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Certain commercial equipment, instruments, or materials are

identified in this paper in order to adequately specify the

experimental procedure. Such i dent i f i cati on does not imply

recommendation or endorsement by the National Bureau of

Standards, nor does it imply that the materials or equipment

identified are necessarily the best available for the purpose.
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1.0 Introduction

The techniques for image analysis depend on the distribution

of the "grey levels" or pixel intensity levels of a picture

displayed on an image processor. Combinatorial, statistical or

Fourier techniques can be used to find picture boundaries,

adjust contrast or modify the picture in frequency space. An

entirely different approach to picture enhancement is to look at

the picture from a geometric point of view and assume that the

intensity value at a pixel represents a surface height, where

brighter pixel intensities represent higher points and lower

pixel intensities represent lower points. Then, if a viewer

looks at the picture from various perspectives, the geometric

image displayed can yield interesting information from a visual

perspective. This was the background motivation for writing this

program. The simulated solid generated by the program on the

display monitor is sometimes called a pseudosolid since a nonreal

three-dimensional effect can be used to enhance a two-dimensional

picture such as a medical x-ray.

The program, documented in this manual, was modeled on an

earlier program written by Dr, Roger L. Nagel of Lehigh

University and discussed in Weber, Nagel C71. This program is a

redesign of Dr. Nagel's original code that takes advantage of the

image processor features available to the author. Both programs

implem.ent an algorithm that generates a three dimensional solid

image on the viewer's screen by using a technique that follows

light rays from a light source to the reflecting surface and then
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to the viewer’s eyes. This type o-f an algorithm is referred to

as a ray tracing algorithm, see Goldstein, Nagel C53.

A large body of literature exists (see Foley and Van Dam

C4I1) describing computational techniques to display the images of

three dimensional objects by a) el i mi nat i ng • hi dden surfaces, b>

applying shading or c) casting shadows. Most of the techniques

require initial processing of the displayed scene. This usually

requires that the program user describe in fairly great detail

the geometric structure of the scene in such a manner that the

objects in the scene can be decomposed into adjoining polygons.

These techniques, however, become very unwieldy when the scene

displayed is very rough, such as a very mountainous area. It is

this situation that a user encounters when displaying the texture

of machined metal parts. For this reason a poi nt-by-poi nt

shadowing technique was used, see Appel Cl 3.

The problem addressed by the progam documented here is as

follows: Given a randomly rough surface, such as a machined

metal surface, we assume that the topography of that surface has

been digitized in such a way that the digital scale is

proportional to the surface height. The specific technique used

to acquire surface topographic maps is briefly described in

Appendix C. Furthermore, we assume that the digitized points are

distributed in such a way that they form an evenly spaced square

grid. Each record in the digitized data file represents an

amplitude trace across the surface with data values taken at,

say, N evenly spaced points. There are N records in the data

file. We wish to first simulate the illumination of the surface

2



in order to highlight the rough topography and then to view the

sur-face -from various orientations.

This problem lends itsel-f to the ray tracing technique. It

does not require preprocessing o-f the data -file in order to

establish connectivity relations since they are inherent in the

data -file and the mode o-f acquisition. Ray tracing is a

procedure that defines the light intensity at every point on the

monitor screen by tracking a ray of light from the light source

to the rough surface and then to the monitor as if it were a

viewing window.

The ray tracing algorithm used in this program is a two-pass

algorithm, see Crow C2], in the sense that the surface data file

is processed twice, first to generate shadows and then to

construct a solid projection of the illuminated surface. In the

first pass the object surface is divided into two classes of

areas, those that are shadowed and those that are not. The

result is displayed on the user monitor in a form called a

shadowgraph. The effect shown simulates a viewer looking down

on a scene with light illuminating the surface from some

specified direction. In the second pass of the algorithm the

hidden surfaces relative to the viewer are removed and the

resulting image is projected onto a window that represents the

monitor screen. The advantage of this two-pass approach is that

the shadow generation is separated from the picture generation

process. This allows the viewer to look at the surface from

various angles without changing the light source.

This manual approaches the documentation from the point of

view of refinement in the sense that as one proceeds through this



document, one begins with a global picture as a user in Section

2. This section also includes an interactive scenario. Next,

-from the point o-f view ot the analyst, the document discusses in

more detail the analytic geometry and algorithms that are

implemented in the programs. This is contained in Sections 3 and

4, respectively. Section 5 includes listings o-f the main program

and subroutines along with their -flow charts. Finally, the

appendices broadly describe 1) the general architecture of the

image processor on which the algorithm was implemented, 2) the

image processor specific and host system subroutine calls

required and 3) the 3-D stylus data profilometer used to acquire

the data.

The author feels strongly that a documentation of this

nature serves a useful purpose. A fundamental myth must be

abandoned by those who think that using a standard language on

the host computer makes transportability possible. It is true

that, since the algorithm was implemented in FORTRAN, the program

could be transferred by tape and most likely compiled on another

system. Any connection with portability stops there. The

architecture and controlling software for image processors are

all different. No standards for interfacing host driven software

and image processor hardware exist. The implementation of any

algorithm becomes an ad hoc exercise in communicating a

mathemati cal i y described algorithm, by way of a possibly standard

language, through specialized non-standard control programs to a

unique device. Although an algorithm may be stated in a general

form, the implementation of that algorithm on a specific device

4



or combination of devices is usually a nontrivial undertaking.

The author feels that it is worthwhile for those both familiar

and unfamiliar with implementing graphics algorithms to see how a

general algorithm is tailored to a particular system- The author

hopes that the detailed discussion of the algorithm will

encourage others to modify this program or rewrite it as

necessary in order to implement the algorithm on another system.

Dunham C31 has also voiced similar sentiments.
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2.0 Program Operation

2.1 Algorithm Overview

Since the nature of the process used to generate a solid is

accomplished in two applications of the same essential algorithm

the program was structured in such a manner that the user can run

it from the beginning to the final solid generation or terminate

it after creating a shadowgraph. In either case the program

assumes that a surface topographic image is available as a

sequential file with 512 records of 512 bytes each. Furthermore,

the program assumes that the image processor being used is

enabled and that the display monitor is on.

The topography of a surface can be interpreted as a grid of

impulse spikes with amplitudes ranging from 0 to 255. This image

is limited by the hardware only. Each spike is referred to as a

pixel or picture element. It is displayed on the monitor as a

dot, whose intensity is controlled by the values O to 255. 0 is

the lowest intensity (black) and 255 is the highest (bright

white). The entire topography when stored in the image processor

is specified by 512 x 512 dots. The intensity of the dots

represent the digitized amplitude of the surface at that point.

The higher the point, the higher the intensity. The lower the

surface point, the lower the intensity. For a discussion of the

digital data acquisition techniques used to acquire surface

topographies, the reader is referred to the Appendix C.

If a shadowgraph of an image is not available then one must

be created. This is done on the first pass. Once the program

initializes the image processor, it asks the user for the file

6



Figure 1

Conceptual Picture of a

Topographic Map
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name of the topographic image. The program displays the image on

the graphics monitor and asks the user for the azimuth and

elevation angles of the desired light source as shown in Figure

1. A typical surface is shown in Figure 2. This is what would

be displayed on the monitor. The surface in Figure 2 represents

approximately 1mm x 1mm of stainless steel with a roughness

height of about 1 wm.

In the geometric model used for this program the image is

assumed to form a solid within a box (called the bounding box) of

sides 511 units in length (512 grid points per side) and height

255 units (256 grid points in height). The 256 height grid points

represent the intensity levels for the image processor. The

origin of the right hand coordinate system, referred to as the

world coordinate system, lies at point (0,0,0) of the box in

Figure 3. The origin is sometimes referred to as O. Referring

to Figure 3, consider the vector DA. The azimuth angle, A2, of

the vector DA is measured from the positive X axis in a

counterclockwise manner. The elevation, EL, is measured from the

XY-plane vertically. In Figure 3, if the point A were taken as

<511, 511, 255), the angle, EL, would be approximately 19.5

degrees. For most cases the elevation of the light source used

is usually greater than 20 degrees and less than 90 degrees.

The idea behind the general algorithm used in this program

is relatively simple. Every line in the Euclidean 3--space can be

represented by an equation that associates the Z value on the

line with a pair <X,Y) on the XY-plane. These (X,Y) values fall

on a line that is the projection of the line in space onto the

XY—plane. This line is called the scan line. As one steps along

8



X

Axis

Origin (0,0)
(0,511)

Y Axis

(511,0)
(511,511)

Figure 2

A Surface Topographic Image with

Grey Level Bar
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Figure 3

Bounding Box with Azimuth
and Elevation Shown
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the scan line, one can always -find the associated value Z in

space. There-fore, the line in space can be '’traced" by

sequentially selecting (X,Y) points along the scan line.

In order to trace rays by computer from a source to the

topographic surface some bound must be put on the set of all rays

in order to establish program limits for those rays that will be

traced to the surface. Consider Figure 4. Assume that the light

source lies at infinity so that all light rays are parallel. Let

the azimuth and elevation of the light source be A2 and EL,

respectively, as already shown in Figure 3. Notice that the orsly

possible rays that could impinge on the surface lie between the

two planes and These are vertical planes intersecting the

XY—plane at the lines L^^, L^, where Lj^ and i

^
are lines through

the points EX i and EX2 in Figure 4. These points will be called

Siitreme BSiUtS* and are parallel to the projection of the
“4

vector DA onto the XY-plane. This projection is the line from

(0,0,0) to B in Figure 3. Once the azimuth and elevation are

given, the program can lock up the extreme paints from a

prespecified table. These are then used as bounds on where the

program begins and ends.

Once the extreme points for the image have been identified

ray tracing from the light source to the surface can begin. The

procedure traces rays beginning at extreme point EXl up planes

parallel to P. and P_ moving incrementally to a new plane P after

each cycle of the shadowgraph portion of the algorithm is

completed. The program stops when extreme point EX2 has been

encountered. On each plane P, rays are traced beginning with the



Z Axis

Figure 4

Extreme and Current Planes
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Index Plane for
Light Rays

Shadowed Pixels

Figure 5

Geometry for the
Shadowgraph



one passing through the ENTRY point in Figure 4 and terminating

with the one through the EXIT point.

In each plane P parallel to and P^, rays are traced -from

the light source to a point on the surface. Referring to Figure

5, if the height of a pixel falls below a ray then nothing is

entered into the shadowgraph map, which is displayed as the host

program creates it? that is, a black pixel is displayed. If the

height of the pixel is greater than or equal to the ray height,

the original pixel value is written to the shadowgraph. The set

of all points whose values fail below all rays traced are those

in shadow. The shadowgraph for a sample calculation, with AZ=45

and EL=75, is given in Figure 6. The black areas of the picture

are the points of the original image that fall within the shadow.

The shadowgraph then is a second image that, along with the

original image, is used to shadow the solid image in the second

part of the program. Once the shadowgraph has been generated the

user may save the image, if desired, before proceeding to

generate a solid.

In generating a solid the user can designate a portion of

the shadowgraph for solid generation by using the interactive

trackball and function buttons of the image processor. The

trackball is used to move the screen cursor in order to specify

vertices of a rectangle called a region of interest. The user

then enters the azimuth angle and elevation angle for the viewer

rays and a percentage value used to reduce the intensity of those

pixels designated for shadowing. From experience a reasonable

number is 45^.
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Figure 6

Sample Shadowgraph



From the azimuth and elevation angles the viewer -frame of

reference is generated. The viewer -frame of reference,

“ -4
_ ^

represented by unit vectors K, Ul, and KxW in Figure 7, is an

orthonormal set of vectors used to trace points along rays from

the viewer's eyes to the surface and to index points on the

viewing screen. The screen can be considered a viewport opening

in an extended plane in front of the viewer called the ylewglane

Given the selected rectangular area (region of interest) of

the shadowgraph and the viewer coordinate system, the extreme

points are selected, as in the shadowgraph pass of the algorithm
"4

The viewing screen is indexed by the two coordinate vectors, K
“4 -4-4 -4 "4

and KxW. K points vertically down the screen and KxW points to
“4

the user's right. The program computes the multiples of the KxW

vector that project down to the extreme points. These multiples

are added to the projection of the center of the region of

interest onto the viewplane. They are used to index planes PI,

P2 as in Figure 4. These planes bound the computations.

For the sake of terminology, vertical lines on the screen

are referred to as col^ymns and horizontal lines as rows. The

program starts at the column containing the left most projection

of an extreme point and then moves to the next column. In each

column it processes pixels from the bottom of the screen to the

top. The column it works on is called the current columQ. The

program first finds the initial viewscreen row for that current

column. Then the row is selected that is the projection of the

entry point of the viewing rays into the solid, see Figure 4.

Since each pixel falls on a screen row, that row is referred to

as the current row.
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Figure 7

Viewplane Coordinate
System
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Intensity Levels Displayed

Viewscreen Monitor

Figure 8

Correspondence
of Displayed Intensities to

Surface Amplitude Values
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Figure 9

Projected Image of a

Surface Sample
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For the sake of a mental picture, one can think of image

pixels as spikes sitting above the base X,Y-plane (Figure 1).

The height of each spike represents the intensity value of the

image pixel. From the point of view of a spectator looking at

the solid from an angle, more than just the top of the spike is

seen, as would be the case if one were looking directly down on

the image. The first ray, selected for processing, is that which

encounters the base point of a pixel sitting at the boundary of

the solid area. The program then traces rays through each pixel

in the current column until it hits the point representing the

top of the boundary pixel. The intensity of the points displayed

represent the height of the viewing ray above the XY—plane when

it encounters the spike representing the pixel, see Figure 8,

This is why at the boundary the intensities in Figure 9 rise in

value from 0 to the full value of the pixel. If the pixel lies

in a shadow, e.g. the darker section of the projected surface in

Figure 9, all of the values displayed for that spike are reduced

by the selected percentage. The right hand side of Figure 9

shows the computer processing a column vertically.

nee a ray misses the top of a pixel in a column it is

traced along until it hits another pixel spike. The height of

the ray at that point is then written to the screen. The process

continues up the column until a ray leaves the area selected.

This is shown in Figure 8.

After a column has been processed from bottom to top the

program moves to the next column on the right and starts at the

bottom again. This continues until that column is reached that

20



contains the projection o-f the second extreme point. This is the

last col Limn processed.

2.2 An Interactive Session

In this section the user is introduced to the interactive

dialogue used by the program. Be-fore beginning, the user is

assumed to have read privileges tor the desired image data tile,

which consists ot 512 logical records, each consisting ot 512

contiguous bytes.

Assume then that the user has signed on and veritied access

to the required data tile and the host system has returned the

prompt character. On the host system used by the author, this is

an *, The user enters SOLID followed by a carriage return. It would

look like this

*SOLID<CR>

where <CR> stands tor the non—printing character tor carriage

return. This calls a user created command tile that loads the

program task, assigns the appropriate peripheral devices to the

job, and then starts the job.

The program first prints

IF YOU WISH TO SHADOW A PICTURE TYPE 0.

IF YOU WISH TO CREATE A PSE'JDO-SOLID TYPE 1.

***NDTE: TO PSEUDO-SOLID AN IMAGE A SHADOWGRAPH
MUST HAVE PREVIOUSLY BEEN CREATED.

followed by a program prompt character. For the author’s system

this is a > character. The program user must enter something at

this point.

Assume that a shadowgraph does not exist. Then the Liser

types a O and a carriage return. It would look like this

21



where 0 represents the zero

>0<CR>

The program then prints

***********************•«-**«•
* PSEUDO-SOLID *
* PHASE 1 *
* SHADOW GRAPH *
*****-)t*********************

THIS PORTION OF THE PSEUDO-SOLID GENERATION
SIMULATES THE EFFECT OF A DISTANT SOURCE OF LIGHT
SHINING ON THE SURFACE. THOSE AREAS OF THE SURFACE
THAT WOULD BE SHADED ARE DARKENED. NO THREE-
DIMENSIONAL EFFECT IS CREATED IN THIS PART.

THE MAIN PICTURE IS WRITTEN TO CHANNEL 1

AND THE SHADOW GRAPH IS GENERATED ON CHANNEL 2.

This is -followed by

ENTER NAME OF IMAGE FILE YOU WISH TRANSFERRED
MAX OF 16 CHAR.

Assume -for the sake o-f this example that an image resides on a

disk with disk name IMG: and the image file is SURFhCE.DAT. Then

after the > the input would look like

> IMG ; SURFACE . DAT<CR >

At this time the host would transfer the image to refresh memory

1 of the image processor. For a description of the general

architecture of the image processor used, see Appendix 1. After the

picture has been transferred, the host returns the message

IF THE PICTURE HAS BEEN PROPERLY GENERATED,
TYPE 1, OTHERWISE 0 TO GET ANOTHER PICTURE.

If the user types 0, the host asks for the file name again. If 1

is entered as in

>1<CR>

the program next asks for the azimuth and elevation angles of the

light source. See Figures 1 and 4.

22



ENTER AZIMUTH ANGLE AND ELEVATION ANGLE
IN DEGREES FOR THE LIGHT SOURCE.
AZIMUTH ANGLE LIMITS ARE O TO 360
ELEVATION ANGLE LIMITS ARE O TO 90
ENTER AS AZ , EL.
>

Suppose, -for example, that the user would like to shadow the

surface with an azimuth of 45 degrees and elevation of 75

degrees, then the input sequence would look like

>45. ,75.<CR>

If the user enters any value outside of the limit, the message

and prompt will appear again. If the user enters the first value

and misses the second the host ordinarily will return with the

prompt >, expecting the second value.

As soon as these data values have been entered the host and

image processor start generating the shadowgraph. In the case

above, the user would see tracing beginning on the monitor at the

left hand lower corner and proceed along the diagonals beginning

at the bottom of the right hand side and tracing to the left or

top side at a 45 degree angle. Figure 6 is the resulting

shadowgraph for Figure 2.

After the shadowgraph has been generated the user is given

an option to save the shadowgraph with the message

IF YOU NISH TO SAVE THIS SHADOWGRAPH TYPE 1.

OTHERWISE O.

If the user enters 1 , such as

>1<CR>

the program returns the message

ENTER THE NAME OF THE FILE YOU WISH TO CREATE.
MAX OF 16 CHARACTERS.



to which the user would supply a file name with extension .SHW, to

designate a shadowgraph -file, in the form

> IMG : SURFACE . SHW< CR >

The program then enters the second pass of the algorithm.

In this part a projection of a selected portion of the image is

generated on the viewplane. If at the beginning of the program

the user had selected to bypass the shadowgraph generation the

following message is written. It is also written after the

shadowgraph is generated,

IF THE ORIGINAL PICTURE IS IN CHANNEL 1 AND
ITS SHADOWGRAPH IS IN CHANNEL 2 THEN TYPE 1

OTHERWISE TYPE 0 TO TRANSFER THE PICTURES.
>

If a shadowgraph previously exists and the user wishes to

generate a solid image projection then enter O in the form

>0<CR>

If O has been selected then the following is printed

***->«•**** LOADING ORIGINAL IMAGE ********

followed by

ENTER NAME OF IMAGE FILE YOU WISH TRANSFERRED,
MAX OF 16 CHAR.

At this point the user types the image data file name and the

file is transferred to the image processor and displayed on the

monitor. The program then prints the message

IF THE PICTURE HAS BEEN PROPERLY GENERATED,
TYPE 1, OTHERWISE O TO GET ANOTHER PICTURE.
y

If a 1 is typed, this message is followed by

******** LOADING THE SHADOWGRAPH ********

followed by

24



ENTER THE NAME OF IMAGE FILE YOU WISH TRANSFERRED,
MAX OF 16 CHAR.
>

Hers the user must enter the shadowgraph -file name -for the image

displayed on the monitor. A-fter the image is transferred it

remains visible on the monitor and the message

IF THE SHADOWGRAPH HAS BEEN PROPERLY GENERATED,
TYPE 1, OTHERWISE O TO GET ANOTHER SHADOWGRAPH.

appears on the user console. If the user types 1 then the

program moves to an interactive mode in which the user must

identify a rectangular region of interest on the shadowgraph that

will be used to project a solid onto the display monitor. The

user interacts with the image processor by way of a trackball

with function buttons. For an illustration of the system

configuration see Figure 10. The first message printed on the

user console is

******** IDENTIFY THE REGION FOR PSEUDO-SOLID
******>(* ENHANCEMENT BY USING THE TRACKBALL.

THE USER MUST IDENTIFY TWO DIAMETRICALLY OPPOSITE
CORNERS OF A RECTANGLE USING THE TRACKBALL BUTTONS.
MOVE THE CURSOR WITH THE TRACKBALL TO THE FIRST
CORNER OF THE RECTANGLE OF INTEREST. PUSH BUTTON A.

