
NBSIR 85-3125

Problem and Data Specification
for Linear Programs

Christoph Witzgall

Marjorie McClain

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Applied Mathematics

Gaithersburg, MD 20899

November 1984

Issued April 1 S85

Sponsored by:

U.S. Department of Transportation

Urban Mass Transportation Administation (UMTA)

NBSIR 85-3125

PROBLEM AND DATA SPECIFICATION

FOR LINEAR PROGRAMS

Christoph Witzgall

Marjorie McClain

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Applied Mathematics

Gaithersburg, MD 20899

November 1984

Issued April 1 985

Sponsored by:

U.S. Department of Transportation

Urban Mass Transportation Administration (UMTA)

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Table of Contents

Page
Abstract

Acknowledgements

Introduction . 1

Chapter 1 Formulating Linear Programs

1.1 Mathematical Formulation of Linear Programs 4

1.2 Problem Specification by Keywords 7

1.3 Tables and Index Ranges 10

1.4 Using Several Variable Names in the Objective Function.... 17

1 . 5 Subranges 20
1 . 6 Index Maps 24

1.7 Time-periods in Linear Programs... 28
1.8 Network Flow Problems 34

1.9 Index Range Sequences and Their Inverses.................. 40
1.10 Conventions for Deleting Quotes........................... 45

Chapter 2 The Database

2.1 The Data Statement: General Conventions. 48
2 . 2 Range Blocks .. 50

2.3 Table Blocks. ..

.

52
2.4 File Blocks, Content Clauses, and Locator Phrases......... 54

2.5 Map Blocks and Range Sequence Blocks 57

2.6 Database Manipulations: Specification..................... 58
2.7 Database Manipulations: Disposition....................... 64

Chapter 3 Report Generation

3.1 Reporting Requirements for Linear Programming............. 66
3.2 Output Elements... 67

3.3 Output Qualifications..................................... 71

3.4 Output Format... 72

3.5 Non-normal Terminations and Superfluity................... 73
3.6 REPORT Statements... 74

3.7 Thoughts About Units...................................... 74

Chapter 4 Implementation

4.1 Overview 76
4.2 Tokenization of Run Statements: Generic Symbols........... 79

4.3 Tokenization of Run Statements: Collecting Names.......... 81
4.4 Tokenization of Run Statements: Lexical Synthesis......... 84
4.5 Normalizing Token Strings: Slacks and Substitutions....... 85
4.6 Normalizing Token Strings: LET Instructions............... 86
4.7 Normalizing Token Strings: Indexes and Subranges.......... 87
4.8 Matrix Generation... 87
4 .

9

Processing of Data Statements 90

Appendix A: Comparison with Other Problem Specification Methods...... 92

Appendix B: Backus-Naur Form (BNF) Representation of LET TABLE
Instructions ... 110

References 112

Abstract

A language for specifying linear programs is proposed. The specification
language is designed so as to enable the user to define the input for a
particular linear program in terms of a given database of multi-dimensional
tables. The specification language is formulated within the general framework
of the UTPS system developed by the U.S. Department of Transportation. The
structure of the underlying database system is described s and instructions
for the writing of reports, again within the framework of the UTPS system, are
discussed. Generation of the matrix for the specified linear program can be
achieved during a single sequential pass through the database.

database, input generation, lexical analysis, lexical synthesis,
linear programming, modeling language, matrix generator,
modeling language, multidimensional table, optimization, problem
specification, report generator, software engineering.

Keywords:

Acknowledgement

s

We are grateful for the support received from the Division of Planning,
Methods and Support of the Urban Mass Transportation Administration (UMTA) in
this developmental effort, and in particular, for the interest and encourage-
ment by its former chief. Dr. R. Dial, many of whose ideas are incorporated in

this work. At NBS, we acknowledge the contributions of Dr. H. Hung during an
early phase of the language formulation and of Mr. M. Knapp-Cordes , who
programmed a first version of the database as well as making a key
contribution to the theoretical development of the matrix generator. While
at NBS, Mr. J. Wolfe single-handedly implemented the problem formulation
portion of the ULP prototype package. We deeply appreciate his commitment and
his tireless efforts.

-

'

Introduction

In this report a method, tentatively called ULP, is proposed for specifying
linear programming problems in terms of a table-oriented database system.

The position is taken that the database system is a self-contained entity,
and that a linear programming code is just one of several analysis programs
supported by the database system. Consequently, the task of generating and
updating the database system is viewed as conceptually and mechanically
different from the task of specifying a particular linear programming problem.
The latter task will therefore not address the input of data but, with minor
exceptions, concentrate on the selection of data from a pre-existing database.

The underlying database system is not assumed to be geared towards quick
on-line retrieval of small portions of information as, for instance, in
management information systems (MIS), nor is it envisioned as continually
modified and appended as, for instance, in reservation systems. Rather it is

seen as a fairly static repository of large blocks of information geared towards

the selective off-line generation of data streams for computation-intensive
analysis programs and report generation. Its purpose may also be viewed as

providing a superstructure for organizing information which resides in separate
files. A database consisting of multidimensional tables appears to be ideally
suited for such tasks.

Both the problem specification method and the database system will be

discussed in this report, the specification method in Chapter 1, the database
system in Chapter 2. In Chapter 3, report generation needs are examined
pertaining both to the results of linear programming runs and to the contents of

the database.
Chapter 4 will deal with questions of implementation. "Tokenization"

,

that is, lexical analysis or lexical synthesis, of the specification language as
well as the generation and representation of the matrix of the linear program
are discussed. A major result of theoretical as well as practical interest is

the observation that matrix generation can be accomplished during a single
sequential pass through the database (M. Knapp-Cordes [9]). That does not imply
that the entire database need be read in a consecutive fashion but that access
can be organized in an efficient manner. This is particularly important if the
database information is distributed over several files.

In a seminal paper, "Modeling Languages versus Matrix Generators for

Linear Programming"
,

R. Fourer [4] conducts a comprehensive examination of the

many formulation tools for linear programming that are currently available. In

this context, he distinguishes a "modeler's form" from a "matrix generator form"

of the linear program specification. The former concerns itself first and
foremost with stating the problem at hand in a concise and self-documentary
fashion. When using the matrix generator form, the user has moved already one

step away from simply stating the problem; he has organized the information
into a pre-matrix format expecting a matrix generator package to complete the

job. Matrix generator forms, typically, refer to “rows" and “columns" of the
linear program. Fourer finds that most specification methods currently in use
for linear programs are of this latter kind. He goes on to propose an instance
of a "modeling language" based on a modeler's form rather than a matrix
generator form of a linear program. Our specification method ULP is a “modeling
language" in the sense of Fourer. In fact, it is similar to the LPMODEL system

1

of S. Katz, L.J. Risman and M. Rodeh [7], the main differences being twofold: (i) a

different implicit summation convention, fashioned after a similar convention in

tensor algebra where "common indexes” are automatically summed over; (ii) the

availability of an index map construct by which indexes in different index ranges

can be related to each other. We reiterate our emphasis on the conceptual

separation between the database on the one hand and the problem specification on the

other, expecting the database to serve purposes also other than providing data

support for a linear programming model.

An effort has been made to use a few flexible constructs in a logically
consistent fashion rather than introducing many different constructs of narrow

applicability. The reader is to judge where the logical coherence of the

specification language could be improved. We note that many current specification

languages use simlar notation. This may be considered as an indication of an

emerging consensus, and notations proposed in this report are intentionally chosen

close to established notations in such instances.

OMNI (e.g., C. Boudrye and R. Greenberg [3]) and DATAFORM (Ketron, Inc. [8])
are probably the most commonly used advanced specification methods for linear

programming. DATAFORM has been extended to PLATOFORM, which is described in a

separate Exxon monograph by K. H. Palmer et al. [12]. These methods have proved
themselves capable of handling the large linear programs arising in practice.
However, they are, as R. Fourer points out, still oriented mainly towards matrix
generation rather than problem specification. In Appendix A, we will formulate for

comparison two sample problems in XML, OMNI, DATAFORM, LPMODEL, and ULP (our

proposed method). Other, mostly theoretical work, has been directed towards

structured matrix generation, that is, generation of more complex matrices from
smaller ones. See, for instance, R. Bayer and C. Witzgall [1] , [2]

,

H. J. Greenberg
and James E. Kalan [5], J. R. Phillips and H. C. Adams [13]. The paper of R» Fourer

[4] includes an extensive list of references on various problem specification
methods

.

LINDO (L. Schrage [14], [15]) is a popular linear programming system with
on-line numerical specification of small linear programs in a standard arithmetic
format. While any modeling language should emphasize the use of an off-line
database it should —• and ULP does — also encompass the specification capabilities
of LINDO. S. Shen and G. Krulee [16] have proposed a system for extracting from
normal English sentences a LINDO-type formulation of a linear program. The use of

computer facilities to aid in the formulation of linear programs, for instance, by
providing suitable menu features and screen displays, is promoted by G. Mitra and
coworkers [18] ,

[19] , [20]

.

Report-writing involves three major aspects. One of these is "output control".
This requires the capability to specify, at the outset, those quantities which will
actually be produced as output for a specified linear programming model. The second
aspect is "output editing", namely the selective extraction, aggregation and display
of output information after it has been produced. Finally, there is the task of

"output analysis". In the words of R.P. O'Neill [11], "the listings of the solution
file ... are often well over 10,000 lines forcing a very tedious and awkward process
for examining information on an ad hoc basis”. Output analysis therefore calls for
sophisticated interactive scanning tools such as the PERUSE system developed by R.P.
O'Neill [11] and his collaborators. In this report, we address mainly the problem
of output control. Since output will be defined in tabular form in the process of

problem specification, some of the table mainpulation operations described in
Chapter 2 may be potentially applicable to the task of output editing. We do not.

2

I a
however, suggest methods for interactive examination of solution, although the

importance of such a tool cannot be overestimated. Finally, we remark that all
tools for output control, editing and examination must be based on a coherent system
of problem specification.

[j

A prototype linear programming system, ULP, has been the object of a

developmental effort during the years 1979-1982 by NBS on behalf of the Urban Mass
Transportation Administration (UMTA) . This prototype system includes an

implementation of the major problem and data specification features described in
this report. ULP has been designed to work within the framework of the Urban
Transportation Planning System (UTPS), which is a collection of intercommunicating
software modules for transportation planning and analysis developed by the UMTA.
For more detailed information about UTPS, the reader is referred to UMTA publication
[17] . Knowledge of UTPS rules and conventions, however, is not required for reading
this report. Furthermore, adherence to UTPS conventions does not diminish the

generality of the material presented.

UTPS modules adhere to common formats of programming and documentation. A
common feature are

"run statements ", each of which define the intent of a computer
run to be made. In UTPS, these run assignments are in the form of so-called
"&SELECT statements". They consist of a series of instructions each headed by a
"keyword" . The format is free in that the keywords and what follows them are not
tied to particular positions on a line. "Ends-of-lines" are generally Ignored, as

are blank characters in most circumstances. An important general principle is that
the sequence of the Instructions in the run statement should not matter. The
problem specification method discussed in this paper uses such Instructions in a run
statement and adheres to UTPS principles.

The instructions in run statements are divided into two classes?
"
specification instructions" and

"
disposition instructions" . Disposition

instructions cause the execution of computer code. In other words, they trigger a

"run". Specification instructions, in contrast, only serve- to provide information
for a run, without causing the computer to execute. Among the instructions
introduced in Chapter 1, the LPMIN and LPMAX are the sole disposition instructions,
causing the execution of linear programming code. In Chapter 2, additional
disposition instructions are introduced for modifying the database, as well as

specification instructions for the conceptual definition of tables and ranges. Such
specification instructions may also be used in conjunction with an LPMIN or LPMAX
disposition.

"
Data statements ", which specify direct data support to a run statement, have

been similarly standardized in UTPS. They consist of digital and alphanumeric
information following an "&DATA card". The database input format to be proposed in
Chapter 2 follows the UTPS conventions for data statements.

We conclude with the Introduction some general remarks. The ULP prototype
system implemented by NBS includes many, but not all, of the specification features
proposed in this report. It demonstrates, however, the soundness of the
implementation framework and the general capability for handling such features. The
purpose of this report then is threefolds (i) to document a past extensive effort
to develop and implement a useful user-interface with a linear programming package;
(ii) to set forth a modeling philosophy by providing a list of potential
features — by no means exhaustive — which are compatible with this philosophy;
(iii) to stimulate discussions about the form and the scope of modeling languages
for linear programming tasks.

3

CHAPTER 1 : Formulating Linear Programs

In this chapter, the general form of linear programs, and how such

programs can be described using a specification language, is discussed.
Specific examples of linear programming problems have been selected to

illustrate the use of various features of the specification language. The
text of each particular problem specification represents a run statement as

described in the Introduction. Such run statements for linear programs may
also contain some types of specification instructions whose discussion will be

postponed until Chapter 2 because they are mainly intended for database
manipulation.

1 . 1 Mathematical Formulation of Linear Programs

The "Linear Programming Problem” or
"LP-Problem" consists of finding the

minimum or, alternatively, the maximum of a linear function,

Clxl + ... + cnxn ,

of n unknown "variables”,

X1 »
• • * » xn *

The coefficients ci, ...» cn are given numbers. The linear function is
called the

"
objective function" .

For the objective function to have a minimum (or maximum), the values' of
the variables xi, . .

.

,

xn must be subject to "constraints" , namely linear
equations of the form

alxl + • • • + anxn = b

or linear inequalities of the form

alxl + • « • + anxn b

alxl + • • • + anxn > b

where ai , ..., an and b are given real numbers. Furthermore, the variables
are assumed to be nonnegative, or more generally, to have specified "

lower
bounds"

” ~

X1 * M , ... , xn > Ln ,

and "upper bounds"

X1 < Hi , ... , xn < Hn ,

where L L ,
. .

. , Ln and Hi, ..., Hn are again given real numbers. Any instance
of such an objective function and constraints is commonly called a

" linear
program" .

4

A particular set of values for the variables x^,..., xn forms a
" feasible solution” if it satisfies the constraints as well as the bounds. If

it also minimizes (or maximizes) the objective function, then it is called an
" optimal solution" . In certain exceptional cases, it may happen that no
feasible solutions exist at all, or that feasible but no optimal solutions
exist because every feasible solution can be improved.

EXAMPLE 1 (Murty [10])

A nonferrous metals corporation produces four different alloys from two
basic metals. The daily total supply to be used of these metals is as

follows:

SUPPLY

Metal 1 6 tons

Metal 2 5 tons

The proportions of the two metals entering into the four alloys is set forth
in the following table:

COMPOSITION

e,

ALLOY 1 ALLOY 2 ALLOY 3 ALLOY 4

METAL 1 0 .5 0.6 0.3 0.1

METAL 2 0.5 0.4 0.7 0.9

Present market prices for the four alloys are per ton in dollars:

PRICE

ALLOY 1 1000

ALLOY 2 1500

ALLOY 3 1800

ALLOY 4 4000

The problem is to determine the optimal product mix to maximize gross revenue.
To this end, one may represent the unknown optimal product mix by four
variables

xi» x2 » x3» *4.

5

which determine the number of tons produced and sold daily of alloys 1-4 in

that order. The price of the total daily production is then given by:

lOOOxi + 1500x2 + I 8OOX3 + 4000x4 .

This is the objective function to be maximized. The constraints are

determined by the supply provided for the two basic metals:

0 . 5xi + 0*6x2 + 0 * 3x3 + 0.1x4 31 6

0.5xi + 0.4x2 + 0 . 7x3 + 0 . 9x4 =* 5 .

It is clear that the daily production quotas cannot be negative:

xi ^ 0 | ... | X4 ^ 0 •

Assuming this, the linear program will have the form:

maximize lOOOxi + 1500x2 + 1800x3 + 4000x4

subject to 0.5xi + 0 . 6x2 + 0 . 3x3 + 0 . 1x4 3 6

0.5xi + 0.4x2 + 0 . 7x3 + 0 . 9x4 " 3 .

The answer can be shown to be

xi = 0, X2 =“ 9.8 ,°x3
a 0, X4 =* 1.2,

i.e., only alloys 2 and 4 are produced.

The above formulation proceeded under the assumption that the daily
supply had to be used up. If one does not insist on that, then the
constraints take the form of inequalities rather than equations:

0.5xi + 0.6x2 + 0 . 3x3 + 0 . 1x4 * 6

0.5xi + 0 . 4x2 + 0 . 7x3 + 0 . 9x4 ** 3 .

In this case the linear program will be:

maximize lOOOxi + 1500x2 + 1800x3 + 4000x4

subject to 0.5xi + 0.6x2 + 0 . 3x3 + 0 . 1x4 * 6

0.5xi + 0.4x2 + 0.7x3 + 0.9x4 * 3 .

Since not stated otherwise, it is automatically assumed that all variables
are nonnegative. The answer is:

X1 ** 0, X2 =* 0, X3 = 0, X4 =» 5.56 .

6

Still another linear program results if the condition that not more than
5 tons of alloy 2 can be sold is added to the original linear program. In
this case, one would add the bound condition X2 < 5:

maximize lOOOx^ + 1500x2 + I 8OOX3 + 4000x4

subject to 0.5xi + 0 *^X2 + 0 . 3x3 + 0 . 1x4 = 6

0.5xi + 0 . 4x2 + 0 . 7x3 + 0 * 9x4 ~ 5

xz < 5 .

The answer now is

xi = 6, X2 = 5, X3=»0
s

X4 = 0,

that is, only alloys 1 and 2 are being produced.

1.2 Problem Specification by Keywords

Ways to represent the above examples of linear programs in computer read”
able form are now explored. We will first discuss six main "

keywords "

i

LPMIN, LPMAX, UNKNOWN, CONSTRAIN, BOUND, COMMENT.

The first two keywords are used to indicate the objective function, which is to

be minimized or maximized, respectively. The others specify constraints and
bounds. The keyword CONSTRAIN also defines

"
labels" for constraints, by which

these constraints can be identified and referenced. Similarly the variables
will be given alphanumeric "variable names " using the keyword UNKNOWN. BOUND
instructions indicate deviations from the implicit assumption of nonnegativity
for variables. The keyword COMMENT fulfills an obvious function. Additional
keywords will be introduced later.

For EXAMPLE 1, we might choose

XI, X2, X3, X4

as variable names, and write the following three separate problem definitions:

UNKNOWN (XI , X2, X3, X4)

LPMAX(1000*X1 + 1500*X2 + 1800*X3 + 4000*X4)

C0NSTRAIN(* 1 * s 0.5*X1 + 0.6*X2 + 0.3*X3 + 0.1*X4 - 6)

C0NSTRAIN('

2

f
: 0.5*X1 + 0.4*X2 + 0.7*X3 + 0.9*X4 - 5)

7

UNKNOWN (XI , X2, X3, X4)

LPMAX(1000*X1 + 1500*X2 + 1800*X3 + 4000*X4)

CONSTRAIN(* 1 *
: 0.5*X1 + 0.6*X2 + 0.3*X3 + 0.1*X4 <- 6)

CONSTRAIN('2’

:

0.5*X1 + 0.4*X2 + 0.7*X3 + 0.9*X4 <= 5)

UNKN0WN(X1 , X2, X3 , X4)

COMMENT (XI, X2,X3,X4 ARE PRODUCTION QUOTAS)

LPMAX(1000*X1 + 1500*X2 + 1800*X3 + 4000*X4)

CONSTRAIN(’ 1 *
: 0.5*X1 + 0.6*X2 + 0.3*X3 + 0.1*X4 - 6)

CONSTRAIN(’ 2 *
: 0.5*X1 + 0.4*X2 + 0 .

7*X3 + 0.9*X4 - 5)

BOUND(X2 O 5)

Each of the three problem definitions represents a run statement as
defined in the Introduction.

In the above CONSTRAIN statements, the numbers 1 and 2, stated in quotes,
serve as constraint labels. Arbitrary alphanumeric names starting with a letter
can serve as variable names. The labels are arbitrary strings of letters and
numbers. Blank spaces in both variable names and labels are optional but are
ignored as far as the identity of two such names is concerned.

In general, blank spaces and ends of lines are ignored in the ULP set-up so
that an almost entirely free format results. In particular, an expression of the
form

Keyword()

may stretch over several lines. On the other hand, several expressions of this
kind may start in the same line. Semicolons separating such expressions are
optional. The following is an equivalent formulation of the first linear
program:

8

UNKNOWN (ALLOY 1 ,
ALLOY2 , ALLOY3 ,

ALLOY4)

LPMAX(1000*ALL0Y1 + 1500*ALL0Y2 + 1800*ALLOY3 + 4000*ALLOY4)

CONSTRAIN('ALUMINUM' : 0.5*ALL0Y1 + 0.6*ALLOY2 + 0.3*ALLOY + 0.1*ALL0Y4 = 6)

CONSTRAIN('MAGNESIUM' : 0.5*ALL0Y1 + 0.4*ALL0Y2 + 0.7*ALL0Y3 + 0.9*ALLOY4 = 5)

The symbol ">**" (greater or equal) may be used in a CONSTRAIN statement
just as well as "=" or "<=" (less or equal). The notations, "=>" instead of
”>=" and "<" instead of "<=", are also accepted.

In BOUND statements, the variables come first, the relation symbols
second, and the constants third. All three relation symbols, ”>=, <=, ss " are
permitted in BOUND statements.

The need for a separate BOUND statement might be questioned, because an
equivalent CONSTRAIN statement could apparently be written. The function of the

BOUND statement, however, is slightly different in that the setting of a lower
bound by a BOUND statement overrides the implicit lower bound of zero. Also the

simplex algorithm handles BOUND statements more efficiently than equivalent
CONSTRAIN statements. The BOUND statement permits the setting of infinite
bounds. In particular.

BOUND(X >= -INF)

sets a lower bound of indicating nonexistence of finite lower bounds.
This device can be used to neutralize nonnegativity conditions for the purpose
of introducing completely unbounded variables.

As is customary, the ULP package introduces nonnegative "slack variables "

to turn inequalities into equations. These variables are labeled by the names
of their corresponding CONSTRAIN statements except that these names are
preceded by

"$” (dollar sign).

In the second version of EXAMPLE 1, the two CONSTRAIN statements give rise to
two slack variables

$ 1 , $ 2 ,

the introduction of which converts the two inequalities to equations

:

0.5*X1 + 0.6*X2 + 0„3*X3 + 0.1*X4 +$1=6

Q.5*X1 + 0.4*X2 + 0.7*X2 + G.7*X4 +$2=5 .

To repeat, the definition and inclusion of slack variables is automatic: it
requires no action by the user. However, the user may encounter these
variables in output reports.

9

1 .3 Tables and Index Ranges

For all but the very smallest of linear programs, it is impossible to

write down explicitly all the constraints or even the objective function: the

data will have to be drawn from a
"database "

. This database is organized as
a collection of "tables". A table is given by a "table name ", a sequence of
" index ranges ", and a number, the "table entry " for each

"index combination".

An index range is a sequence of indexes, i.e. names of the form described in
the previous section: alphanumeric strings with blanks not counting. The
table names are alphanumeric strings starting with a letter and blanks not

counting. Index ranges are identified by a name, which is again like that of

tables: alphanumeric starting with a letter and blanks permitted but not
counting.

The three tables in EXAMPLE 1 might be represented as follows:

SUPPLY(METALS)

PRICE(ALLOYS)

COMPOSITION(METALS ,ALLOYS)

.

Here SUPPLY, PRICE, COMPOSITION are table names; METALS and ALLOYS
denote index ranges, say:

METALS = (METAL 1, METAL 2}

ALLOYS = (ALLOY 1, ALLOY 2, ALLOY 3, ALLOY 4} .

In particular, we then have

SUPPLY ('METAL 1') - 6

PRICE ('ALLOY 1') = 1000

COMPOSITION 'METAL I', 'ALLOY 1') = .5 .

An important warning : the same range cannot appear twice in the same table.

The variables can similarly be tables, e.g.

X(ALLOYS).

