
of the
Dictionary

AlllOb OMfiMlB

NBSIR 85-3164

A Technical Overview
Information Resource
System

Alan Goldfine

Patricia Konig

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

April 1985

U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS

H

NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center
Gaithersburg, MD 20899

CXC'OO

, UL^is>

/K?

.

NBSIR 85-3164

A TECHNICAL OVERVIEW OF THE
INFORMATION RESOURCE DICTIONARY
SYSTEM

Alan Goldfine

Patricia Konig

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Science "and Technology
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

April 1985

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

A TECHNICAL OVERVIEW OF THE INFORMATION RESOURCE
DICTIONARY SYSTEM

Alan Goldfine
Patricia Konig

This publication provides a technical over-
view of the computer software specifications for
an Information Resource Dictionary System (IRDS)

.

It summarizes the data architecture and the
software functions and processes of the IRDS. The
IRDS Specifications are a draft proposed American
National Standard, a draft proposed U.S. Federal
Information Processing Standard, and a Working Do-
cument of the International Organization for Stan-
dardization (ISO) , Subcommittee 21, Working Group
3. The Overview also provides background informa-
tion on the development of the draft proposed U.S.
standards ,

Key words: American National Standard; computer
software; data dictionary; data dictionary system;
data management; Federal Information Processing
Standard; Information Resource Dictionary System;
IRDS; information resource management; IRM; Inter-
national Standard.

ACKNOWLEDGEMENTS

We gratefully acknowledge the technical contributions and
thorough review of this publication by members of the Ameri-
can National Standards Institute Technical Committee X3H4.
We also appreciate the technical contributions of Dr. Henry
C. Lefkovits, President of AOG Systems Corporation, and his
staff. Dr. Margaret Henderson Lawn’s thorough review and
recommendations on an earlier version of this publication
greatly enhanced the clarity of presentation.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 BACKGROUND 1

1.2 DEVELOPMENT APPROACH 2

1.3 BENEFITS OF AN IRDS 4

1.4 IRDS DESIGN OBJECTIVES 5

1.4.1 The IRDS: An Outgrowth of Existing Systems 5

1.4.2 Flexibility of Use and Procurement
Cost-Benefits 6

1.4.3 Portability of Skills and Data 7

1.5 SCOPE OF REPORT 7

2. OVERVIEW OF THE IRDS DATA ARCHITECTURE 9

2.1 AN IRDS USER'S VIEW OF DATA 9

2.2 THE IRD SCHEMA 12

2.3 THE SYSTEM-STANDARD SCHEMA 13

2.3.1 System-Standard Entity-Types 16
2.3.2 System-Standard Relationship-Types 17
2.3.3 System-Standard Attribute-Types 19

2.4 ENTITY NAMES 2 0

2.4.1 Purpose of Access-Names and
Descriptive-Names 20

2.4.2 Uniqueness of Access-Names and
Descriptive-Names 21

2.4.3 Alternate-Names 21

3. OVERVIEW OF IRDS FUNCTIONS AND PROCESSES 2 3

3.1

POPULATING, MAINTAINING, AND REPORTING
ON THE IRD 2 3

3.1.1 IRD Population and Maintenance 23
3.1.2 IRDS Output 23
3.1.3 Entity-Lists 24

- i i i-

3.1.4
IRDS Procedures 25

3.2 IRDS SCHEMA MAINTENANCE, CUSTOMIZATION,
AND REPORTING 2 5

3.3 IRD-IRD INTERFACE 26

3.4 IRD CONTROL FACILITIES 27

3.4.1 The Versioning Facility 27
3.4.2 The Life-Cycle-Phase Facility 28
3.4.3 Quality-Indicators 29
3.4.4 Views . 29
3.4.5 Correspondence Between Views and

Life-Cycle-Phases 29
3.4.6 IRDS Security 30

3.5 IRDS MODULES 30

3.5.1 Entity Level Security. 31
3.5.2 Application Program Interface 31
3.5.3 Support of Standard Data Models 31

4. POPULATING AND MAINTAINING THE IRD 33

4.1 ENTITIES 33

4.1.1 Adding Entities 33
4.1.2 Modifying Entities 34
4.1.3 Deleting Entities 35

4.2 RELATIONSHIPS 3 6

4.2.1 Adding Relationships 36
4.2.2 Modifying Relationships' 37
4.2.3 Deleting Relationships 37

4.3 COPYING ENTITIES AND RELATIONSHIPS 38

5. THE DICTIONARY OUTPUT FACILITY 41

5.1 GENERAL OUTPUT 41

5.2 OUTPUT IMPACT-OF-CHANGE 44

5.3 OUTPUT SYNTAX 44

5.4 ENTITY-LISTS 46

5.4.1 Creating Entity-Lists 47
5.4.2 Entity-List Set Operations 48

-iv- '

5.4.3
Other Entity-List Functions 50

5.5 PROCEDURES 5 0

5.5.1 Saving Procedures 51
5.5.2 Executing Procedures 51
5.5.3 Displaying Procedure Syntax and Names 52

6. SCHEMA MAINTENANCE AND OUTPUT 53

6.1 THE CONTENT OF THE SCHEMA 53*

6.1.1 Meta-Entities 53
6.1.2 Meta-Relationships 54
6.1.3 Meta-Attributes 56
6.1.4 An Example of a Schema Structure 58
6.1.5 Other Schema Structures 58

6.2 SCHEMA MANIPULATION 60

6.2.1 Adding Meta-Entities 60
6.2.2 Installing Meta-Entities 61
6.2.3 Modifying Meta-Entities 62
6.2.4 Deleting Meta-Entities 62
6.2.5 Adding Meta-Relationships 63
6.2.6 Modifying Meta-Relationships 64
6.2.7 Deleting Meta-Relationships 64
6.2.8 Replacing Meta-Relationships 64
6.2.9 Modifying Meta-Entity Names 65

6.3 SCHEMA OUTPUT 6 5

7. THE IRD-IRD INTERFACE 6 9

7.1 INTEGRITY CONSIDERATIONS 69

7.1.1 Schema Incompatibility 69
7.1.2 Dictionary Incompatibility 71

7.2 THE INTERFACE PROCEDURE 7 2

8. IRDS CONTROL FACILITIES 75

8.1 THE VERSIONING FACILITY 7 5

8.2 THE LIFE-CYCLE-PHASE FACILITY 76

8.2.1 Life-Cycle-Phase Integrity Rules 77

8.3 QUALITY-INDICATORS 80

V-

8.4

VIEWS 81

8.4.1 Definition of a View 82
8.4.2 Access to the IRDS Through a View 82

8.5 CORRESPONDENCE BETWEEN VIEWS AND
LIFE-CYCLE-PHASES 8 2

8.6 CORE SECURITY 8 3

8.6.1 Access P.ermissions to the IRD 84
8.6.2 Access Permissions to the IRD Schema 85

9. MISCELLANEOUS TOPICS IN THE CORE 87

9.1 IRDS SESSION DEFAULTS AND INFORMATION 87

9.1.1 Displaying the Session Status 87
9.1.2 Setting the Session Defaults 88

9.2 HELP 88

9.3 EXITING THE IRDS 89

9.4 ENTERING OTHER INTERFACES 89

• 10. USER INTERFACES 91

10.1 THE COMMAND LANGUAGE 91

10.2 THE PANEL INTERFACE 91

10.2.1 Structure of the Panel Interface 91
10.2.2 Panel Trees and Panel Areas 92
10.2.3 Operation of the Panel Interface 103
10.2.4 Special Features 103

11. IRDS MODULES 105

11.1 ENTITY LEVEL SECURITY 105

11.2 APPLICATION PROGRAM (CALL) INTERFACE 107

11.3 SUPPORT OF STANDARD DATA MODELS 109

11.4 POTENTIAL MODULES 109

11.4.1 N-ary Relationship Module 109
11.4.2 Data Management Support Module 110
11.4.3 Support of Distributed Databases and

Applications Module Ill

-vi-

11.4.4 Programming Language Support Module 112
11.4.5 Standard Database Language Support Module 112
11.4.6 Life Cycle and Configuration Management

Support Module 113
11.4.7 Extended Schema Control Module 113
11.4.8 IRDS Macro Language Module 114
11.4.9 External Software Interfaces Module 114

APPENDIX: THE CORE SYSTEM-STANDARD SCHEMA 117

A.l ATTRIBUTE-TYPES AND ENTITY-TYPES 117

A. 2 RELATIONSHIP-CLASS-TYPES AND
RELATIONSHIP-TYPES 120

A. 3 ENTITY-TYPES AND RELATIONSHIP-TYPES 124

A. 4 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES 128

A. 5 SUPPORT FOR THE CORE SECURITY FACILITY 129

A. 6 THE ATTRIBUTE-TYPE-VALIDATION-PROCEDURE
META-ENTITIES 130

A. 7 THE ATTRIBUTE-TYPE-VALIDATION-DATA
META-ENTITIES 130

A. 8 THE LIFE-CYCLE-PHASE META-ENTITIES 130

A. 9 THE QUALITY-INDICATOR META-ENTITIES 131

A. 10 THE VARIATION-NAMES META-ENTITIES 131

A. 11 THE SCHEMA-DEFAULTS META-ENTITIES 131

REFERENCES 133

-vi i-

1 . INTRODUCTION

1 . 1 BACKGROUND

Significant changes have occurred in the evolution of
computer and information processing technology in the past
decade. Technology advances have reduced the costs of com-
puting and sparked an enormous growth in the use of comput-
ers. For many organizations, the proliferation of computing
capabilities has resulted in a corresponding proliferation
of redundant and inconsistent data. Increasingly, organiza-
tions are now viewing data and information as resources that
must be managed.

The data dictionary system is a key computer software
tool for the management of data and information resources.
It provides facilities for recording, storing and processing
descriptions of an organization's significant data and data
processing resources. In 1980, both the American National
Standards Institute (ANSI) and the National Bureau of Stan-
dards of the United States Department of Commerce initiated
efforts to develop standards for dictionary software. The
ANSI effort began with the approval by the American National
Standards Committee for Information Systems (X3) of a pro-
ject to develop a standard for an "Information Resource Dic-
tionary System" (IRDS) . This resulted in the July 1980 con-
vening of Technical Committee X3H4 responsible for develop-
ing the Standard for an IRDS.

As the world^s largest user of information processing
technology, the U.S. Federal Government depends on this
technology to carry out Government-wide programs and deliver
essential public services. The National Bureau of Stan-
dards' effort focused on the development of a Federal Infor-
mation Processing Standard (FIPS) for Data Dictionary Sys-
tems .

Although ANSI X3H4 and the National Bureau of Standards
used different titles (i.e., "Information Resource Diction-
ary System" and "Federal Information Processing Standard for
Data Dictionary Systems"), the two groups had identical
goals and a similar development approach.

- 1 -

The two efforts came together in September 1983 when
X3H4 voted on Proposal A8.3-020 to adopt the August 1983 ver-
sion of the draft Federal Information Processing Standard
for Data Dictionary Systems as its Base Document. Since
that time, the Base Document has evolved to its present form
as a draft proposed American National Standard (dpANS) and a
draft proposed Federal Information Processing Standard for
an IRDS [1], [2], [3], [4], In addition, in January 1984
the International Organization for Standardization (ISO)
Technical Committee 97 approved Work Item 97.21.6 for IRDS.
This Work Item is assigned to Subcommittee 21, Working Group
3 for the purposes of reviewing and commenting upon the IRDS
Specifications as a potential International Standard.

1 . 2 DEVELOPMENT APPROACH

Since the Institute for Computer Sciences and Technolo-
gy (ICST) at the National Bureau of Standards initially
developed much of the draft proposed American National Stan-
dard, it is important to review the methods that ICST used.
ICST interacted closely with U. S. Federal Government users
to develop software specifications that will support U. S.
Federal Government requirements and that will be implemented
by a wide spectrum of software suppliers and thus will be
available "off the shelf." ICST pursued this goal by:

o Preparing and disseminating the Prospectus for Data
Dictionary System Standard [5] in 1980. The Pros-
pectus discusses the use of data dictionary systems
and describes the plan to develop a Federal Informa-
tion Processing Standard.

o Conducting a Data Base Directions workshop in Oc-
tober, 1980 that investigated how managers can evalu-
ate, select, and effectively use information resource
management tools, especially data dictionary systems.
The workshop proceedings were published in 1982 [6]

.

o Conducting interviews with U.S. Federal agency per-
sonnel who were knowledgeable about dictionary sys-
tems to identify current and projected requirements
for a Standard. Based on these interviews and. com-
ments on the Prospectus, the Federal Requirements for
a Federal Information Processing Standard Data Dic-
tionary System [Tl ^s published and disseminated Tn
the Fall of 1981.

- 2-

o Conducting .a series of six workshops in 1982-84 for
representatives of more than fifty U.S. Federal agen-
cies. The purpose of the workshops was to obtain
feedback from the representatives on the evolving
Specifications, and to then incorporate the feedback
into the next revision of the Specifications.

o Preparing and disseminating an interim publication,
Functional Specifications for A Federal Information
Processing Standard Data Dictionary System [8]

,

for
review and comment early in 1983. ICST received and
analyzed comments on this publication from more than
100 U. S. Federal Government agencies,

o Preparing and disseminating in August 1983 the draft
Specifications for the proposed Federal Information
Processing Standard for Data Dictionary Systems, the
document that became the X3H4 Base Document.

ICST prepared the Functional Specifications and the August
1983 draft Federal Information Processing Standard Specifi-
cations with extensive contract assistance from AOG Systems
Corporation

.

To facilitate industry evaluation and acceptance of the
Standard, ICST personnel held d
potential vendors of dictionary
sored two workshops for vendors
as they evolved. Vendors parti'
and/or workshops included:

Advanced Systems Technology
Burroughs Corporation
Digital Equipment Corporation
Honeywell Information Systems
Intel Corporation
Manager Software Products
Software AG of North America
TSI International
Wang Laboratories

scussions with current and
systems. ICST also spon-
to review the Specifications
ipating in the discussions

Applied Data Research
Cullinet Software
Hewlett-Packard
Infodata Systems
IBM Corporation
NCR Corporation
Sperry
University Computing Company

ICST also disseminated the interim publications and
draft Specifications to more than’ 200 private industry or-
ganizations, universities, and state and local governments
in the United States and organizations in Australia, Aus-
tria, Brazil, Canada, England, Federal Republic of Germany,
Israel, Japan, Mexico, the Netherlands, Scotland, and
Sweden. This was in addition to the distribution of the do-
cuments to U. S, Federal Government agencies, software sup-
pliers, and standards committees.

- 3 -

ICST personnel have been active in X3H4 since its in-
ception, and have provided X3H4 members with copies of all
the documents discussed above and reviewed with them the
results of the workshops. Many of the X3H4 members also at-
tended the two workshops that ICST conducted for vendors of
dictionary software.

1.3 BENEFITS OF AN IRDS

A preliminary cost-benefit overview prepared for ICST
[9] estimates that the U. S. Federal Government could real-
ize over $120 million (in constant 1983 dollars) in benefits
by the early 1990^s from use of a standard IRDS. Opportuni-
ties identified for cost reduction and avoidance included
the following:

o Improved identification of existing, valuable infor-
mation resources that can be used by others in the
same organization or shared with other organizations,

o Reductions of unnecessary development of computer
programs when suitable programs already . exist

.

o Simplified software and data conversion through the
provision of consistent documentation.

o Increased portability of acquired skills resulting in
reduced personnel training costs.

Similar savings can be expected in non U. S. Government or-
ganizations .

Although the proposed Standard will not require an or-
ganization to use a dictionary system or use one in a
prescribed manner, the IRDS, when implemented, can also be
used to:

o Aid development, modification, and maintenance of
manual and automated systems throughout their life
cycle

.

o Support an organization-defined data element stan-
dardization program.

- 4 -

o Support records, reports and forms management, span-
ning the range from non-automa ted to fully automated
environments

.

Even before systems are available that conform to the
IRDS Standard, the Specifications will help users become
more informed consumers by providing a common framework and
terminology that can be used, to specify required dictionary
system capabilities. The Specifications also can be used to
help evaluate vendor offerings.

1.4 IRDS DESIGN OBJECTIVES

In developing the Specifications for a standard IRDS,
ANSI X3H4 and ICST recognized that dictionary system tech-
nology is evolving and that the use of dictionary systems is
expanding. In view of this, ANSI X3H4 and ICST identified
the following three major objectives:

o The IRDS should contain the major features and capa-
bilities that exist in currently available dictionary
systems

.

o The IRDS should be modularized to support a wide
range of user environments and to support cost-
effective procurement.

o The IRDS should support portability of skills and
data

.

1.4.1 The IRDS: An Outgrowth of Existing Systems.

During the initial phase of development, both ANSI X3H4
and ICST analyzed relevant literature and existing commer-
cial and Federally-developed dictionary systems. Features
and capabilities in the current generation of dictionary
systems and projected technology trends were identified.
Major U. S. Federal Government dictionary system users re-
viewed and rated 96 features of existing systems. The rat-
ing results and conclusions appear in Federal Requirements
for a Federal Information Processing Standard Data Diction-
ary^ System [7]

.

- 5-

As discussed in Section 1.2, U. S. Federal Government
representatives and dictionary software vendors reviewed
draft versions of the Specifications. These reviews focused
on: (1) the functions required or desired by users of their
dictionary systems; and (2) the technical and economic
feasibility of implementing the specified IRDS functions.
As a result of these analyses and reviews, the IRDS Specifi-
cations contain the most commonly used facilities of exist-
ing systems, and thus represent a "state-of-pr act ice” level
of technology in dictionary systems.

1.4.2 Flexibility of Use and Procurement Cost-Benefits.

To provide IRDS flexibility and procurement cost-
effectiveness, X3H4 and ICST adopted a modularized approach.
The proposed IRDS Standard includes specifications for a
"Core" dictionary system plus specifications for three
Modules. The Core and the three Modules constitute the
"base level" standard.

Although the IRDS Modules interface with the Core, they
are independent of one another. Organizations, therefore,
can acquire a Module if it supports their requirements.
They will not have to procure Modules that they do not need.

The Core IRDS contains the basic capabilities that or-
ganizations generally need. These Core Specifications are
intended for implementation on large microprocessors and
small minicomputers as well as large computers. The three
Modules in the IRDS, that provide additional facilities,
contain Specifications for: (1) an increased level of secu-
rity; (2) an application program interface; and (3) data-
base management system (DBMS) documentation support.

After the base level standard is finalized, X3H4 and
ICST plan to develop additional Modules, Chapter 11
discusses the Modules under consideration.

To provide additional flexibility, capabilities are
specified in the Core IRDS that enable organizations to cus-
tomize or extend the type of data that can be stored in the
dictionary. These capabilities will provide the ability to
describe unique resources and define organization-specific
system development methodologies.

- 6 -

1.4.3 Portability of Skills and Data.

The Core IRDS contains two user interfaces: a menu-
driven "Panel" Interface and a Command Language Interface.
The Panel Interface is designed to support interactive pro-
cessing, especially by inexperienced users. This Interface
leads users down a structured path of screens (i.e., panels)
that result in the execution of IRDS functions. Thus, non-
technical staff as well as technical staff will be able to
execute IRDS functions without having to understand or use
the more complex syntax of the Command Language Interface.
The Command Language Interface may be used in either a batch
or interactive mode.

An implementation of the IRDS will comply with the pro-
posed standard if it has either one or both of the user in-
terfaces. The Command Language will be the same, except for
some implementor options, in all IRDSs that have this user
interface. Likewise, the Panel Interface will be similar.
Thus, individuals will, without significant retraining, be
able to use different IRDSs that have the same user inter-
face .

The IRD-IRD Interface Facility, discussed in Chapter 7,
provides a controlled method of moving data from one stan-
dard Information Resource Dictionary to another. Organiza-
tions using a standard IRDS could, for example, extract data
from decentralized dictionaries and add it. to a central dic-
tionary that focused on organization-wide data management.
The specified IRD-IRD Interface supports this transportabil-
ity of data even in the case where the standard IRD systems
are developed by different vendors and are resident on dif-
ferent hardware systems at different locations.

1.5 SCOPE OF REPORT

The remainder of this report contains a summary of the
draft proposed American National Standard for an IRDS. Gen-
eral topics, such as the effective use of a dictionary sys-
tem, are not addressed. Therefore, readers of the subse-
quent chapters are presumed to be familiar with general data
processing concepts and the purposes of a data dictionary
system.

Chapters 2 and 3 provide a technical summary of the
IRDS structure and processes. The remaining chapters, pro-
viding more technical detail, are designed for those indivi-
duals reviewing the Specifications for the draft proposed

- 7 -

IRDS Standard.
Specifications
t ionary System

It is recommended that reviewers of the IRDS
also read Using the Information Resource Dic-
Command Language [10]

.

- 8 -

2. OVERVIEW OF THE IRDS DATA ARCHITECTURE

This chapter presents an overview of the IRDS data
architecture— the framework in which Information Resource
Dictionary (IRD) data is organized and presented to the
user. Also discussed here are the properties of the various
names that can be used to refer to data stored in the IRD.