The user then selects the upper left corner of the desired

rectangle with the cursor by way of the trackball. After

selecting the point the user presses button A on the trackball

housing. Once the processor has selected the point the host

computer displays the message

NOW MOVE THE CURSOR TO THE DIAMETRICALLY OPPOSITE
CORNER OF THE RECTANGLE OF INTEREST. PUSH BUTTON A.

After moving the cursor by way of the trackball to the

diametrically opposite corner of the desired rectangle t.he user
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Figure 10

System Configuration
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again pushes button A. The image processor then outlines the

rectangle selected by drawing boundary lines and places a plus

sign in the center to indicate the central point that the viewer

will be seeing when the solid is projected. I-f the user has made

an error in selecting the rectangle and wishes to select a new

rectangle the processor allows this with the message

IF YOU WISH TO CHANGE YOUR HIND ON THE
RECTANGLE OF INTEREST PUSH BUTTON B, OTHERWISE
PUSH BUTTON A

Assuming that the user presses button A, the host then prints the

message

ENTER AZIMUTH ANGLE AND ELEVATION ANGLE
IN DEGREES FOR THE VIEWER. AZIMUTH ANGLE
LIMITS ARE 0 TO 360. ELEVATION ANGLE LIMITS
ARE 0 TO 90.
ENTER AS AZ, EL.
>

I-f a user wishes to view the solid -from an azimuth o-f 315

degrees and elevation angle o-f 75 degrees, the following would be

entered

>315. ,75.<CR>

The host computer then returns with

ENTER THE PERCENT REDUCTION IN INTENSITY DESIRED
FOR SHADOWING. ENTER FROM O. TO 100.

Since the viewer will in general look at a surface from a

direction other than that of the light source, some of the points

seen would normally fall into shadow. From ordinary experience

areas that are shadowed, say by trees or houses, are still

visible but with reduced intensity. The reduced intensity comes

from any diffuse lighting of the scene. In order to simulate

this effect the user can enter a percentage value that will be
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used by the program to reduce the intensity of pixels seen by the

viewer but are cast into shadow. From user experience percentage

values of 40 to 45 percent reduction give an adequate shadow

simulation. Therefore -for a 45 percent reduction the user would

enter

>45.<CR>

The program immediately starts generating the solid projected

image moving from left to right on the screen tracing vertically

from bottom to top. Some sample solids are shown in Figures 11

and 12. These pictures represent two views of the same region of

interest of the surface in Figure 2. In particular, the region

of interest is a portion. of the upper right quadrant of the

picture.

At the end of the solid generation the program prints

IF YOU WISH TO SAVE THE PSEUDOSOLID IMAGE TYPE
1, OTHERWISE 0
>

If the user types 1 then the message

ENTER THE NAME OF THE FILE YOU WISH TO CREATE,
MAX OF 16 CHARACTERS.

appears after which the user types the file name desired followed

by the extension .SOL to indicate that this is a solid image, as

for example, IMG: SURFACE- SOL. This is fallowed by a carriage

return. The following message appears

IF YOU WISH TO GENERATE ANOTHER SOLID TYPE 1,
OTHERWISE O
y

If the user types O the program terminates, and if the user types

1 the same shadowgraph will be used and the processor prints the

next message to the user console

28



IF YOU WANT THE SAME REG IQN-OF-INTEREST TYPE 1,

OTHERWISE O
>

I-f the user types 1, then the same rectangle as earlier outlined

would be used but the user can look at it trom a di-f-ferent

viewpoint by selecting a new viewing azimuth and elevation. It a

O is entered, the program returns to the shadowgraph and allows

the user to select a new rectangle tor solid projection.

Processing then continues as betore.
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Figure 11

Solid Projection of a Portion

of ^he Upper Right Corner of Figure 2
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Figure 12

Figure 11 Rotated 180 Degrees
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3.0
Three-Di mensi onal Geometric Considerations

In this section, the necessary vector geometry techniques

will be described. The mathematical tools developed will be used

in the graphics algorithms to locate points in three-dimensional

space in such a way that they can be uniquely traced to points on

a viewer's screen. This requires defining special coordinate

systems and linking them properly.

3.1 World Coordinate System

The application or user oriented coordinates are generally

referred to as world coordinates. The world coordinate system in

this application will be a right-handed three-dimensional

Cartesian coordinate system. For a surface image the world

coordinate system will be placed so that if a person were looking

straight down on the top of the surface as in Figure 2 the origin

would appear in the upper left hand corner. The positive world

coordinate X-axis would then point vertically downwards and the

positive world-coordinate Y-axis would point horizontally to the

right. The positive world-coordinate Z-axis would point directly

at the viewer. See Figure 13. The Z-axis units represent

digitized intensity levels of 0-255, lower values represent low

intensities, the XY-coordi nate ranges are 0-511.

3.2 Device Coordinate Space

The user of image processors must be aware of their device's

specific coordinate system. Thus, for example, in the image

processor used the coordinate system used on the device reverses



(511,

Z Axis

Figure 13

World Coordinate System
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the X and Y axes so that the device X-axis is the world

coordinate Y-axis and the device Y-axis is the world coordinate

X-axis. This con-fusion is overcome sometimes by calling points

along the world coordinate Y-axis sample indices and points along

the world coordinate X—axis as traverse indices. This device

system comes about because the image processor per-forms a raster

scan -from the left to right and top down of the refresh memory,

the same way a television screen picture is scanned. This device

coordinate system is used in many graphics systems and can lead

to some confusion. We shall attempt to use the world coordinate

system defined throughout and note the differences when

explaining the software references.

3.3 Viewer Coordinate System

The general approach to generating a three-dimensional image

used in this program is to define a portion of three-dimensional

space and project it onto the viewing screen. The viewing screen

can be thought of as a window to the world. A two-dimensional

coordinate system can be constructed on this window. The

coordinate system that identifies points on this window will be

called the V-H coordinate system. With the V-H system defined on

the viewpiane, specifying the minimum and maximum V—H values

defines the viewing window in the viewpiane. The viewpiane is

orthogonal to the viev^ing rays to the surface. Viewing rays can

be thought of as lines along which viewers sight as they look at

an object. The portion of the world projected onto the window is

called the vj^ew Ygl_yme. In the present case, since orthogonal



Figure 14

Light Ray Coordinates

35



projections are being used, the view volume is an infinite

parallelepiped with sides parallel to the viewing rays.

3.4 Indexing the Light and Viewing Rays

Assume that the light source is a point at infinity and all

rays impinging on the surface are parallel. See Figure 14 for an

illustration. Let the direction of the light source be given by

two angles, an azimuth and an elevation. The azimuth AZ is

measured in a positive sense beginning at the positive X axis.

It ranges from O to 360 degrees. The elevation angle EL of the

light source is measured upwards from the XY—plane and falls

between O and 90 degrees.

Now set up two unit vectors:

1) W - This unit vector paints along the light rays and toward
the origin.

2) K ~ This unit vector is orthogonal to W and points downwards
across a plane made of light rays.

We use the same terminology as that used for the light source

because the algorithm used is essentially the same for the light

and viewing rays. Given an azimuth and an elevation for the

light source one can think of a plane formed by rotating the X2~

plane by the azimuth angle. Now fill up this plane with light

rays that point in the direction of the W—vector. Consider a

unit vector in this plane, called K, orthogonal to W. K is then

-f

orthogonal to all of the light rays pointing in the direction W.

Each point on a fixed light ray in the plane can be indexed from

a fixed point on the light ray by adding some multiple of the

vector W. Each light ray can be indexed from a fixed point on

the plane by adding some multiple of K. Finally, all light rays

36



in the direction W -fall on some plane parallel to the rotated

“f “
plane. If one takes the cross product of K and W one gets a

vector that can be used to access any plane parallel to the

rotated plane, as in Figure 14.

This same procedure can be used to define viewing rays. In

“4 -4 -+

this latter case, K and KxW index points on the viewing plane.

This is orthogonal to the viewing rays, indexed by W.

3.5 Vector Representations of the Ray Vector System

Let CE be the cosine of the elevation angle, CA the cosine

of the azimuth, SE the sine of the elevation angle, and SA the

•4 -+ “4 +
sine of the azimuth angle. Then W, K, and KxW can be represented

in vector triple form as

W = (-CE*CA, -CE*SA, -SE)

K = <CA*SE, SA*SE, -CE)

KxW = (-SA, CA, O)

where is multiplication. These are developed as follows:

1) Refer to Figure 15 for W. From simple formulas the

distance from A to B is -SE since W has unit length.

The magnitude of the length from A to O is CE. Then the

length from D to A is —CE*SA and from C to A is -CE*CA. The

components of W are then (-CE*CA, -CE*SA, -SE)

.

4
Note that W as constructed is a unit vector since

<-CE*CA) ^+(-CE*SA) ^+(-SE) ^ = CE^ (CA^+SA^) +SE^

= CE"'+SE^

= 1 .
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Z Axis

Coordinate Representation
for W Vector
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L,

Figure 16

Coordinate Representation
for K Vector
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2) The development -For K is similar. See Figure 16. The

distance -from A to D = —sin(90°—EL) = —CE. The magnitude

o-f the distance -from 0 to A is cos(90°—EL) = sinvEL) = SE.

Then the X coordinate of K is CA*SE and the Y coordinate is

SA*SE. Again K as specified is a unit vector since

(CA*SE) ^+(SA*SE)^+("CE)^ = SE^ (CA^+SA^) +CE^

2 2= BE +CE

= 1 .

3) The definition of the standard cross product of two vectors

yi el ds

KxW = (-SA, CA, O) .

3.6 The Relation Between World Coordinates and Ray Coordinates

Any point in the three-dimensional world coordinate system

can be represented uniquely by two orthonormal systems of

vectors. The first system is the ordinary system of coordinates

given by

( ^
] - ( ^

1

/ 0 '

X = 0
,

Y =
1

1 , Z = 0
1 0 ; \ 0 J 1 1 /

and the other is gi

f
""

Given a point
|

Y
I Z

can write uniquely.

ven

i n

as

by the orthonormal system W, K, KxW.

the standard coordinate system, then

long as the origins are identified.

one
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/ X

Y
2

= RW + VK + H<KxW)

where (R, V, H) are the coordinates o-f I Y
I 2

in the W, K, Kx

I
'

system. Given a point Y

I 2

in the standard coordinate system

one can always compute R, V, H by the simple inner product

rel at i ons

/
{

""
1R -

, w = X*W(1) + Y*W(2)
1 1 2 > J

i mpl emented in subroutine BETR,

X
]

-+

V = Y = X*K(1) + Y*K(2) -t- Z*K(3) ,

2 j j

'

implemented in subroutine GETV, and

H
fi

r X
^

\

Y , KxW
1’

i 2 >

X*( (KxUJ) (1) ) + Y*((KxW>(2)) ,

implemented in subroutine GETH. For the application o-f R, V,

H, see Figures 17-20.

and
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Figure 17

Indexing Along Rays

I

!

II

I

I

I
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Ray Line

Figure 18

Indexing Different
Rays
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Z Axis

k

Indexing Different
Ray Planes
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Indexing a Point
from Another

A



3.7 Projection o-f World Points to the Viewing Window

The coordinates for the viewing space are handled the same

as for the light casting space. Points on a viewplane are

addressed by the coordinates V and H since the unit vectors K,

-f

KxW generate a viewing surface. Points along a viewing ray are

addressed by the coordinate R.

For purposes of simplifying, the viewplane is assumed to be

placed so that given a point on the screen (V,H), then a

corresponding value in world space, can be found by the formula

/ X ( X ^

Y° + <V - V )K + <H - H ) (K K W) 1

z J ,

z°
{ o J

O O
1

i' X

where V^, is the viewplane projection of
\ r

. Conversely,

o

if a point
[

Y
\ Z

in world coordinates is specified, then a

corresponding row or column in the viewplane can be computed by

noting that, since K is a unit vector.

(V - V ) K
I o

K
X

Y
2

- X
- y‘

,o

or

V = V + (X - X ) . K(l) -s- (Y - Y ) • K(2)
O Q

iZ - 1 ) K<3)
o
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This -formula is implemented in the subroutine GETROW. A similar

argument gets the column as

H = H + (X - X ) • ((K X W)(l)) + (Y - Y )
o o o

+ (Z “ Z ) • ( CK X W) (3) ) .

o

( (K X W) (2) )

This -formula is not needed in the program but is given hers for

the sake of completeness.

3.8 Conversion from World Coordinates to Light or Viewing
Coordi nates

(
^

Given a point
|
Y

I 2 .

be uniquely represented

si nee

in the world coordinates, then it can

by R, V and H in the ray coordinates

/ X

Y
Z .

RW + VK + H(K X W)

implies, by taking inner products, that

R
X

Y
Z

W ^ XW<1) + YW(2) -4- ZW(3)

V
X

Y
Z

K XK ( 1) YK(2) ZK(3)
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H =
X '

Y
Z

(K X W) = X((K X W)(l)) + Y<(K X W) (2)

)

These -formulas have been implemented in the subroutines GETR,

GETV, GETH, respectively.

3.9 Conversion o-f a Viewplane Point to a world Coordinate Point

Given a point (V, H) on the viewplane, then

I
X

Y
Z

Y
1
°

\ o /

-t- (V - V )K + (H - H ) (K X W)
o o

X

associates the I Y
\ Z

value with that point. This -formula is

implemented in subroutine GETXYZ.

3.10 Computing the Height Along a Ray

Any point has an equivalent representati on in the two
.-V

coordinate systems X, Y, 2 and W, K, KxW. This equivalence can

be represented by

X • X + Y • Y + Z • Z = R W -4- V K -4- H • (K; X W)

Then, given X, Y and a ray index V , one can compute

Z(Z K) = V - X(X • K) - Y(Y • K)
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K(3) ^ V - X K(l) “ Y K;(2)

and finally

Z ^ (1/K(3>) • CV ~ X K<1) - Y

See Table 3.1.

• K<2))
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Table 3.

1

VECTOR REPRESENTATIONS

W(l) = X • W = “CE^CA

K ( 1 ) = X
-4

K CA*SE

(KxW) (1) = X (K K W) = -SA

-4

W(2) = Y • W = -CE*SA

K(2) = Y K = SA*SE

-4 -+

(KkW) (2) = Y (K X W) = CA

W(3) = Z W = -SE

K(3) = Z • K = -CE

(KkW) (3) = Z
-i -i

(K X W) = O
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4.0 Discussion o-f Algorithms

This section covers the broad details o-f the major

algorithms used in this program. The two main algorithms are the

shadow graph generation algorithm and the solid projection

algorithm. These are supported by two subsidiary algorithms.

The first is the entry point selection algorithm which has three

components: (1) A case selection look up table, (2) extreme

point selection table, and (3) the entry point selection

algorithm itself. The second major subsidiary algorithm is the

line drawing algorithm. This last algorithm is sometimes

referred to in the graphics literature as a scan conversion

al gor i thm.

4. 1 Shadowgraph Algorithm

This section describes in step form the major tasks

performed by the shadowgraph algorithm as it is implemented in

the program.

Step Transfer the data image fils from the disk to the first

refresh memory of the image processor.

Step 2: Initialize refresh memory 2 of the image processor by

blanking it so that the shadowgraph can be created there. This

leaves the monitor image all black.

Step 3: Interactively read in the azimuth and elevation angles

for the light source.
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Ste^ 4: Compute the orthonormal coordinate system W, K, K x W

for the light rays.

Step 5: From the signs of the W-vector components, look up the

current case number.

Step 6: Identify the entire image for shadowing. This is done

by specifying the picture vertices as the refresh memory limits.

Step 7: For the current case number given in Step 5, determine

the extreme points of the image. See Figure 21 for some

examples.

Step S: Set the first extreme point as the first point on the

picture plane that a projection of the light rays onto the plane

contacts.

Step 9: Since this point is not in shadow, transfer its pixel

value from refresh memory 1 to refresh memory 2 of the image

processor

.

Step 1,0: For the current case number get the next boundary or

entry point of the image in refresh memory 1 at which a projected

W-vector enters the picture. Set this point as (X,Y). If (X,Y)

is the second extreme point, go to step 20.

Step There is no shadowing at this boundary point,

since the light ray encounters this point. Transfer the picture

intensity value from refresh memory 1 of the image processor to

refresh memory 2.
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These three sides are
not "seen" by rays
in the direction

(W(1),W(2))

These two sides are
not "seen" by the
rays in the
direction (W(1),W(2))

(W(1),W(2))

Example 1 Example 2

Figure 21

Extreme Point Selection
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Steg 12: Let PICV be the picture value at this boundary point,

i.e., the current (X,Y).

Step 13: Since there is a unique plane orthogonal to the XY-

plane of the image in which the W-vector lies, compute the unique

multiple, V, of the K vector, in that plane, which identifies a

light ray lying in that plane and passing through the point

(X,Y, PICV).

Step 14: With the line drawing algorithm generate the next (X,Y)

pixel index along the projection of the W-vector on the image

plane. If this point is outside of the picture rectangle, then

get the next ray plane by going back to step 10.

Step 15: Compute the height of the current ray, indexed by V,

and call this value ZT.

Step 16: Get the image pixel value, PICV, at the point (X,Y).

Step 17: If ZT is greater that the image value, PICV, at the

point (X,Y), then the pixel is not visible to this ray. Do not

write anything at this pixel in refresh memory 2. Leave the

black background there. Go back to step 14.

Step 18: If ZT equals the pixel value at the point (X,Y), then

write the image value PICV at (X,Y> in refresh memory 1 to the

point (X,Y) in refresh memory 2. Since the light ray model

assumes that the ray skims the top of a pixel, return to step 14

to generate the next (X,Y).
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step 19: I-f ZT is less than the pixel value PICV at the current

point (X,Y), then the pixel is seen by the ray. Write the pixel

value PICV from refresh memory 1 to refresh memory 2 at (X,Y).

Bet the new index V of the ray that goes through (X, Y, PICV).

Return to step 14.

Step 20: Save the shadowgraph as an indexed file of 512 records

of 512 bytes each.

An example of a shadowgraph was given previously in Figure S.

From the viewer’s perspective, both the image and shadowgraph

appear as if one were looking vertically downwards at the scene.

The orthogonal projection of a world coordinate in the (X,Y)

plane translates to the same point on the screen, but in screen

coordinates the Y and X are interchanged.

4.2 The Solid Projection Algorithm

Before beginning this algorithm, the image file must be

loaded into refresh memory 1 of the image processor and the

shadowgraph must also be loaded into refresh memory 2.

Furthermore, the contents of refresh memory 2 must be visible on

the display monitor. The program steps are as follows:

Step Initialize the cursor and turn it on in order to

interactively specify pixel points in refresh memory 2.

Step 2: Use the trackball cursor to identify two di ametr i cal 1

y

opposite points of a rectangle of interest in the shadowgraph.

This rectangle will be the area converted to a three-dimensional

i mage.
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Steg 3: Set up the corner vertices so that the upper le-ft is

indexed by (1,1). The indexing proceeds countercl ockwi se from

(1,1) to (2,1) to (2,2) to (1,2). See Figure 22.

Step 4: Identify the center of the rectangle of interest as

(XO,YO) and let ZO = 12B, which is the midpoint of the intensity

levels that run from O to 255.

Step 5: Draw lines around the rectangle of interest and place a

mark at the center. If the viewer does not like this region,

return to Step 1, otherwise continue.

Step 6: Turn off the cursor and initialize a third refresh

memory of the image processor for solid projection image.

Step 7: Interactively get the azimuth and elevation angles for

the viewing plane and the percent reduction for shadowing.

Step 8: Compute the orthonormal vectors for the viewing rays W,

K and KxW.

Step 9: Get the case number for W.

Step j^O: Get the extreme points of the shadowgraph rectangle.

Step Set up the first extreme point at the first entry point

of the projection of the viewing ray W—vector onto the XY—plane.

Step 1^2: Compute the H multiples of the KxW unit vector that yield

the vertical ray planes passing through the two extreme points.

These planes form the left and right bounds for the viewing

window. Designate the first as HMIN and the second as HMAX. The
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(X(1),Y(1)) (X(1),Y(2))

(X(2),Y(1)) (X(2),Y(2))

Figure 22

Extreme Point Indexing
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solid is generated by vertical scans on the viewing window moving

-from le-ft to right after each vertical scan.

Steg 13: Set up the viewport, or monitor screen center, as the

projection of the center of the rectangle of interest.

Step 14: Modify HMIN and HMAX to conform to a viewport that is

the smallest to bound the solid.

Step 15: Since the algorithm proceeds by selecting each ray

plane from left to right, tracing rays through each pixel from

bottom to top in a ray plane, begin by setting H = HMIN. Get the

starting viewport column for this H and set the starting row as

511 which represents the bottom of the screen.

Step 16: On the first pass through this step, the first extreme

point is designated as the beginning entry point to the rectangle

of interest, but the algorithm picks the next entry point to

begin. If the second extreme point is encountered, stop the

algorithm and go to Step 27. Set the entry point as the current

world coordinate point of interest-

iZ- Increment the column counter by 1.

