAINS-DRAWING

:

INSTALL
DRAWING , DOCUMENT-CONTAINS-DRAWING

;

The new entity-type DRAWING and the new relationship-
type DOCUMENT-CONTAINS-DRAWING are now fully defined, and we
can begin to create corresponding entities and relationships
in the dictionary.

4.4 THE SCHEMA OUTPUT FACILITY

The SCHEMA OUTPUT command, which selects and displays
the schema metadata, has a structure very similar to that of
the dictionary output commands. We specify:

OUTPUT SCHEMA
SELECT meta-entity-selection WHERE meta-entity-restriction
output- format ting
output-routing

;

4.4.1 Meta-Entity-Selection.

We can select for output either all meta-entities

SELECT ALL

or an explicit list of them:

SELECT FILE, RECORD, FILE-CONTAINS-RECORD

,

DATE-ADDED

4.4.2 Meta-Entity-Restriction.

A typical meta-entity restriction expression is com-
posed of a boolean combination of restriction clauses. For
example

:

- 33 -

META-ENTITY-TYPE = ENTITY-TYPE, RELATIONSHIP-TYPE
|

restricts the output to those meta-entities that are either
entity-types or relationship-types, and

(MINIMUM-NAME-LENGTH >= 12) AND
(MAXIMUM-NAME-LENGTH <= 24)

narrows the selection to those entity-types whose instances
have assigned access names that are specified to be strings
of between 12 and 24 characters.
4.4.3

Full Selection Example.

To select those entity-types that were either entered
into the schema through extensibility or modified since
January 1, 1983, we specify:

SELECT ALL WHERE
META-ENTITY-TYPE = ENTITY-TYPE AND
(LEVEL = EXTENDED OR

DATE-MODIFIED >= 830101000000)

4.4.4

Sorting the Meta-Entities.

We can sort by meta-entity-type and/or by meta-
attributes. For example:

SORT SEQUENCE =

LEVEL, META-ENTITY-TYPE,
(DATE-MODIFIED DESCENDING)

4.4.5

Output Formatting.

For each meta-entity selected, we can specify the
display of all associated schema information: the meta-
attributes of the meta-entities, the meta-relationships in-
volving the meta-entities, and the set of all meta-entities
that are meta-related to the given meta-entities.

- 34 -

Thus we might have

SHOW "EVERYTHING"
SHOW ALL

SHOW ALL META-ATTRIBUTES

SHOW META-ATTRIBUTES DATE-ADDED , ADDED-BY

SHOW META-ATTRIBUTES COMMENTS
SHOW META-RELATIONSHIPS

SHOW ALL META-ATTRIBUTES
SHOW DIRECTLY RELATED META-ENTITIES
SHOW INDIRECTLY RELATED META-ENTITIES WHERE
META-ENTITY-TYPE = RELATIONSHIP-CLASS-TYPE

4.4.6 A Complete Example.

OUTPUT SCHEMA
SELECT ALL WHERE

LEVEL = EXTENDED AND
META-ENTITY-TYPE = ENTITY-TYPE

,

RELATIONSHIP-TYPE, ATTRIBUTE-TYPE
SORT SEQUENCE = META-ENTITY-TYPE
SHOW ALL META-ATTRIBUTES
SHOW META-RELATIONSHIPS;

This command would, if applied to the schema after the com-
mands in Section 4.3, display information on the new meta-
entities created in that section. That is, this command
would display DRAWING and DOCUMENT-CONTAINS-DRAWING , with
their respective meta-attributes and meta-relationships.

- 35-

5. IRDS NAMING AND CONTROL FACILITIES

5.1 THE VERSIONING FACILITY

5.1.1 Defining Versions.

The Core IRDS has no commands that deal exclusively
with the Versioning Facility. A user specifies a variation
identifier for a new entity in the ADD ENTITY command, and
constructs variations of existing entities with the MODIFY
ENTITY, COPY ENTITY, or MODIFY ENTITY LIFE-CYCLE-PHASE com-
mands .

For example, an entity representing a Spanish language
version of the DOCUMENT id-25000 could be created using:

COPY ENTITY id-25000 WITH RELATIONSHIPS
TO NEW VERSION = (Spanish)

;

Unless later modified, id-25000 (Spani sh) would have the same
attributes as does id-25000 (except for such audit attri-
butes as the value of DATE-ADDED) and would participate in
relationships with the same entities. Since id-25000 has a

descriptive name, the IRDS would assign one to the new enti-
ty. This descriptive name, ASCAD-Table-Change-
Request (Spanish) , would be formed from the assigned descrip-
tive name of the original entity and the version-identifier
of the new entity.

The IRDS assigns an implicit revision-number of 1 to a

newly added entity or entity variation; a user can explicit-
ly assign a revision-number when using the MODIFY ENTITY,
COPY ENTITY, and MODIFY ENTITY LIFE-CYCLE-PHASE commands.
If, in these commands, the user specifies NEW VERSION with
no variation identifier, the IRDS automatically increments
the revision-number for the newly created entity.

For example, we could represent a revision to the Span-
ish language DOCUMENT by:

- 37-

MODIFY ENTITY id-25000 (Spanish)
NEW VERSION;

which creates the new entity id-25000 (Spanish : 2)

.

5.1.2 Using Versions.

Version identifiers can figure in entity selection cri
ter ia

.

Both

|
SELECT ENTITIES WITH ACCESS-NAME = * (Operation*)

and

|
SELECT ALL ENTITIES WHERE VARIATION = Operation

specify the selection of all entities with a variation-name
of "Operation".

Likewise

,

SELECT ALL ENTITIES WHERE
ENTITY-TYPE = ELEMENT AND REVISION = LOWEST

will find the earliest revision of each ELEMENT.

5.2 LIFE-CYCLE-PHASES

5.2.1 Defining New Phases.

A life-cycle-phase is a meta-entity in the schema. The
Core System-Standard Schema provides four life-cycle-phases,
UNCONTROLLED-PHASE, CONTROLLED-PHASE , ARCHIVED-PHASE, and
SECURITY-PHASE. If we want to define a new phase, we use
the ADD META-ENTITY command:

- 38 -

ADD META-ENTITY TEST-PHASE
META-ENTITY-TYPE = LIFE-CYCLE-PHASE
WITH ALT-MNAME = TEST;

The I RDS will assign TEST-PHASE to the life-cycle-phase
class UNCONTROLLED. TEST-PHASE will automatically be in-
stalled in the schema.

5.2.2 Placing Entities in Phases.

As explained in Section 5.4, when an entity is created
in the dictionary, it is automatically assigned to the
life-cycle-phase associated with the view currently in ef-
fect. If a user wants to transfer existing entities from
one phase to another, the MODIFY ENTITY LIFE-CYCLE-PHASE
command is used. Thus, to transfer the entities id-25000
and od-25000 from UNCONTROLLED-PHASE to TEST-PHASE:

MODIFY ENTITY LIFE-CYCLE-PHASE
FOR id-25000 , od-25000
FROM UNCONTROLLED-PHASE TO TEST-PHASE;

Since NEW VERSION wasn't specified, this command will "move"
the two entities. If NEW VERSION had been used, then two
additional entities with the same assigned access names (but
with new versions) as the originals would be created.

Such transfers must obey the life-cycle-phase integrity
rules

.

5.2.3 Using Life-Cycle-Phases.

Life-cycle-phases can figure in entity selection, sort-
ing, and display criteria.