The letter X thus acts as the name of an unknown, to-be-determined table. In
order to use such

"
indexed variable names " in our formulation of linear

programs, an index summation convention is adopted which is closely related to
a convention used in tensor algebra: common indices are summed over.

Our "index summation convention " is based on the distinction between
'

fixed index ranges '" and
'

'free index ranges ". Consider the expression

PRICE (ALLOYS)*X(ALLOYS)

,

10

with ALLOYS considered to be a free index range. Then the free indices are

"summed over", and the above expression turns out to be a short-hand notation
for

PRICE(ALLOY 1)*X(ALLOY 1) + PRICE(ALLOY 2)*X(ALL0Y 2)

+ PRICE (ALLOY 3)*X(ALL0Y 3) + PRICE(ALLOY 4)*X(ALL0Y 4),

which, upon substitution of the known table entries for PRICE(ALLOY 1), and so
on, becomes the objective function in our last formulation of the linear

program for EXAMPLE 1.

Considering ALLOYS as a free index range and METALS as a fixed index
range, the expression

COMPOS ITION(METALS ,ALLOYS) *X(ALLOYS

)

will stand for two different sums, one for each of the two fixed indexes in
the range METALS:

COMPOSITION(METAL 1,ALLOY 1)*X(ALLOY 1) +

... + COMPOSITIONMETAL 4 ,ALLOY 1)*X(ALLGY 4)

COMPOSITION(METAL 1,ALLOY 2)*X(ALLOY I) +

... + COMPOSITIONMETAL 4 sALLOY 2)*X(ALL0Y 4).

If table entries for COMPOSITION are entered into the above
expression, the linear functions result which form the essential part of

the constraints for EXAMPLE 1.

Employing these conventions, one may formulate a linear program for
EXAMPLE 1 as follows:

UNKNOWN X(ALLOYS))

LPMAX(PRICE (ALLOYS) *X(ALLOYS)

)

CONSTRAIN(METALS: COMPOSITION(METALS,ALLOYS)*X(ALLOYS)=SUPPLY(METALS)

)

This follows the rules : a) all index ranges in the LPMAX, LPMIN statements
are free; b) in the CONSTRAIN statements, the ranges preceeding the colon are

fixed; c) in BOUND statements, all ranges are fixed.

The fixed index ranges signal repetition: for each fixed index or index
combination, create the indicated statement. By contrast the free index
ranges signal summation.

Table names referring to data tables such as COMPOSITION, SUPPLY and
PRICE may be preceded by a plus sign "+ ,c

or minus sign in LPMAX, LPMIN,
CONSTRAIN and BOUND instructions. For instance.

11

LPMIN(-PRICE(ALLOYS)*X(ALLOYS)

)

would be equivalent to the previous LPMAX instruction.

EXAMPLE 2 (Murty [10])

A farmer can mix two different grains in his chicken feed. Given the
cost of these grain types and the nutrients they contain, the cost of the
grain mix is to be minimized while maintaining specified nutritional levels.
More precisely, there are two index ranges:

NUTRIENTS =* { STARCH , PROTEIN .VITAMINS }

GRAINS = {1,2},

and three tables:

GOST (per kg)

1

GRAINS
$0.60

2 $0.35

SUPPLY (units per kg)

NUTRIENTS

STARCH PROTEIN VITAMINS

1 5 4 2

GRAINS
2 7 2 1

REQUIREMENT (units per day)

STARCH 8

NUTRIENTS PROTEIN 15

VITAMINS 3

The resulting linear program can be written:

12

UNKNOWN(X(GRAINS))

,

LPMIN (COST (GRAINS) *X (GRAINS)

)

CONSTRAIN(NUTRIENTS : SUPPLY(GRAINS ,NUTRIENTS) *X(GRAINS) >=REQUIREMENT(NUTRIENTS)

)

The variables X(l) and X(2) indicate the amounts of each grain type to be fed
every day. The nonnegativity of the variables is again assumed automatically.
Note that three slack variables are generated automatically by ULP, indicating
the amounts of excess supply for each nutrient. The names of the slack
variables will be

$(STARCH) , $(PROTEIN), $(VITAMIN).

Without the use of tables, the same linear program can be written as

follows:

UNKNOWN (XI, X2)

LPMIN(0.60*X! + G.35*X2)

CONSTRAIN('STARCH’ : 5*X1 + 7*X2 >= 8)

CONSTRAINC 'PROTEIN’ : 4*X1 + 2*X2 15)

CONSTRAIN('VITAMINS’ : 2*X1 + X2 >- 3)

The answer in any case is: use only grain type 1. In this case, the slack
variables will be named

$STARCH, $PROTEIN, $VITAMIN.

The next example demonstrates a somewhat unusual application of the index
summation convention.

EXAMPLE 3 (Murty [10])

A steel company has two mines and three steel plants. It wants to

minimize the cost of shipping the ore from the mines to the plants. The unit
costs of shipping from each mine to any of the plants are as follows:

COSTS ($ per ton)

PLANT

1 2 3

1 9 16 00CM

MINE
B

2 14 29 19

The following amounts of ore are available:

SUPPLY (tons)

1 103

MINE
2 197

On the other hand, the following amounts are required at the plants:

DEMAND (tons)

1 71

PLANT 2 133

3 96

Denoting by Xll, X12, ... the shipment sizes from mines 1 and 2 to plants 1,

2, and 3, we write

UNKNOWN (X 1 1 , XI 2 , XI3

,

X21,X22,X23)

LPMIN(9*X11 + 16*X12 + 28*X13 + 14*X21 + 29*X22 + 19*X23)

CONSTRAIN('MINEl ?
: Xll + XI 2 + X13 <= 103)

CONSTRAIN('MINE2 *

:

X21 + X22 + X23 <=» 197)

CONSTRAIN('PLANTl 1
: Xll + X21 >= 71)

CONSTRAIN(’PLANT2 '

:

X12 + X22 >= 133)

CONSTRAIN(’PLANT3 '

:

X13 + X23 >= 96)

14

With index ranges

MINE - {1,2} , PLANT = {1,2,3},

and tables

COST(MINE, PLANT) , SUPPLY (MINE) , DEMAND(PLANT)

,

we will write more compactly:

UNKNOWN(X(MINE ,PLANT)

)

LPMIN(COST(MINE , PLANT) *X(MINE , PLANT)

)

CONSTRAIN^ ’MINE’ (MINE) : X(MINE , PLANT) <» SUPPLY(MINE)

)

CONSTRAIN(' PLANT' (PLANT): X(MINE, PLANT) >- DEMAND (PLANT

)

The interpretation of the expression

COST (MINE , PLANT) *X(MINE , PLANT

)

is straightforward: since it denotes an objective function, all index ranges
are free. Consequently, the products "GOST*X" are to be formed for all index
combinations where the first index is in range MINE and the second Index is

in range PLANT. All six resulting products,

COST(1,1) *X(1,1) + C0ST(1 ,2)*X(1 ,2) + C0ST(1 ,3)*X(1 ,3)

+ C0ST(2 , 1)*X(2 , 1) + COST(2,2)*X(2,2) + C0ST(2 ,3)*X(2 ,3)

,

are then to be summed.

The expression

X(MINE, PLANT)

where the index range MINE is fixed and the index range PLANT is free,

is understood to translate into the two straight sums:

X(l,l) + X(1 ,2) + X(1 ,3)

X(2,l) + X(2,2) + X(2 ,3)

.

This straight summation convention is somewhat unusual and extends the

convention used in tensor algebra.

As to the use of table-like expressions

'MINE* (MINE), * PLANT 9 (PLANT),

15

in the label portion of the CONSTRAIN statements: they generate index driven
names.

MINE(l), MINE(2) ,
PLANT(l) , PLANT(2) , PLANT (3)

,

which label the constraints. The need for this is due to the fact that

the index ranges MINE and PLANT were defined above in such a fashion that

they contained some identical indexes. As a result, they cannot be used

by themselves to distinguish between different constraints. The slack
variables are correspondingly named

$MINE(1) ,
$MINE(2) , $PLANT(1), $PLANT(2), $PLANT(3)

.

The following example illustrates the use of index ranges within a bound
statement. As was mentioned before, such index ranges are considered fixed
ranges, creating a bound constraint for each index in that range.

EXAMPLE 4 (Murty [10])

Technological Hotels, Inc., has placed an order for 1000 pounds of ground
meat loaf (mixed ground beef, pork, veal) with Quantitative Butchers, Inc.,
requesting that:

a) Ground beef is to be no less than 400 pounds and no more than 600
pounds

.

b) The ground pork must be between 100 and 400 pounds.

c) The ground veal must weigh between 100 and 400 pounds.

d) The weight of ground pork must be no more than one and one half times
the weight of veal.

Technological Hotels will pay Quantitative Butchers $1200 for the entire
order. The costs, based on percent useable meat and labor, are estimated to

run for Quantitive Butchers at the rates of $0.70, $0.60. $0.80 for beef,
pork, veal, respectively. Which blend of meats is most profitable to
Quantitative Butchers?

The index range

MEAT = (BEEF, PORK, VEAL},

and the variables

X(BEEF)
, X(PORK), X(VEAL)

are used to denote the amounts used of the respective meats in the shipment
and to set up three tables

COST(MEAT)
, LOW(MEAT) ,

HIGH(MEAT)

16

with the last two containing the maximum and the minimum amounts permissible
The linear program can then be written:

UNKNOWN(X(MEAT)

)

LPMXN(COST(MEAT)*X(MEAT)

)

CONSTRAIN('TOTAL* : X(MEAT) - 1000)

BOUND(X(MEAT) >- LOW(MSAT))

BOUND (X(MEAT) <= HIGH(MEAT)

)

CONSTRAIN ('PORK RATIO* s 1.5*X(’VEAL’) - X('PORK') >=* 0)

The answer is: 400 pounds of beef, 360 pounds of pork, 240 pounds of veal*

1.4 Using Several Variable Names in the Objective Function

Several different indexed variable names can be used at the same time in
LPMIN and LPMAX statements. It is often handy to work with both indexed and
nonindexed variable names simultaneously.

EXAMPLE 5 (Murty [10])

A skyscraper is to be painted. The paint to be used can be obtained by
blending four raw paints and two thinners. The assumption is that the
physical properties of the paint vary in linear proportion with those of the
basic materials used. Data on them is presented In two tables:

PAINT DATA

PAINTS

1 2 3 4

Cost ($/gallon) 9 7 575 4

Viscosity (CP) 900 780 620 375

Vapor pressure (PSI) 0.2 0.4 0.6 0.8

Brilliance content
(grams/gallon)

30 20 50 10

Durability content
(grams/gallon)

2000 1500 1000 500

17

THINNER DATA

THINNERS

1 2

Cost ($/gallon) 3 1.85

Viscosity (CP) 2 25

Vapor pressure (PSI) 12.0 8.0

Total viscosity should be above 400, brilliance between 15 and 30, vapor
pressure between 2 and 4, durability above 575. Minimize cost.

Consider the index ranges

PROPERTIES ® {COST, VISCOSITY, VAPOR PRESSURE , BRILLIANCE , DURABILITY}

NONCHEMICAL = {COST, VISCOSITY,VAPOR PRESSURE}

They are associated with the given tables

PAINT DATA(PROPERTIES, PAINTS)

THINNER DATA(NONCHEMICAL, THINNERS)

where

PAINTS - {1,2, 3, 4} , THINNERS = {1,2}.

We use these ranges and tables to set up a linear program as follows:

UNKN0WN(X(PAINTS) ,Y(THINNER)

)

LPMIN(PAINT DATA(’COST' , PAINTS)*X(PAINTS)

+ THINNER DATA(’COST’ , THINNERS)*Y(THINNERS))

CONSTRAIN(’VISCOSITY LOW’

:

PAINT DATA(’VISCOSITY’ , PAINTS)*X(PAINTS)

+ THINNER DATA('VISCOSITY* , THINNERS)*Y(THINNERS) >= 400)

CONSTRAIN(' BRILLIANCE LOW':

PAINT DATA(’BRILLIANCE' , PAINTS)*X(PAINTS) >= 15)

CONSTRAINC 'BRILLIANCE HIGH’

:

18

PAINT DATA('BRILLIANCE* .PAINTS)*X(PAINTS) <= 30)

C0NSTRAIN('VAPOR PRESSURE LOW*:

PAINT DATA('VAPOR PRESSURE * .PAINTS)*X(PAINTS)

+ THINNER DATA('VAPOR PRESSURE’ . THINNERS) *Y(THINNERS) >= 2)

CONSTRAIN('VAPOR PRESSURE HIGH*

:

PAINT DATA(’VAPOR PRESSURE’ .PAINTS)*X(PAINTS)

+ THINNER DATA('VAPOR PRESSURE* .THINNERS)*Y(THINNERS) <* 4)

CONSTRAIN('DURABILITY LOW*:

PAINT DATA('DURABILITY*,PAINTS)*X(PAINTS) >=* 575)

CONSTRAIN('NORMALIZE* : X(PAINTS) + Y(THINNERS) * 1)

In the above formulation, we have used two names "X
ro

and "Y" to denote
the unknown variables. They stand for the percentages used of paints and
thinners, respectively, and must therefore add up to L

The introduction of additional variables often simplifies problem
specification. These variables will typically not appear In the LPMIN or
LPMAX statements. Default coefficients of zero are then assumed for such
variables in the objective function.

UNKNOWN (X(PAINTS) ,Y(THINNERS) ,U,V)

LPMIN (PAINT DATA(COST , PAINTS) *X(PAINTS

)

+ THINNER DATA(COST , THINNERS) *Y(THINNERS)

)

CONSTRAIN('VISCOSITY'

:

PAINT DATA('VISCOSITY* ,PAINTS)*X(PAINTS)

+ THINNER DATA('VISCOSITY* , THINNERS)*Y(THINNERS) >= 400)

CONSTRAIN('BRILLIANCE'

:

PAINT DATA(’BRILLIANCE* .PAINTS)*X(PAINTS) - U » 0)

CONSTRAIN('VAPOR PRESSURE*:

PAINT DATA('VAPOR PRESSURE* .PAINTS)*X(PAINTS)

+ THINNER DATA('VAPOR PRESSURE * .THINNERS)*Y(THINNERS) - V = 0)

19

CONSTRAIN(’DURABILITY*

:

PAINT DATA(’DURABILITY’ .PAINTS)*X(PAINTS) >= 575)

BOUND(U >= 15) BOUND(U <= 30)

BOUND(V >= 2) BOUND (V <= 4)

CONSTRAIN(’NORMALIZE’ : X(PAINTS) + Y(THINNERS) = 1)

In the above formulation two non-indexed variables have been introduced,

U , V

for viscosity and vapor pressure, respectively. BOUND statements are then
used to bound these new variables, and thereby viscosity and vapor pressure,
both from above and below. This saves writing down twice the expressions for

viscosity and vapor pressure.

1 .5 Subranges

We return to EXAMPLE 5 in the previous section. We assume that the data
are given in a somewhat different tabular structure, involving the ranges:

PROPERTIES =• {VISCOSITY,VAPOR PRESSURE .BRILLIANCE .DURABILITY}

NONCHEMICAL - {VISCOSITY,VAPOR PRESSURE}

PAINTS = {1,2, 3, 4} , THINNERS = {1,2} ,

and the tables:

PAINT CO ST (PAINTS) , THINNER C0ST(THINNERS)

PAINT DATA(PROPERTIES, PAINTS), THINNER DATA(NONCHEMICAL .THINNERS)

.

The construct

N0NCHEMICAL(PROPERTIES

is introduced to characterize the intersection of the two ranges, that is,

those indexes in PROPERTIES which are also to be found in the index range
NONCHEMICAL. We call NONCHEMICAL the "screening range " and PROPERTIES the
"
leading range ". As we run through the indexes in PROPERTIES we either

encounter an index which is also valid in NONCHEMICAL, or an index which is

not, and which is therefore to be screened out. It follows that a subrange of

the screening range is constructed. For this reason, we call a construct of

the above kind a "subrange construct ". Note that while in the above example
the screening range, NONCHEMICAL, is a subset of the leading range, namely
PROPERTIES, this need not be the case in general; the leading range may well

20

be a subset of the screening range or neither range may contain the other.

Whenever the subrange construct is used, the leading range (second
position) is thought of as the "driver", that is, the range whose indexes are
traversed in the order of that range. The order of the leading range is

imposed on the resulting subrange. The screening range then ensures that only
indexes which are desired in the given situation are considered. In

particular , this holds if the subrange construct is used for the extraction
of entries from the table. Here corresponding table entries will be sought
out for valid indexes in the screening range or will be ignored (considered
zero) otherwise. To ensure the validity of the indexes, we impose the rule :

the screening range must coincide with the range associated with the table in

the position in which the subrange construct appears.

The use of the subrange construct is to be interpreted in this fashion
in the following formulation of EXAMPLE 5:

UNKNOWN (X (PAINTS) ,Y (THINNERS)

)

LFMIN(PAINT COST (PAINTS)*X(PAINTS)

+ THINNER COST (THINNERS)*Y(THINNERS))

CONSTRAIN(PROPERTIES

:

PAINT DATA (PROPERTIES ,PAINTS) *X (PAINTS

)

+ THINNER DATA(NONCHEMICAL ()PROPERTIES sTHINNERS) *Y (THINNERS

)

- Z(PROPERTIES) » 0)

B0UND(Z('VISCOSITY’) >« U00)

B0UND(Z(’BRILLIANCE’) >= 15)

B0UND(Z(’BRILLIANCE') <= 30)

B0UND(Z('VAPOR PRESSURE’) >= 2)

B0UND(Z('VAPOR PRESSURE’) <= k)

B0UND(Z(’DURABILITY’) >= 575)

C0NSTRAIN(’NORMALIZE’ : X(PAINTS) + Y(THINNERS) * l)

21

In the first CONSTRAIN statement, entries from the table "THINNER DATA" are
only considered for entries in the subrange NONCHEMICAL () PROPERTIES

.

Since the subrange is in effect formed as the intersection of two ranges

with indexes ordered according to their order in the leading range,

NONCHEMICAL O PROPERTIES

might be a more desirable notation. However, the symbol 1 ' is not one of

the available characters. We chose the two parentheses instead because that

notation will be compatible with a generalization of the subrange construct to

be described in the next section.

Why not simply write

THINNER DATA(NONCHEMICAL,THINNERS)

in the above run statement? The answer is that then the range NONCHEMICAL
would be treated as a free range to be summed over rather than a fixed range,
the latter being the intent in the above example. Using the fixed range
PROPERTIES as the leading range indicates that the range NONCHEMICAL is also
fixed and it links these indexes with their associated constraints which are
arranged by indexes from the range PROPERTIES. Another possibility is to
write

THINNER DATA(PROPERTIES ,THINNERS)

,

with the interpretation that indexes in PROPERTIES which do not belong to the
range NONCHEMICAL are simply skipped, since the table THINNER DATA is only
defined for indexes in the range NONCHEMICAL. Serious consideration should be
given to permitting this notation as an abbreviation.

The subrange construct can be used for the purpose of reordering an
index range. This is demonstrated in the following.

EXAMPLE 6 : (Murty [10]

)

A forestry company has four sites on which it grows trees. It is

considering four species of trees: pines, spruces, walnuts and oaks. There
are four sites whose available areas are given below:

22

There are minimum required expected annual yields specified which will have to

he produced on the combined available area:

MINIMAL REQUIRED YIELD
(cubic meters per kiloacre)

WALNUT k.8

OAK 3.5
TREES

PINE 22.5

SPRUCE 9

The following tables give the expected annual yield and revenue:

YIELD
(cubic meters per kiloacre)

SPECIES

PINE SPRUCE WALNUT OAK

A IT 14 10 9

B 15 1

6

12 11
SITES

C 13 12 14 8

D 10 11 8 6

REVENUE
(kilo$ per kiloacre)

SPECIES

PINE SPRUCE WALNUT OAK

A 16 12 20 18

B
SITES

Ih 13 2h 20

C IT 10 28 20

D 12 11 18 IT

How much area should be devoted to growing the various species in the various
sites?

23

The data are arranged in the following tables:

AREA(SITES)

MINIMAL REQUIRED YIELD(TREES)

YIELD (SPECIES , SITES)

REVENUE(SPECIES .SITES)

where

SITES - {A.B.C.D}

TREES = {WALNUT, OAK, PINE, SPRUCE}

SPECIES = {PINE, SPRUCE,WALNUT, OAK} .

The index ranges "TREES" and "SPECIES" are identical except for the order of

the indexes in them. This suggests the following formulation:

UNKNOWN(X(SPECIES .SITES)

)

LPMAX(REVENUE (SPECIES ,SITES)*X(SPECIES .SITES)

)

CONSTRAIN(SPECIES:

YIELD(SPECIES, SITES)*X(SPECIES, SITES)

>= MINIMAL REQUIRED YIELD(TREES() SPECIES)

)

CONSTRAIN(SITES: X(SPECIES, SITES) <= AREA(SITES))

1 .6 Index Maps

The subranges introduced in the previous sections are special cases of a

more general construct whose purpose it is to assign indexes in a specified
image range to some of the indexes of a specified parent range.

In order to define such a "range transformation ," we introduce "index maps ".

Such an index map assigns to each index in the "domain " an index in the
" image range ". While each index in the domain must be assigned an image, not
every index in the image range needs to be the image of some index in the
domain. Different domain indexes may have the same image. Domain and image
range are part of the specification of each index map. For defining an index
map, we use the key words

LET MAP.

24

Index maps, just like index ranges, have alphanumeric names which start
with a letter. Schematically, the definition of index maps takes the form:

LET MAP (image range name (map name) domain range

'index name in image range' = 'index name

'index name in image range' = 'index name

name

:

in domain range',

in domain range',

'index name in image range' = 'index name in domain range',

'index name in image range* * 'index name in domain range')

We realize that the LET MAP construct in its present form has a drawback
in that the quantity to be defined, namely the index map, is nested in the
middle of a string and therefore not readily visualized. We feel, however,
that the similarity of the definition string with the string in which the

index is actually used provides a compensating advantage. Also the image
range and domain of the map can be immediately identified.

The LET MAP statement is a first example of a
"
’specification

instruction "
. Such instructions define a quantity, in this case an index map

without, however, including this quantity in the database. The specification
thus remains valid only within a particular set of run instructions. Other
specification instructions for defining tables and ranges will be discussed in

Chapter 2.

Index maps define range transformations when used as follows:

image range name (map name) domain range name.

Suppose, for example, that in EXAMPLE 6 of the previous section, the table

MINIMAL REQUIRED YIELD(TREES)

would be indexed in digits rather than names of tree species. In other words,
the index range TREES, which previously contained names, is now assumed to be

TREES - (1,2, 3, 4},

whereas we still have

SPECIES - (PINE, SPRUCE, WALNUT, OAK}

in tables YIELD and REVENUE.

In order to make the tables compatible, we introduce an index map DIGITS.
We can then write:

25

UNKNOWN(X(SPECIES, SITES))

LPMAX(REVENUE (SPECIES , SITES)*X(SPECIES .SITES)

)

CONSTRAIN(SITES: X(SPECIES, SITES) <= AREA(SITES))

LET MAP (TREES(DIG ITS) SPECIES

:

* 1 ' =» * WALNUT ’
,

^’“’OAK’, ’3’^PINE’, ’4' =>’ SPRUCE’

)

CONSTRAIN(SPECIES

:

YIELD(SPECIES , SITES)*X(SPECIES , SITES)

>» MINIMAL REQUIRED YIELD(TREES(DIGITS) SPECIES)

)

The construct

TREES(DIGITS) SPECIES

is a generalization of the subrange construct introduced in the previous
section, and is therefore called a "generalized subrange construct” .

The ranges TREES and SPECIES are screening and leading ranges*,

respectively. The index map DIGITS, as specified by the LET MAP instruction,
assigns to every index of range SPECIES its counterpart in DIGITS. The latter

index is then screened as to its occurrence in the range TREES.