Step IS: Get the row index on the viewing window of the entry

point (X,Y,0) in the XY-plane of the world coordinate space.

Step 19: Once the row and column indices have been selected on

the viewing plane, specify this as the current screen point.
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Steg 20: Bet the corresponding world coordinate point for the

current screen point, i.e. row and column, on the viewplane.

Note that this is not the same world coordinate point as (X,Y,0).

Stag 31: Get the ray index V of the ray through this viewplane

world coordinate point.

StgE 22: Get the Z value an the ray indexed by V at the current

(X,Y) point on the world coordinate XY”plane. For an entry

point, this Z value will be O.

St eg 23: Get the pixel value from the image in refresh memory 1

and the shadowgraph value from refresh memory 2 for the (X,Y)

point.

Stag 24: If the ray height ZT is greater than the image value

PICV at the current CX,Y) point on the plane, then the ray does

not see the pixel. Generate the next CX,Y) point along the ray

projection on the XY-plane. Test whether it remains within the

rectangle of interest. If it does, go back to Step 22, otherwise

go back to Step 16 to move to the next ray plans or screen

col umn

.

StgE 33 - If the height ZT is equal to the pixel value, the pixel

is seen. The current ray is not continued. A new ray is

generated through the next screen point above it and tracing

continues. This is done by first writing the pixel value from

the original image in refresh memory 1 to the viewport refresh

memory, i.e- refresh memory 3, at the projected (V,H) coordinate.

Reduce the pixel value by the percent required for shadowing if
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the intensity value on the shadowgraph in re-fresh memory 2 is O

at that pixel. Move up one pixel in the viewport column and get

the associated world coordinate (X,Y,Z) for this point on the

viewplane. Get the V index for the ray through this point.

Generate the next (X,Y) point along the projected W vector line

on the (X,Y) plane. Go back to Step 22.

Stsa 26: If ZT is less than the pixel value at the current

(X,Y), then the pixel is seen by the ray. If the intensity of

the associated pixel in refresh memory 2 is O, then this

indicates that the point is in shadow. Write out to refresh

memory 3 the height ZT reduced, if necessary, by the percent

specified if shadowing is indicated. Decrement the row index to

move up one row. Get the <X,Y,Z) world coordinate that is

equivalent to the new viewplane point. Get the V index for the

ray through this point. Go back to Step 22.

Step 27: Write out the solid image to the disk if desired.

4.3 Case Selection Table

Table 4.1 specifies a case index that can be referenced by

other subroutines in the program. It distinguishes each possible

case combination of the first two components of the W—vector that

paints along the rays from either the light source or viewer

towards the origin.

4.4 Extreme Point Selection Table

Depending on the direction vector (W(l), W(2)) along the

base plane of the solid, this table specifies the first and the
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Table 4.

1

W“VECTOR CASES

Case ioag^

W(l) = 0, W(2) = 0 i

W(l) = 0, WC2) > 0 2

W(l) - 0, W(2> < 0

u<i) V o W(2) 0 4

W<1)
m.

oA W(2) > 0 5

W(l) > 0, W(2) < 0 6

WCl) oV W(2) = 0 7

w (1

)

< 0, U(2) 0 8

W(l) < 0, W(2) < 0 9
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Table 4.2

EXTREME

Case

1. W(l) = O, W(2) = O

2. W(l) = 0, W(2) > O

3. W(l) = 0, W(2) < O

4. W<1) > O, W(2) =0

5. W(l) > 0, W(2) > O

6. W(l) > O, W(2) < O

7. W(l) < 0, W(2) = 0

e. W(l) < O, W(2> > 0

9. W(l) < O, W(2) < 0

POINT TABLE

Extreme EiltCgffig
Point i Point n

Flag Returned

< X ( 1 ) , Y(l) ) (X (2) , Yd) )

(X <2)

,

Y (2) ) ( X d ) , Y(2) )

(X ( 1 ) , Y (2) ) ( X d ) , Yd))

( X ( 1 ) , Y(2) ) (X (2)

,

Yd))

(X (2) , Y(2) ) (X d ) , Yd))

(X (2)

,

Y > 1 ) ) (X (2)

,

Y(2) )

(X ( 1 ) , Yd)) (X (2)

,

Y (2) )

(X (2)

,

Yd)) (X (1) , Y (2) )
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last base point of the boundary rectangle encountered by the

rays. See Figure 21 for an illustration.

Let the four vertices be labeled with X and Y components as

shown in Figure 22: (X(l), Y(l)) is the upper left corner,

(X(2), Y(l)) is the lower left corner, (X(l), Y (2)

)

is the upper

right corner and (X(2), Y (2)

)

is the lower right corner. For

each case there are two extreme points. These are detailed in

Table 4.2.

4.5 Entry Point Algorithm

By an entry point is meant a point on the boundary of a base

rectangle through which the projection of a ray in space onto the

XY-plane passes as it traverses across the base rectangle. See

Figure 4 for an illustration. This algorithm begins with the

assumption that there is a current entry point. The algorithm

returns the next entry point or a flag if an extreme point is

encountered. Let IXIN, lYIN be the current entry point. The

algorithm is a case-by-case analysis.

Qsse W<1) =W(2) =0, Return a flag.

Qsse 2; W(l) = 0, W(2) > 0. Beginning with extreme point

<X(1),Y(1)), set IXIN = X(l), lYIN = Y(l). The new entry point

is then defined by IXIN = IXIN+1, I YIN = I YIN. This case

terminates when IXIN-X(2) = O and lYIN-Y(l) = O.

2* W<i) =0, W(2) < 0. Beginning with the first extreme

point IXIN = X(2), lYIN = Y(2), set the next entry point as

IXIN = IXIN-1, lYIN = lYIN and stop when IXIN-Xd) = IYIN-Y(2) = O.
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Case 4: W<1) >0, W(2) =0. Begin with IX IN = X ( 1 ) , I YIN =

Y(2). Set the next entry point as IXIN = IXI^45 lYIN = IYIN—1.

Stop when IXIN-X(l) = lYIN-Y(l) = O.

Case 5: W(l) > 0, W(2) > 0. Begin with IXIN X(l), I YIN =

Y(2). Set the next entry point as IXIN = IXIN, lYIN = IYIN—1

until IXIN—X(l) = lYIN—Y(l) = O. Then set the next entry point

as IXIN = IXIN+1, lYIN = lYIN. Stop when IXIN-X(2) = lYIN-Yd) =

O.

Case 62 Nd) > 0, W(2) < 0. Begin with IXIN = X(2), lYIN =

Y(2) . Set the next entry point to IXIN = IXIN-1, lYIN = lYIN

until IXIN—X(l) = lYIN—Y (2) = 0. Then set the next entry point

to IXIN = IXIN, lYIN = IYIN-1. Stop when IXIN-Xd) = lYIN-Yd) =

Case 72 WCl) < O, W(2) = 0. Begin with IXIN =

Y<i). Set the next entry point to IXIN — IXIN,

Stop when IXIN-X(2) = IYIN-Y(2) = 0.

Case 3: < 0, w(2) > 0» Begin with IXIN =

Y(l). Set the next entry point IXIN = IXIN+1,

X(2), lYIN =

I

lYIN - lYIN+i.

I

X d ) , lYIN =

I YIN — lYIN until :

IXIN-X(2) = lYIN-Y(l) = O. Then set the next entry point to IXIN

= IXIN, lYIN = IYIN+1. Stop when IXIN-X<2> = IYIN-Y(2) = 0,

Case 9: Wd) < 0, W(2) < 0. Begin with IXIN = X (2) , lYIN =

Y(i). Set the next entry point to IXIN = IXIN, I YIN — lYIN+l

until IXIN-X(2) = IYIN-Y(2) = O. Then set the next entry point

to IXIN = IXIN-l, lYIN = lYIN. Stop when IXIN-Xd) = IYIN-Y(2)

= 0 .
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4- . 6 Line Drawing Algorithm

The task of a line drawing algorithm is to compute the

coordinates o-f the pixels that lie near a line on a two-

dimensional raster grid in such a manner that when the pixels are

strung together, they approximate the straight line (see

Figure 22), There are several such algorithms in the literature

and they are sometimes re-f erred to as scan—conver si on algorithms.

Ordinarily, the algorithms are applied to the problem in which

two endpoints of the line are specified. In the present case, an

algorithm will be presented in which the starting value and the

direction vector of the line are given. The problem then is to

start from a point on the line and generate the next pixel along

the line. The pixels chosen are based on integer truncation

rather than rounding.

Assume that a point (X,Y) is given and let (IX, lY) be the

point composed of the integer truncated values of X and Y. This

point will be referred to as the current pixel. Furthermore,

suppose that a direction vector in the XY—plane has been given by

(W( 1) , W(2) )

.

Case l: i*J(l) = W(2) = O

RETURN Error flag.

Ease 2: W(l) ^ O, WC2) > 0

IF Y > ^ 0, RETURN (IX,IY+1).

IF Y < O

AND IF lY > Y, RETURN <IX,IY)|

THERNISE IF lY ^ Y, RETURN (IX,IY+1).
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Case 3: W(l) =0, W<2) < 0

IF Y >= 0

AND IF lY > Y, RETURN (IX, I Y)?

OTHERWISE IF lY = Y, RETURN (IX,IY-1

IF Y < 0, RETURN (IX,IY-1).

Case 4: W(i) > O, W(2> = 0

IF X >= 0, RETURN (IX^i,IY).

IF X < 0

AND IF IX > X, RETURN (IX,IY)i

OTHERWISE IF IX = X, RETURN (IX-i-l,IY

5; W(l) >0, W(2) >0

LET SLOPE = W(2)/W(l).

IF X >= O, LET XT = IX+1.

IF X < 0

AND IF IX > X, LET XT ^ IX;

OTHERWISE IF IX = X, LET XT = IX+1.

LET YT = SLOPE (XT-X) + Y,

IF Y >= O AND lY =< YT =< lY+l,

RETURN (IXT,IYT)

WHERE IXT = INTEGER TRUNCATED XT

lYT = INTEGER TRUNCATED YT.

IF Y >= O AND IY+1 < YT,

LET YT = IY+1 ,

LET XT = ( 1

.

/SLOPE)

TRUNCATE XT TO IXT

TRUNCATE YT TO lYT

RETURN (IXT,IYT).
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IF Y < O AND lY > Y AND

IF lY YT >= IY“1, RETURN

IF NOT,

LET YT ^ lY,

LET XT ^ (1. /SLOPE) * (YT

TRUNCATE XT TO I XT,

TRUNCATE YT TO lYT,

RETURN (IXTjIYT).

IF Y < O AND lY ^ Y AND

IF lY =< YT =< IY+1, RETURN

IF NOT,

LET YT ^ IY+1,

LET XT ^ (1. /SLOPE) * (YT

TRUNCATE XT TO I XT,

TRUNCATE YT TO lYT,

RETURN (IXT,IYT).

Case 61 W(l) > O, W<2) < O

LET SLOPE ^ W(2)/W(l)

.

IF X V 1! O LET XT = IX+1.

IF X < 0

AND IF IX > X, LET XT IX?

OTHERWISE IF IX ^ X, LET XT

LET YT ^ SLOPE * (XT-X) + Y.

IF Y > 0 AND Y > lY AND

IF lY YT IY+1, RETURN

IF Y > O AND YT < lY AND

IF lY < Y, LET YT ^ lY,

( IXT, lYT)

Y) + X,

(IXT, lYT)

-Y ) + X

,

^ IX+1.

(IXT, lYT)
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LET XT = (1. /SLOPE) * (YT-Y) X,

RETURN

IF lY = Y,

LET XT

RETURN

IF Y < O AND

IF lY >= YT

IF NOT,

LET YT

LET XT

RETURN

(IXT,IYT).

LET YT = IY-1,

= (1. /SLOPE) * (YT-Y) + X,

(IXT, lYT)

.

>= IY-1, RETURN (IXTjIYT).

= IY-1,

= (1. /SLOPE) * (YT-Y) + X,

(IXT, lYT)

.

Case 7: W(l) < 0, W(2) =0

LET SLOPE = W(2)/W(l) == O.

IF X >= O AND

IF X > IX, LET XT - IX

IF X = IX, LET XT = IX

IF X < 0, LET XT II X1 a

LET YT = SLOPE * (XT-X) + Y,

RETURN (IXTjIYT).

Case 8: W(l) < O, W(2) > O

LET SLOPE = W(2)/W(l),
1

IF X >= 0 AND

IF X > IX, LET XT = IX,

IF X = IX, LET XT = IX-1

IF X 0, LET XT = IX-1.

LET YT = SLOPE * (XT-X) +
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IF Y 0 AND

Case 9

:

IF lY = < YT =< IY+1,

RETURN (IXT,IYT);

OTHERWISE IF lY < Y, LET YT = lY.

LET XT = (1. /SLOPE) * (YT-Y) + X,

RETURN (IXT,IYT).

IF Y < O, LET YT = IY-1.

LET XT = (1. /SLOPE) * <YT-Y) + X,

RETURN (IXTjIYT).

W(l) < 0, W(2) < O

LET SLOPE = W(2)/W(l).

IF X >= O AND

IF X > IX, LET XT = IX.

IF X = IX, LET XT = IX-1.

IF X 0, LET XT = ix-i;

LET YT = SLOPE * (XT-X) + Y.

IF Y >= 0 AND

IF lY < Y AND lY <= YT <= IY+1,

RETURN (IXT,IYT).

OTHERWISE LET YT = lY,

LET XT = (1. /SLOPE) * (YT-Y) + X,

RETURN (IXT,IYT).

IF lY = Y AND lY >= YT >= lY-l,

RETURN (IXT,IYT).

OTHERWISE LET YT = IY-1,

LET XT = (1. /SLOPE) * (YT-Y) + X,

RETURN (IXT,IYT).
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IF Y < O AND

IF lY >= YT >= IY-1,

RETURN (IXT,IYT).

OTHERWISE LET YT = lY-l,

LET XT = (1. /SLOPE) * (YT-Y) -i- X,

RETURN (IXT,IYT).
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Figure 23

Scan Line Conversion to Pixels
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5.0 Program Implementation

5. 1 System Commands

When the user types SOLID on the console to begin the

program, the host system transfers to the following file;

*
SOLID. CSS
*
L .BG, SOLID
T . BG
AS 3, 12S;
AS 5,C:
AS 6, NULL;
ST
$EXIT

The first three lines are comments identifying this command

file as SOLID. CSS. The fourth line loads the linked task with

the name SOLID and gives it the system designated name . BG for a

background job if the mul ti term! nal environment is not active.

If the multiterminal environment is active, the system identifies

the job with the user name entered at sign—on time. The next

line identifies any following assignments with the task just

loaded. The next three lines assign logical unit number 3 to the

image processor, known to the operating system by the mnemonic

I2S: , logical unit 5 to the user's terminal and logical unit 6 to

a null device. This means that the logical unit 6 is assigned to

the task, but any input /output through it will be ignored. This

is inserted so that the user could assign logical unit 6 to an

input/output unit for program error analysis at a later time, if

necessary. The next to the last line starts the designated task

and the final line exits to the user console at program

7 I

terminati on.



5.2 Main Program

5.2.1 Summary

This subsection contains the flow chart and listing of the

main program. It implements both the shadowgraph algorithm and

solid generation algorithm. The user selects which algorithm to

use i nteracti vel y

.

In the shadowgraph algorithm, the program traces individual

rays -from the light source to the surface. The light source is

located at a specified azimuth and elevation angle, selected

interactively by the user. As each ray is traced to the surface,

the height along the ray is either greater than, equal to, or

less than a pixel height representing a topographic amplitude.

If the ray height is greater than the pixel value, that pixel is

not seen by the ray and fails into shadow relative to the ray.

If the ray height is equal to the pixel height, then the pixel is

seen and the ray is continued as well. If the ray has a height

less than the pixel, the pixel is seen and a new ray is selected

that touches the tip of the pixel. Tracing then continues

along the new ray.

In the solid generation algorithm, rays are traced from the

viewing plane to^the surface. If a pixel is seen, then the
1

height of the ray at contact is projected back to the viewing

plane, modified by an intensity reduction factor if the pixel

lies in shadow. If a pixel is not seen, then the ray is

continued

.
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5.2.2 Flow Chart
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Li sting

1

2
3
4
5

6
7
3
9

10
11

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

C

C MAIN PROGRAM TO CREATE
C A
C PSEUDOSOLID
C
C*************************#*«•«• -K- •» -a- -M- •«•#***•«••«•»•**•«••«••«•** -K-

PROGRAM SOLID
INTEGER->t2 FCB(2048), BUFFER < 2048 > , CHAN1(16). TAB1(16)
INTEGER*2 CHAN2 < 16 ) , TAB2 < 16

)

INTEGER*2 CHAN3 ( 16 ) , TAB3 ( 16

)

INTEGER«2 PICV, TANV
INTEGER*2 PSDO
INTEGER*2 INBUF(2048)
REAL W(3), K(3>, KXW(3)
REAL VRX(2), VRY(2)
REAL EX(2), EY(2)
INTEGER
INTEGER

FILE<7)
FILP(7)

FILT(7>

BRANCH TO CREATE A SHADOW GRAPH OR PSEUDOSOLID ON USER REQUEST

WRITE(5, 5)
FORMAT <

' IF YOU WISH TO SHADOW A PICTURE TYPE 0. '/

1 ' IF YOU WISH TO CREATE A PSEUDO-SOLID TYPE 1 .
'/

2 ' NOTE: TO PSEUDO-SOLID AN IMAGE A SHADOWGRAPHS
3 ' MUST HAVE PREVIOUSLY BEEN CREATED. ')

READ(5, *) IGO
IF (IGO . NE. 0) GO TO 300

33 C
34 C INITIALIZATION SECTION
35 C
36 c

37 C
38 C
39 C REMARKS TO THE USER
40 C
41 WRITE(5, 1)
42 1 FORMAT (' •s*************####*##-*^**-^** S
43 1

/ * PSEUDO-SOLID « V
44 2 /

-M- PHASE 1 * V
45 3 / SHADOW GRAPH
46 4 '

47 5 ' '/

9 1



48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
SO
81
82
83
84

6 " THIS PORTION OF THE PSEUDO-SOLID GENERATION'/
|

7 ' SIMULATES THE EFFECT OF A DISTANT SOURCE OF LIGHT'/!
a ' SHINING ON THE SURFACE. THOSE AREAS OF THE SURFACE'
9 ' THAT WOULD BE SHADED ARE DARKENED. NO THREE-'/
1 ' DIMENSIONAL EFFECT IS CREATED IN THIS PART. '/

2 ' THE MAIN PICTURE IS WRITTEN TO CHANNEL 1'/
3 ' AND THE SHADOW GRAPH IS GENERATED ON CHANNEL 2. ')

C
C GET THE PICTURE FILE
C

TABKl) = 1

15 CALL GETFIL(FCB, BUFFER, TAB 1, CHANl

)

WRITE(5, 20)
20 FORMAT(' IF THE PICTURE HAS BEEN PROPERLY GENERATED, '/

1 ' TYPE 1, OTHERWISE O TO GET ANOTHER PICTURE. ')

READ(5, •«•) IGO
IFdGO . EQ. 0) G0“ TO 15

C

C SET UP CHANNEL 2 OF I2S FOR SHADOW GRAPH
C

TAB2<1) = 2
CALL GETCHN<FCB, BUFFER, TAB2, CHAN2)

C

C SET UP FILE SPECIFICATIONS FOR;
C
C PICTURE FILE -

C

FILE(3) = CHANl ( 1

)

C
C SHADOWGRAPH -

C
FILT(3) = CHAN2(1)

C
C

C
C END INITIALIZATION SECTION
C

85
86
07
88
89
90
91
92
93
94
95
96
97
98

BEGIN GEOMETRIC SPECIFICATION SECTION

GET AZIMUTH AND ELEVATION FOR THE LIGHT SOURCE

10 WRITE(5, 121

)

21 FORMAT(' ENTER AZIMUTH ANGLE AND ELEVATION ANGLE'/
1 ' IN DEGREES FOR THE LIGHT SOURCE. '/

2 ' AZIMUTH ANGEL LIMITS ARE 0 TO 360'/
3 ' ELEVATION ANGLE LIMITS ARE 0 TO 90'/
4 ' ENTER AS AZ , EL. '

)
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99
100
101
102 C
103 C
104 C

105
106 C

107 C

108 C

109 C

110
111
112
113
114
115
116 C

117 C

118 C

119 C

120 C

121 C

122 C

123 C

124 C

125 C

126 C

127 C

128 C

129 C

130 C

131 C

132 C

133 C

134 C

135 C

136 C

137 C

138 C

139 C

140 C

141 C

142 C

143
144
145
146
147
148
149
150

KtADC5, A4, hL
IF < AZ . LT. 0. . OR. AZ . GT. 360 . OR. EL . LT. 0. . OR.