We can restrict selected entities to be in specific
life-cycle-phases. Thus:

SELECT ALL ENTITIES WHERE
LIFE-CYCLE-PHASE = TEST-PHASE

- 39 -

SELECT ALL ENTITIES WHERE
(PHASE <= CONTROLLED-PHASE) AND

(PHASE <= ARCHIVED-PHASE)

The latter SELECT clause specifies all entities in all UN-
CONTROLLED phases. This kind of restriction can be used in
all dictionary output commands.

We can sort according to life-cycle-phase:

SORT SEQUENCE = LIFE-CYCLE-PHASE

The following clause is used in dictionary output com-
mands to specify the display of the life-cycle-phase of each
selected entity:

SHOW LIFE-CYCLE-PHASE

5.3 QUALITY-INDICATORS

The Quality-Indicator Facility in the IRDS allows an
organization to arbitrarily define quality-indicator
descriptors and assign them to entities. These descriptors
are then available for documentation and search purposes.

5.3.1 Defining Quality-Indicators.

The Core System-Standard Schema does not include any
quality-indicators, so an organization will have to expli-
citly define a set of them to make use of this capability.
Since a quality-indicator is a meta-entity, new indicators
are created by the ADD META-ENTITY command:

ADD META-ENTITY PROPOSED-INDICATOR
META-ENTITY-TYPE = QUALITY-INDICATOR
WITH ALT-MNAME = PROPOSED;

- 40-

5.3.2 Assigning Quality-Indicators to Entities.

When an entity is created or modified using the ADD
ENTITY, MODIFY ENTITY, or COPY ENTITY commands, the user can
assign a quality-indicator to that entity. For example:

ADD ENTITY fd-62000 ETYPE = FILE
QUALITY = PROPOSED;

COPY ENTITY rd-25091 WITH RELS TO rd-65091
QUALITY = APPROVED;

Before the execution of these two examples, quality-
indicators named PROPOSED and APPROVED must have been expli-
citly added to the schema.

5.3.3 Using Quality-Indicators.

Quality-indicators can figure in entity selection and
display criteria.

We can restrict selected entities to those assigned a
given quality-indicator. For example:

SELECT ALL ENTITIES WHERE
QUALITY = APPROVED

The quality-indicator is one of the characteristics of
an entity that can be displayed by a GENERAL OUTPUT or an
OUTPUT IMPACT-OF-CHANGE command. To do this, we simply in-
clude the clause:

SHOW QUALITY

- 41 -

5.4 VIEWS

5.4.1 Defining VIEWS.

Structurally, a VIEW is an entity in the dictionary
created and manipulated much as any other entity. The sub-
set of the dictionary defined by the VIEW is specified by
ENTITY-TYPE-NAME and EXCLUDE-RELATIONSHIPS attributes that
are assigned to the VIEW. Note that these attribute-types
are part of the DICTIONARY-PERMISSIONS attribute-group- type

,

which is also used to specify access permissions associated
with the VIEW.

For example, we can construct a VIEW allowing full ac-
cess to all SYSTEM entities in life-cycle-phase TEST-PHASE,
and to all relationships involving these SYSTEMS except for
those of type SYSTEM-GOES-TO-SYSTEM:

ADD ENTITY Sys-View
ENTITY-TYPE = VIEW
WITH ATTRIBUTES

DICTIONARY-PERMISSIONS =

(ENTITY-TYPE-NAME = SYSTEM,
EXCLUDE-RELATIONSHIPS = SYSTEM-GOES-TO-SYSTEM,
READ-PERMISSION = YES,
ADD-PERMISSION = YES,
MODIFY-PERMIS SION = YES,
DELETE-PERMISSION = YES,
MODIFY-PHASE-PERMISSION = YES,
ADMINISTRATOR-PERMISSION = YES)

,

LIFE-CYCLE-PHASE-NAME = Test-Phase;

We will illustrate the use of the other attribute-types
within DICTIONARY-PERMISSIONS more fully in Section 5.5.

5.4.2 Placing Entities in VIEWS.

When a VIEW is created, entities of the types specified
by ENTITY-TYPE-NAME attributes may already exist in the
given life-cycle-phase. In this case the VIEW would immedi-
ately contain these entities.

An entity or relationship created in the dictionary
will automatically be placed in the effective VIEW, and will
simultaneously become visible in all other VIEWS (within the
appropriate phase) that specify the entity-type. Likewise,

- 42-

an entity transferred from one phase to another using the
MODIFY ENTITY LIFE-CYCLE-PHASE command will become visible
through all appropriate VIEWS in the new phase.

5.4.3 Using Views.

Dictionary output commands and the BUILD ENTITY-LIST
command each allow the user to override, for the execution
of that command, the effective VIEW. Thus, if we say:

OUTPUT DICTIONARY
USING VIEW = Sys-View
SELECT ALL ENTITIES WHERE

DESCRIPTION = "*secur ity*" OR
DESCRIPTION = "*password*"

SORT SEQUENCE = ENTITY-TYPE, ACCESS-NAME
SHOW ACCESS-NAME
SHOW ATTRB DESCRIPTION;

the output will contain only those entities and relation-
ships (specified by the SELECT clause) that are visible
through Sys-View, (i.e., only SYSTEM entities, and relation
ships involving SYSTEMS except for SYSTEM-GOES-TO-SYSTEM.

)

If we had said

USING VIEW = ALL

the output would contain all the selected entities and rela
tionships visible through any VIEW associated with the IRDS
user

.

5.5 CORE SECURITY

The Core IRDS Security Facility allows an organization
to restrict access to the schema and the dictionary. This
is done by

1. Defining appropriate VIEWS of the dictionary.

- 43 -

2. Constructing a DICTIONARY-USER entity for each user.

3. Relating the two kinds of entities by DICTIONARY

-

USER-HAS-VIEW relationships.

The specific access permissions and restrictions are attri-
butes on the VIEW and DICTIONARY-USER entities.

5.5.1 The Use of Views.

A VIEW entity has attributes that allow it to specify
the degree of access permitted to users who access the dic-
tionary through the VIEW. The attr ibute-types comprising
the attribute-group-type DICTIONARY-PERMISSION include those
that can grant or withhold permission to read, add to, modi-
fy, delete from, and modify the life-cycle-phases of the en-
tities and relationships visible through the VIEW.

Thus, we can define a VIEW that includes all RECORDS
and ELEMENTS, and allows these RECORDS and ELEMENTS to be
read and added to, but not modified in any way:

ADD ENTITY R-E-View
ENTITY-TYPE = VIEW
WITH ATTRIBUTES

DICTIONARY-PERMISSIONS =

(ENTITY-TYPE-NAME = RECORD,
ENTITY-TYPE-NAME = ELEMENT,
READ-PERMISSION = YES,
ADD-PERMISSION = YES,
MODIFY-PERMISSION = NO,
DELETE-PERMISSION = NO,
MODIFY-PHASE-PERMISSION = NO,
ADMINISTRATOR-PERMISSION = NO)

,

LIFE-CYCLE-PHASE-NAME = Production-Phase;

5.5.2 The Dictionary-User Entity.

A DICTIONARY-USER entity is created
the "dictionary administrator") for each
Such an entity has attributes that allow

and maintained (by
user of the IRDS.
or forbid:

- 44 -

* The use of the IRDS Command Language (COMMAND-
LANGUAGE-PERMISSION = "yes" or "no")

.

* The ability to change assigned access or descriptive
names (RENAME-PERMISSION = "yes" or "no")

.

