
Reference
NBS

PUBLICATIONS

NAT'L INST. OF STAND & TECH

lllllllllllllllllllllllllll

AlllOk 03M722

NBSIR 85-3113

Annotated Bibliography of Recent
Papers on Software Engineering
Environments

Raymond C. Houghton, Jr.

4105 Livingstone Place

Durham, NC 27707

Edited by

Dolores R. Wallace

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Sciences and Technology
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

February 1985

Issued April 1985

U.S. DEPARTMENT OF COMMERCE

~QC

100

. U56

85-3113

1985

NAL BUREAU OF STANDARDS

NATIONAL BUREAU
OF STANDARDS

LIBRARY

NBSIR 85-3113

ANNOTATED BIBLIOGRAPHY OF RECENT
PAPERS ON SOFTWARE ENGINEERING
ENVIRONMENTS

Raymond C. Houghton, Jr.

4105 Livingstone Place

Durham, NC 27707

Edited by

Dolores R. Wallace

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Programming Sciences and Technology
Institute for Computer Sciences and Technology
Gaithersburg, MD 20899

February 1 985

Issued April 1 985

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige. Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Doctor

TABLE OF CONTENTS

PREFACE

ANNOTATED REFERENCES

APPENDIX A. Categorization of Papers

APPENDIX B. General Reference on Software
Engineering Environments

PREFACE

This document reports on the contents of fifty-five recent
papers on software engineering environments. Several of these
papers present an overview of software engineering environments.
Other papers discuss issues to be considered in building software
engineering environments. The remaining papers describe general
software engineering environments, system development environ-
ments, and programming environments.

ACKNOWLEDGEMENT

This report was funded by the National Bureau of Standard's
ICST under the U.S. Department of Commerce Purchase Order
415632 .

[Alf08 1

]

[Barn82]

[Baye81

]

[Boeli84]

ANNOTATED REFERENCES for SOFTWARE ENGINEERING
ENVIRONMENTS

M. W. Alford and C. G. Davis. Experience with the Software
Development System, Software Engineering Environments, H.

Hunke, Editor, North-Holland , 1981.

Paper presents a methodology and supporting environment for
developing very large, complex, real-time systems. The
environment emphasizes the discovery of errors early in the
development process. The methodology consists of four
major tasks: (1) Data Processing Systems Engineering (DPSE)

translate systems objectives into a consistent, complete
set of subsystem functional and performance requirements
(uses techniques based on verification graphs, petri nets,
finite state machines, and graph models of decomposition
for expressing requirements), (2) Software Requirements
Engineering Methodology (SREM) - express functional and
performance requirements as a graph model in Requirements
Statement Language (RSL) and analyze with the Requirements
Engineering Validation System (REVS), (3) process design
engineering - translate requirements into a process design
language, verify design, and evolve the design into code,
(4) verification and validation - perform at all stages.

P. Barnard, N. Hammond, A. MacLean, and J. Morton.
Learning and Remembering Interactive Commands , Proceedings
of Human Factors in Computer Systems, Washington, D. C.
Chapter, ACM, Gaithersburg, MD, 1982.

Paper presents an experiment to determine how the choice of
command names influences interactive performance of users
by measuring access to an on-line help system. The authors
propose that help assistance is a relatively passive
cognitive strategy for learning and that it leads to less
efficient operation retention if commands have general
names

.

M. Bayer, et. al. Software Development in the CDL2
Laboratory, Software Engineering Environments, H. Hunke

.

Editor, North-Holland, 1981.

Paper presents a programming environment that supports the
CDL2 programming language. The components of the system
include a command interpreter, a dedicated editor with
formatting and cross-reference, a program database
(underlies all tools), a file system (underlies the program
database), a local and global analyzer, an intermodule
interface checker, a local and global optimizer, a segment
builder, an abstract code-generator, and a concrete code
generator. The paper includes an in-depth discussion i

the system architecture.

Boehm, Barry W. et . al . A Software Development Environment
for Improving Productivity, Computer, Vol. 17, No. 6. June
1984.

1

Paper presents the background and status of TRW ' s Software
Productivity System (SPS). The background includes
discussion of a 1980 software productivity study and
corporate motivating factors (increased demand of software,
limited supply of software engineers, rising software
expectations, reduced hardware costs). Based on an
internal assessment, an external assessment, and a
quantitative assessment, the productivity study recommends
that TRW initiate a long range effort to develop a software
development environment. In the short term, the study
recommends the development of a prototype environment. The
architecture and components of the prototype that was
developed (called SPS-1) include: the work environment
(improved office conditions), the hardware (a network of
VAX's, LSI-ll/23's, terminals, and communication
equipment), a master project database (composed of a
hierarchical file system, a source code control system, and
a relational database), general utilities (menu, screen
editor, forms package, date/time, report writer), office
automation and project support (tool catalog, mail system,
text editor/formatter, calendar, forms management,
interoffice correspondence package), and software
development tools (requirements traceability tool, SREM
[Alfo81]

,
program design langauge, Fortran-77 analyzer).

Experience with the use of the prototype shows a definite
improvement in productivity and also that immediate access
to a good set of tools has the highest payoff.