1 EL . GE. 90. ) GO TO 210

SET UP CONVERSION FACTOR FROM DEGREES TO RADIANS

CONV = 3. 14159/180.

COMPUTE THE DIRECTION SINES AND COSINES FOR THE RAYS FROM
THE LIGHT SOURCE TO THE SURFACE

AZ - CONV»AZ
EL ^ CONV*EL
CE = COS CEL)
CA = COSCAZ)
SE = SINCEL)
SA * SIN(AZ)

SET UP TWO UNIT VECTORS:
W - THIS UNIT VECTOR POINTS ALONG THE LIGHT

RAYS TOWARDS THE ORIGIN
K - THIS UNIT VECTOR IS ORTHOGONAL TO W AND

POINTS ACROSS A PLANE MADE OF LIGHT RAYS

THESE COMMENTS ARE A NOTE ON THE UNDERLYING GEOMETRY.
GIVEN AN AZIMUTH AND AN ELEVATION FOR THE LIGHT SOURCE ONE
CAN THINK OF A PLANE FORMED BY ROTATING THE X-Z PLANE
BY THE AZIMUTH ANGLE. NOW FILL UP THIS PLANE WITH LIGHT
RAYS POINTING IN THE DIRECTION OF THE W-VECTOR. NOW
CONSIDER A UNIT VECTOR IN THIS PLANE, CALLED K, THAT IS
ORTHOGONAL TO W. THIS VECTOR IS THEN ORTHOGONAL TO ALL OF THE
LIGHT RAYS POINTING IN THE DIRECTION W. EACH LIGHT RAY
CAN BE INDEXED FROM A FIXED POINT ON THE PLANE BY ADDING
SOME MULTIPLE OF THE K-VECTOR. FURTHERMORE FROM THAT SAME
FIXED POINT ON THE PLANE ONE CAN ACCESS ANY POINT ON ANY
LIGHT RAY IN THE PLANE BY ADDING A MULTIPLE OF K AND THE
ADDING A MULTIPLE OF W. FINALLY, ALL LIGHT RAYS IN THE
DIRECTION W FALL ON SOME PLANE PARALLEL TO THE ROTATED PLANE
ABOVE. IF WE TAKE THE CROSS PRODUCT OF K AND W WE GET A
VECTOR THAT CAN BE USED TO ACCESS ANY PLANE PARALLEL TO THE
ROTATED PLANE. IN THIS PROGRAM THE MULTIPLES OF K ARE
THE V-VARIABLES, THE MULTIPLES OF W ARE R-VARIABLES
AND THE MULTIPLES OF THE CROSS PRODUCT ARE THE H'S.

WC

1

)--CE*CA
W(2)-“CE*SA
WC3)=-SE
K( 1 )«CA*SE
K(2)-SA#SE
K(3)«"CE
KXW(l) * -SA
KXW(2) = CA
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151
152
153
154
155
156
157
153
159
160
161
162
163
164
165
166
167
163
169
170
171
172
173
174
175
176
177
178
179
180
ISl
182
183
184
185
186
137
188
189
190
191
192
193
194
195
196
197
193
199
200
201
202
203

C
C900
C

GET

SET

WRITE (6, 900) W(l),W(2).W<3),K(l),K(2)iK(3), KXW(l), KXW(2)
FORMATC" W=S3G15. 7i' K=S3G15. 7, ' KXW= '

, 2G1 5. 7

)

THE W-VECTOR CASE INDEX

CALL WCASE(W, IWCASE)

UP THE ENTIRE PICTURE FOR SHADOWING

VRX( 1

)

VRY< 1

>

VRX(2)
VRY(2)

0 .

0 .

511.
511.

GET THE EXTREME POINTS

C
C910
C

CALL EXTREM( IWCASE, VRX, VRY, EX, EY, IFLG)
WRITE (6, 910)EX( 1), EY( 1 ), EX(2), EY(2)
FORMAT EXTREME PTS 1=S2G15. 7, ' 2=',2G15. 7)

IXIN = EX(l)
lYIN = EY<1)
XIN = IXIN
YIN = lYIN

TRANSFER THE PIXEL VALUE TO THE SHADOWGRAPH SINCE
SHADOWED

IT CANNOT BE

C

C925
C

CALL RDPIC(FCB, FILE, PICV, IXIN, lYIN, 1, lERR)
CALL WRPIC(FCB, FILT, PICV, IXIN, lYIN, 1, lERR

)

WRITE(6, 925) IXIN, lYIN, P ICV
FORMAT(' FIRST EXT. PT. =',3110)

GET THE BOUNDARY POINT OF THE PICTURE WHERE THE PROJECTED W
RAY ENTERS

CALL XYIN< IWCASE, EX, EY, IXIN, lYIN, XIN, YIN, IFLG)
IX = IXIN
lY = lYIN
X = XIN
Y = YIN

C WRITE (6, 940 )X, Y, IWCASE, EX ( 1 ) , EY ( 1 ) , EX ( 2 ) , EY ( 2

)

C940 FORMAT ( ' BOUNDARY PT =',2G15. 7, ' CASE=',I5, ' EXl, EYl, EX2, EY2
C 1 4G15. 7)

IF (IFLG . EQ. 1) STOP 'W(1)=W<2)=0 IN XYIN DURING SHADOW'
IF ( IFLG . EQ. 0) GO TO 10
IF ( IFLG . EQ. 2) GO TO 21

C
C TRANSFER THE PIXEL VALUE OF THE ENTRY POINT TO THE SHADOWGRAPH
C

10 CALL RDPIC(FCB, FILE, PICV, IX, lY, 1, lERR)
CALL WRPIC(FCB, FILT, PICV, IX, lY, 1, lERR)
Z = PICV
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I

>04 C WRITE<6. 950) IX, lY, PICV

iio5 C950 FQRMAK" BNDRY PT=^3I10)
>06 C

>07 C GET THE INDEX OF THE RAY THAT INTERCEPTS THE POINT (X,Y, Z)

>08 C

09 CALL GETV(X, Y, Z, K, 0)

10 C WRITE(6, 960) V

‘:ll C960 FORMAT(' BDRY RAY INDEX= '
, G1 5. 7)

12 C

i:i3 C GET THE NEXT POINT ALONG THE SCAN LINE

114 C

'15 13 CALL GNXY(X, Y, IX, lY, W, IFLG)

116 C WRITE(6, 970) X, Y, IX, lY

117 C970 FORMAT ( ' NEXT POINT = '
, 2G1 5. 7, 21 10

)

iia IF (IX . LT. 0 .OR. IX . GT. 511) GO TO 8

>19 IF (lY . LT. 0 .OR. lY . GT. 511) GO TO 3

!20 C
>21 C THE MODEL USED HERE ASSUMES THAT THE RAY SC IMS THE TOP OF A

>22 C PIXEL THAT IT SEES, SINCE PIXELS ARE ASSUMED TO BE POINTS

>23 C
>24 C NOW COMPUTE THE HEIGHT ON THE CURRENT RAY INDEXED BY V AT THE

>25 C POINT (X, Y)

>26 C
>27 CALL GETZ <X, Y, V, K, ZT)

>28 C WRITE(6, 980)ZT
i>29 C980 FORMAT (' ZT=^G15. 7)

230 C

231 C GET THE PICTURE VALUE AT THE CURRENT POINT (IX, lY)

232 C

233 CALL RDPIC(FCB, FILE, PICV, IX, lY, 1, lERR)

234 C

235 C COMPARE THIS VALUE AGAINST THE RAY HEIGHT, ZT, AT THIS POINT

^6 C TO DETERMINE WHETHER THE RAY SEES THE POINT

237 C

238 P = PICV
239 C
240 C CASE 1: IF ZT > PICV THEN THE PIXEL IS NOT VISIBLE TO THIS RAY

241 C CONTINUE TRACING THIS RAY.

242 C
243 IF ( ZT . GT. P+l. E-5) GO TO 13

244 C
245 C CASE 2: IF ZT . EQ. PICV THEN THE POINT IS VISIBLE, WRITE THE

246 C PIXEL OUT TO THE SHADOWGRAPH BUT CONTINUE TRACING

247 C THE SAME RAY
248 C
249 IF (ZT . LT. P-1. E-5) GO TO 19

250 CALL WRPIC(FCB, FILT, PICV, IX, lY, 1, lERR)

251 GO TO 13
252 C

253 C CASE 3: IF ZT < PICV THEN THE PIXEL VALUE IS SEEN BY THE RAY

354 Q WRITE IT OUT AND GET THE FIRST RAY THAT SATISFIES ZT --

255 C PICV
256 C
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257
253
259
260
261
262
263
264
265
266
267
263
269
270
271
272
273
274
275
276
277
273
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

19 CALL WRPIC(FCB, FILT, PICV, IX, lY, 1, lERR)
Z = P + 1. E-5
CALL GETV(X, Y, Z, K, V)
GO TO 13

C

C WRITE SHADOWGRAPH OUT

21 CONTINUE
WRITE(5, 25)
FORMAT (

' IF YOU WISH TO SAVE THIS SHADOWGRAPH TYPE 1, V
' OTHERWISE O')

READ(5, -s^) IGO
IF ( IGO . NE. 1 ) GO TO 302
CALL PUTFIL(FCB, BUFFER, TAB2, CHAN2)
GO TO 302

ENTER THE PSEUDOSOLID
SECTION
BELOW

300
C
C

C
C

c

c

CONTINUE

INITIALIZATION SECTION
THIS SECTION IS ENTERED WHEN USING PSEUDOSOLID WITHOUT
FIRST ENTERING THE SHADOWGRAPH SECTION

CALL ZBUFF(FCB, 16)
CALL INFCB(FCB, 2000, 3)
CALL MSTCL(FC3)
TABl(l) = 1

TAB2(1) = 2
CALL GETCHN(FCB, BUFFER, TABl, CHANl

)

CALL GETCHN(FCB, BUFFER, TAB2, CHAN2)

ENABLE GRAPHICSC

c

302 ICH = -32768
CALL GRAFE(FCB, 0, 0, 0, 0, 0, 0, 0, 0)

C

c
c

c
c
c
c

c

SET UP CHANNEL FOR PSEUDOSOLID

TAB3(1) = 3

DETERMINE WHETHER THE CHANNELS HAVE BEEN SETUP FOR PSEUDO
ORIGINAL PICTURE MUST BE IN CHANNEL 1 AND THE SHADOWGRAPH
MUST BE IN CHANNEL 2
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3 WRITE(5, 305)
p305 FORMAT (' IF THE ORIGINAL PICTURE IS IN CHANNEL 1 AND V
) 1 ' ITS SHADOWGRAPH IS IN CHANNEL 2 THEN TYPE IV
[

2 ^ OTHERWISE TYPE 0 TO TRANSFER THE PICTURES. ')

I
READ(5, •!*) IGO

i IF (IGO . NE. 0) GO TO 320
^ C

I C LOAD PICTURE AND SHADOWGRAPH
) C
' WRITE(5, 307)
1307 FORMAT (

" »#****«« LOADING ORIGINAL IMAGE **«•***«•»')
> TABl(l) = 1

>308 CALL GETFIL(FCB, BUFFER, TABl, CHANl

)

WRITE(5, 309)
! 309 FORMAT(' IF THE PICTURE HAS BEEN PROPERLY GENERATED, V
I 1 ' TYPE 1, OTHERWISE 0 TO GET ANOTHER PICTURE. ')

READ (5,*) IGO
i IF (IGO . EQ. 0) GO TO 308
, WRITE(5, 310)
310 FORMAT <

' **#**•»•** LOADING THE SHADOWGRAPH ****##***')
I TAB2(1) =2
' 311 CALL GETFIL(FCB, BUFFER, TAB2, CHAN2)
I WRITE<5, 312)
312 FORMAT<' IF THE SHADOWGRAPH HAS BEEN PROPERLY GENERATED, V

1 ' TYPE 1, OTHERWISE 0 TO GET ANOTHER SHADOWGRAPH. ')

READ<5, ») IGO
IF ( IGO . EQ. 0) GO TO 311

C

C GET FILE SPECS
C

320 FILE(3) = CHANl ( 1

)

FILT(3) = CHAN2(1)
FILP(3) = CHAN3(1)

C

C SETUP THE CURSOR
C

CALL GTCURS(FCB, BUFFER)
C

C GET THE REGION OF THE SHADOWGRAPH FOR PSEUDOSOLID ENHANCEMENT
C

WRITE(5, 321

)

321 FORMAT(' •»•**#**#* IDENTIFY THE REGION FOR PSEUDO-SOLID V
1 ' #***#*## ENHANCEMENT BY USING THE TRACKBALL. V)
WRITE (5, 322)

322 FORMAT(' THE USER MUST IDENTIFY TWO DIAMETRICALLY OPPOSITE V
1 ' CORNERS OF A RECTANGLE USING THE TRACKBALL BUTTONS.
2 ' MOVE THE CURSOR WITH THE TRACKBALL TO THE FIRST V
3 ' CORNER OF THE RECTANGLE OF INTEREST. PUSH BUTTON A.

CALL RBUTN<FCB, IB, lYl, IXl)
CALL WAITB(FCB, 10, IB, lYl, 1X1)

C WRITE(6, 3221 ) 1X1, lYl
C3221 FORMAT(' 1X1, lYl =',2I10)

WRITE (5, 323)

/

)
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361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

323 FORMAK' NOW MOVE THE CURSOR TO THE DIAMETRICALLY OPPOSITE'/
1 ' CORNER OF THE RECTANGLE OF INTEREST. PUSH BUTTON A. '1

CALL RBUTN(FCB, IB, IY2, 1X2)
CALL WAITB(FCB, 10, IB, IY2. 1X2)

C WRITE<6, 3231 ) 1X2, IY2
C3231 FORMATC' I X2, I Y2 =

' , 21 10

)

C

C SETUP THE CORNER ARRAYS VRX, VRY
C

IF (IXl . LE. 1X2) GO TO 325
VRX(l) = 1X2
VRX(2) = 1X1
GO TO 326

325 VRX(l) = 1X1
VRX(2) = 1X2

326 IF (lYl . LE. IY2) GO TO 327
VRY(l) = IY2
VRY(2) = lYl
GO TO 328

327 VRY(l) = lYl
VRY(2) = IY2

328 CONTINUE
C WRITE(6, 3271 ) VRX < 1 ) , VRX (2) , VRY(1 ) , VRY(2)
C3271 FORMAT ( ' VRX, VRY =',4G15. 7)
C
C COMPUTE THE CENTER OF THE RECTANGLE OF INTEREST
C

XO = (VRXd) + VRX(2))/2. 0
YO = (VRY(l) + VRY(2))/2.

0

ZO = 128.
C WRITE(6, 3272) VRX ( 1 ) , VRY < 1 ) , VRX ( 2 ) , VRY < 2 )

,

XO, YO
C3272 FORMAT(' VRXl, VRYl, VRX2, VRY2= ', 4G15. 7, ' XO, Y0= '

, 2G1 5. 7

)

C

C OUTLINE THE AREA AND PUT A PLUS AT THE CENTER
C

DO 329 I = 1,2048
INBUFd) = -1

329 CONTINUE
CALL STCOL<FCB, BUFFER, 0, 1. 0, 0. 0, 0. 0, 1 )

CALL XCOLR(FCB, BUFFER, 0, 1

)

1X1 = VRXd)
1X2 = VRX(2)
lYl = VRYd)
IY2 = VRYd )

CALL DVECT(FCB, lYl, 1X1, IY2, 1X2, ICH, 1, INBUF)
1X1 = 1X2
1X2 = VRX(2)
lYl = IY2
IY2 = VRY(2)
CALL DVECT(FCB, lYl, 1X1, IY2, 1X2, ICH, 1, INBUF)
1X1 = 1X2
1X2 = VRXd )

lYl = IY2
IY2 = VRY(2)

98



1

!

,5 CALL DVECKFCB, lYli IXl, IY2, 1X2, ICH, 1, INBUF)
IXl = 1X2

*17 1X2 = VRX(l)
[B lYl = IY2
9 IY2 = VRY< 1

)

:!0 CALL DVECKFCB, lYl, 1X1, IY2, 1X2, ICH, 1, INBUF)
!1 IXO = XO
12 lYO = YO
13 CALL DPLUS<FCB, INBUF, ICH. 1, lYO, IXO, 32)
14 WRITE (5, 330)
15330 FORMAK^ IF YOU WISH TO CHANGE YOUR MIND ON THE V
16 1 ' RECTANGLE OF INTEREST PUSH BUTTON B, OTHERWISE'/
17 2 ' PUSH BUTTON A')
8 CALL RBUTN(FCB, BUFFER, lY, IX)
9 CALL WAITB(FCB, 10, IB, lY, IX)
0 C

1 C BLANK THE GRAPHICS PLANES
2 C

3 CALL BCHAN(FCB, BUFFER, -32763, -1

)

1

4 IF (IB .GE. 2) GO TO 320
[5 C

i6 C TURN OFF THE CURSOR
.7 C

jS CALL CRCTL<FCB, 0, 0, 0, 0, 0, 0, 0, 0, 0)
9 C

0 C INITIALIZE CHANNEL 3 FOR PSEUDOSOLID GENERATION
ll C
‘2 335 TAB3(1) = 3
is CALL GETCHN(FCB, BUFFER, TAB3, CHAN3)
4 FILP(3) = CHAN3(1)
5 C

6 C GET THE AZIMUTH AND ELEVATION OF THE VIEWING ANGLE
\7 C

8 340 WRITE<5, 341

)

9 341 FORMATC' ENTER AZIMUTH ANGLE AND ELEVATION ANGLE'/
0 1 'IN DEGREES FOR THE VIEWER. AZIMUTHE ANGLE'/
1 2 ' LIMITS ARE 0 TO 360. ELEVATION ANGLE LIMITS'/

3 ' ARE 0 TO 90. '/

4 ' ENTER AS AZ, EL. ')

READ (5,*) AZ, EL
IF (AZ . LT. 0. .OR. AZ . GT. 360. .OR. EL . LT. 0. .OR.

1 EL . GE. 90. ) GO TO 340
C
C GET THE PERCENTAGE REDUCTION FOR SHADOWING
C

WRITE (5, 342)
342 FORMAT(' ENTER THE PERCENT REDUCTION IN INTENSITY DESIRED'/

1 ' FOR SHADOWING. ENTER FROM 0. TO 100. ')

3 READ (5,*) PRCNT
C

5

C CONVERSION FACTOR: DEGREES TO RADIANS
b C
7 CONV = 3. 14159/180.
3 C
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i69c GET
;70C
;71
;72
^73
;74
^75
Mb
;77C
^78 C SET
^79 C
^80
^81
482
483
484
485
486
487
488 C
^89 C345
490 C

SINES AND COSINES

AZ = C0NV*A2
EL = CONV*EL
CE = COS < EL)
CA = COS(AZ)
SE = SIN(EL)
SA = SIN(AZ)

UP THE VIEWER FRAME OF REFERENCE

W( 1 ) = -CE-»CA
W(2) = -CE*SA
W(3) = -SE
K(l) = CA*SE
K(2) = SA^tSE
K(3) = -CE
KXW(l) = -SA
KXW(2) = CA
WRITE (6, 345)W( 1 ), W(2>, W<3)> K( 1 ), K(2), K(3) , KXW( 1 ), KXW(2)
FORMAT( ' Wl, W2, W3, Kl, K2, K3, KXWl, KXW2=', 8G15. 7)

491 C
492 C
493
494 C

495C346
496 C
497 C
498 C
499
500 C
501 C347
502 C
503 c
504 C
505
506
507
503
509 c
510 C
511 C
512
513
514c
515c
516C
517c
518
519
520 c
521 c
522 c
523 c

GET THE W-VECTOR CASE INDEX

CALL WCASECW. IWCASE)
WRITE (6, 346) IWCASE
FORMAT(' IWCASE =S 14)

GET THE EXTREME POINTS FOR THE PSEUDOSOLID RECTANGLE

CALL EXTREM( IWCASE, VRX. VRY, EX, EY, IFLG)
WR ITE ( 6, 347 ) EX ( 1 ) , EY < 1 ) , EX ( 2 ) , EY ( 2

)

FORMAT (
' EXl, EYl, EX2, EY2=', 4G15. 7)

SET UP THE FIRST ENTRY POINT TO THE PICTURE

IXIN = EX(1)
lYIN = EY(1)
XIN = IXIN
YIN = lYIN

GET THE MULTIPLES OF THE KXW VECTOR FOR THE EXTREME POINTS

CALL GETH(EX( 1 ), EY< 1 ), 0. , KXW, HMIN)
CALL GETH < EX ( 2 ) , EY ( 2 ) , 0. , KXW, HMAX

)

SET
OF

UP THE SCREEN CENTER FOR THE PROJECTION OF THE RECTANGLE
INTEREST CENTER. NOTE THESE ARE IN SCREEN COORDINATES. X AND Y ARE REVER

SXO =

SYO =
256.
256.