2.1 AN IRDS USER'S VIEW OF DATA

The draft proposed IRDS Standard, including the Command
Language and Panel Interfaces, is specified in terms of en-
tities, relationships, and attributes. An IRDS entity
represents or describes a "real world" concept, person,
event, or quantity, but it is not the actual data that ex-
ists in an application file or database. Thus, an IRDS en-
tity might be Social-Security-Number or Payroll-Record. It
would not be the actual social security number "123-45-6789"
or the actual contents of a payroll record. A relationship
is an association between two IRD entities (e.g., the
Payroll-Record "CONTAINS" Social-Security-Number.) Attri-
butes represent properties of an entity or relationship.
For example, one attribute of the entity Social-Security-
Number is its LENGTH. In this example, the value of LENGTH
is 9 characters.

The reason for specifying the draft proposed Standard
through the use of entities, relationships, and attributes
is that the majority of current dictionary implementations
either use this approach or can be easily modeled with it.
Nevertheless, the draft proposed Standard does not dictate
an implementation approach . The Standard can be implement-
ed , for example, using a relational, network, or other data
management system.

Relationships in the Core IRDS are binary, denoting
that an association exists between two entities in the IRDS.
The reasons for choosing the binary relationship approach,
rather than a 3-part or more relationship approach, are: (1)
the vast majority of current implementations use binary re-
lationships; and (2) the Core system should be "simple"
enough not to preclude implementation on large microproces-
sors or small minicomputers.

- 9-

A small subset of an Information Resource Dictionary
might conceptually have the form presented in Figure 1. In
this example, Finance-Department, Payroll-System,
Personnel-Department, Personnel-System, etc., represent "en-
tities." As depicted, the Finance-Department is responsible
for the Payroll-System and the Personnel-Department is
responsible for the Personnel-System. The "relationships"
between these entities reflect these responsibilities.

Both the Payroll-Record and the Personnel-Record enti-
ties contain the lower-level entities Social-Security-Number
and Employee-ID. The LENGTH of the Social-Security-Number
is 9 characters and that of the Employee-ID is 7 characters.
This information is conveyed as "attributes" of the entities
Social-Security-Number and Employee-ID, respectively.
Although they are hot depicted in Figure 1, other attributes
might describe the average number of Payroll-Records in the
Payroll-File and the average number of Personnel-Records in
the Personnel-File.

An important aspect of the IRDS is the concept of type.
Different attributes will in general have different mean-
ings. For example, the length of Social-Security-Number and
the number of RECORDS in a FILE are different. This situa-
tion is represented in the IRDS by declaring that each at-
tribute has a "type" called an "attribute-type." Thus, there
are attribute-types called LENGTH and NUMBER-OF-RECORDS

.

Attributes of a specific type will often apply to only
some of the entities. In this example, LENGTH is only mean-
ingful to Social-Security-Number and Employee-ID. NUMBER-
OF-RECORDS only has meaning for Payroll-File and Personnel-
File ,

In a similar manner, Social-Security-Number and
Finance-Department are different types of entities. As dep-
icted in Figure 1, Social-Security-Number is defined in the
IRDS as an ELEMENT entity-type, Finance-Department is de-
fined as a USER entity-type, Payroll-System is defined as a
SYSTEM entity-type, etc.

The concept of type also applies to the relationships
shown in Figure 1. "CONTAINS" has the same general meaning
in Payroll-File CONTAINS Payroll-Record and Personnel-File
CONTAINS Personnel-Record. The relationship-type of both is
FILE-CONTAINS-RECORD, Although it is not shown in Figure 1,
Personnel-File could CONTAIN multiple record descriptions
(e.g., Personnel-File CONTAINS Consulting-Record and
Personnel-File CONTAINS Temporary-Personnel)

.

- 10-

Subset of an Information Resource Dictionary

Finance- Entity-Type: Personnel-
Department USER Department

Relationship-

RESPONSIBLE- Type; RESPONSIBLE-
USER-
RESPONSIBLE-
FOR-SYSTEH sex

?

Payroll- Entity-Type: Personnel-
System SYSTEH System

Attribute-Tvpe
LENGTH

Relationship-
Type:

SYSTEH-
CONTAINS-
FILE

Entity-Type:

FILE

Relationship-
Type:

FILE-
CONTAINS-
RECORD

CONTAINS

Entity-Type:

ELEHENT

Social-
Security-
Number

Relationship-
Type:

RECORD-

CONTAINS-
ELEHENT

Personnel-
Record

Entity-Type:

ELEHENT

Employee-
ID

Attribute-Type.

LENGTH

!• !
= Entity

KEY

= Relationship O = Attribute

Figure 1

-1 1
-

Payroll-Record CONTAINS Social-Security-Number, howev-
er, has a different meaning, because it is a RECORD-
CONTAINS-ELEMENT r ela t ionsh ip- type . Thus, relationships
between entities of different types always have different
meanings

.

Relationships also can have attributes. For example,
the relationship in Figure 1 between Payroll-Record and
Social-Security-Number could have a RELATIVE-POSITION
attribute-type with an attribute (a value) of 2 to document
that Social-Security-Number is the second ELEMENT in the
Payroll-Record. The value of the same attribute-type on the
relationship between Personnel-Record and Social-Security-
Number might be 4 to indicate that Social-Security-Number is
the fourth ELEMENT in the Personnel-Record.

In addition, ordered sets of attributes called
"attribute-groups" exist. For example, an ALLOWABLE-RANGE
"attribute-group-type" might consist of the pair of
attribute-types LOW-OF-RANGE and HIGH-OF-RANGE . The value
for LOW-OF-RANGE does not convey sufficient meaning by it-
self. Therefore, it must be "grouped" with the HIGH-OF-
RANGE value.

Entities, relationships, attributes, and attribute-
groups will sometimes be referred to as "instances" of their
respective types. Thus, Finance-Department is an instance
of ELEMENT, and 5600 is an instance of NUMBER-OF-RECORDS

.

2.2 THE IRD SCHEMA

Section 2.1 addressed the organization of data in the
Information Resource Dictionary. This section and the fol-
lowing one focus on the purpose and contents of the Informa-
tion Resource Dictionary Schema.

Figure 2 shows the relationship between IRD processes
and IRD data. This view of the proposed Standard also il-
lustrates both the self-describing nature of the Standard,
and the utility of using the same descriptive technique for
both the IRD and its Schema. Figure 3 gives examples of
typical contents at the four IRDS data levels.

The IRD Schema describes the structure of the IRD.
Thus, for every entity, relationship, attribute, and
attribute-group that can exist in the IRD, the IRD schema
will contain the corresponding entity-type, relationship-
type, attr ibute-type , and at tr ibute-group-type . The

- 12-

proposed Standard specifies specific entity-types,
relationship-types, a t tr ibute-types , and attribute-group-
types. This collection, called the Core System-Standard
Schema, is discussed in Section 2.3.

The concept of the IRD Schema is important for two rea-
sons. First, the IRDS Specifications include facilities
that will enable an organization to "extend" or "customize"
the Core System-Standard Schema. This means that an organi-
zation can add additional entity-types, relationship-types,
attribute-types, and at tr ibute-group- types to satisfy its
unique requirements.

Second, the IRD Schema supports the Core plus Module
approach described in Chapter 1. The IRD schema provides a
mechanism not only to extend Schema data but also to define
and develop additional IRDS functions and control facili-
ties. This is similar to adding a new application into a
database environment.

2.3 THE SYSTEM-STANDARD SCHEMA

To support intra- and inter-organization communication
about information resources, the Core IRDS Specifications
include a Core System-Standard Schema. This Core System-
Standard Schema, which is expected to be part of every
software package conforming to the IRDS standard, defines
the allowable contents of the IRD.

The Core System-Standard Schema reflects agreements
reached by members of X3H4 and attendees at user workshops.
These groups believed that this Schema can be used by organ-
izations to describe most existing and planned manual and
automated systems. The Core System-Standard Schema also
contains some entity-types, relationship-types, and
attribute-types that are used by the IRDS for integrity and
control purposes.

Since it is not feasible to identify all entity-types,
relationship-types, and attribute-types that might be use-
ful, an organization can augment the Core System-Standard
Schema using the IRDS Extensibility Facility. Organiza-
tions, for example, that have large amounts of scientific
data or who have distributed processing applications may
want to add additional entity-types, relationship-types, and
attribute-types to the Core System-Standard Schema.

- 13 -

The

Informaliori

l^osource

Uicliondry

Syslein

c/o

LU
CO
CO
LU
o
o
CC
Ql

rr

OJ
3
O*

‘c
D
o
c
cu

E

Q.

E

o
(U
CO

0)
i-
o
u
Q
o:

0
_QJ

(U
CO

%

0)

u
c
fO
c
0)

c
*fl3

1
(TJ

c
&
x:
o
CO

CC

05
a>

"o
(D

Li.

c
o
u
03

E
0)

o
CO

Q
c

05
c

o
o.
a;

CC

c
o

C3

—
a>
CO

0;

0
c
tu
c
OJ
+-<

c
‘fO

1

CC

0;

to
05

C3
fO

c
o
U

CC

3
T3
0
1

3
O
O)
CO

<D

J-H

P
00

- 14 -

No

IRDS

Functionality

Inforrnaliori

T^esource

Diolionary

System

(IRDS)

Contents

a>

&
L_

- 15 -

Section 2.3.1 provides an overview of the Core System-
Standard Schema. The complete Core System-Standard Schema
appears in the Appendix.

In the remainder of this document, the names of
System-Standard ent i ty-types , relat ionship- types

,

relationship-class-types, attr ibute-types , and attribute-
group-types will be represented as they appear in the IRDS
Specifications, using all upper-case letters (e.g., ELEMENT,
FILE-CONTAINS-RECORD) . Examples of entities, relationships,
and attributes will be represented using lower-case letters,
with the initial letter, all letters following hyphens, and
embedded relat ionship-class-type names capitalized (e.g.,
Payroll-File, Budget-System PROCESSES Cost-Center-File).

2,3.1 System-Standard Entity-Types.

The Core System-Standard Schema contains twelve
entity-types that conceptually can be grouped into three
categories: DATA, PROCESS, and EXTERNAL.

DATA Entity-Types

1. DOCUMENT, describing instances of human readable data
collections. Typical DOCUMENTS are Form-1040 and
1984-Annual-Report.

2. FILE, describing instances of an organization's data
collections. Typical FILES are Payroll-File and
Personnel-File

,

3. RECORD, describing instances of logically associated
data that belong to an organization. Typical RECORDS
are Personnel-Record and Payroll-Record.

4. ELEMENT, describing instances of data belonging to an
organization. Typical ELEMENTS are Social-Security-
Number and Employee-Id,

5. BIT-STRING, describing abstract representations of
strings of binary digits.

6. CHARACTER-STRING,, describing abstract representations
of strings of characters.

- 16-

7. FIXED-POINT, describing abstract representations of
exact numeric values.

8. FLOAT, describing abstract representations of approx-
imate numeric values.

Instances of the last four DATA entity-types do not
directly represent application entities, but are used
by "REPRESENTED-AS" relationships to describe the
characteristics of ELEMENTS.

PROCESS Entity-Types

9.

SYSTEM, describing instances of collections of
processes and data. Typical SYSTEMS are Personnel-
System and Airline-Reservation-System.

10. PROGRAM, describing instances of automated processes.
Typical PROGRAMS are Print-Paychecks and COBOL-
Compiler.

11. MODULE, describing instances of automated processes
• that are either logical subdivisions of PROGRAM enti-

ties or independent processes that are called by
PROGRAM entities. Typical MODULES are Sort-Records
and Check-Spelling.

EXTERNAL Entity-Types

12.

USER, describing individuals or organizational com-
ponents. Typical USERS are Finance-Department and
John-Doe

.

The Core System-Standard-Schema also contains
DICTIONARY-USER and VIEW entity-types used by the dictionary
administrator to control the IRDS^s security system.

2.3.2 System-Standard Relationship-Types.

The collection of relationship- types provided by the
Core System-Standard Schema is discussed in detail in the
Appendix. This collection includes virtually all the con-
nections between System-Standard entity-types that might
prove useful to most organizations most of the time.

- 17 -

Most of these relationship- types are grouped into eight
"relationship-class-types"

:

1. CONTAINS, describing instances of an entity being
composed of other entities. A typical CONTAINS
relationship-type is RECORD-CONTAINS-ELEMENT, which
has as a possible instance the relationship Payroll-
Record-CONTAINS-Employee-Name

.

2. PROCESSES, describing associations between PROCESS
and DATA entities, A typical PROCESSES
relationship-type is SYSTEM-PROCESSES-FILE , which has
as a possible instance the relationship Budget-
System-PROCESSES-Cost-Center-File

.

3. RESPONSIBLE-FOR, describing associations between en-
tities representing organizational components and
other entities, to denote organizational responsibil-
ity. A typical RESPONSIBLE-FOR relationship- type is
USER-RESPONSIBLE-FOR-SYSTEM, which has as a possible
instance the relationship Finance-Department-
RESPONSIBLE-FOR-PayrOil-System.

4. RUNS, describing associations between USER and
PROCESS entities, illustrating that a person or or-
ganizational component is responsible for running a
certain process. A typical RUNS relationship-type is
USER-RUNS-PROGRAM, which has as a possible instance
the relationship John-Doe-RUNS-System-Backup.

5. GOES-TO describing "flow" associations between
PROCESS entities, A typical GOES-TO relationship-
type is PROGRAM-GOES-TO-PROGRAM which has as a possi-
ble instance the relationship Input-Program-GOES-TO-
Processing-Program.

6. DERIVED-FROM , describing associations between enti-
ties where the target entity is the result of a cal-
culation involving the source entity. A typical
DERIVED-FROM relationship- type is DOCUMENT-DERIVED-
FROM-FILE, which has as a possible instance Annual-
Report-DERIVED-FROM-Program-File .

7. CALLS describing "calling" associations between
PROCESS entities. A typical CALLS relationship- type
is PROGRAM-CALLS-MODULE , which has as a possible in-
stance Main-Progr am-CALLS-Sort-Rout ine

.

- 18-

8 . REPRESENTED-AS , describing associations between ELE-
MENTS -and certain other entities that document the
elements" format. A typical REPRESENTED-AS
relationship-type is ELEMENT-REPRESENTED-AS-
CHARACTER-STRING , which has as a possible instance
Employee-Name-REPRESENTED-AS-Asci i-Char-String.

2.3.3 System-Standard Attribute-Types.

The attribute-types developed for inclusion in the Core
System-Standard Schema are the ones that organizations gen-
erally want applied to Core System-Standard entity-types.
Some attribute-types in this collection are common to all
entity-types. These common attribute-types provide:

o Audit trail information. A typical audit attribute-
type is DATE-CREATED, with a possible value of
840107101649 to represent both date and time.

o General Documentation for entities, for example
DESCRIPTION and COMMENTS.

Other System-Standard attribute-types are associated
with just one or a few entity-types. For example, NUMBER-
OF-RECORDS, with possible attribute instance 240, is unique
to the FILE entity-type.

As an additional feature of the Core System-Standard
Schema, certain relationship-types have attribute-types as-
sociated with them. For example, the attribute-type
ACCESS-METHOD is associated with the relationship-types
SYSTEM-PROCESSES-FILE, PROGRAM-PROCESSES-FILE , and MODULE-
PROCESSES-FILE. Thus, for the relationship Input-Module-
PROCESSES-Master-File , the attribute-type ACCESS-METHOD has
a possible value of Indexed-Sequential

.

The attribute-types in the System-Standard Schema are
discussed more fully in the Appendix.

- 19-

2.4 ENTITY NAMES

The Core IRDS contains a flexible and generalized fa-
cility that will enable users to assign different kinds of
names to an entity. The different names serve distinct pur-
poses, and several important conventions exist regarding
them. The use of and distinction between access-name,
descriptive-name, and alternate-name is basic to an under-
standing of the IRDS, and thus is discussed in this Chapter.

2.4,1 Purpose of Access-Names and Descriptive-Names.

The most important name of an entity is its access-
name. This name is the entity^’s primary identifier, and the
structure of most commands and panels are based on it. In
most organizations, the access-name will probably be terse,
to minimize the number of keystrokes required to manipulate
the IRD, thereby saving time and reducing the potential for
error

.

The access-name has two parts: an assigned access-name
and a version identifier. The structure of the version
identifier is discussed briefly in Chapter 3 and in more de-
tail in Chapter 8. Normally a user will be responsible for
specifying the assigned access-name of an entity. An option
exists, however, to have the IRDS generate, using a standard
algorithm, the assigned access-name for all entities of a
given type. This facility allows a user to enter new enti-
ties into the IRD before the final names of the entities
have been determined. Since this facility works for all en-
tities of specified entity-types, the initial entry of enti-
ties using the system-assigned name' option frequently will
take place in an auxiliary IRD. Once the correct names of
the entities are known, the user can modify the system-
assigned access-names and then move the entities, using
functions available in the IRD-IRD Interface Facility, to
the IRD that contains more standardized or precise names.

Terse access-names do have a disadvantage for the user,
however, because they may not convey the meaning of the ob-
ject represented by the entity. This terseness can cause
problems, particularly in the preparation of reports for
non-technical users and managers unfamiliar with the con-
tents of the IRDS. To address this problem, the Core IRDS
allows users to assign a descriptive-name to an entity. The
descriptive-name will normally be longer and more meaningful
than the access-name. The structure of the descriptive-name
is the same as that of the access-name, (i.e., there is an
assigned descriptive-name and a version identifier). SSN

- 20 -

and Social-Secur i ty-Number are examples, respectively, of an
assigned access-name and an assigned descriptive-name.

When output is generated from the IRDS, the user may
specify whether the access-name, the descriptive-name, or
both, are to appear.

2,4.2 Uniqueness of Access-Names and Descriptive-Names.

Access-names and descriptive-names must be unique
throughout a particular IRD. During the development of
these Speci f icat ions ,' members of ANSI X3H4 and attendees at
a user workshop voted for uniqueness of name throughout an
entire IRD, rather than name uniqueness only within an
entity-type. This means that a user cannot, for example,
have a FILE entity with an access-name Payroll and a RECORD
entity also called Payroll.

Uniqueness of assigned access-names and assigned
descriptive-names in the IRD simplifies the Command Language
and Panel Interfaces. Except during the actual creation of
new entities, the IRDS immediately recognizes the type of
every entity whose name is included in a command or panel.
Thus, the user is not repeatedly forced to specify an
entity's type. Organizations that want to use assigned
access-names or descriptive-names that are unique only
within an entity-type could adopt an organization-defined
naming convention. For example, all assigned names could be
prefixed with a mnemonic of the appropriate entity-type
name. Thus, prefixing all file names with "F-" and all
record names with "R-" would allow two different entities
with the "same” name Payroll to be represented as F-Payroll
and R-Payroll. This convention would assure uniqueness in
the IRD.

2.4.3 Alternate-Names.

In addition to the assigned access-name and the as-
signed descriptive-name of an entity, a user may specify
alternate-names for an entity. The term alternate-name is
used here in the same sense as the terms "synonym" and
"alias" are often used. Alternate-names document the dif-
ferent names, if any, used to identify the same "real-world"
object. Alternate-names are ordinary attributes of
entities— they do not have version identifiers, they do not
have to be unique, different entities can have the same
alternate-name, and the IRDS does not include any rules for
the use of these names. For example, the element whose
access-name is Social-Security-Number might have alternate-

- 21 -

rf

C

names SSN, Soc-Sec-No, Soc_Sec_No , and Social_Secur i ty_
Number

.

ALTERNATE-NAME attributes are frequently used as part
of an IDENTIFICATION-NAMES attr ibute-group/ in conjunction
ith ALTERNATE-NAME-CONTEXT attributes. Thus, an organiza-
ion might define IDENTIFICATION-NAMES attribute-groups to

categorize its alternate-names according to programming
language environment: (SSN, FORTRAN), (Soc-Sec-No, COBOL),
(Soc_Sec_No, PL/I).

- 22-

OVERVIEW OF IRDS FUNCTIONS AND PROCESSES
.
3.

As discussed in the Introduction, the proposed Standard
specifies two user interfaces, a Command Language Interface
and a Panel Interface. An implementation of the IRDS will
be compliant with the proposed Standard if it has either one
or both of these interfaces. This chapter presents an over-
view of the IRDS functions and processes specified for both
user interfaces. Subsequent chapters provide more detail on
each of the individual functions and processes. Unless
stated otherwise, each specified facility is part of the
Core IRDS.

3.1

POPULATING, MAINTAINING, AND REPORTING ON THE
IRD

This. section briefly describes the specified IRDS fa-
cilities that enable a user to populate and maintain an IRD,
and retrieve individual or groups of entities with their as-
sociated relationships and attributes. The following sec-
tion, 3.2, discusses maintenance and reporting facilities
for the IRD Schema.

3.1.1 IRD Population and Maintenance.

Facilities exist to create and delete entities and re-
lationships in the IRD. Existing entities and relationships
can also be modified by changing their attributes. Users,
with the appropriate security permission, can also modify
existing assigned access-names and assigned descriptive-
names. In addition, a user can copy an entity to create a
new entity. This new entity will have the same attributes
as the original entity. Optionally, the new entity can have
relationships with the same entities to which the original
entity is related. A Versioning Facility, discussed in Sec-
tion 3.4, can be used to distinguish between the "copies."