[Bran81] Martha A. Branstad, W. Richards Adrion, and John C.
Cherniavsky. A View of Software Development Support
Systems, Proceedings of National Electronics Conference
Chicago, IL, October, 1981.

Paper presents views and examples of support environments
and proposes four classes of support levels. The views
include the toolbox approach, the VHLL (very high level
language) approach, and the software development support
system approach (an integrated system with an underlying
database). Examples include PWB/Unix, Interlisp, Howden's
environments [Howd82] , and the Ada Programming Support
Environment (APSE). The proposed four classes of support
levels are: D1 (what most operating systems provide), D2
(the capabilities of D1 plus integration with an underlying
database), D3 (D2 plus support for the entire life cycle),
and D4 (D3 plus features that are current research topics).
Extensions of each level are also proposed for critical
applications

.

[Bran81a] Martha A. Branstad and W. Richards Adrion, Editors. NBS
Programming Environment Workshop Report. National Bureau
of Standards, NBS SP 500-78, June 1981.

2

Report presents the results of the Programming Environment
Workshop, Rancho Santa Fe, CA, April 1980. The goals of
the workshop were to assess the current technology,
indicate needed standards for tools, develop guidance for
near term environment development, and determine future
research directions. The workshop attendees were divided
into four groups: (1) contemporary software development
environments, (2) software environment research - the next
five years (3) advanced development support systems, and
(4) high level language programming environments. The
results of each of the four groups is reported by their
respective leaders, W. Howden [Howd82] , L. Osterweil
[Oste81], T. Standish, and M. Zelkowitz.

[Buxt80] J. Buxton. Requirements for Ada Programming Support
Environments: STONEMAN. U.S. Department of Defense,
Washington, DC, February 1980.

Report lays out the requirements for Ada environments. The
general requirements include support for the entire
lifecycle, integration of tools, and exploitation of modern
hardware. The more specific requirements include: the Ada
Programming Support Environment (APSE) /Minimal APSE
(MAPSE) /Kernal APSE (KAPSE) model, database support, and
tool support at the different APSE/'MAPSE/KAPSE levels. The
APSE/MAPSE/KAPSE model is a four level model where level 0
is the host level, level 1 (KAPSE) is a standard interface
to level 0 that supports database interactions,
communications, and run-time, level 2 (MAPSE) is a minimal
tool set (editor, translator, linker, debugger,
configuration manager), and level 3 (APSE) is a set of
tools for full support (life cycle, documentation, and
management support).

[Buxt80a] J. Buxton. An Informal Bibliography on Programming Support
Environments, ACM Sigplan Notices, Vol . 15, No. 12,
December 1980.

Bibliography with brief notes and commentary on 40 papers
that deal primarily with architectures of programming
support environments. Included with the bibliography are
short summaries of the following proposed and existing
programming support environments: Cheatham's PDS Model.
Cooprider's Thesis, CADES, C-MESA, Softech's MSEF.
Stenning ' s Foundation System Model, and Tichy's Model.

[Camp84] Roy H. Campbell and Peter A. Kirslis. The SAGA Project A
System for Software Development, Proceedings of the ACM
Sigsoft /Sigplan Software Engineering Symposium on Practical
Software Development Environments, Gaithersburg, MD . April
1984.

Authors discuss the SAGA Project and its current status
The project proposes to develop a lifecycle support

3

[Cowe83]

[Cox83]

[Deli84]

[Fair80]

environment for small to medium size projects. At the
heart of the system is a proposed language-oriented editor
generator that can synthesize a language-oriented editor
for each life cycle language (i.e., requirements language,
design language, implementation language, etc.). The
current system is Unix based and includes a prototype for a
language-oriented editor (implementation language),
prototype version control components, and a production
documentation tool.

Wayne R. Cowell, and Leon J. Osterweil, The Toolpack/IST
Programming Environment, Proceedings of SoftFair, IEEE
Computer Society Press, NY, (IEEE Order No. 83CH1919-0),
July 1983.

The paper discusses a portable, Fortran-oriented
programming environment . The architecture of the
environment includes a command interpreter, tool fragments
(commands may invoke several tool fragments), and a virtual
file system (files created by tools can be recreated by
tools). The tools in the environment include: data flow
analyzer, program instrumenter and debugger, documentation
generation aid, program formatter, syntax-controlled
editor, macro processor, text formatter, program
structurer, Ratfor processor, portability checker, program
transformer, and various file-handling utilities.

Brad J. Cox. The Message /Object Programming Model,
Proceedings of SoftFair, IEEE Computer Society Press, NY
(IEEE Order No. 83CH1919-0), July 1983.

A tutorial on object-oriented programming, the paper
discusses the operator/operand model and the message/object
model. It then presents a case study developed on
Smalltalk-80

.

Norman M. Delisle, David E. Menicosy, and Mayer D.

Schwartz. Viewing a Programming Environment as a Single
Tool, Proceedings of the ACM Sigsoft /Sigplan Software
Engineering Symposium on Practical Software Development
Environments, ACM, New York, (ACM Order No. 548840), April
1984.