In this case, the image and domain ranges of the index map used in the
generalized subrange construct coincide with the screening and leading
ranges, respectively. In general, thi3 need not be the case. Consider

S(M)T

with ranges A and B being the image and domain ranges of the index map M.

This construct is to be interpreted as follows: For each index in the

leading range T, determine whether it lies in the domain B of map M. If

so, substitute the corresponding image index in A. If the leading index
does not lie in the domain B, then do not transform the index. In both cases,
transformation or no transformation, determine whether the resulting index
occurs in the screening range S, in which case the index is accepted as a

member of the generalized subrange. If not, then skip the leading index in
question.

There is a natural alternative to this interpretation, namely to skip
leading indexes not in the domain B of the map M. An advantage of that

alternative interpretation would be that the construct becomes a

straightforward composition of the subrange constructs S()A and B()T with
the index map M. The advantage of the chosen interpretation is that in this
case the generalized subrange construct with the "empty map "

<j> achieves the

same effect as the nongeneralized subrange construct: S(4»)A = S()A. This
represents more than a formal advantage as we will explain below.

26

First we introduce a generalized subrange construct in which the index
map definition rather than the index map name is employed. For example, the
above run statment can be written as follows:

UNKNOWN(X(SPECIES , SITES)

)

LPMAX(REVENUE (SPECIES , SITES)*X(SPECIES, SITES)

)

CONSTRAIN(SITES: X(SPECIES, SITES) <=* AREA(SITES))

CONSTRAIN(SPECIES:

YIELD(SPECIES ,SITES)*X(SPECIES .SITES)

>* MINIMAL REQUIRED YIELD(TREES

(* 1' -'WALNUT* ,
' 2 ' = * OAK *

,

f 3*»’PINE\ ' 4 f ^ 5 SPRUCE ’) SPECIES))

Related ranges frequently differ by only a few indexes, perhaps due to an
ambiguity in spelling. Consider, for instance, the ranges

S - {A1,A11,A12,A21,A22,A23,A31,A32,A33,A34}

T - {A00,A01 , . .
. ,A99} .

Then writing

S(f A*='A01’)T

is a convenient way to use the generalized subrange construct to compensate
for the spelling discrepancy concerning the indexes A1 and A01. Note that

only the exception is specified: the identity mapping is assumed as the

default for all other indexes. This demonstrates the usefulness of this
default convention.

However, there are also circumstances under which the user would like to
enforce the skipping of a particular index in the sequencing range of a

subrange construct. Therefore, we introduce the "non-index ” symbol, which
consists of two successive single quotes, possibly separated by a string of

blank characters. Within the index map specification, writing

t * s f J f

for some index I in the index map domain will indicate that the Index I

does not have an image. In the context of a generalized map construct, it

will cause the leading index I to be skipped no matter what screening
range is used. The non-index feature is available for index map definitions
as well as for generalized subrange constructs.

27

The non-index feature will be useful for discussions of the "NEXT"

operator in the following section.

1.7 Time-periods in Linear Programs

In many applications, index ranges consist of indexes which denote

time periods. Linear programs based on such time periods often relate

information of the next time period to the present one. It will then be

useful to associate with a given index range, say,

TIME = {T1,T2,T3,TU,T5}

a generalized subrange construct which assigns to each index its successor in

the index range

T1+T2, T2 + T3, . . .

,

TU - T5

with no assignment to the last index, T5 • For this purpose, we introduce the
operator NEXT and write

next(time)

.

To arrive at an equivalent generalized subrange construction, we would have to
write, using the nonindex symbol

TIME(, T2 , = , Tl ,

,
f T3 , = *T2', 'TU^'TB* ,

f T5 , = f TU f

,
* 's'TS'jTIME,

or introduce an equivalent map using a similarly lengthy map definition. The

PREVIOUS (TIME)

operator is analogously defined for the purpose of "lagging".

The operators NEXT and PREVIOUS will also apply to tuples of ranges. For
example, let

Then

YEARS = {80,81}

QUARTERS = {Q1 ,Q2 ,Q3 ,Q4} .

NEXT (YEARS QUARTERS

)

consists of the following assignments in "odometer" or "lexicographic" order
(See Section 2.3)

:

NEXT(80,Q1) = (80,Q2), ..., NEXT(80,Ql+) = (8l,Ql) , ..., NEXT(8l,Q3) = (8l,QU).

This extends the concept of index maps. We illustrate the use of the NEXT
operator in the following example

28

EXAMPLE 7:

A manufacturing firm agrees to produce and deliver specified quantities
of products A, B, C at the end of calendar years 1980 and 198 I:

CONTRACT

80 81

A 2000 3000

B 3500 5000

C 5000 6000

The firm draws up a manufacturing plan, specifying for each quarter the number
of units to be produced, labor employed and raw materials purchased® There
are three kinds of raw materials: plastic, wire, and coating® Unit raw
materials needed per unit product are:

RAW MATERIALS

A B C

PLASTIC .513 .197 .114

WIRE .032 ®021 .019

COATING .013 .011 ®oo6

Besides raw materials there are labor and machinery requirements® The latter
represent the time for tying up manufacturing machinery®

WORK

A B C

LABOR .0022 .0024 .0015

MACHINERY .0010 .0010 .0005

The costs of raw materials as well as the above work requirements are time
dependent:

29

REQUIREMENT COSTS

PLASTIC WIRE COATING LABOR MACHINERY

Q1 1.2 2.0 9.5 1000 1100

Q2 1.3 2.1 10.1 1050 1000

Q3 1.3 2.1 10.1 1100 1250

Q*+ 1.0 1.9 10.1 1150 1000

Q1 1.3 2.1 9*9 1050 1150

Q2 1.1+ 2.2 10.5 1100 1050

Q3 1.1+ 2.2 10.5 1150 1300

Q*+ 1.1 2.0 10.5 1200 1050

Raw material requirements differ from labor and machinery requirements in that
the former can be utilized during later time-periods, at the expense, however,
of quarterly inventory costs. We assume that these quarterly inventory costs
are time independent.

MATERIAL INVENTORY COST

PLASTIC .06

WIRE .01+

COATING 9 (Y>O

Finished products, when stored, incur similar inventory costs:

PRODUCT INVENTORY COST

A .11

B .09

C .05

Continuity of labor over project time has to be ensured to avoid unnecessary
learning expenses. We stipulate that, after each quarter in year 80, labor
used shall not decrease and, after each quarter in year year 8l, labor used
shall not increase. Thus we have the labor carry-over conditions:

30

Labor(80 ,Ql)

Labor(80,Q2)

Labor(80,Q3)

Labor(80,Q4)

Labor(8l ,Ql)

Labor(8l,Q2)

Labor(8l,Q3)

Labor(80 ,Q2)

Labor(80 ,Q3)

Labor(80,Q4)

Labor(8l,Ql)

Labor(8l,Q2)

Labor(8l,Q3)

Labor(8l,Q4)

Company planning also determines minimum and maximum utilization levels for
machinery:

UTILIZATION

MINIMUM MAXIMUM

Q1 0 4o

Q2 20 50
80

Q3 10 40

Q4 5 30

Q1 5 40

Q2 10 50
81

Q3 0 60

Q4 0 60

Finally, a policy decision states that a minimim portion of plastic be
purchased in the first time period 80,Q1 as a safeguard against possible
supply difficulties which might develop later in the year 80:

Plastic purchased (80 sQl) > 800 o

Determine an optimal production plan*

We assume that the data of the above problem are contained in the
following index ranges and tables:

31

PRODUCTS = {A,B,C}

MATERIALS = {PLASTIC .WIRE .COATING}

ITEMS = {PLASTIC .WIRE,COATING,A,B.C}

QUARTERS = {Q1 ,Q2 ,Q3 ,QU}

YEARS = {80,81}

POTENTIALS = {LABOR ,MACHINERY}

RESOURCES = {PLASTIC, WIRE, COATING,LABOR,MACHINERY}

LEVELS = {MINIMUM,MAXIMUM}

CONTRACT (PRODUCTS ,YEARS

)

RAW MATERIALS (MATERIALS ,PRODUCTS

)

WORK (POTENTIALS ,PRODUCTS

)

COSTS (RESOURCES ,YEARS .QUARTERS

)

MATERIAL INVENTORY COST(MATERIALS)

PRODUCT INVENTORY COST(PRODUCTS)

UTILIZATION (LEVELS .YEARS .QUARTERS

)

Based on this information, we formulate a linear program as follows:

UNKNOWN (PURCHASED (MATERIALS .YEARS .QUARTERS)

,

AVAILABLE (POTENTIALS .YEARS .QUARTERS)

,

INVENTORY(ITEMS .YEARS .QUARTERS)

,

PRODUCED (PRODUCTS .YEARS .QUARTERS)

,

DELIVERED (PRODUCTS .YEARS ,

»q4*

*
)

)

LPMIN(COSTS (RESOURCES () MATERIALS .YEARS .QUARTERS)

*PURCHASED(MATERIALS .YEARS .QUARTERS

)

+ COSTS (RESOURCES () POTENTIALS .YEARS .QUARTERS

)

4AVAILABLE (POTENTIALS .YEARS .QUARTERS

)

32

+ MATERIAL INVENTORY COST(MATERIALS)

•INVENTORY (ITEMS ()MATERIALS ,YEARS ,QUARTERS)

+ PRODUCT INVENTORY COST(PRODUCTS)

•INVENTORY (ITEMS () PRODUCTS ,YEARS .QUARTERS)

)

CONSTRAIN (’PRODUCT BALANCE’ (PRODUCTS ,NEXT (YEARS .QUARTERS))

:

PRODUCED (PRODUCTS ,YEARS .QUARTERS

)

+ INVENTORY (ITEMS ()PRODUCTS .YEARS .QUARTERS)

- INVENTORY (ITEMS ()PRODUCTS .NEXT (YEARS .QUARTERS)

)

- DELIVERED (PRODUCTS .YEARS , ’QV ()QUARTERS) = 0)

BOUND (DELIVERED (PRODUCTS .YEARS , »QV) >=

CONTRACT (PRODUCTS .YEARS)

)

CONSTRAIN(' MATERIAL BALANCE' (MATERIALS .NEXT (YEARS .QUARTERS))

:

PURCHASED (MATERIALS .YEARS .QUARTERS

)

+ INVENTORY (ITEMS ()MATERIALS .YEARS .QUARTERS

)

- INVENTORY (ITEMS ()MATERIALS .NEXT (YEARS .QUARTERS

)

- RAW MATERIALS (MATERIALS .PRODUCTS)

• PRODUCED (PRODUCTS .YEARS .QUARTERS) * 0)

BOUND (PURCHASED (’PLASTIC’ , ’80' .’Ql’) >= 800)

CONSTRAIN(’RESERVE' (POTENTIALS .YEARS .QUARTERS)

:

AVAILABLE (POTENTIALS .YEARS .QUARTERS

)

- WORK (POTENTIALS .PRODUCTS)

* PRODUCED (PRODUCTS .YEARS .QUARTERS) >= 0)

BOUND (AVAILABLE (’MACHINERY’ .YEARS .QUARTERS)
<=

UTILIZATION (’MAXIMUM’ .YEARS .QUARTERS)

)

BOUND(AVAILABLE(’MACHINERY’ .YEARS .QUARTERS) >=

UTILIZATION (’MINIMUM’ .YEARS .QUARTERS)

)

33

CONSTRAIN (’CARRYOVER' (’80’ ,NEXT (QUARTERS))

:

AVAILABLE (’LABOR' ,'80' ,NEXT(QUARTERS)

)

- AVAILABLE (’LABOR’ ,
*80'

,QUARTERS) >= 0)

CONSTRAIN(’CARRYOVER’ ('8l' ,’Q1')

:

AVAILABLE (’LABOR’ , '8l' , ’Ql’

)

- AVAILABLE('LABOR' , ’80' ,'8U') >= 0)

CONSTRAIN ('CARRYOVER' ('8l f ,NEXT (QUARTERS))

:

AVAILABLE (’LABOR’ , '8l' ,NEXT (QUARTERS)

)

- AVAILABLE (
’ LABOR ’,'81' ,QUARTERS) <= 0

)

The constraint name specification

’CARRYOVER' (’8l' ,NEXT (QUARTERS)

)

will produce, as the four indexes of the range QUARTERS are being stepped
through, only the following three names:

CARRY0VER(8l,Q2)

CARRYOVER(8l,Q3)

CARRY0VER(8l,QU)

Thus only three constraints are being generated even though the range QUARTERS
contains .four indexes. Similarly, the notation

’PRODUCT BALANCE’ (PRODUCTS, NEXT (YEARS, QUARTERS))

causes the constraint to be skipped for the last quarter of year 8l. The
construct

’QV ()QUARTERS

causes terms to be suppressed for all quarters other than QU.

1.8 Network Flow Problems

A "network" or "directed graph" consists of a set of "nodes" , a set of
"arcs", and specifications which associate with each arc two different nodes:
the "origin" and the "destination" of the arc. Figure 1 illustrates such a
network. The nodes are represented by small circles and the arcs by
connecting lines.

Figure 1

The numbers in the circles identify the nodes. Similarly 8 arc numbers
are written next to their lines®

A network is characterized by its ^adjacency matrix” A, whose rows
correspond to the nodes and whose columns correspond to the arcs in the
network. The elements of this matrix are defined as:

A(n,a)

“1 if node n = origin of arc a

+1 if node n = destination of arc a

0 otherwise.

EXAMPLE 8 ;

With the ranges

NODES * {1, 2 S 3 s b}

ARCS - {1, 2 S 3, 4 S 5 9 6 S T} s

the adjacency matrix for the network in Fiqure 1 may be represented by the
2-dimensional table:

35

NETWORK

ARCS

NODES

1 2 3 H 5 6 7

1 -1 0 -1 +1 -1 -1 0

2 0 0 0 0 0 +1 +1

3 0 +1 +1 -1 +1 0 -1

k +1 -1 0 0 0 0 0

In what follows, we describe an important class of linear programs, each
of which is associated with a particular network such as the one in Figure 1.

These linear programs are based on a notion of "flow” along arcs, which can be

thought of as a flow of a single homogeneous material subject to the law of
conservation of matter. Each node may be a "source" or a "sink" of given
strength. The law of conservation then requires that at each node the
condition

sum of flows sum of flows

on incoming arcs on outgoing arcs

source strength
at the node

+
sink strength
at the node

hold depending on whether the node in question is a source or a sink. The
objective is to route the flow through the network in the least expensive way,
given, for each arc, a particular cost for routing a unit of flow along this
arc, as well as upper and lower bounds on the flow which limit the capacity of
the arc. This is the well-known "minimum cost flow problem" . We will describe
it in terms of our specification language for the particular network in Figure
1 .

36

Additional information is provided by the tables

SOURCE

NODES

COST LOW HIGH

ARCS ARCS

The first array, SOURCE, associates with each node the amount of flow
originating at this node. Negative values indicate that the node is acting as
a sink. It follows from the conservation law that the sum of all entries in
SOURCE must vanish. The array COST specifies the costs per unit of flow along
each arc. Negative costs indicate revenues. Finally, the arrays HIGH and LOW
contain the capacity limits. The minimum cost flow problem can now be written
as follows:

UNKNOWN (FL0W(ARCS)

)

LPMIN(COST(ARCS)*FLOW(ARCS)

)

CONSTRAIN(NODES: NETWORK (NODES ,ARCS)*FLOW(ARCS) ^ SOURCE (NODES)

)

BOUND(FLOW(ARCS) > LOW(ARCS))

BOUND(FLOW(ARCS) < HIGH(ARCS))

37

The constraint equations are precisely the conditions that flow he

conserved at each node. It should be mentioned that at least one of the

constraint equations is superfluous. Indeed, every column in the adjacency

matrix contains by definition exactly two nonzero entries with values +1 and

-1. The sum of all rows of the adjacency matrix therefore vanishes, which

means that the constraint equations are linearly dependent. In other words,

at least one constraint equation can be expressed as a linear combination of

the remaining constraint equations, and is therefore satisfied whenever the

latter constraints are satisfied. If the network is "connected" (in some

fashion not to be discussed here) , then deleting an arbitrary single row will
remove the linear dependence. For this reason the user may want to redefine

the range NODES and the tables NETWORK and SOURCE to avoid linear dependence

in the above problem specification. In general, this should not be necessary,

as the linear programming algorithm is capable of detecting linear dependence

and, consequently, superfluity of constraint equations, and can therefore be

expected to take suitable default measures.

It must be pointed out that special methods for solving minimum cost flow
problems in networks exist that are much more efficient than general linear
programming algorithms. Well-crafted general methods may be able to take some
advantage of the general structure, but are not yet competitive with special
network methods. Why then bother with network problems in this context? The
answer is that many linear programming problems have network problems
imbedded, that is, a portion of their variables may be flows in a network and,
consequently, satisfy the network constraints in addition, perhaps, to other
constraints. Such problems are no longer the kind of network problems to
which the special methods apply.

Unfortunately, the adjacency matrices of networks tend to be very large
and difficult to prepare for input into the database. As a saving grace, the
adjacency matrices, especially the big ones, are usually "sparse", that is,
the number of their nonzero elements is small compared to the total number of
elements. The problem of specifying and storing adjacency matrices may thus
be alleviated by providing special features for their input into the database
and by permitting condensed (nonzero elements only) representations of tables
within the database. Such features, however, are not part of the problem
specification process; they belong in the realm of generating the database.

In addition to the above measures, however, special capability to define
network problems within the problem specification process appears to be
useful. In particular, two index maps (see Section 1.6) , one relating origins
to arcs and one relating destinations to arcs, may be specified. In the case
of the network in Figure 1 and again with the ranges

NODES = (1, 2, 3, 4}

ARCS = (1, 2, 3, 4, 5, 6, 7} ,

one might thus introduce the index maps

LET MAP(NODES (ORIGIN) ARCS: ’l’^l', 'k'='2' 9 ’l’^', ,

3
? = f 4’, , 1 , » , 5»,

, 1 , = , 6’
,

*

3

f = T 7
’

)

38

LET MAP (NODES (DESTINATION) ARCS: 'k'='V ,
,

3 ,ss, 2* =’U’r 3' = ’3*
,

, 2 » = , 5,
j

’2' s'T*

)

* 3 * = f

5 *
,

The first map associates the origin NODES, represented by their
corresponding indexes in range NODES, with the arcs represented by indexes
in range ARCS. The former indexes are to the left, the latter to the
right of the corresponding equal sign. The second map associates the
destination nodes with the arcs in an analogous fashion.

We then propose to introduce the operator word

NETWORK,

which, when applied to the two mappings defined by the MAP statement, creates
the corresponding adjacency table:

NETWORK(ORIGIN,DESTINATION) (NODES,ARCS) .

The names ORIGIN and DESTINATION are the names of the maps with domain
range ARCS and image range NODES. These maps are to spell out the adjacency
relations between nodes and arcs in the network. The names are of course
arbitrary as long as the ranges of the so defined adjacency table coincide
with the map ranges. Thus, in the following problem specification we have
chosen the shorter names "O'* and "D" instead of "ORIGIN” and "DESTINATION",
and the name N and A for NODES and ARCS:

UNKNOWN (X (A)

)

LET MAP (N (0) A :
*1 1 = ’1’ , ’1+ • ^*2 f

,
'1 * = ’3 f

, *3*=^
* ,

s l* 5

*

,
1^*6 9

LET MAP(N(D)A: ’U’^’l 1 ,*3 ,ss, 2* ,*3* ='3*
s *l

f s'V /3 s -'5 s

,

e 2 f =^6*

CONSTRAINT: NETWORK(0 ,D) (N sA)*X(A)=S(N))

BOUND(X(A)<H(A)h BOUND(X(A) >L(A)

)

LPMIN(C(A)*X(A))

t

3
f = e T ?

)

s 2 f = f

7
#

)

Here

S(N), C(A), H(A), L(A)

represent sources, costs, and capacity limits, whereas the notation

X(A)

has been chosen for the flow, which is to be optimized.

39

The above considerations suggest that index maps should join tables and

ranges as a class of items to be stored on the database. Then the origin and
destination maps could be input directly into the database at the
outset, obviating the need for the LET MAP statements. In some cases, such
maps might provide a more convenient way for presenting network information
than adjacency matrices.

1.9 Index Range Sequences and Their Inverses

In this section, we will discuss yet another feature that can be employed
for the specification of networks, but which is more generally useful for the
formulation of linear programs of a combinatorial nature. This feature is an
additional construct, namely, "index range sequences” . The definition of such
an index range sequence is based on the selection of two index ranges, the
"domain range" or "domain" and the "universal range" . An index range sequence
then assigns to each index in the domain range a subrange of the universal
range.

Consider the ranges

NODES * {1,2,3, 4}

ARCS - {1, 2,3,4, 5,6,7}

in EXAMPLE 8. By assigning to the indexes in NODES the following subranges of
ARCS:

1 + {1,3, 5, 6} = F(l)

2 + <j> = F(2) (the "empty" subrange)

3 + {4,7} = F(3)

4 -> {2} - F(4),

we define an index range sequence F with NODES as domain range and
ARCS as universal range. Each of the assigned subranges of ARCS describes
what is commonly called the "forward star” of a node in the network, namely,
the set of arcs which originate at this node. Similarly, one might assign the
following subranges of ARCS

1 + {4} - B(l)

2 + {6,7} = B(2)

3 - {2,3,5} = B(3)

4 * {1} = B(4) .

This again defines an index range sequence B with universal range ARCS and
sequenced by NODES. It describes the "backward stars" in a network. Forward
and backward stars together define the network. Using these index range
sequences, we can write the minimum cost flow problem of EXAMPLE 8 as
follows:

UNKNOWN(x(ARCS))

LPMIN(COST(ARCS)*X(ARCS)

)

CONSTRAIN(NODES: + X(ARCS ()F(NODES)

)

- X(ARCS()B(NODES))=SOURCE(NODES)

)

BOUND(X(ARCS)<=HIGH(ARCS)

)

BOUND (X (ARCS) >=LOW(ARCS)

)

For each index n in NODES, F(n) and B(n) denote an index range* Since
these ranges are not mentioned before the colon in the CONSTRAIN
statement, they are free index ranges (see Section 1*3) to be summed over*
Summation over F(n) yields the total outflow from node n (along arcs) , whereas
summation over B(n) yields the total inflow (along arcs) into node n* The
resulting constraint equations are identical to those derived from the
adjacency matrix*

The above problem specification is based on the assumption that the two
index range sequences are contained in the database* That means that yet
another construct has been added to the list of constructs, such as tables,
index ranges and maps, which the database is expected to handle* An
alternative option is to go the route of a specification statement* Such a

statement might take the form

LET RANGE SEQUENCE (ARCS ()F(NODES)

:

fCiM - er s
*3 e ,*5 e

,
? 6 !

,

F(*2 S

)
s

,

F('3 f

) * ,'7 f

,

F('U»)
= f 2*

)

Note, that F('2®) is assigned the empty range* The same action will be taken
by default, if F('2') is not mentioned in the above instruction*

Of more interest is the question whether index range sequences can be
derived from other information* Indeed, we observe that the forward star
assignment F is the ^inverse™ of the origin map 0 in a network (see Section
1.3) in the following sense: if the index map 0 is applied to any element in

F(n)

,

then node n is reproduced:

n ~ 0(F(n))

*

Conversely, every arc lies in the forward star of its origin:

a e F(0(a))

*

hi

The backward star assignment B is analogously the inverse of the

destination map D. Given the index maps 0 and D, defined either by a LET

MAP statement or contained in the database, the following statement using

the operator word
INVERSE,

could be employed to define the index sequences F and B:

LET RANGE SEQUENCE(ARCS ()F(NODES) : INVERSE(O))

LET RANGE SEQUENCE(ARCS ()B(NODES) : INVERSE(D)).

In a similar vein, we define the inverses of index range sequences. If

F is any index range sequence with universal range, say, ARCS and domain
NODES, then the inverse F” 1 of F is an index range sequence with
universal range NODES and domain range ARCS defined by

%

F-Ma) = {n N: a~F(n)}.

In other words, neF”^(a) if and only if aeF(n). It follows that

(F"1)-1=F.