3.1.2 IRDS Output.

A General Output Facility produces reports and prepares
query responses on specified IRD entities, their relation-
ships, and their associated attributes. The precise format
of IRDS reports will be defined by implementors of the Stan-
dard. The proposed Standard specifies facilities that

- 23 -

enable users to define: (1) the contents of a report or
query (i.e., the entities, attributes and relationships that
should appear); (2) the kinds of names to be displayed;
(3) the sequence of information; and (4) the report desti-
nation .

This report customization facility will enable IRDS
users to vary the contents of a report depending on the in-
tended use. For example, a report for managers might
display only some attributes, but would probably include
such things as the descriptive-name and decoded rather than
encoded attributes. A report prepared for the technical
staff might contain the access-name rather than the
descriptive-name, and show all attributes, in code form, as-
sociated with the selected entities and relationships. A
response to an on-line query might be designed to display
the minimum required information.

There are two special-purpose output facilities. One
reports on all entities that would be affected by a change
to a specified entity (e.g., all RECORD, MODULE, PROGRAM,
and FILE entities that would be affected by a change to a
given ELEMENT entity) . A second facility produces output in
Command Language format that can then be used as a training
aid. To use this facility, an organization must have the
Command Language Interface.

3.1.3 Entity-Lists.

As an aid in preparing reports and queries and modify-
ing the contents of the IRD, the IRDS Standard specifies fa-
cilities that enable users to develop lists of entities. If
the entity-list is developed for report preparation pur-
poses, the general output facilities can be used to custom-
ize the report(s).

A user will first perform an initial retrieval, result-
ing in the selection of either: (1) all entities or (2) a
group of entities based on the entities^ access-names or
descriptive-names, or on designated character strings within
the name(s). An option also exists to include entities re-
lated to the ones retrieved.

This initial list is then "pared down" through the
specification of other entity characteristics, such as:
entity-type; relationships of the entities; attributes and
attribute-groups; text attribute strings; and alternate-
names. A user also can create a new entity-list by perform-
ing: the union of two or more entity-lists; the intersec-
tion of two or more entity-lists; the symmetric difference

- 24 -

between two entity-lists; or the
entity-list from another.

subtraction of one

An entity-list
remain available to
of an IRDS session,
become, by default,
retained until: (1)
will overwrite the' o
is named; or (3) th

can be named. This
the user who created
If an entity-list i

the "current list."
another unnamed lis

Id current list); (2
e IRDS session ends.

named list wi
it for the d

s not named.
The current

t is created
) the current

11
ur at ion
it will
list is
(which
list

3.1.4 IRDS Procedures.

Entity-lists and dictionary output quickly become out-
dated as a result of the continual addition, modification
and deletion of entities and relationships. Therefore, the
IRDS Standard does not specify facilities for saving either
entity-lists or output from these lists. Instead, the Stan-
dard specifies a mechanism for saving the procedures that •

were originally used to create the lists and output. Exe-
cuting a procedure will recreate the given entity-list or
dictionary output, using the current contents of the IRD.
In addition to saving entity-list procedures and output pro-
cedures, a user can: (1) execute entity-list and output
procedures; (2) display the names and contents of existing
procedures; and (3) delete procedures.

Procedures can include only the functions used to
create entity-lists and dictionary output. There is no fa-
cility for modifying stored procedures.

3.2' IRDS SCHEMA MAINTENANCE, CUSTOMIZATION, AND
REPORTING

As discussed in Chapter 2, the IRD Schema describes the
structure of the IRD. For every entity, relationship, at-
tribute, and attribute-group that can exist in the IRD, the
schema will contain a description of the corresponding
entity-type, relationship- type , attribute-type, and
at tr ibute-group- type . The schema is also described in terms
of entities, relationships and attributes. However, because
of the potential for misunderstanding that could occur in
discussions of the schema versus the IRD, similar yet dis-
tinct terminology is used in the Specifications to describe
the IRD Schema. Thus, the IRD schema contains:

- 25 -

o "Entities" called meta-entities.

o "Relationships" between meta-entities that are speci-
fied as meta-relationships.

o "Attributes," called meta-attributes, that document
the characteristics of meta-entities and meta-
relationships .

The IRDS Extensibility Facility provides an organiza-
tion with the capability of customizing the schema, and thus
the dictionary. A user, with the appropriate schema permis-
sions, can add, modify, and delete meta-entities, meta-
relationships, and their associated meta-attributes.

Meta-entities in the schema may reside in one of two
states, "not installed" and "installed." The facility that
supports this arrangement features a two stage procedure for
adding meta-entities to the IRD schema. Thus, users respon-
sible for maintaining the schema can review and study the
potential impact of schema modifications before making the
changes effective in the dictionary.

A user can report on the contents of the IRD schema.
The format of this output can be tailored by specifying:

o The meta-entities that should be displayed, by name
or type. The display of all meta-entities may also
be requested.

o The meta-attributes and meta-relationships that
should be displayed along with the selected meta-
entities .

o Whether the output is to include installed meta-
entities, not installed meta-entities, or both.

3.3 IRD-IRD INTERFACE

The IRD-IRD Interface provides- a controlled mechanism
for moving data from one standard IRDS implementation to
another. The interface includes a set of four functions
permitting selected parts of a source dictionary to be
transferred to a target dictionary without affecting the in-
tegrity of either dictionary.

- 26 -

One function specifies the set of entities and rela-
tionships that the user wants to extract from an existing
IRD. These entities and relationships are copied to an "IRD
export file" in a format specified by ISO Standard 8211
[11]. This function also generates a file, in ISO Standard
8211 format, that contains the schema of the source diction-
ary .

Another function creates an "empty" dictionary. (The
creation of an empty dictionary is required whenever a stan-
dard IRD is initialized.) When the empty dictionary is
created, the Core System-Standard Schema (or some other
schema in export format) must be loaded. The user also can
load IRD data that is in export format.

A third function checks the compatibility between the
schema of the IRD in which the user is operating and another
schema that resides in either a schema export file or anoth-
er IRD. Since schema compatibility depends on which schema
is the source and which is the target, the user must specify
this information.

Finally, a fourth function imports a previously export-
ed schema and an IRD subset into the target dictionary.
This requires that the IRD subset reside in an IRD Standard
export file, and the source schema reside in the same or
another export file. A schema compatibility check is again
performed automatically before execution of the dictionary
import

.

3.4 IRD CONTROL FACILITIES

tant
on th
Facil
Indie

The Core IRDS contains f

in populating and maintc
e contents of the IRD.
ity; (2) the Life-Cycle
ators; (4) Views; and

ive facili
ining the
These are:
-Phase Fac
(5) Securi

ties that are impor-
IRD and in reporting
(1) the Versioning

ility; (3) Quality-
ty.

3.4.1 The Versioning Facility.

An IRD entity describes a "real world" object. As the
object changes, the corresponding entity will have to be
changed. The Core IRDS allows a user to track such changes
by using "revision-numbers." These revision-numbers
represent the chronology of the entity (and thus the chro-
nology of the object that the entity describes) in the sense
that the highest revision-number represents the most current

- 27 -

version of the entity. Each revision is stored as a dis-
tinct entity in 'the IRD.

A related concept is the desirability of identifying
multiple "variations" of an entity. An example is the 5

versus 9 digit U.S. Postal Service Zip Code. Some files
might still exist where the old 5-digit Zip Code was used,
and others might contain the new 9-digit code. These two
Zip Codes could be represented by distinct entities whose
access-names show that one is a variation of the other.
Variations are denoted by a "variation-name," a specified
string that must begin with an alphabetic character. A fa-
cility exists to control valid variation-names for each
entity-type

.

The revision-number and the variation-name are both ap-
pended to the assigned access-name and the assigned
descriptive-name. The precise structure and the associated
integrity rules are presented in Chapter 8.

3.4.2 The Life-Cycle-Phase Facility.

The IRDS Life-Cycle-Phase Facility directly supports
the life cycle methodology used by an organization. A user
can therefore document, in the IRD, the life-cycle-phase in
which an entity exists. For example, different entities can
be associated with the phases Requirements Analysis, Logical
Database Design, etc. This association between an entity
and a life-cycle-phase is more than just the assignment of
an additional attribute to each entity—the IRDS has specif-
ic integrity rules and customization facilities to control
the movement of entities through the life cycle.

The IRDS recognizes the following three classes of
Li fe-Cycle-Phases

:

o UNCONTROLLED — multiple UNCONTROLLED life-cycle-
phases can be defined and used by an organization.

o CONTROLLED — there is only one CONTROLLED life-
cycle-phase, named CONTROLLED-PHASE. CONTROLLED en-
tities are used in operational systems, and special
integrity rules exist for moving entities into and
out of CONTROLLED-PHASE.

- 28-

o ARCHIVED -- there is only one ARCHIVED life-cycle-
phase, named ARCHIVED-PHASE. As the name implies,
archived entities are no longer used in operational
systems, but are retained for historical or audit
purposes

.

The life-cycle-phase customization facilities and the
integrity rules that control movement of entities from one
life-cycle-phase to another are discussed in Chapter 8.3.4,3

Quality-Indicators.

The IRDS Quality-Indicator Facility is similar in ap-
plication to the Life-Cycle-Phase Facility. A quality-
indicator denotes such things as: (1) the level of stan-
dardization of element entities (e.g., program standard,
agency or organization standard, national standard, or
international standard) ; or (2) the degree to which the en-
tity satisfies the organization's Quality Assurance or Qual-
ity Testing methodology. Each organization can define the
quality-indicator names to be used with their IRDS.

3.4.4

Views.

A view is a logical partition of an IRD that estab-
lishes control and regulates access to the IRD. Views are
integral components of the Core IRDS Security Facility.
Views also support project-oriented activities. For exam-
ple, in the initial phases of Requirements Analysis for a
large organizational system, different project teams or dif-
ferent analysts could use different views of the overall IRD
to simplify and control their work.

3.4.5

Correspondence Between Views and Life-Cycle-Phases.

Entities in a given life-cycle-phase may appear in many
views. For example, the phase supporting Requirements
Analysis may include multiple views for one or more project
teams. However, all entities in a designated view must be
in the same life-cycle-phase. A user, working in a specific
view, who has read access to entities in other views or
life-cycle-phases, can use these entities if relationships
to the entities are established from the designated view.

-29 -

3.4.6 IRDS Security.

The Core IRDS contains several security features that
pertain to:

o The access a user can have to the schema . Read-only
permission to access the schema and more comprehen-
sive levels of permission can be granted. The organ-
ization must explicitly grant the appropriate level
of schema access to each user. A user to whom no ac-
cess permission has been granted cannot examine or
modify the schema.

o The access a user can have to the dictionary . In ad-
dition to being able to grant read-only permission,
access can be controlled at the entity-type level
(e.g., an organization might allow a certain user to
read entities of all types, but to add, modify, and
delete only ELEMENTS)

.

Most Core IRDS security characteristics are specified
by controlling access to the various views of- the IRD. An
additional level of security, one that allows the organiza-
tion to control access to individual , entities , is discussed
in the following section.

3 . 5 IRDS MODULES

As Stated in the Introduction, the proposed IRDS Stan-
dard includes specifications for three Modules that extend
the capabilities of the Core system. Although these Modules
interface with the Core, they are independent of one anoth-
er. Organizations may not need any of the Modules, or they
may prefer to acquire and use one, two, or all three. The
three Modules are:

o Entity-Level Security,

o Application Program Interface.

o Support of Standard Data Models for database manage-
ment systems.

- 30-

3.5.1
Entity Level Security.

An organization using this Module can
READ and/or WRITE privileges for specific e

Module will operate as an additional layer
beyond that existing in the Core IRDS. For
the appropriate READ permission, any entity
tional security is treated as though it doe
the view in which the user is working. For
READ but not WRITE permission, secured enti
ined but not modified or deleted.

assign IRDS users
ntities. This
of security
users not having
with the addi-

s not exist in
users having

ties can be exam-
3.5.2

Application Program Interface.

This Module provides an interface
programming languages that have a CALL
zation can develop software to use IRD
poses. In this situation, the IRDS is
developed application as a subroutine.

between the IRDS and
feature. An organi-
data for special pur-
treated by the user-

3.5.3

Support of Standard Data Models.

This Module defines the entity-types, relationship-
types, and attribute-types that must be added to the IRD
schema to describe databases managed by the proposed Ameri-
can National Standard Database Languages, NDL and SQL.
These additions to the schema can be made by an IRDS vendor
or by the organization using the IRDS. If performed by the
user organization, the additions would be made using the
IRDS Extensibility Facility, discussed in Chapter 6. The
Module also specifies mappings between the augmented IRD
schema and the two database languages.

For example, this Module specifies the new entity-types
DATABASE, SCHEMA, and SET; new relationship- types such as
SCHEMA-CONTAINS-RECORD and ELEMENT-IDENTIFIES-ELEMENT ; and
new attribute-types such as INSERTION-MODE and RATE-OF-
UPDATE.

- 31 -

4. POPULATING AND MAINTAINING THE IRD

This chapter describes the functions specified as part
of the Core IRDS to add, modify, and delete entities and re-
lationships in the dictionary. The copy function is also
described. To execute these functions, a user must have the
appropriate security permission. In addition, the user must
have permission to perform these actions in the specified
view.

4.1 ENTITIES

This section presents a technical summary of the IRDS
functions that are specified to: add or create new entities
in the dictionary; modify an existing entity by adding,-
changing, or deleting the entity's attributes and
attribute-groups; and delete an entity and its associated
attributes and attribute-groups.

4.1.1 Adding Entities.

Using this function, a user can add new entities to the
dictionary. The most important aspects of creating a new
entity are;

o Declaring the type of the entity. The designated
entity-type must be one that exists in the IRD sche-
ma. This type may be in the IRDS Core System-
Standard Schema, or may have been added to the schema
by the user organization.

o Designating the assigned access-name of the entity.

o Optionally, assigning a descriptive-name to the enti-
ty.

o Declaring attributes and attribute-groups for the new
entity

.

As discussed in Chapter 2, the access-name and the
descriptive-name each have two parts; the assigned access-
name or descriptive-name and the version identifier. Two
methods exist for assigning an access-name to the entity.

- 33 -

Either the assigned access-name is specified by the user or
it is automatically generated by the IRDS. To be valid, the
user assigned access-name must satisfy the following rules:

1. The character string representing the assigned
access-name must conform to the length and picture
rules in the IRD schema. For entities of each type,
these rules are specified by MINIMUM-NAME-LENGTH,
MAXIMUM-NAME-LENGTH, and PICTURE meta-attributes in
the schema.

2. The name must not exist in the dictionary either as
an assigned access-name or an assigned descriptive-
name .

3. If the assigned access-name is to be system-
generated, the user must specify the entity-type.
The name assigned by the system will be displayed to
the user.

4. A user-assigned access-name or descriptive-name must
not lead to a potential conflict with a system-
generated assigned access-name. For example, if ELE-
MENTS have system generated names REOOl, RE002, ...,
a conflict could exist if a user assigned an access-
name or descriptive-name of RE004 to a new RECORD en-
tity. In this situation, the IRDS would not allow
RE004 to be added by a user.

While adding entities, the user may specify an assigned
descriptive-name, to which the above rules 1, 2, and 4 also
apply,

A user may also specify attributes and attribute-groups
for the new entity. The user must provide both the names of
the attribute-types or attribute-group- types and the values
assigned

.

4.1,2 Modifying Entities,

This function is used to change the
attribute-groups of an existing entity,
tion is restricted to a single entity at
function does not operate against a list
cution of the modify entity function may

attributes and
Use of this func-
a time (i . e . , the
of entities) . Exe-
result in:

- 34-

o Creation of new attributes and attribute-groups.

o Modification of the values or contents of existing
attributes or attribute-groups.

o Deletion of existing attributes and attribute-groups.

There is an option on the modify entity function that
causes the existing entity to remain unchanged, and instead
creates a new entity with the specified modifications. This
new entity has the same assigned access-name as the existing
entity, but has a different version-identifier. The new
version-identifier will be communicated to the user. A new
descriptive-name for the new version is constructed if the
original entity had a descriptive-name. This new
descriptive-name will have the same assigned descriptive-
name as the one belonging to the original entity, but its
version-identifier will be set equal to the version-
identifier of the access-name of the new entity.

When a new entity is created, new relationships can be
created to correspond to the relationships in which the ori-
ginal entity participates. These new relationships will
have the same attributes and attribute-groups as the exist-
ing relationships.

4.1.3 Deleting Entities.

A user may specify one or more entities to be deleted
by specifying any of the following:

o The access-names of entities to be deleted.

o Entity selection criteria that will result in the
creation of a new entity-list.

o The name of an entity-list created earlier in the
session. The current list may also be specified.

o The name of a previously saved entity-list procedure,
to be used to generate an entity-list for use with
the delete function.

Each entity specified, through whichever of the above
mechanisms, must:

- 35 -

o Exist in the IRD.

o Not participate in any relationship. If the entity
participates in any relationships, these relation-
ships must first be deleted.

4.2 RELATIONSHIPS

This section summarizes the IRDS functions that are
specified to: add relationships between entities; modify ex-
isting relationships; and delete relationships.

4.2.1 Adding Relationships.

This function creates new relationships in the diction-
ary. The most important aspects of creating a new relation-
ship include designating:

o The entities that are to be members of the relation-
ship.

o The relationship-type or relationship-class-type.

o Optionally, attributes and attribute-groups for the
new relationship.

In creating a new relationship, if both entities that
are to be members of the relationship exist, the user simply
specifies the access-names of these entities and states the
new relationship. If one entity exists and the other does
not, the user again specifies two access-names, but the one
referring to the non-existing entity includes a specifica-
tion of that entity's type. This will result in the au-
tomatic creation of a new entity identified by the second
access-name.

The designated relationship- type or relationship-
class-type must be one that already exists in the IRDS sche-
ma .

- 36-

4.2.2 Modifying Relationships.

Using this function, a user can:

o Change a relationship's attributes and attribute-
groups .

o Create new attributes and attribute-groups,

o Delete existing attributes and attribute-groups.

To modify relationships in any of these ways, the user
must specify:

o The type or class-type of the relationship.

o The access-names of the member entities of the rela-
tionship to be modified.

o The attributes and attribute-groups to be added,
changed, or deleted.

4.2,3 Deleting Relationships.

Using this function, a user may delete relationships by
specifying any of the following:

o One or more existing relationships.

o Relationship selection criteria. These criteria al-
low the user to select relationships for deletion
based on:

- The entities that participate in the relation-
ships. The entities are specified to designate
the relationship to be deleted, but the entities
themselves are not deleted.

- Particular relationship-types or relationship-
class-types.

- The values of certain attributes and attribute-
groups associated with a relationship.

- The existence of a particular character string

- 37-

within a text attribute associated with a rela-
tionship.

4.3 COPYING ENTITIES AND RELATIONSHIPS

A user can create a new entity with the same attri-
butes, the same attribute-groups, and the same relationships
as an existing entity. The user must specify;

o The access-name (i.e., the assigned access-name and
the version identifier) of the entity to be copied.

o The access-name of the entity to be created.

Optionally, the user may also designate;

o That the existing entity^’s relationships are also to
be copied.

o A descriptive-name for the new entity.

The new entity created by the copy function is desig-
nated in one of the following ways;

o By specifying a valid assigned access-name that does
not currently exist in the IRD.

o By specifying the new-version option. The existing
entity is copied to a new entity whose assigned
access-name is the same as that of the existing enti-
ty but whose version-identifier is different.

o By specifying a null mark. This is valid only if the
type of tne existing entity is defined in the schema
to have system-generated assigned access-names.

The user may specify an assigned descriptive-name for
the new entity. If one is specified, the name must not ex-
ist in the IRD either as an assigned access-name or as an
assigned descriptive-name.

- 38-

If the user designates that the entity^'s relationships
are to be copied, a new relationship is established
corresponding to each existing relationship. For some ex-
ceptions to this rule, see the Core IRDS specification of
the Copy function [1].

The new entity^s access-name will be
second, as appropriate) member of any new
other member of the new relationship will
that in the original relationship.

the first (or

relationship

.

be the same as
The

- 39-

5. THE DICTIONARY OUTPUT FACILITY

IRDS users may employ a general output function to pro-
duce output on IRD entities, their associated relationships,
and the attributes of these entities and relationships. The
contents of the output, as discussed in Section 5.1, can be
specified by the user. The output can be in response to an
on-line query, or in the form of a report.

Another output function, the Impact-of-Change function,
reports on those entities that might be affected in some
manner by a change to a specified entity. A Syntax Output
function produces output on selected entities in the same
format as that used to create the entities using the Command
Language Interface.

5 . 1 GENERAL OUTPUT

The following seven steps are involved in specifying
the execution of an output function. Steps 2 and 4 are al-
ways required, the other steps are optional. System de-
faults exist for all optional steps.

1. Specifying the views to which retrieval applies.

2. Selecting the entities. The selection criteria may
be specified by the user at the time the operation is
entered. These criteria include:

(a) The type(s) of entities to be retrieved.

(b) Character strings within the assigned access-
names or descriptive-names.

(c) Character strings within the associated version
identifiers

.

(d) Designated attributes or attribute-groups.

(e) Life-cycle-phases or quality-indicators.

(f) Relationships to other entities.

The selection criteria may also be based on an exist-
ing entity-list or entity-list procedure. Entity-

- 41-

list and procedure functions are explained later in
this chapter.

