NBSIR 84-3008

A CALORIMETER FOR MEASURING HIGH-ENERGY OPTICAL PULSES

National Bureau of Standards
U.S. Department of Commerce

Boulder, Colorado 80303
October 1984

A CALORIMETER FOR MEASURING HIGH-ENERGY OPTICAL PULSES

P.A. Simpson
E.G. Johnson, Jr.
S.M. Etzel

Electromagnetic Technology Division
National Engineering Laboratory
National Bureau of Standards
U.S. Department of Commerce
Boulder, Colorado 80303

October 1984
Sponsored by
Newark Air Force Base, Ohio

CONTENTS

List of Figures.

1. Description and Operational Procedures 1
1.1 Introduction1
1.2 Description of CLOP1
1.3 Operational Principle 2
1.3.1 Main Calorimeter Principles2
1.3.2 Gas Flow Procedures 5
1.3.3 Functional Description of Modules Preceding the Main Calorimeter 5
1.4 Description of Measurement and Data Handling Procedures 6
1.5 Data Reduction and Storage. 8
2. Theoretical Basis of CLOP 9
2.1 Basic Principles 9
2.2 Derivation of Basic Equation 10
2.3 Laser Runs 13
3. Description of Components 15
3.1 Blast Shield 15
3.2 Extension Tube 15
3.3 Overspill Monitor/Backscatter Monitor 17
3.3.1 General Features. 17
3.3.2 Overspill Monitor 18
3.3.3 Backscatter Monitor 18
3.3.4 OSM/BSM Shutter 20
3.4 Separation Tube 22
3.5 Mirror Reflector Surface 22
3.5.1 Description of Module Supporting Frame 22
3.5.2 Deflecting Plate. 26
3.5.3 Foil Reflector 26
3.6 Main Calorimeter 28
3.6.1 General Features 28
3.6.2 Gas Flow 29
3.6.3 Electrical Instrumentation. 30
3.6.3.1 Thermistor Sensors 30
3.6.3.2 Resistance Thermometer Detector 34
3.6.3.3 Calibration Heater 34
3.6.4 Main Calorimeter Shutter 34
3.7 Data Acquisition Rack 36
3.7.1 General Description. 36
3.7.2 Main Power Switch Panel 38
3.7.3 Scanner 38
3.7.4 Status Light Panel 43
3.7.5 Shutter Control Panel 43
3.7.6 Power Monitor Panel 43
3.7.7 Digital Voltmeter 45
3.7.8 Pacer Unit (System T Only) 48
3.7.9 Input Gas Temperature Controller 48
3.7.10 Computer Section. 50
3.7.11 Power Supply Section. 50
3.7.11.1 Low Voltage dc Supplies 50
3.7.11.2 Calibration Power Supply Interface Unit 51
3.7.12 Calibration Power Supply Status Circuit 52
3.7.13 Preheater Control Circuit 52
3.7.14 Calibration Power Supply 55
3.7.15 Alternating Current Input Panel 55
3.7.16 CLOP Module Connection Panel 35
3.7.17 Gas Valve Control Output Panel 55
4. Computer Programs and Data Storage Files 55
4.1 Introduction 56
4.2 System T Programs and Data Files 63
4.2.1 Index (FILE 1) 63
4.2.2 CLOP (FILE 2). 63
4.2.3 CHANNEL MONITOR (FILE 3) 63
4.2.4 READ RUN DATA FILES (FILE 4) 64
4.2.5 CALCULATE RESULTS (FILE 5) 64
4.2.6 READ ELECTRICAL SUMMARY FILE (FILE 6) 64
4.2.7 CALCULATE CAL FACTORS (FILE 7) 64
4.2.8 RUN KEPCO (FILE 8) 65
4.2.9 System T Data Tapes 65
4.3 System H Programs and Data Files 66
4.3.1 "Autost" 66
4.3.2 "CLOP2" 66
4.3.3 "CALC" 66
4.3.4 "ELSCAN" 67
4.3.5 "FACTOR" 67
4.3.6 "FILEXM" 67
4.3.7 "CHMON" 68
4.3.8 "KEPCO" 68
4.3.9 System H Data Files 68
5. References 70
Appendix A. Conversion Routines Between Decimal and Hexadecimal Based Number Systems 71
Appendix B. System T Program Listings and Variable Maps 72
Appendix C. System H Program Listings and Variable Maps 128

List of Figures

Figure 1-1. Photograph of CLOP system controlled by System H computer 3
Figure 1-2. Photograph of CLOP system controlled by System T computer 4
Figure 1-3. Time progression of events during one measurement run with CLOP 5
Figure 3-1. Extension tube bridge circuit schematic diagram. 16
Figure 3-2. Schematic diagram of the heater circuit for the extension tube 17
Figure 3-3. OSM bridge circuit schematic diagram (System H) 19
Figure 3-4. OSM bridge circuit schematic diagram (System T) 19
Figure 3-5. BSM bridge circuit schematic diagram (System H) 21
Figure 3-6. BSM bridge circuit schematic diagram (System T) 21
Figure 3-7. Wiring diagram of the 24 -pin connector on the OSM/BSM circuits box. 22
Figure 3-8. OSM/BSM shutter circuit schematic diagram. 23
Figure 3-9. Separation tube bridge circuit schematic diagram (System H) 24
Figure 3-10. Separation tube bridge circuit schematic diagram (System T) 24
Figure 3-11. Schematic wiring diagram of deflector heater circuit 25
Figure 3-12. Schematic wiring diagram of deflector RTD circuit. 27
Figure 3-13. Schematic wiring diagram of deflector bridge circuit. 27
Figure 3-14. Cross sectional view of calorimeter unit 28
Figure 3-15. Total gas flow system for CLOP. Either the output from the high pressure manifold may be connected to an electrically operated valve on the low pressure manifold or individual cylinders with PRV's may be connected to the low pressure manifold. 29
Figure 3-16. Schematic diagram of Mass Flow In bridge circuit 31
Figure 3-17. Schematic diagram of Temperature In bridge circuit. 31
Figure 3-18. Schematic diagram of Mass Flow Out bridge circuit. 32
Figure 3-19. Schematic diagram of Temperature Out bridge circuit. 32
Figure 3-20. Typical I-V curve for thermistor sensors 33
Figure 3-21. Wiring diagram for $15-$ pin connector on gas input circuits box 33
Figure 3-22. Wiring diagram for $24-$ pin connector on gas output circuits box 35
Figure 3-23. Schematic diagram for the bridge circuit for the main calorimeter RTD. 35
Figure 3-24. Schematic diagram of calorimeter shutter circuit 37
Figure 3-25. Front view of the data acquisition rack for System H. 39
Figure 3-26. Front view of the data acquisition rack for System T. 40
Figure 3-27. Rear view of the data acquisition racks for both systems 41
Figure 3-28. Wiring diagram of the main power switch panel 42
Figure 3-29. Schematic wiring diagram of the status light panel (System H) 44
Figure 3-30. Schematic wiring diagram of the status light panel (System T) 44
Figure 3-31. Schematic diagram of the switching circuit for measuring low dc voltage. 45
Figure 3-32. Schematic diagram of the circuit for measuring the dc electrical voltage and current 46
Figure 3-33. Schematic diagram of input gas temperature controller 49
Figure 3-34. Wiring diagram of low voltage dc power supply section 51
Figure 3-35. Schematic diagram of calibration power supply status circuit. 53
Figure 3-36. Schematic diagram of preheater control circuit. 54
Figure 3-37. Wiring diagram of connector JO to heater circuits 57
Figure 3-38. Wiring diagram of connector 31 to extension tube bridge circuit (System H)57
Figure 3-39. Wiring diagram of connector 31 to extension tube bridge circuit (System T) 57
Figure 3-40. Wiring diagram of connector 32 to OSM/BSM bridge circuits 58
Figure 3-41. Wiring diagram of connector 33 to separation tube bridge circuits 58
Figure 3-42. Wiring diagram of connector 34 to deflector bridge circuit 59
Figure 3-43. Wiring diagram of connector J5A to main calorimeter
gas output circuits box 59
Figure 3-44. Wiring diagram of connector J 5 B to main calorimeter gas input circuits box (System H) 60
Figure 3-45. Wiring diagram of connector J 5 B to main calorimeter gas input circuits box (System T). 60
Figure 3-46. Wiring diagram of connector J6 to OSM/BȘM shutter motors 61
Figure 3-47. Wiring diagram of connector 37 to main calorimeter shutter motors 61
Figure 3-48. Wiring diagram of gas valve control output panel 62

Abstract

Two similar calorimeters for measuring laser pulses in the range 1 kJ to 15 kJ are described. The calorimeters, which are electrically calibrated, can be operated anywhere from the ultraviolet to infrared by selecting the proper materials for the volume absorber and deflecting mirror. Operation of each calorimeter is controlled by a dedicated desktop computer. The theoretical basis for the calorimeters is given as are the constructional and operational details. The computer programs that are used are included in the appendices.

Key words: calorimeter; electrically calibrated calorimeter; high energy calorimeter; laser pulse; volume absorbing calorimeter.

1. Description and Operational Procedures

1.1 Introduction

This publication describes two reference standard calorimeters for laser optical pulses (CLOP). The instruments are designed to measure pulses having energies from 1 to 15 kJ at wavelengths from ultraviolet to infrared. Beam size can be as big as 30 cm by 15 cm . They are presently set up for measurements at 340 nm and $10.6 \mu \mathrm{~m}$ but can be rather simply adapted for other wavelengths by merely selecting the appropriate materials for a new volume absorber and mirror. The two entire units can be electrically calibrated and hence may be referred back to the basic SI measurement system. The two calorimeter systems have been built to be quite similar, but do possess minor differences because they are controlled by computers from different manufacturers.

1.2 Description of CLOP

CLOP consists of five modules designed to trap the laser radiation and convert it to heat. The normal configuration of CLOP, from input to beam termination, is (1) extension tube, (2) overspil1 monitor, (3) backscatter monitor, (4) separation tube, (5) deflecting mirror, and (6) main calorimeters, hence five modules contain six energy-measuring units. The overspill monitor and backscatter monitor share the same module. CLOP is so designed that the order of the modules may be rearranged or any of the modules may be omitted if so desired. The major portion of the radiation is absorbed in the main calorimeter which is housed in a thermally isolated enclosure. The other four modules are designed to reduce ambient effects on the main calorimeter, steer the beam into the main calorimeter, and estimate the radiation reflected back out of the main calorimeter. All of the modules are ins: mented to measure their temperature rise and have provision for individual electrical calibration.

A blast shield is provided to be placed around the entrance aperture of CLOP to protect it from damage caused by errant laser shots. This unit is not instrumented. It is so designed to direct the reflected laser beam downward at a shallow angle.

Operation of one of the calorimeters is controlled by an HP 85* computer (System H) contained in a data acquisition rack. The other calorimeter is controlled by a Tektronix 4052A (System T) located outside the data acquisition rack. The data acquisition rack contains the necessary equipment to record the output of the various sensors and contains the power supplies required to operate the electronics associated with CLOP and perform the electrical calibrations. Finally, a gas supply system consisting of a high-pressure manifold for connecting nitrogen gas cylinders to CLOP, a pressure reducing valve (PRV), an electrically operated off-on valve on a low-pressure manifold, and a gas preheater is also supplied. The high-pressure manifold is mounted on a stand which also serves as a base for sturdy mounting of the gas cylinders. This manifold has been tested for safe operation and leakfree integrity at pressures of 15168472 Pa (2200 psi). Pictures of the two versions of CLOP are shown in figures $1-1$ and 1-2.

1.3 Operational Principle

1.3.1 Main Calorimeter Principles

CLOP uses a volume-absorbing material to capture the laser radiation, thus avoiding the damage effects possible with surface absorbers. For 340 nm , the material used is common soda glass since this material has an absorption coefficient compatible with present-day, high-energy uv lasers ($\sim 1 \mathrm{~kJ}$) [1]. If, in the future, higher energy lasers are to be measured, a more transparent material will have to be used and small chunks ($\sim 1 \mathrm{~cm}$ size) substituted for the glass plates to avoid fracturing due to thermal stress. For $10.6 \mu \mathrm{~m}$ radiation, calcium fluoride pieces are used as the absorber [2].

Even though the bulk of the laser radiation is absorbed in the volume absorber and the resultant temperature rise is associated with this material, the temperature sensors cannot be located in the absorber. The radiation might damage or destroy the sensors. Consequently, dry nitrogen gas is blown through the porously stacked absorber and the temperature rise of the gas measured. Thus, the calorimeter is instrumented with expediently located thermistors to measure the mass and temperature of the gas entering and leaving the main calorimeter. A copper resistance thermometer is also included to measure the gas temperature just before it flows through the volume absorber. The PRV maintains the gas flow sufficiently constant for the measurements and a feedback circuit from the temperature in thermistor to the preheater maintains the gas input temperature constant, offsetting the cooling of the gas due to expansion.

Since the gas is the vehicle for transferring the temperature rise information, none must be allowed to escape through leaks. It must all flow past the temperature out thermistor. Thus, the main calorimeter is a sealed unit with just a single gas exit area. Just before the laser pulse is to be shot into the main calorimeter the gas is turned off and a trapdoor that seals the main calorimeter entrance aperture is opened. After the laser shot the trapdoor is closed again and the gas flow resumed. In System H this time window is 14 s ; in System T it is 33 s .

[^0]

1.3.2 Gas flow Procedures

Gas flow is furnished from cylinders of dry nitrogen gas. At the flow conditions enumerated in the computer program, one cylinder at $15168472 \mathrm{~Pa}(2200 \mathrm{psi})$ will be just insufficient for a single run. Thus, provisions are made for two different methods of uninterrupted gas flow during a run.

The first method, although inferior to the second, can be used if conditions preclude the preferred method. This first method uses two to four cylinders, each with its own PRV connected to the separate electrically operated valves on the low-pressure manifold. During the setup procedure for the run, each PRV is adjusted one at a time to produce the prescribed reading from the mass flow in thermistor. In practice, this is quite difficult and a slight discontinuity results whenever gas cylinders are changed.

The second and preferred method uses three or more cylinders connected to the high-pressure gas manifold. One PRV outputs gas from the manifold at low pressure to a single electrically operated valve on the low-pressure manifold. Two gas cylinders are used to charge the high-pressure manifold and the rest is held in reserve. When the first two cylinders are nearly empty (at $\sim 6894.76 \times 10^{3} \mathrm{~Pa}$ [100 psi]), one cylinder is shut off from the manifold and a reserve cylinder opened up to the manifold. During this manual switching process the second of the two original cylinders has sufficient capacity to maintain the required flow conditions. This second method produces a much more constant gas flow than the first, and is the preferred method.

1.3.3 Functional Description of Modules Preceding the Main Calorimeter

As mentioned in section 1.2, the four modules preceding the main calorimeter have three functions. These are: steering the beam, isolation of the main calorimeter from the ambient conditions, and measurement of energy reflected back out of the main calorimeter.

The main calorimeter, because of the fact the volume absorber does not lend itself to vertical stacking, must have its entrance aperture facing upward. Thus, directly above the main calorimeter is a module with a mirror-like surface used to deflect a horizontal beam downward into the main calorimeter. This surface need not be an optically flat, aberration-free surface but it must be shiny and free from any blemishes or other imperfections that could possibly cause plasma ignition or high absorption with its associated burning.

Two different kinds of surfaces have been furnished. The first uses highly polished copper surfaces to which a thin plate containing the electrical instrumentation sensors is attached on the backside. These mirrors were originally acquired for use at CO_{2} wavelengths and should not be used in the uv because of their low reflectivity.

The preferred deflecting surface consists of a foil reflector stretched over an instrumented back piece. The foil is stretched tight and a slight negative pressure applied to maintain the shape. When the foil is eventually damaged it is merely thrown away and a new piece used. Highly polished thin aluminum sheets may be used in place of the foil but the material should be rolled since this method of manufacturing greatly reduces the occurrence of possible damage center sites in the metal.

Preceding the mirror module is the separation tube module. This unit is a tube 91.5 cm long with an i.d. of 43 cm . The inside is black anodized aluminum to absorb scattered laser radiation. The length of the unit helps reduce the solid angle of the ambient seen by the main calorimeter.

In front of the separation tube is a disc-shaped module containing a backscatter monitor (BSM) and an overspill monitor (OSM). The BSM is used to measure the reflected energy from the main calorimeter, while the purpose of the OSM is to indicate poorly directed laser shots in which only part or none of the energy enters the main calorimeter. In the center of the module is a 15 cm by 30 cm aperture similar in shape to the aperture of the main calorimeter. A dual shutter closes this aperture to block out ambient effects except for a short time window when the main calorimeter trap door is also opened for the laser shot.

In front of the BSM/OSM module is the extension tube module. The module is a duplicate of the separation tube and is used to further reduce the effects of the external environment.

1.4 Description of Measurement and Data Handling Procedures

Operation of CLOP is controlled completely by the desktop computer. The operator inputs the run conditions and the computer takes over. When the run is completed the operator indicates what he wants done to the data. All computer programs are discussed in detail in section 4 and listed in appendices B and C. This section will give just a general outline of the steps.

There are two classes of cassette tapes furnished with each CLOP system. These are program tapes and data tapes. All of the programs necessary for operating each CLOP system is on the one program tape for that system. A duplicate copy of each of the two different program tapes (System T and System H) is also furnished. As good practice, the program tapes are kept in the write-protected condition.

The first program used is the data-taking program. This is accessed somewhat differently in the two systems because of the different type computers. In System T it is most easily accessed by using the AUTO LOAD button, that loads the tape index from which the desired program can be called up. In the System H the computer memory space requires that the program be split into two parts and chained together for operation. The first part is labeled "Autost". This program name will automatically load and run, if the tape is fully inserted before System H is first turned on. Of course, these programs can be loaded and run using the ordinary commands from the keyboard as described in the computer instruction manuals.

The data-taking program first initializes the equipment and then goes through a pre-run checklist including a 45 min warm-up period if that is required. Next, the run parameters are input. Table 1.1 lists the various parameters and the format to be used. In addition to acquiring these parameters, the program also leads the operator through the various steps to set up the gas flow if the main calorimeter is to receive energy (laser or electrical). When all this is accomplished a final check list is presented in anticipation of starting the data-taking. It is at this point that the System H performs the previously mentioned CHAINing operation.

Figure 1-3 shows the time progression of events during a run. During the 2 min adjustment period and the 8 min monitor period, the output from all 10 sensors is measured at 3 s intervals and displayed on the computer screen. The 2 min adjustment period allows the operator to set the zero reading (i.e., the baseline reading before laser or electrical energy injection) of any sensors he so desires; the 8 min monitor period allows him to verify that all relevant sensor outputs are stable to within acceptable limits. The operator can abort the run any time during these two periods with a user-defined key on the computer. An abort in the 2 min adjustment period stops the program which can

Figure 1-3. Time progression of events during one measurement run with CLOP.
be restarted at the beginning of the 2 min adjustment by pressing the CONT key. An abort during the 8 min monitor period restarts the program at the beginning of the 2 min adjustment period.

When the 8 min monitor period is completed the run enters the data-taking stage.

WARNING

During the data-taking period of laser (L) and combination (C) runs, all personnel should leave the area for a place safe from the laser. After the laser shot when the CLOP area is again safe they may return. For electrical (E) runs the personnel can remain with CLOP.

Here the output of all the sensors is measured every second. Every 6 s the values are summed and stored in the appropriate location of a 10 column by 176 row matrix (V \emptyset). The first 8 min of the data-taking period are to record the zero readings of the sensors. For mathematical purposes this 8 min interval as well as a final one are divided into two 4-min intervals each. These four periods are referred to as the Zero Guard Period, the Zero Rating Period, the Transition Period, and the Final Rating Period.

Interposed between the two 8 -min periods is a $96-s$ Injection Period. During this time the gas flow is stopped and shutters opened. The laser shot is now made into CLOP (unless the run is an electrical calibration). Next, the shutters are closed and gas flow resumed. Finally, electrical energy is injected if the run is an E or C type (see table 1.1).

When the run is completed, all appropriate functions of CLOP are shut down and a run-end checklist presented. When the checklist is completed, some preliminary mathematical manipulations are performed and the run data is stored in a temporary data file selected by the operator. Finally, the mathematical processing program is called up.

Table 1.1. Run parameters entered for CLOP runs.

Parameters

Format

1. Run number
2. Run type
3. Calorimeter configuration
4. Mirror device
5. Room temperature
6. Barometric pressure
7. Electrical energy
8. YYMMDD.RR $Y=$ year; $M=$ month; $D=$ day; $R=$ run no. for that day; e.g., 830217.03 is the third run on February 17, 1983
9. $L=$ Laser

E = Electrical
G = Combination (laser and electrical energy injected into the main calorimeter)
3. $\operatorname{DDDDDD} \mathrm{D}=$ digit; $1=$ extension tube; $2=0 \mathrm{SM} ; 3=\mathrm{BSM} ; 4=$ separation tube; $5=$ deflector or foil reflector; $6=$ main calorimeter; $\emptyset=$ no module
4. $D \quad D=$ digit; $1=$ deflector; $2=$ foil reflector
5. Degrees centigrade
6. Millimeters of mercury
7. Joules (E and C runs only)

1.5 Data Reduction and Storage

The data reduction are performed by program "CALC" on System H and by file 5 on System T. These programs calculate the zeroth, first, and second moments for each sensor's voltage output curve in the zero rating period, the transition period, and the final rating period. For a detailed description of the mathematics involved see section 2.2 .

For laser and combination runs, the moments for all the sensors along with other pertinent information are stored in data files. No provisions for further mathematic manipulations of this type data have been developed at this time as no experience with laser shots has yet been acquired. As this experience is gained it is expected that the routines will be developed. Section 2.3 offers some thoughts for consideration for a first approach to this development. In System H the data storage files are on tape LASER RUNS 1; for System T they are files 24 through 33 on each data tape.