GET THE
MONITOR

LIGHT PLANE INDEX FOR THE LEFT HAND COLUMN OF THE

i 00



524
‘525

;526

527
529
529
530
1531

532
1533

1 534
535
536
537
538
539
540
541
542
543
544
545
546

i 547
• 548
' 549
1550
551

I 552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

SY = 511.
SX = 0.

CALL GETXYZ(X0, YO, ZO, SYO, 8X0, SY, SX, K, KXW, X, Y, Z)

CALL GETH( X, Y, Z, KXW, HI

)

SY = 511.
SX = 511.
CALL GETXYZ ( XO, YO, ZO, SYO, SXO, SY, SX, K, KXW, X, Y, Z

)

CALL GETH(X, Y, Z, KXW, H2)
C
C GET THE STARTING VIEWPORT COLUMN
C

IF (HI . LE. HMIN) GO TO 350
H = HI
ISXO = HI
IF (HI . GT. HMAX) ISXO = HMAX
GO TO 360

350 H = HMIN
ISXO = HMIN - HI
IF (ISXO . GT. 511) ISXO = 511

360 CONTINUE
ISY = 511
ISX = ISXO “ 1

C

C GET THE STARTING VIEWPORT ROW
C FOR THE CURRENT H
C

365 CALL XYIN( IWCASE, EX, EY, IXIN, lYIN, XIN, YIN, IFLG)
C WRITE(6, 366) I X IN, I YIN, X IN, YIN
C366 FORMAT(' AT COL. ENTRY I X IN, I YIN, X IN, YIN= ' , 214, 2G1 5. 7

)

IF ( IFLG . EQ. 0 ) GO TO 370
IF (IFLG . EQ. 1) STOP 'W(1)=W(2)=0 IN PSEUDO"
IF (IFLG . EQ. 2) GO TO 460

370 IX = IXIN
lY = lYIN
X = XIN
Y = YIN
ISX = ISX + 1

CALL GETROW(XO, YO, ZO, SYO, K, X, Y, 0. , SY)
ISY = SY

C

C BEGIN MOVING UP THE COLUMN ON THE MONITOR
C

SX = ISX
SY = ISY
IF (ISX . GT. 511 ) GO TO 460

C WRITE(6, 371) ISY, ISX
C371 FORMAT (

" AT COL. ENTRY ISY, ISX= " , 214

)

C
C GET THE X,Y, Z VALUE ASSOCIATED WITH THE SCREEN POINT ISY, ISX
C

CALL GETXYZ (XO, YO, ZO, SYO, SXO, SY, SX, K, KXW, XT, YT, ZT)
575 C

576 C GET THE INDEX OF THE RAY THROUGH THIS POINT
577 C



578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

CALL GETV(XT, YT, ZT, K, V)

C WRITE (6, 372)XT, YT, ZT, V
C372 FORMAT (' WRLD. COORD. FOR ENTRY XT, YT, ZT= ^ 3G1 5. 7, "V= '

, G1 5. 7

)

C

C GET THE Z VALUE ON THE RAY INDEXED BY V AT THE CURRENT POINT
C X, Y
C

375 CALL GETZ (X, Y, V, K, ZT)
C
C GET THE PIXEL AND SHADOWGRAPH VALUE AT THE CURRENT POINT
C

CALL RDPIC(FCB, FILE, PICV, IX, lY, 1, lERR)
CALL RDPIC(FCB, FILT, TANV, IX, lY, 1, lERR)

C WRITE(6, 376)X, Y, IX, lY, ZT, PICV, TANV
C376 FORMAT(' AT CURR. PT. X, Y, IX, lY, ZT, PICV, TANV= 2G15. 7, 214,
C 1 G15. 7,214)
C
C COMPARE THE PICTURE VALUES AGAINST THE RAY HEIGHT
C

P = PICV
C

C CASE 1: IF ZT > PICV THEN THE CURRENT RAY DOES NOT SEE
C THE POINT. CONTINUE TRACING THE RAY
C

IF (ZT . LE. P + l.E-5) GO TO 380
CALL GNXY<X, Y, IX, lY, W, IFLG)

C WRITE(6, 377)X, Y, IX, lY
C377 FORMAT(' ZT>PICV : X, Y, I X, I Y= ' , 2G1 5. 7, 214

)

IF (VRX(l) . LE. X .AND. X . LE. VRX(2) .AND. VRY(i) . LE.
1 Y .AND. Y . LE. VRY(2) ) GO TO 375

GO TO 365
C
C CASE 2: IF ZT = PICV THE POINT IS SEEN BY THE RAY. DO NOT
C CONTINUE THE RAY. GET A NEW RAY AND THEN CONTINUE
C TRACING
C
380 IF (ZT . LT. P - l.E-5) GO TO 400
C WRITE(6, 3801

)

C3801 FORMAT (' ZT=PICV')
IF (ISY . GT. 511) GO TO 385

IZT = ZT
IF (TANV . LE. 0) IZT = ( 100. -PRCNT)*ZT/100.
PSDO = IZT
IF (IZT . LT. 0) PSDO = 0
CALL WRPIC(FCB, FILP, PSDO, ISY, ISX, 1, lERR)

385 ISY = ISY - 1

SY = ISY
SX = ISX

C WRITE(6, 387) ISY, ISX
C387 FORMAT(' NEW SCREEN PT. =',2I4)

CALL GETXYZ(XO, YO, ZO, SYO, SXO, SY, SX, K, KXW, XT, YT, ZT)
CALL GETV(XT, YT, ZT, K, V)
CALL GNXY(X, Y, IX, lY, W, IFLG)

I 02



631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
663
669
670
671
672
673
674
675
676
677
678

C WRITE(6, 386)XT, YT, ZT, V, X, Y, IXi lY
C386 FORMAT ( ' WRLD. COORD. FOR CURR. PT. X, Y, Z= '

, 3G1 5. 7, ' V= '
, G1 5. 7,

C 1 ' NEW PT. =X, Y, IX, IY=', 2G15. 7, 214)
GO TO 375

C

C CASE 3: IF ZT < PICV THE PIXEL IS SEEN BY THE RAY BUT DO NOT
C CONTINUE THE RAY.
C

400 IF (ISY . GT. 511) GO TO 450
C WRITE(6, 401)
C401 FORMAT(' ZT<PICV')

IZT = ZT
IF (TANV . LE. 0) IZT = ( 100. -PRCNT)»ZT/100.
PSDO = IZT
IF ( IZT . LT. 0) PSDO = 0
CALL WRPIC(FCB, FILP, PSDO, ISY, ISX, 1, lERR)

450 ISY = ISY - 1

SY = ISY
SX = ISX

C WRITE(6, 451 ) ISY, ISX
C451 FORMAT(' NEW SCREEN P0INT==^2I4)

CALL GETXYZ(X0, YO, ZO, SYO, SXO, SY, SX, K, KXW, XT, YT, ZT)
CALL GETV<XT, YT, ZT, K, V)

C WRITE(6, 452)XT, YT, ZT, V
C452 FORMAT(' WRLD. COORD. XT, YT, ZT= '

, 3G1 5. 7, ' V=',G15. 7)
GO TO 375

C

C WRITE OUT PSEUDOSOLID PICTURE
C
460 WRITE (5, 470)
470 FORMAT(^ IF YOU WISH TO SAVE THE PSEUDOSOLID IMAGE TYPE'/

1 '1, OTHERWISE O')
READ(5, *) IGO
IF ( IGO . NE. 1 ) GO TO 475
CALL PUTFIL(FCB, BUFFER, TAB3, CHANS)

475 WRITE (5, 480)
480 FORMAT(' IF YOU WISH TO GENERATE ANOTHER SOLID TYPE 1, '/

1 ' OTHERWISE O')
READ (5,*) IGO
IF ( IGO . EQ. 0) STOP
WRITE (5, 485)

485 FORMAT(' IF YOU WANT THE SAME REGION-OF-INTEREST TYPE 1, '/

1 ' OTHERWISE O')
READ(5, •!«•) IM
IF ( IM . EQ. 0) GO TO 320
GO TO 335
STOP
END

I 03
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5.3 Subroutine GTCLIRS

5.3.1 Su/T!mary

This subroutine intializes the programmable cursor at the

center point oHF the screen.
,
The calling sequence is^

CALL GTCURS (FCB, BUFFER).

The parameters passed are;

FCB — System Function Control Block
for the image processor,
INTEGER->fr2 Array

BUFFER — System bu-ffer.
INTEBER-Jf-2 Array

GTCURS calls the -following subroutines:

DCURS
DEXEC
ONCUR
RBUTN .

The calling sequences for the system supplied subroutines or

functions required by each of the major user subroutines are

given in Appendix B. These are unique to the host and image

processor systems used and are not transportabi e. In order to

implement this code on another system, these system calls must be

emulated or the entire code converted to any new system calls.

I 04
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Turn on the
Cursor at the

Center o-f Screen
lines 29-31

\ /

Clear Trackball
Function Button

lines 32—36

\/ „

Clear Ii

Buf f (

Cofflffif

1 int

Ttsrt ace
sr of
ands
3 37
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Li sting

9 SUBROUTINE GTCURS(FCB, BUFR)
10 c ****•«•»••»•**•»•»**«•«***»•-a-*****•»*•»•*****•««•*»*•«•*«»**•««••«•«••»•

11 C
12 C THIS SUBROUTINE INITIALIZES THE CURSOR AT THE
13 C CENTER POINT OF THE SCREEN
14 C

1 6 I NTEGER*2 FCB ( 1 ) , BUFR ( 1

)

17 INTEGER SHAPE
18 REAL SIZE
19 C
20 C CLEAR CURSOR DEFINITION
21 C
22 CALL DCURS(FCB, BUFR, 5, 0. 0)
23 C
24 C CREATE A PLUS SHAPED CURSOR
25 C
26 SHAPE = 3
27 SIZE = 20.
28 CALL DCURSCFCB, BUFR, SHAPE, SIZE)
29 IX = 255
30 lY = 255
31 CALL ONCUR(FCB, BUFR, 1. , 0. , 0. , IX, lY, 0)
32 C
33 C CLEAR BUTTONS WITH A READ OF BUTTON WORD WHICH IS
34 C 0 FOR NO BUTTONS PUSHED
35 C
36 CALL RBUTN(FCB, BUTTON, IX, I Y)
37 CALL DEXEC(FCB)
38 RETURN
39 end



5.4 Subroutine SETCGL

5.4.1 Summary

This

processor

subroutine sets the color sped -f i cat i ons -for the imag

graphics memory bitplanes. Its calling sequence isJ

CALL SETCDL (FCB, BUFFER)

.

The parameters passed are:

FCB

BUFFER

System Function Control Block
for the image processor.
INTEGER*2 Array

System bu-f-fer array.
INTEGER*2 Array

SETCOL calls the -following subroutines:

BCHAN
DEXEC
STCOL
XCOLR .



5.4.2 Flow Chart
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5.4.3 Listing

1 SUBROUTINE SETCOL < FCB, BUFR

)

n
Gm

3 c
4 c THIS SUBROUTINE INITIALIZES COLOR IN THE
5 c GRAPHICS BITPLANES
6 C
7
8 INTEGER*2 FCB ( 1 ) , BUFR < 1

)

9 INTEGER BUTTON
10 C
11 c BLANK THE GRAPHICS CHANNEL
12 c
13 CALL BCHAN(FCB, BUFR, -32768, 127)
14 c
15 c SET GRAPHICS BITPLANE 0 TO RED
16 c
17 CALL STCOL(FCB, BUFR, 0, 1. , 0. , 0. , 1 >

18 CALL XCOLR (FCB, BUFR, 0, 1

)

19 c
20 c SET GRAPHICS BITPLANE 1 TO RED
21 c
22 CALL STCOL(FCB, BUFR, 1, 1. , 0. , 0. , 1

)

23 CALL XCOLR (FCB, BUFR, 1, 1

)

24 c
25 c SET GRAPHICS BITPLANE 2 TO RED
26 c
27 CALL STCOL(FCB, BUFR, 2, 1. , 0. , 0. , 1 )

28 CALL XCOLR (FCB, BUFR, 2, 1

)

29 c
30 c SET GRAPHICS BITPLANE 3 TO A MIXTURE
31 c
32 CALL STCOL(FCB, BUFR, 3, . 7, . 7, . 7, 1 )

33 CALL XCOLR (FCB, BUFR, 3, 0)
34 w
35 c DO IT!
36 c
37. CALL DEXEC(FCB)
38 RETURN
39 END f

I I 0



5 • wj Subroutine GETFIL

5.5.1 Summary

This subroutine interactively inquires of the user the name

of a desired picture file, opens the file, initializes a user

selected refresh memory and writes the data file from the host

computer to the selected refresh memory in the image processor.

The program assumes that files are formatted as sequential files

with 512 records of 512 bytes each. The calling sequence is:

CALL GETFIL (FCB, BUFFER, TABLE, CHANLS)

.

The parameters passed are:

FCB

BUFFER

TABLE

CHANLS

System Function Control Block
for the image processor.
INTEBER*2 Array

System buffer.
INTEGER*2 Array

Refresh memory number into
which to write an image.
Can be 1, 2, or 3.
INTEGER*2

System channel mask for the
selected refresh memory in TABLE.
INTEGER*2

GETFIL calls the following subroutines or functions:

SVC7
ZBUFF
INFCB
MSTCL
DADRS
DUN IT
BCHAN
SYS 10
IMAGE
DMASK .



5.5.2 Flow Chart
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Li sting

1

2
3
4
5

6
7
a
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

C ***************«•**»••«**•»*«••«••«•*» -S'*** -M-*»••«•«•«*»••»•»•»»•«•«»•«•*•»•****•«**•»•»•»***»•« •»•

SUBROUTINE GETFIL(FCB, BUFFER, TABLE, CHANLS)
C ***«•»#***#****#*********#****•«••«•*•»••«••««•*•»••»•»••«•***•«••«•** -a- •«••«•***•»•«»•«••»*•«•#«•*«•«• «•

INTEGER*2 FCB(2048), BUFFER ( 2048 ) , CHANLS<16), TABLE(16)
INTEGER BMIN, BMAX, GMIN, GMAX, RMIN, RMAX, BYPIFM, FMIN2, FMAX2
INTEGER SS, SL, NL, NS, GRCODE, DMASK, CHCODE, CENTER
INTEGER PACKED, EXT, ROTATE, DIRECT, BLANK
INTEGER PBLK(8>
INTEGER NP<8)
CHARACTER*16 FD

C

C GET THE PICTURE FILE NAME
C

WRITE<5, 10)
10 FORMAT (

' ENTER NAME OF IMAGE FILE YOU WISH TRANSFERREDS
1 ' MAX OF 16 CHAR. ')

READ (5, 11 ) FD
11 FORMAT (C 16)
C

C OPEN THE FILE TO UNIT 2
C

OPEN (2, FILE^FD, lOSTAT^IOS)
IF( lOS . EQ. 0) GO TO 15
WRITE<5, 12) lOS

12 FORMAT(' lOSTAT ON OPENING FILE = ',14)
STOP

15 CONTINUE
C
C GET RECORD LENGTH IN BYTES AND NUMBER OF RECORDS
C

NP ( 1 ) = 2
INQUIRE<2, RECL=NBYTES, SIZE^NREC)
CALL SVC7(NP)
NBYTES= IAND<NP(2), Y'FFFF'

)

IF (MBYTES . LE. 4096) GO TO 18
WRITE(5, 16)

16 FORMAT (
' RECORD LENGTH OF FILE IS GREATER THAN 4096 BYTES')

STOP
18 CONTINUE
C

C INITIALIZE THE I2S
C

CALL ZBUFF (FCB, 16)
CALL INFCB(FCB, 2000, 3)

C
C CLEAR DEVICE TO READY FOR WRITING

CALL MSTCL (FCB)
GRCODE = DMASK (15)
TABLE(l) = TABLE(l) - 1

I I 5



50
51
52
53
54 C

55
56
57
5S
59
60
61
62
63 20
64 C

65
66
67

CALL DADRS (CHANLS, TABLE, CHCODE, 1)

CALL DUNIT (FCB, BUFFER, TABLE, 1, 256)
CALL BCHAN(FCB, BUFFER. CHCODE, -1

>

PACKED = 1

DO 20 I = l.NREC
CALL ZBUFF (BUFFER, 2048)
CALL SYSIOCPBLK, 89, 2, BUFFER, MBYTES, 0)

LGTREC = 512
IF (MBYTES . LT. 512) LGTREC = MBYTES
CALL IMAGE (FCB, BUFFER, 0, (I-l),

1 LGTREC, DIRECT, CHCODE, -1, PACKED,
1 0 , 0 , 0 , 0 , 0 )

COMTINUE

CL0SE(2)
RETURM
EMD



5.6 Subroutine GETCHN

5.6.1 Summary

This subroutine initializes a specified channel and enables

the registers for that selected channel so that an image may be

displayed. No image is actually transferred. The calling

sequence for this subroutine is:

CALL GETCHN (FCB, BUFFER, TABLE, CHANLS) .

The parameters passed are:

FCB

BUFFER

TABLE

CHANLS

System Function Control
Block array.
INTEGER*2 Array

System buffer array.
INTEGER*2

Refresh memory number.
Set to 1, 2 or 3.
INTEGER*2

Channel mask for the
refresh memory in TABLE.
INTEGER*2

GETCHN calls the following subroutines:

ZBUFF
INFCB
MSTCL
DADRS
DUN IT
BCHAN .



5.6.2 Flow Chart

f

START
GETCHN

I I 8



5. <b. 3 Li sting

1 c *******************•«••«•»•»••«•»••»•»••«•**«•»•»•#**•«•»•*•«•*•«•*•»•*•«•«**•»•**•»**•«•«••«*«•**«•**•»•*

2 SUBROUTINE GETCHN ( FCB, BUFFER, TABLE, CHANLS

)

3 C ******************************»**«•*•»•**«••«*•«•»••«««'* »*•«•«•»•****•«••«•«•**•«••»•*•«*•»

4 INTEGER*2 FCB ( 2048 ), BUFFER ( 2048

)

5 INTEGER*2 CHANLS(16)
6 INTEGER*2 TABLE (16)
7 INTEGER CHCODE
a c

9

C INITIALIZE THE I2S
10 C

11 CALL 2BUFF(FCB, 16)
12 CALL INFCB(FCB, 2000, 3)
13 C
14 C CLEAR DEVICE TO READY FOR WRITING
15 C
16 CALL MSTCL(FCB)
17 C
18 C MAKE CHANNEL 2 THE SHADOW GRAPH CHANNEL
19 C
20 TABLEd) = TABLE(l) - 1

21 C

22 C INITIALIZE REGISTERS AND LOOK-UP TABLES
23 C
24 CALL DADRS(CHANLS, TABLE, CHCODE, 1

)

25 CALL DUNIT(FCB, BUFFER, TABLE, 1, 256)
26 CALL BCHAN (FCB, BUFFER, CHCODE, -1

)

27 RETURN
28 END

I I 9



5.7 Subroutine GNXY

5.7.1 Summary

Given a point in a unit square in the XY—plane and a

direction vector (W ( 1 ) , Uf ( 2) ) , this subroutine determines whether

the point is interior to the square or on the boundary. I-f it i

interior to the square^ then the subroutine returns the exit

boundary point of the directed line through the point with

direction vector (W(1>,WC2)). If it is a boundary point, then

the direction vector <W(1),W<2)) either points inward or outward

from the square. If inward, then the subroutine returns the sxi

point from the same square. If the direction vector points

outward, then the subroutine returns the exit point of the

neighboring square through which the directed line passes. The

calling sequence for this subroutine is

CALL GNXY (X, Y, IX, lY, W, IFLG) .

GNXY passes the following parameters^

DN INPUT

X, Y

W< 1 ) , N(2>

Components of the point of interest.
REAL

Truncated values of X,Y respectively.
INTEGER

X,Y components of the 3—D direction

vector W.
REAL



ON OUTPUT

X,Y — X,Y components of exit point for th
unit square of adjacent unit square
REAL

IX, lY - Truncated values of X,Y respective!
INTEGER

IFLG - = 1 if W(l) = W(2) = O
= 0 otherwise .

INTEGER

No subroutines are called.