3. Sorting the selected entities. A series of sort
parameters are available to designate the sort order
of the selected entities. Each parameter may be re-
quested on an ascending or descending basis within
that parameter. The sort parameters include the fol-
lowing :

o Entity-Type.

o Non-repeating attribute-types associated with
entity-types

.

o Life-Cycle-Phase.

o Assigned Access-Name.

o Complete Access-Name,

o Assigned Descriptive-Name.

o Complete Descriptive-Name.

o Version identifier associated with the assigned
access-name or assigned descriptive-name.

4. Designating what information is to be displayed for
each selected entity. For this show function, the
information includes:

o The kinds of entity names (i.e., access-names,
descriptive-names, alternate-names)

.

o The life-cycle-phase for each entity.

o One or more of an entity^s attributes or
attribute-groups. There is an option to show
all attributes. For text attributes, the numbers
of the text lines to be displayed may be speci-
fied .

o One or more of the relationships in which an en-
tity participates. There are options to show
all relationships, to show either forward or in-
verse relationships, and to show all relation-
ships of a particular relationship-class. The
output of all, some, or none of the
relationship's attributes may be specified.

- 42-

5. Routing th.e output contents to a particular destina- .

tion. A system defined destination will be used if

no destination is specified.

6. Assigning a character string to be used as a title
for the output. This title can appear either on the
first page or on every page of the output.

7. Providing a name for the output procedure used to
generate the output.

The following example demonstrates a potential use of
the General Output function. The syntax used is that of the
Core IRDS Command Language:

Suppose a user wished to report on all version identif-
iers associated with an assigned access-name of
PROGRAM-Z. (As discussed in Chapter 3, the version
identifier consists of two parts; a variation name and a

revision number.) The user would first specify, in the
entity selection criteria , the appropriate assigned
access-name, and would use the "wild-card" designation
provided to select all entities with that particular as-
signed access-name, as in;

select entities with access-name = PROGRAM-Z (*;*)

In this example, (*;*) designates all revision-numbers
and all variation-names.

An example of how sorting is specified is the fol-
lowing ;

Suppose a user wishes to sort the selected entities
based first on entity-type, then on variation-name,
then assigned access-name, and finally on revision-
number. Logically, this is specified in the follow-
ing way;

entity-type (ascending)

,

variation-name (ascending)

,

assigned access-name (ascending)

,

revision-number (descending)

.

Now, using the show capability, the user specifies
the information that is to be output for each of the
selected entities. To see the assigned access-name, the
assigned descriptive-name, and all attributes of each
entity, the user would specify the following:

- 43 -

show assigned access-name
show assigned descriptive-name
show all attributes.

After the user specifies any remaining options, the IRDS
will produce the desired output.

5 . 2 OUTPUT IMPACT-OF-CHANGE

In addition to the facilities discussed in the previous
section, two additional options exist for reporting Impact-
of-Change. The first, called the Cumulative Impact-of-
Change option, will produce a single list of all distinct
entities that will be affected by a change to any of the
selected entities. The second, called the Individual
Impact-of-Change option, will produce separate lists of en-
tities for each of the originally specified entities. Each
of these lists represents the set of entities that will be
affected by a change to that specified entity. An example
of the distinction between these options is:

Suppose the specified entity selection criteria resulted
in an initial list consisting of two entities, Pers-File
and Acct-File, The selection of the Cumulative Impact-
of-Change option would result in a single list of all
distinct entities that would be affected by a change to
either Pers-File or Acct-File.

The selection of the Individual Irapact-of-Change option,
however, would result in the output of two lists of en-
tities, one containing the entities that would be af-
fected by a change to Pers-File, and the second contain-
ing the entities that would be affected by a change to
Acct-File

.

5 . 3 OUTPUT SYNTAX

The Output Syntax function produces output that in-
cludes, for each entity selected, all the information about
the entity that might have been entered into the IRD with
the use of either the add entity or add relationship com-
mands. The output structure for each entity and relation-
ship will reflect the same basic order and format as that in
which the information might have been originally input.

- 44 -

The output for this function may be shown in one of two
formats, as requested by the user.

The first format, which displays each entity^s rela-
tionships immediately after displaying the entity^s attri-
butes, provides the information in the following order:

ENTITY-1
[All ENTITY-1 information, in the same general

format as that used in the ADD ENTITY command]

RELATIONSHIP-1 in which ENTITY-1 participates
[All RELATIONSHIP-1 information, in the same

general format as that used in the
ADD RELATIONSHIP command]

RELATIONSHIP- j in which ENTITY-1 participates
[All RELATIONSHIP-j information]

ENTITY-n
[All ENTITY-n information]

RELATIONSHIP-1 in which ENTITY-n participates
[All RELATIONSHIP-1 information]

RELATIONSHIP-k in which ENTITY-n participates
[All RELATIONSHIP-k information]

The second format displays all entities and their at-
tributes first, followed by all distinct relationships in
which the entities participate. The following example il-
lustrates this format:

ENTITY-1
[All ENTITY-1 information, in the same general

format as that used in the ADD ENTITY command]

ENTITY-n
[All ENTITY-n information]

- 45 -

RELATIONSHIP-1 in which any entity above participates
[All RELATIONSHIP-1 information, in the same

format as that used in the ADD RELATIONSHIP
command]

RELATIONSHIP- j in which any entity above participates
[All RELATIONSHIP-j information]

The major difference between the two formats is that
the second will not duplicate the display of any relation-
ships that are shared by the set of selected entities.

The user, in specifying the. report or query contents,
also can designate the relationships that are to be output
along with the specified entities. The relationships may be
specified in one of three ways:

o All relationships. In this case all relationships in
which the specified entities participate will be out-
put.

o Relationships of certain types. In this case, the
user may specify one or more valid relationship-
types.

o No relationships. If this option is specified, then
no relationships will be output, and thus the desig-
nation of the output format is no longer relevant.

5.4 ENTITY-LISTS

The IRDS allows a user to create and manipulate lists
of access-names based on user-specified selection criteria.
These "entity-lists" may then be input to other IRDS output
functions and certain maintenance functions. The entities
contained in an entity-list are always a subset of those
contained in views specified by and authorized for the user.

- 46-

5.4.1 Creating Entity-Lists.

To create
entity-lists)

,

steps

:

an entity-list (without using existing
a user will perform the following sequence of

1. Select a set of entities. This set is specified in
one of the following ways:

o By selecting all entities. in the view(s) indi-
cated .

o By selecting entities by their access-names or a

substring within their assigned access-names.

o By selecting entities by their descriptive-names
or a substring within their assigned
descriptive-names.

o By selecting entities according to their rela-
tionship to other specified entities, and the
nature of the relationship with these other en-
tities (i.e., either direct or indirect).

2. Enter restriction criteria to reduce the initial set.
These criteria allow restricting the set:

o To certain entity-types,

o To those entities that participate in particular
relationship-types

,

o To those entities that contain certain attri-
butes.

o To those entities that contain certain
attribute-groups

.

o To those entities that have a particular sub-
string within a certain text attribute.

o To certain life-cycle-phases.

o To those entities that contain certain audit at-
tributes .

o To those entities that have a particular
alternate-name

.

- 47 -

3. Designating a name for the newly created entity-list.
The specified name must be one that has not previous-
ly been assigned to an entity-list during the same
IRDS session. If the user does not explicitly assign
a name to the new entity-list, the IRDS designates
the entity-list as the current list.

4. Designating an entity-list procedure name for the
procedure used to develop the entity-list. By using
this option, the entity-list procedure is saved and
may later be accessed and executed by the user, dur-
ing the same or a subsequent session. A later execu-
tion of the saved procedure will regenerate the ori-
ginal entity-list, taking into account any IRD up-
dates that might have occurred since the original
entity-list was generated.

If a user does not use the procedure name option to
save the entity-list procedure at the time it is ini-
tially entered, the procedure may still be saved
later during the session. The save entity-list pro-
cedure is discussed later in this chapter.

5.4.2 Entity-List Set Operations.

The IRDS allows the set operations of union, intersec-
tion, difference, and subtraction to be performed on two (or
sometimes more) existing entity-lists to produce a new
entity-list.

To execute any of these operations, the user specifies
the followings

o For union and intersection, the names of two or more
existing entity-lists; for difference and subtrac-
tion, the names of precisely two existing entity-
lists. In each case, one of the input entity-lists
may be the current list.

o The name of an entity-list into which the resulting
set of entities will be placed. If no such name is

specified, the resulting entity-list will be desig-
nated as the current list.

- 48-

The following are examples of how these functions
operate;

Suppose that three
entities

:

Ent ity-List-A

Entity-1
Entity-3
Entity-4
Entity-6
Entity-7

entity-lists cont

Ent ity-List-B

Entity-1
Entity-2
Entity-5
Entity-6

in the following

Ent i ty-List -C

Entity-1
Entity-3
Entity-4
Entity-5

Entity-list union of Entity-List-A, Entity-List-B , and
Entity-List-C will result in the creation of a new
Entity-List-D, which will contain all entities that
appear in any of the input lists, except for dupli-
cates. Specifically, the results of the entity-list
union will be;

Entity-List-D

Ent
Ent
Ent
Ent
Ent
Ent
Ent

ity-1
ity-2
ity-3
ity-4
ity-5
ity-6
ity-7

Entity-list intersection of Entity-List-A, Entity-
List-B, and Entity-List-C will result in the creation
of Entity-List-E, which will contain those entities
that appear in each of the input lists. Specifically,
the results of the entity-list intersection will be:

Entity-List-E

Ent ity-1

Entity-list difference of Entity-List-A and Entity-
List-B will create the new Entity-List-F , which will
contain precisely those entities that are not common
to both input lists. Specifically, the results of the
entity-list difference will be:

- 49 -

Ent i ty - List-F

Entity-2
Entity-3
Entity-4
Entity-5
Entity-7

Entity-list subtraction, in which Entity-List-C is
subtracted from Entity-List-A will result in the crea-
tion of the new Entity-List-G, .which will contain pre-
cisely those entities that are in Entity-List-A but
not in Entity-List-C. Specifically, the results of
the entity-list subtraction will be:

Entity-List-G

Entity-6
Entity-7

5.4.3 Other Entity-List Functions.

The name current list function allows an IRDS user to
assign an entity-list name, that does not currently exist,
to the current list. The current list can be empty.

The output entity-list function is used to display the
contents of a specified entity-list created by a user during
a particular IRDS session. The function will list the
access-names of all entities contained in the entity-list.
The contents of the current list may also be displayed.

The output entity-list names function will display the
names of all entity-lists that a particular user has defined
during the current session. For each entity-list name, the
number of access-names within the entity-list will also be
shown

.

5 . 5 PROCEDURES

The IRDS Procedure Facility allows a user to save the
sequence of operations that earlier had been used to create
entity-lists or IRD output. These procedures may later be
executed (in the same IRDS session or any future session) to
generate entity-list or IRD output.

- 50 -

As discussed in the following section, specific IRDS
functions are provided to save entity-list procedures and
output procedures, execute these procedures, display the
names and contents of existing procedures, and delete pro-
cedures when they are no longer needed.

5.5.1 Saving Procedures.

The Core IRDS Standard has separate functions for sav-
ing entity-list and output procedures. The procedure that
had been used to create any existing entity-list can be
saved. Saving an output procedure, however, refers specifi-
cally to the most recent output generated.

To save an entity-list procedure, a user:

o Specifies the name of an existing entity-list whose
procedure is to be saved. The entity-list may be the
current list.

o Assigns a name to the entity-list procedure.

o Optionally, enters explanatory text to be associated
with the specified entity-list procedure.

To save an output procedure, a user:

o Assigns a name to the output procedure.

o Optionally, enters explanatory text to be associated,
with the specified output procedure.

In either case, the specified procedure name must not
be one currently used as the name of either an output or
entity-list procedure.

5.5.2 Executing Procedures.

An IRDS user can execute a previously saved procedure
by specifying its name. For an entity-list procedure, the
user specifies the name of the procedure to be run and, op-
tionally, an entity-list name to be assigned to the entities
selected by the procedure. If no entity-list name is en-
tered, the list generated by the execution of the entity-
list procedure will, by default, become the current list.

51 -

5 . 5 . 3 Display ing Procedure Syntax and Names.

The IRDS has a function that can display, for all pro-
cedures or for specified procedures, any of the following:

o The procedure name.

o The kind of procedure (i.e., either an entity-list
procedure or an output procedure)

.

o The procedure description, which is explanatory text
that accompanies the procedure.

o The contents of the procedure itself.

The IRDS has another function that can display the
names of those procedures developed by a particular user.
The user may restrict the output to just entity-list pro-
cedures or just output procedures, and may display a
procedure's description with its name.

- 52 -

6 . SCHEMA MAINTENANCE AND OUTPUT

In this chapter, we will expand upon our discussion of
the IRD Schema and its description. These concepts were in-
troduced in Chapter 2 , and illustrated as the two top layers
in Figure 2. Readers of this overview who are not interest-
ed in the specific mechanisms for changing or supplementing
the System-Standard-Schema can skip this chapter and proceed
to Chapter 7.

We have seen that the schema includes ENTITY-TYPEs

,

RELATIONSHIP-TYPES, RELATIONSHIP-CLASS-TYPEs , ATTRIBUTE-
TYPES, and ATTRIBUTE-GROUP-TYPEs . These types are specified
as meta-entities in the schema. The meta-entities are
linked by meta-relationships, and both meta-entities and
meta-relationships can have meta-attributes associated with
them.

In the same way that the schema describes the entities,
relationships, and attributes in the IRD, the schema itself
is described using the terms meta-entity-type, meta-
relationship-type, and meta-attribute- type

.

Schema maintenance functions are also addressed in this
chapter, including methods for adding, deleting, and modify-
ing meta-entities and meta-relationships. The chapter ends
with a description of the various modes in which a user can
specify schema output.

6.1 THE CONTENT OF THE SCHEMA

As discussed previously, the IRD schema contains "enti-
ties” called meta-entities. These meta-entities can be
linked by meta-relationships, and both meta-entities and
meta-relationships can have meta-attributes associated with
them.

6.1.1 Meta-Entities.

A meta-entity can be any of the following:

- 53 -

o An ENTITY-TYPE.

O A RELATIONSHIP-TYPE,

o An ATTRIBUTE-TYPE.

O A RELATIONSHIP-CLASS-TYPE.

O An ATTRIBUTE-GROUP-TYPE.

o An ATTRIBUTE-TYPE-VALIDATION-PROCEDURE,

o An ATTRIBUTE-TYPE-VALIDATION-DATA.

O A VARIATION-NAMES-DATA.

O A LIFE-CYCLE-PHASE.

O A QUALITY-INDICATOR.

O A SCHEMA-DEFAULTS.

Examples of ENTITY-TYPE meta-entities are ELEMENT and
RECORD. Examples of RELATIONSHIP-TYPE meta-entities are
PROGRAM-CALLS-MODULE and RECORD-CONTAINS-ELEMENT. Examples
of ATTRIBUTE-TYPE meta-entities are DESCRIPTION, LENGTH, and
DATE-CREATED. An example of an ATTRIBUTE-GROUP-TYPE meta-
entity is ALLOWABLE-RANGE.

6.1.2 Meta-Relationships.

Meta-relationships are associations between meta-
entities; only one such association between two given meta-
entities is permitted by the Core IRDS. Meta-relationships
are simply designated by the term "meta-relationship" plus
the names of the pair of component meta-entities; meta-
relationships are not given individual names.

For example, to document the fact that LENGTH is an al-
lowable attr ibute-type for ELEMENT (i.e., that ELEMENTS can
have LENGTH attributes) , we need to associate the meta-
entity LENGTH with the meta-entity ELEMENT. In the IRDS
schema, this is done by saying that a meta-relationship ex-
ists between the meta-entities LENGTH and ELEMENT. Figure
4A illustrates this meta-relationship.

- 54-

Examples of Meta—Relationships

Associating Two Meta— Entities

4A. An Entity—Type Associated with an Attribute-Type

4B. A Relationship—Type Associated with an Attribute—Type

KEY

= meta— entities

I

I

meta-relationshics !

j

Figure 4

- 55 -

similarly, to associate an attribute-type with a

relationship-type, a meta-relationship is constructed. The
first member is the relationship-type, and the second member
is the at tr ibute- type . For example, the attribute-type
RELATIVE-POSITION is associated, in the Core System-Standard
Schema, with the relationship-type RECORD-CONTAINS-ELEMENT.
(This relationship-type documents the relative position of
an ELEMENT in a RECORD.) This is implemented in the schema
by establishing a meta-relationship between the meta-entity
RECORD-CONTAINS-ELEMENT and the meta-entity RELATIVE-
POSITION. Figure 4B shows this meta-relationship.

The fact that two particular entity-types are the com-
•ponents of a particular relationship-type is represented in
the schema by two meta-relationships, one linking each of
the two ENTITY-TYPE meta-entities to the RELATIONSHIP-TYPE
meta-entity. For example, PROGRAM-CALLS-MODULE is a meta-
entity in the schema. Without further information, however,
the IRDS does not infer that PROGRAM, CALLS, or MODULE are
in any way associated with the given relationship-type. The
association must be made explicit, with one meta-
relationship between PROGRAM and PROGRAM-CALLS-MODULE, and
another between MODULE and PROGRAM-CALLS-MODULE. This use
of two meta-relationships to implement the association of a
relationship-type with its component entity-types is illus-
trated in Figure 5.

6.1,3 Meta-Attributes.

Meta-attributes perform a descriptive role with respect
to meta-entities and meta-relationships. Generally speak-
ing, there are four kinds of meta-attributes:

1. Documentation meta-attributes. Using them, a user
can document the purpose of the meta-entity. For ex-
ample, the Core System-Standard Schema contains the
PURPOSE meta-attribute-type.

2. Audit meta-attributes, which are analogous to the au-
dit attributes in the IRD. Examples of audit meta-
attribute-types are ADDED-TO-SCHEMA-BY and DATE-
ADDED-TO-SCHEMA

.

3. Schema control meta-attributes, which provide certain
controls over what can and cannot be done in the
schema. For example, some meta-attributes can be used
to prevent deletion of a meta-entity, or can be
structured to require the use a privileged function
to delete a meta-entity. Examples are SYSTEM-LOCK

- 56-

fixdmple of a Relationship—Type Meta— Entity

Implemented by Two Meta—Relationships

i meta— entity

! PROGRAM

1
(entity-type)

I

KEY

1
= meta— entities

j

meta— relationships

Figure 5

- 57 -

and INSTALLATION-LOCK.

4. Dictionary control meta-attributes, which are used to
impose rules on the dictionary. These include meta-
attributes that specify:

o Allowable lengths (minimum and maximum) of
names of entities of a given type (e.g.,
MINIMUM-NAME-LENGTH)

.

o Allowable lengths of the attributes of a given
type (e.g., MINIMUM-ATTRIBUTE-LENGTH).

o Whether a particular entity-type can have more
than one attribute of a given type, and if so,
what the maximum allowable number is (e.g.,
SINGULAR/PLURAL)

.

6.1.4 An Example of a Schema Structure.

To illustrate how meta-entities, meta-relationships,
and meta-attributes work together. Figure 6 shows a part of
the Core IRDS System-Standard Schema involving FILE. The
entity-type FILE, the relationship-types FILE-CONTAINS-
RECORD and USER-PROCESSES-FILE, and the at tr ibute-types
DATE-CREATED and NUMBER-OF-RECORDS are all meta-entities.

As the figure shows, the relationship-types FILE-
CONTAINS-RECORD and USER-PROCESSES-FILE are connected to
FILE by means of meta-relationships, indicating that FILE
does in fact participate in these two relationship- types

.

The meta-relationships between FILE and DATE-CREATED, and
between FILE and NUMBER-OF-RECORDS , indicate that these two
attribute-types are associated with FILE. Also illustrated
are two meta-attributes: a DATE-ADDED-TO-SCHEMA meta-
attribute associated with the meta-entity FILE; and a
SINGULAR/PLURAL meta-attribute, associated with the meta-
relationship linking FILE and DATE-CREATED.

6.1.5 Other Schema Structures.

The Core System-Standard Schema provides facilities
that allow an organization to control the values, or ranges
of values, of non-textual attribute-types. ATTRIBUTE-TYPE-
VALIDATION-PROCEDURE meta-entities represent procedures that
can be used to validate these attributes. ATTRIBUTE-TYPE-
VALIDATION-DATA meta-entities contain sets of valid values
for specific attribute-types.

- 58 -

Subset

of

Uie

f^ore

IIU)S

Syslern

SluiuJurd

Schemd

- 59 -

The Core System-Standard Schema also contains one
SCHEMA-DEFAULTS meta-entity, although others that are non-
standard may be added by an organization. This meta-entity
is used to store the default lengths of names and attri-
butes. These defaults are used for all entity-types and
attribute-types for which no explicit name and attribute
lengths are specified.

The meta-entities that support the Version-Identifier,
Life-Cycle-Phase, and Quality-Indicator facilities will be
discussed in Chapter 8, where the IRDS naming and control
facilities are described.

6.2 SCHEMA MANIPULATION

The IRDS user can manipulate and redefine the schema by
adding, modifying,- and deleting meta-entities and meta-
relationships. These functions can be performed only by
users who have the required access permissions. For more
information on security, see Chapter 8.