For electrical calibration runs, calibration factors are calculated for the Temperature Out sensor and the main calorimeter resistance thermometer detector (RTD) as also for the RTD of each of the ancillary modules. A stability factor is calculated for the Mass Flow In, Mass Flow Out, and Temperature In sensors. The moments, calibration factors, stability factors, and other pertinent data are stored in the appropriate electrical summary file. There is one summary file for each sensor. For the System H these files are on the tape labeled ELECTRICAL SUMMARY. In System T these are files 12 through 22 on the data tapes.

Finally, one more operation is performed on the results of the electrical runs. A "best" estimate of the calibration factor for each temperature sensor is derived. This is done by still another program ("FACTOR" on System H, file 7 on System T). These programs calculate the mean and standard deviation for the RTD of each ancillary module. For the main calorimeter RTD and Temperature Out sensor, the program performs a linear least squares fit of calibration factor as a function of the first moment (drift) during the zero rating period. The reason for this is discussed in section 2.

The results are stored in the form of an 8×4 matrix in data file "CALFAX" on System H and file 23 on the System T along with an operator-input descriptive information note for each sensor. Table 1.2 shows the storage scheme used for the data.

Table 1.2. Array $F \emptyset$ for storing CLOP calibration factors.

	1	2	3	4
1	```KO main cal. RTD```	```% std. dev. of KO main cal. RTD```	No. of points main cal. RTD	```Al main cal. RTD```
2	KO temp. out	$\begin{aligned} & \text { \% std. dev. } \\ & \text { of K0 } \\ & \text { temp. out } \end{aligned}$	No. of points temp. out	$\begin{gathered} \text { Al } \\ \text { temp. out } \end{gathered}$
3	$\begin{gathered} \text { Ko } \\ \text { foil refl. } \end{gathered}$	$\begin{aligned} & \text { \% std. dev. } \\ & \text { of k0 } \\ & \text { foil refl. } \end{aligned}$	No. of points foil refl.	```% std. dev. of Al for main cal. RTD```
4	```KO mirror deflector```	```% std. dev. of KO mirror deflector```	No. of points mirror deflector	\% std. dev. of Al for temp. out
5	```KO separation tube```	```% std. dev. of KO separation tube```	No. of points separation tube	$\begin{gathered} 0 \\ (\text { not used) } \end{gathered}$
6	KO BSM	$\begin{gathered} \text { \% std. dev. } \\ \text { of KO } \\ \text { BSM } \end{gathered}$	No. of points BSM	$\begin{gathered} 0 \\ (\text { not used) } \end{gathered}$
7	KO OSM	$\begin{gathered} \text { \% std.dev. } \\ \text { of KO } \\ \text { OSM } \end{gathered}$	No. of points OSM	$\begin{gathered} 0 \\ (\text { not used) } \end{gathered}$
8	KO extension tube	```% std. dev. of KO extension tube```	No. of points extension tube	$\begin{gathered} 0 \\ \text { (not used) } \end{gathered}$

No "best" values are calculated for the Mass Flow In, Mass Flow Out, and Temperature In sensors, since these readings may vary from run to run and the constancy of the value during the run is the important factor.
2. Theoretical Basis of CLOP
2.1 Basic Principles

Ordinarily, laser calorimetry involves the injection of energy into the calorimeter and after a suitable time period to allow high-order heat modes to decay, fitting a single-mode exponential curve to the data to determine the magnitude of injected energy [3]. CLOP, however, is a dynamic, gasflowing system and as such does not lend itself readily to the above method. That method is based on isoperibol conditions; CLOP is a non-isoperibol system.

A method of moments has been developed to reduce the sensor voltage output data and establish a procedure for summarizing the results. As mentioned in section 1.4 and shown in figure $1-3$, there are four $4-\mathrm{min}$ periods of rapid data taking: the zero guard period, the zero rating period, the transition period, and the final rating period. Interposed between the zero rating period and the transition period is a 96 s injection period. For the latter three 4 -min periods the zeroth, first, and
second moments are calculated as described in section 2.2. These moments correspond to the dc value, the drift, and the curvature of the sensor output voltage curve. They are calculated in such a manner that they are orthogonal to each other.

This is the primary data reduction method. The zero guard and the zero rating periods provide the baseline information to confirm that the system is operating in a reproducible way, namely that the drift is constant. Once this is so, energy is injected into that calorimeter to create a differential change from the nominal baseline conditions. This change is a measure of the amount of injected energy and is determined by subtracting the zeroth and first moments of the zero rating period from the zeroth and first moments of the transition period. This method assumes that while the shutters are open heat flow into and out of the calorimeter is negligible. Maximum accuracy is achieved by making the mass flow in and temperature in of the nitrogen gas the same for laser shot runs and electrical calibration runs. Also, the shutters are opened and closed in like manner for both type runs.

In section 2.2 we shall define the calculation of the moments and then define how the temperature differential is computed based on these moments. We have found that there is a drift term present in temperature out sensor signal and, while it may not be the same value from one run to the next, it can be made constant for any one run. Thus, for each run the drift can be subtracted out of the data to determine quite precisely the differential change from the baseline conditions. We believe the drift terms arise from the fact that the absorber material is at a cooler temperature than the flowing gas and is absorbing heat from the gas as it is being raised toward the temperature of the gas.

The second moment is used basically as an indicator that the drift is constant. When this is so the second moment is insignificant.

Thus, the calibration procedure for the main calorimeter requires the determination of two constants. The first is a fundamental energy constant and the second is a linear correction factor based on the drift (e.g., the first moment in the zero rating period). This determination is accomplished by performing a linear least squares fit of calibration factor versus first moment as measured from a number of different runs [4]. The Y intercept is the fundamental constant and the slope of the line is the drift coefficient or linear correction factor.

For the ancillary modules we determine just the fundamental energy constant. Here we assume that the drift term is insignificant which is quite valid since these modules will be absorbing only a small portion of the total energy of a laser shot and the drift term will be a second-order correction. For these calibration factors only an average and standard deviation need be calculated.

For the mass flow in, mass flow out, and temperature in data a stability factor is calculated based on the zeroth and first moments of the zero rating period and the transition period. No further mathematical operations are performed on these data but the data are saved if needed for future use.

2.2 Derivation of Basic Equation

In deriving the basic equations we shall endeavor to use the same designation for each particular quantity as is used in the computer programs for performing calculations. First, we must consider how the data are taken. Voltage readings of a sensor output are taken at 1 s intervals for 1056 s (four 4 -min periods and a 96 s injection period). During the data-taking process these are averaged on a

Table 2.1. Numerical indicator for CLOP sensors.

Numbers		Sensor
System H	System T	Main calorimeter RTD
0	1	Main calorimeter mass flow out
1	2	Main calorimeter temperature out
2	3	Main calorimeter mass flow in
3	4	Main calorimeter temperature in
4	5	Foil reflector or deflector
5	6	Separation tube
6	7	Backscatter monitor
7	8	Overspill monitor
8	9	Extension tube

6 s basis to reduce noise in the readings and because of computer memory space limitations. Thus, we have for each sensor 176 values representing its output over the time period $\mathrm{t}=0$ to $\mathrm{t}=1055 \mathrm{~s}$. These are stored in the array $V(I, J)$, where $0 \geqslant I \geqslant 175$ and $0 \leqslant J \leqslant y$, $(J=$ sensor index, see table 2.1). Note that for System T the index limits are increased by 1 since that computer does not allow an array index of 0 .

In terms of the actual time expressed in seconds, we can say,
X1 $=237$ starting time of the zero rating period,
X2 $=477$ ending time of the zero rating period,
$X 3=573$ starting time of the transition period,
$X_{4}=813$ ending time of the transition period and the starting time of the final rating period, and
X5 $=1053$ ending time of the final rating period.
Also,
$\mathrm{X7}=(\mathrm{X} 1+\mathrm{X} 2) / 2$ midpoint of the zero rating period,
$X_{8}=\left(X_{4}+X 5\right) / 2$ midpoint of the final rating period, and
$X 9=(X 3+X 4) / 2$ midpoint of the transition period.

Now we set $N=20$, which represents the half width of the stored values in array $V(I, J)$ for any one sensor during any of the three periods of interest. Also $X \emptyset=(X 2-X 1)$, the duration in seconds of each of the time periods of interest, so that we derive $Z \emptyset$, the number of measurements represented by each value in $V(I, J)$, as

$$
\begin{equation*}
Z \emptyset=X \emptyset / 2 N . \tag{2-1}
\end{equation*}
$$

Because we will be using a finite number of terms in the integrals that will calculate the moments, we need to introduce a first-order correction factor to get true orthogonality. This term, $A \emptyset$, is

$$
\begin{equation*}
A \emptyset=1-1 / 4 N^{2} . \tag{2-2}
\end{equation*}
$$

$$
\begin{array}{ll}
C \emptyset=1 / \sqrt{X \emptyset} & (\text { zeroth moment) }, \\
C 1=\sqrt{12 / A \emptyset} /(X \emptyset)^{3 / 2} & \text { (first moment) }, \\
C 2=\sqrt{180} /(X \emptyset)^{5 / 2} & \text { (second moment). } \tag{2-5}
\end{array}
$$

Using the above terms we can now calculate the moments for the output from any sensors as

$$
\begin{equation*}
Y \emptyset(n, J)=\sum_{I=-N}^{N-1} P \emptyset \cdot V((K 1+Z 1) / Z \emptyset, J), \tag{2-6}
\end{equation*}
$$

where

$$
\begin{equation*}
Y 1(n, J)=\sum_{I=-N}^{N-1} P 1 \cdot V((K 1+Z 1) / Z \emptyset, J) \tag{2-7}
\end{equation*}
$$

where
$Y 1(n, J)=$ an array containing the first moments of the various sensors for the periods of interest,
P1 $=\quad$ the first moment function and equal to $\mathrm{Cl} \cdot \mathrm{Zl}$, and $\mathrm{n}, \mathrm{J}, \mathrm{V}(\mathrm{x}, \mathrm{J}), \mathrm{N}, \mathrm{Kl}, \mathrm{Zl}, \mathrm{Z} \mathrm{\emptyset}$, and Cl are as previously defined; and

$$
\begin{equation*}
Y 2(n, J)=\sum_{I=-N}^{N-1} P 2 \cdot V((K 1+Z 1) / Z \emptyset, J), \tag{2-8}
\end{equation*}
$$

where
$\mathrm{Y} 2(\mathrm{n}, \mathrm{J})=$ an array containing the second moments of the various sensors for the periods of interest,
$P 2=\quad$ the second moment function and equal to $C 2\left(Z 1^{2}-\left(A \emptyset \cdot X \emptyset^{2}\right) / 12\right)$, and $n, J, V(x, J), N$, $K 1, Z 1, Z \emptyset, X \emptyset, A \emptyset$, and $C 2$ are previously defined.

We can now define a calibration factor, $K \emptyset$, as

$$
\begin{equation*}
K \emptyset(J)=\frac{Y \emptyset(2, J)-Y \emptyset(\emptyset, J)-\sqrt{12} \cdot T 2 \cdot Y 1(\emptyset, J)}{J \emptyset}, \tag{2-9}
\end{equation*}
$$

$K(J)=$ calibration constant for the particular sensor,
$J=\quad$ index of the sensor as given in table 1.2,
$Y \emptyset(x, J)=$ the zeroth moment as defined above,
$Y l(x, J)=$ the first moment as defined above,
T2 $=\quad$ the ratio of the sensor output voltage after the shutter closes to that before the shutter opens (assume T2 = 1), and
$J \emptyset=\quad$ injected electrical energy in joules.

For the mass flow in, mass flow out, and temperature out, we wish to calculate a stability factor which will give us a measure of how constant the input conditions are for a particular run. This we define as

$$
\begin{equation*}
K \emptyset(J)=Y \emptyset(2, J)-Y \emptyset(\emptyset, J)-\sqrt{12} \cdot T 2 \cdot Y 1(\emptyset, 1), \tag{2-10}
\end{equation*}
$$

where
$K \emptyset=$ the stability factor, and all the rest of the terms are as defined above for the calibration factor.

Now there remains the task of determining a "best" value of calibration factor. As mentioned in section 2.1 , we found that the calibration factor is a linear function of temperature. Thus, we perform a series of electrical calibrations on the main calorimeter which have various drift rates and for the temperature out and main calorimeter RTD we perform a least squares fit on the following equation

$$
\begin{equation*}
\frac{Y \emptyset(2, J)-Y \emptyset(\emptyset, 1)-\sqrt{12} \cdot T 2 \cdot Y 1(\emptyset, J)}{J \emptyset}=K \emptyset(n)+A 1 \cdot Y 1(\emptyset, J), \tag{2-11}
\end{equation*}
$$

where
Al $=$ drift coefficient, and all the rest of the terms are as previously defined.

For all the modules other than the main calorimeter, we assume $A 1=0$ and simply calculate an average calibration factor ($K \emptyset$) and its standard deviation. These "best" values are stored in an 8×4 array, $F \emptyset$, in a data file. Table 2.1 shows the organization of $F \emptyset$. Note no "best" values are determined for the mass flow in, mass flow out, and temperature in.

2.3 Laser Runs

Since no experience using lasers on CLOP has been acquired as yet, this section will only offer various points as a guide to developing future procedures and computer programs for processing the data from laser and combination runs. As experience is acquired, first procedures (and the related computer programs) should be refined.

In order to calculate the injected energy for a laser run, we need to transpose the terms in eq (2-11) for the temperature out sensor in the main calorimeter and eq (2-9) for the sensors in the ancillary modules. Thus, for the temperature out we get from eq (2-11)

$$
\begin{equation*}
E=\frac{Y \varphi(i+2, J)-Y \emptyset(i, J)-\sqrt{12} \cdot T 2 \cdot Y 1(i, J)}{K \emptyset+A 1 \cdot Y 1(i, J)}, \tag{2-12}
\end{equation*}
$$

where

$E=$	laser energy absorbed in the main calorimeter in joules,
$\mathbf{i}=$	0 for System H and 1 for System T,
$J=$	index of the temperature sensor as given in table 1.2,
$K \emptyset=$	$F \emptyset(2,1)$ in the file of "best" values,
$A 1=$	$F \emptyset(2,4)$ in the same file,
$Y \emptyset(i, J)=$	zeroth moment as stored in a laser run results file,
$Y 1(i, J)=$	first moment as stored in the laser run results file, and
$T 2$	as defined in eq $(2-11)$.

For the ancillary modules eq (2-9) transposes to become

$$
\begin{equation*}
E=\frac{Y \emptyset(i+2, J)-Y \emptyset(i, J)-\sqrt{12} \cdot T 2 \cdot Y 1(i, J)}{K \emptyset}, \tag{2-13}
\end{equation*}
$$

where
$E=$ the energy in joules absorbed by the module,
$K \emptyset=F \emptyset(1, a)$ with a being determined for the particular module from table 2.1 , and the rest of the terms are as in eq (2-12).

It should be noted that the $O S M$ has a high reflectance and the value of E in eq (2-13) is actually E_{A} in eq (3-1). The actual laser energy incident upon the OSM should be modified accordingly.

Now the total laser energy is the sum of the energies measured by the various units of CLOP. However, there are two more important factors to be considered, backscatter and inequivalence. Considering the index of refraction for the glass and calcium fluoride ($n=1.5$ or less), the reflection should be of the order of 4 percent or less. Also, the orientation of the surfaces of the absorbing material is such that the reflected light must experience additional reflections (with some associated absorption) before escaping through the calorimeter trapdoor opening. The light will then experience more reflections off of the surfaces of the deflecting unit and the separation tube before arriving at the BSM. The surface of the separation tube is quite black. At the BSM some of the energy will be absorbed by its black surface but some will escape through the open aperture where more will be absorbed by the extension tube. This untrapped (and unmeasured) backscatter should be quite small but it would be prudent to confirm this analysis.

The inequivalence arises from differences in the way the laser energy is injected as compared to the way the electrical energy is injected. The laser energy is absorbed (and converted to heat) throughout the entire volume of the absorber. The electrical energy heats the moving nitrogen gas by conduction and convection which must then transfer the heat to the surface of the absorbing materials. Some of the electrical energy also heats the walls of the calorimeter by radiation. With the large ratio of surface area to volume for the glass plates there should be very little difference when extracting the heat from that absorber, whether it was deposited by optical or electrical energy. The same should hold true for the calcium fluoride for pieces up to 1 cm on a side. Larger pieces may have to be broken down. Thus, the major contributor to inequivalence in the main calorimeter will probably be the less efficient way of transferring the electrical energy to the volume absorbing material.

The deflector unit receives the full energy of the laser beam but should absorb only 1 or 2 percent of it. Thus, inequivalence here should not be as serious as in the main calorimeter. The foil reflector with its air space between the foil and the plate on which the sensor and heater are mounted should have a greater inequivalence than the mirror deflecting unit. However, an inequivalence of 50 percent should only introduce a 0.5 to 1.0 percent error in the total energy measurement.

The same holds true for the other ancillary modules. Here we are talking about measuring only 4 percent of the total energy so we can tolerate inequivalences of 50 percent. This would yield an additional error of 2 percent in the total energy measurement. The close, intimate contact of the electrical heaters and sensors for these units plus the black surfaces and thin walls should result in a much greater equivalence than 50 percent.
3. Description of Components
3.1 Blast Shield

The blast shield is a piece of aluminum 99 cm by 99 cm and 1.6 mm thick. This shield leans forward at an angle of approximately 20 degrees from the vertical so that any radiation reflected from it is directed downward and absorbed at some remote place. In the center is a 42 cm diameter tube which mates with the inside of the next section, the extension tube. The blast shield is held in place by two aluminum straps which connect to supports on the mounting stand for the extension tube.

No electrical instrumentation is associated with the blast shield; its sole function is to provide some measure of protection for CLOP in the event there is a gross misalignment of the laser beam.

3.2 Extension Tube

The extension tube is made from black anodized aluminum. It is 92 cm long by 43 cm in diameter and 1.6 mm thick. It is enclosed in an insulating jacket made from aluminum which is lined on the inside with 2.54 cm foamed polystyrene to isolate the unit from ambient effects. The outer dimensions of the insulating jacket are 90 cm long by 50 cm square. The extension tube protrudes 1 cm beyond each end of the insulating jacket to permit connecting to adjacent sections.

Instrumentation is provided to measure the temperature change of the unit and thus the amount of absorbed backscattered energy from the laser shot. The instrumentation consists of two insulated, bifilar windings of \#40 copper wire which are wrapped in a coincident spiral around the outside of the extension tube. Pitch of the spiral is 2 cm per turn. Nominal resistance of each winding is 440Ω and the two are equal to within 0.5 . . The two windings are designated RT1 and RT2 and form opposite arms of a bridge circuit.

This bridge circuit is shown in figure 3-1. It is mounted on a printed circuit board which is housed in an aluminum circuit box located on the outside of the insulating jacket. Zeroing of the bridge output is accomplished with the 10 turn wirewound pot, R16, that is mounted on the side of the circuit box. All power and signal connections to the bridge circuit are via a $10-\mathrm{pin}$ connector mounted on the circuit box.

Figure 3-2. Schematic diagram of the heater circuit for the extension tube.

Electrical calibration is performed using a heater wire of bare \#24 nickel chromium wire. The wire is insulated from the metal tube by a layer of $76 \mu \mathrm{~m}$ Teflon tape. Both the heater wire and resistance thermometers are covered with a layer of polystyrene coil dope which serves to anchor the wires in place and maintain good thermal contact with the metal tube.

The heater wire is also wound on a 2 cm pitch spiral and is centered between the turns of the resistance thermometers. Thus, the heater is separated from the temperature sensor by 1 cm on each side. The resistance of the heater is approximately 340Ω at room temperature.

The ends of the nickel chromium heater wire are secured on ceramic standoff insulators from which leads are brought out to a six-pin connector on the same circuit box that contains the bridge printed circuit board. The voltage across the heater is measured via a twisted pair of black and white \#22 wires connected to lugs on the ceramic insulators. The two leads are brought out to the same connector as the power leads. A schematic diagram of the heater circuit is shown in figure $3-2$.

3.3 Overspill Monitor/Backscatter Monitor

3.3.1 General Features

The overspill monitor (OSM) and backscatter monitor (BSM) share the same section of CLOP. The dimensions of this section are 50 cm in diameter by 9.5 cm long. The outer skin is made of 1.6 mm thick aluminum and is lined on the inside with foamed polystyrene 3.5 cm thick for environmental insulation. Inside the insulation is another aluminum wall, 1.6 mm thick, which forms a compartment for certain electrical circuits.

Along the centerline of the 0 SM/BSM section is a 30 cm by 15 cm aperture through which the laser beam is directed. A motor-driven shutter blocks this aperture for all measurement phases except laser energy injection, thereby helping to isolate the inner parts of CLOP from external ambient temperature
effects and also inhibiting thermal radiation losses to the outside during the post-injection measuring period. Provision has been made to orient the aperture with the long dimension either horizontal or vertical.

3.3.2 Overspill Monitor

The function of the OSM is to measure how much energy misses going into the calorimeter. The absorbing surface is a piece of aluminum 43 cm in diameter and 3.2 mm thick. Since aluminum is quite reflective at most wavelengths, the reflectance must be considered when determining the amount of energy incident upon the OSM. Thus, the incident energy should be calculated by eq (3-1),

$$
\begin{equation*}
E_{I}=\frac{E_{A}}{1-R} \tag{3-1}
\end{equation*}
$$

where
$E_{I}=$ the energy, in joules, incident upon the OSM,
$E_{A}=$ the energy, in joules, absorbed by the OSM, and
$R=$ the reflectance of the $O S M$ which is equal to the ratio of the reflected energy to the incident energy.