Paper presents an interactive programming environment
called Magpie. The user of Magpie deals with two states,
the status of the source code and the status of execution.
The environment features overlapping windows, a mouse
pointing device, pop-up menus, a browsing capability,
language-directed editing, incremental compiling, and
debugging capabilities.

Richard E. Fairley. Ada Debugging and Testing Support
Environments, Proceedings of the ACM-Sigplan Symposium on
the Ada Programming Language, ACM, New York , December 1980

4

(see SIGPLAN Notices, Vol. 15, No. 11, November 1980).

[Feil81

]

[FIPS99]

[Fisc84]

[Gutz81

]

A review of the requirements specified in [Buxt80] and a
discussion of the issues associated with them. Analysis
considerations, source level support and debugging, KAPSE
considerations, and data abstractions are covered.

Peter H. Feiler and Raul Medina-Mora. An Incremental
Programming Environment, Proceedings of the 5th
International Conference on Software Engineering, IEEE
Computer Society Press, NY, (IEEE Order No. 81CH1627-9),
March 1981.

Paper reviews the support required by programming
environments and the traditional method for providing this
support (i.e., editing, translation, linking, loading, and
debugging). It then presents the Incremental Programming
Environment which features syntax-directed editing, common
representation, incremental program translation, and
language oriented debugging. This is followed by a
discussion of design and implementation issues for such an
environment

.

Guideline: A Framework for the Evaluation and Comparison of
Software Development Tools, National Bureau of Standards
FIPS PUB 99, March 1983.

Guideline presents a framework (a taxonomy) for
identifying, discussing, classifying, evaluating, and
comparing software development tools and environments. The
taxonomy includes almost 100 features that are presented in
a hierarchy. At the top level, features are divided into
input/output categories or function categories. The
functions include transformation, static analysis, dynamic
analysis , and management . The appendix includes a set of
event sequences for the acquisition of tools.

C. N. Fischer, et . al . The Poe Language-Based Editor
Project, Proceedings of the ACM Sigsoft /Sigplan Software
Engineering Symposium on Practical Software Development
Environments, ACM, New York, April 1984.

Paper presents an overview of POE, a Pascal programming
environment, and presents some of the technical issues
associated with the development of the environment

.

Steve Gutz, Anthony I. Wasserman, and Michael J. Spier-

Personal Development Systems for the Professional
Programmer, Computer, Vol. 14. No. 4, April 1981.

This paper reviews the problems with existing develop.-* r.

•

environments, proposes a programmer's personal machine., a no

examines the advantages and disadvantages of such a

machine. The proposed programmer's personal mac;..:.*

5

consists of: (1) an intelligent terminal with 1 Meg local
storage, CPU and address space equivalent to a 32-bit mini,
graphics capability, (2) hard disk (40 Megs) and floppy
disk, (3) networking capability (with other PPBS's), (4)
audio input /output , (5) pointing device (mouse, tablet, or
light pen), and (6) capability to add more memory and other
devices (e.g. a quality printer). The potential advantages
of such a machine include constant response time, a
comprehensive set of tools, less dependence on a single
machine, integration of software development and office
automation. The potential disadvantages include tool
expense, training expense, communications, device
dependence

.

[Guya84] Jacques Guyard and Jean-Pierre Jacquot. MAIDAY : An
Environment for Guided Programming with a Definitional
Language, Proceedings of the 7th International Conference
on Software Engineering, IEEE Computer Society, NY, (IEEE
Order No. 84CH2011-5), March 1984.

Paper discusses an environment under development that is
oriented around an object-oriented language and an
algorithm design methodology. The environment enforces the
methodology through a set of control functions. The user
views a development session through a set of windows that
present the development level, messages, the object being
defined, objects remaining to be defined, the stored
algorithm, and the current command.

[Hall80] Dennis E. Hall, Deborah K. Scherrer, and Joseph S. Sventek.
A Virtual Operating System, Communications of the ACM, Vol.
23, No. 9, September 1980.

Paper presents a Unix-like environment that can be
implemented on top of a vendor-supplied operating system to
make in-effect a virtual operating system. The environment
consists of four layers: (1) the vendor-supplied operating
system (the innermost layer), (2) the virtual machine
(consisting of primitives such as opening and closing
files, reading and writing to files), (3) utilities (a set
of tools written in portable Fortran including Kernighan
and Plauger's Software Tools), and (4) an integrated
command interface.

[Haus8l3 Hans-Ludwig Hausen and Monika Mullerburg. Conspectus of
Software Engineering Environments, Proceedings of the 5th
International Conference on Software Engineering, IEEE
Computer Society NY, (IEEE Order No. 81CH1627-9), March
1981.

A paper which discusses the issues associated with the
coverage of software engineering environments. The issues
include support for full life cycle development

,
quality

assurance, product control, management, specific

6

[Houg82

]

[Houg84]

[Howd82

]

[Huff81]

applications, specific methodologies, and representation
schemes. Also discussed are issues related to the
integration of tools and motivations for developing
environments. The appendiz defines the criteria that must
be met for a system to be considered an environment. These
include: a software engineering orientation, the use of at
least one recognized scientific concept, applicability to
more than one life cycle phase, and some level of tool
integration. The authors present short summaries of
environments that they feel meet these criteria. They
include AIDES, APSE, ARGUS, ASSET, CADES, CDL2-Lab , COSY,
DREAM, Gandalf , Gypsy, HDM , ISES, PWB/Uniz, SDEM/SDSS,
REVS, and SEP.