Consider the inverse of the index map 0. This index map clearly
corresponds to the range sequence which assigns to each index in the domain
range a sequence consisting of a single index in the image range. The domain
thus becomes the sequencing range and the image range the universal
range. The inverse F of the index map 0 is identical to the inverse of its
corresponding index range sequence, and the latter is reproduced as the
inverse of F.

Many combinatorial configurations can be characterized by index range
sequences. Consider for example an “undirected network” or “graph” as shown
in Figure 2.

Again there are nodes linked by arcs. However, among the two “ends”
of an arc, no distinction is made between origin and destination. Obviously,
the graph in Figure 2 is defined by the ranges:

NODES = {1,2, 3,U, 5,6,7, 8, 9,10}

ARCS = {A13,A14,A16,A2I+,A25,A27,A35,A38,aU9,A50,a67,A60,A78,a89,A90}

and the index range sequence ENDS:

LET RANGE SEQUENCE (ARCS () ENDS (NODES)

:

, A13 , = , 1 ? ,’3’

,

»A27»= f 2 f

,
f 7’

,

, A67 , = , 6' ,*7’

,

«A1U» = '1»
,

, ai6’= , i ? ,*6’

,

'A35 1 = '3 ?
, *5

' , 'A3Q' = '3' ,*8'
,

,a60 , = , 6» ,’10'

,

, A78 , ='7’ ,'8 ?

,

'A2h'='2' ,*U' ,

, Al+9 , = ’
1**

,
f 9* ,

»A89'= , 8’ ,'9'

,

’A25 ,=, 2’ ,’5'

,

’A50'='5 f ,*10'

,

»A90’= , 9’ ,’10 f
)

.

k2

The inverse of the index range sequence ENDS is that index range sequence
which assigns to each node its "star" of all adjacent arcs.

A graph can also be defined by its adjacency matrix:

A(n»a)
1 if node n is an end of arc a

0 otherwise.

For the graph in Figure 2, it can be written in tabular form:

A13 AlU Al6 A24 A25 A2? A35 A38 Ah 9 A$Q A6T ASP A?8 A89 A9Q

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0

k 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0

5 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0

6 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0

7 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

9 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

10 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

This representation has the same disadvantages as the representation of a

directed network in terms of its adjacency matrix. The index range sequence
ENDS, of course, indicates for each column the two rows with nonzero entries,
which is precisely the information needed for a compressed representation of

the above table. The inverse ENDS“1 accomplishes the same for the rows of

the table.

7

U4

EXAMPLE 9

A matching in a graph is a set M of arcs such that no two arcs in M have
an end in common. We consider the problem of finding a matching of maximum
cardinality in the graph of Figure 2. To this end, we introduce unknowns
X(ARCS) bounded between 0 and 1. A zero value of X indicates that the arc
does not belong to the matching M, whereas a value of 1 indicates that it

does. Assuming that the database contains the index range sequence ENDS, we
can formulate the linear program:

UNKNOWN (X(ARCS)

)

LPMAX (X (ARCS)

)

LET RANGE SEQUENCE (ARCS ()STAR(NODES) :=XNVERSE(ENDS)

)

CONSTRAIN (NODES : X (ARCS () STAR (NODES)
) =1

)

BOUND(X(ARCS)«L) ; BOUND(x(ARCS) >=0)

This program is known as the "linear programming relaxation" of the
maximum cardinality matching problem. Indeed, if all X values are integers
for an optimal solution of the above linear program, then the values of X
characterize a matching M. This matching will be maximum® In general,
however, the linear programming solution will yield some fractional values for
X, which thus cannot be associated with a matching. In this case, integer
programming techniques are called for. The solution of the linear programming
relaxation, however, often plays an important role as part of such techniques.

1.10 Conventions for Deleting Quotes

Putting quotes around every index name in, say, a LET MAP instruction or
a generalized subrange construct as described in Section 1.6, may become
tiresome. It also takes up space and at times will clutter the visual image.
For these reasons, we propose conventions under which quotes may be deleted.
For instance, instead of

LET MAP(TREES(DIGITS)SPECIES: *1* =’WALNUT* ,*2 S =*0AK* ,*1* =»PINE' , '4* « ’SPRUCE*

)

it appears desirable to write, say,

LET MAP(TREES (DIGITS) SPECIES: *1 = WALNUT, 20AK, 3=PXNE, ^SPRUCE 9

)

Similarly, the instruction

U5

LET RANGE SEQUENCE (ARCS()ENDS(NODES))

:

’ A13 ' =' 1
'

,
'
3

’ ,
’ A1 4 ' =

' 1
’

’ 4
' ,

, A16 , “ , 1 ,

,

, 6',

, A27 , - , 2 ,

,

,
7

,

> 'A35'='3',' 5’, »A38' 3
'

,
' 8’

,

' A67 ' = ' 6' ,
'
7

'

,

’A60'='6 ’,'10'
,

' A78 ’ = ' 7
’ ,

’
8

'

, A24 , = , 2’ , '4'
, »A25 , = , 2 ,

,

, 5’,

'A49’=’4' ,
'9'

, ’A50' ='

5

1

,

? 10*

,

, 'A89'='8' ,'9'
, 'A90'='9' , '10')

becomes more readable if only few quotes are retained:

LET RANGE SEQUENCE (ARCS()ENDS(NODES))

:

' A13=l,3, A14=l ,4 , A16=1 ,6 , A24=2,4, A25=2,5\

' A27=2 ,7 ,
A3 5= 3 , 5 , A38=3,8, A49=4,9, A50=5,10',

' A67=6 , 7 , A60 = 6,10, A78=7,8, A89=8,9, A90-9,10').

The idea is that a single set of quotes should be sufficient, but that
intermediate options should also be available.

In order to formulate suitable conventions for deleting quotes, we
introduce several new terms. A sequence of index names separated by commas is

an "index string ". An index string between two quotes is a "quoted index
string "

. A single index name in quotes is a special case of a quoted index

string.

Quote-deletion convention I : If two quoted index strings are separated
by a comma, and if the second index string is not followed by an equal
sign, then the two quotes around the separating comma may be deleted.

Application of convention I results in the merger of two quoted index strings
into a simple one.

In LET MAP and LET RANGE SEQUENCE instructions, as well as in generalized
subrange constructs, more complicated expressions involving equal signs are

encountered. An expression of the form

’index name = index sequence'

is a
"
quoted index equivalence ". Such quoted index equivalences are created

using the following

Quote-deletion convention II : If a quoted index sequence is preceded by
an equal sign "=", then the two quotes around the equal sign may be

deleted, creating a quoted index equivalence.

As a next step, adjacent quoted index equivalances may be merged,
resulting in "quoted index equivalence strings"

.

46

Quote-deletion convention III : If two quoted index equivalance strings
are separated by a single comma, then the two quotes around that comma
may be deleted, resulting in the merger of the two strings into a single
index equivalance string.

The above three quote-deletion conventions are sufficient to effect all
the quote deletions discussed so far. They permit several intermediate
deletion strategies such as writing

1 = WALNUT , *2=0AK’ , '3=PINE* ,
, U=SPRUCE*

.

We need, however, one more convention in order to handle the non-index case.

Quote-deletion convention IV : For purposes of quote deletion, two quotes
in succession or separated by blanks are treated in the same fashion as
an index name enclosed in quotes.

As a result of this last convention, we may carry out, for instance, the
following sequence of successive simplifications

*T2 * ~
*
T1

’ , *T3* = , T2* ,
* *^*T3*

T2 = Tl , *T3 ~ T2* ,
= T3

12 - Tl, T3 - T2, = T3

4?

CHAPTER 2: The Database

This chapter deals with issues concerning the database separately from

the issues of the problem specification language. After describing the

general structure of the database, input via a data statement (see

Introduction) is discussed. Subsequently instructions for enlarging, purging,

and modifying the database are proposed.

The reader will notice an apparent duplication of purpose: on the one

hand a general input format for the database is described, while on the other

hand mechanisms for enlarging the database via specification statements are

proposed which could obviously also be used for setting up the database in

the first place. This dualism has historical reasons, in that the early
stages of the project only the input capability via the data statement was

available. Editing and modifying the corresponding data file was envisioned
to be handled directly or by extraneous data handling capabilities, but not as

part of the problem specification language. This point of view was obviously
too narrow, and NBS was encouraged to consider a corresponding broadening of
the specification language. The question now arises whether the data
statement is not rendered obsolete by the development of the additional
specification algorithms. Also, there is the additional concern whether the
two different modes of creating a database, with the slightly different
conventions may not cause confusion. We reply that having the two modes of
database creation may provide a useful flexibility. The direct input can
certainly be handled more efficiently as there is less paring involved. In

the present proposal, the capabilities of the two methods do not fully match:

the data statement contains file manipulation capabilities which are already
in the specification language and, vice versa, the data statement may not
refer to previously defined tables when defining new ones. We welcome the
opinions of the reader on this topic.

2.1 The Data Statement: General Conventions

As mentioned in the Introduction, the data statement represents a body of
information headed by an &DATA card. Input is in the traditional "card
format", that is, 72 characters of any line (card) following the &DATA card
are read. All characters, numerical, alphabetical, and otherwise, are read in

continuous sequence, that is, "ends-of-lines" are essentially ignored so that
the last character on each line immediately precedes the first character on
the next line. A line of all blank characters terminates the data statement.

The data statement may contain "comment lines” or "comment clauses ". A
comment line is any line whose first non-blank character is an

(asterisk)

,

and where the character immediately succeding the asterisk is not an
asterisk. We call such an asterisk a "single asterisk" . A comment line is

only for comment within the data statement and its content will be discarded
upon input. A comment clause also starts with a single asterisk, but is

preceded in its line by non-blank characters. The comment clause is

terminated by the end-of-line, and its content is again discarded upon input.
A "double asterisk" , that is an asterisk followed immediately by another
asterisk on the same line and without blank characters separating them,
indicates a "text clause" to be described at the end of this section.

43

Terminating comment lines and clauses, delimiting the line of blanks
which terminates the data statement, and possibly separating asterisks are the
only roles played by end-of-lines in the data statement.

Input is composed of "names" and "numbers" . All numbers are considered
to be in single precision and are accepted in standard floating point
notation. Decimal points are optional following integers. A number may carry
a plus "+" or a minus "-" sign, but at most one sign per number. Names are
arbitary alphanumeric strings. "Alphanames" are names that start with a
letter. "Normal names" begin and end with non-blank characters, and contain
no successive intermediate blanks.

The role of blank characters needs to be clarified. Blank characters can
be used for separating successive numbers, although commas are recommended for

this purpose. As a consequence, intermediate blanks are not permitted in a
number. Such blanks would cause an intended single number to read as several
numbers. Similarly, plus and minus signs as well as decimal points should not

be separated by blanks from the rest of the number.

Intermediate blanks are, however, permitted in names. Names containing
several successive blanks are normalized by suppressing blanks which succede
intermediate blanks. The resulting normal names are stored for eventual
report generation. For name recognition, only non-blank characters are taken
into account. Names are limited to 2k characters after normalization.

The following simple general rules can be stated? blank characters within
the data statement which are adjacent to one of the "special characters"

: , ()§/+»#
or which succede another blank character, may be deleted without a change in

content.

Not counting comment lines, the input is structured as a sequence of
self-contained "blocks" of information. These blocks are separated by

(semicolon).

Termination of the last block by a semicolon is optional. A block is a
"range block" , a "table block" , a "map block" , or a "range sequence block"

defining, respectively, an index range (Section 1.3) , table (Section 1.3), index
map (Sections 1.6, 1.8), and index range sequence (Section 1.9)

>

respectively.
A block can also be a "file block" .

A file block simply associates a name with a read channel number. The so
defined "file name" ("channel name" might be a more appropriate term) may
appear in tables indicating that part or all of the table’s eoptent is to be
read from a designated file rather than from the database file directly.
This capability of conceptually inserting separate files into the database is

important: it permits the database to act as a superstructure, integrating a
collection of data files. In order to provide an immediate overview of
those read channels which are utilized by the database, we require that file
blocks precede all other blocks in the data statement.

1*9

Defining a table requires indicating the index ranges with which the

table is indexed. The blocks defining these index ranges must therefore
precede the block which defines the table. Index maps and index range
sequences similarly require that their associated ranges precede them in the
data statement.

At the end of any block, before the semicolon that terminates this block
or before the blank line that terminates both the block and the data
statement, a "text clause” may be inserted. This text clause is part of the
block and associated with whatever index range, table, index map, or index
sequence is being defined by the block. The text clause is headed by a double
asterisk

'**' (double asterisk),

that is, two asterisks with no blank character in between. Contrary to
comment lines and comment clauses, text clauses are saved upon input, and
entered into a separate data directory file, where the text is available for
reporting and querying.

2.2 Range Blocks

The index ranges in EXAMPLE 1 (Section 1.3),

METALS = {METAL 1, METAL 2} ,

ALLOYS = {ALLOY 1, ALLOY 2, ALLOY 3, ALLOY 4} ,

can be input using two blocks:

METALS: ’METAL 1’, 'METAL 2';

ALLOYS: 'ALLOY 1', 'ALLOY 2', 'ALLOY 3', 'ALLOY 4'

or, using the quote deletion convections of Section 1.10,

METALS: 'METAL 1, METAL 2';

ALLOYS: 'ALLOY 1, ALLOY 2, ALLOY 3, ALLOY 4';

The following input is equivalent:

METALS: 'METAL 1, METAL 2'

;ALLOYS

: 'ALLOY 1, ALLOY 2, ALLOY 3, ALLOY 4'

50

Indeed, since ends-of-lines are ignored, the only differences between the
two input strings are superfluous blanks.

Formally, every range block consists of the alphaname of the index block,
followed by a colon. After the colon a sequence of names, adjacent ones
separated by a comma or a blank character, specifies the sequence of indexes
(or keys) in the range.

In order to simplify the input of certain structured index names, the
following constructs are also permitted.

Index ranges consisting of consecutive whole numbers such as, for

instance, the index range

CONSECUTIVE INTEGERS = {0,1,2 ,3}

can be defined in terms of its first and last entries and can be input
accordingly?

CONSECUTIVE INTEGERS: (0-3

)

The "range expression” (0-3) need not start with zero, but could instead
start with any (reasonably small) positive integer.

Many indexes consist of a given "prefix" followed by consecutive
integers® In this case a more general range expression,

METALS: ’METAL ’ (l-2)

defines the range METALS as described earlier in this section. Deleting the
blank character after METAL leads to a different sequence of index names:

METALS: ’METAL' (1-2)

yields

METALS « { METAL1 , METAL2

}

0

A "postfix” can be handled similarly:

AA: (l-U)'A'

defines the range

AA a {1A, 2A , 3A, UA} .

Finally prefixes and postfixes can be applied to index ranges that have
been defined earlier. For instance, given the range

YEARS a {Y80 sY81}

the range block

FISCAL: ’F’ (YEARS)

51

will input the index range

FISCAL = {FY80,FY8l} .

Frequently, the digital portions of index names are desired to contain an

equal number of digits, such as in the range BB = {BB01, BB02, . . . ,BBT8}

.

This pattern can be specified by indicating leading zeros:

BB: 'SB' (01-78)

2.3 Table Blocks

We return again to EXAMPLE 1 in Section 1.1.

Three tables were given:

SUPPLY

METAL 1 6 tons

METAL 2 5 tons

COMPOSITION

ALLOY 1 ALLOY 2 ALLOY 3 ALLOY 4

METAL 1 0.5 0.(3 0.3 0.1

METAL 2 0.5 0.4 0.7 0.9

PRICE

ALLOY 1 1000

ALLOY 2 1500

ALLOY 3 1800

ALLOY 4 4000

All the data describing EXAMPLE 1 can now be collected in an
&DATA statement:

52

METALS: 'METAL *(l-2);

ALLOYS: ’ALLOY ’(1-4);

SUPPLY (METALS) : 6,5;

COMPOSITION(METALS ,ALLOYS) : .5, .6, .3, .1,

®5» »4 , »T i *9;

PRICE(ALLOYS): 1000, 1500, 1800, 4000

There are two range blocks and three table blocks, one for each table « Each

table block thus consists of an alphaname denoting the table followed by a

k-tuple of alphanames in parentheses and separated by commas * These
alphanames refer to previously defined index ranges® A colon then signals the

beginning of the ’’table body” , namely the set of numerical entries into the

table* These entries are sequentially ordered according to the
’’odometer principle" : the rightmost range runs continuously through its

indexes in the specified sequence, starting over again after the range has

been exhausted, and any other range passes to the next index whenever the
range to the right of it starts over again® More precisely, the k-tuples of

indexes to which the table entries are assigned are ordered as follows: start

with the k-tuple that consists of the first indexes in each of the k index

ranges® The first number in the table body is associated with the k-tuple of

indexes* Now consider an arbitrary k-tuple of indexes from the k index
ranges, respectively * If all the indexes are the last indexes in their
ranges, then this k-tuple is the last one* Otherwise, we define the successor

to the given k-tuple as follows: starting with the rightmost index in the

k-tuple and proceeding to the left, find the first index that is not last in

its range* Replace this index by its successor in the range, and reset all

indexes to the right to the first indexes in their respective ranges® It is

readily seen that this successor definition establishes a sequential order of

all k-tuples , and the latter are than matched in this sequence with the number

in the table body. This ordering is often called ’’lexicographic” or, in the

case of 2~indexed tables, "row major order”.

Instead of commas, blank characters my be used to separate the numbers
in the table body, as in the following table block:

COMPOSITION (METALS ,ALLOYS) : *5 ®6 .3 .1 *5 .4 ®T ®9

A table block defining a ’’singleton table” simply skips the specification of

associated ranges:

CONSTANT: 5-3

If a table calls for more entries than are specified in the content
clause, then the values of the unfilled positions of the table default to

53

zero. Often this may be intentional, but in many other cases it may indicate

a counting error during data preparation. For this reason, the user should

have the option to indicate whether he expects the table to be fully defined

by the content clause. It is proposed to use the word

FULL

preceded by a

"/" (slash)

as in the block

COMPOSITION(METALS, ALLOYS) /FULL : .5 .6 .3 .1

.5 .k .7 .9;

If /FULL is used, then an error message is issued whenever the content
clause does not match the table size.

2,k File Blocks, Content Clauses, and Locator Phrases

Writing

DISUT: If32 (j); * UTPS FILE TYPE J

provides an example of a file block. It associates the alphaname DISUT, the
"file designation” , with channel number 32. The letter "J" in parentheses
indicates the "file type” (see comment clause in the above file block). The
general form of a file block is the file designation followed by a colon,
followed by a

"#" (number sign)

in front of a positive integer followed by an alphaname representing the file
type in parentheses. We proceed to describe the use made of file designations
introduced by file blocks.

A colon followed by a list of numbers separated by commas, blanks, or
number signs is an instance of a "content clause" . A content clause may also
take the form of a colon followed by a file designation, such as in the
following table block:

DISUTILITIES (OBSERVATIONS): DISUT

The latter states that a certain "external file" contains the numbers
which constitute the table DISUTILITIES. Job control language (not to be
discussed in this report) is required to link the external file to channel 32,
which was associated with the file designation DISUT in the original file
block.

A single table block may contain several content clauses. Such clauses
are preceded by a "locator phrase" which describes their location in a table.
The first number of the content clause will be entered into this location and
the remaining numbers will be entered, in order, into the subsequent
locations.

A locator phrase is initiated by an

"(§" (at-sign) .

This is followed by a sequence of index names separated by

(comma).

The first of these indexes must belong to the first index range of the table,
the second index to the second index range, and so on. Index ranges of the
table from which no index was selected in the locator phrase are considered
represented by their first elements. For example, the same table is

generated by each of the following table specifications:

COST(YEARS QUARTERS)

g FY80, Ql: 30.2, 11.1, 22.4, 20 .

k

g FY8l, Ql: 18. T, 19®9 S 11.9, 30.5

COST (YEARS .QUARTERS) /FULL

g FY8Q: 30.2, 11.1, 22. U, 20 .

h

g FY8ls 18. T, 19»9 s 11*9, 30.5;

The locator phrases must be compatible with the lexicographic ordering of the
table entries, that is, the locator phrases must be written in the sequence of
the associated index tuples. They may not overlap. However, they are not
required to cover every entry of the table. If the user expects the entire
table to be defined by the content clauses , then he may indicate this by
adding /FULL to the table name (see Section 2.3)®

Locator phrases can be used to input sparse matrices. The adjacency
matrix for the network in Section 1.8 can be input as follows, given the
ranges

NODES = {N1,R2,JT3,NU}

ARCS = {A!, A2 , A3, AL} :

55

NETWORK(ARCS ,NODES)

:

gAl,Nl:-l

@A2,N3:+1

@A3,N1:-1

gAh ,N1:+1

@A5,N1:-1

@A6,N1:-1

@AT,N2:+1

gAl ,NU : +1

@A2 ,N4 : -1

@A3 ,N3 : +1

@AU ,N3 : -1

@A5 ,N3 : +1

@A6 ,N2 : +1

@A7,N3:-1

In the above example, each line in the table body corresponds to a column
in the adjacency matrix. If the order of the ranges ARCS and NODES were to be

interchanged, a row orientied input pattern would emerge:

NETWORK (NODES ,ARCS)

:

gNl,Al:-l gNl,A3:-l @N1,A4:+1 gNl,A5:-l §N1,A6:-1

@N2 ,a6 : +1 @N2,A7:+1

@N3 ,A2 : +1 @N3,A3:+1 @N3,A4:-1 gN3,A5:+l gN3,A7:-l

SNU,A1:+1 @N4 ,A2 : -1

Thus locator phrases can be used for table specifications in which only
nonzero elements are given. For large "sparse tables” , this may save
considerable work in input preparation. The use of locator phrases may also
lay the ground work for compressed (nonzero elements only) storage within the
database .

Finally, file designations may be used in content clauses following
locator clauses as in the data statement below:

DISUT 1: #4l(J) DISUT 2: #23(J)

OBSERVATIONS: (001-573);

YEARS: 1981, 1982;

DISUTILITIES (YEARS, OBSERVATIONS):

g 1981: DISUT 1,

g 1982: DISUT 2;

56

2.5 Map Blocks and Range Sequence Blocks

Consider the origin map of the network in Section 1.8. Its image and
domain ranges, respectively, were

NODES = {1, 2, 3, 4}

ARCS = {1, 2, 3, 4, 5, 6, 7}

•

A map block for inputting this information through a data statement reads
as follows:

NODES (ORIGIN) ARCS: ,
'4', ’1', *3', '1*

,
*1'

,

*3' *

Here ARCS is the domain, NODES the image range. Their definition needs

to precede the map block. ORIGIN is the name of the index map. In the
remainder of the block, the image indexes from the range NODES appear in the
order of the domain indexes from the range ARCS to which the image indexes are
assigned. Thus index 1 in NODES is assigned to index 1 in ARCS, index 4 in

NODES to index 2 in ARCS, and so on. Using two quotes with nothing or only
blanks inbetween indicates a non-index (see Section 1.8).

If the user prefers a more redundant format for checking purposes, he may
use an alternate form of the map block:

NODES(ORIGIN) ARCS: f l s ^’l* ,'4 , =»2' f l'- ,

3
,

,

t

3
, = f 4 e

$
, l , - ?

5
s /l 8 - s 6 t

9
t

3 7*

;

Here the associated pairs of indexes are listed explicitly. Indexes from the
image range NODES are to the left, and indexes from the domain range ARCS are
to the right of their respective

signs.

,f= ,f (equal)

In Section 1.9, the network of Section 1.8 was characterized by two index
range sequences F and B, representing forward and backward stars in the
network. A range sequence block may be used to include, for instance, the
range sequence F in the data statement:

ARCS ()F(NODES) : (’l 1

,

f

3
f

,
*5’, *6*) () (

T 4 f

)
(*2

»

)

Here ARCS is the universal range of the index range sequence, and NODES is its

domain. ’F’ is the name of the index range sequence. The image ranges,
consisting of indexes in the universal range ARCS, are listed in the sequence
of the indexes in the domain range to which they correspond. Again, there is

an alternate more redundant notation,

ARCS ()F(NODES) : (
f l* ,

? 3*
,

? 5’ ,
*6 f

)
= *1 !