Table 3.1 gives the reflectance of aluminum at certain selected wavelengths. The values given are from Bennett et al. [5] and are for "aged evaporated" films.

OSM temperature changes are sensed with two windings of \#40 copper wire, each of 50Ω resistance. They are wound in a hexagonal shape around the inside of the periphery of the back side of the OSM and are separated from the metallic surface by a layer of $89 \mu \mathrm{mmylar}$ tape. This tape, which has an adhesive on both sides, serves to hold the windings in place. A second layer of mylar tape covers the windings and in turn is covered by $89 \mu \mathrm{~m}$ copper foil tape.

The sensors form the opposite arms of the bridge circuit shown in figure 3-3 for System H and figure 3-4 for System T system. Except for the sensors (RT1 and RT2) and R16 the zero adjustment, these circuits are contained on printed circuit boards located in a circuit box on the outside of the section. R16 is mounted on the circuit box for convenient access. All connections from the PC board to the data acquisition rack are via pins 1 through 12 of a 24 -pin connector. This connector is shared with the output from the BSM PC board.

Two commercially available heaters are used to electrically calibrate the OSM. The heaters are 7.62 cm by 10.16 cm and are located next to the center portion along the 30 cm edge of the entrance aperture. The two heaters are each 3.93Ω and are connected in series. Total power dissipation is limited to 336 W by the computer program to prevent possible damage to the heaters. Leads to the heater are brought out to a six-pin connector on the circuit box. This connector is wired the same as the connector on the extension tube (see fig. 3-2).

3.3.3 Backscatter Monitor

The BSM is used to measure the energy that enters the calorimeter and is not absorbed but instead is reflected back out and hence not measured by the main calorimeter. It is made of black anodized aluminum 43 cm in diameter and 1.6 mm thick. In the center is a 15 cm by 30 cm aperture through which the laser beam passes.

Figure 3-3. OSM bridge circuit schematic diagram (System H).

Figure 3-4. OSM bridge circuit schematic diagram (System T).

Table 3.1. Reflectance of aged, evaporated aluminum films.

$\lambda, \mu \mathrm{m}$	R	$\lambda, \mu \mathrm{m}$	R
0.400	0.9076	4.000	0.9758
0.450	0.9061	5.000	0.9772
0.500	0.9034	6.000	0.9784
0.550	0.9032	7.000	0.9794
0.600	0.9027	8.000	0.9801
0.650	0.8976	9.000	0.9807
0.700	0.8886	10.000	0.9812
0.750	0.8761	11.000	0.9816
0.775	0.8678	12.000	0.9821
0.800	0.8596	13.000	0.9826
0.825	0.8556	14.000	0.9830
0.850	0.8596	16.000	0.9838
0.875	0.8730	18.000	0.9845
0.900	0.8894	20.000	0.9852
0.925	0.9030	22.000	0.9856
0.950	0.9154	24.000	0.9861
1.000	0.9324	26.000	0.9864
1.200	0.9585	28.000	0.9867
1.500	0.9658	30.000	0.9870
2.000	0.9699	32.000	0.9872
3.000	0.9736		

Two 56Ω RTDs made of \#40 copper wire are used to measure the temperature rise of the BSM. They are wound in a rectangular shape around the central aperture leaving two spaces 2.54 cm wide along each 30 cm edge of the aperture. These two spaces are for the calibrating heaters (see below). The RTDs form the opposite arms of the bridge circuit in figure 3-5 for System H and figure 3-6 for System T. This circuit is on a PC board in the same circuit box with the OSM PC board. As with the OSM circuit, the zero adjust pot, R16, for the BSM is located on the circuit box. Leads from the PC board to the data acquisition rack are via pins 13 through 24 of the 24-pin connector. A diagram of the $24-$ pin connector is shown in figure 3-7.

The two calibrating heaters are commercially available. They are each 30.5 cm long and 2.54 cm wide. Each has a resistance of 11.1Ω and they are connected in series. Maximum power dissipation for the total series combination is limited to 336 W to prevent possible damage. Connections to these heaters is via a six-pin connector on the circuit box. The connector in figure 3-2 also serves for this circuit.

3.3.4 OSM/BSM Shutter

As mentioned in section 3.3.1, a shutter is used to block the aperture in the OSM/BSM section. Normally, this shutter is closed for all phases of electrical and laser runs except for those time periods corresponding to laser energy injection. The shutter is made from two pieces of electropolished stainless steel that are opened and closed by individual motors which drive them through rack and gear arrangements. The "open" and "closed" positions of each shutter section are sensed by miniature roller-action switches. Each shutter section is powered independently of the other and thus a

Figure 3-5. BSM bridge circuit schematic diagram (System H).

Figure 3-6. BSM bridge circuit schematic diagram (System T).

PIN	ACQUISITION RACK CONNECTION	PIN	ACQUISITION RACK CONNECTION
1	+15V DC POWER SUPPLY DECK	13	-15V SHIELD
2	-15V DC POWER SUPPLY DECK	14	NC
3	NC	15	+15V SHIELD
4	GROUND POWER SUPPLY DECK	16	SCANNER CONTACT 07 H
5	GROUND POWER SUPPLY DECK	17	SCANNER CONTACT 07 L
6	NC	18	SCANNER CONTACT 07 SHIELD
7	SCANNER CONTACT 08 H	19	GROUND POWER SUPPLY DECK
8	SCANNER CONTACT 08 L	20	GROUND POWER SUPPLY DECK
9	NC	21	NC
10	SCANNER CONTACT 08 SHIELD	22	+15V DC POWER SUPPLY DECK
11	+15V SHIELD	23	-15V DC POWER SUPPLY DECK
12	-15V SHIELD	24	NC

Figure 3-7. Wiring diagram of the $24-$ pin connector on the $0 S M / B S M$ circuits box.
slower moving one will complete its operation even after the other has terminated its movement. Position of the shutter is indicated by a red or green LED on the status light panel on the data acquisition rack. Red indicates "closed" and green "open."

Operation of the shutter is controlled by relays $K 1$ through $K 9$ in the circuit shown in figure 3-8. Commands to open or close the shutter may be initiated manually or by computer control. The manual pushbuttons OPEN, CLOSE, and STOP can be used during a computer controlled run to override computer commands if so desired. The computer uses scanner contacts 32 to open and 33 to close the shutter. Connection for operating the shutter is made via a 14 -pin connector mounted on a 10.16 cm by 5.08 cm by 5.08 cm aluminum circuit box.

3.4 Separation Tube

The separation tube is similar to the extension tube (see section 3.2) except for values of components in the bridge circuit. Figure $3-9$ is a schematic diagram of the bridge circuit for System H and figure $3-10$ is for System T. All constructional details of the two tubes were made as close as possible to be alike, including sensor resistance and heater resistance.

3.5 Mirror Reflector Surface

3.5.1 Description of Module Supporting Frame

The mirror reflecting surface module is used to direct the incoming horizontal laser beam downward at a 90° angle into the volume absorbing material in the main calorimeter. This beam steering is

Figure 3-9. Separation tube bridge circuit schematic diagram (System H).

Figure 3-10. Separation tube bridge circuit schematic diagram (System T).
necessitated by the fact that the volume absorber is often in a form that does not lend itself to a vertical orientation; e.g., small pellets, glass plates, etc.

The deflector unit consists of a frame of 1.6 mm aluminum which holds a reflecting surface at a 45° angle to the incoming beam. The dimensions of the reflecting surface should be approximately 53 cm by 38 cm to best fit the frame. The front face of the frame, through which the laser beam enters, has a 43 cm diameter ring for connecting to the separation tube. The bottom surface of the frame, through which the laser beam exits, has a 43 cm diameter tube 19.5 cm long which projects down to the top surface of the main calorimeter. This tube plus the two triangular sides of the frame and the back of the reflecting surface are all instrumented for performing electrical calibrations and measuring temperature rise. The entire frame is enclosed in an aluminum box, lined on the inside with 2.54 cm foamed polystyrene, for isolation from the outside environment.

Each triangular side of the frame has a 10.16 cm diameter, 677Ω heater at its center. The 43 cm diameter tube has two 63.5 cm by 10 cm heaters, each 145Ω, wrapped around the outside. These four heaters plus the one on the backplate are connected in parallel at a 10 contact terminal block from which leads are brought out to a six-pin connector on a circuit box (connections are as in fig. 3-2). Figure $3-11$ is a schematic wiring diagram of the heaters. The resistance values of the various heaters are chosen to approximate relative heat distributions expected from laser shots.

The resistance thermometers (RTDs) are made from \#40 copper wire. All windings are placed on $89 \mu m$ thick mylar tape with adhesive on both sides. This tape serves to insulate the windings from

Figure 3-11. Schematic wiring diagram of deflector heater circuit.
the metal and to hold them in place. They are covered with another piece of mylar and finally with 89 un copper foil tape.

On the frame the two triangular sides and the tubular bottom were wound with two bifilar windings. Both RTDs cover the three sections with continuous strands of the \#40 copper wire. These are brought out to an eight-contact terminal block which is attached to the frame with epoxy. Leads from the RTD on the mirror reflector are connected in series at the terminal block as shown in figure 3-12 and twisted pair leads brought out to the PC board in the circuit box on the outside of the unit.

On the triangular sides of the frame the pattern of the RTDs is a right isosceles trianyle with 25.4 cm legs. Each side has 3.8 turns. The tubular bottom has 5 turns. Resistance of the total thermometer is 300Ω (including the 200Ω of the mirror backplate).

The bridge circuit is shown in figure 3-13. Leads are brought out from the PC board to a 10-pin connector on the circuit box.

3.5.2 Deflecting Plate

The deflecting plate is a rectangular mirror approximately 2 cm thick. The mirror has a copper surface and therefore should not be used at uv wavelengths because of its reduced reflectivity. This surface will be useful in ir wavelengths and at longer visible ones.

The mirror itself does not contain the temperature sensors and electrical calibration heaters; these are mounted on a 1.6 mm thick aluminium backplate which is maintained in close thermal contact with the mirror by means of clamps and a layer of silicone grease. The central region of the backplate which holds the calibration heater is thermally isolated from the outer region by slots which are designed to force the electrical heat to flow into the mirror and back out again before reaching the sensors.

The sensor is two pairs of bifilar windings in the shape of a rectangular spiral. Thirty turns of \#40 copper wire are used, giving a resistance of 200Ω. Leads to the RTD are connected via lugs to a four-contact terminal block attached to the backplate with epoxy. The RTD is mounted using mylar tape with adhesive on both faces to hold the \#40 wire in place and covered with copper foil tape.

The heater is a commercially available model and has a resistance of 3.93Ω. It is mounted in the central, isolated section of the backplate. Its leads go to a two-contact terminal block on the backplate before being connected in parallel with the other heaters.

3.5.3 Foil Reflector

The foil reflector was designed to furnish a "throw away" mirror surface. This was deemed prudent because of the high probability of damage from the intense laser pulses.

The support for the foil is an aluminum plate with a depression machined in the front side. A rectangular ring is attached with screws around the perimeter to hold the foil reflecting surface in place. The reflecting surface can be made from thin aluminum foil or from thin sheets of the metal. The critical elements are that it have a shiny surface and be made by a rolling process since this will reduce the number of potential damage sites. Also, the surface must be free of grease and fingerprints.

*RT1a, b, \& c and RT2a, $b, \& c$ are shown as series-connected lumped elements but are actually one continuous length of \#40 copper wire for each thermometer (RT1 \& RT2). The "d" elements are separate lengths of \#40 copper wire connected as shown with twisted pairs of \#20 copper wire.

Figure 3-12. Schematic wiring diagram of deflector RTD circuit.

Figure 3-13. Schematic wiring diagram of deflector bridge circuit.

While the surface does not have to be of high optical quality it should be reasonably smooth so that little or none of the laser radiation will miss the main calorimeter. Thin sheets will probably have enough rigidity to maintain the proper shape. Thin foil will more likely need careful stretching and a slight negative pressure applied through a fitting on the backside of the support place to achieve a satisfactory surface.

The electrical heater is mounted to one side of the fitting on the back. It is 12.5 cm by 17.5 cm and has a resistance of 44.5Ω. The temperature sensor is two pair of bifilar windings of \#40 copper wire, each pair having a resistance of 200Ω. These are wound in a "C" shape around three sides of the heater. Leads to the heater and the RTDs are connected to terminal blocks on the back side of the support plate so that the plate can be easily disconnected from the frame when it needs to be removed.
3.6 Main Calorimeter

3.6.1 General Features

The main calorimeter is a copper vessel, 43 cm in diameter and 24 cm tall. It consists of a top section which hangs down into a lower section. Located centrally on the top piece is a 15 cm by 30 cm aperture through which the laser beam enters. A motor driven shutter seals this aperture for all phases of electrical and laser runs except for the time corresponding to laser energy injection. Below the aperture is a gold plated compartment for holding the volume absorbing material. The holder can be of various designs; e.g., basket for pellets, rack for stacked plates, etc. The lower section of the calorimeter contains a heater for performing electrical calibrations plus a copper RTD.

As discussed in section 1 , dry nitrogen gas is used as a vehicle for transferring the heat of the absorbed energy from the volume absorber to a heat sensing thermistor. The gas flows in through a pipe on the side of the bottom section, up through the porous volume absorber, into the upper section, and out a pipe on the side of the upper section. Figure 3-14 is a cross sectional diagram of the calorimeter showing gas flow paths in the calorimeter and various sensor locations.

The whole calorimeter fits into an insulated box for isolation from ambient changes. The box sits on a shelf just behind the legs for the separation tube. The box with the calorimeter can rotate 90° if it is desired to change the orientation of the input aperture. Also on the shelf are two circuit boxes for the associated electronics.

Figure 3-14. Cross sectional view of calorimeter unit.

Figure 3-15. Total gas flow system for CLOP. Either the output from the high pressure manifold may be connected to an electrically operated valve on the low pressure manifold or individual cylinders with PRV's may be connected to the low pressure manifold.

3.6.2 Gas Flow

Figure 3-15 shows the total gas flow system. Gas flow is turned on and off with electrically controlled valves. Scanner contacts 34 through 37 actuate the four valves. Flow rate is controlled with PRVs and a throttling valve on the output of the low-pressure manifold. Dry nitrogen gas is supplied to the calorimeter by one of two methods. The preferred method uses three or more cylinders connected to a high-pressure manifold which has a PRV on its output, supplying gas at a constant reduced pressure to electrical valve \#l on the low-pressure manifold. All manifold valves to the cylinder are opened and two cylinders are opened up to the manifold while the rest are held in reserve. When the two cylinders begin to empty and the manifold pressure gets to the last graduation on the gauge, the manifold valve to one cylinder is shut off and the cylinder valve to the reserve cylinder opened. The empty cylinder can now be replaced with a full one. The operator should plan ahead of time to make this switch if the gas supply is in danger of running out during the data taking part of a run. When using this method of gas supply, manual valves on the output of unused electrical valves on the low-pressure manifold must be shut off to prevent back leakage through the electrical valves.

The second method uses two to four cylinders each with its own PRV and connected to separate electrical valves on the low-pressure manifold. This method is less desirable than the first because of the difficulty in setting two PRVs to the same pressure. The computer program (see section 4) leads the operator through the steps to adjust each regulator one at a time to get the same mass flow in reading for each PRV during the pre-run set up procedure. The operator presses a user-defined key during a run to turn off the empty cylinder and turn on the reserve cylinder. The empty cylinder can
then be replaced. Thus there can be as low as one reserve cylinder or as many as three. The computer program is designed to handle any situation within this number. As with the preferred method, the operator should plan ahead to avoid running out of gas while he is out of the room during laser shots.

A preheater unit is installed after the low-pressure manifold to reduce temperature background drift caused by cooling due to adiabatic expansion of the gas. This preheater is rated at 680 W and with a resistance of 145Ω can supply up to a nominal 100 W when operated with a 120 V ac adjustable autotransformer.

As shown in figure 3-14, when the gas enters the input arm of the main calorimeter, it strikes a flat plate which induces turbulent flow. Turbulence is required to ensure good mixing of the gas and maximum flow past the sensors located near the wall of the pipe. The gas then passes throuyh a section in the input arm with a pair of screens which are used to break up laminar flow for cases where yas flow might be reversed. The yas then continues through the main chamber of the calorimeter and into the output arm. There it encounters another pair of screens which breaks up the laminar flow and induces turbulence. It then passes over the output sensors, comes to a final plate which (under reverse flow) corresponds to the initial plate, and flows out of the calorimeter.

In this section reference has been made to "reverse flow conditions." For some tests it may be advantageous to run the gas through the calorimeter opposite to what is normally done; e.g., in the top section, down through the volume absorber, and out the bottom section. Note that the calorimeter is designed symetrically with respect to input and output sensors and turbulence-inducing elements. Thus, the gas dynamics are roughly the same under both forward and reverse gas flow. However, no provision has been allowed for this in the computer program and the sensors will be labelled incorrectly. Also, input to the preheater control circuits will have to be changed.

3.6.3 Electrical Instrumentation

3.6.3.1 Thermistor Sensors

Thermistor sensors are used to measure the following gas parameters:

1. The mass of the gas flowing into the calorimeter,
2. The temperature of the gas flowing into the calorimeter,
3. The mass of the gas flowing out of the calorimeter, and
4. The temperature of the gas flowing out of the calorimeter.

The locations of these sensors are shown in figure 3-14.
Each sensor is actually a pair of thermistors in the opposite arms of the appropriate bridge circuits in figures $3-16$ through $3-19$. Figure $3-20$ is a typical $I-V$ curve for a thermistor. As explained in the figure, point A indicates the $I-V$ point of the thermistor at $50^{\circ} \mathrm{C}$ while point B is for $300^{\circ} \mathrm{C}$. The temperature sensors are operated in the linear portion of the curve well below point A as shown in the figure for greatest sensitivity to temperature changes of the gas. Conversely, the mass flow sensors are operated at some high temperature as shown in the figure in order to minimize the effect of temperature changes in the gas. The exact point of operation is set by the bias current and is chosen to make the thermistor operate where the slope is maximum and slow changing. For the mass flow thermistors the bias current is approximately 10 ma .

Figure 3-16. Schematic diagram of Mass Flow In bridge circuit.

Figure 3-17. Schematic diagram of Temperature In bridge circuit.

Figure 3-18. Schematic diagram of Mass Flow Out bridge circuit.

Figure 3-19. Schematic diagram of Temperature Out bridge circuit.

Figure 3-20. Typical I-V curve for thermistor sensors.

Figure 3-21. Wiring diagram for $15-\mathrm{pin}$ connector on gas input circuits box.

The electronic circuitry for measuring the input gas parameters is housed in a circuit box mounted on a bracket on the left side (as the observer faces the input of the extension tube) of the shelf on which the calorimeter rests. The two zero-adjustment pots are mounted on the box. Connections to the bridge circuits are made via a 15-pin connector. Figure 3-21 shows the diagram for this connector.

A circuit box for housing the electronics for the output temperature and mass flow circuits is mounted on the opposite side of the shelf. This box also contains the circuit board for the main calorimeter RTD (see section 3.6.3.2, below). All circuit zero adjustments are mounted on the box. This box can be moved to the back of the shelf if the calorimeter is rotated 90°. Connections for the output gas mass flow and temperature measuring circuits plus the RTD are via a 24 -pin connector whose wiring diagram is given in figure 3-22.

3.6.3.2 Resistance Thermometer Detector

A resistance thermometer detector (RTD) is installed in the lower section of the main calorimeter. It is located at the bottom just outside of the region where the lower part of the top section is suspended. The RTD is wound on a form of 16 equispaced posts made from $2.54 \mathrm{~cm} 4-40$ screws. These are arranged in a circular pattern having a 36.8 cm diameter.

The RTD is made from 2 bifilar windings of 48 turns of \#40 copper wire. The exact length was individually adjusted to equalize the two resistances to $219.5 \pm 0.1 \Omega$ at room temperature. The copper wires are enclosed between two pieces of $76 \mu \mathrm{~m}$ thick Teflon tape which are in turn covered with 89 m thick copper tape which serves as a radiation shield. Leads to the RTD are brought through the wall via hermetic seals. Pins 1 and 3 are for one pair of wires and pins 2 and 4 for the other pair. The leads then continue to the same circuit box that contains the mass flow out and temperature out circuit boards (see section 3.6.3.1).

Figure 3-23 shows the bridge circuit for the RTD. As mentioned in section 3.6.3.1, the zero adjustment is located on the outside of the circuit box. Power and signal connections are via pins 16 through 24 of the 24-pin connector shown in figure 3-22.

3.6.3.3 Calibration Heater

A heater for performing electrical calibration is located in the lower section of the calorimeter. This heater is made of \#18 nickel chromium wire and is wound on a cylindrical wire frame. Its resistance is 15Ω. The turns are insulated from the wire frame by a layer of glass fiber insulating tape. The ends of the heater are anchored to ceramic standoff insulators. Power leads to the heater are copper braid. Voltage sensing leads are bare stranded copper wire. The two current leads and the two voltage sensing leads are fed through the calorimeter wall via individual ceramic hermetic seals. The leads continue on to the circuit box containing the gas output bridge circuits and go through a six-pin connector to the data acquisition rack. Pin connections for this connector are as shown in figure 3.2.

3.6.4 Main Calorimeter Shutter

As mentioned in section 3.6 .1 , a shutter is used to seal the input aperture of the main calorimeter for all phases of a run except for that time corresponding to laser energy injection. It is

MASS FLOW/TEMP FLOW CONNECTIONS
RTD CONNECTIONS
Figure 3-22. Wiring diagram for 24-pin connector on gas output circuits box.