As stated in Chapter 3, any meta-entity can exist in
either the installed or the not- installed states. An in-
stalled meta-entity is "effective,” in the sense that in-
stances of these installed meta-entities can exist in the
IRD. For example, the entity-type DOCUMENT is installed in
the. Core System-Standard Schema. Therefore, 1984-Annual-
Report can exist as a DOCUMENT entity. However, no in-
stances of types defined by not- installed meta-entities may
exist in the IRD. If a new entity-type DATABASE were added
to the schema, then as long as DATABASE were not- installed ,

Financial-Database could not exist as a DATABASE entity.
The not-installed state is useful, because an organization
can add meta-entities in the not-installed state to evaluate
their usefulness before installing them to make them effec-
tive for IRD operations.

6.2.1 Adding Meta-Entities.

An IRDS user, with the appropriate permissions, can add
a new meta-entity (and a set of associated meta-attributes)
to the schema.

Meta-entities of the following types may be added to
the schema. Upon being added, the meta-entities will ini-
tially exist in the not-installed state:

- 60-

O ENTITY-TYPE.

O RELATIONSHIP-TYPE.

O ATTRIBUTE-TYPE.

O RELATIONSHIP-CLASS-TYPE,

o ATTRIBUTE-GROUP-TYPE.

o ATTRIBUTE-TYPE-VALIDATION-PROCEDURE

.

O ATTRIBUTE-TYPE-VALIDATION-DATA

.

O VARIATION-NAMES-DATA.

The following types of meta-entities may also be added,
but the meta-entities will be immediately placed in the in-
stalled state:

O LIFE-CYCLE-PHASE,

o QUALITY-INDICATOR.

O SCHEMA-DEFAULTS.

New meta-entities may not be assigned the names of ex-
isting meta-entities.

6.2.2 Installing Meta-Entities.

One or more previously added ENTITY-TYPE,
RELATIONSHIP-TYPE, or ATTRIBUTE-TYPE meta-entities can be
"activated" in the IRD by changing them from the not-
installed to the installed state.

The installation of certain meta-entities causes other
meta-entities associated with them to also be installed.
This "ripple" effect will occur under the following condi-
tions :

o When an ENTITY-TYPE is installed, the IRDS will au-
tomatically install all associated ATTRIBUTE-TYPE,
ATTRIBUTE-GROUP-TYPE, and VARIATION-NAMES-DATA meta-
entities.

- 61-

o When an ATTRIBUTE-GROUP-TYPE is installed, the IRDS
will automatically install all component ATTRIBUTE-
TYPE meta-entities.

o When an ATTRIBUTE-TYPE is installed, the IRDS will
automatically install all associated ATTRIBUTE-TYPE-
VALIDATION-DATA meta-entities.

o When a RELATIONSHIP-TYPE is installed, the IRDS will
automatically install all associated ATTRIBUTE-TYPE,
ATTRIBUTE-GROUP-TYPE, and RELATIONSHIP-CLASS-TYPE
meta-entities

.

o When a RELATIONSHIP-CLASS-TYPE is installed, the IRDS
will automatically install all associated
RELATIONSHIP-TYPE meta-entities. A RELATIONSHIP-
CLASS-TYPE may be installed if and only if it is as-
sociated with at least one installed RELATIONSHIP-
TYPE.

If installation of a meta-entity causes the installa-
tion of another meta-entity whose name had not been given by
the user, the IRDS will generate a name and communicate it
to the user.

6,2,3 Modifying Meta-Entities,

A user can associate new meta-attributes with meta-
entities, and modify and delete existing meta-attributes of
meta-entities. For example, the allowable length of an as-
signed access-name for a particular meta-entity can be modi-
fied by changing the MINIMUM-NAME-LENGTH and MAXIMUM-NAME-
LENGTH meta-attributes for that meta-entity.

Either installed or not-installed meta-entities may be
modified. If the modification of an installed meta-entity
would invalidate any of the current contents of the IRD, the
modification is not performed, and the IRDS informs the user
of this error condition.

6.2.4 Deleting Meta-Entities,

A user can delete an existing meta-entity from the
schema. Both installed and not-installed meta-entities may
be deleted.

- 62-

Several rules apply to this function. The meta-entity
to be deleted:

o Must not be a member of a meta-relationship (except
for "automatic" meta-relationships, (e.g., meta-
relationships linking audit attr ibute- types with
entity-types))

.

o Must not have instances in the IRD.

o Must not have a value of ON for the SYSTEM-LOCK
meta-attribute. (For each meta-entity, the value of
this meta-attribute is set and maintained by the im-
plementation. An ON value implies that the presence
and precise definition of the meta-entity is neces-
sary to the operation of the IRDS. An ON value can-
not be changed by the user organization.)

o Can have a value of ON for the INSTALLATION-LOCK
meta-attribute only when global access permission has
been granted to the user (see Section 8.6.1). (This
meta-attribute allows the organization to have addi-
tional control over the modification of the IRD sche-
ma .

)

6.2,5 Adding Meta-Relationships.

As stated earlier, meta-relationships are associations
between meta-entities. When adding a new meta-relationship
to the schema, the user specifies the meta-entities that are
to be members of the meta-relationship, and the meta-
attributes to be associated with the lineta-relationship. The
member meta-entities can be either installed or not-
installed

.

Frequently, adding a meta-relationship causes a meta-
entity to become installed. Suppose that a meta-
relationship whose members are instances of one of the fol-
lowing pairs is added to the schema. If the first member of
the pair is already installed, the IRDS will automatically
install the second member.

O ENTITY-TYPE and ATTRIBUTE-TYPE.

- 63 -

o ENTITY-TYPE and ATTRIBUTE-GROUP-TYPE.

O ENTITY-TYPE and VARIATION-NAMES-DATA.

O RELATIONSHIP-TYPE and ATTRIBUTE-TYPE,

o RELATIONSHIP-TYPE and ATTRIBUTE-GROUP-TYPE.

O RELATIONSHIP-CLASS-TYPE and RELATIONSHIP-TYPE.

O ATTRIBUTE-GROUP-TYPE and ATTRIBUTE-TYPE.

O ATTRIBUTE-TYPE and ATTRIBUTE-TYPE-VALIDATION-DATA.

For example, .using the first pair, when the meta-
relationship whose first member is the entity-type PROGRAM
and whose second member is the attribute-type LANGUAGE is
installed, the IRDS will automatically install LANGUAGE if
PROGRAM has already been installed.

6.2.6 Modifying Meta-Relationships.

A user can change the meta-attributes of an existing
meta-relationship in the schema. The meta-relationship may
include either installed or not-installed meta-entities.

The user supplies the names of the meta-entities making
up the meta-relationship, and then associates new meta-
attributes, or modifies or deletes existing meta-attributes
of the meta-relationship.

6.2.7 Deleting Meta-Relationships.

To delete an existing meta-relationship from the sche-
ma, the user specifies the two member meta-entities (which
may be either installed or not-installed)

.

6.2.8

Replacing Meta-Relationships.

A user can replace one meta-relationship in the IRD
schema with another. This function is actually a special-
purpose combination of two schema functions: the deletion
followed by the addition of meta-relationships.

- 64 -

The use of the replacement function is required in ord-
er to substitute one ‘ ins tal led ATTRIBUTE-TYPE-VALIDATION-
DATA meta-entity for another in an existing meta-
relationship. Carrying out this procedure in two steps
would violate a schema integrity rule for installed meta-
entities. This rule requires that an ATTRIBUTE-TYPE meta-
entity that is linked through a meta-relationship to an
ATTRIBUTE-TYPE-VALIDATION-PROCEDURE meta-entity must also be
linked, via a meta-relationship, to an ATTRIBUTE-TYPE-
VALIDATION-DATA meta-entity.

In the replacement of a meta-relationship, the user can
either allow or suppress the assignment of the meta-
attributes (of the meta-relationship being replaced) to the
new meta-relationship.

6.2.9 Modifying Meta-Entity Names.

This function is used to change the name of an existing
meta-entity in the schema. The meta-entity may be in either
the installed or the not-installed state. However the new
meta-entity name may not already appear in the schema as a

meta-entity name or alternate meta-entity name.

The function has the effect of deleting the existing
meta-entity from the schema and creating a new meta-entity.
The new meta-entity will:

o Have the same meta-attributes as those of the previ-
ous meta-entity.

o Participate in the same meta-relationships as the
previous meta-entity.

o Have the same dictionary instances as did the previ-
ous meta-entity.

6.3 SCHEMA OUTPUT

.This function, restricted to those users having the re-
quired schema access permissions (see section 8.6.1), pro-
duces generalized output on the contents of the schema.

- 65-

A user first specifies whether the output is to be lim-
ited to installed meta-entities only, to not-installed .

meta-entities, or is to include both categories.

The user must select the meta-entities to be displayed.
These meta-entities may be selected by specifying one of the
following

:

o That all meta-entities are to be displayed.

o That all meta-.enti ties of one or more specific meta-
entity types are to be displayed.

o That only the meta-entities whose names are specified
are to be displayed.

The resulting set of meta-entities may then be sorted
based on the standard set of sort parameters. Each parame-
ter may be designated as ascending or descending. The
parameters available are:

o Meta-entity-type,

o Meta-entity name.

o Non-repeating meta-attribute-types associated with a
meta-entity.

The user also must specify the information that should
be shown for each meta-entity in the output, along with the
sequence in which this information should appear. This in-
formation can include:

o Meta-entity names,

o The meta-entity-type.

o One or more of a meta-entity's meta-attributes.
(There is an option to show all meta-attributes.)

o All, or optionally none, of the meta-relationships in

which a meta-entity participates. The user may re-
quest that only direct, only indirect, or both direct
and indirect meta-relationships be included. (Meta-
entities A and Z are directly meta-related if there
is a meta-relationship between A and Z; they are

- 66-

indirectly me ta-rela ted if A is directly meta-related
to B, B is directly meta-related to C, etc., eventu-
ally leading to a meta-entity directly meta-related
to Z.) The display of all or none of the meta-
attributes of the meta-relationship may also be
speci f ied

.

The user can specify the destination to which the out-
put is to be routed. A system default destination will be
used if no destination is specified.

Finally, a character string may be
as a title for the schema output. This
fied to appear on either the first page
output

.

specified to be used
title can be speci-
or every page of the

- 67 -

7. THE IRD-IRD INTERFACE

The IRD-IRD Interface Facility is an important feature
of the Core Standard IRDS because it is the only controlled
means for moving data from one IRD to another. If an organ-
ization has two or more dictionaries, each under the control
of a Standard IRDS, the facility allows the organization to
select and transport some or all of the entities and rela-
tionships (along with their attributes) from one IRD to
another

.

This facility supports the transportability of IRD
data, even in the case where the two Standard IRDSs were
developed by different vendors and are resident on different
hardware systems at different locations. In this latter
case, it is assumed that either a communications link exists
between the two computer systems or that some other means of
physically moving the data (e.g., transport of tapes) is em-
ployed. The Core Standard IRDS does not address how this
physical movement takes place.

This chapter describes problems, that may arise when an
IRD-IRD transfer is attempted, and presents the transfer
methodology that overcomes these problems. The IRD from
which the data is exported is called the "source diction-
ary," and the IRD into which the data is imported is the
"target dictionary," The schema of the source dictionary is
the "source schema," and the schema of the target dictionary
is the "target schema."

7.1 INTEGRITY CONSIDERATIONS

This section discusses the types of incompatibilities
that may exist between the source and target schemas and the
associated source and target dictionaries.

7.1.1 Schema Incompatibility.

Since the Core Standard IRDS provides facilities that
allow an organization to customize an IRD schema, both the
source and target schemas may have been customized in a

manner that will make them "incompatible." If such differ-
ences exist and are not resolved before the data transport,
they can affect the integrity of the target dictionary. The
following are examples where the source and target schemas

- 69 -

may not be compatible:

o The source dictionary might contain an entity-type
that does not exist in the target schema. In this
case, an entity of this type could not be stored in
the target dictionary.

o Even if the source and target schemas contain the
same entity-types, an entity-type in the source might
have associated with it an attribute-type that does
not exist in the target schema. It would be possible
to import a corresponding entity into the target dic-
tionary without the particular attribute. However, a
loss of information would occur.

o Each of the schemas may contain different rules for
the minimum and maximum lengths of assigned access-
names for entities of a given type. Consider the
following example:

- The minimum length for an assigned access-name of
an ELEMENT entity is 6 characters in the source
schema and 8 characters in the target schema.

“ The maximum length for such names is 36 charac-
ters in the source schema, and 32 characters in
the target schema.

When an ELEMENT is extracted from the source diction-
ary, the length of the assigned access-name of this
entity may be 7 characters, although this is not le-
gal in the target dictionary. The same situation oc-
curs if the length of this name is 34 characters,
since the maximum allowable length in the target
schema is 32.

o A schema may contain a list of the legal attributes
or ranges of attributes for an attribute-type. Prob-
lems in the import of data exist if a value is legal
in the source but not in the target.

Some differences between two schemas, however, may not
be significant. Consider, for example, the audit meta-
attributes, such as DATE-ADDED-TO-SCHEMA, associated with
the same meta-entity in two different schemas. They will in
general be distinct, but that does not make any difference
to the importing of data, since the target values will be
used

.

- 70-

Thus, there is "schema compatibility" between the
source and target schemas when:

1. Every meta-entity in the source schema, except for
life-cycle-phases, is defined in the target schema.

2. The integrity rules (in the source schema) for the
data in the source dictionary are compatible with the
integrity rules (in the target schema) for the data
in the target dictionary.

7.1,2 Dictionary Incompatibility.

The above discussion concerned incompatibilities
between source and target schemas . Incompatibilities re-
garding content differences between the source and target
dictionaries can also exist. The following examples illus-
trate such situations:

o The mechanism that implements the IRDS Access Control
Facility resides in the IRD, rather than the schema.
This facility includes the DICTIONARY-USER identifi-
cations, the VIEW entities, the permissions associat-
ed. with the views, and the assignment of the views to
IRDS users. When the data from the source is brought
into the target dictionary, the IRD-IRD Interface Fa-
cility must be able to establish access privileges in
the target dictionary.

o The revision-numbers of entities with the same as-
signed access-name in the source and target dic-
tionaries may not be the same, since more modifica-
tions may have taken place in one IRD than the other.

o Importing the source dictionary audit attributes such
as DATE-ADDED and ADDED-BY is not meaningful, because
the date/time of creation and the responsible users
will be different for the target dictionary. As dis-
cussed in section 7.2, the IRD-IRD Interface Facility
will reset these attributes to reflect the import
date and the IRDS user who performed the importing.

- 71 -

7.2 THE INTERFACE PROCEDURE

The IRD-IRD Interface Facility can be used, together
with some user actions, to correct incompatibilities between
the source and target schemas and dictionaries. The follow-
ing steps are required to export data from a source diction-
ary, and to then import it into a target dictionary:

1. The IRDS user specifies the subset to be exported by
designating an entity-list or an entity-list pro-
cedure.

2. The subset is exported from the source dictionary us-
ing the export dictionary function. The source sche-
ma is also extracted, because it will be necessary to
check its compatibility with the target schema. At
this point the IRD subset exists in Dictionary Export
format, and the schema in Schema Export format. (The
IRDS Specifications define the sequence of entities,
relationships, etc;, in an exported IRD subset, and
the sequence of meta-entities, meta-relationships,
etc., in an exported schema.) The exported IRDS sub-
set and schema are each in a physical format speci-
fied by the International Standard ISO 8211, Specifi-
cation for a Data Descriptive File for Information
Interchange [11]. Use of this format guarantees that
the data can be carried or transmitted from the com-
puter system on which the source dictionary resides
to the computer system on which the target dictionary
exists. The data being exported is not intended to
be available for user processing while it is in this
export format, because: (a) the required security and
integrity constraints that control IRD access could
not be enforced; and (b) the desired audit trail for
such processing would not be available.

The Core Standard IRDS will not allow an IRD to be im-
ported unless the source and target schemas are compatible.
If the source is incompatible with the target (as determined
by the check schema compatibility function) , the following
intermediate processing (Steps 3, 4, and 5) will be required
to achieve compatibility. If the source and target schemas
are compatible. Steps 3, 4, and 5 are not necessary.

- 72-

3. The Dictionary Export subset is loaded into an "emp-
ty" IRD. At this time a schema corresponding to the
subset is also created. There are two options for
designating the schema to be used:

a) A file name containing a schema in Schema Export
format

.

b) The Core System-Standard Schema.

An "empty" IRD is not empty in the literal sense of
the word. Rather, it contains entities dealing with
the IRDS Control Facilities (see Chapter 8) that will
have to be in effect for this new IRD. Specifically,
an "empty" IRD will contain the following:

a) A DICTIONARY-USER entity.

b) A VIEW entity for each life-cycle-phase meta-
entity in the schema.

The DICTIONARY-USER and VIEW entities will exist
in the life-cycle-phase named SECURITY. The
class of this phase is UNCONTROLLED.

c) DICTIONARY-USER-HAS-VIEW relationships involving
the DICTIONARY-USER and VIEW entities.

The audit attributes are initialized to the date and
time of creation of the "empty" IRD and corresponding
schema

.

Step 3 can be performed at the site where the source
dictionary is located, or at the target site, or even
at a completely different location. The availability
of a Standard IRDS is required at the selected loca-
tion.

4. The source (or target) dictionary subset, and its
schema, must be modified so that the two schemas are
compatible. The Core Standard IRDS contains a schema
comparison function. If the comparison indicates a
lack of compatibility, the IRDS provides the user
with an analysis showing the reasons for the incompa-
tibility. A user must then make changes to one or
both of the schemas using the Schema Maintenance Fa-
cility. This may involve changing entity names, at-
tribute lengths, etc.

- 73 -

5. Once schema compatibility is achieved, the contents
of the IRD subset and its schema are again exported
in Export format.

6. This new source dictionary subset and schema may now
be imported into the target dictionary by the import-
ing IRDS. The IRDS requires that a life-cycle-phase
be designated in the target dictionary for the subset
to be imported. No entities can exist in this phase
in the target dictionary at the time of import. If
the target dictionary is not "empty," the IRDS will
examine the revision-numbers of the entities in the
source IRD and will increase them so that they are
greater than the revision-numbers of any entities in
the target dictionary that have the same assigned
access-names and variation-names.

During the import, the target IRDS checks the as-
signed access-name and variation-name for potential
conflict with system-generated access-names in the
target dictionary. The method for checking is the
same as that discussed for the add entity function.
If a potential conflict exists, the entity is written
to an error file, for subsequent resolution by the
user.

After all entities, and their associated attributes,
of the import set have been imported, the relation-
ships and any associated attributes in the import set
are loaded into the target dictionary.

- 74-

8 . IRDS CONTROL FACILITIES

The Core
tant in popul
on the conten
Facility; (2
Indicator s

;

these faciiit
presents more
control facil

IRDS contains five facilities that are impor-
ating and maintaining the IRD and in reporting
ts of the IRD. These are: (1) the Versioning
) the Life-Cycle-Phase Facility; (3) Quality-
(4) Views; and (5) Security. An overview of
ies appears in Chapter 3. This chapter
detail on the structure and use of these five
ities

.

8.1 THE VERSIONING FACILITY

A version-identifier is part of the access-name and
descriptive-name of an entity. Every entity has a version-
identifier (by default, if not explicitly specified) but the
use of this facility is optional.

A complete version-identifier is composed of two
parts—a variation-name and a revision-number. The ex-
istence of a variation-name is optional—only those entities
that have been explicitly assigned variation-names have
them. All entities have revision-numbers—a default mechan-
ism allows their specification to be optional. To specify a
complete version-identifier using the Command Language syn-
tax, the user encloses the version-identifier in parentheses
and appends it to the assigned access-name and the assigned
descriptive-name. Within these parentheses the variation-
name (if used) is followed by the revision-number, separated
by a colon.

A revision-number of "1" represents the "0th" revision
(e.g., the initial entity before the first revision). If
the user does not specify a revision-number when creating a

new entity, the revision-number defaults to 1. This default
mechanism operates for all subsequent revisions (i.e., if a

user does not specify a valid new revision-number, the
revision-number default is one greater than the highest
revision-number associated with the assigned access-name and
the variation-name).

Suppose, for example, a certain statistical module ex-
ists that produces results accurate to 5 decimal places, and
a similar statistical module provides results accurate to 8

places. We can describe both with the assigned access-name
Stat-Module, and differentiate the two with different

- 75-

variation names. Thus, we would have Stat-
Module (Preci sion- 5) and Stat-Module (Preci sion-8) . The sixth
revision of the statistical module with 5 digit precision
would be represented as Stat-Module (Preci sion-5 : 7) . The
statistical module with 8 digit precision and no revisions
would be represented as Stat-Module (Precision-8 : 1)

.

All access-names, including those with the same as-
signed access-name and different variation-names or
revision-numbers, represent distinct entities. In addition,
the version-identifier associated with an access-name of an
entity must be identical to the version-identifier in the
descriptive-name of that entity. Thus, if there is an enti-
ty with the access-name SSN(4), and this entity has the as-
signed descriptive-name Social-Security-Number, then the
full descriptive-name of the entity automatically becomes
Social-Security-Number (4)

.