5.7.2 Flow Chart
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u 7.3 Li sting

1 c#***********^*-******'**-#**-^-*********'^-**************-^***-*^-*************
2 SUBROUTINE GNXY( X. Y, IXi lY, W, IFLG)
3 C *****************•«*****•*******•»•»•»•**«•***•»•*•»•**«•«••«••»•«•»•»•*•«•***«••«••«•«•*•«•**«•*

4 C

5 C FUNCTION:
6 C GIVEN A POINT IN A UNIT SQUARE AND A DIRECTION VECTOR,
7 C DETERMINE WHETHER THE POINT IS INTERIOR TO THE SQUARE OR ON
8 C THE BOUNDARY. IF IT IS INTERIOR, THEN RETURN THE EXIT
9 C BOUNDARY POINT OF THE DIRECTED LINE THROUGH THE POINT

10 C WITH DIRECTION VECTOR W. IF IT IS A BOUNDARY POINT THEN THE
11 C DIRECTION VECTOR W EITHER POINTS INWARD OR OUTWARD. IF INWARD,
12 C THEN RETURN THE EXIT POINT OF THE SAME UNIT SQUARE. IF OUTWARD,
13 C THEN RETURN THE EXIT POINT OF THE NEIGHBORING UNIT SQUARE THROUGH
14 C WHICH THE DIRECTED LINE PASSES.
15 C
16 C INPUT:
17 C X, Y - X, Y COMPONENTS OF POINT OF INTEREST
18 C IX, lY - TRUNCATED VALUES OF X, Y RESPECTIVELY.
19 C REPRESENTS THE CORNER OF THE UNIT SQUARE.
20 C W(1),W(2)- X,Y COMPONENTS OF A 3-D DIRECTION VECTOR.
21 C
22 C OUTPUT:
23 C X, Y - X, Y COMPONENTS OF EXIT POINT FROM THE UNIT
24 C SQUARE OR ADJACENT SQUARE.
25 C IX, lY - NEW TRUNCATED VALUES
26 C IFLG - = 0 IF THE PROPER POINT IS RETURNED
27 C = 1 IF W(l) = 0, W(2) = 0
28 C

30 REAL W(3), X, Y
31 INTEGER IFLG, IX, lY
32 C
33 C CONVERT INTEGER VALUES TO REAL FOR INTERNAL COMPARISONS
34 C
35 XI = IX
36 YI = lY
37 C
38 C INITIALIZE IFLG TO 0
39 C
40 IFLG = 0
41 C
^2 C IF BOTH W(l) AND W<2) ARE SMALL IN MAGNITUDE RETURN IFLG=1
43 C THIS INDICATES A STABLE POINT.
44 C
45 W1 = ABS(W( 1 >

)

46 W2 = ABS(W(2)

)

47 IF (W1 . LE. 5. E-6 .AND. W2 . LE. 5. E-6) GO TO 5
48 GO TO 10
49 5 CONTINUE
50 IFLG = 1

51 RETURN

I 36



52 C-
53 C
54 C WHEN W(l) ^= 0 AND W<2) O 0 USE THIS SECTION 1

55 C
56 C
57 10 IF (W1 . GT. 5. E-6) GO TO 19
58 IF (W<2) . LT. 0. ) GO TO 13
59 IF <Y . LT. 0. ) GO TO 12
60 GO TO 16
61 12 IF (Y . LT. YI ) GO TO 17
62 GO TO 16
63 13 IF (Y . LT. 0. ) GO TO 18
64 IF <Y . GT. YI ) GO TO 17
65 GO TO 18
66 C
67 C SET UP THE VERTICAL INTERCEPT Y VALUE
68 C
69 16 YT YI + 1.

70 XT = XI
71 GO TO 800
72 17 YT YI
73 XT XI
74 GO TO 800
75 18 YT YI - 1.

76 XT XI
77 GO TO 800
78 C-
79 C
80 C USE THIS SECTION OF CODE FOR W(l) O 0
81 C

82 C“
83 19 SLOPE = W(2)/W(l)
84 C
85 C STEP IN X TO THE NEXT UNIT BOUNDARY LINE
86 C
87 IF (W< 1 ) . LT. 0. ) GO TO 25
88 C

89 C ENTER HERE IF W< 1 ) >0
90 C
91 IF (X . LT. 0. ) GO TO 20
92 GO TO 28
93 20 IF (X . LT. XI) GO TO 29
94 GO TO 28
95 C
96 C ENTER HERE IF W(l) < 0
97 C
98 25 IF (X . LT. 0. ) GO TO 27
99 IF (X . GT. XI ) GO TO 29
100 C
101 C SET UP THE X VALUE FOR THE BOUNDARY INTERCEPT
102 C

I 37



1 .103 27
104
105 28
106
107 29
103 0

109 C SET
1 10 C

111 30

XT = XI -

GO TO 30
XT = XI + 1.

GO TO 30
XT = XI

UP Y VALUE FOR THE BOUNDARY INTERCEPT

YT = SLOPE * (XT -X) + Y

1 12 C

113 C DOES THE DIRECTED LINE CROSS THE BOUNDARY LINE OUTSIDE OF THE
114 C UNIT SQUARE OF INTEREST?
115 C

1 16 IF (Y . LT. 0. ) GO TO 50
117 IF (W< 2) . GE. 0. ) GO TO 90
113 IF (Y . EQ. YI) GO TO 95
119 GO TO 90
120 50 IF (W( 2) . LT. 0. ) GO TO 95
121 IF (Y . EQ. YI) GO TO 90
122 GO TO 95
123 90 IF (YI + 1 . . GE. YT . AND . YT . GE. YI

)

GO TO 800
124 GO TO 100
125 95 IF (YI . GE . YT . AND. YT . GE. YI - 1. ) GO TO 800
126 C

127 C IF THE BOUNDARY IS CROSSED OUTSIDE OF THE UNIT SQUARE OF
128 C INTEREST FIND THE LARGEST X STEP THAT KEEPS IT WITHIN THE
129 C SQUARE.
130 C

131 100 IF (Y . LT. 0. ) GO TO 130
132 IF (W (2) . GE. 0 . ) GO TO 1 50
133 IF (Y . EQ. YI

)

GO TO 160
134 GO TO 155
135 130 IF (W (2) . LT. 0 . ) GO TO 1 60
136 IF (Y . EQ. YI

)

GO TO 150
137 GO TO 155
138 150 YT YI + 1.

139 GO TO 190
140 155 YT = YI
141 GO TO 190
142 160 YT YI - 1.

143 190 XT = ( 1. /SLOPE) (YT Y )

144 C

145 C

146 C THIS UNIT OF CODE SETS UP THE OUTPUT VARIABLES AND RETURNS
147 C
1 A o r'
1 *4o U

149 800 X = XT
150 Y = YT
151 IX = X

152 lY = Y
153 RETURN
154 END
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5.8 Subroutine WRPIC

5.8.1 Summary

This subroutine transfers NPIXEL number o-f pixels to the

image processor channel refresh memory, with bitmap channel

number in FILE(3), beginning in IROW row and ICOL column and

proceeding to the right. The error flag is not used in this

version. The data is transferred through the array BUF with one

pixel per word. The calling sequence is:

CALL WRPIC (FCB, FILE, BUF, IRDW, ICOL, NPIXEL, lERR)

.

The parameters passed are:

FCB — System Function Control Block.
INTEGER*2 Array

FILE — Array containing the bitmap for
the desired refresh memory in
element 3.
INTEGER Array

BUF ~ A buffer array that contains the
transferred pixel data one pixel
per word.
INTEGER*2 Array

IRDW - Row index from 0 to 511.
INTEGER

ICOL — Column index from 0 to 511.
INTEGER

NPIXEL - Number of pixels to transfer.
INTEGER

IERR - Error flag. Not used.

WRPIC calls the subroutine IMAGE.

I 39



5.S.2 Flow Chart



5.8.3 Listing

1 c *************#************•»•***«•****•«•«•*•«••«••«••«•««»«•***»••»»•*«*•»•*«••«•»•**»**«•*

2 SUBROUTINE WRP IC < FCB, FILE, BUF, IROW, ICOL, NP I XEL, lERR

)

4 INTEGER*2 BUF<NPIXEL), FCB(2048)
5 INTEGER FILE(7)
6 C
7 C IMAGE METROLOGY WRPIC 7/30/80
8 C WRITES FROM DISPLAY DEVICE
9 C FILEO) IS CHANNEL NUMBER

10 C WRITES A ROW FROM LEFT TO RIGHT
11 C
12 CALL IMAGE(FCB, BUF, ICOL, IROW, NPIXEL, 0,

13 *FILEO), -1, 0, 1, 0, 0, 0, 0, 0)
14 lERR = 0
15 RETURN
16 END



5.9 Subroutine RDPIC

5.9.1 Summary

This subroutine transfers NPIXEL number of pixels from the

image processor refresh memory with bitmap in FILE (3) to BUF,

one byte per word, beginning in IRDW row and ICOL column. The

error flag is not used in this version. The calling sequence for

this subroutine is:

CALL RDPIC (FCB, FILE, BUF, IROW, ICOL, NPIXEL, lERR)

.

The parameters passed are:

FCB

FILE

BUF

IRON

ICOL

NPIXEL

I ERR

System Function Control Block.
INTEGER-K-2 Array

Array that contains the bitmap
for the desired refresh memory
in FILE(3)

.

INTEGER Array

Buffer array that receives the
data from the transfer, one
byte per word.
INTEGER*2 Array

Beginning row number of the
refresh memory for data transfer.
INTEGER

Beginning column number of the
refresh memory for data transfer.
INTEGER

Number of pixels to transfer.
INTEGER

Error flag. Not used in this
ver si on

.
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5.9.2 Flow Chart

144



1

5.9.3 Listing
I

1 c *************************»•***•«•»•*****«•**•«•»•«•**«••«**»*****«•»»*»«••«•*•»•»»***•

I

2 SUBROUTINE RDPIC(FCB, FILE, BUF, IROW, ICOL, NPIXEL, lERR)
3 C *************************#*******•«•*»•«•*•«•»•******•«•*•«••«••«•**•»•»••««•«•* *»•»•*«•*«•*

4 INTEGER*2 BUF(NPIXEL), FCB(2048)
5 INTEGER FILE (7)

I 6 C
! 7 C IMAGE METROLOGY RDPIC 7/30/80
I

8 C READS FROM DISPLAY DEVICE

j

9 C FILE<3) IS CHANNEL NUMBER
!

10 C READS A ROW FROM LEFT TO RIGHT
i lie

12 CALL IMAGE(FCB, BUFi ICOL, IROW, NPIXEL, 0,

13 *FILE(3), 255, 0, 1, 0, 0, 0, 0, 1 )

14 C
15 C TEMPORARY FIX FOR UNPACKED READ
16 C
17 DO 10 I=:1,NPIXEL
18 CALL ISBYTE(0, BUF, 2*( I~1 )

)

19 10 CONTINUE
20 C
21 C *#***»******#*#«-*#**-«-*-a-#*****-»--«-'M--«-*

22 C
23 lERR = O
24 RETURN
25 END
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5.10 Subroutine EXTREM

5. 10. 1 Summary

Based upon the direction vector W o-f the rays (either light

or viewer) and the vertices of the rectangle of interest, this

subroutine returns, in the arrays EX,EY, the extreme points seen

by the rays. The calling sequence for this subroutine is:

CALL EXTREM (IWCASE, VRX, VRY, EX, EY, IFL6) .

The parameters passed are:

IWCASE

VRX, VRY

EX , EY

IFLC

A case number that depends on
the signs and magnitudes of
W(i) and W(2)

.

INTEGER

X and Y components of the
vertices of the rectangle of
interest. Starting in the
upper left corner and
proceeding counterclockwise
the vertices are indexed:
( 1 , 1 ), ( 2 , 1 ), ( 2 , 2 ), ( 1 , 2 ).

REAL arrays

X and Y components of the
extreme values. There are
only two in each case.
REAL arrays

Error flag. Set to 1 if
W(l) = N(2) = O, 0 otherwise.
INTEGER

EXTREM does not call any subroutines.



5 . 10.

2

Flow Chart
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300
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400

Set Extreme
Point 1 to (1,1)

and Extreme
Point 2 to (2,2)

lines 72-75



I

5.10.3 Listing

1

2
3
4
5

6
7
8
9

10
11

12
13
14
15
16
17
18
19

C *********************«•»•»••«••«••«•*•«•*«•* *•»•«•*•«•*»•*«••»••»•***•««• -K-****»• -M-

SUBROUTINE EXTREM < I WCASE, VRX, VRY. EX, EY, IFLG)

c
C BASED UPON THE DIRECTION VECTOR W OF THE RAYS OF INTEREST AND
C THE VERTICES OF THE PICTURE RECTANGLE THIS SUBROUTINE RETURNS
C THE EXTREME POINTS SEEN BY THE RAYS IN THE ARRAYS EX, EY
C
C*************************-?*-

REAL VRX(2), VRY(2), EX(2), EY(2)
IFLG = 0

BRANCH ON IWCASE

GO TO <50,100,150,200,250,300,350,400,450), IWCASE
C
C CASE 1: W(1 ) = W(2) = 0
C
50

C

C CASE 3: W(l) = 0, W(2) < 0
C

150

20
21 C

22 C CASE
23 C

24 100
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

IFLG = 1

RETURN

2: W(l) = 0, W<2> > 0

EX(l) =

EY(1) =

EX<2) =

EY<2) =

RETURN

VRX< 1

)

VRY( 1

)

VRX(2)
VRYCl

)

EX<1) =

EY ( 1 ) =

EX(2) =

EY(2) =

RETURN

VRX(2)
VRY(2)
VRX( 1

)

VRY<2)

C

C CASE 4: W( 1 ) >0, W(2)
C

200

0

EX(1) =

EY(1) =

EX(2) =

EY<2) =

RETURN

VRX( 1

)

VRY(2)
VRX( 1

)

VRY( 1

)

C
C CASE 5; W<1) >0, W(2)
C
250 EX(1) =

EY(1) =

EX(2) =

VRX< 1

)

VRY(2)
VRX(2)
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51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

EY(2) = VRY( 1

)

RETURN
C

C CASE 6: W< 1 ) >0, W(2) < 0
C

300 EX(1) = URXC2)
EY(1) = VRY(2)
EX(2> = VRX(l)
EY(2) = VRY(l)
RETURN

C
C CASE 7; W(l) < 0, W<2) = 0
C
350 EX(1) = URX(2)

EY(1) = VRY<1)
EX(2) = VRX(2)
EY(2) = VRY(2)
RETURN

C
C CASE 8: W<1) < 0, W(2) > 0
C
400 EX( 1 ) = URX( 1

)

EY( 1) = URY( 1

)

EX(2) = VRX(2)
EY(2) = VRY(2)
RETURN

C
C CASE 9; W(l) < 0, W<2) < 0
C
450 EX(1) = VRX(2)

EY< 1 ) = VRY( 1

)

EX<2) - YRX(l)
EY<2) = VRY(2)
RETURN
END
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5.11 Subroutine 6ETR0W

5.11.1 Summary

Let the world coordinate point (XO,YO,ZO) be projected to

the screen point (SYO,SXO) by a parallel projection. Note that

the screen coordinate system is an inverted coordinate system so

that SYO represents the row of the projected point. Then the

unit vector KC sitting at (XO,YO,ZO) is directed in such a way

that its coefficients represent an increment or decrement of a

row number from the initial row set by SYO. The calling sequence

is:

CALL GETRGW (XO, YO, ZO, SYO, K, X, Y, Z, SY) .

The parameters passed are:

Components of the center of
solid of interest.
REAL

Projection row of
XO,YO,ZO on the viewplane,
REAL

Unit vector directed in
such a way that coefficients
index screen rows.
REAL Array

Point for which row must be
found

.

REAL

Screen row for X,Y,Z.
REAL

XO, YO, ZO

SYO

K

X,Y,Z

SY

GETROW calls no subroutines.



11.2 Flow Chart



oj

n

5.11.3 Li sting

1 C*******************#****-®'-^-'^****-^-**'^**-^*****'^^***^********-^*#**#*-^'***
2 SUBROUTINE GETRGW ( XO, YO, ZO, SYO, K, X, Y, Z. SY

)

3 C****************'**-**************'^*-*^*******#*-^****-*^-***************-^**
^ C
5 C ASSUME THAT AT THE VECTOR (XO, YO, ZO> THE UNIT VECTOR IS

C DIRECTED IN SUCH A MANNER THAT ITS COEFFICIENT REPRESENTS
7 C A ROW NUMBER OF THE MONITOR.
S C
^ C ***»•***•«•**•«•»•*•»•««•«• «--K--^'K'*#»*************'«'***#****-»-*****^*-**********#**-«-

REAL XO, YO, ZO, SYO, K(3), X. Y, Z, SY
SY = SYO + (X~XO)*K(l) + <Y~Y0)-»K(2) + (Z-Z0)*K<3)
RETURN
END



5. 12 Subroutine GETZ

5. 12. 1 Summary

Given a paint <X,Y) on the world coordinate 2=0
plane, thiB subroutine returns the Z value at (X,Z) on a directed

line row indexed by V. The calling sequence -for this subroutine

is:

CALL GETZ (X, Y, V, K, Z) .

The parameters passed are:

X,Y - Components of the 2=0
plane point.
REAL

V - Row index specified.
REAL

K - Vector used to index rows
on the viewplane.
REAL Array

Z - Height of ray above (X,Y).
REAL

GETZ does not call any subroutines.
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5. 12. 3 Li sting

1

2
3
4
5

6
7
8
9
10
11
12

RETURNS THE Z-VALUE AT (X>Y) ALONG

C*******************************************************************
SUBROUTINE GETZ ( X. Y, V. K. Z

)

Q #******•«*«•*«••«••«*»•»•»••«•****************

C
C GIVEN (X^Y) THIS SUBROUTINE

C THE RAY INDEXED BY V

C»«»*»*»***»»**»***»»*»»***»»***************************************
REAL X, Y, V. K(3), Z

Z = (l./K(3)) •»• (V - X*K(1) - Y-«-K(2))

RETURN
END
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5.13 Subroutine GETR

5. 13. 1 Summary

Given (X,Y,Z) in the world coordinate system, this

subroutine returns the multiple of the unit vector W pointing

along the ray that intercepts the <X,Y,Z) point. The calling

sequence for this subroutine is:

CALL GETR (X, Y, Z, W, R) .

The parameters passed are:

X,Y,Z — World coordinate point.
REAL

W - Unit vector pointing
along rays.
REAL Array

R - Multiple of W-vector.
REAL

GETR does not call any subroutines.
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5 . 13 Li sting

1 C**********-*t-«--«-*****-K-*-5<-****-»'*-«--«-********-*^*******-»-*-»--«-***-«'****** ****«•**•«

2 SUBROUTINE GETR(X, Y, Z, W. R)
3 C*********************-i*'***-«-*****-*«‘*****************'5*'*******-K-**-*^-*****-K-

4 c
5 C GIVEN (X,Y, Z) RETURN THE MULTIPLE OF THE W VECTOR RAY THAT
6 C INTERCEPTS THE POINT
7 C
8 C****-«-*****-5*-**-»-***#***«-***-»-**-5^********-»-*-»-**'K-*-»-*****-»-***-»-*-M-**-»-**-«-*->*-»'

9 REAL X, Y, 1, W(3), R
10 R = X*W<1> H- Y*W(2) + Z*W(3)
1 1 RETURN
12 END



5. 14 Subroutine GETV

5. 14. 1 Summary

Given a point <X,Y,Z) in the world coordinate system,

this subroutine returns the multiple of the K-vector that indexes

the ray that intercepts (X,Y,Z). The calling sequence for this

subroutine is:

CALL GETV (X, Y, Z, K, V) .

The parameters passed are:

X,Y,Z “ World coordinate point.
REAL

K - Vector used to index rays
in a vertical column of
the viewplane.
REAL Array

V - Multiple of K that indexes
the vector.
REAL

GETV does not call any subroutines.



5 . 14.2 Flow Chart



5. 14.3 Li sting

1 C*************-^-***********************-**-*****-^'*************'^-*********
2 SUBROUTINE GETV(X, Y, Z, K, V)

3 c****-*^**************************************************-®-****-**-******
4 C

5 C GIVEN (X,Y, Z) RETURN THE MULTIPLE OF THE K VECTOR OF THE RAY
6 C THAT INTERCEPTS THE POINT
7 C

g c*********************************-^*********************************
9 REAL X, Y, Z, K(3), V

10 V = X*K(1) + Y*K(2) + Z*K(3)
11 RETURN
12 END



5-15 Subroutine GETH

5. 15. 1 Summary

Given a point (X,Y,Z) in the world coordinate system,,

-4 “4

this subroutine returns the multiple of the Kx^ vector for the

ray that intercepts the point. In effect this selects the column

or plane of rays that intersects (XjY,!), The calling sequence

for this subroutine is:

CALL GETH (X, Y, Z, KXia, H) .