Raymond C. Houghton, Jr. A Tazonomy of Tool Features for
the Ada Programming Support Environment (APSE). National
Bureau of Standards, NBSIR 82-2625, December 1982.

A review of the APSE [Buzt80] , the ALS [Wolf81] , and the
AIE (the Navy's Ada Integrated Environment) based on
[FIPS99] . The tazonomy includes a comparison of features
in the areas of management, static analysis, dynamic
analysis, transformation, and input /output . A set of
underlying tool primitives is defined that support these
features

.

Raymond C. Houghton, Jr. Online Help Systems: A
Conspectus, Communications of the ACM, Vol. 27, No. 2,
February 1984.

Paper discusses online assistance that is provided by
various types of environments. It includes a discussion of
the types of assistance and the issues associated with the
development of online help systems.

William E. Howden. Contemporary Software Development
Environments

,

May 1982.
Communications of the ACM, Vol. 25, No. 5,

Paper proposes four levels of tool support that could be
provided by software engineering environments. For each
level, the type of project, the estimated cost, and the
support provided is detailed. For ezample, environment I

has an estimated cost of $35K and is for medium-sized
projects, while environment IV has an estimated cost of S3M
and is for large scale projects. Requirements, design,
coding, verification, and management tools and techniques
are presented for each environment level.

Karen E. Huff. A Database Model for Effective Conf igurat i : r.

Management in the Programming Environment, Proceeding, cf
the 5th International Conference on Software Engineerinr

.

IEEE Computer Society, NY, (IEEE Order No. 81CH1627-9 .

March 1981.

7

[Hunk81

]

[Kern81

]

[Kuo83

]

[Lebl84]

Paper addresses configuration mangement issues (i.e.,
configuration identification and configuration control) in
a software engineering environment and presents a model for
effectively handling them.

H. Hunke , Editor, Software Engineering Environments,
North-Holland , 1981.

Book contains the proceedings of a symposium held at
Lahnstein, Federal Republic of Germany, June 1980. Some of
the papers include [Snow81], [Baye81], [Ridd81], [Alfo81],
and [Mats81]. Papers related to some in the book are
[Tayl84] , [Stuc83], [Buxt80] , and [Kern81]. Other papers
discuss issues and tools related to software engineering
environments including functional aspects of environments,
computer aided design, support for concurrent and
distributed systems, human factors, description languages,
productivity, formal verification, performance, system
decomposition, and version control. The book concludes
with a bibliography by Hausen, Mullerburg, and Riddle that
contains more than 350 citations from 1968 to 1980.

Brian W. Kernighan and John R. Mashey. The Unix Programming
Environment, Computer, Vol. 14, No. 4, April 1981.

A paper which extols the benefits of the Unix programming
environment. It reviews the underlying interface, i.e.,
the hierarchical file system and the seven primitive
functions: open, create, read, write, seek, close, and
unlink. It reviews the overlying interface (the user
interface), i.e., available tools, input/output
redirection, and various operators available to the user.
It then discusses how a user can avoid programming by
building a shell procedure of simpler tools available on
the system. Finally, the attributes of the system are
discussed, e.g., support for medium size projects, support
primarily for the latter stages of software development,
loose integration of tools and facilities, general support
for all applications.

Jeremy Kuo, Jay Ramanathan, Dilip Soni, and Markku Suni

.

An Adaptable Software Environment to Support Methodologies,
Proceedings of SoftFair, IEEE Computer Society Presss.NY
(IEEE Order No. 83CH1919-0), July 1983.

Paper describes an environment that can be tuned to support
different software development methodologies. The control
mechanism is based on the gathering of project data through
a forms-based interface. The forms are defined at the
start of development.

David B. Leblang and Robert P. Chase, Jr. Computer-Aided
Software Engineering in a Distributed Workstation

8

Environment, Proceedings of the ACM Sigsoft /Sigplan
Software Engineering Symposium on Practical Software
Development Environments, ACM, New York, April 1984.

Paper discusses an Apollo-based distributed software
engineering environment . Because instances of the system
can be running at various nodes in the environment , the
system consists primarily of managers that keep track of
what is going on. The managers include: a history manager
(source code control), a configuration manager (version
control), a task manager (tracks interrelationships among
development products), monitor manager (watches user-
defined dependencies), and an advice manager (tracks
general project information).

[Love83] Tom Love. Experiences with Smalltalk-80 for Application
Development, Proceedings of SoftFair, IEEE Computer Society
Press, (IEEE Order No. 83CH1919-0), July 1983.

Paper extols the benefits of the single-user, single-
language environment called Smalltalk-80. An example is
presented of a graphics program that was developed using
the object-oriented development methodology that is
supported by the system. The "mode-less" user interface
and the performance benefits of the interface structure and
mouse are also discussed.