* Various levels of access to the schema (details given
in the discussion of the SCHEMA-PERMISSION-1, . ..,
SCHEMA-PERMISSION-5 attr ibute-types in Section 10.2.4
of the Core Specifications)

Thus, we can define for user John Doe a corresponding
DICTIONARY-USER entity that allows him the use of the Com-
mand Language, and the ability to obtain output on, but not
modify, the dictionary schema:

- - -

ADD ENTITY John-Doe
ENTITY-TYPE = DICTIONARY-USER
WITH ATTRIBUTES

COMMAND-LANGUAGE-PERMISSION = YES,
RENAME-PERMISSION = NO,
SCHEMA-PERMISSION-1 = NO,
SCHEMA-PERMISSION-2 = NO,
SCHEMA-PERMISSION-3 = YES,
SCHEMA-PERMISSION-4 = YES,
SCHEMA-PERMISSION-5 = YES;

5.5.3 Assigning Views to Dictionary Users.

Using DICTIONARY-USER-HAS-VIEW relationships, a IRDS
user can be assigned as many VIEWS as necessary to customize
his or her access privileges. The IRDS user's default VIEW
is also assigned at this time:

ADD RELATIONSHIP
John-Doe DICTIONARY-USER-HAS-VIEW Sys-View
WITH ATTRIBUTES

DEFAULT-VIEW = YES;

- 45-

6. DICTIONARY ENTITY-LISTS AND PROCEDURES

6.1 ENTITY-LISTS

An IRDS user can avoid re-specifying entity selection
criteria by creating and later using an entity-list.

6.1.1 Creating Entity-Lists.

The BUILD ENTITY-LIST command takes the same entity
selection criteria clause used in the dictionary output com-
mands and creates a stored, re-usable list of entities.
Thus

,

BUILD ENTITY-LIST
SELECT ENTITIES WITH
ACCESS-NAME = *ASCAD*

WHERE
(DESCRIPTION = " *database* " AND
NO RELATIONSHIPS EXIST) OR

(REVISION < HIGHEST AND PHASE = TEST)
LIST-NAME = DB-old-list

;

If we had left out the last line in this command, the col-
lection of selected entities would have become the current
list

.

6.1.2

Manipulating Entity-Lists.

New entity-lists can be created from existing lists by
the use of appropriate set operations.

By specifying

UNION DB-Old-Li S t-1 , DB-Old-Li S t- 2 = DB-List;

we form DB-List, which is the list of all unique entities :n
DB-Old-Li st-1 and DB-Old-Li st-2 . If we had specified a

null-mark instead of DB-01d-List-2 , DB-List would have been
the union of DB-Old-Li st-1 and the current list.

- 47 -

|
INTERSECT ASCAD-1, ASCAD-2, ASCAD-3, ASCAD-4;

assigns to the current list those entities that are in each
of the lists ASCAD-1, ASCAD-2, ASCAD-3, and ASCAD-4.

By specifying

DIFFERENCE Budget-Recs, Account-Recs
= New-Recs;

we form New-Recs, the list of entities that are either in
Budget-Recs but not in Account-Recs, or in Account-Recs but
not in Budget-Recs.

|

SUBTRACT Total-List, NA-List = Back-List;

assigns to Back-List the set of entities that are in Total-
List but not in NA-List.

6.1.3 Using Entity-Lists.

We can use previously defined entity-lists in the
DELETE ENTITY and DELETE RELATIONSHIP commands, and in dic-
tionary output commands.

To delete the entities specified in DB-Old-List, we say
simply

:

DELETE ENTITY
USING ENTITY-LIST = DB-Old-List;

In output commands, a reference to an existing entity-
list would replace the explicit SELECT ... WHERE ... cri-
teria. For example, we can use DB-Old-List in an OUTPUT
IMPACT-OF-CHANGE command as follows:

OUTPUT IMPACT
USING ELIST = DB-Old-List;

In the last example, we could have used SORT or SHOW

- 48-

clauses, if we had wished.

6.1.4 Entity-List Utilities.

The current entity-list can, at any time, be given an
explicit name. For example:

NAME CURRENT ENTITY-LIST Hold-Progs;

The command:

OUTPUT ENTITY-LIST
LIST-NAME = List-3
SHOW "LIST OF REQUIRED ELEMENTS";

outputs
tie

.

If

the contents of List-3,

we issue the command

along with the specified ti

|
OUTPUT ENTITY-LIST NAMES;

we will be provided with the names of all defined entity-
lists.

6 . 2 PROCEDURES

The IRDS provides facilities for two kinds of pro-
cedures: output procedures, which contain the syntax of out
put commands; and entity-list-procedures. The latter are
necessary because entity-lists created during a given user
session are saved only until the completion of that session
A longer retention time is undesirable because the content
of the dictionary is dynamic, and a rigid entity-list can
easily become obsolete and lose its utility. Instead, we
store the procedure for creating the entity-list. The pro-
cedure is much more likely to remain valid, and can be run
at any time to re-create the (perhaps updated) entity-list.

- 49-

6.2.1 Creating Procedures.

Procedures can be created "on the fly" within other
commands, or separately in a save procedure command.

We can specify within any dictionary output command
that the command syntax be saved as an output procedure.
For example, we can modify the example in Section 3.3.6:

OUTPUT DICTIONARY
SELECT ALL ENTITIES WHERE

DESCRIPTION = "*secur ity*" OR
DESCRIPTION = "*password*"

SORT SEQUENCE = ENTITY-TYPE, ACCESS-NAME
SHOW ACCESS-NAME
SHOW ATTRB DESCRIPTION
PROCEDURE-NAME = P-Sec
PROCEDURE-DESCRIPTION = "Procedure to output names

and descriptions of security related entities.";

We have used here the optional procedure description clause.
P-Sec will refer to this entire GENERAL OUTPUT command.

We can use the same syntax within the BUILD ENTITY-LIST
command to create an entity-list procedure. Thus, in the
example in Section 6.1.1, if we had said

BUILD ENTITY-LIST
SELECT ENTITIES WITH
ACCESS-NAME = *ASCAD*

WHERE
(DESCRIPTION = "*database*" AND
NO RELATIONSHIPS EXIST) OR

(REVISION < HIGHEST AND PHASE = TEST)
PROCEDURE-NAME = DB-Old-Proc;

we would have stored DB-Old-Proc, the procedure to generate
the given entity-list, rather than DB-Old-List, the entity-
list itself. (Actually, an entity-list is always created by
the BUILD ENTITY-LIST command, in this case it would be the
current list.)

If we issue a dictionary output or BUILD ENTITY-LIST
command without saving the syntax in a procedure, we can do
a retroactive save by using a SAVE OUTPUT PROCEDURE or SAVE
ENTITY-LIST PROCEDURE command, as appropriate. Thus,

- 50 -

|

SAVE OUTPUT PROCEDURE-NAME P-Sec?

will store, as P-Sec, the syntax of the last dictionary out-
put command to have been executed, and

SAVE ENTITY-LIST PROCEDURE
LIST-NAME = DB-Old-List P-NAME = DB-Old-Proc;

will store, as DB-Old-Proc, the syntax that had been used to
produce DB-Old-List, (i.e., the "SELECT ... WHERE ..."
clause)

.

6.2.2 Using Procedures.

Entity-list procedures can be used either within other
commands or explicitly, using a RUN ENTITY-LIST PROCEDURE
command; output procedures are executed using the RUN OUTPUT
PROCEDURE command.

Entity-list procedures can be used analogously to and
in the same contexts as entity-lists themselves--in DELETE
ENTITY and DELETE RELATIONSHIP commands, and in dictionary
output commands. Thus:

DELETE ENTITY
USING PROCEDURE = DB-Old-Proc;

would, if executed during the same user session, have the
same effect as the DELETE example in Section 6.1.3. Unlike
the entity-list, however, the procedure would be available
indefinitely, unless deleted or redefined.