The parameters passed are:

X,Y,Z — Components of the world
coordinate system point-
REAL

KXW " Vector orthogonal to the
K vector and lying in the
vi ewpl ane,
REAL Array

H - Multiple of KXW.
REAL

GETH does not call any subroutines.
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5. 15.2 Flow Chart
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5.15.3 Li sting

1 C*************************^*****************************************
2 SUBROUTINE GETH(X, Y, Z> KXW, H)

4 C
5 C GIVEN <X,Y, Z) RETURN THE MULTIPLE OF THE KXW VECTOR OF THE RAY
6 C THAT INTERCEPTS THE POINT
7 C

8 C*********'^-***-**-****-)*-*****************-!*-*******-*--^-********-^*-**#*******#*
9 REAL X, Y, Z. KXW<3), H

10 H = X*KXW(1) + Y*KXW(2)
11 RETURN
12 END



5. 16 Subroutine GETXYZ

5. 16. 1 Summary

Let (SYOjSXO) be the orthogonal projection screen

coordinates o-f the point (XO,YO,ZO) in the world coordinate frame

of reference. Let (SY,SX) be a given screen coordinate. This

subroutine transforms the screen point (3Y,SX) into its

associated world coordinate system point (X,Y,Z). The calling

sequence for this subroutine is:

CALL GETXYZ (XO, YO, 10 , SYO, SXO, SY, SX, K, KXkS, X, Y, Z) .

The parameters passed are:

XO, YO, ZO

SYO, SXO

SY,SX

K

KXW

X,Y,2

Center of solid of interest.
REAL

Screen coordinates of the
projection of X0,Y0,20.
REAL

Screen coordinates of the
selected screen point.
REAL

Vector used to select
screen row.
REAL Array

Vector used to select
screen column.
REAL Array

World coordinate point
associated with Sy,SX.
REAL

GETXYZ does not call any subroutines.
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5. 16.2 Flow Chart
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5.16.3 Listing

1 C*******'^'*-^******#**************-^-******-#-*************'^****'^--^-)*--}*-******
2 SUBROUTINE GETXYZ(XO, YO, ZO, SYOi SXO, SY. SX, K, KXW, X, Y, Z)

4 C

5 C LET (SYOiSXO) BE THE ORTHOGONAL PROJECTION SCREEN COORDINATES
6 C OF THE POINT (XO, YO, ZO) IN THE WORLD COORDINATE FRAME. LET
7 C (SY. SX) BE A GIVEN SCREEN COORDINATE. FIND THE ASSOCIATED
8 C WORLD COORDINATE POINT (X.Y.Z)
9 C

10
11 REAL XO, YO, ZO, SYO, SXO, SY, SX, K(3), KXW(3), X, Y, Z

12 Cl = SY - SYO
13 C2 = SX - SXO
14 X = XO + C1*K<1) + C2*KXW< 1

)

15 Y = YO + C1*K(2) + C2»KXW(2)
16 Z ^ ZO + C1#K(3) + C2*KXW(3)
17 RETURN
IS END
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5.17 Subroutine WCASE

5. 17. 1 Summary

This subroutine returns an index number from 1 to 9 i

the variable IWCASE. This index points to each possible case

combination ot the -first two components o-f the W-vactor that

points along rays. The vector (W(1),W(2)) represents the

direction vector o-f the projected directed line through W onto

the Z=0 plane in the world coordinate space. The calling

sequence for this subroutine is:

CALL WCASE (W, IWCASE) .

The parameters passed are:

W - Direction vector pointing
along rays.
REAL Array

IWCASE - Case number from 1 to 9.

INTEGER

WCASE does not call any subroutines.



5.17.2 blow Chart
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I 5.17.3 Listing
I

1 c »•***************************•»•»*****•«*•«•**•»••«•***•***»••«•**•«•«»*•«•»•**»•*****«•*

2 SUBROUTINE WCASE(W, IWCASE)
3 C **********************•«•**•«•********•«•***•»*«•***•«•»•**»••«•***•«•***«•**«•«***«*

4 C

5 C FUNCTION:
6 C TO RETURN. AN INDEX, IWCASE, THAT POINTS TO EACH POSSIBLE CASE
7 C COMBINATION OF THE FIRST TWO COMPONENTS OF THE W-VECTOR WHICH
S C POINTS ALONG THE RAYS

I 9 C

10 C ****************»***»•***»••»•»••!*•*•«••«****•»••»•*•»•«•**•»•*•«••«•«••»••«*«•*•«***-»••«»•«•*•»* -K-

*

11 REAL W(3)
12 IF (ABS(W(1)) . GE. 5. E-6) GO TO 10

13 IF (ABS(W(2)) . GE. 5. E-6) GO TO 5

14 IWCASE = 1

15 RETURN
16 5 CONTINUE
17 IF (W(2) . LT. 0. ) GO TO 7
18 IWCASE = 2
19 RETURN
20 7 IWCASE = 3
21 RETURN
22 10 IF (W( 1 ) . LT. 0. ) GO TO 20
23 IF (ABS<W(2)) . GE. 5. E-6) GO TO 15
24 IWCASE = 4
25 RETURN
26 15 IF (W(2> . LT. 0. ) GO TO 17
27 IWCASE = 5
28 RETURN
29 17 IWCASE = 6
30 RETURN
31 20 IF (ABS(W(2)) . GE. 5. E-6) GO TO 25
32 IWCASE = 7
33 RETURN
34 25 IF (W(2) . LT. 0. ) GO TO 27
35 IWCASE = 8
36 RETURN
37 27 IWCASE = 9
38 RETURN
39 END
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5.18 Subroutine XYIN

5. 18. 1 Summary

As the projections o-f the illuminating rays or viewing trace

lines on the plane Z=0, some of the lines intersect the rectangle

o-f interest. In the case o-f the shadowgraph, this rectangle is

the base o-f the entire picture. In the case of the solid

projection, it is the user selected rectangle. Assume that some

projected ray enters the rectangle at (X,Y). This subroutine

returns the next entry point or flags that an extreme point has

been met. The calling sequence for this subroutine is:

CALL XYIN (IWCASE, EX, EY, IXIN, lYIN, XIN, YIN, IFLB) .

The parameters passed through the calling sequence are:

ON INPUT -

IWCASE

EX,EY

IXIN, lYIN

XIN, YIN

The case index for W.
INTEGER

Two element arrav's representing
extreme paints.
REAL Arrays

On entry to the subroutine these
represent the current entry
point to the rectangle.
INTEGER

Real values of IXIN,IYIN,
REAL

N OUTPUT -

IXIN, lYIN — On output, these represent the
next entry point.
INTEGER

XIN, YIN - Real values of IXIN,IYIN.
REAL



IFLG 0 if a new entry point
is returned.

= 1 if W(l) = W(2) = 0.
==2 if the extreme point

EX (2) ,EY(2> is met.

XYIN does not call any subroutines
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5. 18 Li sting
5:

5-

5

1 c************-**-*****************************************************’! 5

2 SUBROUTINE XYIN( IWCASE, EX, EY, IXIN, lYIN, XIN, YIN, IFLG) S

3 ***«#**#***»****##**#*#***«••«•«•«•«••«*»••«••«•»•«•*•»•»•«•***«••«•«•#•«•»•»•**•«••«•»{•»»•«**•«•«•)
!

4 C !

5 C FUNCTION: I

6 C GIVEN THE CURRENT X, Y ENTRY POINT TO THE RECTANGLE OF INTEREST
7 C THIS SUBROUTINE RETURNS THE NEXT ENTRY POINT OR FLAGS THAT
a C AN EXTREME POINT HAS BEEN ENCOUNTERED.
9 C

10 C INPUT:
11 C IWCASE - CASE INDEX FOR THE VECTOR W
12 C EX, EY - TWO ELEMENT ARRAYS OF EXTREME POINTS
13 C IXIN, I YIN- ON ENTRY TO THE SUBROUTINE THESE REPRESENT THE
14 C CURRENT ENTRY POINT TO THE RECTANGLE
15 C XIN, YIN - REAL VALUES OF IXIN, lYIN
16 C
17 C OUTPUT:
13 C IXIN, I YIN- ON OUTPUT THESE REPRESENT THE NEXT ENTRY POINT
19 C XIN, YIN - REAL VALUES OF IXIN, lYIN
20 C IFLG - = 0 IF A NEW ENTRY POINT IS RETURNED
21 C = 1 IF W(l) = W<2) = 0
22 c = 2 IF THE EXTREME POINT EX(2),EY(2) IS MET
23 c
24
25 REAL EX (2), EY<2) (

26 c i

27 c INITIALIZE FLAG
23 c
29 IFLG = 0 !

30 c
31 c BRANCH TO THE CASE FOR THE CURRENT W - VECTOR
32 c
33 GOTO (50,100,150,200,250,300,350,400,450), IWCASE
34 c

i

35 c CASE 1: W(l) =W<2) =0
36 c
37 50 IFLG = 1

33 RETURN
39 c
40 c CASE 2: W(l) = 0, W<2> > 0
41 c
42 100 lEX = EX(2)
43 IF (IXIN . LT. lEX) GO TO 110
44 IFLG = 2
45 RETURN
46 110 IXIN = IXIN + 1

47 XIN = IXIN
43 RETURN
49 C
50 C CASE 3: W(l) =0, W(2) < 0
51 C
52 150 lEX = EX(2)
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
SO
81
82
S3
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

IF ( IXIN . GT.

IFLG = 2
RETURN

lEX) GO TO 170

170 IXIN = IXIN -

XIN = IXIN
RETURN

1

C

C CASE
C

4: W<1) > 0, 14(2) = 0

200 lEY = EY<2)
IF ( lYIN . GT.

IFLG = 2
RETURN

lEY) GO TO 230

230 lYIN = lYIN -

YIN = lYIN
RETURN

1

C
C CASE
C

5: W(l) > 0, N(2) > 0

250 lEX = EX (2)
lEY = EY(2)
IF ( lYIN . GT. lEY) GO TO 285
IF (IXIN . LT.
IFLG = 2
RETURN

lEX) GO TO 290

285 lYIN = lYIN -

YIN = lYIN
RETURN

1

290 IXIN = IXIN +

XIN = IXIN
RETURN

1

C

C CASE
C

'

6: W(l) > 0, N<2) < 0

300 lEX = EX(2)
lEY = EY<2)
IF ( IXIN . GT. lEX) GO TO 345
IF ( lYIN . GT.
IFLG = 2
RETURN

lEY) GO TO 348

345 IXIN = IXIN -

XIN = IXIN
RETURN

• 1

348 lYIN = lYIN -

YIN = lYIN
RETURN

• 1

C
C CASE
C

7: W(l) < 0, N(2) = 0

350 lEY = EY(2)
IF ( lYIN . LT.
IFLG = 2
RETURN

lEY) GO TO 360
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106
107
108
109
no
111
112
113
1 14
115
116
117
1 IS
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

360 lYIN = lYIN + 1

YIN = lYIN
RETURN

C
C CASE 8: W(l) <0,
C
400 lEX = EX(2)

lEY = EY(2>
IF (IXIN . LT.

IF ( lYIN . LT.
IFLG = 2
RETURN

435 IXIN = IXIN +
XIN = IXIN
RETURN

440 lYIN = lYIN +
YIN = lYIN
RETURN

W(2) > 0

lEX) GO TO 435
lEY) GO TO 440

1

1

C
C CASE 9: W(l) < 0, W<2> < 0
C
450 lEX = EX(2)

lEY = EY(2)
IF (lYIN . LT. lEY) GO TO 475
IF (IXIN . GT. lEX) GO TO 480
IFLG = 2
RETURN

475 lYIN = lYIN + 1

YIN = lYIN
RETURN

480 IXIN = IXIN - 1

XIN = IXIN
RETURN
END
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5.19 Subroutine PUTFIL

5. 19. 1 Summary

This subroutine opens a new -file in mass storage and

transfers an image of 512 records by 512 bytes per record. The

user interactively specifies the file name for the new file prior

to the subroutine opening it. The calling sequence for the

subroutine is:

CALL PUTFIL (FCB, BUFFER, TABLE, CHANLB) .

The parameters passed are:

FCB System Function Control Block.
INTEeER»2 Array

BUFFER System buffer array.
INTEGER*2 Array

TABLE Refresh Memory Channel to use:
1, 2 or 3.
INTEGER*2

CHANLS Bitmap for refresh memory
specified in TABLE.
INTEBER*2

PUTFIL calls the following subroutines:

ZBUFF
IMAGE
SYS 10
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5.19.2 Flow Chart
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5.19.3 Listing

1

2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25i

26
27
28
29
30
31
32
33

SUBROUTINE PUTFIL (FOB, BUFFER, TABLE, CHANLS)
C************#***************************-**************************

INTEGER*2 FOB (2048), BUFFER (2048) , CHANLS(16), TABLE (16)

_ _ JNTEGER CHC0DE,^PBj.K(8) „ _ _ _
“ CHARACTER*!6^^

C
C
C

10

GET THE PICTURE FILE NAME

NAME OF THE FILE
CHARACTERS. ')

YOU WISH TO CREATE , '/

WRITE(5, 10)
FORMAT(' ENTER THE

1 ' MAX OF 16
READ(5, 11) FD

11 F0RMAT(C16)
C
C OPEN THE FILE TO UNIT 4
C

OPEN (4, FILE^FD, STATUS^ 'NEW ACCESS= 'SEQUENTIAL ',

1 FOR M== 'UNFORMATTED', RECL=512, BLOCKSI 2E=512, IOSTAT=IOS)
IFdOS . EQ. 0) GO TO 15
WRITE(5, 12) lOS
FORMAT(' lOSTAT ON OPENING
STOP
CONTINUE

12

15
C
C
C

THE FILE =', 14)

SET UP FILE SIZE

NBYTES = 512
NREC = 512

GET THE CHANNEL CODE

CHCODE = CHANLS(l)
34 C
35 C TRANSFER RECORD AT A TIME
36 C
37 DO 20 1=1, NREC
38 CALL ZBUFF( BUFFER, 2048)
39 CALL IMAGE(FCB, BUFFER, 0, 1-1, NBYTES, 0, CHCODE, -1, 1, 1, 0,

40 1 0, O, 0, 1 )

41 CALL SYSIO(PBLK, Y' 38', 4, BUFFER, NBYTES, 0)
42 20 CONTINUE
43 C
44 C CLOSE THE FILE
45 C
46 CL0SE(4)
47 RETURN
48 END
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APPENDIX A

IMAGE PROCESSOR FUNCTIONS

A. 1 Summary of Operations

Image data can be transferred from the host computer to any

one of three refresh memories either directly or by way of an

input function memory. See Figure Al. The task of the input

function memory is to directly control the scaling of data in

order to ensure that it falls within the 0-255 range, or 8 bits.

Once in the refresh memory, it remains there unchanged. Actual

image processing is performed by controlling the individual

pipeline processor channels, the feedback unit, the histogram

generator and the graphics channel.

The individual pipeline processors contain several hardware

capabilities. See Figure A2. Along with the ability to scroll

an image and change magnification through the zoom hardware, the

user may transform the image signals by loading the look-up

tables and the output function memory. These, along with the

Min—Max register, the constant register and range register, give

the user several ways to control the image output to the monitor.

A, 2 Some Detailed Capabilities

A. 2.1 Input Function Memory

This is a host programmable look-up table that is applied to

the data as it is transferred to a refresh memory or graphics

memory, both from the host or during an image feedback operation.

It is an optional look-up table and can be bypassed if the
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programmer so chooses. It is used to compact data ot up to 13

bits to numbers of 8 bits or -fewer and speeds up processing by

not requiring data to be scaled in the host computer.

A. 2. 2 Refresh Memory

Each refresh memory consists of 512 x 512 x S bits of random

access data storage. This allows the host computer to access any

pixel (or bit within a pixel) randomly. Images may be read or

written vertically or horizontally by incrementing the location

addresses either by rows or columns.

A. 2. 3 Pipeline Processor Channel

The three parallel pipeline processing channels can perform

array arithmetic for each of the three primary colors. Any

refresh memory channel (or any combination of refresh memory

channels) can be assigned to any of the pipelines (which in turn

supply the RGB primary color). The pipelines can add, subtract,

multiply and divide image data at real-time rates. The internal

capabilities of the pipeline processors will be detailed below.

A. 2. 3.1 Pipeline Look-Up Tables

Three 1 ook-upi^ tabl e memories are provided with each pipeline

channel, giving a total of nine. One look-up table in each

pipeline channel affects its associated refresh memory. These

look-up tables (LUT's) are one of the two programmable processing

elements following the refresh memories. The data for the LUT's

is loaded by the host computer. The tables are used to implement
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the four basic arithmetic processes at real-time rates as well as

affect image contrast.

A. 2- 3. 2 The Adder Array

This takes the two's complement sum of the look-up table

outputs. Three sets are available, one for each primary

pi pel i ne.

A. 2. 3. 3 Output Function Memory

Each pipeline contains an output function memory which

transforms the outputs of the range registers to generate the

final red, green and blue data streams.

A- 2. 3. 4 Min-Max Registers

The Min-Max registers examine the data stream as it emerges

from the adder array and determines the dynamic range of the data

by finding the minimum and maximum pixel values. These registers

are read by the host computer and are used in determining how to

set the range register to process the data by the output function

memory.

A. 2. 3. 5 Range and Constant Registers

The range registers are used to reduce the data stream from

the adder array to a stream for the output function memory. The

constant register allows the addition and subtraction of a

constant from the data stream before it enters the range

register

.
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A. 2. 3. 6 Hardware Zoom

This allows magni -f i cat i on by way of pixel replication of the

displayed image by a factor of 2, 4 or S around an arbitrary

location. The specification of the center point of the area to

be magnified and the magnification factor is accomplished from

the host computer. Zoom is nondestructive, in that the original

data in the refresh memory is not destroyed.

A. 2. 4 Color Monitor

This monitor provides both full color and monochrome

presentation.

A. 2. 5 Graphics Refresh Memory

This memory consists of five 512 x 512 one-bit graphics

overlay planes. They are treated as an additional refresh memory

for the purposes of reading and writing from the host computer.

The graphics data, along with the cursor data stream, are fed to

the graphics multiplexor. Under program control, this

multiplexor can select between displaying graphics or graphics

with cursor superimposed.

A. 2. 6 Programmable Cursor

The host computer can command the cursor position or read

back the cursor position at any time. The cursor can be

displayed with a constant intensity or blinked. The host

computer can also link the cursor position to the trackball unit.
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A. 2. 7 Trackball

The trackball is used to selectively control the X-Y

position ot the cursor on the monitor screen. It is designed to

allow the user to move the cursor in one pixel increments. Four

function buttons are provided on the trackball housing. When

pushed, the buttons indicate a state change to the host. These

states are stored in a register that can be read by the host

computer

.

A.2.S Color Assignment Function Memory

This assigns one of the possible 32,768 colors to each

graphics plane and dynamically changes the assigned colors under

programmatic control as the graphics planes overlay each other.

The host computer can program the graphics colors by loading a

map into the color assignment function memory. This map defines

what color is to be displayed when any one graphics plane is on

and also defines a different color to be displayed for each of

the possible graphics plane combinations. The ability to

dynamically change color assignments for overlapping regions

guarantees that each graphics overlay can be distinguished from

other graphics overlays at all times.

A- 2.

9

Histogram Generator

This unit is sometimes called a videometer and is a

processing unit that rapidly computes the grey level histogram of

the processed data streams just prior to their conversion to
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video signals at the output o-f a pipeline. It can generate the

histogram of the entire image or of a defined subarea of the

i mage.

A. 2. 10 Feedback

Except for the image data scaling performed by the Input

Function memory, various transformations performed in the

hardware do not actually modify the image data which is stored in

the refresh memory. If the user wishes to retain the actual

processed image data, it may be transferred back by the feedback

unit to a refresh memory by way of the Input Function memory.

This capability allows the processor to perform iterative

operations on an image.
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APPENDIX B

SYSTEM SUPPORT PROGRAMS

This appendix is devoted to listing the names, functions,

calling sequences and the relevant comment portions of the system

specific source programs used in the solid generation program.

These programs are not available for public use and depend on the

archi tectures of the image processor and the host computer

facility. This section is presented so that anyone desiring to

implement the SOLID program can understand the functions

performed by the various calls not fully documented in this

volume. The subroutine calls are divided into image processor

subroutines and host computer subroutines.

B. 1 Image Processor Subroutines

B.l.i Subroutine BCHAN

This subroutine blanks an image channel. It is used to turn

off a channel link to the monitor.

SUBROUTINE BCHAN (FOB, BUFFER, CHCODE, BITPLN)

ROUTINE TO BLANK IMAGE CHANNELS

CHCODE = BIT MAP FOR CHANNELS TO BE BLANKED

INTEGER CHCODE, BITPLN
INTEGER VRSION
INTEGER *2 FCB ( 1 )

,

BUFFER (1)
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B.1.2 Subroutine CRCTL

This subroutine reads or writes the cursor control register.

This register is used to enable or disable the cursor

-

SUBROUTINE CRCTL (FCB, ON, RATE, LI NKX , LI WKY, BUTTON, BEEP,
1 MOVE , VRTRTC , READ

)

SUBROUTINE READS OR WRITES THE CURSOR CONTROL REGISTER.