[Mage84] Kenneth Magel. Principles for Software Environments, ACM
Software Engineering Notes, Vol. 9, No. 1, January 1984.

Paper which lists and discusses a set of environment
principles that include the following: generality (full
life cycle support), adaptability (portability), user
orientation (designed for a specific community),
tailorability (adaptable to many types of interface
devices), extensibility (new tools can be added),
consistency (consistent use from part of the system to
another), unification (user can anticipate how unfamiliar
tools will operate), abstraction (hide as many details as
possible), aggregation (bigger tools from smaller ones),
incremental preparation, efficiency, predictability,
subsetable, ability to group resources, and recoverability.

[Mats81] Y. Matsumoto, et . al . SWB System: A Software Factory.
Software Engineering Environments, H. Hunke . Editor
North-Holland , 1981.

Paper discusses a large scale software factory that
consists of three physical buildings, 2000 employees, a
methodology, a software environment, and management ana
quality control. The software products are for critical
applications (nuclear power stations) and there ;; ar.

emphasis on using reusable code. The software env .

:

:.r • :.•

consists of a number of tools and techniques that emphasize

9

the latter part of the life cycle (language and library
processors, editors, debuggers, etc.). The plans for the
environment include the addition of tools for the front end
(SADT, design languages, etc.).

[Metz83] J. J. Metzger and A. Dniestrowski . PLATINE : A Software
Engineering Environment, In Proceedings of SoftFair, IEEE
Computer Society Press, (IEEE Order No. 83CH1919-0), July
1983.

Paper describes an environment that consists of a
methodology (the PLATINE methodology) and a set of tools
(the PLATINE tools). The environment supports the entire
life cycle, is adaptable to product size, supports
different types of users, and supports host /target
development. The methodology consists of defining a
software structure hierarchy (software structuration) which
produces typed abstract objects which are then associated
with elements (source, listing, binary, map, nomenclature,
or status). The methodology also includes the production
of software (merging of the elements), project management,
and evolution. The user interface consists of a command
language and a set of full screen panels. The tools
include LSTR (specification of real time embedded systems,
derived from PSL/PSA), SDL (system design representation),
Metacomp (YACC like), EPCS (a project management tool based
on DEC'S project control system), a formatter (DEC'S
runoff), a screen editor (DEC'S EDT) , documentor (editor
from source code), mail (DEC'S), crossrf (data dictionary
cross reference), complex (a complexity measure), a
configuration controller, and a comparator.

[Oste81] Leon Osterweil. Software Environment Research: Directions
for the Next Five Years, Computer, Vol. 14, No. 4, April
1981.

Paper discusses research issues associated with software
engineering environments, in particular, the breadth of
scope and applicability, user friendliness, reusability of
internal components, tight integration of tool
capabilities, and use of a central database. A five-year
research plan is presented which includes studies of
existing support systems, tool fragment studies, data base
studies, construction, and test beds for configuring
environments

.

[Oste82] Leon J. Osterweil. Toolpack - An Experimental Software
Development Environment Research Project, Proceedings of
the 6th International Conference on Software Engineering,
IEEE Computer Society NY, (IEEE Order No. 82CH1795-4),
September 1982.

An implementation of [Oste81]. Paper presents an

10

[Pren81]

[Ridd81

]

[Ridd83]

[Rube83]

environment under development that concentrates on tight
integration of tool capabilities (use of tool fragments)
and an underlying central database (virtual file system).
See also [Cowe83]

.

Dan Prentice. An Analysis of Software Development
Environments. In ACM Sigsoft Software Engineering Notes,
Vol. 6, No. 5, October 1981.

A paper which emphasizes the problems. The issues
discussed include lack of hardware support, high cost, user
resistance to change, and poor user interfaces.

W. E. Riddle. An Assessment of Dream, Software Engineering
Environments, H. Hunke, Editor, North-Holland , 1981.

Paper reviews the DREAM system. DREAM is oriented to the
development of concurrent systems using DREAM Design
Notation (DDN) , a language that can be used to model a
total system including hardware, software, and wetware
(people, etc.). The model reflects the externally
observable characteristics of a system and is an adequate
basis for preparing implementation plans. The DREAM system
tools include a data base core that stores DDN fragments,
bookkeeping tools (entry and retrieval), and decision-
making tools for paraphrasing (a re-structured
presentation), extraction (simulation), and consistency
checking. The paper concludes with lessons learned and
problems for the future.

William E. Riddle. The Evolutionary Approach to Building
the Joseph Software Development Environment, Proceedings of
SoftFair, IEEE Computer Society Press, NY (IEEE Order No.
83CH1919-0) , July 1983.

Paper reviews an effort to build an environment that was
cut short due to the closing of Cray Labs. The Joseph
environment was 30% completed. The paper includes a user
scenario of the proposed environment which includes
capabilities to view database information, extract da~aby.se
information, perform notation-directed editing, analyze
changes, and deposit information into the database The
paper then discusses the work that was accomplished which
includes a layered environment with Unix at the core, a set
of integrated tools in the next layer (the crypt), and a
requirements definition tool and a design definition tod
in the outer layer (pharaoh and oasis). Pharaoh and oasis
include viewing, notation-directed editing, and version
control capabilities of requirements and design
specifications. They use a notation that consists
words and description fragments.