We can execute P-Sec by specifying

|

RUN OUTPUT PROCEDURE P-Sec;

Likewise, we can execute an entity-list procedure to
create an entity-list:

- 51-

RUN ENTITY-LIST PROCEDURE DB-Old-Proc
LIST-NAME = DB-Old-Li S t

;

6.2.3 Procedure Utilities.

We can delete a procedure by specifying, for example:

|

DELETE ELIST PROCEDURE DB-Old-Proc;

or

|

DELETE OUTPUT PROC P-Sec;

The syntax of one or more procedures can be displayed.
For example:

OUTPUT PROCEDURE SYNTAX
SELECT P-Sec, DB-Old-Proc
SHOW "OUR PROCEDURES";

A listing of the names of our procedures can be ob-
tained by issuing:

OUTPUT PROCEDURE-NAMES
SHOW PDESC

;

This command will display the names and descriptions associ-
ated with our procedures.

- 52 -

7. THE IRD TO IRD INTERFACE

Since the commands for the IRD to IRD Interface Facili-
ty contain implementor defined clauses, we can illustrate
syntax in the following examples only to the level of these
clauses

.

7.1 EXPORTING TO AN EMPTY DICTIONARY

We will transport the example application (the source)
to an arbitrary target environment, thus creating a copy of
the entire dictionary. The target environment could be at
another organization, perhaps one that uses a different
I RDS .

We first use the BUILD ENTITY-LIST command to specify
the subset of the source dictionary (in this case, all of
it) to be exported:

BUILD ENTITY-LIST
SELECT ALL ENTITIES
LIST-NAME = All-Example;

We then export the source schema and dictionary con-
tents into files whose names are appropriate for the source
dictionary's operating environment:

EXPORT DICTIONARY
USING ENTITY-LIST = All-Example
SCHEMA EXPORT FILE = <schema-expor t-f ile-name>
DICTIONARY EXPORT FILE = <d ic t ionary-expor t- f i le

-name>

;

We now move to the target environment and create an
empty dictionary using the Core System-Standard Schema:

CREATE DICTIONARY <new-dict ionary-name>
SCHEMA IS STANDARD;

One effect of such a CREATE DICTIONARY command is the

- 53 -

establishment of an UNCONTROLLED life-cycle-phase, whose
name is implementor dependent. Let's assume that the name
is LOAD-PHASE.

In the generalized export/import procedure, the next
step is to check the compatibility of source and target
schemas. Since we are now in the target environment, we
specify

:

CHECK SCHEMA
SOURCE SCHEMA IS IN FILE <schema-expor t-f ile-name>

;

Since no changes were made to the Core System-Standard
Schema during the construction of the example, we should re-
ceive at this point an implementor defined message confirm-
ing compatibility. We can then import the source schema and
dictionary into life-cycle-phase LOAD-PHASE of the target
dictionary

:

IMPORT DICTIONARY
SCHEMA EXPORT FILE = <schema-export-f ile-name>
DICTIONARY EXPORT FILE = <dictionary-expor t-f ile

-name>
LIFE-CYCLE-PHASE = Load-Phase;

7.2 EXPORTING TO AN EXISTING DICTIONARY

Suppose we want to add the contents of our source dic-
tionary to a non-empty dictionary in the target environment.
After exporting the source schema and dictionary, we would
compare the source and target schemas. The CHECK SCHEMA
command would tell us about any incompatibilities; we would
then modify the source or target schemas as required. If we
modify the source schema, we then need to re-issue the above
EXPORT DICTIONARY command. We then conclude with the IMPORT
DICTIONARY command.

- 54 -

8. MISCELLANEOUS TOPICS IN THE CORE

8.1 SETTING SESSION DEFAULTS

We can use the SET command to set the session defaults
for effective VIEW, check vs. execute mode, and attribute
coding vs. decoding. Thus:

SET
VIEW = DIV-101
MODE = CHECK
SHOW ATTRIBUTES ENCODED
SAVE;

specifies the effective VIEW, and sets the mode and code
settings to the opposite of the normal defaults. The SAVE
clause goes further, and specifies these settings to be our
future defaults.

8.2 DISPLAYING SESSION RELATED INFORMATION

The command

|

STATUS ALL;

displays all status information.

We can also find out the status of a particular option.
Like the previous example, the following displays all status
information, but does so by asking about each option indivi-
dually :

STATUS
DICTIONARY
ENTITY-LIST
MODE
VIEWS
PROFILES

- 55-

DEFAULTS;

8.3 OBTAINING HELP

In an interactive session, we can obtain on-line help
from the IRDS.

|

HELP;

or

|
HELP ALL;

i

displays
use. We

the
can

names of
then ask

the
for

commands that we are authorized to
more information on one of these;

|
HELP DELETE-RELATIONSHIP;

|

We can also ask the system to explain an error or warn-
ing message;

|
HELP MESSAGE;

|

HELP MESSAGE <message-identi f ier >

;

The first of these explains any error messages encountered
in the execution of the previous command. The second, using
the implementor defined <message-identi f ier > , generates an
explanation of that particular error message.

- 56 -

9. IRDS MODULES

9.1 ENTITY LEVEL SECURITY

The Entity Level Security optional module allows an or-
ganization to restrict users of the IRDS from accessing in-
dividual entities in the dictionary. This is done by asso-
ciating an ACCESS-CONTROLLER to each entity for which pro-
tection is desired. A user attempting to access a protected
entity would then need to use a VIEW with access keys that
match the access locks on the controller.

9.1.1 Securing Entities.

Entities can be secured at the time they are created
with the ADD ENTITY, MODIFY ENTITY, or COPY ENTITY commands.
In addition, existing entities can be secured using ADD
SECURITY. These commands automatically create the necessary
ACCESS-CONTROLLER entities and the "secured-by" relation-
ships .

Suppose that we want to add the secured entity fd-
30210. We could say:

ADD ENTITY fd-30210 E-TYPE = FILE
ASSIGN SECURITY

NEW CONTROLLER = Division-Controller;

Among the results of this command are the creation by the
IRDS of the ACCESS-CONTROLLER entity Division-Controller,
and the relationship fd-30210 FILE-SECURED-BY-ACCESS-
CONTROLLER Division-Controller. The IRDS will generate and
assign to Division-Controller a read lock and a write lock.

Similarly, we could have:

COPY ENTITY fd-30210 TO fd-30211
ASSIGN SECURITY

CONTROLLER = Division-Controller;

and

- 59-

MODIFY ENTITY fd-30210
NEW VERSION INCLUDE SECURITY;

In the last two examples, the new entity is associated with
the existing controller Division-Controller via the ap-
propriate FILE-SECURED-BY-ACCESS-CONTROLLER relationship.

Suppose we want to secure the existing entities
rd-25310, rd-25345, and dd-02200. We could say:

ADD SECURITY
TO rd-25310, rd-25345, dd-02200
NEW CONTROLLER = Code-Controller;

Having secured the desired entities, we now make them
available through the appropriate VIEWS. We do thisi by as-
signing to. the VIEWS the read or write access keys that will
match the locks on the relevant controllers. Assume that
rd-25310, rd-25345, and dd-02200 are each visible through
the VIEW Table-View. Then we can grant permission to read
the three entities to anyone who has access to Table-View
by:

ADD READ ACCESS-KEY
FROM CONTROLLERS = Code-Controller
TO VIEWS = Table-View;

Likewise for write permission.