Figure 3-23. Schematic diagram for the bridge circuit for the main calorimeter RTD.
essential that the seal be free from gas leaks as any loss of gas will ultimately result in an error in the measurement of injected energy. This is true for both electrical calibrations and laser measurements.

The shutter is in the form of a motor-driven trap door used in conjunction with a motor-driven latch for sealing purposes. The trap door is made of 6.25 mm aluminum and seals against a 6.25 mm aluminum baseplate. An 0 -ring is used to effect a gas tight seal. The 0-ring should be frequently checked for laser damage.

The latch consists of a rotating shaft with two arms which press down on the two corners opposite the hinged side of the trap door. A screw adjustment is provided on each arm to precisely set the amount of pressure needed for a gas-tight seal.

When closing, the trap door moves first and when its operation is completed the latch begins operation. This sequence is reversed when the shutter is opening. Miniature roller action switches sense when the trap door and latch reach the limits of their movement. Leads from the four switches and two motors all come out to a $25-\mathrm{pin}$ connector which connects to a cable from the data acquisition rack where the controlling circuitry is located.

The shutter may be operated manually using pushbuttons labelled "OPEN," "CLOSE," and "STOP" or it may be operated under computer control through scanner contacts. Momentary closure of scanner contact 30 opens the shutter while momentary closure of contact 31 closes the shutter.

Figure 3-24 is a schematic diagram of the control circuit for the calorimeter shutter. A six-pin connector, Jl , on the chassis brings in +10 V dc to operate the relays and a floating 5 V dc for powering the two motors. The polarity of this 5 V dc is reversible through the action of relay K 5 to control motor direction. The six-pin connector also brings in the OPEN and CLOSE signals from the scanner.

3.7 Data Acquisition Rack

3.7.1 General Description

The data acquisition rack contains equipment for performing the following tasks:

1. Controlling the sequence of events during electrical calibrations.
2. Controlling the sequence of events during laser energy measurements.
3. Accumulating, storing, and processing data from the various sensors in CLOP.
4. Measuring, recording, and processing the dc calibration voltage and current values.
5. Furnishing electrical power to all modules of CLOP.
6. Controlling electromechanical operations.
7. Maintaining the temperature of the input gas to the main calorimeter at a constant value.
8. Visually indicating the status of various critical elements of CLOP during runs.

The rack is $1.71 \mathrm{~m}(67.25 \mathrm{in})$ high by $0.61 \mathrm{~m}(24 \mathrm{in})$ deep. It has a front and rear opening, each 1.556 m (61.25 in) high in which may be mounted standard 48.2 cm (19 in) width panels. The rack is mounted on casters to permit easy movement.

Figure $3-2 b$ is a front view drawing of the rack for System H showing the positions of various pieces of equipment. The rack for System T, shown in figure $3-26$, is quite similar except as noted below. Figure 3-27 is a rear view drawing showing the location of the outputs for the cables to CLOP and the ac power outlet locations. This section (3.7) will describe the various pieces of equipment in the data acquisition rack in the order of location in the rack, first the front from top to bottom and then the rear from top to bottom. There are two major differences in the computers which affect the data acquisition rack for each system. These are the large size of the System T computer which prevents it from fitting into the rack and the fact that the System H computer possesses an internal clock system for timing events while the System T computer does not. The first difference means that System T is located separately from the data acquisition rack. Its space is advantageously filled with the preheater control circuit which, in System H, is crowded onto the panel with the calibration power supply status circuit (see sections 3.7 .10 and 3.7.13). The second difference requires a separate pacer (timing unit) for System T. This is a half-rack width instrument and is located next to the DVM, also a half-rack width instrument (see section 3.7.8).

3.7.2 Main Power Switch Panel

The main power switch panel is used to turn on and off the 115 V ac to the various units in the data acquisition rack. This is done with the white rocker switch on the front of the panel. Also mounted on the front of the panel is a neon pilot light and the RESET button of a 15 A circuit breaker. Figure 3-28 is a wiring diagram of the panel.

The panel uses a two wire (high and neutral) plus case ground system. Its input cord plugs into an outlet on the ac input panel (see section 3.7.11) and its output is a duplex outlet mounted on the back side of the panel. A seven-plug outlet strip which is mounted on the back of the rack is plugged into this duplex outlet. The various pieces of equipment in the rack plug into the outlet strip.

3.7.3 Scanner

The scanner is used to connect the output of the various sensors to the digital voltmeter (DVM) and to furnish signals for controlling various operations. This instrument has two plug-in units to perform these functions. A 20 -contact duodecade unit is used to switch the sensor outputs. A 10contact actuator unit is used to control the operations. Full information on the contact arrangement of these plug ins is given the manufacturer's instruction book. Table 3.2 is a list of the instruments connected to the scanner channels. The sensors are connected to channels 00 through 14 and the operations are controlled by channels 30 through 37 as described in table 3.2 .

The scanner is operated with the IEEE 488 bus. Its address is 9. Since for the System H computer the general address of the bus is 700 , an example of the command to the scanner to turn on channels 7 and 32 and turn off all others is OUTPUT $7 \emptyset 9$ USING "K"; "3, $07,32 "$ for System H. For System T this command is PRINT@9: "3,07,32".

The expression USING "K" is required in the System H command to have the duodecade function correctly. The " 3 " in the command opens all contacts in the 30 decade. The " 07 " closes contacts 7 in the duodecade and by the nature of this plug-in all others are opened. Finally, the " 32 " closes these contacts. If contacts 32 had been already closed they would have remained closed continuously even though the " 3 " command was given.

Figure 3-25. Front view of the data acquisition rack for System H.

Figure 3-26. Front view of the data acquisition rack for System T.

Figure 3-27. Rear view of the data acquisition racks for both systems.

Figure 3-28. Wiring diagram of the main power switch panel.

Table 3.2. Scanner channel connection.

Channel	Sensor or Operation
00	Main calorimeter RTD
01	Main calorimeter output mass flow
02	Main calorimeter output temperature
03	Main calorimeter input mass flow
04	Main calorimeter input temperature
05	Mirror reflector
06	Separation tube RTD
07	BSM RTD
08	OSM RTD
09	Extension tube RTD
10	Electrical calibration current
11	Electrical calibration voltage
12	Electrical calibration voltage $\div 10$
13	Electrical calibration voltage $\div 20$
14	Low voltage dc supplies
$15-19$	Not used
	Main calorimeter shutter OPEN
30	Main calorimeter shutter CLOSE
31	OSM/BSM shutter OPEN
32	OSM/BSM shutter CLOSE
33	Gas valve \#1 OPEN
34	Gas valve \#2 OPEN
35	Gas valve \#3 OPEN
36	Gas valve \#4 OPEN
37	Not used

Table 3.3. Status light color indications.

Light
Green
Incandescents
Calorimeter
BSM
Calib. power supply units
Gas flow
+15 V

- 15 V
(spare)
no-go for laser shot shutter closed shutter closed ac off to one or both gas not flowing off
off
not connected
go for laser shot
shutter open shutter open ac on to both gas flowing on on not connected

3.7.4 Status Light Panel

The status light panel is an 8.89 cm ($31 / 2 \mathrm{in}$) high panel containing six dual-color LEDs plus one spare in System H and seven red-green pairs in System T that give a visual indication of the status of certain CLOP elements. Also on the front of the panel are red and green incandescent indicator lights that give the overall status of the run and a switch to set the proper logic for either a laser run or combination run. When the green incandescent light is on CLOP is ready for a laser shot. Figure $3-29$ is a schematic wiring diagram of this panel for System H; figure 3-30 is for System T.

The LEDs emit red and green colors. Table 3.3 explains what the colors indicate for the different CLOP elements.

3.7.5 Shutter Control Panel

This panel is 13.3 cm (5.25 in) high and contains two chassis--one for the OSM/BSM shutter control circuit and the other for the main calorimeter shutter-control circuit. The front of the panel contains push buttons to OPEN, CLOSE, and STOP each shutter. A description of the OSM/BSM shutter circuit and operation is given in section 3.3.4. The description for the main calorimeter shutter circuit and operation is in section 3.6.4.

3.7.6 Power Monitor Panel

The power monitor panel is $17.8 \mathrm{~cm}(7 \mathrm{in})$ high. It serves two functions, which are (1) provide a means of measuring the low voltage dc supply voltages and (2) provide a means of measuring the dc voltage and current used in electrical calibrations.

On the front of the panel is the shaft of a five-position, double-pole rotary switch. The various low-voltage dc supply voltages are input to this switch via a nine-pin connector. The voltage selected is output through pins 1 and 2 of a four-pin connector, goes to contacts 14 on the scanner and is eventually measured by the digital voltmeter (DVM). Figure 3-31 is a schematic wiring diagram of the switching circuit. The position marked $-5 V$ measures the floating output supply that furnishes the reversible polarity power for the shutter motors. The other voltages are all referenced to ground potential.

The second module on this panel measures the dc voltage and current supplied during an electrical calibration. Figure 3-32 is a schematic diagram of the circuit. Input power from the calibration power supply (described in section 3.7 .14) is furnished through pins $12(+)$ and 10 (ground) of

Figure 3-29. Schematic wiring diagram of the status light panel (System H).

Figure 3-30. Schematic wiring diagram of the status light panel (System T).

Figure 3-31. Schematic wiring diagram of the switching circuit for measuring low dc voltage.
connector P 406 DB. Voltage sensing leads from the power supply come in through pins 9 and 11 . Power output is through pins $12(+)$ and 10 (low) of connector S 406 DB . Voltage across the load is brought in through pins $9(+)$ and $11(-)$ to the divider chain formed by $R 4$ and $R 5$.

The voltage across the total divider formed by $R 4$ and $R 5$ is equal to the voltage across the calibration heater. The wiper on $R 4$ is set to 0.1 times the voltage; the wiper on R5 is set to 0.05 times the voltage. Output to the scanner (see table 3.2) and DVM is through the 25 -pin connector.

If an adjustable precision voltage source is not available, the following can be used to set the divider chain, R4-R5.

1. Set the calibration power supply so the DVM reads approximately +1.99 V on the 10 V range of the DVM when the scanner is on channel 11.
2. Switch the scanner to channel 12 and the DVM to the $1 V$ range.
3. Adjust $R 4$ so the DVM reads the same as the previous reading; e.g., +1.990 . Tighten the locking nut on the shaft of R4.
4. Switch the scanner to channel 13 and adjust $R 5$ to read one half of the previous reading; e.g., +0.995. Tighten the locking nut on the shaft of R5.

Generally speaking, no measurements need be done on channel 13 as the calibration power supply does not ordinarily put out more than 100 V .

3.7.7 Digital Voltmeter

The digital voltmeter (DVM) is described in the manufacturer's instruction book. It has five functions which are programmable through front panel pushbuttons and the IEEE 488 bus. These are:

1. Voltage range,
2. Trigger mode,
3. Trigger delay,
4. Number of readings taken per input trigger, and
5. SRQ enable/disable.

The operation of CLOP utilizes only the first three functions. The burst mode of operation and the SRQ are not used.

When usiny the pushbuttons, the voltage range and the trigger mode are set by merely pushing the desired button; e.g., $0.1 \mathrm{~V}, 1.0 \mathrm{~V}, 10 \mathrm{~V}$, INT, EXT, HOLD/MAN. To set a trigger delay; e.g., 50 ms , the following sequence of buttons are pushed:

1. DELAY
2. . (decimal point)
3. 0
4. 5
5. SET

Note the decimal point is the first piece of data entered. This is required by the instrument to recognize the "DELAY" function. When the DVM is running in the internal trigger mode, the trigger delay function can be used to slow down the number of readings being taken. In the above case there would be 20 readings per second (50 ms period). In the external trigger and manual trigger modes, the trigger delay regulates the time lapse between the trigger command and when the reading is taken.

When using the IEEE 488 bus the DVM is addressed as device 24. Table 3.4 is a list of the commands that the CLOP programs use.

Thus, a command on System H to tell the DVM to take a reading on the 1 V scale 5 ms after an external trigger signal is received is OUTPUT 724; "R2T2D. $\varnothing \emptyset 5 S "$. On the System T it is PRINTや24: "R2T2D.0ø5S".

Two methods may be used to take readings under computer control. The first method is used when readings are not to be taken very rapidly. The HOLD/MANUAL command, T3, is simply sent to the DVM each time a reading is to be taken. For taking 10 or 12 readings in less than 1 s , the external trigger mode, T2, is used with a 5 ms delay. The external trigger is furnished by the scanner everytime it switches channels over a BNC cable from the scanner sync jack to the DVM external trigger input jack. The 5 ms delay is required to allow time for the scanner contacts to close and voltage transients to decay before making the DVM measurement.

Table 3.4.* IEEE 488 commands used by the DVM.

ASCII Character	Description
D	Delay
S	Store
R	Range
	1
	0.1 V
	3

*Condensed from table 3.4, page 3-6, of manufacturer's operating manual.

The rear-input, triaxial jack on the DVM is used since the instrument is mounted in a rack. This jack is connected via a triaxial cable to the common contacts of the duodecade plug-in of the scanner. The command to transfer the DVM reading to the memory in the System H computer is ENTER 724; V1. For System T the command is INPUT @24:V1. In this example the reading is stored as the variable V1.

3.7.8 Pacer Unit (System T Only)

The pacer unit is located to the left of the DVM in System T. It is used to furnish a train of pulses at precisely equal time intervals to form a time base for CLOP to operate by. This unit tells the System T computer when to order certain operations be done. On the System H computer there are three internal programmable timers which obviate the need for a pacer in that system.

The pacer is programmable over the IEEE 488 bus and sends pulses to the 4052 A which counts them to keep track of the time that has elapsed since the run began. The pulses are first at 3 s intervals during the monitor period but change to a 1 s interval when data acquisition begins. The computer takes this into account when computing the time.

A typical command to the pacer is

PRINT o19:"P1甲øE4SR"
where the P signifies the pacer mode of operation (as opposed to the timer mode), 100E4 is the period in microseconds (1×10^{6} or 1 s), S enables the $S R Q$ on the unit, and R either starts the pulse train or resets the internal pulse counter in the unit.

3.7.9 Input Gas Temperature Controller

The Input Gas Temperature Controller is used to supply a proportional signal that will maintain the temperature of the input gas to the main calorimeter at a constant value and cancel out the tendency of the gas to cool because of its expansion from the pressurized condition in the cylinder. The proportional correction signal is in the form of a variable duration pulse having a 1 pps repetition rate. This correction signal is furnished to the Preheater Control Unit (see section 3.7.13) to switch on and off the ac power to the preheater and thus control the temperature of the gas entering CLOP .

The correction signal is derived from the output voltage of the temperature bridge circuit. This voltage, after entering the data acquisition rack through jack 5B of the CLOP Module Connection Panel (see section 3.7 .16) is routed to the input gas temperature controller chassis. A schematic diagram of the circuitry in this unit is shown in figure 3-33.

In this unit the signal voltage is first sent to an isolation amplifier board with two outputs. One output leaves this chassis and goes to scanner contacts $\emptyset 4$ for measurement by the DVM. The other output goes to another PC board containing the proportional signal generator. On this board the temperature in voltage is connected to the inverting input of a differential amplifier. The non-inverting input of the differential amplifier is connected to an adjustable reference voltage. This reference voltage first is set so that the controller is just turned off while the gas is not flowing; i.e., the controller is not pulsing as indicated by the extinguished LED. When the gas starts flowing (and cooling) the balance is upset and the controller starts generating a correction signal. The

reference voltage is now reset to produce a temperature in reading called for in the program. If the gas becomes too warm the correction signal disappears until the natural cooling of the gas returns conditions to the balanced state.

When setting the balance conditions a RUN-SET switch is put in the SET position which turns on a gate and allows the correction signal to appear on the output. During a run the switch is put in the RUN position so that a gating signal from the Gas Valve Control Output panel (see section 3.7.17) turns on the correction signal only while gas is flowing. This gating signal enters via the BNC connector labelled EXTERNAL.

3.7.10 Computer Section

The next 26.5 cm (10.5 in) below the Input Gas Temperature Controller in System H only is used to hold the computer. The instrument is attached to a sliding shelf in the rack and may be pulled out for convenient use and pushed inside the rack for safe storage. The computer is described as to its specifications and programming in the manufacturer's instruction manual. No attempt will be made to go into great detail about its operation but certain useful facts are given below.

The computer is furnished with an IEEE 488 bus output and an RS232 output.

The computer has 32 kbytes of memory of which space for 30288 bytes is available. Programs requiring more space than this are split into smaller programs and stored on tape as separate files. When run, they are chained in the proper sequence to perform the complete program.

The programs are described in section 4 of this manual.
The System T computer is too large to fit into the data acquisition rack. Hence, it is located externally to the rack and its space in the rack is filled by the preheater control circuit (see section 3.7.13).

This computer has available 54624 bytes of memory eliminating the need for chaining any of the programs described in section 4. It, too, has IEEE 488 and RS 232 interfaces and a four-slot ROM pack for external ROMs.

3.7.11 Power Supply Section

The power supply section is contained on a shelf behind a 13.3 cm (5.25 in) panel just below the computer. This section contains the power supplies that furnish the low voltage dc for powering the various sensor circuits and the shutter motors. It also contains an interfacing unit between the IEEE 488 bus and the calibration power supply (see section 3.7.13). These two parts are described in the following subsections.

3.7.11.1 Low Voltage dc Supplies

One $\pm 15 \mathrm{~V}$ dc dual output power supply and three 5 V dc supplies are used to fill all the lowvoltage dc requirements of CLOP. Two of the 5 V supplies are connected in series to furnish $10 \mathrm{~V} d c$ as well as 5 V dc. Table 3.5 gives useful information about the power supply voltages. Figure $3-34$ is a schematic wiring diagram of the low-voltage dc power supply section.

Table 3.5. Low voltage dc supply summary.

Designation*	Voltage	Current	Remarks
A1	+5 V	3 A	
A2	+10 V	3 A	A second 5 V, 3 A power supply connected in series with A1
A3	+ or -5 V	3 A	Output floating; polarity reversible
A4	$\pm 15 \mathrm{~V}$	3 A	

*Refer to figure 3-34.

3.7.11.2 Calibration Power Supply Interface Unit

The calibration power supply interface unit is a commercially available unit made by the manufacturer of the calibration power supply. It is merely a D to A converter which receives a digital command on the IEEE 488 bus and puts out dc voltages specified by the command which are used to program the calibration power supply to the desired output voltage and current. Full particulars of the interface unit are given in the manufacturer's instruction book. Certain useful information is given in this section.

The unit has two output channels. Channel 1 is used to set the voltage limit and channel 2 sets the current limit. Only one channel need be set if the other needs no changing. For example, if the calibration power supply is running in the voltage limiting mode at 100 V and 6 A and the interface unit is set to 100 V limit and a 6 A limit, only a new voltage limit need be set on the interface unit to reduce the power supply output to a lower value, e.g., 50 V .

Figure 3-34. Wiring diagram of low voltage dc power supply section.

Each channel has two output ranges, 0 to +1 V and 0 to +10 V which correspond to power supply output limits of 0 V to $10 \mathrm{~V}(0 \mathrm{~A}$ to $+10 \mathrm{~A})$ and 0 V to +100 V , respectively. In addition, the interface unit can set low and high negative voltage and current limits but these are not used with CLOP since the calibration power supply has a unipolar output with the negative side grounded.

The desired voltage and current limit are set with three-character hexadecimal words, $\emptyset \emptyset \emptyset$ through FFF. Thus, the incremental steps of voltage and current are 1 part in 4096 , or approximately 0.024 percent. In terms of calibration power supply output, this is 2.4 mV resolution up to 10 V and 24 mV from 10 V to 100 V . Appendix A is included for convenience as a review of the methods for converting back and forth between the decimal and hexadecimal based number systems.

The address of the interface unit on the IEEE 488 bus is device 6. A five-character command is used to set the desired limit on the calibration power supply. The command is of the form (reading from top to bottom):

```
Channel 1 = voltage, 2 = current
Range }\quad0=\mathrm{ high positive, 2 = low positive
Magnitude \emptyset\emptyset\emptyset through FFF
```

Thus the command to set a $50 \mathrm{~V}, 4 \mathrm{~A}$ limit on the power supply is OUTPUT 7ø6; "1ø7FF"; "22666" on the System H and PRINT@6:"1Ø7FF";"22666" for the System T.

The unit has been modified to permit sampling of the ac input power as shown in figure $4-5$ of the manufacturer's instruction book. This sampled ac goes to the calibration power supply status circuit (see section 3.7 .12) to sense whether the instrument is on or off.

3.7.12 Calibration Power Supply Status Circuit

This circuit is used to sense if both the calibration power supply and the calibration power supply interface unit are turned on or if either one is turned off. It then applies 5 V dc to either pin 5 or 6 of the status light panel which lights the color indicating the existing condition.

Figure $3-35$ is a schematic wiring diagram of circuit. The two relays, K1 and K2, are activated by the 115 V ac from the interface unit and the power supply, respectively. These voltages are fed into the chassis through two recessed male receptacles. In the interface unit the ac is monitored on the input voltage selector board (see fig. 5-4 in the instruction book). In the calibration power supply the ac is sampled on terminals 1 and 5 of T201 (see fig. 6-3 in instruction book).

The 5 V dc for the status light panel comes in through pin A of a five-pin connector and out on either pin D or E depending on the condition of K1 and K2. The contacts of K1 and K2 are wired such that they perform a logical AND function for the "ON" condition of the power supply and interface unit and a logical OR for the "OFF" condition.