Burt L. Rubenstein and Richard A. Carpenter T:.--

Development Environment Workbench, Proceedings of Soft? n:

11

IEEE Computer Society Press, (IEEE Order No. 83CH1919-0),
July 1983.

Paper presents a methodology and an associated environment
for building application systems (informations systems for
business applications). The methodology divides an
application system into a dialogue manager, a database
processer, an output processor, an action processer, an
extended data dictionary, and a control monitor. The
environment includes facilities for data dictionary
specification, structured graphics, screen definition,
output processing (for developing mock-ups), defining
control between components, and generic data entry. An
example of the use of the system is presented.

[Sava82] Ricky E. Savage, James K. Habinek, and Thomas W. Barnhart.
The Design, Simulation, and Evaluation of a Menu Driven
User Interface, Proceedings of Human Factors in Computer
Systems, Washington, D. C. Chapter, ACM, Gaithersburg, MD,
1982.

Paper discusses experiments relating to the user interface
of an environment. An analysis of human errors led to the
design of a system that provided an extensive hierarchy of
menus for the inexperienced user and a variety of shortcuts
to system functions for the experienced user.

[Shne80] Shneiderman, B. Software Psychology: Human Factors in
Computer and Information Systems. Winthrop, Cambridge,
Mass., 1980.

Book discusses a broad range of issues related to human
factors in computers. Of particular interest to the
developers of software engineering environments are the
chapters on interactive interface issues and designing
interactive systems. These chapters cover the user
interface (control, response time, text editing, menu
selection, error handling), the goals for interactive
systems (simplicity, power, user satisfaction, reasonable
cost), and the design process (from a human factors
standpoint)

.

[Snow81] R. A. Snowdon. CADES and Software System Development,
Software Engineering Environments, H. Hunke, Editor,
North-Holland, 1981.

A review of one of the early large scale software
engineering environments. The paper presents a history of
CADES dating back to the early 1970' s. CADES was
established to provide a mechanism by which information
relating to the structural model of a system could be made
available to system designers early in the development
process. Underlying CADES is a hierarchical database
called PEARL. The establishment of CADES led to the

12

development of a structural modeling methodology: isolate
functions, data, and constraints, produce data tree,
produce function (holon) tree, consider next level of
detail, code in Systems Description Language (SDL), and
compile. Although CADES was developed to support the
earlier phases of development , the author claims that CADES
solutions are always sought for development or production
problems and there is an increasing trend towards support
for implementation.

[Solo84] Elliot Soloway. A Cognitively-Based Methodology for
Designing Languages/Environments/Methodologies, Proceedings
of the ACM Sigsof t /Sigplan Software Engineering Symposium
on Practical Software Development Environments, ACM, New
York, April 1984.

A paper that discusses issues relating to use of an
environment. In particular, the author claims that
environments should be developed based on a methodology
that derives design implications based on tested hypotheses
of why software developers work the way they do.

[Sten81] Vic Stenning, et . al. The Ada Environment: A Perspective,
Computer, Vol. 14, No. 6, June 1981.

A paper that reviews the objectives (i.e., life-cycle
support, open-ended environment, support for Ada.
configuration control, project team support, portability,
and host characteristics) and the architecture (i.e., the
KAPSE/MAPSE/APSE approach, the database, KAPSE functions,
the user interface, intertool interfaces, and tools) of the
Ada Programming Support Environment (APSE).

[Steu84] H. G. Steubing. A Software Engineering Environment (SEE)
for Weapon System Software, IEEE Transactions on Software
Engineering, Vol. SE-10, No. 4, July 1984.

Paper presents a large scale environment called FASP that
is hosted on multiple, large scale commercial computers.
FASP primarily supports the latter stages of software
development, but the extension to the requirements and
design phase is discussed. The author attributes a two
fold increase in lines per month to FASP and an increase in
software quality due to the tools, standards, and testing
associated with the environment . The environment includes
an underlying database made up of libraries : source
library, object library, test library, interface library,
production data library, and documentation library. The
system is command driven where the commands consist of
lower level system commands (command procedures). Testing
is supported by the ATA (Automated Testing Analyzer) and
there is support for multilanguages and mult it a: gr*

computers

.

13

[Stuc83] Stucki , Leon G. What about CAD/CAM for Software? The
ARGUS concept, Proceedings of SoftFair, IEEE Computer
Society Press, (IEEE Order No. 83CH1919-0), July 1983.

Paper proposes that software can be developed using a
CAD/CAM approach with the aid of a software engineering
environment. An overview of such an environment (ARGUS) is
presented. ARGUS is a micro-based environment that was
built on top of Unix. Argus is menu driven with a single
key stroke approach. Six toolboxes are available at the
top level; they are the management toolbox (scheduling
tools, action item tracking tool, electronic spread sheet,
and phone list update and retrieval system), the designer's
toolbox (kernel CAD/CAM capabilities with a graphics/forms
based approach), the programmer's toolbox (language-based,
project-specific code template capability provided by a
customizable editor and language specific syntax generation
macros), the verifier's toolbox (analysis tools), and
general/utility tools (general editing and communication
tools). A noted CAD/CAM feature of ARGUS is the automatic
projection of data to documentation and code templates from
the underlying database.