9.1.2 Changing the Security of Entities.

Code-Controller, the controller associated with
rd-25310, rd-25345, and dd-02200, can be replaced by
Division-Controller

:

MODIFY SECURITY
TO rd-25310, rd-25345, dd-02200

FROM CONTROLLER = Code-Controller
TO CONTROLLER = Division-Controller;

- 60 -

To delete entity level security entirely from these en-
tities, we can say:

DELETE SECURITY
ON rd-25310 , rd-25345, dd-02200
CONTROLLER = Division-Controller;

We can delete the access keys (the read key, in this
case) from Table-View:

DELETE ACCESS-KEY
FROM CONTROLLER = Code-Controller
TO VIEWS = Table-View;

9.2 APPLICATION PROGRAM (CALL) INTERFACE

The format of a "CALL" statement using this interface
depends completely on the language in which the application
program is written and on implementor defined parameters.
Therefore, no Command Language examples for this module can
be provided.

9.3 SUPPORT OF STANDARD DATA MODELS

This optional module specifies no modifications of or
additions to the Command Language of the Core IRDS. The
module does contain a collection of new entity-,
relationship-, and attribute-types that allow the documenta-
tion and modeling of network and relational database en-
vironments. Thus, for example, we can create and manipulate
DATABASE, SCHEMA, and SET entities, and associated relation-
ships and attributes, as specified in the module.

- 61 -

I

APPENDIX A: COMPLETE LISTING OF EXAMPLE CREATION

Appendix A is a complete listing of all the IRDS com-
mands illustrated or alluded to in Section 2.3. As such, i

represents the "official" definition of the application die
tionary described in Section 2.1 and referred to throughout
this document.

CREATE DICTIONARY Example
SCHEMA IS STANDARD;

ADD ENTITY u8
ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME =

ASCAD-Database- In format ion-System
WITH ATTRIBUTES

DESCRIPTION =

"This system provides the necessary tools
for maintaining the Air Staff Codes and
Descriptions (ASCAD) Database. The ASCAD
Database contains all common (corporate) data
elements which are codes and their respective
descriptions. The tools provide the
capability:

1. To control access to the database
a. single record at a time
b. groups of records

2. To update the tables in the database
3. To produce reports from the database
4. To create tapes containing database

information
5. To display information online.",

SECURITY = "datamgr";

ADD ENTITY U8-20 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = ASCAD-Database-Update
WITH ATTRIBUTES

DESCRIPTION (START = 100 INCREMENT = 10)

"This subsystem provides the capability for
the Air Staff to update the contents of the
ASCAD Database.",

SYSTEM-CATEGORY = "subsystem",
SECURITY = "datamgr";

ADD ENTITY U8-30 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = ASCAD-GCOS-Fi le-Cr eat ion
WITH ATTRIBUTES

- 63 -

DESCRIPTION =»

"This subsystem provides the capability to
create change transactions in a format
compatible with the GCOS batch system.",

SYSTEM-CATEGORY = "subsystem",
SECURITY = "datamgr"

;

ADD ENTITY U8-40 ENTITY-TYPE * SYSTEM
DESCRIPTIVE-NAME = ASCAD-Table-Repor

t

WITH ATTRIBUTES
DESCRIPTION

"This subsystem provides the capability to
create a report for each table in the ASCAD
database. The report includes all data elements
and all records in the table.",

SYSTEM-CATEGORY = "subsystem",
SECURITY = "datamgr";

ADD RELATIONSHIP
u8 SYSTEM-CONTAINS-SYSTEM U8-20

;

ADD RELATIONSHIP
u8 SYSTEM-CONTAINS-SYSTEM U8-30;

ADD RELATIONSHIP
u8 SYSTEM-CONTAINS-SYSTEM u8-40;

ADD ENTITY U8-20-10 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = Ini tiate-ASCAD-Change-Request
WITH ATTRIBUTES

DESCRIPTION =

"This procedure involves the manual operation
of filling out the update request form and
submitting it to the proper OPR.",

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD ENTITY U8-20-20 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = ASCAD-Table-Update-Input
WITH ATTRIBUTES

DESCRIPTION =

"This procedure provides the online
instructions necessary to activate the computer
procedure to do the actual updating of the
ASCAD tables.",

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD ENTITY U8-20-30 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = ASCAD-Table-Update
WITH ATTRIBUTES

- 64-

DESCRIPTION =

"This computer procedure receives the update
modification requests from the user's response
and changes them accordingly on the specified
table of the ASCAD database.",

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD ENTITY U8-30-10 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = Ini tiate-GCOS-Trans-File
WITH ATTRIBUTES

DESCRIPTION =

"This administrative procedure outlines the
steps that are required to initiate the ASCAD
GCOS transaction file creation.",

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD ENTITY U8-30-20 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = Produce-GCOS-Trans-File
WITH ATTRIBUTES

DESCRIPTION =

"This interactive procedure provides the user
with the capability to create a tape containing
ASCAD table changes in a format compatible with
the BPC System (DM changes) or the Data Codes
Master (DCM) System (DCMF changes).",

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD ENTITY U8-30-30 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = Cr eate-GCOS-Tr ans-Fi le
WITH ATTRIBUTES

DESCRIPTION =

"This computer procedure provides the user
with the capability to select the type of
change tape (DM or DCMF) to create and to input
the date/time of the last change transmitted
to GCOS.",

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD ENTITY U8-30-40 ENTITY-TYPE = SYSTEM
DESCRIPTIVE-NAME = Ver i fy-GCOS-Tr ans-F i le
WITH ATTRIBUTES

DESCRIPTION =

"This procedure allows the user to verify the
creation of the ASCAD GCOS transaction file.
This is an online check to see if any problems
have occurred while processing the absentee to
create the GCOS tape.".

- 65-

SYSTEM-CATEGORY = "procedure",
SECURITY = "datamgr";

ADD RELATIONSHIP
U8-20 SYSTEM-CONTAINS-SYSTEM U8-20-10;

ADD RELATIONSHIP
U8-20 SYSTEM-CONTAINS-SYSTEM U8-20-20;

ADD RELATIONSHIP
U8-20 SYSTEM-CONTAINS-SYSTEM U8-20-30;

ADD RELATIONSHIP
U8-30 SYSTEM-CONTAINS-SYSTEM U8-30-10;

ADD RELATIONSHIP
U8-30 SYSTEM-CONTAINS-SYSTEM U8-30-20;

ADD RELATIONSHIP
u8-30 SYSTEM-CONTAINS-SYSTEM U8-30-30;

ADD RELATIONSHIP
U8-30 SYSTEM-CONTAINS-SYSTEM U8-30-40;

ADD ENTITY U8-20-30-10
ENTITY-TYPE = PROGRAM

DESCRIPTIVE-NAME = ASCAD-Update

;

ADD ENTITY md-00772
ENTITY-TYPE = MODULE

DESCRIPTIVE-NAME = general ized-ASCAD-update

;

ADD ENTITY md-00771 ENTITY-TYPE = MODULE
DESCRIPTIVE-NAME = general ized-mrds

;

ADD RELATIONSHIP
U8-20-30-10 PROGRAM-CALLS-MODULE md-00772;

ADD RELATIONSHIP
md-00772 MODULE-CALLS-MODULE md-00771;

ADD RELATIONSHIP
U8-20-30 SYSTEM-CONTAINS-PROGRAM U8-20-30-10;

ADD RELATIONSHIP
U8-20-10 SYSTEM-GOES-TO-SYSTEM U8-20-20;