8.2 THE LIFE-CYCLE-PHASE FACILITY

The Life-Cycle-Phase Facility in the Core IRDS:

o Allows an organization to define life-cycle-phases
that correspond to the methodology used by the organ-
ization.

o Provides facilities to assign each IRDS entity to one
of the defined phases.

o Enforces integrity rules controlling the movement of
entities from one phase to another.

Each life-cycle-phase is represented as a meta-entity
in the IRD schema. Thus, the specific phases required by an
organization can be created using the Schema Manipulation
Facility discussed in Chapter 6.

As will be described more fully in Section 8.4, an IRDS
user always operates in a "view," and each view is associat-
ed with a life-cycle-phase. Hence, when an entity is added
to the dictionary, we can say that the entity is "in" the
life-cycle-phase associated with the view in which the user
is working.

- 76-

Every . 1 i fe-cycle-phase belongs to a "phase class," and
the Core Standard IRDS recognizes three such classes:

1. UNCONTROLLED — UNCONTROLLED phases represent "non-
operational" stages of a system life cycle, such as
"specification," "design," or "development." There
are no integrity rules for these phases, and an or-
ganization can define and name as many such phases as
it requires.

2. CONTROLLED — There can only be one CONTROLLED phase,
called CONTROLLED-PHASE. It is designed to be used
for entities in the IRD that describe data existing
in "operational" systems. Special integrity rules
govern the entities in this phase (see Section
8 . 2 . 1)

.

3. ARCHIVED. — The Core Standard IRDS can only have one
ARCHIVED life-cycle-phase, -called ARCHIVED-PHASE. It
is used to document and classify entities no longer
in use. The availability of this phase allows a

phase-related audit trail to be maintained, and also
allows the "rolling back" of archived entities to the
controlled or an uncontrolled phase if required. The
special integrity rules that apply to this phase are
discussed in the following section.

8.2,1 Life-Cycle-Phase Integrity Rules.

As mentioned previ
forces specified integr
CONTROLLED or ARCHIVED
tegrity rules for entit
phase.) These rules are
System-Standard entity-
relationship-types that

ously, the Core Standard IRDS en-
ity rules for entities in either the
life-cycle-phase. (There are no in-
ies in an UNCONTROLLED life-cycle-
based on a specified hierarchy of
types and a set of System-Standard
are said to be "phase-related."

The hierarchy of entity-types is defined by the follow-
ing list. The "highest" in the hierarchy is the first
entity-type in the list, and the "lowest" is the last.

SYSTEM
PROGRAM
MODULE
FILE
DOCUMENT
RECORD
ELEMENT

- 77-

This hierarchy is significant only in connection with the
Life-Cycle-Phase Facility, and cannot be expanded or modi-
fied. Thus, the Core Standard IRDS does not enforce the
life-cycle-phase integrity rules for entity-types (and
relationship- types) added using the extensibility facility.

The System-Standard relationship-class-types designated
as phase-related are CONTAINS and PROCESSES. The specific
phase-related relationship- types in these two classes are;

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROGRAM
SYSTEM-CONTAINS-MODULE

PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE

MODULE-CONTAINS-MODULE

FILE-CONTAINS-FILE
FILE-CONTAINS-DOCUMENT
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT

DOCUMENT-CONTAINS-DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTAINS-ELEMENT

RECORD-CONTAINS-RECORD
RECORD-CONTAINS-ELEMENT

ELEMENT-CONTAINS-ELEMENT

SYSTEM-PROCESSES-FILE
SYSTEM-PROCESSES-DOCUMENT
SYSTEM-PROCESSES-RECORD
SYSTEM-PROCESSES-ELEMENT

PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES-ELEMENT

MODULE-PROCESSES-FILE
MODULE-PROCESSES-DOCUMENT
MODULE-PROCESSES-RECORD
MODULE-PROCESSES-ELEMENT

- 78-

The general Integrity Rule for entities in the Con-
trolled life-cycle-phase is:

An entity can be in the CONTROLLED life-cycle-phase
only if all entities whose types are below its type
in the above hierarchy and that are connected to it
with phase-related relationships are also in the
CONTROLLED 1 i fe-cycle-phase

.

In other words, if an entity A is to be moved to
CONTROLLED-PHASE , and A is associated (by means of phase-
related relationships) with other entities whose types are
lower in the hierarchy, then either:

o All the other entities must already be in
CONTROLLED-PHASE, or

o All the other entities not in CONTROLLED-PHASE must
be moved to CONTROLLED-PHASE before entity A can it-
self be moved there.

An Integrity Rule also exists for entities in the AR-
CHIVED life-cycle-phase. It is:

An entity can be in the ARCHIVED life-cycle-phase
only if all entities whose types are below its type
in the above hierarchy and that are connected to it
with phase-related relationships are in either the
CONTROLLED or ARCHIVED life-cycle-phase.

These Integrity Rules can best be illustrated by an ex-
ample. Suppose that an entity named Payroll-File exists in
the IRD, and that this FILE contains the RECORD Payroll-
Record. This association would be represented by a FILE-
CONTAINS-RECORD relationship with members Payroll-File and
Payroll-Record

.

It would be reasonable to expect that if the Payroll-
File is operational, Payroll-Record must also describe
RECORDS in an operational system. Likewise if Payroll-
Record contained the field Employee-Salary, one would expect
that, for the record to be operational, the entity
Employee-Salary (of type ELEMENT) would also have to be
operational. The IRDS enforces these Integrity Rules.

Integrity constraints also exist on the creation of new
versions of entities moved from one phase to another. If a

user requests the movement of an entity from a CONTROLLED to
an ARCHIVED life-cycle-phase, a new entity with a different

- 79 -

version-identifier cannot be created. If an ARCHIVED entity
is moved to an Uncontrolled phase, a new entity with a dif-
ferent version-identifier must be created to preserve the
integrity of the entity that had been ARCHIVED.

In all other cases, the user may choose whether or not
to use the New Version Option. If the user does not choose
this option, each specified entity is removed from its ex-
isting phase and moved to the specified new phase. However,
if the user chooses the New Version Option, the following
occur s

:

o For each entity specified, the IRDS creates a new en-
tity in the specified new phase. Each such entity
will have the same assigned access-name and
variation-name, but the revision-number will be dif-
ferent .

The revision-number of the newly-created entity (or
entities) may either: 1) default to one greater than
the highest revision-number associated with the
variation-name and assigned access-name or; 2) the
user may specify a \ralid version-identifier to be
used for each new entity. Such a specified version-
identifier must have a revision-number greater than
any revision-number for any entity having the same
assigned access-name and the same variation-name.

o The IRDS creates new relationships corresponding to
existing relationships between the specified entity
(or entities) and other entities in the dictionary.
The new relationships will contain the same attri-
butes and attribute-groups as the existing relation-
ships. (For some exceptions to this rule, see the
discussion of the Move-Entity-Life-Cycle-Phase func-
tion in the Core IRDS Specifications [1].)

8 . 3 QUALITY-INDICATORS

The Quality-Indicator Facility in the Core IRDS allows
an organization to define quality-indicators and assign them
to entities. These quality-indicators denote such things
as: (1) the level of standardization of element entities
(e.g., program standard, agency or organization standard,
national standard, or international standard);

-80

and/or (2) the degree to which the entity satisfies the
organi zat ion’' s Quality Assurance or Quality Testing metho-
dology.

Each quality-indicator is a meta-entity in the IRD
schema. The Core System-Standard Schema does not include
any indicators, so an organization will have to explicitly
define a set of quality-indicator meta-entities to make use
of this facility. Although indicators are not attributes,
they are handled similarly when adding, modifying, or re-
porting on entities.

These quality-indicators are available for documenta-
tion and search purposes, but no integrity rules are ap-
plied. As discussed in Chapter 11, a future module could
specify additional functions for the use of these indica-
tors.

8 . 4 VIEWS

A user perceives a view as a logical subset of the dic-
tionary. All the entities in the view are in the same
life-cycle-phase. The correspondence between views and .

life-cycle phases is discussed in Section 8.5.

A view is:

o A set of entities of specified types, with the enti-
ties" attributes and attribute-groups.

o A set of relationships of specified types, with the
relationships" attributes and attribute-groups, that
exist between the entities in the view. A user,
working in a specific view, who has read access to
entities in other views or life-cycle-phases, can use
these entities if relationships to the entities are
established from the designated view.

o A set of specifications of the operations that may be
performed within the view.

Thus, a view defines an environment in which a user
works with an IRD. A view can be shared by many users. A
user may also have access to many views.

- 81-

8.4.1 Definition of a View.

Structurally, VIEW is an entity-type in the Core IRDS
System-Standard Schema. (We emphasize the distinction
between the entity-type and the dictionary subset; "VIEW” is
used for the former and "view" for the latter.) The defini-
tion of a view and access permissions for users of that view
are specified by attributes of the corresponding VIEW enti-
ty. The VIEW entity is connected to DICTIONARY-USER enti-
ties to allow these users to access the view. When a user
is assigned more than one view, one of these will be desig-
nated as the "default view."

8.4.2 Access to the IRDS Through a View.

When a user accesses the IRD, the default view of the
dictionary will be presented to the user unless the user
specifically indicates that the default view is not to be
used. For dictionary output, one or more existing views (to
which the user has access) can be requested by the user.
The output instructions will operate on the union of the en-
tities contained in multiple views.

8.5 CORRESPONDENCE BETWEEN VIEWS AND LIFE-CYCLE-
PHASES

As previously mentioned, a view can only, contain enti-
ties in a single life-cycle-phase. Entities in a single
life-cycle-phase may be contained in many views.

The flexibility of the View Facility can be illustrated
with the following examples;

1. A life-cycle-phase of class UNCONTROLLED could be
created, and then a view defined containing the
entity-types ELEMENT, RECORD, FILE, and all the asso-
ciated access privileges for these entity-types.
Relationship-types that are not required could be ex-
cluded. This view could then be assigned to one or
more IRD users.

2. The view created then could be assigned, for example,
to the members of a programming development team.
Since the team might need only to read the entities,
read-only privileges could be specified.

- 82 -

3. A supervisor could be assigned access to several
views (those assigned to the users who are being su-
pervised), but only be given read privileges.

4. Assuming that the IRD had been customized for data
element standardization work, a view based on the
life-cycle-phase of class CONTROLLED could then be
defined for the purposes of auditing compliance to
organization standards.

8 . 6 CORE SECURITY

The general mechanism that implements Core IRDS securi-
ty consists of the following:

1. For each authorized user of the IRDS, one
DICTIONARY-USER entity exists. Associated with this
entity are attributes that define the user^s level of
access (e.g., permission to use the Command Language
Interface, if one exists, and permissible access to
the IRD schema)

.

2. Associated with each VIEW entity are attributes that
define the permissions and restrictions that apply to
all IRDS users allowed to use the view. These in-
clude the abilities (independently specified for each
entity-type), to read, add to, modify, and delete the
entities that comprise the view.

3. Finally, each DICTIONARY-USER entity is linked (via
DICTIONARY-USER-HAS-VIEW relationships) to those VIEW
entities representing views that the user can access.

Certain exceptions to (2) and (3) above are:

o Permission to change assigned access-names and as-
signed descriptive-names in the IRD is associated
with the DICTIONARY-USER entity, rather than the VIEV7
entity, because this function can execute across more
than one view.

- 83 -

o Permission to use the IRD-IRD Interface functions
(described in Chapter 7) is associated with the
DICTIONARY-USER entity, since these functions are
also more global in nature.

o In an IRDS that has both a Command Language and Panel
Interface, a user can be restricted to the use of the
Panel Interface only. This restriction also is
specified as an attribute of DICTIONARY-USER enti-
ties.

8.6.1 Access Permissions to the IRD.

Most IRD access permissions are associated with VIEW
entities, and, for each corresponding view, the permissions
spply to all entities within the view. Each permission con-
sists of several parts:

1. The name of the entity- type for which the permissions
are specified.

2. An indicator showing if permission exists to read en-
tities of the specified type.

3. An indicator showing if permission exists to add en-
tities of the specified type. This permission also
allows relationships to be added, provided that the
permission exists for the entity-types of both enti-
ties in the relationship. The ability to copy enti-
ties also can be allowed. In addition, this permis-
sion enables all entities of the specified type to be
accessed and used when building an entity list.

4.

An indicator showing if permission exists to modify
entities of the specified type. As above, relation-
ships may be modified if the permission exists to
modify both entities of the relationship. Read per-
missions are also granted.

5. An indicator showing if permission exists to delete
entities of the specified type. As above, relation-
ships can be deleted if this permission exists for
both entities of the relationship. If a relationship
spans views, the relationship can be deleted only if
the user has permission to delete the entities in
both views. Read permissions are also granted as
above

.

- 84 -

6. An indicator showing which relationships are expli-
citly excluded from that view.

7. An indicator showing if permission exists to modify
the life-cycle-phase of entities of the specified
type. Since a life-cycle-phase modification creates
an entity in another life-cycle-phase, the user must
have both the phase modification permission and per-
mission to create entities in the view corresponding
to the phase into which the entity is being moved.

These permissions are stored in the dictionary as a

DICTIONARY-PERMISSIONS attribute-group. Multiple such per-
missions can be assigned to any one view.

8.6.2 Access Permissions to the IRD Schema.

The Core Standard IRDS specifies five categories of
permission to access the IRD schema. This facility is im-
plemented through attributes of DICTIONARY-USER entities.

These permission categories are:

1. Global Permission: Permission to perform all schema
functions.

2. Global Permission for Unlocked Meta-Entities: Permis
sion to perform all schema functions except those
that modify or delete meta-entities having the
installation-lock set to on. Operation on such meta-
entities requires global permission.

3. ATTRIBUTE-TYPE-VALIDATION-DATA Write Permission: Per
mission to read ATTRIBUTE-TYPE-VALIDATION-DATA meta-
entities and modify their meta-attributes.

4. ATTRIBUTE-TYPE-VALIDATION-DATA Read Permission: Per-
mission to read ATTRIBUTE-TYPE-VALIDATION-DATA meta-
entities and their meta-attributes.

5. Reporting Permission: Permission to read the entire
schema

.

- 85 -

9 MISCELLANEOUS TOPICS IN THE CORE

The IRDS Specifications contain several utility func-
tions that allow users to display the session status, set
defaults, obtain help from the system, exit the IRDS, and
sv;itch between IRDS interfaces.

9.1 IRDS SESSION DEFAULTS AND INFORMATION

IRDS maintenance functions may be run in either check
mode or execution mode (the default) . All other functions
operate in execution mode only. Maintenance functions that
are run in check mode are validated to the extent possible-
-the IRD is not changed. Functions operating in execution
mode, however, perform all valid actions specified.

A default view exists for each IRDS user, represented
as an attribute of the relevant DICTIONARY-USER-HAS-VIEW re-
lationship.

The code/decode option specifies whether codes or
decoded text will appear in dictionary output. The normal
default, decoded , specifies that decoded text will appear as
the values of attribute-types. The code option specifies
that codes will appear instead. Codes are always used for
input

.

Suppose, for example, that an organization uses an IRDS
to help design and document an international travel or tran-
sportation system. Names of airports might be important in
this application and the organization might want to document
the allowable code values in the IRD. Thus, some possible
values of the LOCATION attr ibute-type might be LHR and CDG.
The respective decoded values would be London Heathrow for
LHR and Charles de Gaulle for CDG. The organization then
could use the decode option to prepare reports for managers
and users who are not familiar with the codes used in the
IRD.

9.1.1 Displaying the Session Status.

A user can display the current status of the IRDS, in-
cluding :

- 87 -

o The defaults in

o The name of the

o The views to wh

o The permissions

effect

.

IRD currently in

ich the user has

granted to the u

use

.

access

.

ser for each view.

Other implementor-defined session information may also
be displayed.

9.1,2 Setting the Session Defaults.

A user can set and change the following defaults in ef-
fect for the current IRDS session:

o Check/execution mode

o View

o Code/decode.

The IRDS implementor may define additional defaults
that can be set and changed using this function.

The user may "save" the session defaults. If saved,
these defaults will be in effect for that user for subse-
quent sessions until the defaults are reset and saved again.

9 . 2 HELP

The IRDS contains a Help Facility that enables a user
to obtain assistance during an interactive session. This
facility allows a user to obtain help on any IRDS function
or on the most recent IRDS error or warning message. While
it is likely that several levels of help will be available
to the IRDS user, the precise nature of the facility will be
determined by the implementor. The user may specify a func-
tion name, error condition, or warning condition for which
help is desired, and the system will provide appropriate ex-
planatory information.

- 88-

9.3 EXITING THE IRDS

The exit function allows the user to leave the IRDS.
The following occurs upon execution:

o Where appropriate, session statistics are accumulat-
ed, logged, and displayed.

o A message indicating completion of the IRDS session
is provided.

o The user is logged off the IRDS.

9.4 ENTERING OTHER INTERFACES

IRDS implementations containing more than one user in-
terface (e.g,, a Command Language and a Panel Interface)
have facilities for switching from one interface to another.
Thus, a person using the Command Language can switch to the
Panel Interface, and a person using the Panel Interface can
invoke the "command option" to gain access to the Command
Language

.

- 89 -

10 . USER INTERFACES

This chapter discusses the two IRDS user interfaces:
the Command Language Interface and the Panel Interface. An
IRDS implementation may include either interface, or both.
Both interfaces provide the full capabilities of the IRDS.

10.1 THE COMMAND LANGUAGE

The Command Language supports user interaction with the
IRDS in both batch and interactive modes. The collection of
commands corresponds closely with the collection of "func-
tions" discussed elsewhere in this publication. The Command
Language is explained and illustrated in Using the Informa-
tion Resource Dictionary System Command Language [10]

.

10.2 THE PANEL INTERFACE

The Panel Interface provid
of logical screens (or panels)

.

considered "user-friendly," in
through the appropriate panels
function. The specified traver
the execution of IRDS commands
clauses

.

es the IRDS user with
The Panel Interface

that it leads the use
to accomplish the des
sal paths are equival
and all their associa

a set
may be

r

ired
ent to
ted

Although the IRDS Specifications for the Panel Inter-
face assume that a screen-oriented display exists, they can-
not specify the physical characteristics of either the dev-
ice or the screen. Thus, a panel is defined as a "logical
screen," and it is the implementor^s responsibility to map
each panel tree (as defined below) into one or more panels,
and to map each of these panels into one or more physical
screens on the device or devices that the implementor sup-
ports .

10.2.1 Structure of the Panel Interface.

Each distinct panel has a unique panel name that may be
used to reference the panel. A function also exists that
allows an organization to rename the panels to customize
them to the particular environment in which the IRDS is

- 91-

installed

.

The Panel Interface has an inherent "inter-panel struc-
ture," that defines a default progression of panels
displayed to the user when performing certain IRDS func-
tions. This default progression may always be overridden by
a user by transferring control to another named panel in the
Panel Interface, as long as this does not affect IRD in-
tegr i ty

.

Conceptually, the Home Panel is the topmost panel of
the interface, and it is the panel from which the user is
able to traverse the entire inter-panel structure.

10.2.2 Panel Trees and Panel Areas.

The structure of the Panel Interface is defined in
terms of panel trees and panel areas.

A panel tree is defined as a collection of one or more
panels used to represent the semantics of a single function
in the IRDS. There is a one-to-one correspondence between
the set of panel trees and the set of IRDS commands. Each
panel tree has a "root" node, which is the logical beginning
point from which the remainder of the tree may be traversed.

A panel area is a portion of a panel that is always
identified with a particular category of information, and
that deals with a particular aspect of user interaction with
the IRDS. A panel area may, for example, be implemented as
a permanent window within a panel in a fixed physical area,
or it may be displayed using a special key or action code.
At least six specific panel areas exist in the Panel Inter-
face ;

- 92-

o state Area - The State Area informs the user about
the name of the dictionary being accessed, what is
being done with the current panel (e.g.. Adding a
RECORD; Deleting an ELEMENT; Creating an entity-
list) , or what the IRDS may be doing (e.g., Updating
the dictionary; Retrieving information). The State
Area also displays the system defaults in effect
(e.g., default view; Check/Execution mode).

o Data Area - The Data Area supports the user in one of
two ways: It displays labels that guide the user
during data entry,, showing the placement of the in-
formation to be input; and if the user is retrieving
information, it displays the results of the requested
output function.

o Schema Area - The Schema Area is primarily used dur-
ing dictionary updating operations. The IRD schema
contains information that controls the actions a user
can take. The Schema Area displays the available op-
tions or the limitations in effect. One way in which
this panel area can be used is to flag labels
displayed in the Data Area for which relevant schema
information exists. Thus, the user can request this
schema information by selecting a flagged item. The
appropriate schema information would then be
displayed in the Schema Area. For example, when a
user is adding an entity, the Schema Area might suc-
cessively display:

- The list of all valid entity-types.

- The naming- rules for entities of the selected
type.

- The names of attribute-types that may be associ-
ated with entities of the selected type.

- The allowable values or ranges for attributes
being entered.

- 93 -

o Action Area - The IRDS displays in the Action Area
the options that exist to move from the current panel
to another panel. This panel area also contains the
COMMIT function, by which the user instructs the IRDS
that the specified IRD updates or retrievals are to
be performed.

o Message Area - The IRDS displays in this panel area
any error and warning messages.

o Help Area - Information that the system can provide
in response to a request for "Help" is displayed in
the Help Area, Although the responsibility for the
precise design and wording resides with the implemen-
tor, Help information will include:

- a general overview of the purpose and operation
of each panel.