[Tayl84] Richard N. Taylor and Thomas A. Standish. Steps to an
Advanced Ada Programming Environment , Proceedings of the
7th International Conference on Software Engineering, IEEE
Computer Society NY, (IEEE Order No. 84CH2011-5), March
1984.

Paper presents a research environment for exploring
concepts and issues related to software engineering
environments in general and the Ada programming language in
particular. The environment called Arcturus currently
includes interactive Ada (a Pascal superset), template-
assisted editing, performance measurement (histograms or
color), mixed compilation and interpretation, and an Ada
program design language. Some concepts and issues being
explored include complexity (does it scale up?), AVOS (Ada
Virtual Operating System, i.e. an Ada command language),
user interface issues (an Ada shell), mixing interpretation
and compilation, layered architecture (i.e., device level,
user interface level, tool level, foundation level), and
analysis, testing, and debugging of tasking programs.

[Teit81] Warren Teitelman and Larry Masinter. The Interlisp
Programming Environment, Computer, Vol. 14, No. 4, April
1981.

Paper presents a look at the Interlisp environment.
Interlisp is an environment for users of Lisp (a non-
procedural list processing language). The environment is
very much language dependent and is intended for use by
Lisp experts. Some representative facilities in Interlisp
include: file package, masterscope (helps analyze the scope

14

[Teit81a]

[Teit84]

[Tomo84]

of a change), DWIM (do-what-I-mean spelling corrector),
iterative expressions, and the programmer's assistant.

T. Teitelbaum and T. Reps. The Cornell Program
Synthesizer: A Syntax-Directed Programming Environment,
Communications of the ACM, Vol. 24, No. 9, September 1981.

Paper discusses an interactive programming environment with
facilities to create, edit, execute, and debug programs
written in a subset of PL/I. Editing is syntax-directed
with underlying tree structures, predefined templates, and
phrases to fill the templates. Execution of programs can
be gear-shifted forward or backward with various controls
on speed.

W. Teitelman. A Tour Through Cedar, Proceedings of the 7th
International Conference on Software Engineering. IEEE
Computer Society NY, (IEEE Order No. 84CH2011-5), March
1984.

Paper presents the facilities of the programming
environment called Cedar. The Cedar environment emphasizes
the use of parallel operation, multiple windows on a
screen, and user interaction with a mouse pointing device.
The environment supports the use of an "industrial
strength" Pascal-like programming language. The tour makes
stops at the display (bitmapped and object-oriented with
the use of icons), viewer window package (supports multiple
levels of windows which are tiled on the screen),
whiteboards (work windows), tioga editor and document
preparation system (supports tree structured documents,
editing with the mouse, syntax-directed templates), user
executive (programming interface), interpreter (for
debugging), automatic storage management (garbage
collector), rope (string) interface, bug tracker,
electronic mail, support for parallelism, and icon editor
(pixel oriented, graph editor).

Tomoharu Mohri et . al . PDAS: An Assistant for Detailed
Design and Implementation of Programs, Proceedings of the
7th International Conference on Software Engineering.
Computer Society NY, (IEEE Order No. 84CH2011-5), March
1984.

Paper presents an environment that uses a forms - oner: e.
approach to standardize document format and to prevent
inconsistencies between documents and programs. There are
10 types of forms for design which are based on a fc: re-
oriented language. The system structure consists cf a
forms-oriented editing subsystem. a document generation
subsystem, a program construction subsystem generati :r.

based on module algorithm descriptions), a design database,
and a component database (interchangable p: ; : er

components). An interesting aspect of the envi r ; nmer.:

15

[Wass81

]

[Wass83]

[Wert82

]

[Wirt81

]

[Wolf 8 1

]

automatic Japanese to English translation from algorithm
descriptions

.

Wasserman, Anthony I. Tutorial: Software Development
Environments, IEEE Computer Societv Press, NY, (IEEE Order
No. EH0187-5) , 1981.

Tutorial is a reference collection of 39 papers including
most of the landmark papers on software engineering
environments

.

Wasserman, Anthony I. The Unified Support Environment:
Tool Support for the User Software Engineering Methodology,
Proceedings of SoftFair, IEEE Computer Society Press, NY
(IEEE Order No. 83CH1919-0), July 1983.

Paper presents an overview of the User Software Engineering
methodology and the tools in the environment that support
the methodology. The methodology involves users in the
early stages of development and addresses user interactions
with information systems. The tools in the USE environment
include: the Troll relational database (underlies and is
used by other tools), RAPID (rapid prototyping tool
oriented to the development of information systems), PLAIN
(a procedural language oriented to the development of
information systems). Focus (screen-oriented editor and
browser, and IDE (a software management and control tool).

Harald Wertz. The Design of an Integrated, Interactive, and
Incremental Programming Environment , Proceedings of the 6th
International Conference on Software Engineering, IEEE
Computer Society NY, (IEEE Order No. 82CH1795-4), September
1982.