ARGUMENT DECLARATIONS:

INTEGER ON, RATE, L I NKX, LINKY
INTEGER*2 FCB ( 1

)

INTEGER VRTRTC , READ , MOVE , BEEP , BUTTON

ARGUMENT DESCRIPTIONS:

ON
RATE

LINKX

LINKY

BEEP
MOVE
BUTTON
READ

O TURNS CURSOR OFF, 1 TURNS CURSOR ON
0 CURSOR STEADY,
1 FAST BLINK,
2 MEDIUM BLINK,
3 SLOW BLINK.
0 CURSOR STATIONARY IN THE X DIRECTION,
1 CURSOR X POSITION CONTROLLED BY TRACKBALL
0 CURSOR STATIONARY IN THE Y DIRECTION,
1 CURSOR Y POSITION CONTROLLED BY TRACKBALL
O => ENABLE BEEPER, 1 => DISABLE BEEPER
0 => NO MOVEMENT, 1 => CURSOR HAS MOVED (READ ONLY)
BUTTON WORD (READ ONLY)
0 IMPLIES WRITE, 1 IMPLIES READ.
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B.1.3 Subroutine DADRS

This subroutine converts display channel numbers to display

channel masks. A channel mask represents a 1 in a register bit

that addresses the desired re-fresh memory.

SUBROUTINE DADRS (CHMASK, CHANNG, CHCODE, NBANDS)

INTEGER CHCODE, NBANDS
INTEGER-»t2 CHMASK ( 1 ) , CHANNO ( 1

)

SUBROUTINE TO CONVERT DISPLAY CHANNEL NUMBERS <0 THRU 15)
TO DISPLAY CHANNEL MASKS (A 1 IN THE CORRESPONDING BIT)

CHMASK - INTEGER ARRAY IN WHICH DISPLAY CHANNEL MASKS ARE
RETURNED

CHANNO - INTEGER ARRAY CONTAINING DISPLAY CHANNEL NUMBERS TO
BE CONVERTED

CHCODE - INTEGER MASK WHICH IS THE LOGICAL OR OF ALL DISPLAY
CHANNEL MASKS

NBANDS - NUMBER OF DISPLAY BANDS
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B.1.4 Subroutine DCURS

This subroutine turns on the programmable cursor and de-fines

its shape.

SUBROUTINE DCURS (FCB, BUFFER, SHAPE, SIZE)

SUBROUTINE TO GENERATE THE PROGRAMMABLE CURSOR

INTEGER SHAPE
INTEGER*2 FCB ( 1

)

REAL SIZE

SHAPE: 1 => SQUARE
2 CIRCLE
3 PLUS
4 => CROSS
5 BLANK CURSOR

SIZE: PARAMETER DEFINING THE SIZE OF THE CORRESPONDING
CURSOR SHAPE. SQUARE « HEIGHT, CIRCLE DIAMETER,
PLUS = HEIGHT, CROSS ^ HEIGHT.

B.1.5 Subroutine DEXEC

This subroutine clears the Function Control Block of all

commands.

SUBROUTINE DEXEC CFCB)
INTEBER*2 FCB (41)

THIS ROUTINE IS USED TO DUMP ANY DATA
STILL RESIDING IN THE BUFFER TO THE
MODEL 70. IF BUFFER IS NOT BEING USED,
THE ROUTINE RETURNS IMMEDIATELY TO THE
CALLING PROGRAM.

FCB LAYOUT

FCB(1

)

FCB (2)

FCB (3)

FCB (4)
FCB (5)

FCB (6)

FCB(7)
FCB(41

)

- "B"
= BUFFER SIZE
= NUMBER OF WORDS IN BUFFER
= DUMP FLAG
= SAVE AREA FOR BUFFER SIZE DURING DUMP
= FCB (40) RESERVED
= BUFFER AREA

I
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B.1.6 Subroutine DPLUS

This subroutine is used to draw a plus mark at a specified

point in the graphics memory.

SUBRDUTI^4E DPLUS (FCB, BUFFER, CHANNL, PLANES, X, Y, SIZE)

INTEGER CHANNL, PLANES, X, Y, SIZE
INTEGER*2 FCB ( 1 ) , BUFFER < 1

)

SUBROUTINE TO WRITE A PLUS AT (X,Y) POSITION

PARAMETERS:

CHANNL - MASK OF CHANNELS TO WRITE
PLANES - MASK OF BIT PLANES TO WRITE
X - X POSITION (O RED
Y - Y POSITION (O RED
SIZE - WIDTH OF PLUS

B.1.7 Subroutine DUNIT

This subroutine initializes the look-up tables tor the

channel specified and sets various registers needed in order to

display an image.

SUBROUTINE DUNIT (FCB, BUFFER, CHANL3, NCHAN, LEVELS)

THIS ROUTINE REESTABLISHES THE DISPLAY ENVIRONMENT
REQUIRED IN ORDER TO DISPLAY THE CONTENTS OF THE
REFRESH MEMORIES WITHOUT ANY RADIOMETRIC CHANGES.

GLOBAL VARIABLES

FCB - AN Ih4TEGER ARRAY FOR SYSTEM DEPENDENT INFO

BUFFER - A 1024+ WORD INTEGER ARRAY USED AS A WORK
AREA FOR THE DESIRED PROCESSING.

CHANLS - AN INTEGER ARRAY CONTAINING THE CHANNEL
NUMBERS OF THE CHANNELS TO BE PROCESSED.

N CHAN - THE NUMBER OF CHANNELS TO BE PROCESSED.
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LEVELS THE NUMBER OF QUANTIZATION LEVELS
FOR WHICH THE REFRESH MEMORIES ARE
CONFIGURED. FOR S BIT MEMORIES,
LEVELS = 2**8 = 256.

INTEGER*2 FCB(l)

,

BUFFER ( 1 ) , CHANLS ( 1

)

INTEGER NCHAN, LEVELS

B.l.S Subroutine DVECT

This subroutine is used to draw a line between two points in

the graphics memory.

SUBROUTINE DVECT (FCB, XI, Yl, X2, Y2, CHCODE,
1 PLCODE, BUFFER)

USED TO DRAW A LINE BETWEEN THE POINT (X1,Y1) AND THE
POINT (X2,Y2).

INPUTS

FCB

PLCODE

BUFFER

XI, Yl
X2, Y2
CHCODE

ARRAY FOR SYSTEM DEPENDENT INFO.
THE STARTING COORDINATES
THE ENDING COORDINATES
BIT MAP DESIGNATING IMAGE CHANNEL (S) TO
BE FILLED IN? WILL USUALLY BE 2**15 FOR
GRAPHICS (CHANNEL NUMBER 15)
BIT-PLANE BITMAP (I.E.

,

4 => PLANE 2
(ZERO REL. )

)

ARRAY WHOSE ELEMENTS CONTAIN THE WORDS TO
BE WRITTEN (I.E., BUFFER(K) = -1 OR
BUFFER (K) = 0 FOR WHITE QR BLACK
RESPECTIVELY)

.

256 ELEMENTS SHOULD BE LOADED.

INTEGER XI, Yl, X2, Y2, CHCODE, PLCODE
I NTEGER*2 BUFFER ( 1 ) , FCB ( 1

)
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i B.i.9 Subroutine GRAFE

This subroutine controls any input and output to the

graphics control registers. Its function is to enable or disable

the graphics display.

SUBROUT I NE GRAFE ( FOB , DCURSR , DV I DEO , DGRAPH , BLOTCH , STATUS

,

1 STVID, VRTRTC,READ>

SUBROUTINE WRITES THE GRAPHICS CONTROL REGISTER.

ARGUMENT DECLARATIONS:

INTEGER READ, STVID, VRTRTC
INTEGER*2 FCB ( 1

)

INTEGER DCURSR, DVIDEO, DGRAPH, BLOTCH, STATUS

ARGUMENT DESCRIPTIONS:

DCURSR -

DVIDEO -

DGRAPH -

BLOTCH -

STATUS “

STVID -

READ

DISABLES CURSOR OPTION AND SWITCHES IN GRAPHICS PLANE 7
UNCONDITIONALLY TURNS SCREEN BLACK
TURNS OFF ALL GRAPHICS CAPABILITY INCLUDING CURSOR
SELECT BLOTCH PLANE
SELECT STATUS PLANE
SETS STATUS VIDEO ON
READ GRAPHICS REGISTER WHEN SET

B.1.10 Subroutine IMAGE

This subroutine writes data from the host computer to a

refresh memory or reads a refresh memory in order to transfer

data to the host.

SUBROUTINE IMAGE
1

4

(FCB, PIXELS,
XINIT, YINIT, NPIXEL, DIRECT,
CHANNL, PLANES,
PACKED, BYPIFM, BYTE, ADDWRT, ACCUM,
VRTRTC, READ)

SUBROUTINE READS OR WRITES IMAGE DATA.
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ARGUMENT DECLARATIONS:

INTEGER BURST, XiNIT, YINIT, NPIXEL, DIRECT
I NTEGER*2 FCB < 1 ) , PI XELS ( i

>

INTEGER CHANNL, PLANES
I NTEGER PACKED , BYP I FM , BYTE , ADDWRT , V I DORD , ACCUM , VRTRTC , READ

ARGUMENT DESCRIPTIONS:

PIXELS - AN INTEGER ARRAY TO RECEIVE/CONTAIN THE IMAGE DATA
XINIT - THE X-COORDINATE OF THE FIRST PIXEL TRANSFERRED

(O RED
YINIT - THE Y-CDORDINATE OF THE FIRST PIXEL TRANSFERRED

(O RED
NPIXEL - THE TOTAL NUMBER OF PIXELS TO TRANSFER
DIRECT - 0 IMPLIES READ/WRITE PROCEEDING TO THE RIGHT,

1 IMPLIES READ/WRITE PROCEEDING DOWNWARD
CHANNL - A BIT MAP SELECTING THE CHANNEL (S) TO READ/WRITE:

1 -> IMAGE O
2 -> IMAGE 1

4 -> IMAGE 2
ETC

16384 -> IMAGE 14
-32768 -> IMAGE 15 (GRAPHICS)

WHEN WRITING ONLY, THESE CODES MAY BE COMBINED
TO WRITE THE SAME DATA INTO TWO OR MORE CHANNELS.
FOR EXAMPLE, CHANNL = -32758 WOULD MEAN CHANNELS
1, 3, 15

PLANES - A BIT MAP SELECTING THE BIT PLANES TO READ/WRITE,
NORMALLY -1, IE. ALL BITS. THE EXCEPTION TO THIS
RULE IS WHEN WRITING IN THE GRAPHICS CHANNEL

PACKED - 0 IMPLIES 1 BYTE/WORD, 1 IMPLIES 2 BYTES/WORD
BYPIFM - O IMPLIES USE IFM, 1 IMPLIES BYPASS IFM
BYTE - 0 IMPLIES NORMAL, 1 IMPLIES 8 PIXELS/BYTE,

IE. BINARY DATA.
**NOTE - XINIT MUST BE A MULTIPLE OF 8.

ADDWRT - 0 IMPLIES NORMAL, 1 IMPLIES THAT THE DATA IN
MEMORY (S) IS ORE ’ED TO THE DATA PRESENTED FROM
THE COMPUTER AND THE RESULT IS STORED IN
THE MEMORY (S).
**NOTE - USED WHEN WRITING ONLY!!

ACCUM - O IMPLIES NORMAL TRANSFER, 1 IMPLIES 16 BIT
ACCUMULATOR MODE.
**NOTE - THE CHANNEL SELECT OR CHANNL

PARAMETER MUST BE SET TO SELECT
BOTH THE LSB AND THE MSB. NOTE
THAT THE LSB MUST BE IN AN EVEN
LOCATION AND THE MSB MUST BE THE
NEXT CHANNEL.

VRTRTC - 0 IMPLIES WRITE ANYTIME.
1 IMPLIES WRITE DURING VERTICLE RETRACE ONLY.

READ - 0 IMPLIES WRITE, 1 IMPLIES READ.
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B.l.li Subroutine INFCB

This subroutine initializes the Function Control Block. See

Section B.1.5 -for the structure of the Function Control Block.

SUBROUTINE INFCB (FCB, BUFSIZ, LUN)
INTEBER*2 FCB (40)
INTEGER BUFSIZ, LUN

THIS ROUTINE IS USED TO INITIALIZE THE
FCB ARRAY BEFORE ANY CALLS TO INTERFACE
ROUTINES OR PRIMITIVES.

B. 1.12 Subroutine LTCNT

This subroutine reads or writes to the look—up table masks

in order to enable or disable them.

SUBROUTINE LTCNT (FCB, MASK, COLOR, VRTRTC, READ)

SUBROUTINE TO READ OR WRITE THE LUT MASK(S)

ARGUMENT DECLARATIONS:

INTEGER MASK, COLOR, VRTRTC, READ
INTEGER*2 FCB ( 1

)

ARGUMENT DESCRIPTIONS:

MASK - AN INTEGER WHOSE BIT MAP DETERMINES
WHICH LOOK UP TABLES ARE ENABLED
AND DISABLED
LSB = 1 ENABLE OTH MEMORY
. . -ETC.

COLOR - A CODE INDICATING WHICH LUT MASK TO READ/WRITE:
1 - BLUE
2 - GREEN
4 - RED
7 - RED H- GREEN + BLUE

READ - 0 IMPLIES WRITE, 1 IMPLIES READ,
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B. 1 . 13 Subroutine MSTCL

This subroutine sends a character -from the host computer to

the interface board in the image processor in order to clear the

interface registers. This is done so that a new command can be

sent from the host.

SUBROUTINE MSTCL (FCB)

INTEGER *2 FCB (8)

B.1.14 Subroutine ONCUR

This subroutine turns on the cursor so that it may be

displayed on the monitor.

SUBROUTINE ONCUR (FCB, BUFFER, RED, GREEN,
1 BLUE, XFOS, YPCS, BLINK)

INTEGER XPOS, YPOS, BLINK
INTEGER*2 FCB(l)

,

BUFFER C 1

)

REAL RED, GREEN, BLUE

ROUTINE TO TURN ON THE CURSOR

FCB(*)
BUFFER (*)

RED
GREEN
BLUE
XPOS
YPOS
BLINK

ARRAY FOR SYSTEM DEPENDENT INFO
SCRATCH BUFFER DIMENSIONED <= 1024
FLOATING POINT RED WEIGHT
FLOATING POINT GREEN WEIGHT
FLOATING POINT BLUE WEIGHT
XPOSITION (0, 511)
YPOSITION (0, 511)
0 => STEADY CURSOR
1 => FAST BLINK
2 => MEDIUM BLINK
3 => SLOW BLINK

ALL WEIGHTS MUST BE IN RANGE O, ==> 1.
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B.1.15 Subroutine RBUTN

This subroutine is used to read the location o-f the cursor.

The viewer interacts with the image processor by pushing a button

on the trackball housing. The image processor then locates the

cursor

.

SUBROUTINE RBURN (FOB, BUTTON, X, Y)

ROUTINE TO READ BUTTON WORD AND
CURSOR POSITION

INTEGER BUTTON, X, Y
INTEGER*2 FCB ( 1

)

B.1.16 Subroutine STCOL

This subroutine is used to identify what colors should be

displayed for each graphics bit plane. This does not enable or

disable the planes.

SUBROUTINE STCOL (FCB, BUFFER, PLANE, RED, GREEN, BLUE, INSERT)

SUBROUTINE TO SET COLOR OF GRAPHICS PLANES

INTEGER PLANE, INSERT
INTEGER*2 FCB ( 1 )

,

BUFFER ( 1

)

REAL RED, GREEN, BLUE

PLANE
RED
GREEN
BLUE
INSERT

GRAPHICS PLANE DESIRED. (O <= PLANE <= 7)

INTENSITY VALUE FOR RED COMPONENT CO <= RED <= 1.)

INTENSITY VALUE FDR GREEN COMPONENT (O <= GREEN <= 1.)

INTENSITY VALUE FOR BLUE COMPONENT (O <= BLUE <= i.)
0 => OVERLAY, 1 => INSERT
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B.1.17 Subroutine XCDLR

When several bitplanes have different colors and a graphics

memory pixel is turned on for several bitplanes, then this

subroutine defines what color should be displayed,

SUBROUTINE XCOLR (FOB, BUFFER, PLANE, INSERT)

THIS ROUTINE IS USED TO DEFINE THE COLORS FOR AREAS OF
INTERSECTION BETWEEN GRAPHICS PLANES

A DISTINCT COLOR IS OBTAINED BY DOING AN EXCLUSIVE OR
OF ALL THE COLOR WORDS CORRESPONDING TO THE INTERSECTING
PLANES

INTEGER PLANE, INSERT
INTEGER*2 FCB ( 1 ) , BUFFER ( 1

)

PLANE - PLANE FOR WHICH WE ARE DEFINING THE INTERSECTIONS
INSERT - OVERLAY MODE, INSERT = 1, OVERLAY = 0

B.l.lS Subroutine ZBUFF

This subroutine writes zeroes into a buffer specified by

BUFFER. COUNT represents the number of zeroes written.

SUBROUTINE ZBUFF (BUFFER, COUNT)

INTEGER COUNT
INTEGER *2 BUFFER (1)

B.2 Host Computer Subroutines

B.2-1 Subroutine ISBYT

This subroutine stores a byte from the low order position of

one argument to any arbitrary position in another argument.

CALL ISBYTE (K, M, N)
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where:

K is the input argument whose least
significant byte is to be stored.
INTEGER

M is the output argument into which
a byte is stored.
INTEGER

N is the number o-f the byte in M where
storing takes place.
INTEGER

B.2.2 Subroutine SVC7

This subroutine is used to correct an error in the FORTRAN

INQUIRE statement for the host processor. It is a local

correction only. The subroutine fetches the file control block

for a specified file.

CALL SVC7 <IFCB)

where

:

IFCB INTEGER Array of at least
a elements representing
the file control block.

B.2.3 Subroutine SYSIO

This subroutine performs input/output at the byte level.

CALL SYSIO ( FBLK , FC , Lu , START , MBYTES , RANADD

)

Arguments:

PBLK is an INTEGER*4 array of at least five
el ements.

FC is an INTEGER*4 argument that specifies
the I/O function to be performed.
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LU

START

MBYTES

RANADD

is an INTEGER*4 argument that specifies
the logical unit on which to perform I/O.

is any type of argument except character
that specifies the starting address of
the buffer used in the I/O transfer.

is an INTEBER*4 argument specifying the
number of bytes to be transferred in this
I/O operation.

is an INTEGER*4 argument that specifies
the logical record number (starting at 0)
to be accessed on data transfer requests
when bit 5 of FC is set. This argument
should be a zero if random I/O is not
being used.

LU

START

MBYTES

RANADD
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APPENDIX C

IMAGE DATA ACQUISITION

The image data used as input to the program documented in

this report came -from a three-dimensional profilometry

instrument. Three-dimensional profilometry is the process of

obtaining a topographic map of a surface from many parallel

traverses of a stylus (See Teague, et.al. C61). The number of

data values required to represent a topographic map adequately

can, depending on the spatial resolution desired, be as large as

0.25x10^. This large amount of data poses a formidable problem

in acquisition, processing, and displaying.

This problem can be surmounted with the use of a large

minicomputer system interfaced to both a specially designed

stylus stage and a raster graphics array processor and display

unit. The electrical analog output of the stylus transducer is

converted into an intensity value at a corresponding point on the

screen of a television monitor. A schematic diagram of the

system for acquiring three-dimensional stylus profilometry data

and for displaying the data as an intensity image is shown in

Figure Cl. The system is composed of a commercial stylus

transducer, a precision X-Y stage built at NBS and a 32-bit

minicomputer system with a core memory of 4 million bytes, a mass

storage of 160 million bytes and a raster graphics display unit

which contains hardware for video rate memory refresh of a color

television mmonitor and video rate iterative processing of data

stored in the refresh memories (see Appendix A).
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As the stage moves the test specimen beneath a -fixed stylus

location, the electrical signal from the stylus transducer is

converted to 12-bit digital values at an array o-f 512 x 512 X-Y

positions and stored on a disk. This is the normal array size,

being controlled by the size o-f the graphics refresh memory size.

Using the graphics display unit, the optimum 8 bits of the data

are then selected for storage in the refresh memory and for

display and processing. From this array of digital values, an

image of the topography is generated in which the intensity on

the monitor screen is proportional to the surface height of the

specimen at the corresponding surface location. Once the data

are in refresh memory, a variety of transformations may be

applied to enhance visual perception of surface features. The

program documented in this volume is one of them.

A schematic picture of the stage is given in Figure C2. For

mors details on the stage design, the reader is referred to the

^•^ticle by Teague, et.al. C63. Motion in both axes is produced

by stepping motors under control of the minicomputer. Position

determination of the X-Y stags is done by way of a commercial

interferometer system. Scanning areas cover approximately

1 mm'“.
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Figure C-1

Surface Data Transfer



(

Figure C-2

Three Dimensional Surface
Prof ilometer
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