, () = ? 2*,

C4 f

)
- ’3*

, (
s 2 #

)
= ? 4*

57

in which the indexes in the domain are also represented. In addition, quote
deletion convert ions (see Section 1.10) may be applied in both instances,

replacing ('I', '3*, *5', ’6’) by ('1,3, 5,6’).

2.6 Database Manipulations: Specification

For the database system to be useful in a broader context, two classes
of additional features are needed: l) a set of "specification instructions 1’,

which permit the conceptual definition of new tables in terms of existing
tables; 2) a set of "disposition instructions" , which permit the actual
generation of new tables and ranges as well as the modification of old ones.
In this category belong instructions which create new databases in addition
to the original one and which generate files outside the database.

At a minimum, specification instructions should provide the following
capabilities: defining small tables and ranges from scratch, modifying tables
or ranges, renaming tables and ranges, extracting smaller tables from larger
ones, as well as aggregating table entries, combining tables. In accordance
with an analogous usage in the UTPS package UFIT, we propose to use the
keyword

LET

in conjunction with keywords TABLE, RANGE and RANGE SEQUENCE for specification
instructions.

For instance by writing

LET RANGE(R:=’l f

,
f 2* ,'3'

)

a new range

B = {1,2,3}

is introduced. The equal sign "=" after the colon is optional. The following
instruction defines the same range as the instruction above:

LET RANGE (R: '1* ,'2' ,’3 T
).

This equivalence of the symbols ":" and holds for all specification
instructions. Deletion of indexes from a range is indicated by a slash "/"

preceding the indexes to be deleted. For ranges

U = {•1V2V3 ,

,
, U’, , 5’} V =

each of the following two instructions,

LET RANGE (R: = U/’4’ ,
*5’),

LET RANGE (R: = U/V)

,

53

produces the above range R. The first of the above instructions is equivalent
to using a generalized subrange construct

LET RANGE (R: = U(1

,

- , U* , * '='5')U)

.

In addition LET RANGE instructions may utilize range expressions
involving prefixes and consecutive integers as described in Section 2.2:

LET RANGE (METALS: 'METAL* (l-2)

)

In general, any expression that is legal for range blocks in a data statement
can also be used in a LET RANGE instruction. However, the converse is not

true.

A table T with range R can be defined from scratch by writing

LETTABLE (T(R): T(f l') =-3.8, T(’3’)=4.2).

Entries into table T that are omitted in this definition default to zero®

Thus only nonzero elements need to be specified. As an abbreviation, we
permit instructions of the form

LET TABLE (T(R) :=-3.8 ,0 ,4 .2)

for defining the identical table. The two notations may be combined. For the
subrange

S = {1,2}

of R, we write:

LET TABLE (T(r): T(r()S)=-3.8 ,0 , T(*3 f
) * 4.2).

We write T(R()S) in the above instruction because of the general
principle that either an associated range or a subrange construct with the
associated range as screening range should be used for range identification
following a table name. The range S drives the portion

T(R()S) = -3.8, 0

of the LET TABLE instruction, that is, for each consecutive index in S the
corresponding numerical quantity from the latter's sequence is entered into

the table T(R). Between the parenthesis an index map or directly specified
index equivalences could be employed legally, although the utility of such a

construct is questionable under these particular circumstances.

When defining a table of several ranges, the entries are arranged
according to a lexicographic or odometer=>like (see Section 2.3) ordering of
the corresponding index tuples. For instance, if

LET TABLE (TAB (R1,R2) := .5, ”1.3, 0., 2.7, 1-5, “2.1, -.8)

where

59

R1={R11,R12} ,
R2={R21,R22,R23,R2U}

then

TAB(Rll,R2l)=.5, TAB(R11,R22)= -1.3, TAB(R11,R23)=0. , TAB(R11,R2U) = 2.7
i

TAB(R12,R2l)=.9, TAB(R12,R22)=1.5 , TAB(R12,R23)=-2.1, TAB(R12,R24)=.8.

The use of specification instructions for the fully numerical definition
of tables is only recommended for a small number of tables of small size. In

all other cases, a data statement should be used to enter larger data sets

into the database.
I

Table definitions may also rely on other tables, which are assumed to be
already defined or which are part of the database. The simplest definitions
of this kind are renaming instructions.

For example, suppose a database contains the ranges

VEHICLES = {AUTOMOBILE,MOTORCYCLE}

MODES = {BUS,AUTOMOBILE .MOTORCYCLE}

SECTIONS = {NW,NE,SE,SW}

YEARS = {80,81,82,83}

and the table

SURVEY (MODES .SECTIONS ,YEARS)

.

A straightforward renaming of a table would be effected by the following
instruction, which introduces the new table name S :

LET TABLE(S(SECTIONS,MODES .YEARS) : =SURVEY(MODES .SECTIONS .YEARS))

.

The reader notices that the sequence of ranges has been changed. Similarly
the instructions

LET RANGE (MS :=M0DES); LET RANGE(SS :=SECTI0NS) ; LET RANGE (YS :=YEARS)

LET TABLE(S(SS .MS ,YS) :=SURVEY(MODES () MS .SECTIONS ()SS,YEARS()YS)

)

i

will introduce new range names as well as a new table name.
I

Extraction can be handled in a similar fashion. For instance,

LET TABLE(E(MODES .SECTIONS) : =SURVEY(MODES .SECTIONS , ’83’

)

60

extracts the 2-dimensional subtable for 1983 data from the 3-dimensional SURVEY
table. The subrange constructs as described in Sections 1.5 and 1.6 may be
used for the extraction of subtables:

LET TABLE(T(VEHICLES ,SECTIONS) :=SURVEY(MODES ()VEHICLES ,SECTIONS , ’83’)

.

VEHICLES is, of course, a subrange of MODES. If V was not a subrange of
MODES, but related to the latter by an index map, say,

V = {V1,V2},

LET MAP (MODES (REF)V :
’ AUTOMOBILE’ ”’VI’ , ’MOTORCYCLE* =’V2’)

,

then the instruction

LET TABLE(T(V,SECTIONS) :=SURVEY((MODES (REF)V ,SECTIONS , ’83
’)

)

will produce the same extraction as the subrange construction above.

Combination of tables may result in new tables of the same or of higher
dimensions. Consider, for instance, the three tables

A(R1,R2,RA), B(R1 ,RB ,R2) , C(RC,R2,Rl),

where two ranges , R1 and R2 , are a part of all three tables , albeit in

different positions, and where the other ranges, RA, RB, and RC, have no keys
in common. In order to define a combination of the three tables, we first
introduce a new operator symbol, the "underline”, to indicate "concatenation"

of ranges:

LET RANGE (R3 : =RA_RB__RC

)

Here a new range is formed using the indexes of RA followed by the indexes In

RB and subsequently RC, all indexes being in the order of their respective
ranges. We can now write

LET TABLE(D(R1,R2,R3) : D(R1,R2,R3()RA)= A(R1,R2,RA),

D(R1,R2,R3()RB) = B(R1,RB,R2),

D(R1,R2,R3()RC) = C(RC,R1,R2))

In its structure, this instruction resembles the previously discussed
instruction

LET TABLE(T(R) : T(R()S)=-3.8 ,0 , T(*3*)^4.2)

61

Again subrange constructs, in the present case

R3()RA, R3()RB, R3()RC,

are employed, in keeping with the general principle that range identification

after table names should always tie in with the ranges that are associated with
the table in question. Generalized subrange constructs and maps may be used
and might be useful, if the relationship between R3 and the ranges RA, RB, RC

were less straightforward. Each of the portions

D(R1,R2,R3()RA) = A(R1,R2,RA)

D(KL,R2,R3()RB) « B(R1,RB,R2)

D(R1,R2,R3()RC) « C(RC,KL,R2)

of the LET TABLE instruction is executed independently. In the first case,
the index triples defined by

(R1,R2,RA)

are passed through in lexicographical (odometer) order, causing the entries of
table A to be distributed into the new table D.

For a similar construction consider the three tables over a common range R

A1(R), A2(R), A3(R)

and the range

S - {1,2,3}.

The latter can be used to combine the three tables A1 , A2, A3 into a
2-dimensional table:

LET TABLE (A(R,S) : ACE,'!')=Al(R) ,A(R,’2 T)=A2(R) ,A(R,’3 t)=A3(R)

)

The two combination devices may be used simultaneously. Consider the
tables

L(R1,RA), M(R1), N(RB,R1).
The instruction

LET RANGE (R2 : =RA_ f MI ’ __RB

)

defines a new range, provided the index MI occurs neither in RA nor RB, and RA
and RB have no index in common. The new range R2 consists obviously of the
indexes in RA followed by MI and the indexes in RB in that order. Then

LET TABLE (u(Rl,R2): U(R1,R2()RA) = L(R1,RA)

U(Rl'Mr) = M(R1) ,

U(R1,R2()RB) = N(RB,R1)

)

62

defines the table in vhich the rector M is appended to the matrix L, and the
result is concatenated with the matrix N.

Free index ranges as introduced in Section 1.3 can he employed to effect
aggregation. In this spirit, the statement

LET TABLE(AGG(MODES,SECTIONS) :=SUEVEY(MODES,SECTIONS,YEARS)

)

is interpreted as providing table entries which are aggregations over the
number of years as given by the range YEARS. The summation over YEARS,
keeping MODES and SECTIONS fixed, is indicated by the fact that the range
YEARS does not occur among the ranges MODES and SECTIONS of the table to be
defined.

Aggregation may be combined with extraction as in the instructions

LET TABLE(BUS USE (SECTIONS) :=SURVEY(’BUS* ,SECTIONS,YEARS)

)

LET TABLE(VEH AGG (VEHICLES) :=SURVEY(MODES ()VEHICLES,SECTIONS ,YEARS))

.

The second instruction uses a subrange construct for extraction while at the
same time aggregating both over sections and years.

Provisions have been made for defining a new table as a modification of
some previously defined table, for instance, by writing

LET TABLE(S (SECTIONS ,MODES ,YEARS) : = SURVEY(MODES ,SECTIONS ,YEARS)

:

S(•BUS* ,'NE 1 ,'8l*)» .375,

S(’BUS* ,
’ SE f ,*82*)* .125)

The resulting table S will agree with the table SURVEY in all entries except
the two entries characterized by the index triples BUS, NW, 8l and BUS, SE,

82, respectively. Those two entries in table S will have the specified
values. Such "modification clauses” can be attached to any specification
instruction as indicated by the following two examples:

LET TABLEAUS USE(SECTIONS) :=SURVEY('BUS* ,SECTIONS,YEARS): BUS USE(’NW’) :=279)

LETTABLE (D(R1 ,R2 ,R3) i D(R1 ,R2 ,R3()RA)=A(R1 ,R2 ,RA)

D(R1,R2,R3()RB)-B(R1 ,RB,R2)

D(R1,R2,R3()RC)=C(RC ,R1 sR2) :

D('Rll 9
, * R21’ ,’Cl’)-5o3)

63

Here we have assumed that NW is an index in range SECTIONS, and that

R11,R21,C1 are indexes in R1,R2,R3, respectively.

The modification clauses may take more general forms. If, for instance,

R= { 1 , 2 } , S={1,2} , T={1,2 ,3} , U={1,2,3}

one may want to write

LET TABLE(A(R,S ,T,U) :-B(R,S,T,U) :A(,S,'3' ,U) :=7,4 ,5 ,5 ,3 ,6)

.

As a result,

A(’l ,

,
, l', ,

3
f ,’3 f)=5,

A(' 1 1

,
f 2 ’ ,

'
3

' ,

1

3
f

) =6

.

Note that the above instructions do not provide '’modifications” in the
strict sense of the word. Every table, once defined, remains unchanged. If

changes are made, then the result must be given a new name. In other words,
an instruction of the form

LETTABLE (T(S):=T(S): T(’1 !)=0)

is not permitted. ULP also checks for inadvertent circular definitions, which
might have the same effect. True* modifications are ruled out, because they
would violate the principle that the sequence in which the instructions are
written in the run statement should not matter.

In Appendix B, we provide a BNF (Backus-Naur Form) description of the
general LET TABLE instruction.

2.7 Database Manipulations: Disposition

Disposition instructions either modify an existing database or create
new files. It may also be desirable to create an entirely new database in

addition to one that already exists. Disposition instructions which create
new files or new databases should tie in closely with UTPS file conventions
and reflect general UTPS needs. The creation of suitable J-files or Z-files,
for instance, should be an option. Any disposition instruction is an
execution instruction just as the LPMIN and LFMAX instructions, which trigger
the execution of linear programming code.

The computational effort associated with a disposition instruction may be
considerable, particularly if a rearrangement of the database is required,
for instance by increasing the size of a particular table. Even changing the
value of a single table entry may require such a rearrangement if a zero entry
is replaced by a nonzero entry and the corresponding table had been stored in
a compressed form listing only nonzero elements.

A('l'

,

f l* ,'3’ ,'1')=7, A(’l' ,'1» ,'3 ?
, *2')=4,

A(*l f ,'2' ,'3' ,’l f)=5, A('l’ ,'2' ,*3* ,’2')=3,

6b

Two main database modifications involve appending and deleting new
tables, ranges, maps, and range sequences from the database in question.
Tables and ranges which are to be appended must be defined prior to that with
the help of specification instructions (see Section 2,6), We use the keywords

APPEND , DELETE

combined with key words

TABLE, RANGE, MAP, RANGE SEQUENCE

to write disposition instructions for appending and deleting the corresponding
constructs to and from the database, respectively. A run statement may contain
several APPEND instructions or several DELETE instructions but may not use
APPEND instructions together with DELETE statements. Similarly, a run
statement containing an LPMIN or LPMAX instruction may not contain any other
disposition instructions. Typical run statements would then read:

LET TABLE(S(MjK) :=T(K SM, ’Sl*) s S('MA' ,'KB') :*1.0)

APPEND TABLE(S(M^C))

DELETE TABLE(T(K sM,Y))

DELETE RANGE(K,M SY)

In the first run statement, we assume that MA and KB are indexes in ranges M
and K, respectively. The second run statement deletes table T together
with all its ranges. The command to delete a range is ignored, however, if
the range is used by some other still existing table.

In principle, these are all the modification instructions needed for the
purpose of database modification. Indeed, modifying an element of a table can
be achieved by first specifying a new table with the modified element, then
appending this table while deleting the original one, and finally renaming the
modified table via specification and going through yet another append-delete
cycle. This procedure is complicated. Direct modification instructions may
therefore be desirable, but are not discussed in this report because they
involve considerable conceptual and implementational difficulties.

65

CHAPTER 3 : Report Generation

3.1 Reporting Requirements for Linear Programming

A report structure for linear programs is now proposed. This report
structure follows general UTPS guidelines. For the purpose of displaying

information about the solution of a linear program, more flexibility is needed

than a straightforward menu-scheme such as provided by the customary REPORT
statements. This need is caused by: (i) the potentially very large size of

the solution vector, not all portions of which may be of interest to the

analyst; (ii) the existence of different desirable display modes, mainly
"tabular" versus "vectorial"; (iii) the desirability to vary the

representation and juxtaposition of different display elements.

Output might be enhanced by generating various diagrams and summary data.
However, such output enhancements should probably be left to general purpose
diagramming and analysis packages in UTPS. Output and analysis enhancements
are therefore not discussed in this report, except for the recommendation that

FILE statements be provided which permit saving solution information for input
into other UTPS analysis modules.

As a vehicle for added flexibility, we propose a "FORMAT statement " to be

used in conjunction with a particular REPORT number. The function of this
FORMAT statement is to specify the content and the layout of the report, while
it remains for the REPORT statement to trigger the actual printing or display
of the information.

Any method for solving a linear program will produce one of three possible
outcomes: (i) (Normal termination) The linear program has optimal solutions.
The optimal solution is usually, but not always, unique, (ii) (Infinite
Solution) The linear program has feasible but no optimal solutions. The
objective function can be made arbitrarily small (big) by selecting far-out
feasible solutions. This cannot happen if the feasible solutions are
restricted to a finite area, (iii) (Infeasibility) The linear program has no
feasible solutions.

It may happen that some equations in a standard linear program are linear
combinations of the remaining equations. We call them "linearly superfluous ".

It may also happen that, for all feasible solutions, a variable assumes only a

single value, namely the value of one or the other of its bounds. If the
bounds of such a variable differ, in other words if the variable is not
already fixed by its bounds, we call the variable "constant at lower (upper)
bound "

. The analyst may wish to be appraised of such occurrences. An equation
in a standard linear program is called

"
superfluous " if it can be deleted

without increasing the set of feasible solutions. While it would be most
certainly desirable to identify superfluous constraint equations, this
identification is not an automatic result of the solution procedure.

In the case of normal termination, the optimal solution, if unique, is

found at a vertex of the feasible region. If there are several optimal
solutions to the same linear program, then there is at least one optimal
solution among them which lies at a vertex. The simplex method of linear

66

programming will always find an optimal solution which represents a vertex.
Such optimal solutions have the following:

Simplex Property : Let m be the number of nonsuperf luous equations in
a standard linear program, and let n be the number of its variables.

Then the variables are divided into two sets: m "basic variables '* and
n - m "nonbasic variables ’*. Each nonbasic variable assumes the value of

one of its bounds, upper or lower, whereas the basic variables are
permitted to range between their bounds.

The values of the basic variables can be calculated from the constraint
equations after the values of the nonbasic variables have been substituted
into these equations. The values of the basic variables are thus uniquely
determined by the nonbasic variables.

The simplex property furnishes a qualitative interpretation of the optimal
solution to a linear program: it characterizes the variables which assume
their boundary values. In general, this characterization is insensitive
to small perturbations in the input data, and this insensitivity of the

qualitative information is one of the reasons for the extraordinary
usefulness of linear programming techniques.

Clearly, the limits to which perturbation of the data can be pushed while
still yielding an optimal solution with the same

‘

"basis "
, that is, the same

split between basic and nonbasic variables, is of considerable interest.
Information about such limits is generally called "ranging" information. If

arbitrary small perturbations could change the basis of the optimal solution,
then we call this optimal solution "degenerate " with respect to this
perturbation. Ranging information can also be interpreted as indicating how
much change can be sustained before degeneracy is encountered.

3.2 Output Elements

In this section, we describe output elements which can be made
available after normal termination and which the analyst may want to display.
Of first and foremost interest are, of course, the values which the variables
Xj , ...» xn assume for the optimal solution. We refer to these as
"optimal values " or just "values "

. Next, the analyst wants to know the
"
objective value" , that is, the value of the objective function at the optimal
solution. Almost equally important is the distinction between basic and
nonbasic variables. Those remaining quantities which are of interest as

output elements provide mostly sensitivity information. All these output
elements fall into three categories: (i) quantities associated with nonbasic
variables, (ii) quantities associated with basic variables, (ill) quantities
associated with constraints.

We now discuss information of interest about nonbasic variables. Recall
that the value of such a variable is at one of its bounds. For the majority
of variables encountered in practice, the lower bound of a variable x^ is

zero, ® 0, and the upper bound is infinite, s In this case, the

nonbasic variable has value zero, x^ s 0. In particular, if all bound
statements of the linear program are of the form Xj> > 0 , as is often the

67

case, then all nonbaslc variables have automatically value zero. For this

reason, the value of a nonbasic variable is in general not quite as

interesting as the value of a basic variable. Indication of which bound's

value is being assumed is very often all the information desired.

With every nonbasic variable, the simplex method associates a "reduced
cost" c^. This reduced cost is nonnegative, c^ > 0, if the variable is not

fixed and is at its lower bound, and is nonpositive, c^ < 0, if the variable

is not fixed and is at its upper bound. If positive, the reduced cost c^ for

a nonbasic variable x^ is the marginal cost for increasing variable x^ by one

unit (holding all other nonbasic variables at their value). It shows how much
the objective value could be improved if the lower bound were to be decreased,
and this measures the significance of a lower bound constraint for a

particular linear program. If the reduced cost c^ is negative, then the

absolute value |c^j is the marginal cost for decreasing the variable x^, and

the same observations hold with respect to upper bounds.

If the reduced cost c^ vanishes, then the value of its corresponding
variable x^ can be perturbed without affecting the objective value. In

general, this will indicate the presence of multiple optimal solutions.
The vanishing of reduced costs for a nonbasic variable is a degeneracy
phenomenon. It is referred to as "dual degeneracy" . Another degeneracy
phenomenon pertains if a basic variable assumes the value of one of its

bounds. This phenomenon Is called "primal degeneracy "
. A sufficient

condition for multiple optimal solutions to occur is dual degeneracy in the
absence of primal degeneracy.

The reduced costs c^ also provide ranging information. If Cj_ is positive
(negative) for the optimal solution, then the original cost coefficient c^ can
be increased (decreased) by an arbitrary positive amount without changing the
optimal solution. A decrease (increase) of the cost coefficient c^ by any
amount less than

j

c-j_
|

can be similarly sustained. These observations are
valuable in practice, because they permit the analyst to assess the limits of

cost modifications for which the optimal solution remains valid.

To indicate the output elements to be displayed for nonbasic variables, we
propose statements of the forms

FORMAT (NONBASIC =* VALUE, REDUCED COST)

FORMAT(NONBASIC - VALUE, BOUND INDICATOR)

FORMAT(NONBASIC = REDUCED COST, LOWER BOUND, UPPER BOUND)

The first statement will provide the value and the reduced cost for each
nonbasic variable in the indicated order. The second statement features
values followed by bound indicators: "HIGH", "LOW”. The third statement
specifies the reduced costs and the bounds for printing.

68

To sum up: for nonbasic variables, the following output elements suggest
themselves

:

VALUE

BOUND INDICATOR

LOWER BOUND

UPPER BOUND

REDUCED COST

for nonbasic variables.

We consider the term "NONBASIC" in the above FORMAT statements a
"
class

specification "
. The "=" sign followed by the names of output elements to

be reported, e.g..

= VALUE, REDUCED COST,

constitutes an "output specification".

We now turn to basic variables. Here the value is definitely of primary
importance, and so are measures of the round-off "errors " incurred during its

calculation. It may also be of interest to know the location of the value
with respect to its bounds. Cost-ranging information is somewhat more complex

than in the case of nonbasic variables: both
"lower " and "upper cost ranges"

are needed to limit the area of insensitivity. Thus we list the following
output elements:

VALUE

ERROR

UPPER BOUND

LOWER BOUND

UPPER COST RANGE

LOWER COST RANGE

for basic variables.

69

Using the class specificaion "BASIC”, FORMAT statements might read:

FORMAT(BASIC = VALUE, ERROR)

FORMAT(BASIC = VALUE, UPPER BOUND, LOWER BOUND)

FORMAT(BASIC = UPPER COST RANGE, LOWER COST RANGE).

In many instances, the separate display of basic and nonbasic information

may be undesirable: one would like the option to write statements like

FORMAT(SOLUTION = VALUE, ERROR, UPPER BOUND, REDUCED COST)

FORMAT(SOLUTION = VALUE, UPPER COST RANGE, LOWER COST RANGE).

If in these instances, the quantities are not defined for all variables, simp;!

defaults are chosen. Thus every output element that can be used with the class

specification "BASIC” or the class specification "NONBASIC" can also be used with

h

class specification "SOLUTION".

.

The most important quantity associated with a constraint is the celebrated
"shadow price" . Interpretations of shadow prices abound, and this is not the placj

for a discussion. Essentially the shadow price measures the price paid implicitly
for the restriction caused by the constraint. Aside from shadow prices, the value

of the slack variables associated with the constraints are of interest. Frequent]'

again it is the sign of the slack variable within the constraint and the question
|!

whether the slack value is positive or zero that may be of more immediate interest!

the analyst than the actual slack value. Ranging information attaches to the
constant terms of the constraints: there are "upper" and "lower constant ranges" >

which these constants or "right hand sides" could be increased or decreased,
respectively, without changing the basis of the opt imal solution. We thus have
identified the following output elements, which are compatible with the class
specification "CONSTRAINT":

SHADOW PRICE

SLACK

SLACK INDICATOR

UPPER CONSTANT RANGE

LOWER CONSTANT RANGE

for constraints.