3.7.13 Preheater Control Circuit

The preheater control circuit is contained on the same panel as the calibration power supply status circuit for System H and is located separately for System T. It is used to apply ac power to

Figure 3-35. Schematic diagram of calibration power supply status circuit.
the preheater unit to heat the gas flowing into the calorimeter. The level of the ac power is adjustable by means of a variable auto transformer in the circuit. The output voltge of the autotransformer is converted to a proportional de voltage and displayed on a front panel DVM.

The unit may be operated either manually or under automatic control. When operated automatically, the output from the Input Gas Temperature Controller is fed into this chassis through the BNC connector labelled EXTERNAL. The signal goes to the control terminal on a solid state relay and turns on and off the ac power. If for some reason the Input Gas Temperature Controller is not used, the output from the gas valve control panel should go to this connector to turn off the ac power when the gas flow is off.

Figure $3-36$ is a schematic diagram of the preheater control circuit. The output of this unit yoes to a duplex outlet on the lower left side of the rear of the data acquisition rack. The preheater plugs into this outlet.

3.7.14 Calibration Power Supply

The calibration power supply is located at the bottom of the front of the rack. Chassis supports are mounted in the rack to facilitate installing and removing the power supply. Alternating current power is supplied to this unit through a single special receptacle for 20 A which is mounted on the rack below the bottom of the rear opening. The receptacle has a 3.66 m (12 ft) power cord for connection to an ac power main. This power line should be connected to a separate ac main from the cord from the ac input panel to avoid overloading the mains.

The calibration power supply is rated at 100 V dc and 10 A output. Operation of the unit is as described in the manufacturer's instruction manual. Factory wiring has been modified as shown in figure $3-16$ on page $3-17$ of the instruction manual to permit remote programming by the interface unit (see section 3.7 .11 .2) and remote voltage sensing in the power monitor module (see section 3.7 .6). Also, connections have been added to position 1 and 5 on T201 in figure 6-3 of the instruction manual for monitoring the ac input power as discussed in section 3.7.12.

3.7.15 Alternating Current Input Panel

The ac input panel is located at the top of rear opening of the rack. It is 8.89 cm (3.5 in) high and contains one duplex receptacle unit. This receptacle has a 3.66 m (12 ft) power cord for connection to an ac power main. The duplex receptacle is powered whenever the power cord is connected to an ac source. The main power switch panel (see section 3.7.2) plugs into one outlet of the duplex receptacle; the other outlet is available for general utility. The power cord from this panel should be connected to a separate ac main from the cord from the calibration power supply to avoid overloading the main.

3.7.16 CLOP Module Connection Panel

This panel contains jacks into which plug all the cables coming into the data acquisition rack from the various components of CLOP. From the terminals on the jacks other cables go to the different units in the data acquisition rack such as the scanner, the low voltage dc power supplies, and the shutter control circuits. Table 3.6 lists the jacks on this panel and the CLOP module to which they connect.

Figures 3-37 through 3-47 are wiring diagrams of the nine output connectors on this panel in the two systems. The cables that go from these jacks to the CLOP modules are straight pin for pin connections; e.g., they have similar male and female connectors and pin 1 on the male connector is connected to pin 1 on the female connector, pin 2 to pin 2, etc.

3.7.17 Gas Valve Control Output Panel

The gas valve control panel has four output jacks into which plug power cables for the valves on the low pressure gas flow manifold (see section 3.6.2). These four jacks are labelled CHANNEL 34, CHANNEL 35, CHANNEL 36, and CHANNEL 37 which correspond to the scanner channel which controls their output. Cable 1, which comes from valve 1, plugs into channel 34 , cable 2 into channel 35 , etc.

Table 3.6. Jack panel connections to CLOP.

Designator	No. of pins	Destination
J0	6	Heater circuit on all modules (one at a time)
J1	10	Extension tube bridge circuit
J2	24	OSM/BSM bridge circuits
J3	10	Separation tube bridge circuit
J4	10	Mirror reflector bridge circuit
J5A	24	Main cal. temp and mass flow out and RTD bridge cir-
J5B	15	Main cal. temp and mass flow in bridge circuits
J6	14	OSM/BSM shutter motors
J7	25	Main cal. shutter motors

Figure $3-48$ is a wiring diagram of the gas valve control output panel and the connecting cable plugs. The wiring of the cable plugs is included to show the interlock formed through pins 13 and 14 which allows the status light panel to give a more valid indication of the gas flow condition. Alternating current input to this unit is through a four-prong connector on the chassis. Direct current control signals from the scanner and connections to the status light panel and input gas temperature controller chassis are through a 25-pin connector.
4. Computer Programs and Data Storage Files

4.1 Introduction

This section gives a description of each program used with CLOP. There are two subgroups in the section, the first for System T and the second for System H. A description of each program specifying what it is, what it does, etc. is given and the similar program in the other system is noted. Computer programs and variable maps for the System T are given in appendix B and for System H in appendix C.

Data tape catalogs (indexes) are listed to show the schemes for data storage. These are somewhat different for the two systems since System T has an external tape drive for the data tape cartridges while System H, with only the internal tape drive available, requires the plugging in and taking out of tape cartridges.

There are quite a few differences in the operation and basic languages of the two computers that require different methods to accomplish the same results in similar programs. Some of these are:

1. System H screen scrolls while System T pages.
2. System H has a printer; System T copies the screen.
3. System T can FIND and OLD the next program under program control; System H cannot perform a LOAD this way.
4. System H has a programmable PAUSE which CONT will terminate while System T requires a software indefinite wait that is terminated by a user-defined key (UDK).
5. System H allows array index 0 ; System T does not.

PIN	ACQUISITION RACK CONNECTION
7	PIN 7
V-I BOX OUTPUT	
8	PIN 8
V-I BOX OUTPUT	
9	PIN 9
V-I BOX OUTPUT	
10	PIN 10
V-I BOX OUTPUT	
11	PIN 11
12	VII BOX OUTPUT
12	PIN 12 V-I BOX OUTPUT

Figure 3-37. Wiring diagram of connector $J 0$ to heater circuits.

PIN	ACQUISITION RACK CONNECTION
3	SCANNER CONTACT 09 H
4	SCANNER CONTACT O9 L
5	SIGNAL SHIELD
6	+15V SHIELD
7	NC
8	-15V SHIELD
9	-15V DC POWER SUPPLY DECK
10	+15V DC POWER SUPPLY DECK
11	GROUND POWER SUPPLY DECK
12	GROUND POWER SUPPLY DECK

Figure 3-38. Wiring diagram of connector Jl to extension tube bridge circuit (System H).

PIN	ACQUISITION RACK CONNECTION
3	SCANNER CONTACT O9 L
4	SCANNER CONTACT 09 H
5	SIGNAL SHIELD
6	+15V SHIELD
7	NC
8	-15V SHIELD
9	-15V DC POWER SUPPLY DECK
10	+15V DC POWER SUPPLY DECK
11	GROUND POWER SUPPLY DECK
12	GROUND POWER SUPPLY DECK

Figure 3-39. Wiring diagram of connector Jl to extension tube bridge circuit (System T).

PIN	ACQUISITION RACK CONNECTION	PIN	ACQUISITION RACK CONNECTION
1	+15V DC POWER SUPPLY DECK	13	-15V SHIELD
2	-15VDC POWER SUPPLY DECK	14	NC
3	NC	15	+15V SHIELD
4	GROUND POWER SUPPLY DECK	16	SCANNER CONTACT 07 H
5	GROUND POWER SUPPLY DECK	17	SCANNER CONTACT 07 L
6	NC	18	SCANNER CONTACT 07 SHIELD
7	SCANNER CONTACT 08 H	19	GROUND POWER SUPPLY DECK
8	SCANNER CONTACT 08 L	20	GROUND POWER SUPPLY DECK
9	NC	21	NC
10	SCANNER CONTACT 08 SHIELD	22	+15V DC POWER SUPPLY DECK
11	+15V SHIELD	23	-15V DC POWER SUPPLY DECK
12	-15V SHIELD	24	NC

Figure 3-40. Wiring diagram of connector J 2 to 0 SM/BSM bridge circuits.

PIN	ACQUISITION RACK CONNECTION
3	SCANNER CONTACT 06 L
4	SCANNER CONTACT 06 H
5	SIGNAL SHIELD
6	+15V SHIELD
7	NC
8	-15V SHIELD
9	-15V DC POWER SUPPLY DECK
10	+15V DC POWER SUPPLY DECK
11	GROUND POWER SUPPLY DECK
12	GROUND POWER SUPPLY DECK

Figure 3-41. Wiring diagram of connector $J 3$ to separation tube bridge circuits.

PIN	ACQUISITION RACK CONNECTION
3	SCANNER CONTACT 05 L
4	SCANNER CONTACT O5 H
5	SIGNAL SHIELD
6	+15V SHIELD
7	NC
8	-15V SHIELD
9	-15V DC POWER SUPPLY DECK
10	+15V DC POWER SUPPLY DECK
11	GROUND POWER SUPPLY DECK
12	GROUND POWER SUPPLY DECK

Figure 3-42. Wiring diagram of connector 34 to deflector bridge circuit.

PIN	ACQUISITION RACK CONNECTION	PIN	ACQUISITION RACK CONNECTION
1	+15V DC POWER SUPPLY DECK	13	NC
2	-15V DC POWER SUPPLY DECK	14	NC
3	SCANNER CONTACT O1 H	15	SCANNER CONTACT 02 SHIELD
4	GROUND POWER SUPPLY DECK	16	+15V DC SHIELD
5	GROUND POWER SUPPLY DECK	17	-15V DC SHIELD
6	SCANNER CONTACT O1 L	18	SCANNER CONTACT 00 SHIELD
7	SCANNER CONTACT 02 H	19	GROUND POWER SUPPLY DECK
8	SCANNER CONTACT 02 L	20	GROUND POWER SUPPLY DECK
9	NC	21	SCANNER CONTACT 00 L
10	+15V DC SHIELD	22	+15V DC POWER SUPPLY DECK
11	-15V DC SHIELD	23	-15V DC POWER SUPPLY DECK
12	SCANNER CONTACT 01 SHIELD	24	SCANNER CONTACT 00H

Figure 3-43. Wiring diagram of connector J5A to main calorimeter gas output circuits box.

PIN	ACQUISITION RACK CONNECTION	PIN	ACQUISITION RACK CONNECTION
1	+15V DC POWER SUPPLY DECK	9	NC
2	-15V DC POWER SUPPLY DECK	10	NC
3	SCANNER CONTACT 03 H	11	NC
4	GROUND POWER SUPPLY DECK	12	SCANNER CONTACT 03 SHIELD
5	GROUND POWER SUPPLY DECK	13	+15V DC SHIELD
6	SCANNER CONTACT 03 L	14	-15V DC SHIELD
7	SCANNER CONTACT 04 H	15	SCANNER CONTACT 04 SHIELD
8	SCANNER CONTACT 04 L		

Figure 3-44. Wiring diagram of connector $J 5 B$ to main calorimeter gas input circuits box (System H).

PIN	ACQUISITION RACK CONNECTION	PIN	ACQUISITION RACK CONNECTION
1	+15V DC POWER SUPPLY DECK	9	NC
2	-15V DC POWER SUPPLY DECK	10	NC
3	SCANNER CONTACT 03 H	11	NC
4	GROUND POWER SUPPLY DECK	12	SCANNER CONTACT 03 SHIELD
5	GROUND POWER SUPPLY DECK	13	+15V DC SHIELD
6	SCANNER CONTACT 03 L	14	-15V DC SHIELD
7	SCANNER CONTACT 04 H	15	SCANNER CONTACT 04 SHIELD
8	SCANNER CONTACT 04 L		

Figure 3-45. Wiring diagram of connector $J 5 B$ to main calorimeter gas input circuits box (System T).

PIN	CONTROL CHASSIS CONNECTION	PIN	CONTROL CHASSIS CONNECTION
A	PIN 23	H	PIN 14
B	PIN 16	I	PIN 21
C	PIN 11	J	PIN 22
D	PIN 7	K	PIN 25
E	PIN 18	L	PIN 5
F	PIN 15	M	PIN 19
G	PIN 3	N	PIN 17

Figure 3-46. Wiring diagram of connector $J 6$ to OSM/BSM shutter motors.

PIN	CONTROL CHASSIS CONNECTION	PIN	CONTROL CHASSIS CONNECTION
$\mathbf{1}$	PIN 1	14	PIN 14
2	NC	15	PIN 15
3	PIN 3	16	NC
4	NC	17	PIN 17
5	NC	18	PIN 18
6	NC	19	PIN 19
7	NC	20	PIN 20
8	NC	21	PIN 21
9	NC	22	PIN 22
10	NC	23	PIN 23
11	NC	24	PIN 24
13	PIN 13	25	PIN 25

Figure 3-47. Wiring diagram of connector $J 7$ to main calorimeter shutter motors.

There are also some subtle differences in similar statements in the two basic languages. For instance, in the following sequence on System T

```
J = 1
J$ = STR(J).
```

U\$ is a string two terms long having preserved the space for the implied plus sign. This space needs to be removed for concatenation and certain other operations. On System H the space is dropped. Also, on System H in computed GOTO statements, arguments outside the range of accepted values (zero included) cause a fatal error. On System T the computer goes to the next line, which allows software handling of mistakes such as wrong answers from keyboard input from the operator. Other differences will become apparent as the operator becomes better acquainted with the two systems.

4.2 System T Programs and Data Files
 4.2.1 Index (FILE 1)

This index can most easily be run by pressing the AUTO LOAD button. The program lists the file number and name of each program on the tape and automatically loads and runs the program selected by the operator.

At the beginning of the program is a routine that tells the operator the other programs on the tape will not run if he is not using an "A" series 4050. See appendix B, section B.1, for a variable map and listing of this program.

The nearest thing on System H is the command CAT which lists the programs only.

4.2.2 CLOP (FILE 2)

CLOP is the data acquisition program. It accepts run parameters input by the operator and then starts operating the calorimeter, performing such functions as reading and storing the output of all the sensors, operating shutters, turning on and off the electrical calibration power supply, and shutting off and turning on the gas flow. It also performs simple mathematical operations such as averaging data packets by dividing by 6 and scaling calibration voltages by multiplying by 10 .

After the run is completed results can be printed to the screen and copied, and then stored on the data tape in a temporary storage file. See appendix B, section B.2, for a variable map and listing of this program.

This program performs the same functions as "Autost" and "CLOP2" which are chained on System H.

4.2.3 CHANNEL MONITOR (FILE 3)

CHANNEL MONITOR is a general utility program. It is used to switch in various channels on the scanner to read the output from the sensor, or to perform certain operations such as switching open and closed gas valves and CLOP shutters. This program is extremely useful when setting up CLOP or repairing sensor and shutter circuits. See appendix B, section B.3, for a listing of this program. There is no variable map, since the program uses no variables.

This program is used for the same function as "CHMON" on System H but is more elaborate because of the greater number of UDKs.

4.2.4 READ RUN DATA FILES (FILE 4)

This program is used to read and list the contents of the temporary data storage files. If the operator has data stored that he does not wish to overwrite and lose, he can use this program to ascertain which file contains that data. This program also contains a graphing routine so the operator can use this program after he stores the data from CLOP to graph the sensor outputs. See appendix B, section B.4, for a variable map and listing of this program.

The equivalent program on System H is "FILEXM". That program does not contain a graphing routine.

4.2.5 CALCULATE RESULTS (FILE 5)

This program retrieves the raw data from the temporary storage file and calculates the zeroth, first, and second moments for the zero rating, transition, and final rating periods. For electrical runs a calibration factor or stability factor, whichever is appropriate, is also calculated. Results from electrical runs are stored in electrical summary files. Results of laser and combination runs are stored in data files labelled LASER OR COMBINATION RUN RESULTS FILE \#1 through \#10. See appendix B, section $B .5$, for a variable map and listing of this program.

The corresponding program in System H is "CALC".

4.2.6 READ ELECTRICAL SUMMARY FILE (FILE 6)

This program displays and lists the contents of the electrical summary file for any sensor of CLOP. For each electrical calibration run, the run parameters; zeroth, first, and second moments for the zero rating, transition period, and final rating period; and calibration factor (or stability factor) are printed. This program is useful when the operator wishes to obtain an over-all picture of how well CLOP is operating, environmental effects, etc. See appendix B, section B.6, for a variable map and listing of this program.

The corresponding program in System H is "ELSCAN".

4.2.7 CALCULATE CAL FACTORS (FILE 7)

This program calculates the "best" values of calibration factor and drift as described in section 2. For the ancillary modules it calculates an average value; standard deviation; and 90 percent, 95 percent, and 99 percent confidence intervals. For the main calorimeter RTD and temperature out sensor, a least squares fit is performed. Standard deviations and confidence intervals are calculated for the Y -intercept and the slope.

An editing routine is included in the program to allow removal of bad or irrelevant runs. Also, provision is made to add a descriptive information note in which the operator can record comments pertinent to the data. The only character not permitted in the comments is an asterisk (*) since this character is used as a delimiter between the individual information notes. Results are stored in file 23 in the form of an 8×4 array (see table 2.1) and a single alpha string containing the information notes for all sensors. See appendix B, section B.7, for a variable map and listing of this program.

The equivalent program in System H is "FACTOR."

4.2.8 RUN KEPCO (FILE 8)

This proyram is a general utility program. It allows the operator to set the electrical calibration power supply to run at any desired voltage limit and current limit to the limits of the instrument (100 V and 10 A). This is especially useful when one desires to set the divider ratios in the dc calibration voltage and current measuring circuits (see section 3.7.6). See appendix B, section B.8, for a variable map and listing of this program. In System H, program "KEPCO" performs the same functions.

4.2.9 System T Data Tapes

All data tapes for System T are formatted the same. Since this system has an external tape deck, this should require less changing of tape cartridges. The data tape index is given in table 4.1.

File 1 is written in ASCII; all the rest are in binary. Since binary data takes less space than ASCII, this permits storing greater amounts of data. The binary data can also be accessed faster.

File 1 is marked to hold 5120 bytes. Files 2 through 11 hold 20224 bytes each. The electrical summary files, 12 through 22 hold 9216 bytes each. File 23, the electrical calibration summary file

Table 4.1. Index of System T data tapes.

CLOP	Data Tape \#1 Index
FILE	$12:$ INDEX
FILE	$2:$ RUN DATA FILE \#1
FILE	$3:$ RUN DATA FILE \#2
FILE	$4:$ RUN DATA FILE \#3
FILE	$5:$ RUN DATE FILE \#4
FILE	$6:$ RUN DATA FILE \#5
FILE	$7:$ RUN DATA FILE \#6
FILE	$8:$ RUN DATA FILE \#7
FILE	$9:$ RUN DATA FILE \#8
FILE	$10:$ RUN DATA FILE \#9
FILE	$11:$ RUN DATA FILE \#10
FILE	$12:$ MAIN CALORIMETER RTD ELECTRICAL SUMMARY
FILE	$13:$ MASS FLOW OUT ELECTRICAL SUMMMRY
FILE	$14:$ TEMPERATURE OUT ELECTRICAL SUMMARY
FILE	$15:$ MASS FLOW IN ELECTRICAL SUMMARY
FILE	$16:$ TEMPERATURE IN ELECTRICAL SUMMARY
FILE	$17:$ FOIL REFLECTOR ELECTRICAL SUMMARY
FILE	$18:$ DEFLECTOR ELECTRICAL SUMMARY
FILE	$19:$ SEPARATION TUBE ELECTRICAL SUMMARY
FILE	$20:$ BACKSCATTER MONITOR ELECTRICAL SUMMARY
FILE	$21:$ OVERSPILL MONITOR ELECTRICAL SUMMARY
FILE	$22:$ EXTENSION TUBE ELECTRICAL SUMMARY
FILE	$23:$ ELECTRICAL CALIBRATION FACTOR SUMMARY FILE
FILE	$24:$ LASER OR COMBINATION RUN RESULTS FILE

is 1536 bytes. The last 10 files, 24 through 33 , are 14848 bytes each. Thus, there is space in the electrical summary files for the results of 55 electrical calibrations. Files 24 through 33 can each hold the results of 13 laser runs.

The total space on the tape used is 458 kbytes. The tape deck has trouble marking this much space so it is recommended that marking of new data tapes be done with the internal drive of the System T computer. When making a new file 23 (or after a KILL 23:), a dummy array and information note must be put in the new file. The following program will perform this operation.

100	INIT
110	$\operatorname{DIM} \operatorname{F\emptyset }(8,4), \operatorname{I\emptyset \$ (584)}$
120	$F \emptyset=\emptyset$
130	ID $\$=$ null*null*null*null*null*null*null*null*"
140	FIND 23
150	WRITE F $\emptyset, I \emptyset \$$
160	PRINT $933,2:$
170	END

4.3 System H Programs and Data Files

4.3.1 "Autost"

This program, along with CLOP2 (see section 4.3.2) which is chained to it, performs the same function as CLOP on System T (see section 4.2.2). Autost performs all the operations up to the start of the data-taking process. This program is named Autost so that it will load and run automatically when System H is first turned on. It may also be loaded the normal way by typing LOAD "Autost" followed by RUN. See section 4.2 .2 for a more complete description of the operations performed by this program.

This program, since it is chained with CLOP2, requires that some variables be stored in COMMON. Those variables so stored are preserved for use in CLOP2; all others are discarded during the chaining operation. In the program map variables in COMMON are marked (C). See appendix C, section C.l, for a variable map and listing of this program.

4.3.2 "CLOP2"

This is the second half of the main data-acquisition program and is chained to Autost. Together these two programs perform the same function as CLOP does for System T (see section 4.2.2). This program begins with the data-taking routines and completes all phases of the run thereafter. This program cannot be run alone as many of the variables need to be defined in Autost.

Variables stored in COMMON are marked (C) in the variable map. See appendix C, section C.2, for a variable map and listing of this program.