- information about the actions that will take
place upon selecting any of the operations in
the Action Area of a particular panel.

- information relating to the options available
for transferring to other panels.

- specific actions which may be taken to overcome
error conditions displayed in the Message Area.

An example of how the panel trees might be mapped to a
panel structure is given in Figures 7 through 14, Circles
represent collections of panel trees, ovals drawn with solid
lines represent panel trees that directly correspond to Com-
mand Language commands, and dotted ovals represent auxiliary
panel trees used to help specify dictionary and schema out-
put .

- 94 -

The Panel Interface — Overall Structure

- 95 -

Dictionary Maintenance Panel Trees

- 96 -

Dictionary Output Panel Trees

o
^ -

KEY

SETS OF PANEL TREES

PANEL TREES CORRESPONDING TO

COnnAND LANGUAGE COmANDS

AUXILIARY PANEL TREES USED

IN OUTPUT PANEL TREES

/*f '

/ INQUIRE
^ ENTITY /

/

/
/ / / z' / y

/ INQUIRE

RELATIONSHIP

/ /

Figure 9

- 97 -

Dictionary Entity— List

Panel Trees

Figure 10

- 98 -

Dictionary Procedure

Panel Trees

Figure 1

1

- 99 -

Schema Maintenance

Panel Trees

Figure 12

- 100 -

Schema Output

Panel Tree

= PANEL TREES CORRESPONDING TO

COMMAND LANGUAGE COMMANDS

= AUXILIARY PANEL TREES USED IN

OUTPUT PANEL TREES

Figure 13

- 101 -

V

IRD—IRD Interface

Panel Trees

(= SETS OF PANEL TREES
\ /

PANEL trees corresponding TO

COMMAND LANGUAGE COMMANDS

Figure 14

- 102 -

10.2.3 Operation of the Panel Interface.

The predefined set of panels will not be tailored ac-
cording to security permissions and exclusions. This means
that even if a given user does not have the required permis-
sion to use, say, the IRDS Command Language Interface, the
choice to enter command mode will still be displayed on a

panel for this user. Similarly, even if a user does not
have dictionary update permission, the choices to add, modi-
fy, and copy IRD entities and relationships will still ap-
pear on all appropriate panels. However, if a panel option
is selected for which the user does not have permission, a
message to that effect will be generated.

10,2.4 Special Features.

There are two features found
that provide special capabilities

in the Panel Interface
to an IRDS user:

o Saving a panel. The panel on which the user is work-
ing can be saved. If this is done at system log-off,
the last panel worked on (and, in some cases, certain
associated panels) will be saved in their current
form for retrieval at the beginning of the next IRDS
session. An example of this feature might be the
case where a user is creating an entity-list. If the
user requests this option, the IRDS will save the
entity-list panel on which the user was operating and
all associated panels related to the creation of the
entity-list. During the next session, the user may
request the saved panel. At this point, the original
panel, andall associated panels, will be restored to
their former state.

o Marking a panel. At any point during a Panel Inter-
face session, a user may specify that the current
panel is to be "marked." This feature allows the user
to move to any other panel that displays IRD informa-
tion. The marked panel remains intact and available
to be referenced directly at any time later in the
session. After marking a panel, movement to a panel
that modifies the IRD is not allowed, because such
modification could affect the integrity of the con-
tents of the marked panel.

- 103 -

" • • ? iEK(«

^fts tcf eil-Oi

-oft 1C?X iJR'J ^d’ '

2/j^oTt' sj,;{(T

:v

f ^ %9t>p iq-9<Vf .

'
, . ;,^,|

^4 1,4!('.1 1

1

^0» a 01

' " ''^- -M%t^if-'X%&^ i b' 9v« rt

CWt .^CQOO' bfiA,.V^“'‘

>(Lt i .:;!!A *1^ t «

ifrl %2 iqoiq[^»: ! J6 no 10$^]
9^i midw lai a^:

ixlv? iatt'i t# .,4flrflf

'

^>'^4 fl» ,-/'
,

j Alo9qs j*&t^iq
"‘ '

'' '' *
1

'.****'- ^ „‘^

.X^n^iq « 9 ft ;ve2 o.
‘

*I .^; t ri#
:

||»» . ^ iKl^' MO
-“ '‘

-^'^.iO'^fi s.Va-->o,' ###‘ V bfj' ,

' o^' ,|j^o»f®, 1 j 4 J
^ I'

^- »— -»-
,

—
1^

- - -, ,

.

^ ®
a

' :BiM - My'^‘-j,
,^,a

.Uil'Xm^np

Mq^ic
^?j1^

raMM&yfcjfli «*
^

/ J«PKn':
*

*. ol j2i l4«<4
„

:^' C

11. IRDS MODULES

The draft proposed IRDS Standard contains specifica-
tions for three modules:

1. Entity Level Security [2]

2. Application Program (Call) Interface [3]

3. Support of Standard Data Models [4].

In addition, many additional dictionary software features
have been identified that may become bases for future
modules. Thes^ potential modules are discussed in Section
11.4.

11.1 ENTITY LEVEL SECURITY

This module provides facilities that allow an organiza-
tion to assign READ or WRITE privileges for individual enti-
ties . Read or Write "locks" are associated with each entity
to be secured. Users attempting to access a secured entity
must have an appropriate read or write "key."

These facilities operate as an extension to the Securi-
ty Facility in the Core Standard IRDS. This means, for ex-
ample, that even though a user working in a view may have
access to all entities of a given type (e.g., all ELEMENTS)
in that view, the organization can use this module to speci-
fy that the user must have additional permission to access
certain specific entities (e.g., specific ELEMENTS).

To accomplish entity level security, the module intro-
duces the new entity-type ACCESS-CONTROLLER, and a set of
SECURED-BY relationship- types that allow an ACCESS-
CONTROLLER entity to be connected with entities of all other
types (except DICTIONARY-USER, VIEW, or ACCESS-CONTROLLER)

.

Four new attr ibute-types are introduced:

o Associated with the ACCESS-CONTROLLER entity-type are
the attribute-types:

READ-LOCK

- 105 -

WRITE-LOCK.

These locks are 10 digit numbers assigned and con-
trolled by the IRDS .

o Associated with the VIEW entity-type are the
at tr ibute- types

:

READ-KEY
WRITE-KEY.

These keys are also 10 digit numbers.

To secure an entity, a relationship is established
between that entity and an ACCESS-CONTROLLER entity. This
can be done at the time the secured entity is added to the
dictionary, or at any later time. The read-lock and write-
lock on the access-controller serve to protect the entity.
The organization can then instruct the IRDS to assign, to
selected views, a read or write key matching the respective
lock on the access-controller.

Suppose that a user, accessing the IRD through a given
view, attempts to access a protected entity. A write access
will cause the IRDS to attempt to find a write-key (a

WRITE-KEY attribute of the VIEW entity) that matches the
WRITE-LOCK attribute of the ACCESS-CONTROLLER protecting the
entity being accessed. If such a WRITE-KEY attribute is
found, the operation will be executed. Otherwise, the enti-
ty will be treated as though it did not exist in the view,
A similar sequence of events takes place if a read is at-
tempted. However, since write access also provides read
privileges, matches of both read-keys and write-keys are at-
tempted against read-locks and write-locks, respectively.

The precise 10 digit number representing a key or a
lock is never visible to an IRDS user.

This mechanism can be illustrated by the following ex-
ample. Suppose that it is decided to restrict access to the
following entities in the view Payroll-View:

o A FILE called Payroll-File,

o A RECORD called Payroll-Record.

- 106-

o An ELEMENT called Employee-Salary.

The organization connects the three entities to the ACCESS-
CONTROLLER entity Payroll-Controller, which has a read - lock
(system assigned) value of 12345, and a wr i te - lock (system
assigned) value of 98765. Suppose an IRDS user named Jones
attempts to access one or more of these entities through the
view named Payroll-View. Jones will be granted access to
these entities if the required keys have been assigned to
Payroll-View. If only the read-key 12345 is available,
Jones is able to read these entities; if the write-key 987.65
is also available, Jones will be allowed to both read and
modify any of these entities. Figure 15 illustrates this
example

.

11.2 APPLICATION PROGRAM (CALL) INTERFACE

An impl
will provid
language to
software in
the data in

ementation of
an interface

the IRDS. An
for example,

the IRD.

the specifications of this module
from a standard programming
organization could develop
COBOL, FORTRAN, or PL/I to access

The interface
of the programming
the application as
through the Call,

is accomplished by using the Call feature
language. The IRDS is thus treated by
a subroutine. Parameters are passed
including

:

o A quoted string of characters denoting a syntactical-
ly correct IRDS command or sequence of commands.

o A parameter for receiving any dictionary or schema
output generated by the operation.

o A parameter for receiving any error condition re-
turned by the IRDS. The application must decode the
condition to provide the user with a meaningful error
message

.

This interface enforces all IRDS integrity and security
rules. To use this module, the Command Language Interface
must be present.

- 107-

The

Protection

of

Individual

Entities

- 108 -

11.3 SUPPORT OF STANDARD DATA MODELS

An implementation of the specifications of this module
would assist an organization in describing NDL and SQL data-
bases. NDL and SQL are, respectively, the network and rela-
tional database languages developed by ANSI Technical Com-
mittee X3H2 [12], [13]. The module consists of a combina-
tion of IRDS entity-types, relationship-types, and
attribute-types that can be used to map into NDL and SQL
constructs. The module does not modify the the Core IRDS
functions, but does create a new schema by extending the
contents of the Core System-Standard Schema.

11.4 POTENTIAL MODULES

ANSI Technical Committee X3H4 and participants at
workshops sponsored by the Institute for Computer Sciences
and Technology of the National Bureau of Standards have
identified several modules that would enhance the IRDS capa-
bilities. These potential modules are discussed in the fol-
lowing sections.

11.4.1 N-ary Relationship Module.

The Core IRDS is specified in terms of binary relation-
ships. That is, the description of the IRD schema, the IRD,
and all associated functions are specified in terms of rela-
tionships and meta-relationships with precisely two members.
This provides a model appropriate for use in a wide range of
user environments. This model, however, does not readily
support certain more complex environments such as those in-
volving control flow, or some aspects of programming and da-
tabase languages structure semantics.

ANSI X3H4 recognized the need for an n-ary module for
some users of the IRDS and unanimously adopted the following
statements regarding development of the specifications for
such a module;

o An n-ary module is not included in this Standard. It

is the intent of X3H4 to continue the development of
a module with n-ary capability (n>2) for a future
release of the Standard.

- 109 -

o ANSI X3H4 recognizes that situations exist where the
lack of a n-ary facility may inhibit transportability
and may impact some users.

o It is felt that it would not be in the best interest
of the majority of potential users to hold back the
release of the Standard until a module with n-ary
(n>2) capability is specified.

It is intended that specifications for this module wi*ll
support n-ary schema extensibility and will include the
schema descriptors necessary to describe an n-ary schema.

11.4.2 Data Management Support Module.

This module will provide additional support for: (1)
standardization of data elements; and (2) the location of
data in an IRD when a user does not know the appropriate
access-name or descriptive-name. Support for data element
standardization must occur throughout the standardization
life cycle. Once an ELEMENT is identified during the
analysis and design phases, facilities will be required to
assure that:

o The name associated with the ELEMENT is used con-
sistently throughout the life cycle. For example,
when an ELEMENT is referred to in a programming or
database language, only the standard name applicable
to that environment should be used. This requires
enforcement of usage based on the ALTERNATE-NAME and
ALTERNATE-NAME-CONTEXT attributes of the ELEMENT.

o The usage of the ELEMENT is proper for the given con-
text. That is, just as the proper name must be used,
the proper characteristics must also be used. For
example, the data types BIT-STRING, CHARACTER-STRING

,

FIXED-POINT, and FLOAT that are used by REPRESENTED-
AS relationships to describe the characteristics of
ELEMENTS must be checked.

o During the operational phase, validation criteria as-
sociated with the standard data element and the
variety of usage environments for the standard must
be controlled and available to the facilities that
perform validation. For example, if a user linked a
data entry screen to a validation facility, the vali-
dation criteria associated with the elements entered
on the screen should come from the IRD.

- 110 -

A requirement also exists to verify that any subset of
a group of standard data elements uses the appropriate vali-
dation criteria. For example, "Countries of the World"
would be associated with a table of codes and names
representing all of the countries of the world. A subset of
these might be "Countries of the Western Hemisphere." In
this case, the set of legal codes for the Western Hemisphere
should be a subset of the standard codes for countries of
the world.

The second major function of this module will increase
the support for indexing or classifying entities in an IRD.
An attribute-type, CLASSIFICATION, currently appears in the
Core System-Standard Schema. A series of keywords can ap-
pear as values of this attribute-type. Many organizations
want to index entities with specific keywords as well as
with broader or more generic keywords to help its users lo-
cate data when they do not know specific entity names. We
expect that this module will specify "thesaurus" software
functions or specify an interface to such software to help
organizations resolve synonym and homonym problems and
develop a "controlled" or consistent keyword vocabulary.

For example, keywords for Finance-Department might be
Accounting and Payroll. A user could locate the Finance-
Department entity by specifying Accounting or Payroll.

In addition, support for the development and manipula-
tion of data structures to facilitate organizational model-
ing and logical and physical database design may be provided
in this module or in another module.

11.4.3 Support of Distributed Databases and Applications
Module

.

A module for these environments will include extensions
to the IRD schema to support network directory functions.
These facilities will document what exists in the network,
what the dependencies are between processes and data in the
network, and where in the network the processes and data re-
side. This module also must support or help support all
traffic management within the network.

Other special features of this module might include:

o Mappings between database structures and mappings
among database languages when the network allows pro-
cessing across heterogeneous database systems.

-Ill-

o Scheduling information with regard to query and ap-
plication processing.

This module may require implementation of the n-ary rela-
tionship module (see Section 11.4.1) to support the control
of processes in the network.

11.4.4 Programming Language Support Module.

This module will specify: (1) a facility to group to-
gether and manage associations of IRD descriptors as struc-
tures in support of standard programming languages (e.g.,
manipulating a FILE definition in terms of the RECORD and
ELEMENT definitions associated with it) and (2) a facility
to either:

o Generate a data structure definition on request
(e.g., create a COBOL FD for a given FILE name) , or

o Maintain a current data structure definition for all
"operational" files.

11.4.5 Standard Database Language Support Module.

This module
and manage assoc
support of stand
SQL languages de
ISO TC 9 7/SC 2 1/Wo
manipulation of
and subschemas,
either

:

would specify a facility to group together
iations of IRD descriptors as structures in
ard database languages (i.e., the NDL and
fined by ANSI Technical Committee X3H2 and
rking Group .3)

.

The module would support
IRD data associated with database schemas
This module also would have facilities to

o Generate a data structure definition on request
(e.g., create a schema or subschema definition for a

given database name) , or

o Maintain a current data structure definition for all
"operational" databases.

- 112-

11.4.6 Life Cycle and Configuration Management Support
Module

.

Specifications for this module might include:

o Integration of the Life-Cycle-Phase and Quality-
Indicator facilities. Such integration would allow
metrics to be associated with IRD entities based on
their life-cycle-phase and quality-indicator values.
This combination could then be used to determine the
"suitability" of moving entities to another phase.

o A facility to:

- establish and manage configurations (i.e., treat-
ing assemblages of processes and data as a struc-
ture) . This is similar to managing structures of
data objects, discussed earlier for programming
and database language support.

- establish baselines associated with life-cycle-
phases, and rules to control movement across
these baselines, in both directions.

11.4.7 Extended Schema Control Module.

ANSI Technical Committee X3H4 and ICST/NBS expect that
the specifications for this module will include:

o A Versioning Facility, similar to that available in
the Core IRDS, that operates on schema descriptors.

o A facility for basic life-cycle-control of the IRD
Schema. This facility would provide for the follow-
ing four phases:

- Definition, where schema descriptors are added to
the IRD schema. This capability already exists
in the Core IRDS Standard.

- Test, where a Dictionary Administrator could
"try" changes before making them generally avail-
able (i.e., before installation). During this
phase, normal IRD command clauses would not
operate on the contents of the test schema in
test state, but special command clauses, accessi-
ble only to the Dictionary Administrator, would

- 113 -

operate using the extended test schema.

- Installation, where the changes to the schema are
made and a new schema becomes operational. This
capability already exists in the Core IRDS Stan-
dard .

- Archival, v;here previously installed schemas are
kept. This would allow a Dictionary Administra-
tor to "reinstall" an archived schema if an error
is discovered in a recently installed schema.

o A facility that identifies the phase of the schema
descriptors (i.e., the Defined, Test, Installed, or
Archived state)

.

11.4.8 IRDS Macro Language Module.

This module will require the Core Command Language In-
terface. The IRDS Core Specifications contain a facility
for maintaining sequences of Command Language statements as
procedures. These procedures can be stored and executed as
a whole, but cannot be modified, and can include only IRD
output and build entity-list commands. This module would
allow

;

o Development of procedures that could include all IRDS
Command Language statements.

o Specification of conditionals and transfers to con-
trol the execution flow of a procedure.

o Parameters to be passed to a procedure. These param-
eters could then be used to vary the execution flow
within the procedure, or to influence selection cri-
teria.

11.4.9 External Software Interfaces Module.

This module will provide specifications for integrating
external software packages with IRDS data. Examples of such
software and the degree of integration desired are:

- 114 -

o "User Exits" allowing insertion of organization-
defined procedures into command streams. The IRDS
would recognize these non-IRDS procedures and would
take appropriate action to execute the inserted com-
mands. This facility will only be appropriate if an
organization has the Core Command Language Interface.

o A Text Editor Interface that supports integration of
the organization's text editor with the IRDS, to fa-
cilitate modification of text attributes.

o A Report Writer Interface that allows integration of
report writer facilities with the IRDS. This would
enhance the currently specified output functions.

o A Graphics Software Interface allowing integration of
standard graphics software with the IRDS. Such a fa-
cility would permit graphical input and output of IRD
data. More generally, the IRDS could also support
graphics in a manner similar to the support discussed
in the sections on programming and database
languages. This would require definition of graphics
structures as entities in the IRD.

- 115 -

APPENDIX: THE CORE SYSTEM-STANDARD SCHEMA

This appendix describes the Core System-Standard Schema
and its structural characteristics. The Core System-
Standard Schema is defined as that specific set of entity-
types, relationship-types, a ttr ibute-types , and other schema
descriptors used by the Core Standard IRDS. While this Core
System-Standard Schema satisfies the requirements of many
IRDS environments, an organization can customize its IRDS
Schema using the Schema Extensibility Facility discussed in
previous chapters.

A.l ATTRIBUTE-TYPES AND ENTITY-TYPES

In this section, the attribute-types and attribute-
group-types associated with each entity-type are given. The
following are the entity-types in the Core System-Standard
Schema

:

o USER

o SYSTEM

O PROGRAM

O MODULE

O FILE

O DOCUMENT

O RECORD

O ELEMENT

o BIT-STRING

O CHARACTER-STRING

O FIXED-POINT

O FLOAT

- 117 -

Two other entity-types found in the Core System-
Standard Schema are:

o DICTIONARY-USER, in support of the Security Facility,

o VIEW which supports the Security and View Facilities.

The following two tables present the attribute-types
and attribute-group-types associated with the non-security
related entity-types listed above. Attribute-group-types
can be identified by the existence of their component
attribute-types, which are indented and immediately follow
the attribute-group-type name. At the intersection of a row
and column, the following denote that an entity of the given
type

:

S Can have at most a single attribute of the given type.

P Can have multiple (plural) attributes of the given
type o

The
with the

first table shows the attribute-types associated
following entity-types:

o USER (USR)
o SYSTEM (SYS)
O PROGRAM (PGM)
o MODULE (MDL)
O FILE (FIL)
O DOCUMENT (DOC)
O RECORD (REC)
O ELEMENT (ELE)

The
with the

second table shows the attribute-types associated
following entity-types:

O BIT-STRING (BIT)
O CHARACTER-STRING (CHR)
O FIXED-POINT (FIX)
O FLOAT (FLO)

- 118 -

(ATTRIBUTE-GROUP-TYPE)
and

ATTRIBUTE-TYPE

ADDED-BY

(ALLOWABLE-RANGE)
LOW-OF-RANGE
HIGH-OF-RANGE

ALLOWABLE-VALUE

CLASSIFICATION

CODE-LIST-LOCATION

COMMENTS

DATA-CLASS

DATE-ADDED

DESCRIPTION

DOCUMENT-CATEGORY

(DURATION)
DURATION-VALUE
DURATION-TYPE

(IDENTIFICATION-NAMES)
ALTERNATE-NAME
ALTERNATE-NAME-CONTEXT

LAST-MODIFICATION-DATE

LAST-MODIFIED-BY,

LOCATION

NUMBER-OF-LINES-OF-CODE

NUMBER-OF-MODIFICATIONS

NUMBER-OF-RECORDS

RECORD-CATEGORY

SECURITY

SYSTEM-CATEGORY

ENTITY-TYPE

USR SYS PGM MDL FIL DOC REC ELE

S S

P

P P

• •

s s

• •

s s

s s

« •

s

p p

p p

« e

s s

• •

s s

s s

• •

s s

p p

p p

• •

s s

• •

s s

s s

s

• •

p p

p

p p

p

s s

s

s s

s s

s s

s s

p p

• •

s s

• •

• •

s s

s

s s

s s

p p

s s

s s

• •

• •

s s

s s

s s

p p

• •

s s

s

• •

s s

s s

s s

• •

• •

s s

s

s s

- 119 -

ATTRIBUTE-TYPE ENTITY-TYPE

ADDED-BY

CLASSIFICATION

COMMENTS

DATE-ADDED

DESCRIPTION

INTERNAL-FORMAT

LAST-MODIFICATION-DATE

LAST-MODIFIED-BY

SECURITY

BIT CHR FIX FLO

S S S S

P P P P

S S S S

S S S S

S S S S

P P P P

S S S S

S S S S

S s s s

A. 2 RELATIONSHIP-CLASS-TYPES AND RELATIONSHIP-
TYPES

This section presents the relationship-class-types and
relationship-types in the Core System-Standard Schema. The
relationship-class-types, where they exist, are provided in
bold print as headers for the relationship-types to- which
they apply. The inverse-name (which allows the specifica-
tion of the member entity-types in reverse order) and abbre
viated inverse-name are given for each relationship-class-
type. VJhere no relationship-class-type applies to a partic
ular relationship-type, its inverse-name and abbreviated
inverse-name are given directly.