Corresponding FORMAT statements might read:

70

FORMAT (CONSTRAINT = SHADOW PRICE, SLACK INDICATOR)

FORMAT(CONSTRAINT = SLACK, LOWER CONSTANT RANGE, UPPER CONSTANT RANGE)

3.3 Output Qualifications

Since the number of variables may be very large, ways of selecting
variables for printing must be provided. We recall that the solution is

set up as a sequence of tables. A solution, which includes slack
variables , might be of the form:

X (FARES,REGIONS) , Y(INTERVIEWS) , U, V, $(MODES)

Clearly one would like the option to print out only those tables which are
of interest. Correspondingly, we propose a "selection clause 1

* to be

included in the FORMAT-statement:

FORMAT(SOLUTION = YALUE/X (FARES ,REGIONS)

)

The power of the selection clause can be extended in various ways. An
obvious way would be the specification of keys within ranges. Suppose the
range FARES would contain the key "MEDIUM". Then the FORMAT-statement

FQRMAT(SOLUTION = VALUE/U, V, X(’MEDIUM' ,REGIONS)

)

would be self-explanatory. Note that the selection clause can also be used to
control the sequence in which the solution elements are displayed. In the
absence of a "selection clause" , the sequence determined by the UNKNOWN
statement will be the sequence in which the solution will be exhibited. These
options by themselves are probably insufficient. Extracting subtables with
the help of subranges of some kind may have to be accomplished in addition to
the above options.

FORMAT statements with the class specification "CONSTRAINT" may employ a
selection clause in an analogous fashion. Class specifications "BASIC" and
"NONBASIC" will operate on an intersection basis, e.g., they will print those
basic (nonbasic) variables which are also included in the selection clause.

71

3 .*+ Output Format

In this section, we will discuss the actual arrangement of solution
information. There are essentially two options, which we call ’’sequential"

and "tabular" , respectively. The sequential option is to display, for each
selected item of the specified output category, the corresponding values of
the output elements indicated in the specification clause of the FORMAT
statement. These values are preceded by the item name, and the so-defined
output phrases are sequentially listed. The sequence of this listing either
defaults to a natural sequence of the items within the category in question or
is defined by a selection clause. The tabular option, on the other hand,
displays each of the tables which constitute the selected output as a "table".
This means that not every output item is separately named but rather
identified by its position within a tabular arrangement. Each table entry
will consist of all the values of specified output items which are
characterized by the same keys. We indicate the output options through
"display specifications" :

(SEQUENTIAL), (TABULAR)

after the category specifications, e.g.:

FORMAT(SOLUTION(SEQUENTIAL) = VALUE, UPPER BOUND/X(FARES,REGIONS)

)

FORMAT(SOLUTION(TABULAR) = VALUE, UPPER BOUND/X(FARES , REGIONS)).

In the absence of specification, the sequential display option is assumed.
The outputs corresponding to the above FORMAT statements might read:

Sequential: X(LOW, NEW ENGLAND) = 3.27 3.00 5.00

X(LOW, MID ATLANTIC) = 3.00 3.00 5.00

X(LOW, SOUTH ATLANTIC) = 3.07 3.00 5.00

X(MEDIUM, NEW ENGLAND) = 3.50 3.50 5.00

X(MEDIUM, MID ATLANTIC) = 3.50 3.50 5.00

X(MEDIUM, SOUTH ATLANTIC) = 3.5*+ 3.50 5.00

X(HIGH, NEW ENGLAND) = *+.35 4.00 5.00

X(HIGH, MID ATLANTIC) = *+.25 *» .00 5.00

X(HIGH, SOUTH ATLANTIC) = *+.00 4.00 5.00

72

\

1 Tabular: X NEW ENGLAND MID ATLANTIC SOUTH ATLANTIC

1

!

LOW 3.27 3.00 3*07

3.00 3.00 3.00

5.00 5*00 5*00

1

II

MEDIUM 3.50 3*50 3.54

3.50 3.50 3.50
If

5.00 5.00 5.00

HIGH 4.35 4*25 4*00

4*00 4*00 4*00

5*00 5.00 5*00

Additional display specifications may be needed to govern the numbers of
digits carried* We suggest that such specifications be entered after the
output item in the output specification and follow FORTRAN usage* @og* s

FORMAT(SOLUTION = VALUE(F5*2), LOWER B0UND(F5*2), UPPER BOUND(F5*2))

3.5 Non-normal Terminations and Superfluity

In the case of an infinite solution two output items are of interest:
a "feasible solution” and an "infinite ray” * We introduce the class
specification "INFINITE” for FORMAT statements such as

FORMAT (INFINITE = VALUE, RAY)*

If there is no feasible solution, then there exist "infeasibility
multipliers" for the constraints such that the resulting linear combinations
of the constraint equations, the "inconsistency" , cannot be satisfied by
variables within their bounds. We introduce the class specifications
"INFEASIBLE" and "INFEASI3LITY CONSTRAINT" and write:

1 1

!

FORMAT(INFEASIBLE = INCONSISTENCY, LOWER BOUND, UPPER BOUND)

FORMAT(INFEASIBLE CONSTRAINT = MULTIPLIER)*

'I

!

Finally, if there are superfluous equations, then the class specification
"SUPERFLUOUS CONSTRAINT" is employed:

T3

FORMAT(SUPERFLUOUS CONSTRAINT = MULTIPLIER)

3.6 REPORT Statements

We propose the following REPORT options:

REPORT 1: Echos linear program specifications including slack variables
(standard form). States number of variables, and number of

relevant and superfluous constraints.

REPORT 2 : Displays run-history: number of pivot steps, number of

reinversions, etc. Indicates outcome (normal, infinite
solution, infeasibility).

REPORT 3 : Displays solution quantities according to FORMAT-statement in

case of normal termination and displays objective value.

REPORT U : Displays feasible solution and infinite solution ray in case
of an infinite optimum.

REPORT 5 : Displays coefficients for the constraint equations leading to a
contradictory equation in case of infeasibility.

REPORT 6 : Displays superfluous equation constraints as linear
combinations of relevant constraints in case some constraint
equations are superfluous.

REPORT 7 : Indicates degeneracies in the optimal solution.

3.7 Thoughts About Units

Output reports should identify the units in which the output quantities
are being measured. The approaches to providing the capability for handling
information about units range from strictly output-oriented direct
specification to integrating units into the database as an essential part of
the information. In the latter case, the units for the unknown variables
would be automatically determined from the units of the quantities used in

problem specifications.

Whatever approach is ultimately selected, the following problem needs to
be examined: Given a multidimensional table, what are the units of its
elements? At first blush, it appears that each element in a table should be
entitled to its own unit of measurement. However, in most practical
situations, this is not the case. Indeed, a large portion of tables used in
practice will be either “homogeneous” , that is, all entries will be in terms
of the same unit, or “quasihomogeneous” , that is, one of their ranges will
have units attached to its keys and these keys will determine the unit of the
table element.

74

For example, the table

SALES (PRODUCTS, YEARS) [K$]

1979 1980
'

1981 1982

PRODUCT A 1021 1003 937 420

PRODUCT B 853 916 921 902

PRODUCT C 75 74 82 89

is homogeneous. A corresponding table PRODUCTION (PRODUCTS ,YEARS) would be
quasihomogenous if there are different production units for different
products. A table containing area and population of various countries would
be another example of a quasihomogeneous table. In a homogeneous table,
aggregations can proceed over every range; in a quasihomogeneous table, some
directions of aggregation will be illegal.

Mechanisms for specifying units in a tabular data environment will have
to rely on some assumptions about homogeneity properties of tables. Assuming,
for instance, that all tables are in fact homogeneous, then a '*UNXT Statement*'

could be invoked, say

UNIT (X (FARES ,REGIONS)
a CENTS),

to assign units for output purposes. A similar approach was taken in the
design of UTPS module UFIT. An alternative way would be to specify units
through the UNKNOWN statements

UNKNOWN (X(FARES,REGIONS) [CENTS])

.

For quasihomogeneous tables, the unit specifications process is necessarily
more involved, but should present no major problems.

75

CHAPTER h : Implementation

Some of the problem specification features described in Chapter 1

have been implemented in a prototype package called ULP. In this chapter, we

outline the method of implementation. We will not restrict the discussion to

the prototype implementation, but also address implementation techniques for

some of the more advanced features, such as index maps and specification

instructions. We will, however, not discuss the implementation of the report

writer (see Chapter 3) , because no implementation experience is available and

the proposed form is still very much in the discussion phase.

The implementation of the problem specification portion of ULP involves

three stages. Tokenization of the run statement, that is, the identification
of symbols and character groups forming words, is followed by a normalization
procedure, which involves the introduction of slack variables, the
identification of constants, the processing of LET instructions, and finally
the identification of index names and subrange maps in CONSTRAIN, LPMIN,
LPMAX , and BOUND instructions.

Finally, there is matrix generation , namely the setting up of the actual
linear programming matrix in column-sparse form along with the right hand
sides and the objective row. Matrix generation techniques are also used for

run statements involving APPEND instructions.

The implementation of the database system is a separate subject. The
database system as implemented in the prototype ULP package uses a somewhat
different format than the one proposed in Chapter 2. Rather than discussing
the differences, we will outline a possible method for implementing the
database system in the form proposed in this report. There are two issues:
the interpretation and disposition of data statements (Sections 2.2-2. 5) on
the one hand, and the interpretation and execution of run statements intended
for expanding and updating the database (Sections 2.6 and 2.7) on the other.
The latter issue will be dealt with in the context of matrix generation.

^.1 Overview

We return to the lexical analysis of the run statements. The objective is

to replace the alphanumeric names of coefficients, constraints, indexes,
variables, etc., as well as the digital representations of constants,
arithmetic operators, equal signs, inequality signs, delimiters by integer
codes or , ,tokens l >

. The process of tokenization will be discussed in Section
b.k. At this point we assume that the problem specification is encoded in a
form in which integer tokens rather than alphanumeric names, decimal numbers,
or special characters represent the items of the problem specification. We
call this representation the "tokenized form” of the problem specification.
The tokenization is carried out using two UTPS utility routines, ULEX and
UNAMEL.

The UNAMEL routine, developed by R. Cody of Peat, Marvick, and Mitchell,
organizes the alphanumerical strings of the run statement by keywords. A
special subroutine, which resides within UNAMEL and is called "ACCESS",
permits the retrieval of the information on a character by characters basis

76

for specified key words. UNAMEL is essentially upward compatible with the

NAMELIST feature of FORTRAN. In the present context, UNAMEL is used to
extract from the run statement those strings of characters which need to be
tokenized.

The ULEX routine, developed by the first author with the help of K. Hoffman
[6] of NBS, serves two purposes. First it sets up and maintains a "diet ionary”

,

that is, a repository of names, including special characters and digital
strings, with associated "attributes" and tokens. The second purpose is to pick
out names from a given string of characters, or rather, of "segmenting" this
string into a sequence of names each of which occurs on the dictionary, where it

is assigned a token. The sequence of names can thus be replaced by a sequence
of tokens.

There are two techniques by which such a segmentation can be achieved.
One, which is commonly referred to as "lexical analysis", uses a system of so

called "delimiters", that is, special characters used for separating or
bracketing, to indicate those substrings which correspond to names or symbols,
and which are to be looked up in or entered into a dictionary, respectively.

ULEX is based on a different technique, which we call "lexical synthesis".

The idea is to determine a segmentation of the given string such that all
segments are names or symbols which are already on the dictionary. There may
be many such segmentations of a given string. In order to reduce this
ambiguity, each entry in the dictionary is assigned one or more "attributes" .

This set of possible attributes is specified along with a "legality matrix" ,

which indicates for each pair of attributes whether it is acceptable for one of
them to follow the other. It also indicates whether a particular attribute may
start or terminate this sequence of words created by segmenting the given
string. A segmentation which consists of words whose attributes form an
acceptable succession pattern is considered "legal" . By accepting only legal
segmentations of a given string, ambiguities are for all practical purposes
completely avoided.

In the absence of a uniqueness proof, however, the occurence of
ambiguities remain a theoretical possibility to be reckoned with. ULEX
therefore contains an algorithm which is capable of determining all legal
segmentations of a given string, and is therefore also capable of determining
whether there are more than one, or none at all. In either case, ULEX will
terminate the tokenization process so that the user can adjust the wording of
the run statement.

In the course of implementing ULP, both lexical analysis and lexical
synthesis techniques are employed. ULEX has been applied to the character
strings in CONSTRAIN, LPMAX, LPMIN and BOUND instructions. It can similarly
be applied to instructions in the run statement starting with "LET".

The second stage of the implementation consists of a series of
normalization steps. In the first such step, one collects digital strings,
that is, strings of digital tokens, and converts them to numbers. Each such
number is then represented by a single token. Quoted strings of
alphanumerical tokens are similarly collected, interpreted as names of

77

constraints or indexes, and replaced by single tokens. Specification

instructions (see Sections 1.7 and 2.5) operator words, and subrange

constructs are processed subsequently and substituted into the constraint

definitions if necessary. Finally, slack variables are introduced in order to

achieve a form of the linear program in which all constraints other than bound

constraints are equations. Each inequality constraint requires a slack

variable which is added or subtracted depending on whether the inequality
involves < or >. New tokens are assigned to these slack variables and the

tokenized form of the problem specification is appended, correspondingly. As

was mentioned in Chapter 1, the slack variables are assigned names which arise

from the names of their respective constraints by adding $ as a prefix.

We are now addressing the third stage of the implementation process. Most
linear programming subroutines require that the linear program be represented
by a "linear programming matrix" of, say, m rows and n columns, an
objective row vector of length n, and a right hand side vector of length m.

The question then arises how to generate these matrices and vectors from the

problem specification. This is the matrix generation process that has been
mentioned above. Software packages accomplishing it are commonly called
"matrix generators "

.

The process of matrix generation will be discussed in detail in Section
4.8. Roughly speaking, it proceeds along the following lines. The numerical
entries into the database are conceptually numbered in consecutive fashion.
For each table entry, it is then possible to determine this "data number " from
the portion of the table in the database, its ranges and their lengths, and
finally the particular index combination which characterizes the entry within
the table. Each instruction is now treated as follows. All ranges entering
the instruction are identified and treated as a k-tuple of ranges. The
corresponding k-tuples of indexes are consecutively generated in lexicographic
order. For each such k-tuple of indexes, each term of the instruction creates
an entry into the linear programming matrix (objective row or right hand
sides) whose row and column number can be deduced from the name of the
instruction and the associated variable. In this fashion, a list of

"position
triples

"

(r, c, d)

is created, where r is a row number, c is a column number, and d is a data
number.

These triples are sorted by an out-of-core sorting routine by
increasing data numbers. Then a sequential pass through the database
yields a numerical data entry u, creating a list of

"value triples ".

(r, c, u).

This list is again sorted, using the column numbers as the first key, and the
row numbers as the second. The result is a column-sparse representation of
the linear programming matrix. The creation of tables for the database from
specification instructions requires an algorithm which is to some extent
analogous to the matrix generation procedure outlined above.

78

The final issue is the interpretation and execution of data statements.
For this purpose, a lexical analysis method with "single character look-ahead"
is feasible and may well be preferable over the lexical synthesis approach.
In any case, ULEX will be useful for the chore of dictionary maintainence.
The actual database is considered as consisting of two sequential files, a
"header file " containing the names and definitions of index ranges, index
maps, and index range sequences along with reference information tying ranges
to tables, index maps, and index range sequences. In addition, a list of

references to external files (see Section 2.4) is provided as part of the

headers. The second file, which we call the "content file ", contains only
numerical information. It is partitioned by end-of-file markers into
"segments "

. At the end of each segment, except the last one, the data
retrieval process switches to an external file as indicated in the header
file.

The observation that matrix generation can be accomplished with two sorts
and a single sequential pass through the database is due to an oral

communication by M« Knapp-Cordes [9]

.

4.2 Tokenization of Run Statements ? Generic Symbols

As was mentioned in the previous section, the ULEX subroutine package has
been used for a restricted prototype version of the problem specification
language. We will describe in this and subsequent sections how it might be

used for the full version. As far as tokenization is concerned, this is

simply a matter of expanding the legality matrix.

The first consideration when planning to apply ULEX is to choose a
suitable set of attributes. The following attributes represented by their
"attribute number" are suggested for the lexical synthesis of run statements?

2 s unknown 15 additive
3 3 table 16 multiplicative
4 3 range 17 = order relation
5 =8 map 18 SB concatenation
6 3 range sequence 19 - set subtraction
7 3 open parenthesis 20 3 range shift
8 3 close parenthesis 21 3 inversion
9 3 open quote 22 3 network
10 3 close quote 23 * alphanumeric
11 3 comma 24 digit
12 3 equivalence 25 decimal point
13 3 colon 26 infinity
14 3 sign

Table 4.2.1? Attribute numbers

79

The first five attributes are assigned to names of problem-specific

quantities. These names are collected either from the header-file of the
database or from the run statement itself. The process of collecting
these names will be discussed in more detail later in this section. The

remaining attributes are assigned to words and symbols which are part of the

problem specification language and are thus independent of the specific

problem formulation. These symbols are entered into the dictionary
immediately after the legality matrix has been entered. They are assigned
negative token numbers. Table 4.2.2 lists these generic symbols.

The two different words, ">=" and "=>", have the same meaning and,

therefore, the same tokens. The same is true for the words and "=>"

.

Such words are known as "synonyms” . Permitting synonyms makes the
specification language more "user friendly". There are also examples of the
same word being used with different connotations. The symbols 0,...,9 may be
digits in a number or part of an alphanumeric name. In each case, they have a

different meaning as indicated by their different attributes and tokens. The
legality requirement is relied upon to chose the correct meaning when an
ambiguous symbol or word is encountered. Such words with several different
meanings are called , rhomonyms" . Other instances of homonyms are the single
quote, which may represent an open or close quote, the "+" and "-" signs,
which may be sign or operation, and the symbol "=". The latter may stand for
the equal sign in a constraint equation (token = -26) or indicate an
assignment for the purpose of a definition (token - -IT). The symbol "=" also
occurs as part of a word, say, ">=". In this context, it is, however, not
considered as a separate symbol. The lexical synthesis technique is
particularly well suited to the handling of synonyms and homonyms.

4.3 Tokenization of Run Statements: Collecting Names

After the generic symbols (Table 4.2.2) have been put on the dictionary
together with their attributes and tokens, one needs to enter the names of
tables, ranges, index maps, and range sequences. Information from which the
constraint names are to be constructed also needs to be processed.

A first source of names of these various kinds is the header file (see
Section 4.1) of the database, which lists the names of tables, index ranges,
index maps, range sequences and index names residing on the database. Those
names are assigned positive integers as tokens on a first come first served
basis with tokens from

1 to 99 for tables

101 to 199 for index ranges

201 to 299 for index maps

301 to 399 for range sequences

10001 to 19999 for index names

.

Tokens 10001 and 101 are reserved for the nonindex (see Section 1.6) and the
empty range (see Section 1.9)

,

respectively.

80

Table 4.2.2

Symbol

Generic symbols with

Name

attributes

Attribute ft Token ft

(open parenthesis 7 -11

) close parenthesis 8 -12

f open quote 9 -13

» close quote 10 -14

* comma 11 -15

= equivalence 12 -16

: colon 13 -17

+ plus sign l4 -21

- minus sign Ik -22

+ addition operator 15 -23

- subtraction operator 15 -24

* multiplication operator 16 -25

=2 equal sign 17 -26

>=
9

s > greater or equal 17 -27

A li IIIA less or equal 17 -28

underline 18 -29

/ slash 19 -30

NEXT advance operator 20 -31

PREVIOUS retard operator 20 -32

INVERSE inversion operator 21 -33

NETWORK network operator 22 -34

s 5 e © ©9 alphanumeric character 23 ^

0 s o o s9 digit 2h -8l s « o . ,-90

© decimal point 25 -91

INF infinity symbol 26 -99

81

The token numbers for tables provide also a set of "table numbers ” running

from 1 to 99 (this convention is readily changed if the limit of 99 tables in

the database should be too restrictive). Similarly, by deleting the first

digit of the token numbers, "range numbers” , "map numbers” , "range sequence

numbers” , and "index numbers” ranging from 1 to 99 or 1 to 9999, respectively,

are generated. The index number 1 is the number of the non-index. These

numbers are used as pointers in internal arrays containing information

pertinent to tables, ranges, indexes, etc. In particular, arrays are set up

that translate the running numbers into word numbers on the dictionary.

The names of the tables, index ranges, index maps and range sequences are

entered into the ULEX dictionary together with their attribute and token

numbers. Attribute numbers are assigned according to Table 4.2.1. The index

names are treated differently. They are entered into the ULEX dictionary with
no attribute (or dumny attribute)

.

In addition, data structures are set up which associate with each range,
identified by its range number, its subordinate indexes, identified by their
index number. The subordinate ranges of each table, the image and domain
ranges of maps, and the universal and domain ranges of range sequences are
listed for reference in similar data structures. There are various simple
ways to set up such data structures. Their discussion, however, would
extend beyond the scope of this report. We refer to the collection of these
data structures as the "cross-reference list” .

The actual map information, that is, the assignment of image indexes as a
function of the domain indexes is also transfered from the header file to a
special "map list" . The actual descriptions of range sequences residing in

the database are similarly collected in a "range sequence list" .

The next source of names is provided by specification instructions. Each
of these instructions is characterized by the key-word "LET". The portion of
the string that precedes the first colon contains the name of the quantity to
be specified and, in the case of tables, index maps, and range sequences, the
name of subordinate ranges. Since its subordinate ranges need to be
recognizable before a table, map, or range sequence can be specified, LET
RANGE instructions are processed first.

Now is the time to process the UNKNOWN instruction and enter the names of
the unknown variables into the dictionary. As token range we propose

401 to 499 for unknown names.

This does not imply that linear programs which are formulated in this way may
have only 99 variables, since the unknown names may be indexed. Again
dropping the first digit of the token number of an unknown variable will
produce the "variable number" by which the unknown variable will be referred
to in the cross-reference repository. Also, the range numbers of ranges
subordinate to the unknown variable will be listed in the cross-reference
repository. An array will be set up which assigns to each variable number a
word number on the dictionary.

82

Variable names correspond to columns of the linear programming matrix.

"Constraint names" similarly identify the rows of the latter. As explained in
Sections 1.2 and 1.3, contraint names may be tuples of indexes or a specified
alphanumeric string — the constraint preface — followed by a tuple of

indexes in parentheses. The constraint preface is given by an alphanumeric
string in quotes, followed by a tuple of range names in parentheses, all

contained in the instruction header of the CONSTRAIN instruction in question.
Index names are drawn automatically from these ranges and run
lexicographically through all combinations. In addition, one of the ranges
may be replaced by an alphanumeric string in quotes. This string is treated
as a solitary index name, and is therefore called a "pseudoindex ”

. A scanning
of the instruction headers of all CONSTRAIN statements, yields a

"constraint
name list " of constraint prefaces and pseudoindexes: A "

constraint list
"

indicates the fixed ranges associated with each constraint.

4.4 Tokenization of Run Statements: Lexical Synthesis

The first, that is, left-most colon in the CONSTRAIN instructions and the
specification instructions, that is, the instructions starting with "LET",

divides these instructions into the "instruction header
’ 0

and the "instruction
body "

. The instruction body starts with the first nonblank character after

the colon, except if this character is , in which case the instruction body
starts after the . BOUND, LPMIN and LPMAX instructions contain no colon,

and therefore have no header. In these cases, the instruction body is the

entire string between the open parenthesis directly following the keyword and

its matching close parenthesis.