4.3 .3 "CALC"

This program performs the same functions as program CALCULATE RESULTS (FILE5) in System T (see 4.2.5). The program retrieves the raw run data from a temporary storage file on tape RUN DATAD or RUN

DATAl and does the required mathematical calculations. For electrical calibration runs the results are stored in the appropriate electrical summary file on the tape marked ELEC. SUMMARY. Results of laser and combination runs are stored in files on the tape marked LASER RUNS 1. See appendix C, section C.3, for a variable map and listing of this program.

4.3.4 "ELSCAN"

"ELSCAN" is similar to the program READ ELECTRICAL SUMMARY FILES (FILE6) on System T (see section 4.2.6). See appendix C, section $C .4$ for a variable map and listing of this program.

4.3.5 "FACTOR"

This program is the System H equivalent of CALCULATE CAL FACTORS (FILE 7) on System T (see section 4.2.7). The same statistical methods are used for the various sensors and editing of the electrical summary file data is possible.

The information note utilizes certain infrequently used characters unique to the System H computer as delimiters. These characters are listed below with their associated keystrokes.

Table 4.2 Delimiter characters used with the HP85 information notes.

	santral
-	CDHTFAL
15.	GUHTFCLL
*	GONTEGL
\pm	COHTEOL
\uparrow	COHTEOL
\%	COHTRUL
+	SHIFT +
	5 H

These delimiters are listed in the order they appear in the long alpha string, except for the control A. This character is not in the alpha string and hence, when its position is searched for, a zero is returned indicating the beginning of the alpha string. Thus, on System H the asterisk is permitted in the information notes.

A variable map and listing for this program are given in appendix C, section $C .5$.

4.3.6 "FILEXM"

"FILEXM" is the System H equivalent of READ RUN DATA FILES (FILE 4) on System T (see section 4.2.4). This program performs the same functions as its System T counterpart except there is no routine included for graphing sensor output. See appendix C, section C.6, for the variable map and a listing of this program.

4.3.7 "CHMON"

This program is similar to program CHANNEL MONITOR (FILE 3) on System T (see section 4.2.3). Since there are only eight UDKs on System H, only six of the sensor outputs are available with a single keystroke. However, UDK\#7 allows the operator to input via the keyboard any channel command he desires. UDK\#8 terminates the program. A variable map and listing for this program are given in appendix C, section $C .7$.

4.3.8 "KEPCO"

This program performs the same function as its System T equivalent RUN KEPCO (FILE 8) (see section 4.2.8). Appendix C, section $C .8$, has the variable map and program listing.

4.3.9 System H Data Files

Data files are maintained on separate tape cartridges according to the type of data stored. Since the internal tape drive of System H is the only drive available for tape use, the data and program tapes must be plugged in and removed at various times during program operation. Usually this will be done according to prompting messages displayed on the screen.

Temporary files for storing the raw data acquired by "Autost" and "CLOP2" are available on tapes RUN DATA \emptyset and RUN DATA 1. Each of these two tapes has 10 files, RUN DATA \emptyset through RUN DATA 9 and RUN DATA $1 \emptyset$ through RUN DATA 19, respectively. Each file holds data from one run.

The data tape marked ELEC. SUMMARY contains the electrical summary files for all the sensors. Each file can hold the results of 69 electrical calibrations. Also on this tape is the file "CALFAX" which contains the statistical summary for each of the temperature sensors.

The tape labelled LASER RUNS 1 is used to store the results of L - and C-type runs. The tape has 9 files, each capable of holding the results of 28 runs. Tables 4.3 through 4.6 list catalogs of the four data tapes for System H.

Table 4.3. Catalog for data tape RUN DATA \emptyset.

Name	Type	Bytes	Recs	File
DATAD	DATA	256	70	1
DATA1	DATA	256	70	2
DATA2	DATA	256	70	3
DATA3	DATA	256	70	4
DATA4	DATA	256	70	5
DATA5	DATA	256	70	6
DATA6	DATA	256	70	7
DATA7	DATA	256	70	8
DATA8	DATA	256	70	9
	DATA	256	70	10

Table 4.4. Catalog for data tape RUN DATA 10.

Name	Type	Bytes	Recs	File
DATA10	DATA	256	70	1
DATA11	DATA	256	70	2
DATA12	DATA	256	70	3
DATA13	DATA	256	70	4
DATA14	DATA	256	70	5
DATA15	DATA	256	70	6
DATA16	DATA	256	70	7
DATA17	DATA	256	70	8
DATA18	DATA	256	70	9
DATA19	DATA	256	70	10

Table 4.5. Catalog for data tape ELEC. SUMMARY.

Name	Type	Bytes	Recs	File
MCRTD* $^{\text {MAOUT* }}$	DATA	150	69	1
TEOUT* *	DATA	150	69	2
MASIN *	DATA	150	69	3
TEMIN *	DATA	150	69	4
DEFLC*	DATA	150	69	5
FOREF* *	DATA	150	69	6
SPTUB* $^{\text {BSMON* }}$	DATA	150	69	7
OSMON*	DATA	150	69	8
EXTUB*	DATA	150	69	9
CALFAX	DATA	150	69	10

Table 4.6. Catalog for data tape LASER RUNS 1.

Name	Type	Bytes	Recs	File
LAS100	DATA	822	28	1
LAS101	DATA	822	28	2
LAS102	DATA	822	28	3
LAS103	DATA	822	28	4
LAS104	DATA	822	28	5
LAS105	DATA	822	28	6
LAS106	DATA	822	28	7
LAS107	DATA	822	28	8
LAS108	DATA	822	28	9

5. References
[1] Hoya Glass Works Std., Hoya color filter glass, p. 6, Catalog No. 7109E.
[2] Laser Focus, Buyers' Guide, p. 444 (1983).
[3] Johnson, Jr., E. G. Evaluating the inequivalence and a computational simplification for the NBS laser energy standards. App. Opt. 16: 2315-2331; 1977 August.
[4] Natrella, M. Experimental statistics, Nat. Bur. Stand. (U.S.) Handb. 91; 1963 August. pp.5-10.
[5] Bennett, H. E., et. al. Infrared reflectance of aluminum evaporated films in high vacuum. J. Opt. Soc. of Am. 53(9): 1089-1095; 1963 September.

Appendix A. Conversion Routines Between Decimal and Hexadecimal Based Number Systems

The electrical calibration power supply utilizes commands containing hexadecimal numbers to set voltage and current limits. The routines used in the CLOP computer programs employ the conventional hexadecimal digits 0 through 9 and continuing A through F, where $F_{16}=15_{10}$ and $10_{16}=16_{10^{\circ}}$. The algorithm used to convert from the decimal to hexadecimal base involves dividing the decimal number by 16 and recording the remainder, R, of each step as illustrated in the following.

Convert $(1240)_{10} \rightarrow(?)_{16}$

$$
\begin{array}{rr}
16 \left\lvert\, \frac{77}{1240}\right. & R=8 \\
16 \left\lvert\, \frac{4}{77}\right. & r=13_{10}=D \\
\left.16\right|^{\frac{0}{4}} & R=4
\end{array}
$$

Therefore, $1240_{10} \rightarrow 4 D 8_{16}$.
The inverse operation involves multiplying each hexadecimal digit, starting with the most significant, by 16 and adding in the next digit before again multiplying by 16 . An example is given below.

Convert (4D5) ${ }_{16} \rightarrow(?)_{10^{\circ}}$

Therefore, $4 D 5_{16}=1237_{10^{\circ}}$

B1. Index (FILE 1)
Program Listing


```
110 RES
```



```
130 INIT
140 X = RND (0)
150 FUZZ 2
17U IF X=0.79 UR X=0.טY OR X=0.59 THEN 210
100 PRINT "LGTAPE CLOP iIAS PROGRARS WHLCH WILL KUN ONLY ON THE `A BLÁ";
190 PRINT "TES 4050's.^JJTHEY WILL NOT RUN ON THIS COHPUTEK."
200 CO TO 99900
210 PRINT "LGTAPE CLOP D&TE: S40111"
220 PRINT
230 PRINT "FILE 1 : Index"
240 PRINT "FILE 2 : Perform CLOP Nuns"
250 PRINT "FILE 3 : Read Scanner Channels"
260 PRINT "FILE 4 : Kead Run Lata Files"
270 PRIHT "FILE 5 : Calculate kun Kesults"
230 PRIHT "FILE 0 : Read Electrical Summary Files"
290 PRIHT "rILE ? : Calculate Cal Factor and Stats For Each Hodule."
300 PRINT "FILE }3\mathrm{ : Run KEPCO Power Supply."
500 PRINT "JJinhat file no.? (Enter O for no file) ";
510 INPUT F
520 IF r=0 THEN }999
530 FIND F
5 4 0 ~ O L D ~
9993 PRINT "JDONE"
9999 END
```

[^1]```
1 INIT
2 SET KEY
3 SO TO 100
4 ~ R E I H ~ R E A D ~ H A S S ~ I N
5 IF F3<>1 AIND F3<>2 THEN ?
o GOSUB 9000
7 RETURN
O KEM READ TEMP IH
9 IF F3<>1 AND F3<>2 THEN 11
10 GUSUB 9900
11 RETURN
16 REM PAUSE ROUTINE
17 F8=1
18 RETURN
4 4 ~ R E M ~ G A S ~ O N ~
4 5 ~ I F ~ F 3 < > 1 ~ A N D ~ F 3 < > 2 ~ T H E N ~ 4 ?
46 GOSUB 9600
47 RETURN
48 REM GAS OFF
4 9 ~ I F ~ F 3 \ll 1 ~ A N D ~ \& ゙ 3 < > 2 ~ T H E N ~ 5 1 ~
50 GOSUB 9?00
51 RETUKIH
5 2 ~ R E M ~ C H A N G E ~ G A S ~ C Y L I N D E R ~
53 IF F3<>1 THEN 55
54 GOSUB 10100
5 5 ~ R E T U R N
80 REI\ ABOKT RUN ROUTINE
81 IF F2=0 THEN 96
82 PHINT E19:"D"
33 ت3=0
84 F2=0
85 IF J> }120\mathrm{ THEN }9
86 GOSUB 9700
87 PRINT "JJGProgram aborted!G CLOP is on HOLD before 2 min adj period."
8% WBYTE e56.4.1:
89 CALL "IFC"
90 GOSUB 10000
91 GO TO 3740
92 PRINT "JJGGJGAbort activated! We are retreating to the 2 min ad.jus";
93 PRINT "tment period."
9 4 ~ C A L L ~ " W A I T " , ? ~
95 GO TO 3740
9 6 ~ R E T U R N ~
```



```
110 REM
```



```
130 REM INIT EQUIP.
140 OH SRQ THEN 10300
1う0 PRINT Q6:"12000";"2200F"
100 VIBYTE e55.4,1:
```

```
170 PRINT 09:"C.31.33"
130 こRINT 0り:"3"
190 PRINT U19:"T100E1DR"
200 CALL "RENOFF"
210 CALL "RENOH"
20 DIM IO$(5),L$(1).N$(9),01$(6),R$(1),U1$(19),V(10),V4(170,10),H1(10)
230 DIM 心O$(3),G1$(2),G2$(2),G3*(2),G4$(2),G5$(2),V1(55),I1(55)
240 DI:1 V1$(5).V2(176.3),U2$(1),M5$(17),U$(1)
250 REM SET CRITICAL FLAGS
260 P3=0
270 F2=0
280 PRIN'T "LPRRE-RUN CHECKLIST"
290 PRINT "JPFE-HEATER CONTROLS SHOULD BE--"
300 PRINT "J OFF-ON SWITCH-------------OFF"
310 PRINT " HANUAL-AU'IO SWITCH--------MANJAL"
320 PRINT " VOLTAGE KNOB-------------0 VOLTS (FULL CCW)"
330 GOSUB 10000
340 PRINT "LGSTATUS LIG.HT CHECK"
350 PRINT "JARE SHUTTER STATUS LIGHTS REU? (Y OR N) ";
360 INPUT R$$
370 GO TO (R$="Y")+2*(R$="$") OF 410,390
380 GO TO 340
390 PRINT "JUSE MANUAL PUSHBUTTONS TO CLOSE SHUTTERS."
400 GOSUB 10000
4 1 0 ~ P R I N T ~ " J J K E P C O ~ S T A T U S ~ L I G H T ~ S H O U L D ~ B E ~ R E D . " ~
420 PRINT "JKepco OFF and Interface Unit ON"
4 3 0 ~ G O S U B ~ 1 0 0 0 0 ~
4 4 0 ~ P R I N ' ~ " J J G A S ~ F L O W ~ s t a t u s ~ l i g h t ~ s h o u l d ~ b e ~ R E D " ~
450 PRINT "J+15V & -15V status lignts should be GREEN"
460 PRINT "JDVM should be on IOV RANGE. INT. TRIG., ASCII FORAAT, 己̈EIK";
4 7 0 ~ P R I N T ~ " O ~ D E L A Y " ~
4 3 0 ~ P R I N T ~ " J S C A N N E R ~ s h o u l d ~ b e ~ B L A N K " ~
490 GOSUB 10000
500 G1$=""
510 -9=0
5 2 0 ~ P R I N T ~ " L G I S ~ E Q U I P M E N T ~ W A R M E D ~ U P ? ~ (Y ~ O R ~ N) ~ " :
530 INPUT R*
540 GO TU (R$="Y") +2*(R$="N") OF 700,560
550 GO TO 520
560 PRINT 29:"14"
570 PRINT "LG45 MINUTE WAN゙M-UP PERIOD STARTED.J"
500 PRINT "JCHECK POWER SUPPLY VOLTAGES."
j90 J=0
600 PRINT 019:"?100E4SR"
6 1 0 ~ W A I T
620 J=J+1
6 3 0 ~ I F ~ J < > 6 0 0 ~ T H E N ~ 6 5 0 ~
640 PRINT "G10 MIN ELAPSED"
6 5 0 ~ I F ~ J < > 1 2 0 0 ~ T H E N ~ 6 7 0 ~
6 6 0 ~ P R I N T ~ " G 2 0 ~ M I N ~ L L A P S E D " ~
```

```
6?0 IE J<>1300 THEN 690
630 PHINT "G30 NIN ELAPSED"
670 IF J<>2400 THEN ?10
700 PRINT "心⿴囗十|
710 IE J<>2700 THEN 610
720 PRINT C19:"?100E4D"
70 PRINT "JEG45 MIN WARM-UP COMPLETED"
740 GOSUE 12000
750 GO TO 300
76O REIN PWR CHK-NU WAKM UP
770 PKINT き9:"14"
700 PRINT "LCHECK POWER SUPPLY VOLTAGES"
?90 GOSUB 10000
800 REM INPUT RUN PARAMETERS
810) PRINT "LGWHAT IS THE RUN NO.? ";
8 2 0 ~ I N P U T ~ N \$ ~
80 PRI "JIS THIS A LASER(L). ELECTRICAL(E), OR COMBINATION(C) RUN? ";
840 INPUT L$
850 U1$=""
360 GO TO (L$="L")+2*(L$="E")+3*(L$="C") OF 1050,900,880
870 GO TO 830
ðல0 U1=б
390 GO TO 1030
900 PRINT "LWHAT UNIT IS TO BE CALIBRATED?"
910 PFIMT "\underline{J 1. EXITENSION TUBE"}
920 PRINT " 2. OVERSPILL MONITOR"
930 PRINT " 3. BACKSCATTER MONITOR"
940 PRINT " 4. SEPARATION TUBE"
950 PRINT " 5. DEFLECTOR or FOIL REFLECTOR"
9 6 0 ~ P R I N T ~ " ~ 6 . ~ M A I N ~ C A L O R I M E T E R " ~ '
970 PRIN' "JENTER LINE NO. ";
980 INPUT U1
990 U1=INT(U1)
1000 IF U1<=6 AND U1=>1 THEN 1030
1010 PRINT "\underline{G"}
1020 GO TO 970
1030 REM GET CALOR CONFIGURATION
1040 GO TO 1080
1050 U 1=6
1060 U1$="MAIN CALORIMETER"
1070 T0=0
1030 01$=""
1090 M5$="DEFLECTOR= "
1100 IF L$="L" THEN 1130
1110 PRINT "\underline{LSSet LASER RUN - COMBINATION switch to COMBINATION"}
1120 GO 'TO 1140
1130 PRINT "LSet LASER RUN - COMBINATION switch to LASER RUN"
1140 GOSUB 10000
1150 F=0
110́0 FOR I=1 TO 6
```

```
1170 U$=""
1130 PNINT "LRECORD CALOKIMETER CONFIGURATION"
1190 PRINT "\underline{J O. NO MODULE"}
1200 PRINT " 1. EXTENSION TUBE"
1210 PRINT " 2. OVERSPILL MONITOR"
1220 PRINT " 3. BACKSCATTEK |ONITOR"
1230 PRINT " 4. SEPARATION TUBE"
1240 PRINT " 5. DEFLECTOR or FOIL REFLECTOK゙"
1250 PRINT " O. MAIN CALORIMETER"
1260 PRINT "Jr'HOM THE INPUT END, WHAT MODULE IS NJHBER ";I
1270 INPUT U$
1230 IF U$<>"5" THEN 13?0
1290 PRINT "LWHICH DEVICE IS BEING USED?"
1300 PRINT "J 1. DEFLECTOR"
1310 PSINT " 2. FOIL REFLECTOR"
1320 PRINT "JENTER LINE NO. ";
1330 INPUT R
1340 GO TO R OF 1370,1360
1350 GO TO 1290
1360 M5$="FOIL REFL= "
1370 IF VAL(U$)<>U1 THEN 1390
1330 F=1
1390 01$=01$&U$
1400 NEXT I
1410 D$=SEG(M5$.1,1)
1420 IF F=1 THEN 1430
1430 PRINT "JGNUMBER ";U1;" IS TO RECEIVE ELECTRICAL ENERGY BUT IS NOT";
1440 PRINT " IN THE CALORIMETER_CONFIGURATION. RESOLVE THIS PROBLEM ";
1450 PRINT "BEFORE CONTINUING."
1460 GOSUB 10000
1470 GO TO 1040
1430 IF L$="L" THEN 1520
1490 GOSUB U1 OF 8000,8100,8200,8300,8400,8600 ! GET ELEC PARAM
1500 v1=0
1510 I 1=0
1520 REM GET AMBIENT CONDITIONS
1530 PRINT "LWHAT IS THE AMBIENT TGMPERATURE IN DEGREES C? ";
1540 INPUT T9
1550 PRINT "JWHAT IS THE BAROMETRIC PRESSURE IN mm OF Hg? ";
1560 INPUT B9
1570 PAGE
1580 IF U1<>É THEN 1920
1590 REM SET RTD & TEMP OUT DIALS
1600 PRINT P9:"00"
1610 PRINT "LSet RTD dial for convenient readins on DVM."
1620 PRINT "Enter dial reading ";
1630 INPUT Z5
1640 PRINT Q9:"O2"
1650 PRINT "JSet TEMP OUT dial for convenient readins on DVM."
1660 PRINT "Ënter dial readin弓 ";
```

```
1670 INPUT Z6
1630 KEG GET IAAIN CAL ZERO READINGS
1Ú90 PRINT e24:"N3T2D.010S"
1700 PRINT @9:"03"
171U LNPUT e24:Z1
1720 PRINT 29:"01"
1?%30 INPUT 024:Z2
1740 PFINNT E9:"04"
1750 INPUT 024:'九3
1760 PRINT (9:"02"
1770 INPUT (24:ぶよ
1780 PRINT 巳9:"00"
1790 INPUT 024:Z9
1800 PKIHT ऐ24:"I1D.1S"
1310 WBYTE 255,1:
1320 IIAAGE "MASS FLOW IN ZERO RDG: ",30T,+2D.2D
1330 IHAGE "IEMP IN ZERO RDG: ",30T,+2D.2D
1840 IMAGE "MASS FLOW OUT ZERO RDG: ",30T,+2D.2D
1350 IMAGE "TEMP OUT ZERRO RDG: ",30T,+2D.2D
1860 PRINT USING 1020:Z1
1870 PRINT USING 1340:Z2
1830 PKINT
1890 PRINT USING 1330:23
1900 PRINT USING 1350:24
1910 CALL "WAIT",2
1920 REH PRINT RUN PAKAM
1930 PKINT "LRUN NO: ";N$
1940 PRINT "JRUN TYPE: ";L$
1950 It'L$="L" '「HE?N 1980
1960 PRINT "JUNIT RECEIVING ELECTRICAL ENERGY: ";U1$
1970 PRINT "JNOMINAL ELFECTRICAL ENERGY: ";E1;" J"
1980 PFIHT "JCALORIMETER CONFIGURATION: ";O1$
1990 PRINT "AMBIENT TEMP: ";T9;" DEG C"
2000 PRINT "BAROM. PRESS: ";B9;" mm Hg"
2010 IF U1<>6 THEN 2100
2020 PRINT
2030 PRINT USING 1820:Z1
2040 PRINT USING 1840:Z2
2050 PRINT
2060 PRINT USING 1830:Z3
2070 PRINT USING 1850:24
2080 PRINT USING """JFTD dial setting:"",30T,4D":Z5
2090 PRINT USING """ïEMP OUT dial setting:"",30T,4D":Zó
2100 CALL "WAIT",2
2110 COPY
2120 IF U1<>6 THEN 3340
2130 PRINT "LWE ARE READY TO SET THE GAS FLOW."
2140 PRINT "JGAS FLOW WILL BE FROM--"
2150 PRINT "J 1. DIREC'I FROH INDIVIDUAL CYLINDERS ONE ATN A TIHE"
2160 PRINT " 2. SEVERAL CYLINDERS ON A HIGH PRESSURE MANIFOLD"
```