ADD RELATIONSHIP
U8-20-20 SYSTEM-GOES-TO-SYSTEM U8-20-30;

ADD RELATIONSHIP

- 66 -

U8-20-30 SYSTEM-GOES-TO-SYSTEM U8-20-20;

ADD RELATIONSHIP
U8-30-20 SYSTEM-COMES-FROM-SYSTEM U8-30-10;

ADD RELATIONSHIP
U8-30-30 SYSTEM-COMES-FROM-SYSTEM U8-30-20;

ADD RELATIONSHIP
U8-30-20 SYSTEM-COMES-FROM-SYSTEM U8-30-30;

ADD RELATIONSHIP
U8-30-40 COMES-FROM U8-30-30;

ADD RELATIONSHIP
u8-3 0-3 0 CONTAINS NEW PROGRAM U8-30-30-10;

ADD RELATIONSHIP
U8-30-30 CONTAINS NEW PROGRAM u8-30-30-20;

ADD RELATIONSHIP
U8-30-30-10 GOES-TO U8-30-30-20;

ADD ENTITY fd-05031 ENTITY-TYPE = FILE
DESCRIPTIVE-NAME = Manpower-ASCAD-SM;

ADD ENTITY fd-25091 ENTITY-TYPE = FILE
DESCRIPTIVE-NAME = Countr ies/States-SM;

ADD RELATIONSHIP fd-05031 CONTAINS fd-25091;

ADD ENTITY fd-05007 ENTITY-TYPE = FILE
DESCRIPTIVE-NAME = ASCAD-Budge t-Table s-SM

;

ADD ENTITY fd-00103 ENTITY-TYPE = FILE
DESCRIPTIVE-NAME = ASCAD-Data-Model

;

ADD ENTITY fd-25093 ENTITY-TYPE = FILE
DESCRIPTIVE-NAME = Commands-SM;

ADD RELATIONSHIP fd-05007 CONTAINS fd-00103;

ADD RELATIONSHIP fd-05007 CONTAINS fd-25093;

ADD RELATIONSHIP fd-05007 CONTAINS fd-25091;

ADD ENTITY rd-25091 ENTITY-TYPE = RECORD
DESCRIPTIVE-NAME = Coun t r i e s/S t a tes

;

ADD RELATIONSHIP
fd-25091 FILE-CONTAINS-RECORD rd-25091;

- 67-

COPY ENTITY
rd-25091 WITH RELATIONSHIPS TO rd-25311
DESCRIPTIVE-NAME « Countr ies/States-NK

;

COPY ENTITY
rd-25091 WITH RELS TO rd-25310
DNAME = Countries/States-Key

;

COPY ENTITY
rd-25091 WITH RELS TO rd-25345
DNAME = Countr ies/States-Key-PR;

ADD ENTITY dd-01093 ENTITY-TYPE = ELEMENT
DESCRIPTIVE-NAME = County/State-Code;

ADD ENTITY dd-01092 ENTITY-TYPE = ELEMENT
DESCRIPTIVE-NAME = County/State-Abbreviation;

ADD ENTITY dd-01333 ENTITY-TYPE = ELEMENT
DESCRIPTIVE-NAME = Zoned-Inter ior-or-Over seas-Ind

;

ADD ENTITY dd-01325 ENTITY-TYPE = ELEMENT
DESCRIPTIVE-NAME = US-and-Poss-or-Fgn-Cntry-Ind

;

ADD ENTITY dd-02075 ENTITY-TYPE = ELEMENT
DESCRIPTIVE-NAME = Geogr aphical-Region-World

;

ADD ENTITY dd-01021 ENTITY-TYPE = ELEMENT
DESCRIPTIVE-NAME = Ar ea-of-the-Wor Id

;

ADD RELATIONSHIP rd-25091 CONTAINS dd-01093

ADD RELATIONSHIP rd-25091 CONTAINS dd-01092

ADD RELATIONSHIP rd-25091 CONTAINS dd-01333

ADD RELATIONSHIP rd-25091 CONTAINS dd-01325

ADD RELATIONSHIP rd-25091 CONTAINS dd-02075

ADD RELATIONSHIP rd-25091 CONTAINS dd-01021

ADD RELATIONSHIP rd-25311 CONTAINS dd-01092

ADD RELATIONSHIP rd-25311 CONTAINS dd-01333

ADD RELATIONSHIP rd-25311 CONTAINS dd-01325

ADD RELATIONSHIP rd-25311 CONTAINS dd-02075

- 68 -

ADD RELATIONSHIP rd-25311 CONTAINS dd-01021;

ADD ENTITY dd-02200
ETYPE = ELE DNAME = Action-Code

ADD REL rd-25310 CONTAINS dd-02200

ADD REL rd-25345 CONTAINS dd-02200

ADD ENTITY id-25000 ENTITY-TYPE = DOCUMENT
DESCRIPTIVE-NAME = ASCAD-Table-Change-Request

;

ADD ENTITY od-25000 ETYPE = DOC
DNAME = ASCAD-Table

;

ADD RELATIONSHIP
u8 SYSTEM-PROCESSES-FILE fd-05031;

ADD REL u8-4 0 SYSTEM-PROCESSES-FILE fd-05007;

ADD REL U8-20-30-10 PROCESSES fd-05007;

ADD REL U8-20-10 PROCESSES id-25000;

ADD REL U8-20-20 PROCESSES id-25000;

ADD REL U8-20-30-10 PROCESSES id-25000;

ADD REL od-25000 PROCESSED-BY u8-40;

MODIFY ENTITY U8-20-30-10
WITH ATTRIBUTES

DESCRIPTION =

"Through the use of the mrds-database
-supervisor the ASCAD database tables are
updated as needed. One can add, change,
delete, or display online any element of any
ASCAD table.",

SECURITY = "datamgr";

MOD ENTITY md-00772
WITH ATTRIBUTES

DESCRIPTION =

"This module provides a generalized means of
updating tables in the ASCAD database and then
recording the transaction on an audit trail.",

SECURITY = "gks/dbm"

;

MOD ENTITY md-00771
WITH ATTRIBUTES

DESCRIPTION =

- 69 -

"This module provides a generalized means for
manipulating data stored in an mrds relation.”,

SECURITY = "gks/dr "

;

MOD ENTITY fd-05031
WITH ATTRIBUTES

DESCRIPTION =

"This data submodel contains those tables in
the ASCAD database used by Air Force Manpower
(AF/MPM) systems and programs.",

IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "data-codes-mas ter "

,

ALTERNATE-NAME-CONTEXT = "pll")

,

SECURITY = "datamgr";

MOD ENTITY fd-25091
WITH ATTRIBUTES

DESCRIPTION =

"This file (table) contains all valid location
codes and their descriptive titles.",

SECURITY = "datamgr",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "entry-states",
ALTERNATE-NAME-CONTEXT = "pll") ,

NUMBER-OF-RECORDS = 293;

MOD ENTITY fd-05007
WITH ATTRIBUTES

DESCRIPTION =

"This file identifies all the tables existing
in the ASCAD Budget submodel.",

SECURITY = "datamgr",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "ascad-bud-tables"

,

ALTERNATE-NAME-CONTEXT = "pll")

,

NUMBER-OF-RECORDS = 50;

MOD ENTITY fd-00103
WITH ATTRIBUTES

DESCRIPTION =

"This file defines all the relations existing
in the ASCAD data model.",

SECURITY = "datamgr",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "ascad-data-model"

,

ALTERNATE-NAME-CONTEXT = "pll")