The lexical synthesis technique is now applied to the instruction body of
each LPMIN, LPMAX, CONSTRAIN, BOUND, LET RANGE, LET TABLE, LET MAP and LET

RANGE SEQUENCE instruction. This is achieved by purging these strings of

unnecessary blank characters and then partition them into legal segmentations
using ULEX routines. If all strings have unique segmentations, then this

procedure will terminate with a sequence of token strings, one for each
processed instruction. This sequence of token strings represents the
tokenized form of the run statement.

For the above lexical synthesis procedure, we propose the legality matrix
shown in Table 4.3.1. Each entry in this table has the value "true” or
* false" as indicated by "T" and , respectively. The first row indicates
the attributes which may follow "BOS", that is, the beginning of the string.
Similarly, the first column indicates the attributes which may precede "EOS”,

that is, the end of the string. By this convention, we characterize the

attributes which may start or terminate the string of words into which an
instruction body is segmented.

For most entries of value “true”, we know of examples in which the
corresponding succession of attribtues actually occurs. In addition, we have

given the value "true” to some entries where we did not feel absolutely
certain that the corresponding succession of attributes could be ruled out,

or which might occur in natural extensions of the language. We have circled

I

83

Table

4.4

sO
CM

1 1 1 1 1 1 1 1 l i©fc}'

m H 1 1 1 1 1 1 l l i H H 1

CM

sr H 1 1 1 1 1 1 l l i H H 1

CM

CO 1 1 1 1 1 1 1 i H i 1 1 1

CM

CM H 1 1 1 1 1 1 1 i i H 1 1

CM

pH H 1 1 1 1 1 1 l i i 1 H 1

CM

o H 1 1 1 1 1 H I i i H 1 1

CM

OS 1 1 1 H 1 1 1 H i i 1 1 1

rH

00 1 I 1 H 1 1 1 1 i H 1 1 1

rH

1 H H 1 1 1 H H i 1 1 1 I

rH

sO 1 1 H 1 1 1 H H i 1 1 1 1

**H

m 1 H 1 1 1 1 H H i 1 I I 1

pH

sr H 1 1 1 1 1 1 1 i 1 H H 1

pH

co 1 1 H 1 1 j H H i 1 1 1 I

pH

CM 1 1 H 1 1 1 1 H i H H I I

pH

pH 1 1 H H H I 1 H i H I H I

pH

o 1 1 I 1 1 I 1 1 H 1 1 1 1

pH

os H 1 1 1 1 1 H • 1 1 H H 1

00 1 1 1 H H 1 H H 1 1 1 I 1

H H H H H H 1 H 1 H 1 1 1

sO H 1 1 1 1 1 H 1 1 1 1 1 1

m H 1 1 1 1 1 H 1 1 1 1 1 1

H 1 1 1 1 1 H H 1 1 H 1 I

CO H 1 1 1 1 1 1 1 I 1 H IX

CM H 1 1 I 1 1 1 1 1 1 1 1 1

CO
o 1 1 H H 1 | | H 1 H l 1 1

w
CO
o CM CO m sO r-. 00 cos O pH CM CO
CO

co

pH pH pH pH

m •H
•H 03

a) as fl

o a)

c +J

a) u C a <3

3 c A a> U CJ

O’ a fl 4J o G
a fl CO o 3 fl

a CO e0 a. 3 O pH
3 a. O as
o a 0) a) a) A cd > G
c •H oo 00 G 00 a co a •H Oo c a. 3 fl o ai O § 3 «H
a 03 CO cO C0 a. r-t CL H o cr o
3 u fl 3)-! o o o o o a a

H i i H i i i t i I i i i

HHIHI I I I I I H I I

HH1HI I I I I IHHi
I I ! I I I I I I H I I I

I I I I I H I f I I I I t

HHIHIIIIIIII!
I I I I I I I I I I I I 1

I 1 1 I f I 1 I f I I I I

I I i i 1 t t I i I I 1 (

1 I I I I I I 1 t I 1 I I

IIIIIIIIIIHHI
! I I I I I I I I ! I I i

I I I H I I I I I I I I I

I t I 1 I I I I ! i I I I

I I I I 1 t ! I I I I I I

I I I I I I I I I I H

1 (I I I I I I i H I I 1

I I I I H H I I I I I I I

I I 1 ! I t I I ! I I I I

flllllHHHIIIt
i 1 ! i I I i I I I I 1 1

! I i I 1 I I I 1 I I I I

I I I i H H I I I I I I I

HHIHIIIIIIII)
HHHIII1IIIIII
IIIIIIIIIIHHH
m Vs© P*>- <30 o rH CM CO -r sO

pH pH pH pH pH pH CM CM CM CM CM

c
a G o
> O fl *H u
•H •H o J-J a a
U JJ •H u u •H *H
CO CO •U CO •H fl O
o i—l CO fl •H fl o.

a •H a fl 4J -fi a So
> pH fl 03 -Q GO M fl 3 rfl jj

H a •U 3 fl CO G s •H
J-l •H fl CO to fl o fl CO U a G

G •H •U as o 00 £ fl x: “H H •H
00 03 (H T3 G J-l G 4J > D. o ifl

•H T3 3 fl o A fl a pH •H a G
CO CO S o a 00 fl G •H fl "O •H

84

these entries in Table 4.4.1. We believe that relying on the principle, when
in doubt, choose "true", does not jeopardize the usefulness of the legality
matrix for rejecting illegal segmentation.

APPEND and DELETE instructions (see Section 2.7) have such a simple
structure that they can be processed directly without the relatively involved
lexical synthesis technique.

4 . 5 Normalizing of the Tokenized Form: Slacks and Substitutions

As indicated in the overview, a series of normalization steps is now
applied. In the first of these steps, strings of digits are identified in the

sementation and converted to numbers using a decimal to binary conversion
routine. The numbers are assigned tokens in the range from

501 to 599.

Similar to the token assignments in Section 4.2, deleting the first digit of

the token number will yield the “constant number ’* under which the constants
are filed in a “constant list ”

.

There are other straightforward substitutions, which can be made in the
entire set of token strings. First, set subtraction constructs can be

replaced by equivalent generalized subrange constructs (see Section 2.6).

Second, in LET RANGE and LET RANGE SEQUENCE instructions, where indexes
defining ranges are directly specified by sequences of quoted alphanumeric
strings, the separating commas (token = -15) are replaced by the concatenation
operator (token = -29).

The next step involves the introduction of slack variables for inequality
constraints. These variables are added to the list of unknowns. Their names

are generated by letting a "$“ sign precede the constraint preface (see
Section 4.3). The new token numbers are consecutive starting with the first

unused token number. A new term is then entered into the token string just
before the order relation symbol. This term consists of the unknown token
followed — unless the CONSTRAIN statement does not specify a fixed range —
by open parenthesis (token = “11), by the tuple of fixed ranges from the

constraint list (see Section 4.3) represented by their respective tokens and
separated by commas (token = -15), and finally by a close parenthesis (token =

-12). The new term is preceded by "+" (token - -23) or (token - -24)
depending on whether the order relation is characterizd by "<=“ (token = -28)

or ">=" (token - -27), respectively. In the case of constraint equations, no
slack variable is added. Finally, all order relation symbols in CONSTRAIN
statements are changed to (token - -26).

85

4.6 Normalization of Token Strings: LET Instructions

In this section, we describe what needs to be done concerning LET
instructions. As was pointed out before (Section 2.6), these are instructions

by which new quantities, that is, tables, index ranges, index maps and range

sequences are introduced. The LET instruction may represent a definition
"from scratch" or a definition which relies on previously defined quantities.

In the latter case, the name of the quantity to be defined appears in the

instruction header and the names of the previously defined quantities on which

the definition is based appear in the instruction body. We call the latter

quantitites the "precursors ” of the quantity to be introduced.

Quantities are now being ranked. A quantity has "rank 0 " if it is

defined in the database. It has "rank 1 " if it is defined from scratch,

that is, without precursors, or if all its precursors are of rank 0. A
quantity has

"
rank 2 " if it is not of rank 1 and all its precursors have a

rank which is less than 2, and so on. The LET instructions themselves are

thus ranked implicitly: the rank of a LET instruction is the rank of the

quantity it defines. If the process of ranking LET instructions terminates

before all LET instructions have been ranked, then a circular definition is

present, and an error stop ensues.

If all LET instructions are successfully ranked, then they are processed
in this order: first all LET instructions of rank 1, then those of rank 2,

and so on. In this fashion, each LET instruction will be processed only after
all its precursors have been processed already. We now consider individual
LET constructions.

After the substitutions of Section 4.5, the LET RANGE instructions are of

three kinds: (i) concatenation instructions; (ii) subrange instructions;
(iii) range shift instructions. In the first case, a mixed sequence of ranges
— already defined — and quoted alphanumeric strings representing new indexes
is encountered. The string of indexes for the concatenated range is readily
extracted and processed in the same way as a range definition that had been
transferred from the database. In the second case, an index sequence is

generated starting with the sequencing range, the resulting indexes are
transformed using either a predefined index map or a subrange construct with
the universal range as screening range. In addition, index range sequences
may be defined by applying the INVERSE operator to a precursor quantity which
is either an index range sequence or an index map. There are straightforward
algorithms available for the above inversion.

LET MAP instructions are similar to the LET RANGE and LET RANGE SEQUENCE
in that they relate indexes to one another. No LET MAP instructions other
than definitions from scratch have been included so far into the specification
language. We propose to handle these definitions just as if they originated
from the database.

This is the general philosophy for this implementation proposal: process
each index range, index map and index range sequence as if the information
originated index by index from the database. The LET RANGE, LET MAP, LET
RANGE SEQUENCE instructions simply supplement the database.

86

LET TABLE instructions are a different story, because precursor tables may
be stored in the database proper and not in the header file of the database.
Not only is such table information potentially too large to copy into core
storage, but retreiving this information would require an extra pass through
the database. Tables which are defined numerically from scratch, including
using the NETWORK operator, do not pose this problem. The procedure is to

store modification information in a "table modification list " from which it

can be retrieved at matrix generation time. The vehicle used for such
modification are the "conditional position triples" discussed in Section 4.8.

Aggregation utilizes "multiple position triples” also discussed in Section
4.8. For "position triples" see Section 4.1.

4.7 Normalizing Token Strings: Indexes and Subranges

The final normalization steps concerning token strings representing
CONSTRAIN, LPMIN, LPMAX and BOUND instructions can now be described. Note
that all token strings representing LET instructions have disappeared.

Essentially two tasks remain. The first concerns the identification of

indexes in "index position ". These index positions indicate arguments after
table or range sequence names and are part of a string separated by commas and
enclosed in parentheses. For each index position, there exists a unique range
such that indexes found in this particular index position must belong to that
range. Whenever a quoted alphanumeric string is found in an index position,
it is compared with the index names of the respective range and, if the
matching index name is found, is replaced by the corresponding index token.

Two kinds of subrange constructs remain to be processed. First, there are
the direct subrange constructs and those with explicitly specified index
correspondences. Second there are generalized subrange constructs referring
to an index map. For both kinds of subrange construct, we generate an index
map with the sequencing range as domain and the screening range as image range
with the nonindex admitted as value. This map assigns to every index in the
sequencing range either an index in the screening range or the nonindex,
depending on whether a skipping of the term is intended. This index map is

entered into the map list (see Section 4.3) and assigned a token. The entire
subrange construct is then replaced by the map token, followed by open
parenthesis (token = -11), the token of the sequencing range, and close
parenthesis (token = -12). The fully normalized form of the token strings
has been reached.

4.8 Matrix Generation

We proceed to describe the matrix generation process in more detail than
in Section 4.1. The matrix to be generated consists of the constraint
coefficients together with the coefficients of the objective function and the
constants on the right hand side. The first task is to define the rows and
the columns of the matrix.

To this end, we order the variable names in a linear fashion. This
defines a linear order for the single unknowns if we assume a lexicographic
ordering of the single unknowns associated with each table name, respectively.

87

The single unknowns are then numbered consecutively in this order, and this

number becomes the "column number " of the linear programming matrix to be

generated. A column number of -1 is associated with the "right-hand-side

column". For each variable name, the lowest of the column numbers of single

unknowns associated with this variable name is of interest. The column number

just prior to this number, that is, the lowest column number minus one, is

stored for each variable name. This permits straightforward calculation of

the column number from the variable name and the particular index setting.

The CONSTRAIN instructions are similarly ordered, and the single
constraints generated by each CONSTRAIN instruction are again

lexicographically ordered, with respect to the sequence of fixed ranges in the

CONSTRAIN instruction. This leads to a consecutive numbering of all single
constraints and thereby to a definition of

"row numbers " for the linear
programming matrix. Again a row number "just prior” to the row numbers

associated with a particular CONSTRAIN instruction is stored, permitting
simple calculation of row numbers from the constraint name and the index
setting for the fixed ranges. This calculation is analogous to the

calculation of column numbers.

Finally, a data number (see Section 4.1) is derived by conceptually
numbering the numerical entries in the database. Since table entries are

stored lexicographically (see Section 2.3), knowledge of the sequence of the
tables in the database permits the calculation of the data number from table
name and index setting in fashion similar to the calculation of row and column
numbers.

The first phase of the matrix generation process row considers the
CONSTRAIN instructions in sequence. Each CONSTRAIN instruction is divided by
the additive operators "+" (token = -23), "-" (token = -24), and the equation
symbol "=>" (token = -26) into "terms". .The last of these terms, the one
following "-"

, is called the "right-hand-side term". All terms except the
right-hand-side term consist either of a "table clause " and a

"variable
clause " separated by "*" (token = -25) or simply of a variable clause. The
right-hand-side term consists of a table clause only.

A table clause is either a constant, or a table name, or a table name
followed by a mixed tuple of range, mapped range, or index specifications
separated by commas. The table name may be a "primary table name ", that is,

refer to a table on the database, or a "secondary table name " introduced via
a LET instruction. A variable clause consists of a variable name also
followed by a tuple of range, mapped range, or index specification, separated
by commas. Terms consisting of a variable clause only are equivalent to terms
with a table clause which consists of the constant 1.0, and are treated
correspondingly.

For each term, we consider the sequence of ranges which consists first of

the fixed ranges of the CONSTRAIN instruction to be followed by the ranges
which occur in the variable clause of the term, but are not one of the above
mentioned fixed ranges. These ranges are followed in turn by ranges which are
not fixed and occur only in the table clause. We call these ranges
"
aggregation ranges ". The entire sequence of ranges is the "driving sequence

"

of the term. The matrix generation algorithm now runs lexicographically
through all index combinations in the driving sequence.

88

Each such index combination is called an
"index signature ". Together with

the constraint name and the variable name, it determines a row number r and a

column number c. Consider now a range in the mixed sequence of ranges, mapped
ranges, and indexes following the table that is part of the table clause.

This sequence may, of course, be empty. In this case, the table index
signature is also empty. If not, then a range in the mixed sequence is also
represented in the driving sequence and a particular index in the index
signature corresponds to it. In the case of a mapped range, the domain of the

index map is represented in the driving sequence. The corresponding index is

transformed by the index map into either a non-index, in which case one moves

on to the next index signature without taking further action, or a valid index
in the corresponding range of the table is produced. Finally, the index for

some range of the table may have been specified at the outset. In any case,

we wind up with a tuple consisting of a table name, and a tuple of indexes,
each from one of the ranges of the table. Thus all the information for a

table look-up is available. This information is therefore called a
"
table

look-up signature ". If the table is a primary table, then a data number d can
be calculated from this table look-up signature, and we can form the position
triple (Section 4.1)

(r ,c »d)

,

and add it to the list of previously determined position triples. If the
table clause refers to a constant, then the negative constant number is

entered as the data number. If the term was a right-hand-side term, then
c = -1.

The effect of aggregation ranges is that several position triples with
identical row and column numbers but different data numbers are generated. We

call such position triples
"multiple position triples ". Such triples specify

several numbers for the same matrix - location. By considering the sum of these
numbers as the definitive entry, we effect aggregation.

The case of secondary table names remains. In this case, the table name
refers to information on the table modification list. This information is

such that depending on the indexes in the look-up signature, a new table
clause is substituted. This new table clause may introduce new aggregation
ranges. The indexes in the look-up signature together with the indexes from
aggregation ranges determine a new table look-up signature with respect to the

new table clause. If the latter is primary or constant, then again a position
triple can be determined. Otherwise, the procedure is repeated until a

primary or constant table clause is reached. We call position triples that

are derived in this fashion "conditional position triples "

.

As mentioned in Section 4.1, the second phase of the matrix generation
process starts with sorting of the position triples by data number. A
sequential pass through the database will replace the data number by an
actual numerical value, generating a list of value triples (Section 4.1)

(r, c, u).

89

This list is sorted again, primarily by the column numbers c and

secondarily by the row numbers r. Finally, the value triples for which both

row and column numbers agree — these value triples are now found in

consecutive positions on the list — are replaced by a single value triple

whose value is the sum of their values. After this aggregation step, a

column-sparse representation of the linear programming matrix has been

achieved.

4.9 Processing of Data Statements

For the processing of data statements we recommend several lexical
analysis procedures applied in succession. These procedures are using

typically a single character "look-ahead" and are readily represented by

"finite state machines". This process will produce an intermediary data
structure which consists of

"header information " and "digital information ".

The digital information is converted into binary numbers and stored on the

content file in segments separated by end-of-file markers (see Section 4.1).

The header information will be transferred to the header file (see Section
4.1) of the database.

The intermediate digital information is divided into 10 segments
anticipating the subsequent partition of the database. More precisely, the

intermediate digital information consists of a sequence of signs, digits,
decimal points, commas , and at-signs (- "@"). Commas separate digital number
designations, using signs, digits and decimal points. The at-signs replace
commas as separators at larger intervals. A list indicates for each at-sign
either the number of zero entries which are to precede it in the content file
or it indicates the number of entries to be read from a particular external
file. The at-signs of the latter kind divide the string into segments which
correspond to the segments on the content file.

We will very briefly sketch one of many possible approaches to the problem
of extracting the intermediate digital information from the data statement. A
very first step would be to find the end of the data statements, that is, a

line of all blank characters or an end-of-file matrix. This is a

straightf orward procedure and, in the context of UTPS, it is performed
automatically by the UTPS utility routine SIGNON. The next step is to remove
all comment lines. Again this is straightforward. A simple approach
involving four "finite states" can be used to remove all comment clauses and
to produce a character string without ends-of-lines . Superfluous blank
characters can be squeezed out concurrently or in yet another separate
procedure

.

The result is an edited data statement which is now truly a string of
characters rather than a sequence of cards. Its superfluous blanks have been
removed. The string is partitioned by semicolons into blocks. Text clauses
remain as terminating portions of their respective blocks.

The type of each block is readily identified. Indeed, each block starts
with an alphaname (see Section 2.1). If the alphaname is followed by a colon,
it is either a range block, a file block or a singleton table block. Range

90

blocks are recognized by a quote following the colon. File blocks are
characterized by the number sign following the colon. If the alphaname is

not followed by a colon, then it must be followed by an open parenthesis. If

the matching close parenthesis is followed by a colon or a slash, then the

block is a table block. If the first open parenthesis is followed immediately
by a close parenthesis, then the block is a range sequence block. Finally if

the first pair of parentheses enclose an alphaname and are followed by an

alphaname, then the block is a map block.

Once the type of a block is determined, its constituents are readily
identified. Some of these, particularly range names and file designations
must have been already defined and entered into the dictionary. The new name,

that is, the name introduced by the block in question, is then itself entered
into the dictionary. Every type of block contributes to header information;
but only table blocks provide the basis for the intermediate digital
information, which is an edited sequence of table body information.

91

APPENDIX A: Comparison with Other Problem Specification Methods

Using two sample problems, we will compare the problem specification
method of ULP with those of XML (a proposed modeling language) and three

linear programming packages — OMNI, DATAFORM, and LPMODEL. XML is designed
to formulate problems in a systematic way, but does not represent a form of

computer input. We will utilize it to restate the sample problems. No data
entry has been included with the XML example; the problem is specified in a

general form. OMNI and DATAFORM are matrix generator languages in which the

user must specify the linear programming matrix a column at a time. LPMODEL
has a philosophy similar to that of ULP, where the user does not need to think
in terms of a matrix at all, but formulates the problem in a more natural way.
It also separates the problem specification from the data input, as ULP does.
(The following problem formulations have not actually been tested with the
different packages, but were developed by reading user manuals.)

EXAMPLE 1

This problem is the same as EXAMPLE 1 from Section 1.1.

(1) EXAMPLE 1 ~ XML (Fourer [4])

SETS

metals
alloys

PARAMETERS

supply INDEXING:
ATTRIBUTES:
COMMENTS:

OVER metals
nonnegative
supply [i] is supply of metal i

price INDEXING:
ATTRIBUTES:
COMMENT:

OVER alloys
nonnegative
price[j] Is price of alloy j

comp INDEXING

:

ATTRIBUTES:
COMMENT:

OVER metals, OVER alloys
nonnegative
comp[i s j] is units of metal i per

unit of alloy j

VARIABLES

X INDEXING:
ATTRIBUTES:
COMMENT:

OVER alloys
nonnegative
x[j] is units of alloy j to be

produced

OBJECTIVE

profit ATTRIBUTES:
SPECIFICATION:

maximize
SIGMA j OVER alloys

(pricef j]*x[j])

CONSTRAINTS

suplim INDEXING:
SPECIFICATION:

COMMENT:

i OVER metals
SIGMA j OVER alloys
(comp [i s j j*x[j]) - supply [i

]

Amount of metals used must not

exceed supply limit.

93

(2) EXAMPLE 1 - OMNI (Boudrye [3])

DICTIONARY

CLASS METALS

METAL1

METAL2

CLASS ALLOYS

ALLOY1

ALLOY

2

ALLOY3

ALLOY4

DATA

TABLE SUPPLY

TONS

METAL1 6

METAL2 5

TABLE PRICE

DOLLARS

ALLOY 1 1000

ALLOY2 1500

ALLOY3 1800

ALLOY4 4000

TABLE COMP

ALLOY 1 ALLOY2 ALLOY

3

METAL1 .5 .6 .3

METAL2 .5 .4 .7

ALL0Y4

.1

.9

94

FORM ROW ID

PRICE = OBJ

(METALS) = FIX

COLUMNS

FORM VECTOR (ALLOYS)

PRICE = TABLE PRICE ((ALLOYS) , DOLLARS)

(METALS) = TABLE COMP((ALLOYS) ,
(METALS)

)

RHS

FORM VECTOR RESIDE

(METALS) - TABLE SUPPLY((METALS) , TONS)

ENDATA

In OMNI , all tables must be two-dimensional, and names must be provided
for the rows and columns.

In the ROWS section, each row of the matrix is named and given a type,
i.e. objective function (OBJ), equality constraint (FIX),

less-than-or-equal-to constraint (MAX), or greater-than-or-equal-to constraint
(MIN)

.

The matrix is generated a column (i.e. vector) at a time. Each column is
named. The class name ALLOYS in parentheses means that the statement must be

repeated for each member of the class. For a fixed column name, table values
are then placed in rows named PRICE, METALI , and METAL2 . The right-hand side
vector is generated in a similar way.

95

(3) EXAMPLE 1 - DATAFORM (Ketron [8])

*DATA DEFINITION SECTION

TABLE SUPPLY = TONS

METAL 1=6

METAL 2=5

TABLE PRICE = DOLLARS

ALLOY 1 = 1000

ALLOY 2 = 1500

ALLOY 3 = 1800

ALLOY 4 = 4000

TABLE COMP = ALLOY 1, ALLOY 2, ALLOY 3, ALLOY 4

METAL 1 = .5, .6, .3, .1

METAL 2 = .5, .4, .7, .9

*PROBLEM GENERATION SECTION

*GENERATE THE MATRIX

COL T:C0MP(0,$1) , PRICE = T:PRICE($1,1)

,

T:COMP($2,0) = T :COMP($2 , $1)

*GENERATE THE RIGHT-HAND SIDE

RHS SUPPLY, T:SUPPLY($1,0) = SUPPLY($1,1)

* IDENTIFY THE OBJECTIVE FUNCTION

ROW PRICE <N>

96

DATAFORM is very similar to OMNI in its method of problem specification;
the two languages differ mainly in details of syntax.