A paper that presents the details of a proposed environment
that integrates editing, executing, and annotating
programs

.

N. Wirth. Lilith: A Personal Computer for the Software
Engineer, Proceeding of the 5th International Conference on
Software Engineering, IEEE Computer Society NY, (IEEE Order
No. 81CH1627-9) , March 1981.

Paper discusses the development, features, and architecture
of the Lilith programming environment for Modula-2. The
system provides a high bandwidth between the user and the
system partly through the use of a mouse pointing device
and the hardware structure. The display is suitable for
text, diagrams, or graphics.

Martin I. Wolfe, et . al. The Ada Language System,
Computer, Vol . 14, No. 6, June 1981.

Paper discusses the Ada Language System which is currently

16

under development at SofTech. The system will provide
capabilities at the MAPSE level [Bust 80] . Issues relating
to the development of an Ada compiler are also discussed.

17

APPENDIX A

Categorization of papers

Overview of software engineering environments:

[Bran81

]

[Buxt80a]
[Haus81

]

[Hunk8 1

]

[Bran81a]
[FIPS99]
[Howd82]
[Oste81

]

Issues in building software

[Barn82]
[Houg84]
[Mage84]
[Sava82]
[Solo84]

engineering environments:

[Gutz81

]

[Huff81]
[Pren81

]

. [Sbne80]

General software engineering environments:

[Boeh84]
[Kern81

]

[Lebl84]
[Metz83]
[Ridd83]
[Stuc83]

[Hall80l
[Kuo83]
[Mats81

]

[Tomo84]
[Steu84]

Systems development environments:

[Alf081] [Ridd81

]

[Rube83] [Snow81]
[Wass83]

Programming environments:

[Baye81

]

[Camp84]
[Cox83]
[Fair80]
[Fisc84

]

[Houg82]
[0ste82]
[Tayl84]
[Teit81a]
[Wert82]
[Wolf81

]

[Buxt80]
[Cowe83]
[Deli84]
[Feil81]
[Guya84

]

[Love83]
[Sten81

]

[Teit81

]

[Teit84]
[Wirt81

]

18

APPENDIX B

General References on
Software Engineering Environments

1. Branstad, Martha A. and W. Richards Adrion, Editors. NBS
Programming Environment Workshop Report. National Bureau of
Standards, NBS SP 500-78, June 1981.

2. Hunke, H. , Editor, Software Engineering Environments, North-
Holland, 1981.

3. Proceedings of the 5th International Conference on Software
Engineering, IEEE Computer Society, NY (IEEE Order No.
81CH1627-9) , March 1981.

4. Proceedings of the 6th International Conference on Software
Engineering, IEEE Computer Society, NY (IEEE Order No.
82CH1795-4) , September 1982.

5. Proceedings of the 7th International Conference on Software
Engineering, IEEE Computer Society, NY (IEEE Order No.
84CH2011-5) , March 1984.

6. Proceedings of the ACM Sigsoft /Sigplan Software Engineering
Symposium on Practical Software Development Environments,
ACM, New York, , April 1984.

7. Proceedings of SoftFair, IEEE Computer Society, (IEEE Order
No. 83CH1919-Q), July 1983.

8. Wasserman, Anthony I., Guest Editor, Special Issue on
Programming Environments, Computer, Vol . 14, No. 4, April
1981.

9. Wasserman, Anthony I., Tutorial: Software Development
Environments, IEEE Computer Society, (IEEE Order No. EH0187
5), 1981.

19

NPS-1 14A iwkv. a-4Q»

I. Publication Data

April 1985

U.S. DIPT, or COMM.

BIBLIOGRAPHIC DATA
SHEET (See Instruction t)

1. PUBLICATION OR
REPORT NO.

NBSIR-3113

2. Performing Organ. Raport No.

4. TITLE AND SUBTITLE

Annotated Bibliography of Recent Papers on Software Engineering Environments

5. AUTHOR(S)
Raymond C. Houghton, Jr., and Dolores R. Wallace

4. PERFORMING ORGANIZATION (If joint or other than NBS, see Instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINQTON, O.C. 20234

7. Contract/Grant No.

I. Type of Report & Period Covered

Final

S. SPONSORING ORGANIZATION NAME ANO COMPLETE ADDRESS (Street. City, State. ZIP)

National Bureau of Standards
Gaithersburg, MD 20899

10. SUPPLEMENTARY NOTES

| |
Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant Information. If document Includes a significant
bibliography or literature survey, mention it here)

This document reports on the contents of fifty-five recent papers on software

engineering environments. Several of these papers present an overview of software

engineering environments. Other papers discuss issues to be considered in building

software engineering environments. The remaining papers describe general software

engineering environments, system development environments, and programming

environments.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

distributed workstation environments; documentation; interactive programming environ-

ments; software engineering environments; systems development environments? user

interfaces
13. AVAILABILITY

|~Xl Unlimited

| |
For Official Distribution. Do Not Release to NTIS

| |
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

m Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

24

IS. Price

$7.00

USCOMM-OC 8043-P80