```
2170 PRINT "JENTER LINE NO. ";
2130 IN:'UT G9
2190 IF G9=1 OR G9=2 THEN 2220
2200 PRINT "GJANSWER MUST BE 1 OR 2"
2210 GO TO 2170
2220 IF G9=2 THEN 2620
2230 REM INDIVIDUAL BOTTLE ROUTINE
2240 PRINT "LOPEN HANUAL VALVES ON INPUT TO ALL ELECTRICAI VALVES TO BE"
2250 PRINT "USED. MAKE SURE MANUAL VALVES ON NON-CONNECTED ELECTRICAL"
2260 PRINT "VALVES ARE CLOSED TO PREVEHT BACK LEAKAGE."
2270 GOSUB 10000
2280 PRINT "JOPEN ALL CYLINDER VALVES. CHECK CYLINDER PRESOUURE > 100非."
2290 PRINT "JSET REGULATORS TO APPROXIMATELY 85 PSI."
2300 GOSUB 10000
2310 M9$="GJERROR! ANSWER MUST BE 1, 2, 3, OR 4"
2320 PRINT "LTO WHAT VALVE IS THE PRIMARY CYLINDER CONHECTED? ";
2330 INPUT R
2340 IF R=1 OR R=2 OR R=3 OR R=4 THEN 2370
2350 PRINT M9$
2360 GO TO 2320
2370 GO$=STR(33+R)
2380 G7$=TRTM(GO$)
2390 PRINT "JTO WHAT VALVE IS THE #1 BACK-UP CYLINDER CONNECTED? ";
2400 INPUT R
2410 IF R=1 OR R=2 OR R=3 OR R=4 AND R<>VAL(G1$)-33 THEN 2440
2420 PRINT M9$;" AND ";VAL(G1$)-33;" IS THE PRIMARY CYLINDER VALVE"
2430 GO TO 2390
2440GO$=STR(33+R)
2450 G2$=TRIM(GO$)
2460 PRINT "JTO WHAT VALVE IS THE #2 BACK-UP CYLINDER CONNECTED? ";
2470 INPUT R
2480 IF R=1 OR R=2 OR R=3 OR R=4 AND R<>VAL(G2$)-33 THEN 2510
2490 PRINT M9$;" ANI) ";VAL(G2$)-33;" IS THE #1 BACK-UP CYLINDER VALVE"
2500 GO TO 2460
2510 G0定=STR(33+R)
2520 G3$=TRIH(GO$)
2530 PRINT "JTO WHAT VALVE IS THE #3 BACḰ-UP CYLINDER CONNECTED? ";
2540 INPUT R
2550 IF R=1 OR R=2 OR R=3 OR R=4 AND R<>VAL(G3$)-33 THEN 2580
2560 PRINT I19$;" AND ";VAL(G3$)-33;" IS THE #2 BACK-UP CYLINDER"
2570 GO TO 2530
2580 GO$=STR(33+R)
2590 G4$=TRIM(GO$)
2000 F3=1
2610 GO TO 2950
2620 KEH GAS SUPPLY FROH MANIFOLD ROUTINE
2630 PRI "LMAKE SURE ALL VALVES ON MANIFOLD AND CYLINDERS ARE SHUT OFF."
2640 PRINT "JCONNECT 3 OR MORE GAS CYLINDERS TO THE MANIFOLD WITH THE"
2650 PRINT "COPPER TUBING PIG-TAILS,"
2660 PRINT "JOPEN ALL MANIFOLD VALVES TO CYLINDEFS."
```

```
2670 PRINT "JUPEN VALVES ON 2 CYLINDERS."
2080 GOSUB 10000
26Э0 PKIWT "LFOR YOUR INFORHATION--"
2700 PRINT "JJCHANGE GAS CYLINDERS IF PRESSURE DROPS TO 10C多."
2710 PRINT "JPROCEDURE IS AS FOLLOWS:"
2720 PhIHT "J 1. SHWT OFr MANIFOLD VALVE TO ONE COLINDER."
2730 Jh工iJl" 2. TURN ON CYLINDER VALVE TO A NEW CYLINDER."
2740 PRIiNT" 3. CLUSE THE CYLINDER VALVE ON THE CYLINDEK IN STEP 1."
2750 PRINT " 4. REPLACE CYI,IHDER IN STEP 1 WITH A NEW CYLINDEK.""
2700 PRINT " 5. OPEN TH& HANIFOLi) VALVE ON REPLALEHENT CYLINDEK."
2770 GO.SUB 10000
2?30 PRINT "LCONTINUING WITH SETTING UP TAEE GAS MANIFOLD--"
2790 PRI|T "JUPE'M #AIIIFOLD VALVE TO PRESSURE REGULA'FOR."
2800 PRIHT "JSET REGULATOR TO APPROXIMATELY 35 PSI."
2010 GOSUB 10000
2320 PRINT "LTO WHAT ELECTRICAL VALVE IS THE PRESSURE REGULATOR CONNEC";
2030 PRINT "TED? ";
2840 INPUT R
2 8 5 0 ~ I F ~ R = 1 ~ O R ~ R = 2 ~ O R ~ R = 3 ~ O R ~ R = 4 ~ T H E N ~ 2 8 9 0 ~
2860 PKINT M9$
2370 CALL "WAIT".2
2880 GO TO 2820
2890 GO$ =STR(33+R)
2900 G1$=TRI!I(GO$)
2910 F3=2
2 9 2 0 ~ P R I N T ~ " G J U A K E ~ S U R E ~ M A N U A L ~ V A L V E S ~ O N ~ U N U S E D ~ E L E C T R I C A L ~ V A L V E S ~ A R E ~ " ;
2930 PRINT "CLOSED."
2940 GOSUB 10000
2950 PRINT "LWe are now settinp up the gas flow."
2960 PRINT "JOn the INPUT GAS CONTROLLER--"
2970 PRINT "\underline{J 1. Put the RUN-SET switch to SET"}
2980 PFI " 2. Adjust the BALANCE knob so the HEAT CYCLE LED just does"
2990 PRINT " remain extinguished."
3000 PRINT " 3. Put the RUN-SET switch to RUN."
3010 GOSUB 10000
3020 PRINT "JOn the PREHEATER CONTROL CIRCUIT--"
3030 PFIMT "J 1. Put the MANUAL-AUTO switch to AUTO."
3040 PRINT " 2. Rotate VOLTAGE knob to 80 on the front dial."
3050 PRINT " 3. Put the OFF-ON switch to ON."
3060 GOSUB 10000
3070 20=?.8 ! THIS VALUE DETERMINED EMPIRICALLY AT DESIRED FLOW RATE
3080 T1=0.61 ! THIS VALUE DETERMINED AS NELL ABOVE LAB TEMP 23 DEG C
3090 PRINT @9:"03"
3100 PRINT "LGUDK 1, 2, 11, 12, 13 (if approp) and 20 are available fo";
3110 PRINT "r use if needed_in succeeding procedures."
3120 PRINT "JMASS FLOW readin`s on DVM." ! _=CONTROL RUBOUT
3130 PKINT "JMake sure REGULATORS are set to approximately }85\mathrm{ PSI."
3140 PRI "JOpen FLOW VALVE approximately ? turns. Leave it alone if yo";
3150 PRINT "u know it is_already set from a previous run."
3160 GOSUB 10000
```

```
3170 GOSLiB 9600
3130 PRINT "GJHEAT CYCLE LED should start BLTNKING."
3190 PRI "JAdjust ElOW VALVE to ret the below MASS IN reading and the ";
3200 PRINT "BALANCE knob_to get the below TEIP IN reading."
3210 PRINi "JIMASS IN = ";Z1+Z0
3220 PRINT "ITEMP IN = ";T1
3230 IF G9=2 THEN 32?0
3240 PRIN'I "JSwitch to each sas cylinder and set its resulator to get ";
3250 PNINT "the MASS IN _readin%."
3260 PRINT "JBe sure to end up with the primary cylinder."
3270 PHIHT "JHASS IN and TEMP IN readings are coupled. Use UDK's to sw";
3280 PRINT "itch back and"
3290 PRINT "forth while setting MASS FLOW and TEMPERATUKE."
3300 GOSUB 10000
3310 PRIiJT @g:"3"
3320 F3=0
3330 GO TO 3400
3340 C$=STR(10-U1)
3350 C $=TRIM(C$)
3360 C$="0"&C$
3370 PRINT e9:C$
330 PRINT "LG";U1$;" output readings ON DVM."
3 3 9 0 ~ C A L L ~ " W A I T " , 2 ~
3400 PRINT "LSHUTTERS BEING TESTED"
3410 PRINT e9:"3.30.32"
3420 PRINT @9:"3"
3430 CALL "WAIT".9
3440 PRINT "JGShutter STATUS LIGHTS should be GREEN."
3450 CALL "WAIT".4
3460 PRINT "GJTEST CONTINUING."
3470 PRINT e9:"3.31.33"
3480 PRINT E9:"3"
3 4 9 0 ~ C A L L ~ " W A I T " . 9 ~ ? ~
3500 PRINT "JGShutter STATUS LIGHTS should be RED."
3510 PRINT "JDID SHUTTERS TEST OKAY? (Y OR N) ":
3520 INPUT R$
3530 GOTO (R$="Y")+2*(R$="N") OF 30́00.3560
3540 PRINT "JGWHAT?"
3550 GO TO 3510
3560 PRINT "Jexercise balky shutter with pushbuttons. It must operate ";
3570 PRINT "in 9 seconds."
3580 GOSUB 10000
3590 GO 'TO 3400
3600 IF L$<>"L" THEN 3630
3610 U1$="MAIN CALORINETER"
3620 U 1=0
30 30 U2$=3EG(U1$.1.1)
3640 PRINT "LGFINAL PSE-RUN CHECKLIST"
3650 PRINT "JVerify CABLE 0 is connected to ":U1$
3660 IF L$="L" THEN 3690
```

```
3670 PRINT "JTurn on KEPCO power supDly."
3630 जO TO 3700
3690 PRINT "JVerify KEPCO power supply is OFF."
3700 IF U1=6 OR U1=0 THEN 3720
3710 PRINT "JGAS CYLINDERS should be turned OFF at cylinder valves."
3720 PRINT "JMake SAFETY CHECK of area."
3730 GOSUB 10000
3740 H1=0
3750 IF L$="E" AND U2$<>"M" THEN 3770
3760 F3=心9 !ACTIVATE UDK'S
3770 F2=1
3700 PRINT "LBepin 2 min adjustment periodJ"
3790 PRINT e24:"R3T2D.010S"
3800 IF L$="E" AND U2$<>"M" THEN 3820
3310 PRINT e9:"3.":G1$
3820 J=0
3830 N9=20+T0
3840 PFINT e19:"P300E4SR"
3850 WAIT
3860 FOR I=0 TO 9
3870 C $ =STR(I)
3880 C$=TRIM(C$)
3890 PRINT P9:"O";C$
3900 INPUT e24:V(I+1)
3910 NEXT [
3920 PRINT "LMASS IN= ";V(4)
3930 PRINT "MASS OUT= ";V(2)
3940 PRINT "TEMP IN= ";V(5)
3950 PRINT "TEMP OUT= ";V(3)
3960 PRINT "CAL RTD= n;V(1)
3970 PRINT 145$;V(6)
3980 PRINT "SEP TUBE= ";V(7)
3990 PRINT "BSM RTD= ";V(8)
4000 PRINT "OSM RTD= ";V(9)
4010 PRINT "EXT TUBE= ";V(10)
4 0 2 0 J = J + 3
4030 PRINT "JTIME: ";J;" SEC"
4040 IF J<120 THEN 3850
4 0 5 0 ~ I F ~ J < > 1 2 0 ~ T H E N ~ 4 0 7 0 ~
4060 PRINT "JĢStart 8 min monitor periodư"
4 0 7 0 ~ I F ~ J < 6 0 0 ~ T H E N ~ 3 8 5 0 ~
4 0 8 0 ~ P R I N T ~ " L G R u n ~ i s ~ i n ~ d a t a ~ t a k i n g ~ s t a g e " ~
4 0 9 0 ~ P R I N T ~ Q 1 9 : " P 1 0 0 E 4 R " ~
400 WAIT
4 1 1 0 ~ G O ~ T O ~ 4 8 1 0 ~ ! ~ 1 ~ C O U N T ~ O N L Y ~ \& ~ T H E N ~ O P E R A T E ~ F R O M ~ 2 ~ L I N E S ~ D O W N
4 1 2 0 ~ R E I A ~ D A T A ~ T A K I N G ~ R O U T I N E ~
4130 WAIT
4140 PRINT e9:"00"
4150 INPUT @24:H0
4160 H1(1) =H1(1)+H0
```

```
4170 PKINT せ9:"01"
4180 INPUT @24:HO
4190 H1(2) =H1(2)+H0
4200 3RINT 09:"02"
4210 INPUT 324:H0
4220 H1(3)=H1(3)+HO
4230 PRINT e9:"03"
4240 INPUT e24:HO
4250 H1(4)=H1(4)+40
4260 PRINT E9:"04"
4270 INPUT E24:H0
4280 H1(5)=H1(5)+H0
4290 PRINT e9:"05"
4300 INPUT e24:HO
4310 H1(6)=111(6)+H0
432 PRINT 09:"0б"
4330 INPUT e24:HO
4340 H1(7)=H1(7)+HO
4350 PRINT 29:"07"
4360 INPUT 224:HO
4370 H1(3)=111(3)+HO
4 3 8 0 ~ P R I N T ~ @ 9 : " 0 ठ " ~
4390 INPUT e24:H0
4400 H1(9)=H1(9)+HO
4410 PRINT E9:"Og"
4420 INPUT Q24:HO
4430 H1 (10) =111(10)+HO
4 4 4 0 ~ I F ~ J ~ M O D ~ 6 < > O ~ T H E N ~ 4 5 6 0 ~
4450 V4((J-600)/6.1)=H1(1)
4460 V4((J-600)/6,2)=H1(2)
4470 V4((J-600)/\sigma,3)=H1(3)
4480 V4((J-600)/6,4)=H1(4)
4490V V4((J-600)/6,5)=H1(5)
4500 V4((J-600)/0,6)=H1(6)
4510 V4((J-600)/6,7)=H1(7)
\therefore520 V4((J-600)/6.8)=111(3)
4530 V4((J-500)/0.9)=H1(9)
4540 V4((J-600)/6.10)=H1(10)
4550 H1=0
4560 IF J<1081 OR J>1150+TO THEN 4800
4570 IF J>1130 THEN 4690
4580 IF J<>1031 THEN 4620
4 5 9 0 ~ P R I N T ~ Q 9 : " 3 . 3 0 . 3 2 " ~ '
4000 PRINT e9:"3"
4610 GO TO 4810
4620 IF J<>1120 THEN 4600
4 6 3 0 ~ P R I N T ~ @ 9 : " 3 . 3 1 . 3 3 " '
4640 PRINT e9:"3"
4050 GO TO 4810
4660 IF J<>1129 THEN 4810
```

```
4670 P\check{NNT 89:"3.":G1$}
4o80 GO TO 4810
4 6 9 0 ~ I F ~ L \$ = " L " ~ T H E N ~ 4 3 1 0 ~
4700 PRINT @9:"10"
4710 INPUT e24:I1(J-1130)
4720 PRINT @9:"12"
4 7 3 0 ~ I N P U T ~ e 2 4 : V 1 (J - 1 1 3 0)
4740 IF J<>1140+TO THEN 4770
4750 PRINT Q6:"12000"."2200F"
4760 GO TO 4810
4770 IF J<>1140 THEN 4810
4780 PRINT @6:V1$,IO$
4790 GO TO 4810
4800 IF J>1656 THEN 4830
4 8 1 0 ~ J = J + 1
4 8 2 0 G O ~ T O ~ 4 1 3 0
4 3 3 0 ~ P R I N T ~ e 1 9 : " T 1 0 0 E 1 D R " ~
4840 PNINT E9:"3"
4550 PRIN'R 024:"R3T1D.1S"
4360 WBYTE E56.1:
4370 CALL "IFC"
4380 PRINT C9:"14"
4 3 9 0 ~ P R I N T ~ " L G R U N ~ E N D ~ C H E C K L I S T " ~
4900 PRINT "JCHECK CALORIMETER AND ENVIRONS FOR DA!AAGE."
4 9 1 0 ~ P R I N T ~ " J P R E H E A T E R ~ S H O U L D ~ B E ~ T U R N E D ~ O F F . " ~ '
4920 HRINT "JTURN OFF VALVES ON GAS CYLINDEKS."
4 9 3 0 ~ P R I N T ~ " J C H E C K ~ P O W E R ~ S U P P L Y ~ V O L T A G E S ~ A R E ~ N O M I I N A L . " ~
4940 IF L$="L" THEN 4960
4950 PRINT "JTURN OFF KEPCO POWER SUPPLY."
4960 GOSUB 12000
4970 PRINT "LDATA-SUM PACKEETS BEING AVERAGED"
4980 V4 =V4/ó
4 9 9 0 ~ I F ~ L \$ = " L " ~ T H E N ~ 5 0 5 0 ~
5 0 0 0 ~ P R I N T ~ " J C A L I B R A T I O N ~ V O L T A G E S ~ B E I N G ~ S C A L E D " ~
5010 REM MULTIPLY V1 BY 10 BECAUSE OF DIVIDER IN V-I BOX
5020 FOR I=1 TO :9
5030 V1(I)=10*V1(I)
5040 NEXT I
5 0 5 0 ~ R E M ~ O U T P U T ~ R E S U L T S ~
5060 : }1=
5070 Y1=32
5080 REM FOR PRINTER CHANGE THIS LINE TO "GO TO <2 lines down>
5090 REM HAKE THIS LINE Y1=\langleprinter's add.> & FIX UDK TO "GO TO <here>"
5100 PAGE
5110 PRINT QY1:"Run No: ";N\hat{$}
5120 PRINT eY1:"JRUN Type: ";L末
5130 PRINT EY1:"JJCalorimeter Configuration: ";01$
5140 PRINT @Y1:"Room Temperature: ";T9;" dep C"
5150 PRINT \Y1:"Darometric Pressure: ";B9;" mm rif""
5160 IF L$="L" THEN 5800
```

```
5170 PRINT @Y1:"JFLEC. DATAJ"
5130 Y1$="NO VOLTS AllPS"
5190 PKINT EY1: USING "3(24A)":Y1$,Y1$.Y1$
5200 IHAGE 3(2D.2X.+2D.3D.2X.+2D.3D.4X)
5210 IITAGE 2(2D,2X,+2D.3D,2X,+2D.3D,4X)
5220 IHAGE 2D.2K.+2D.3D.2X.+2D.3D.4X
5230 PRINT
5240 N8=INT(119/3)
5250 IF N9 MOD 3=0 THEN 5270
5260 N3=N3+1
5270 FOR I=1 TO N3
5280 N=I+N8
5290 P=I +2*N3
5300 IF N9 MOD 3<>0 THEN 5330
5310 PRINT EY1: USING 5200:I.V1(I).I1(I),N.V1(N).I1(N),P.V1(?).J.1(P)
5320 GO TO 5430
5330 IF N9 HOD 3=2 THEN 5390
5340 IF I=N3 THEN 5370
5350 PRI UY1: USI 5200:I,V1(I),I1(I),N,V1(N),I1(N),P-1,V1(P-1).I1(P-1)
5360 GO TO 5430
5370 PRINT QY1: USIING 5220:I,V1(I),I1(I)
5380 ©0 TO 5430
5390 IF I=NO THEN }542
5400 PRINT OY1: USING 5200:I.V1(I).I1(I),N:V1(iN),I1(N).P.V1(P).I1(P)
5410 GO TO 5430
5420 PRINT UY1: USING 5210:I,V1(I),I1(I),N,V1(N),I1(N)
5430 NEXT I
5440 CALL "WAIT".2
5450 IF N=1 THEN 5470
5460 COPY
5470 PRINT EY1:"JJ"
5480 IF L $="C" THEN 5800
5490 PAGE
5500 PRINT QY1:U1$;" OUTPUT"
5510 IMAGE 3D.2X,4(+2D.4D.7X)
5520 IF U1=6 THEN 5570
5530 PRINT
5540 J1=11-U1
5550 GOSUB 10500
5560 GO TO 6́190
5570 PRINT @Y1:"JMASS FLOW INJ"
5580 J1=4
5590 GOSUB 10500
5600 PRINT EY1:"JHASS FLOW OUTJ"
5610 J1=2
5620 GOSUB 10500
5030 PRINT QY1:"JTEMPERATURE INJ"
5640 J1=5
5650 GOSUB 10500
5660 PKINT QY1:"JTEMPERATURE OUTJ"
```