,

NUMBER-OF-RECORDS = 50;

MOD ENTITY fd-25093
WITH ATTRIBUTES

DESCRIPTION =

- 70 -

"This file (table) contains all valid major
command codes and their descriptive titles.",

SECURITY = "datamgr",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "commands"

,

ALTERNATE-NAME-CONTEXT = "pll") ,

NUMBER-OF-RECORDS = 56;

MOD ENTITY rd-25091
WITH ATTRIBUTES

DESCRIPTION =

"This record describes all the data elements
contained in the location table.",

IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "entry-states"

,

ALTERNATE-NAME-CONTEXT = "pll") ,

SECURITY = "datamgr";

MOD ENTITY rd-25311
WITH ATTRIBUTES

DESCRIPTION =

"This record identifies the non key fields.",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "entry-states",
ALTERNATE-NAME-CONTEXT = "pll") ,

SECURITY = "datamgr";

MOD ENTITY rd-25310
WITH ATTRIBUTES

DESCRIPTION =

"This record allows for the entry of action
codes and keys.",

SECURITY = "datamgr";

MOD ENTITY rd-25345
WITH ATTRIBUTES

DESCRIPTION =

"This record allows for the entry of action
code and keys.",

IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "ent ry-s ta tes "

,

ALTERNATE-NAME-CONTEXT = "pll")

,

SECURITY = "datamgr";

MOD ENTITY dd-01093
WITH ATTRIBUTES

DESCRIPTION =

"A shared data field occupied by either
country-code or state-code.",

SECURITY = "datamgr",
DATA-CLASS = "alphanumeric".

- 71-

IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "cntry-S t-code"

,

ALTERNATE-NAME-CONTEXT = "pll")?

MOD ENTITY dd-01092
WITH ATTRIBUTES

DESCRIPTION =

"A shared data field occupied by either
Country or State.",

SECURITY = "datamgr",
DATA-CLASS = "alphabetic",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "cntry-st-abbrv"

,

ALTERNATE-NAME-CONTEXT = "pll");

MOD ENTITY dd-01333
WITH ATTRIBUTES

DESCRIPTION =

"Indicates whether an installation is in the
continental United States (Zl) or overseas
(OS)

.
" ,

SECURITY = "datamgr",
DATA-CLASS = "numeric",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "zi-OS-ind",
ALTERNATE-NAME-CONTEXT = "pll");

MOD ENTITY dd-01325
WITH ATTRIBUTES

DESCRIPTION =

"Indicates whether an installation is in the
United States and its possessions or in a
foreign country.",

SECURITY = "datamgr",
DATA-CLASS = "numeric",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "usposs-for-ind"

,

ALTERNATE-NAME-CONTEXT = "pll");

MOD ENTITY dd-02075
WITH ATTRIBUTES

DESCRIPTION =

"This code is a geographical region
representation of the world.",

DATA-CLASS = "numeric",
,j IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "region",
ALTERNATE-NAME-CONTEXT = "pll");

MOD ENTITY dd-01021
WITH ATTRIBUTES

- 72-

DESCRIPTION =

"Represents a geographical boundary delineated
in the unified command plan for personnel and
manpower purposes.",

SECURITY = "datamgr",
DATA-CLASS = "alphanumeric",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "area-world",
ALTERNATE-NAME-CONTEXT = "pll");

MODIFY RELATIONSHIP
rd-25091 RECORD-CONTAINS
WITH ATTRIBUTES

RELATIVE-POSITION = 1;

-ELEMENT dd-01093

MODIFY RELATIONSHIP rd-25091 CONTAINS dd-01092
WITH ATTRIBUTES

RELATIVE-POSITION = 3;

MOD REL rd-25091 CONTAINS
WITH ATTRIBUTES

REL-POS = 8;

dd-01033

MOD REL rd-25091 CONTAINS
WITH

REL-POS = 9;

dd-01325

MOD REL rd-25091 CONTAINS
WITH

REL-POS = 10;

dd-02075

MOD REL rd-25091 CONTAINS
WITH

REL-POS = 11;

dd-01021

MOD REL rd-25311 CONTAINS
WITH REL-POS = 1;

dd-01092

MOD REL rd-25311 CONTAINS
WITH REL-POS = 6;

dd-01333

MOD REL rd-25311 CONTAINS
WITH REL-POS = 7;

dd-01325

MOD REL rd-25311 CONTAINS
WITH REL-POS = 8;

dd-02075

MOD REL rd-25311 CONTAINS
WITH REL-POS = 9;

dd-01021

MODIFY ENTITY dd-02200

- 73 -

to

i

WITH ATTRIBUTES
DESCRIPTION =

"Indicates the action to be performed on a
file in a database, add, change, delete, or
print a record.",

SECURITY = "datamgr",
DATA-CLASS = "alphabetic",
IDENTIFICATION-NAMES =

(ALTERNATE-NAME = "action-code",
ALTERNATE-NAME-CONTEXT = "pll");

MODIFY RELATIONSHIP rd-25310 CONTAINS dd-02200
WITH REL-POS = 1;

MOD REL rd-25345 CONTAINS dd-02200
WITH REL-POS = 1;

MODIFY ENTITY id-25000
WITH ATTRIBUTES

DESCRIPTION =

"This input form is used by the Air Staff
Analyst to request a change to be made to a
table in the ASCAD Database.",

DOCUMENT-CATEGORY = "form",
SECURITY = "datamgr "

;

MOD ENTITY od-25000
WITH ATTRIBUTES

DESCRIPTION =

"This output report displays all the
contents of a table in the ASCAD Database.","

DOCUMENT-CATEGORY = "report",
SECURITY = "datamgr";

MODIFY RELATIONSHIP u8 PROCESSES fd-05031
WITH ACCESS-METHOD = "k"

;

MOD REL u8-40 PROCESSES fd-05007
WITH ATTRIBUTES

ACCESS-METHOD = "k"

,

FREQUENCY = "r";

MOD REL U8-20-30-10 PROCESSES fd-05007
WITH ACCESS-METHOD = "k";

- 74 -

APPENDIX Bs INDEX OF ALL COMMAND APPEARANCES

add-access-key

add-entity

add-meta-entity

add-meta-relationship

add-relationship

add-security

build-entity-list

check-schema-compatibility

copy-entity

create-dict ionary

delete-access-key

delete-entity

delete-meta-entity

delete-meta-relationship .

delete-procedure

delete-relationship

delete-security

enter-panel-dialogue

entity-list-difference ...

entity-list-intersection .

entity-list-subtraction .

.

60

7 , 8 , 10 , 11 , 12 , 41 ,

44 , 45 , 59 , 63 , 64 , 65

67 , 68 , 69

00CM 31 , 32 , 39 , 40

28 , 31 , 32

8 , 9 , 10 , 11 , 12 , 45 ,

66 , 67 , 68 , 69

60

47 , 50 , 53

54

11 , 37 , 41 , 59 , 68

6 , 53 , 63

61

14 , 48 , 51

29

29

52

14

61

57

48

48

48

- 75-

42 ,

, 66 ,

64 ,

47entity-list-union

exi t-dict ionary-system

export-dictionary

general-output

help

import-dictionary

install-meta-entity

modi fy-access-name

modify-descriptive-name

modi fy-enti ty

modify-entity-life-cycle-phase .

modify-meta-entity

modi fy-meta-enti ty-name

modi fy-meta-relationship

modi fy-relat ionship

modify-secur ity

name-current-entity-list

output-entity-list

output-entity-list-names

output-impact-of-change

output-procedure-names

output-procedure-syntax

output-syntax

replace-meta-relationship

run-entity-list-procedure

57

53

21 , 24 , 43 , 50

56

54

33

14

15

12 , 38 , 60 , 69 , 70 , 71 , 72 ,

73 , 74

39

29

27

13 , 73 , 74

60

49

49

49

24 , 25 , 48

52

52

26

52

- 76-

51run-output-procedure

save-entity-list-procedure 51

save-last-output-procedure 51

schema-output 35

session-status 55

set-session-defaults 55

- 77 -

APPENDIX C: INDEX OF ALL CLAUSE APPEARANCES

access-name-selection

all-entities

alternate-name-restriction

assign-security

assigned-access-name-restr ict ion

assigned-descr ipt ive-name-restr ict ion . .