- 120 -

(RELATIONSHIP-CLASS-TYPE)
and ABBREVIATED

RELATIONSHIP-TYPE ABBREVIATION INVERSE-NAME INVERSE-NAME

(CONTAINS)

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROGRAM
SYSTEM-CONTAINS-MODULE

CON CONTAINED-IN

SYS-CON-SYS
SYS-CON-PGM
SYS-CON-MDL

CON-IN

PROGRAM-CONTAINS-PROGRAM PGM-CON-PGM
PROGRAM-CONTAINS-MODULE PGM-CON-MDL

MODULE-CONTAINS-MODULE MDL-CON-MDL

FILE-CONTAINS-FILE
FILE-CONTAINS-DOCUMENT
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT

FIL-CON-FIL
FIL-CON-DOC
FIL-CON-REC
FIL-CON-ELE

DOCUMENT-CONTAINS DOC-CON-DOC
-DOCUMENT

DOCUMENT-CONTAINS-RECORD DOC-CON-REC
DOCUMENT-CONTAINS DOC-CON-ELE

-ELEMENT

RECORD-CONTAI NS-RECORD REC-CON-REC
RECORD-CONTAINS-ELEMENT REC-CON-ELE

ELEMENT-CONTAINS-ELEMENT ELE-CON-ELE

(PROCESSES) PR PROCESSED-BY PR-BY

USER-PROCESSES-FILE USR-PR-FIL
USER-PROCESSES-DOCUMENT USR-PR-DOC
USER-PROCESSES-RECORD USR-PR-REC
USER-PROCESSES-ELEMENT USR-PR-ELE

SYSTEM-PROCESSES-FILE
SYSTEM-PROCESSES

-DOCUMENT
SYSTEM-PROCESSES-RECORD
SYSTEM-PROCESSES-ELEMENT

SYS-PR-FIL
SYS-PR-DOC

SYS-PR-REC
SYS-PR-ELE

PROGRAM-PROCESSES-FILE
PROGRAM-PROCESSES

-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES

-ELEMENT

PGM-PR-FIL
PGM-PR-DOC

PGM-PR-REC
PGM-PR-ELE

- 121 -

RELATIONSHIP-CLASS-TYPE)
and ABBREVIATED

RELATIONSHIP-TYPE ABBREVIATION INVERSE-NAME INVERSE-NAME

MODULE-PROCESSES-FILE
MODULE-PROCESSES

-DOCUMENT

MDL-PR-FIL
MDL-PR-DOC

MODULE-PROCESSES-RECORD
MODULE-PROCESSES-ELEMENT

MDL-PR-REC
MDL-PR-ELE

(RESPONSIBLE-FOR) R-FOR RESPONSIBILITY-OF R-OF

USER-RESPONSIELE-FOR
-SYSTEM

USR-R-FOR-SYS

USER-RESPONSIBLE-FOR
-PROGRAM

USR-R-FOR-PGM

USER-RESPONSIBLE-FOR
-MODULE

USR-R-FOR-MDL

USER-RESPONSIBLE-FOR
-FILE

USR-R-FOR-FIL

USER-RESPONSIBLE-FOR
-DOCUMENT

USR-R-FOR-DOC

USER-RESPONSIBLE-FOR
-RECORD

USR-R-FOR-REC

USER-RESPONSIBLE-FOR
-ELEMENT

USR-R-FOR-ELE

(RUNS) RUNS RUN-BY RUN-BY

USER-RUNS-SYSTEM
USER.-RUNS-PROGRAM
USER-RUNS-MODULE

USR-RUNS-SYS
USR-RUNS-PGM
USR-RUNS-MDL

(GOES-TO) TO COMES-FROM FR

SYSTEM-GOES-TO-SYSTEM SYS-TO-SYS

PROGRAM-GOES-TO
-PROGRAM

PGM-TO-PGM

MODULE-GOES-TO-MODULE MDL-TO-MDL

- 122 -

(RELATIONSHIP-CLASS-TYPE)
and ABBREVIATED

RELATIONSHIP-TYPE ABBREVIATION INVERSE-NAME INVERSE-NAME

(DERIVED-FROM) D-FR PRODUCES PRD

DOCUMENT-DERIVED-FROM
-FILE

DOC-D-FR-FIL

DOCUMENT-DERIVED-FROM
-DOCUMENT

DOC-D-FR-DOC

DOCUMENT-DERIVED-FROM
-RECORD

DOC-D-FR-REC

ELEMENT-DERIVED-FROM
-FILE

ELE-D-FR-FIL

ELEMENT-DERIVED-FROM
-DOCUMENT

ELE-D-FR-DOC

ELEMENT-DERIVED-FROM
-RECORD

ELE-D-FR-REC

ELEMENT-DERIVED-FROM
-ELEMENT

. ELE-D-FR-ELE

FILE-DERIVED-FROM FIL-D-FR-DOC
-DOCUMENT

FILE-DERIVED-FROM
-FILE

FIL-D-FR-FIL

RECORD-DERIVED-FROM
-DOCUMENT

REC-D-FR-DOC

RECORD-DERIVED-FROM
-FILE

REC-D-FR-FIL

RECORD-DERIVED-FROM
-RECORD

REC-D-FR-REC

(CALLS)

.

CLS CALLED-BY CLD-BY

PROGRAM-CALLS-PROGRAM
PROGRAM-CALLS-MODULE

PGM-CLS-PGM
PGM-CLS-MDL

MODULE-CALLS-MODULE MDL-CLS-MDL

- 123 -

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE
ABBREVIATED

ABBREVIATION INVERSE-NAME INVERSE-NAflE

(REPRESENTED-AS) AS

ELEMENT-REPRESENTED-AS
-BIT-STRING

ELEMENT- REPRESENTED-AS
-CHARACTER-STRING

ELEMENT-REPRESENTED-AS
-FIXED-POINT

ELEMENT-REPRESENTED-AS
-FLOAT

ELE-AS-BIT

ELE-AS-CHR

ELE-AS-FIX

ELE-AS-FLO

REPRESENTS REP

ELEMENT-STANDARD-FOR
-ELEMENT

ELE-ST-FOR
-ELE

ELEMENT-STANDARD ELE-ST
-OF-ELEMENT -ELE-OF

FILE-HAS-SORT-KEY
-ELEMENT

FIL-H-S-K
-ELE

ELEMENT-SORT-KEY ELE-S-K
-OF-FILE -OF-FIL

FILE-HAS-ACCESS-KEY
-ELEMENT

FIL-H-A-K
-ELE

ELEMENT-ACCESS-KEY ELE-A-K
-OF-FILE -OF-FIL

The last three relationship-types are not members of a
relationship-class, and so are listed separately.

A. 3 ENTITY-TYPES AND RELATIONSHIP-TYPES

The following two tables depict the entity-types parti-
cipating as members of the non-security related
relationship-types in the Core System-Standard Schema, The
following notation is used to denote that the entity-type
is

;

1 The first member of the relationship- type

.

2 The second member of the relationship-type.

R Both the first and second member of the relationship-
type (i.e., the relationship is recursive).

- 124-

The
with the

first table shows the relat ionsh ip- types associated
following ent i ty-types

;

o USER
O SYSTEM
o PROGRAM
O MODULE
O FILE
O DOCUMENT
O RECORD
O ELEMENT

The second table
ed with the following

shows the relationship-types
entity-types

:

associat-

O ELEMENT
o BIT-STRING
O CHARACTER-STRING
O FIXED-POINT
o FLOAT

- 125-

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

(CONTAINS)

SYSTEM-CONTAINS-SYSTEM
SYSTEM-CONTAINS-PROGRAM
SYSTEM-CONTAINS-MODULE

PROGRAM-CONTAINS-PROGRAM
PROGRAM-CONTAINS-MODULE

MODULE-CONTAINS-MODULE

FILE-CONTAINS-FILE
FILE-CONTAINS-DOCUMENT
FILE-CONTAINS-RECORD
FILE-CONTAINS-ELEMENT

DOCUMENT-CONTAINS-DOCUMENT
DOCUMENT-CONTAINS-RECORD
DOCUMENT-CONTAINS-ELEMENT

RECORD-CONTAINS-RECORD
RECORD-CONTAINS-ELEMENT

ELEMENT-CONTAINS-ELEMENT

(PROCESSES)

USER-PROCESSES-FILE
USER-PROCESSES-DOCUMENT
USER-PROCESSES-RECORD
USER-PROCESSES-ELEMENT

SYSTEM-PROCESSES-FILE
SYSTEM-PROCESSES-DOCUMENT
SYSTEM-PROCESSES-RECORD
SYSTEM-PROCESSES-ELEMENT

PROGRAfl-PROCESSES-FILE
PROGRAM-PROCESSES-DOCUMENT
PROGRAM-PROCESSES-RECORD
PROGRAM-PROCESSES-ELEMENT

MODULE-PROCESSES-FILE
MODULE-PROCESSES-DOCUMENT
MODULE-PROCESSES-RECORD
MODULE-PROCESSES-ELEMENT

R
1 2

1 . 2

R
1 2

R

2

2

R
1 2

1 2

R
1 2

R

1
1

1

1

2

2

2

2

1

1
1

1

2

2

2

2

1

1

1

1

2

2

2

2

1 2

1 . 2

1 2

2

- 126 -

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

(RESPONSIBLE-FOR)

USER-RESPONSIBLE-FOR-SYSTEM 1

USER-RESPONSIBLE-FOR-PROGRAM 1

USER-RESPONSIBLE-FOR-MODULE 1

USER-RESPONSIBLE-FOR-FILE 1

USER-RESPONSIBLE-FOR-DOCUMENT 1

USER-RESPONSIBLE-FOR-RECORD 1
USER-RESPONSIBLE-FOR-ELEMENT 1

2

2

(RUNS)

USER-RUNS-SYSTEM
USER-RUNS-PROGRAM
USER-RUNS-MODULE

(GOES-TO)

SYSTEM-GOES-TO-SYSTEM

PROGRAM-GOES-TO-PROGRAM

MODULE-GOES-TO-MODULE

(DERIVED-FROM)

FILE-DERIVED-FROM-FILE ‘

FILE-DERIVED-FROM-DOCUMENT

DOCUMENT-DERIVED-FROM-FILE
DOCUMENT-DERIVED-FROM-DOCUMENT
DOCUMENT-DERIVED-FROM-RECORD

RECORD-DERIVED-FROM-DOCUMENT
RECORD-DERIVED-FROM-FILE
RECORD-DERIVED-FROM-RECORD

ELEMENT-DERIVED-FROM-FILE
ELEMENT-DERIVED-FROM-DOCUMENT
ELEMENT-DERIVED-FROM-RECORD
ELEMENT-DERIVED-FROM-ELEMENT

12 ..
1 . 2 .

1 . . 2

R

R

R

R
1 2

2 1

R
1 2

2 1

2 . 1

R

2 . . 1

2 . 1

2 1

R

- 127 -

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE USR SYS PGM MDL FIL DOC REC ELE

(CALLS)

PROGRAM-CALLS-PROGRAM . . R
PROGRAM-CALLS-MODULE c . 1

MODULE-CALLS-MODULE

ELEMENT-STANDARD-FOR-ELEMENT , R

FILE-HAS-SORT-KEY-ELEMENT , . . . 1 . . 2

FILE-HAS-ACCESS-KEY-ELEMENT , » „ . 1 . , 2

2

R

The last three relationship-types are not members of a
relationship-class, and so are listed separately.

(RELATIONSHIP-CLASS-TYPE)
and

RELATIONSHIP-TYPE ELE BIT CHR FIX

REPRESENTED-AS

ELEMENT-REPRESENTED-AS-BIT-STRING 1 2

ELEMENT-REPRESENTED-AS-CHARACTER-STRING 1

ELEMENT-REPRESENTED-AS-FIXED-POINT 1

ELEMENT-REPRESENTED-AS-FLOAT 1

2

A. 4 ATTRIBUTE-TYPES AND RELATIONSHIP-TYPES

The following are the attribute-types associated with
the relationship-class-types and relationship-types in the
Core System-Standard Schema:

FLO

2

- 128 -

o The relationship-types

- SYSTEM-PROCESSES-FILE
- PROGRAM-PROCESSES-FILE
- MODULE-PROCESSES-FILE

have the single-valued at tr ibute-type ACCESS-METHOD
associated with them.

o All PROCESSES and RUNS relationship-types have the
single-valued attribute-type FREQUENCY associated
with them.

o The relationship-type RECORD-CONTAINS-ELEMENT has the
single-valued attribute-type RELATIVE-POSITION asso-
ciated with it.

o The relationship-type ELEMENT-REPRESENTED-AS-BIT-
STRING has the single-valued attribute-type LENGTH
and the multiple-valued attribute-type USAGE associ-
ated with it.

o The relationship-type ELEMENT-REPRESENTED-AS-
CHARACTER-STRING has the single-valued attribute-
types LENGTH and JUSTIFICATION and the multiple-
valued attribute-type USAGE associated with- it.

o The relationship-types

- ELEMENT-REPRESENTED-AS-FIXED-POINT
- ELEMENT-REPRESENTED-AS-FLOAT

have the single-valued attribute-types LENGTH, PRECI-
SION, and SCALE, and the multiple-valued attribute-
type USAGE associated with them.

A. 5 SUPPORT FOR THE CORE SECURITY FACILITY

In addition to the entity-types DICTIONARY-USER and
VIEW, the Core System-Standard Schema also contains the
relationship-type DICTIONARY-USER-HAS-VIEW, which associates
a view with an IRDS user. A number of attr ibute-types and
attribute-group-types in the Core System-Standard Schema are
used to specify the categories of permissions that can be
assigned to a IRDS user with a particular view.

- 129 -

A. 6 THE ATTRIBUTE-TYPE-VALIDATION-PROCEDURE
META-ENTITIES

The Core System-Standard Schema contains the following
two attribute-type-validation-procedure meta-entities:

o RANGE-VALIDATION, used
a given attribute-type

to restrict the attributes of
to a predefined set of ranges

o VALUE-VALIDATION, used
a given attribute-type

to restrict the attributes of
to a predefined set of values

A. 7 THE ATTRIBUTE-TYPE-VALIDATION-DATA META-
ENTITIES

There are no attribute-type-validation-data meta-
entities specified in the Core System-Standard Schema. To
use this feature, an organization must define and add these
meta-entities to the schema.

A. 8 THE LIFE-CYCLE-PHASE META-ENTITIES

The Core System-Standard Schema contains four Life-
Cycle-Phase meta-entities. These are:

o UNCONTROLLED-PHASE - Entities are in this life-
cycle-phase when they are added to the IRD.

o CONTROLLED-PHASE - Entities used in an operational
environment, for which structural integrity controls
are provided by the IRDS, are in this life-cycle-
phase .

o ARCHIVED-PHASE - This life-cycle-phase is used to do
cument those entities no longer in use.

o SECURITY-PHASE - This 1 i fe-cycle-phase , of phase
class UNCONTROLLED is used for DICTIONARY-USER enti-
ties associated with the Security Facility of the
Core Standard IRDS.

-130

A. 9 THE QUALITY-INDICATOR META-ENTITIES

The Core System-Standard Schema does not contain any
pre-defined QUALITY-INDICATOR meta-entities. These meta-
entities may be defined by an organization.

A. 10 THE VARIATION-NAMES META-ENTITIES

There are also no pre-defined VARIATION-NAMES meta-
entities in the Core System-Standard Schema. These meta-
entities may be defined by an organization.

A. 11 THE SCHEMA-DEFAULTS META-ENTITIES

There is one SCHEMA-DEFAULTS meta-entity in the Core
System-Standard Schema. This meta-entity, called EXISTING-
SCHEMA-DEFAULTS , is used to established minimum and maximum
name lengths and minimum and maximum attribute lengths in
the IRD, if these lengths are not specified in the schema
for a particular entity-type.

- 131 -

- 132 -

REFERENCES

[1] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System ; Part -- Core
Standard , ANSI TC X3H4/85-003, American National Stan-
dards Institute, New York, 1985.

[2] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System ; Part ^ --

Entity-Level Security , ANSI TC X3H4/85-005, American
National Standards Institute, New York, 1985.

[3] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System ; Part 2 — Ap-
plication Program Interface , ANSI TC X3H4/85-006, Amer-
ican National Standards Institute, New York, 1985.

[4] ANSI X3H4, (draft proposed) American National Standard
Information Resource Dictionary System ; Part 4_

-- Sup-
port of Standard Data Models , ANSI TC X3H4/85-007,
American National Standards Institute, New York, 1985.

[5] Application Systems Division, Prospectus for Data Dic-
tionary System Standard , NBSIR 80-2115, National Bureau
of Standards, Gaithersburg, MD, September, 1980.

[6] Goldfine, A. H. , Editor, Data Base Directions ; Informa-
tion Resource Management -- Strategies and Tools , MBS
Special Publication 500-92, National Bureau of Stan-
dards, Gaithersburg, MD, September, 1982.

[7] Konig, P. A. and Newton, J. J., Federal Requirements
for a Federal Information Processing Standard Data Dic-
tionary Systems , NBSIR 81-2354, National Bureau of
Standards, Gaithersburg, MD, September, 1981.

[8] Konig, P. A., Goldfine, A. H., and Newton, J. J., Edi-
tors, Functional Specifications for a Federal Informa-
tion Processing Standard Data Dictionary Svstem, NBSIR
82-2619 , National Bureau of Standards, Gaithersburg

,

MD, September, 1982.

[9] Chipman, M. L., and Fiorello, M. , Cost -Benefit Analys i

s

of £ Prospective Data Dictionary System Standard ,

prepared for the Institute of Computer Sciences and
Technology, National Bureau of Standards, Gaithersburg,
MD, October, 1983.

[10] Goldfine, A. H., Using the Information Resource Dic-
tionary System Command Language , NBSIR 85-3165,
National Bureau of Standards, Gaithersburg, MD, 1985.

[11] ISO, Specification for a Data Descriptive File for In-
formation Interchange , ISO 8211, American National
Standards Institute, New York, 1985.

[12] ANSI X3H2, (draft proposed) American National Standard
Database Language NDL , X3.133-198x, American National
Standards Institute, New York, August, 1984,

[13] ANSI X3H2, (draft proposed) American National Standard
Database Language SQL , American National Standards In-
stitute, New York, February, 1985.

‘- 134-

Mt5S-1 14A I RE V. 2 -aC)

BIBLIOGRAPHIC DATA
SHEET fSee instructions)

PUBLICATION OR 2

REPORT NO,
. Performing Organ. Report No.

NBSIR-85/3164

3. Publication Date

April 1985

4. TITLE AND SUBTITLE

A Technical Overview of the Information Resource Dictionary System

5. AUTHOR(S)

Alan H. Goldfine and Patricia A. Konia
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS

7. Contract/Grant No.

DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

I. Type of Report & Period Coverec

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

10. supplementary notes

•

;

1 Document describes a computer program; SF-I8S, FlPS Software Summary, is attached.

li. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes o significant
bibliography or literature survey, mention it here)

This publication provides a technical overview of the draft proposed American
National Standard Information Resource Dictionary System. The software
specifications for the Information Resource Dictionary System also are being
proposed as a Federal Information Processing Standard. In addition, the
International Organization for Standardization (ISO), Technical Committee 97,

Subcommittee 21, Working Group 5-15 has reviewed these software specifications
as an ISO Working Document. This technical overview provides background
information on the development of the draft proposed standard. It also provides,

a technical summary of the data architecture and. the software functions and
processes, specified for the Information Resource Dictionary System.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key woras by semico O" :

American National Standard; computer software; data dictionary; data dictiona-y
system; data management; Federal Information Processing Standard; Information
Resource Dictionary System; IRDS; information resource management; IRM; Inter^'af 1

n, AVAftj>^Ll-TY

yi Uni imited

For Official Distribution. Do Not Release to NTIS

Order From Superintendent of Documents, U.S. Government Printing Office, Washington. D.C
20402.

Order From National Technical Information Service (NTIS). Springfield. VA. 22161

14. NO. OP
PRlS^EC

IS. P'.cf

> T t ww..