As in OMNI, tables in DATAFORM must be two-dimensional with names for each
row and column.

The matrix is generated a column at a time using the COL statement. This
statement has the following form:

COL column name, row name - value, row name = value,...

In this example, the column names are specified by T:COMP(0,$1) , which
symbolizes the element in row 0 and column $1 of table COMP. Row 0 contains
the column headings of the table and $1 is a loop control which causes the COL
statement to be repeated for each column heading. In this example, the

columns will be named ALLOY 1, ALLOY 2, ALLOY 3, and ALLOY 4. Next, for a

given column name, a value from the PRICE table is placed in a row named PRICE
and values from the COMP table are placed in rows named METAL 1 and METAL 2.

(The $2 loops over the row names of the COMP table.)

The right-hand side is generated separately using the RHS statement:

RHS rhs name, row name s value

In this case, the right-hand side is named SUPPLY, and values from the SUPPLY
table are put in rows METAL 1 and METAL 2.

All rows of the matrix are assumed to represent equality constraints,
unless stated otherwise. In this example, the row named PRICE is identified
as the objective function (N means "no restriction").

97

(4) EXAMPLE 1 - LPMODEL (Katz [7])

ALLOYS « ALLOY_l, ALLOY_2 ,
ALLOY_3, ALLOY_4

METALS * METAL_1, METAL_2

SUPPLY. METALS -<-6 5

PRICE. ALLOYS «• 1000 1500 1800 4000

COMPOSITION.ALLOYS.METALS <- .5 .5 . 6 .4 .3 .7 .1 .9

SUM [ALLOYS: COMPOSITION.ALLOYS .METALS x ALLOYS? = SUPPLY .METALS]

MAXIMIZE [ALLOYS: PRICE.ALLOYS x ALLOYS?]

LPMODEL is similar to ULP in that the user does not specify the matrix
column by column, but uses a concise and natural algebraic notation to

formulate the constraints and objective function of the problem. Also, the

data input is independent of the problem formulation, and the data can be

thought of as coming from some already-existing database.

In line 6, "SUM [ALLOYS:" symbolizes that a summation is to be done over
all elements of the class ALLOYS. The statement is repeated for each element
of the fixed class METALS, leading to two constraints. Variables are

represented by names ending with a question mark.

Line 7 specifies the objective function in a similar way, where again the
summation is over the elements of the ALLOYS class.

A key difference between LPMODEL and ULP is in the representation of

summations. LPMODEL writes an index range followed by a colon to indicate
that a summation is to be done over the elements of that range. Any other
range appearing in the statement is fixed, that is, the statement is repeated
for each element of the range. ' P uses the opposite convention —

- a range
followed by a colon indicates a fixed range and all other ranges are to be

summed over. This has the advantage of providing a name for each constraint,
which in turn supplies a name for each slack variable.

ULP anticipates two different languages for the database specification
and for the problem specification. This emphasizes that the database may
exist for other purposes than a particular linear programming application.
However, it also provides the capability to input the data directly with the
problem formulation. This can be done using the LET instructions of Section
2.6. We will illustrate both options.

98

(5a) EXAMPLE 1 - ULP

Database specification:

*RANGES

METALS: ’METAL ’(1-2);

ALLOYS: 'ALLOY '(1-4);

*TABLES

SUPPLY(METALS): 6 5;

PRICE (ALLOYS) : 1000 1500 1800 4000;

COMPOSITION(METALS ,
ALLOYS): .5 .6 .3 .1

<>5 o4 *7 .9

Problem Specification:

UNKNOWN(X(ALLOYS)

)

C0MMENT(X(ALLOYS) =AMOUNT PRODUCED OF EACH ALLOY)

LPMAX (PRICE (ALLOY S) * (ALLOY S)

)

COMMENT(MAXIMIZE REVENUES)

CONSTRAIN(METALS: COMPOSITION(ALLOYS ,METALS)*X(ALLOYS)=SUPPLY(METALS)

)

99

(5b) EXAMPLE 1 - ULP

Combined Problem and Data Specification:

UNKNOWN(X(ALLOYS)

)

COMMENT (X(ALLOYS)=AMOUNT PRODUCED OF EACH INDIVIDUAL ALLOY)

LPMAX(PRICE(ALLOYS)*X(ALLOYS)

)

COMMENT(MAXIMIZE REVENUE)

CONSTRAIN(METALS: COMPOSITION(ALLOYS ,METALS)*X(ALLOYS) -SUPPLY(METALS)

)

COMMENT(DATA)

LET RANGE(METALS: 'METAL '(1- 2)

LET RANGE(ALLOYS: 'ALLOY '(1-4)

LET TABLE(SUPPLY(METALS) : 6., 5.)

LET TABLE(PRICE(ALLOYS) : 1000, 1500, 1800, 4000)

LET TABLE(COMPOSITION(METALS, ALLOYS) : .5, .6, .3, .1,

.5, :4, .7, .9)

100

EXAMPLE 2

This example gives a more complex problem (presented in Fourer[4]) to
compare XML, OMNI, LPMODEL, and ULP. DATAFORM has been omitted since it is

long and basically similar to OMNI.

Problem: A factory manufactures three different products (high quality,
medium quality, and low quality) in each of three different production
periods. Two raw materials (scrap and new) are required for each product.
The following data are given:

(1)

Each product returns a certain profit, which may vary for the
different production periods.

Profit (per unit)

Product Period 1 Period 2 Period 3

Low 25 20 10

Medium 50 50 50

High 75 80 100

(2) At most 40 total units can be produced in any period.

(3) Each unit of a product requires a certain number of units of the two

raw materials.

Composition

Raw Material Low Medium

Scrap

New

5 3 1

1 2 3

; a fixed storage cost per unit

Material Storage Cost

Scrap 0.5

New 2.0

101

(5) Any raw material left unused after the last production period has an

estimated remaining value per unit.

Raw Material Remaining Value

Scrap 15

New 25

(6) A certain initial stock of the raw materials is available to be used
over the three periods.

Raw Material Initial Stock

Scrap 400

New 275

How much of each product should be produced in each period in order to

maximize the net profit, adjusted for storage costs and the remaining value of

the raw materials?

102

(1) EXAMPLE 2 - XML (Fourer [4] - p. 176)

SETS

prod COMMENT:
raw COMMENT

:

PARAMETERS

time

max

a

b

c

d

f

VARIABLES

x

ATTRIBUTES

:

COMMENT:

ATTRIBUTES

:

COMMENT:

INDEXING:
ATTRIBUTES:
COMMENT:

INDEXING:
ATTRIBUTES

:

COMMENT:

INDEXING:
COMMENT:

INDEXING:
COMMENT:

INDEXING

:

COMMENT:

INDEXING:
ATTRIBUTES

:

COMMENT:

s INDEXING:
ATTRIBUTES:
COMMENT:

set of products
set of raw materials

positive integer
number of production periods

positive
maximum total unit production per period

OVER raw, OVER prod
nonnegative
a[i,j] is units of raw material i needed to

manufacture one unit of product j

OVER raw
nonnegative
b[i] is max initial stock of raw material i

OVER prod, FROM 1 TO time
c[j,t] is estimated profit per unit of product

j in period t

OVER raw
d[i] is storage cost per period per unit of raw

material i

OVER raw
f[i] is estimated remaining value per unit of

raw material i after last period

OVER prod, FROM 1 TO time
nonnegative
x[j,t] is units of product j manufactured in
period t

OVER raw, FROM 1 TO time+1
nonnegative

s[i,t] is stock of raw material i at beginning
of period t

103

OBJECTIVE

profit ATTRIBUTES:
SPECIFICATION:

COMMENT:

CONSTRAINTS

limit INDEXING:
SPECIFICATION:
COMMENT:

init INDEXING:
SPECIFICATION:
COMMENT:

bal INDEXING:
SPECIFICATION:

COMMENT:

maximize
SIGMA t FROM 1 TO time

(SIGMA i OVER prod (c
[j , t]*x[j , t]

)

-SIGMA i OVER raw (d [i] *s [i , t])

)

total over all periods of estimated profit less

storage cost, plus value of remaining raw

materials after last period

t from 1 TO time
SIGMA j OVER prod (x [j , t]

)

<= max
total unit production per period must not

exceed maximum

i OVER raw
s[i,l] <= b[i]

stock for period 1 must not exceed maximum

i OVER raw, t FROM 1 TO time
s [i, t+1] = s [i , t] -

SIGMA j OVER prod (a [i
,
j] *x[j , t]

)

stock for next period equals stock for present
period less raw materials used in present period

104

(2) EXAMPLE 2 - OMNI (Fourer [4] - p. 177)

DICTIONARY

CLASS T Set of production periods
1,2,3

CLASS U Set of periods preceding production periods
0 , 1,2

CLASS
4

V Extra period after last production period

CLASS
3

w Period preceding extra period

CLASS PRD Set of products;
LOW low quality product
MED medium quality product
HIH high quality product

CLASS RAW Set of raw materials;
SCR scrap raw material
NEW new raw material

DATA

TABLE M Maximum total unit production per period
MAX

MAX 40

TABLE A Units of each raw material needed to manufacture one
* unit of each product

LOW MED HIH
SCR 5 3 1

NEW 1 2 3

TABLE B Maximum initial stock of each raw material
MAX

SCR 400

NEW 275

TABLE
:

k

C

1 2

Estimated profit per unit for each product in each
period
3

LOW 25 20 10

MED 50 50 50
HIH 75 80 100

105

TABLE D

STOR
SCR 0.5

NEW 2.0

TABLE F

VALUE
SCR 15

NEW 25

FORM ROW ID

Storage cost per unit for each raw material

Remaining value for each raw material after last

period

*Maximize total over all periods of estimated profit less storage cost, plus

*value of remaining materials after last period.

OBJ = OBJ

*Balance production and stock of each raw material in each period.
BAL(RAW)(T) = FIX

*Limit total production in each period.
CAP(T) = MAX

COLUMNS

*Manufacturing activity, for each product in each period:
FORM VECTOR X(PRD)(T)

* Consumption of each raw material, by each product in each period:
BAL(RAW)(T) = TABLE A((PRD) , (RAW)

)

* Consumption of capacity, in each period:
CAP(T) = 1

* Estimated profit, from each product in each period:
OBJ = TABLE C((T) , (PRD)

)

*Stockpiling activity, for each raw material in each period:
FORM VECTOR S(RAW)(T)

* Production of each raw material from stocks, start of each period:
BAL(RAW)(T) = -1

* Consumption of each raw material into stocks after after each period
BAL(RAW)(U/T) = 1 EXCEPT T=1

* Storage costs, for each raw material in each period:
OBJ = - TABLE D(STOR, (RAW))

106

*Stockpiling activity, for each raw material after last period:

FORM VECTOR S(RAW)(V)

* Consumption of each raw material into stocks after last period
BAL(RAW)(W/V) = 1

* Remaining value, for each raw material after last period:
OBJ = TABLE F(VALUE, (RAW))

RHS

FORM VECTOR RHSIDE

* Production capacity in each period:
CAP(T) = TABLE M(MAX,MAX)

* (Note: right-hand sides for balance rows are all zero.)

BOUNDS

FORM BOUNDS MAXSTOCK
* Limit on stock of each raw material, in first period:

S (RAW) 1 , UP - TABLE B(MAX,(RAW))

ENDATA

107

(3) EXAMPLE 2 - LPMODEL (Katz et.al [7])

PRODUCTS «• LOW, MEDIUM, HIGH

MATERIALS -<- SCRAP, NEW

PERIODS <- PERIOD_l,PERIOD_2,PERIOD_3

PROFIT. PRODUCTS. PERIODS « 25 20 10 50 50 50 75 80 100

MAXIMUM_PRODUCTION «- 40

COMPOSITION.MATERIALS. PRODUCTS -<-531123

STORAGE_COST.MATERIALS 0.5 2.0

INITIAL_STOCK.MATERIALS «- 400 275

REMAINING VALUE .MATERIALS -<- 15 25

SUM [PRODUCTS: PRODUCTS .PERIODS?
]

< MAXIMUM_PRODUCTION

MATERIALS. PERIOD_l? < INITIAL_STOCK.MATERIALS

MATERIALS. PERI0D_2? = MATERIALS ,PERIOD_l? -

SUM[PRODUCTS: COMPOSITION.MATERIALS .PRODUCTS x
PRODUCTS . PERIODJ. ?

]

MATERIALS. PERIOD_3? = MATERIALS .PERI0D_2? -

SUM[PRODUCTS: COMPOSITION.MATERIALS. PRODUCTS x
PRODUCTS .PERIOD_2?

]

MATERIALS? = MATERIALS .PERIOD_3? -

SUM[PRODUCTS: COMPOSITION.MATERIALS .PRODUCTS x
PRODUCTS. PERIOD_3?

]

MAXIMIZE [PRODUCTS: PERIODS: PROFIT. PRODUCTS .PERIODS x
PRODUCTS. PERIODS?] - [MATERIALS: PERIODS:
STORAGE_COST .MATERIALS x MATERIALS .PERIODS?

]

+ SUM [MATERIALS: REMAINING_VALUE .MATERIALS x
MATERIALS?]

This problem formulation is not fully independent of the data since a

separate constraint instruction is written for each of the production periods,
rather than using a single general constraint instruction to represent them
all, as in the following ULP example. There the NEXT operator is used to

permit a formulation in terms of index ranges rather than individual indexes,
which are part of the data specifications. It was not indicated in the
description [7] whether LPMODEL has a similar operator or the capability to

relate indexes of different ranges (classes) to each other.

108

(4) EXAMPLE 2 - ULP

*RANGES

PRODUCTS: LOW,MEDIUM, HIGH;

MATEARIALS : SCRAP, NEW;

PERIODS: 'PERIOD '(1-3);

*TABLES

PROFIT(PRODUCTS, PERIODS): 25 20 10

50 50 50

75 80 100;

MAXIMUM PRODUCTION (): 40;

COMPOSITION(MATERIALS, PRODUCTS): 53112 3;

STORAGE CO ST (MATERIALS) : 0.5 2.0;

INITIAL STOCK(MATERIALS) : 400 275;

REMAINING VALUE (MATERIALS) : 15 25

UNKNOWN(X(PRODUCTS , PERIODS) , S (MATERIALS , PERIODS) , R(MATERIALS)

)

C0MMENT(X(PRODUCTS, PERIODS)=AMOUNT OF PRODUCT TO MANUFACTURE IN EACH PERIOD)

COMMENTS (MATERIALS, PERIODS)=STOCK OF RAW MATERIAL AT START OF EACH PERIOD)

COMMENT (R(MATERIALS)=STOCK OF EACH RAW MATERIAL REMAINING AFTER IAST PERIOD)

LPMAX(PROFIT(PRODUCTS , PERIODS) *X(PRODUCTS , PERIODS

)

-STORAGE COST (MATERIALS)*S(MATERIALS , PERIODS)
+REMAINING VALUE(MATERIALS) *R(MATERIALS)

)

CONSTRAIN(PERIODS :X(PRODUCTS, PERIODS) < MAXIMUM PRODUCTION)

CONSTRAIN(MATERIALS, NEXT(PERIODS)

:

S (MATERIALS , NEXT(PERIODS))-S(MATERIALS , PERIODS)
+COMPOSITION(MATERIALS, PRODUCTS)*X(PRODUCTS, PERIODS) = 0)

CONSTRAIN(MATERIALS

:

R(MATERIALS)-S(MATERIALS, 'PERIOD 3')

+COMPOSITION(MATERIALS, PRODUCTS)*X(PRODUCTS, 'PERIOD 3 s

) =0)

BOUND(S(MATERIALS, 'PERIOD 1') < INITIAL STOCK(MATERIALS)

)

109

Appendix B

Backus-Naur Form (BNF) Representation of LET TABLE Instructions

1. <LET TABLE INSTRUCTION = LET TABLE (<HEADER><SEPARATOR><BODY>)

2. <HEADER> = <TABLE NAME>
|

CTABLE NAME>(<RANGE TUPLE>)

3. <TABLE NAME> i <ALPHANAME>

4. <ALPHANAME> i <LETTER>
|

<LETTER><NAME

>

5. <LETTER> = A
|

B
|

C
|

D
|

etc.

6. <NAME> 5 <ALPHANAME>
j

<DIGIT>
|

<DIGITXNAME>

7. <DIGIT> = 0
|

1
|

2
|

3
|

etc.

8. <RANGE TUPLE> = <RANGE NAME>
|

<RANGE NAME>,<RANGE TUPLE>

9. <RANGE NAME> S <ALPHANAME>

10. <SEPARAT0R> =
:

|

:=

11. <B0DY> = <TABLE DESIGNATION
|

CTABLE DESIGNATION : MODIFICATION CLAUSE>

12. <TABLE DESIGNATION> S <NUMBER LIST>
j

<DEFINITION LIST>

13. <NUMBER LIST> S <NUMBER>
|

<NUMBER>
,
<NUMBER LIST>

14. <NUMBER> = <DECIMAL>
|

+<DECIMAL>
|

-<DECIMAL>

13. <DECIMAL> i <INTEGER>
|

. <INTEGER>
|

<INTEGER>
. j

<INTEGER> . <INTEGER>

16. <INTEGER> i <DIGIT>
|

<DIGITXINTEGER>

17. <DEFINITION LIST> = <TABLE EXPRESSION>
[

<TABLE EQUAL LIST>

18. <TABLE EXPRESSION> = <TABLE NAME>
|

<TABLE NAME>(<RANGE CLAUSE>)

19. <RANGE CLAUSE> = <RANGE TERN
|

<RANGE TERN,<RANGE CLAUSE>

20. <RANGE TERN = <PLAIN RANGE TERN
|

<SUBRANGE CONSTRUCT

21. <PLAIN RANGE TERN - <RANGE EXPRESSION
j

'<INDEX NAME>

'

22. <RANGE EXPRESSION = <RANGE NAME>
|

<RANGE OPERATON(<RANGE TUPLE>)

23. <RANGE OPERATOR> = NEXT
|

PREVIOUS

24. < INDEX NAME> = <NAME>

25. <SUBRANGE CONSTRUCT> = <PLAIN RANGE TERN<CONNECTORXRANGE EXRESSION>

110

26. <CONNECTOR> = () |

(<MAP NAME>)
|

(<EQUIVALENCE LIST>)

27. <MAP NAME> i <ALPHANAME>

28. <EQUIVALENCE LIST> = <EQUIVALANCE>
|

<EQUIVALENCE> , <EQUIVALANCE LIST>

29. <EQUIVALANCE> i ’<INDEX NAMEV ='<INDEX NAME>
' |

' '='< INDEX NAME>

'

30. <TABLE EQUAL LIST> S <TABLE EQUAL>
|

<TABLE EQUAL> , <TABLE EQUAL LIST>

31. <TABLE EQUAL> = <DIRECT TABLE EQUAL>
|

<INDIRECT TABLE EQUAL>

32. <DIRECT TABLE EQUAL> = <TABLE EXPRESSION>=<NUMBER LIST>

33. <INDIRECT TABLE EQUAL> = <TABLE EXPRESSI0N>=<TABLE EXPRESSION

34. MODIFICATION CLAUSE> = <TABLE EQUAL LIST>

111

References

[1] Bayer, R. , and Witzgall, C., Some Complete Calculi for Matrices, Comm, of

the ACM, 13, 223-237, 1970.

[2] Bayer, R.
,
and Witzgall, C., Index Ranges for Matrix Calculi, Comm, of

the ACM, 15, 1033-1039, 1972.

[3] Boudrye, C., and Greenberg, R. ,
OMNI User Guide for the Energy

Information Administration. Linear Programming, Inc., Silver Spring, MD,

1980.

[4] Fourer, R. , Modeling languages versus matrix generators for linear
programming. ACM Trans. Math. Softw. 9,2 (June 1983) 143-183.

I

I

[5] Greenberg, H.J., and Kalan, J.E., Enhancing Fortran to Aid Manipulation
of Large Structured Matrices, Journal of Research of the NBS

,
jS4, 21-25,

1977.
|

[6] Hoffman, K. and Witzgall, C., A Lexical Synthesis Approach to User-
oriented Input Specification, in: Tools for Improved Computing in the

80' s, Seventeenth Annual Technical Symposium of the ACM, National Bureau
of Standards (June 1978).

[7] Katz, S., Risman, L.J., and Rodeh, M. , A system for construction linear
programming models. IBM Systems Journal 19,4 (1980) 505-520.

[8] Ketron, Inc., The DATAF0RM Problem Description Language: A Tutorial.
Arlington, VA, 1978.

[9] Knapp-Cordes
,

M.
,

(oral communication), 1979.
I

[10] Murty, K.G., Linear and Combinatorial Programming, John Wiley and Sons,
Inc.

,
1976.

[11] O'Neill, R.P., An Interactive Query System for MPS Solution Information.

j

[12] Palmer, K.H. et al., A Model-Management Framework for Mathematical
Programming, An Exxon Monograph, John Wiley, New York, 1984.

[13] Phillips, J.R., and Adams, H.C., Comm of the ACM, 15, 1023-1031, 1972.

[14] Schrage, L., Linear Programming Models with LINDO, The Scientific Press,
Palo Alto, CA, 1981.

[15] Schrage, L., User's Manual for LINDO, The Scientific Press, Palo Alto,
CA, 1981.

[16] Shen, S.N.T., and Krulee, G.K., Solving Linear Programming Problems
Stated in English by Computer, Proceedings ACM 73, 299-303, 1973.

112

[17] UMTA, Urban Transportation Planning System (UTPS), Introduction for
Management, Department of Transportation, Washington, D.C., DOT-I-8049,
June 1980.

[18] Ellison, E.F.D. and Mitra, G., UIMP: User Interface for Mathematical
Programming. ACM Trans. Math. Softw. 8,3 (September 1982) 229-255.

[19] Lucas, C., Mitra, G., and Darby-Dowman, K., Modelling of Mathematical
Programs: An Analysis of Strategy and an Outline Description of a

Computer Assisted System. Technical Report TR/09/83, Department of

Mathematics, Brunei University, Uxbridge, England, 1983.

[20] Darby-Dowman, K., Lucas, C., and Mitra, G., Computer Assisted Modelling
of Linear, Integer and Separable Programming Problems. Technical Report
TR/08/84, Department of Mathematics, Brunei University, Uxbridge,
England, 1984.

113

U.S. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.
NBSIR 85-3125

4. TITLE AND SUBTITLE

2. Performing Organ. Report No. . Publication uate

April 1985

Problem and Data Specification for Linear Programs

5. AUTHOR(S)
Christoph Witzgall and Marjorie McClain

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

Interagency Agreement
DOT -AT-200Z3

8 . Type of Report & Period Covered

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP)

Methods Division, Office of Methods and Support
U.S. Department of Transportation
Urban Mass Transportation Administration
400 7th Street S.W. Washington, D.C. 20509

10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant in formation. If document includes a si gn i fi cant
bi bliography or literature survey, mention it here)

A language for specifying linear programs is proposed. The specification
language is designed so as to enable the user to define the input for a

particular linear program in terms of a given database of multi-dimensional
tables. The specification language is formulated within the general framework
of the UTPS system developed by the U.S. Department of Transportation. The
structure of the underlying database system is described, and instructions
for the writing of reports, again within the framework of the UTPS system, are
discussed. Generation of the matrix for the specified linear program can be
achieved during a single sequential pass through the database.

12.

KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)
database; input generation; lexical analysis; lexical synthesis; linear programming;
modeling language; matrix generator; modeling language; multidimensional table;
optimization; problem specification; report generator; software engineering

13. AVAILABILITY

(_T£! Uni imited

j

For Official Distribution.

14. NO. OF
PRINTED PAGES

Do Not Release to NTIS 119

_ Order From SuDerintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

I VI Order From National Technical Information Service (NTIS), Springfield, VA. 22161

$13.00

USCOMM-OC 6043-P80