.

attribute-group-value-restriction

attribute-value-restriction

audit-attribute-restriction

controller-assignment

descriptive-name-declaration

descriptive-name-selection

dictionary-export-file

diet ionar y- function- restrict ion

entity-selection-criteria

entity-type

enti ty-type-qualif icat ion

18 , 20 , 24 , 25
38 , 47 , 50

18 , 20 , 21 , 24

26 ,
CO 03 43 , 50

59

19 , 20

19 , 20

59 , 60

7 , 8 , 10 , 11 , 12 ,

63 , 64 , 65 , 66
67 , 68 , 69

11 , 18 , 37 , 38
41 , 43 , 48 , 51
53 , 59 , 60

53 , 54 , 60 , 61

20

18 , 19 , 20 , 21
24 , 25 , 26 , 38
39 , 40 , 41 , 43

47 , 50 , 53

7 , 8 , 10 , 11 9

41 , 42 , 44 , 45
63 , 64 , 65 , 66
67 , 68 , 69

- 79 -

entity-type-restriction 19, 20, 25, 26

entity-type-show-restriction 25

exclude-relat ionships-of-type

file-title-suffix

for-all-controllers

f rom-controller 60

from-controller s 60, 61

in-dictionary

in-file 54

include-or-exclude-secur i ty 60

life-cycle-phase-designation 28, 54

life-cycle-phase-restriction 39, 40

line-number-increment 7, 63

line-range 22, 60

list-name 47, 49, 51, 52, 53

load-dictionary

location

meta-attribute-group-restriction

meta-attribute-restriction 34, 35

meta-entity-selection 33, 34, 35

meta-entity-type 28, 31, 32, 39,
40, 50

meta-entity-type-qualification

meta-entity-type-restriction 34, 35, 38

meta-relationship-existence-restriction .

meta-relationship-type-qualification . . .

.

- 80-

modif ied-entity-attr ibutes 12, 69, 70, 71

modi f ied-meta-attr ibute-group

modif ied-meta-attr ibutes 29

modif ied-relationship-attr ibutes 13, 73, 74

modif ied-repeating-attr ibute

modi f ied-repeating -at tr ibute-group

modi f ied-r epeating-me ta-at tribute

modi f ied-s imple-attr ibute-group 12, 70, 71, 72
73, 74

modi f ied-text-attr ibute 12, 69, 70, 71
72, 73, J4

modif ied-text-meta-attr ibute

new-ent i ty-attr ibutes 7, 42, 44, 45,
64, 65

new-me ta-attr ibute-group

new-me ta-attr ibutes 28, 31, 32, 39

new-relat ionship-attr ibutes 45

new-relat ionship-identi f ication 8, 9, 10, 11,
45, 64, 66, 67
68, 69

new-repeating-attribute

new-repeat ing-attr ibute-group

new-repeating-me ta-attr ibute

new-simple-attr ibute-group 42, 44

new-text-attr ibute 7, 63, 64 , 65

new-text-me ta-attr ibute 31

new-version 37, 38

order

- 81-

, 72

63,

, 40

12 ,

m

order-restriction

other-schema 54

procedure-description 50

procedure-name 50, 51

qualified-show

quality-indicator-designation 41

quality-indicator-restriction 41

related-controllers 61

related-entities 19

relationship-existence-restriction 19, 20, 47, 50

relationship-identification 13, 14, 73, 74

relationship-selection 14

relationship- type-qualification

relationship-type-restriction 47, 50

revision-number-restriction 38

route-clause 17

schema-export-file 53, 54

schema-show-all 35

schema-source 6, 53, 63

show-access-name 21, 24, 43, 50

show-all 21

show-attributes 22, 23, 25, 43

show-counts 23, 24 *

show-descriptive-name 21, 24, 25, 50

show-entity-type 22

show-life-cycle-phase 40

- 82-

show-me ta-attr ibutes 35

show-meta-relationships 35

show-predefined-display

show-quality-indicator 41

show-related-meta-entities 35

show-relationship-syntax

show-relationships • • • • to to 23, 24, 26

show-title 25, 35, 49

simple-attribute 8, 12:, 13 /

44, 45, 63, 64
65, 66, 69, 70

71, 72, 73, 74

simple-meta-attribute 28, 29, 31, 32

39, 40

sort 21, 24, 29, 26

40, 43, 50

sort-meta-entities 34, 35

start-line-number 7, 63

text-attribute-resequence

text-attribute- substring- restrict ion 19

,

20, 24, 43

47, 50

text-meta-attribute-resequence

to-controller 60

to-views 60, 61

using-list 48, 53

using-procedure 51

using-views 43

variation-name-restriction 38

wi th-relat ionships 11, 37, 41

- 83 -

REFERENCES

[1] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System : Part 1 — Core
Standard , ANSI TC X3H4/85-003, American National Stan-
dards Institute, New York, 1985.

[2] ANSI X3H4 , (draft proposed) American National Standard
Information Resource Dictionary System : Part 2 —
Entity-Level Security , ANSI TC X3H4/85-005, American
National Standards Institute, New York, 1985.

[3] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System : Part 2 — Ap-
plication Program Interface , ANSI TC X3H4/85-006 , Amer-
ican National Standards Institute, New York, 1985.

[4] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System : Part £ — Sup-
port of Standard Data Models , ANSI TC X3H4/85-007,
American National Standards Institute, New York, 1985.

[5] Gold f ine , A. H. and Konig, P. A. , A Technical Overview
of the Information Resource Dictionary System ,

NBSIR 85-3164, National Bureau of Standards,
Gaithersburg, MD, 1985.

- 84 -

NBS-114A twev. 2-»c)

U.s. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR-85/31 65

2. Performing Organ. Report No. 3. Publication Date

April 1985

4. TITLE AND SUBTITLE

Using the Information Resource Dictionary System Command Language

5. AUTHOR(S)

Alan H. Goldfine
6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

national bureau of standards
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

10.

SUPPLEMENTARY NOTES

_ Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here)

This document i ntroduces and provides examples of the Command Language of the draft
proposed Information Resource Dictionary System (IRDS). A dictionary maintained
by the U.S. Air Force is defined in the IRDS and used as a continuing example
throughout the document. The dictionary is populated, manipulated; and reported
on using the precise syntax of the Command Language. An appendix to the document
provides a complete listing of the creation of the example. Other appendices
provide indices of all command appearances and all clause appearances.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by

command language; data dictionary; data dictionary system; data dictionary system
standard; example book; Information Resource Dictionary System; IRDS.

13. AVAILABILITY

1 X |
Unlimited

| |
For Official Distribution. Do Not Release to NTIS

| |

Order From Superintendent of Documents, U.S. Government Printing Office. Washington, D.C.
20402.

fXl Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTEO PAGE!

RR

15. Price

ill. 1

)VA4 - • 04 *