```
5670 PRINT eY1:
5 6 3 0 ~ P K I N T ~ Q Y 1 : " J T E M P ~ O U T ~ d i a l ~ s e t t i n g = " : Z 6 ~
5690 PNINT EY1:"IENP UUT zero readin尺=";Z4
5700 GO TO 5?10
5710 J1=3
5720 GOSUE 10500
5730 PRINT ЭY1:"JCALOKINETER RTD"
5740 PRINT ऐY1:"JRTD dial setting=";Z5
5750 PRINT QY1:"RTD zero readin尺=";己9
5700 PRINNT QY1:
5770 J1=1
5730 GOSUB 10500
5790 GO TO 6190
5 8 0 0 ~ R E : H ~ O U T P U T ~ L \& C ~ R U N ~ R E S U L T S ~
5810 FOR J1=1 TO 10
5820 GO TO J1 OF 5830.5890,5910,5960.5930,6000,6050,6070,6090,0́110
530 PRINT @Y1:"JMAIN CALORIMETER RTDJ"
5840 PRINT QY1:"JRTD dial setting: ";"̈5
5850 PRINT EY1:"RTD zero reading: ";Z9
5060 PRINT QY1:
5870 J2=6
5880 GO TO 6130
5890 PRINT @Y1:"JMASS FLOW OUTJ"
5900 GO TO 6130
5910 PRINT QY1:"JTEMPERATURE OUTJ"
5920 PRINT EY1:"TEMP OUT dial setting: ";Z\sigma
5930 PRINT QY1:"TEMP OUT zero reading: ";24
5940 PRINT RY1:
5950 GO TO 6130
5960 PRINT QY1:"JNASS FLOW INJ"
5970 GO TO 6130
5930 PRINT @Y1:"JTEMPERATURE INJ"
5990 GO TO 6130
6000 IF D$="F" THEN 6030
6 0 1 0 ~ P R I N T ~ Q Y 1 : " J D E F L E C T O R J " ~ '
6 0 2 0 ~ G O ~ T O ~ 6 1 2 0
6030 PRINT @Y1:"JFOIL REFLECTORJ"
6040 GO TO 6120
6050 PRINT @Y1:"JSEPPARATION TUBEJ""
600́0 GO TO 6120
6070 PRINT EY1:"J_BACKSCATTER MONITORJ"
6080 GO TO 6120
6090 PRINT \Y1:"JOVERSPILL MONITORJ"
6100 GO TO 6120
6110 PRINT @Y1:"JEXTENSION TUBEJ"
6120 J2=11-J1
6130 GOSUB 11000
6140 IF F=1 THEN 6́170
\sigma150 PRINT EY1:"NULL DATA"
6160 GO TO 6180
```

```
6170 SOSUB 10500
6180 NEXT J1
6190 IF : }=2\mathrm{ THEN 6270
6200 PRIHT "GDO YOU WANT A COPY OF THE RESULTS? (Y OR N) ":
6 2 1 0 ~ I N P U T ~ R \$ ~
6220 (O TO (R$="Y")+2* (R$="N") OF 6240.6310
6230 GO TO 6200
6240 PKINT 032.26:3
6250 M=2
6260 GO TO 5100
6270 CALL "WAIT",3
6280 COPY
6 2 9 0 ~ M = 1
6300 PRINT Q32.26:0
6 3 1 0 \text { PRINT "LGDO YOU WANT TO STORE DATA ON TAPE? (Y OR N) "}
6 3 2 0 ~ I N P U T ~ R \$
6330 GO TO(R$="Y")+2*(R$="N") OF 6350,6510
6340 GO TO 6310
0350 PRINT "JWHAT FILE?"
6360 PRINT "JChoices are files 2 through 11"
6 3 7 0 ~ I N P U T ~ L 1 ~
6 3 8 0 ~ F I N D ~ Q 4 : L 1 ~
6390 HRITE e4:N$.L$.01$.D分
6400 WRITE @4:T9.B3,U1
6410 IF U1<>O AND U1<>0 THEN }643
6420 WRITE E4:Z5,Z6
6 4 3 0 ~ W R I T E ~ 0 4 : V 4 ~
6440 IF L$="L" THEN 6430
6450 WRITE @4:U1$
6460 WRITE Q4:TO.E1.N9
6470 WRITE Q4:V1.I1
64%0 PRINT 24,2:
6 4 9 0 ~ P R I N T ~ " J G D a t a ~ s t o r e d ~ i n ~ f i l e ~ " ; L 1 ; " ~ o f ~ C L U P ~ D A T A ~ t a p e . " ~
6 5 0 0 ~ C A L L ~ " W A I T " . 2
6510 PRINT "LRUN NO: ";N$;" COMPLETED."
6 5 2 0 ~ P R I N T ~ " J I N D I C A ' P E ~ C H O I C E " ~
6530 PRINT "J 1. END RUNS"
6540 PRINT " 2. START NE'W RUN"
6550 PRINT " 3. READ RUN DATA FILE"
6560 PRIHT " 4. PERFORM DATA REDUCTION CALCULATIONS"
6570 PRINT " 5. TRANSFER DATA VIA RS232 INTERFACE"
6580 PRINT " E. DISPLAY CURRENT DATA"
6 5 9 0 ~ P F I N T ~ " ~ 7 . ~ C O P Y ~ C U R R E N T ~ D A T A ~ T O ~ F I L E " ~
6600 PKIN'T "JENTER LINE NUMBER ";
6'10 INPUT R
6 6 2 0 ~ I F ~ R = > 1 ~ A N D ~ R < = ? ~ A N D ~ R ~ M O D ~ 1 = 0 ~ T H E N ~ 6 6 5 0 ~
6530 PRINT "JGWHAT?"
6 6 4 0 ~ G O ~ T O ~ 6 6 1 0 ~
6650 GO TO R OF 6880.6660.6070.6750.6770.5100.6350
6660 RUN
```

```
6670 PRI "CAUTION--This will wipe out prosram and all data from memory."
6 6 3 0 ~ P N I N T ~ " D O ~ y o u ~ w i s h ~ t o ~ c o n t i n u e ? ~ (Y ~ o r ~ i v) ~ " ;
6 6 9 0 ~ I N P U T ~ R \$
6700 SO TO (R$="Y")+2*(R$="N") OF ó730,6510
6710 PRINT "JGWMAT?"
6720 SO TO Ú690
0730 RINi) 4 ! READ FILE
6 7 4 0 ~ O L D ~
6 7 5 0 ~ अ I N D ~ j ~ ! ~ P E R F O R I ' ~ C A L C , ~
0760 OLD
O}770 PRINT "LGROUTINE NEEDS TO BE DEVELOPED TO SUIT PARIICULAK SERIAZ "
6780 ?SIHT "TRANSFER_SYSTEM"
O}790\mathrm{ GO TO 6500
O800 REH = = = = = = = = = = =
6810 REM SPACE
6 8 2 0 ~ R E M ~ F O R
6 8 3 0 ~ R E M ~ F U T U R E ~
6840 REH RS232
650 REM ROUTINE
6 8 6 0 \text { REH EERE}
6870 REM = = = = = = = = = = =
6880 REM END RUNS
6890 FBYTE e56.4,1:
6 9 0 0 ~ P R I N T ~ " J G D O N E " ~
Ó910 END
8000 REM HAX PARAM FOR EXT TUBE
8010 E0=1000
2020 V0=100
3030 RO=340
8040 IO$="2207A"
8050 U1$="\XiXTENSION TUBE"
8060 GO TO \widehat{900}
8100 REM MAX PARAM FON OSM
8110 E0=1000
3120 VO=51.2
8130 KO=7.9
8140 IO$="22A7F"
8150 U1$="OVERSPILL MONITOR"
8160 GO TO 3900
3 2 0 0 ~ R E M ~ H A X ~ P A R A H ~ F O R ~ B S I A
8210 E0=1000
8220 V0=80́.4
8230 RO=22.2
8240 IO$="22639"
8250 U1$= "BACESSATTER MONITOR"
8260 GO TO 3900
8300 REM :IAX PARAM FOR SEP TUEE
8310 E0=1000
8320 V0=100
8330 RO=340
```

```
8340 10$="2207A"
8350 U1$="SËPARATION TUBE"
3300 GO TO 3900
3400 REM HAX PARAM FOR DEFLECTOR
8410 IFD$="F" THEN }848
8420 EO=1000
3430 V0=26
8440 RO=3.56
8450 IO$="22BAE"
8450 U1$="DEFLECTOR"
O470 GO TO 3900
8480 EO=1000
3490 V 0=78.9
8500 RO=25.5
8510 IO$="224F2"
8520 U1$="FOIL NEFLECTOR"
8530 GO TO 3900
3 6 0 0 ~ R E M ~ M A X ~ P A R A I I ~ F O R ~ H A I N ~ C A L ~
8610 EO=15000
8620 VO=100
8630 RO=12.7
8540 IO$="22C98"
8650 U1$= "MAIN CALORIMETER"
3900 PRINT "LHOW MANY JOULES ARE TO BE INJECTED? ";
8910 INPUT E1
8920 IF E1<=EO THEN 8960
8930 PRINT "JGTOO MUCH ENERGY! TRY ";EO;" JOULES OR LESS."
8 9 4 0 ~ C A L L ~ " W A I T " , 2 ~
8950 GO TO 8900
8960 TO=5
8970 V 3=SQR(E1*R0/T0)
8930 IF V3<=VO THEN 9030
8990 T0=1+INT(E1*RO/VO^2)
9000 V3=SQR(E1*RO/TO)
9010 PRINT "JJGINJECTION TIME LENGTHENED TO ";TO:" SECONDS."
9 0 2 0 ~ C A L L ~ " W A I T " , 2 ~
9030 REM GET KEPCO COHMAND
9040 IF V3>10 THEN 9080
9050 K1=409.6
9060 D2=2
9070 GO TO 9100
9080 K1=40.96
9090 D2 =0
9100 D2$=STR(D2)
9110 D2$=TRIM(D2$)
9120 K9=INT(K1*V3)
9130 REM CONVERT KY TO RADIX 16
9140 V9=INT(K9/16)
9150 D5=K9 MOD 16
9100 D3=INT(V9/16)
```

```
9170 D4=V9 MOD 16
9130 D0$=3TR(D5)
9190 IF D5<10 THENS 9210
9200 GOSUB 9400
9210 Dう$=TRIM(DO$)
9220 D04 =STR(D4)
9230 IF D4<10 THEN 9250
9240 GOSUB 9400
9250 D4今=TRIH(DO$)
9 2 6 0 ~ D O \$ = S T R (D 3)
9270 IF D3<10 THEN 9290
9280 GOSUB 9400
9290 D 3$=TRIM(DO$)
9300 V1$="1"&D2$&D3$&D4$&D5$
9310 RETURN
9400 REM CONVERT LARGE HEX DIGITS
9410 GO TO VAL(DO$)-9 OF 9420,9440,9460,9480,9500,9520
9420 DO$="A"
9430 RETURN
9440 DO$="B"
9450 RETURN
9460 DO$="C"
9470 RETURN
9480 DO$="D"
9490 RETURN
9500 DO$="E"
9510 RETURN
9520 DO$="F"
9530 RETURN
9600 REM TURN ON LIAS
9610 PRINT eg:G1$
9 6 2 0 ~ R E T U R N
9700 REH TURN OFF GAS
9710 PRINT E9:"3"
9720 RETURN
9800 REM MASS IN VOL'TS
9810 PKINT ag:"03"
920 RETURN
9900 REH TEMP IN VOLTS
9910 PRINT e9:"04"
9920 RETURN
10000 REM PAUSE ROUTINE
10010 ?RINT "GJPush UDǨ非4 to continue"
10020 F3=0
10030 REM IDLING LOOP
10040 IF FB=1 THEN 10060
10050 GO TO 10030
10060 F8=0
10070 RETURN
10100 RE:A CHG GAS CYLINDER ROUTINE
```

```
10110 G5$=G1$
10120 G1$=G2$
10130 PRINT E9:"3,";G1$
10140 G2$=G3$
10150 G3%=G4$
10160G4$=G5$
10170 RETUKN
10300 POLL C.D;19
10310 GO TO C OF }1032
10320 RETURN
10500 REN PRINT OUT SENSOR DATA
10510 IMAGE 3D,2X.4(+2D.4D.7X)
10520 FOR K=1 TO 176 STEP 4
10530 PRINT QY1: USING 10510:K.V4(K.J1),V4(K+1.J1),V4(K+2,J1),V4(K+3.J1)
10540 NEXT K
10550 RETUKN
11000 REM HISSING HODULE DETECTION ROUTINE
11010 F=0
11020 J2$=STR(J2)
11030 J2$=TRIM(J2§)
11040 FOR L=1 TO 6
11050 02$=SEG(01$,L, 1)
11060 IF 02$<>J2$ THEN 11080
11070 F=1
11080 NEXT L
11090 RETURN
12000 REM ROU'TINE TO KEEP SCREEN FROM EKASING
12010 PRINT "JPush UDK非 to continue."
12020 F3=0
12030 K=0
12040 DO
12050 K=K+1
12060 CALL "WAIT",1
12070 IF K MOD 1500<>0 THEN 12090
12080 PRINT "^"
12090 EXIT IF F&=1
12100 LOOP
12110 F8=0
12120 RETURN
```

BY - barometric pressure in mm of Hg
C - polling variable indicating unit activating SRQ
C\$ - scanner channel command for switching sensor channels
D - polling variable indicating SRU message
U2 - number indicating power supply voltage range
U3 - first hexadec. digit (MSD) of voltage part of power supply command
04 - second hexadec. diyit of voltage part of power supply command
D5 - third hexadec. digit (LSD) of voltage part of power supply command
U\$ - deflector-type descriptor ( $F=$ foil reflector, $D=$ mirror deflector)
D2\$ - second diyit in power supply command (string version of D2)
U3\$ - third digit in power supply command (string version of D3)
U4\$ - fourth digit in power supply command (string version of D4)
US\$ - fifth digit in power supply command (string version of U5)
Uौ\$ - temporary string variable for converting hexadec. digits to string variables
El - nominal electrical energy input
EO - maximum allowable electrical energy
F - flay to look for unit missing from calorimeter configuration
F2 - flay to lock out UDK \#20
F3 - flay to lock out UDKs \#1, \#2, \#11, \#12, and \#13
F8 - flag to leave indefinite wait subroutine
G9 - method of gas supply (1 = low press. manifold, $2=$ high press. manifold)
G1\$ - electrical valve channel for primary gas cylinder (LP and HP supply)
G2\$ - electrical valve channel for \#l back-up gas cylinder (LP supply)
G3\$ - electrical valve channel for \#2 back-up gas cylinder (LP supply)
G4\$ - electrical valve channel for \#3 back-up gas cylinder (LP supply)
G5\$ - temporary string variable for changing order of gas cylinders in LP supply
GD\$ - temporary string variable for setting up gas flow valve priorities
H1 - array for acquiring by summing sensor output data packets
$\mathrm{H} \emptyset$ - measured sensor output voltage to be summed to H 1
I - counter
Il - array containing electrical calibration current readings
IИ\$ - current limit command to calibration power supply
J - counter
J1 - index indicating sensor data being handled
J2 - index indicating unit being searched for missing module routine
J2\$ - string version of J 2
K - counter
K1 - sealing constant for calculating power supply command
Ky - decimal equivalent of hexadecimal voltage part of power supply command

- counter

L1 - no. of file in which data is to be stored
L\$ - run type ( $L=$ laser, $C=$ combination, $E=$ electrical)
M - results output-type descriptor (1 = display, $2=$ hardcopy)
M5\$ - deflector-type name display message during monitor period
M9\$ - error message in gas set-up routine
$N \quad$ - line number of second column of V1 - Il data
N8 - number of lines of V1 and Il readings to be displayed
N9 - number of V1 (and I1) readings
N\$ - run number
01\$ - calorimeter configuration description
P - index of third column of V1 - Il data being displayed

K - numeric answer to yuestions
KX - resistance of calibration heater
R\$ - alpha answer to questions
T1 - temperature in readiny desired while gas is flowiny
TY - ambient temperature in deyrees $C$
Ty - electrical energy injection period duration in seconds
Ul - numeric indicator of unit receiving electrical eneryy
U\$ - temporary striny variable for buildiny Ul\$
U1\$ - name of unit to be calibrated
U2\$ - one letter descriptor of unit receiviny energy (laser or electrical)
$V$ - array for storing sensor output readings during monitor period
V1 - array containing electrical calibration voltaye readings
V'3 - required voltaye setting of electrical calibration power supply
V4 - matrix for storing all data pockets acquired through H1
V9 - quotient derived during hexadecimal conversion
V $\emptyset$ - maximum allowable electrical calibration voltage
V1\$ - voltage command to calibration power supply
Y1 - address of device outputting results
Y1\$ - column heading title for printing out V1 - Il data
Z1 - mass flow in zero reading
Z2 - mass flow out zero reading
Z3 - temperature in zero reading
Z4 - temperature out zero reading
Z5 - main calorimeter RTU dial setting
Z6 - temperature out dial setting
Zy - main calorimeter zero reading
$\angle \emptyset$ - change in mass flow in reading when gas is turned on

B3. CHANNEL MUNITUR (FILE 3) Proyram Listiny

```
1 IHIT
2 SET KEY
3 GO TO 100
4 RE|l KEAD HAI| CAL RTD
5 ~ P R I N T ~ E 9 : " 0 0 " ~
6 ~ P R I \| T ~ " L J J J J U A I \| ~ C A L ~ R T D ~ R E A D I N G S ~ O N ~ D V H " ~
7 HTURN
o REIU READ IIASS FLOW OUT
9 PRIHT e9:"O!"
10 PRINT "LJJJJ|ASS FLOW OUT READIHGS ON DVM"
11 RETURN
12 REM READ TEMP OUT
13 PRINT e9:"02"
1 4 ~ P R I N T ~ " L J J J J T E M P E R A T U R E ~ O U ' I ~ R E A D I N G S ~ O N ~ D V H " '
15 RETURN
16 REM READ MASS FLOW IN
17 PRIHT 29:"03"
1% PRINT "LJJJJHASS ELOW IN READINGS ON DVM"
19 RETURN
20 REM READ TEMP IN
21 PRINT \9:"04"
22 PRINT "LJJJJTEHPERATURE IN READINGS OH DVH"
23 RETURN
24 REH READ DEFLECTOK
25 PRINT e9:"05"
26 PRINT "LJJJJDEFLECTOR READINGS ON DVH"
27 RETURIN
28 REM READ SEP TUBE
29 PRINT @9:"06"
30 PRINT "LJJJJSEPARATION TUBE READINGS ON DVM"
31 RETURN
3 2 ~ R E M ~ R E A D ~ B S H
33 PRINT 09:"07"
34 PRIHT "LJJJJBACK
35 RETURN
36 REM READ OSM
37 PRINT e9:"O8"
38 PRINT "LJJJJOVERSPILL MONITOR READINGS ON DVI1"
39 RETURN
40 REM READ EXT TUBE
4 PRINT E9:"O9"
4 2 ~ P R I N T ~ " L J J J J E X T E I N S I O N ~ T U B E ~ R E A D I N G S ~ O N ~ D V H " ~
43 RETURN
4 4 ~ R E M ~ G A S ~ V A L V E ~ \# \# 1
45 PRINT R9:"34"
46 RETURN
48 REM GAS VALVE 非2
49 PRINT e9:"35"
5 0 ~ R E T U R N
52 REM GAS VALVE #3
```

```
53 PRIज丁 巳9:"30́"
54 RETURH
50 REM GAS VALVE 非4
5? PRINT Q9:"3?"
5% KETURN
60 RE| GASS UFF
61 PRINT 29:"3"
02 RETURW
64 REH OPEN IIAIN CAL SHUTTER
65 PRINT E9:"30"
6 6 ~ P R I N T ~ E 9 : " 3 " ~
67 RETURIJ
6 3 \text { RE\| CLOSE HAIH CAL SHUTIER}
6 9 ~ P R I N T ~ @ 9 : " 3 1 " ~
70 PRINT e9:"3"
71 RETURN
7 2 \text { \&EH OPEN BSH/OSH SHUTTER}
73 PRINT C9:"32"
74 PRINI e9:"3"
7 5 \text { RETURN}
7 6 ~ R E H ~ C L O S E ~ B S M / O S H ~ S H U T T E R ~
77 PFINT e9:"33"
78 PRINT e9:"3"
7 9 \text { RETURN}
80 REM READ POWER SUPPLY VOLTAGES
81 PRINT 29:"14"
82 PRINT "LJJJJPOWER SUPPLY VOLTAGE READINGS ON DVM. USE PANEL SWITCH."
83 RETURN
100 REH **** PROGRAII CHANHEL MOHITOR ********** DATE-TIME 3 30207 © 13:40
110 REM
120 REM *********** TAPE CLOP *************** TILE 3 % *********************z
130 PRINT "LPUSH APPROPRIATE UDK TO GET DESIRED CHAINNEL."
140 REM
150 PRINT "^"
100 GO TO 1\overline{4C}
170 EHD
```

Variable Map，no variables used

B4. KEAU KUN UATA FILES (FILE 4)


```
110 \E!
```



```
130 IHIT
14O OH SKQ THEN 3000
```



```
1ú0 DIII VO(176,10),V1(55),I1(55)
170 PRINT "LGIHHAT rILE DO YOU wISII TU ACCESS?"
1JO PRI|i' "JChoices are files 2 throurh 11J"
190 IJPPUTT L1
200 L 1=IHI(L1)
210 IF L 1<2 OR L 1>11 IHE| 170
220 FIHD +4:L1
230 PRIWT "JFile contents being loaded into menory."
240 READ 04:IN,L$,O1$,D$,T9,B9,U1
250 IF U 1<>0 AHD U1<>6 THEN 270
260 תЕAD Q4:25,26
270 READ 24:VO
230 IF L* ="L" THEN 300
290 READ 04:U1$,IO,E1,N9,V1,I1
300 11=1
310 PRINT "Li|ile ";L1
320 PRIHT "JKun No: ";iv$
330 PRINT "\underline{Jnun Type: ";L$}
340 PRINT "JCalorimeter Configuration: ";01$
350 PRINT "Room Iemperature: ";T9;" der C"
300 PRINT "Barometric Pressure: ";B9;" mr Hg"
370 IE Lき="L" THEN 950
300 PRINT "Nominal Energy: ";E1;" J"
390 Y1$="NO VOLTS Al{PS"
400 PRINm "JELEC DATAJ"
410 PRINT USING " 3(24A)":Y1$,Y1$,Y1$
4 2 0 ~ I M A G E ~ 3 (2 D , 2 X , + 2 D . 3 D , 2 X , + 2 D . 3 D , 4 X)
430 IHAGE 2(2D,2X,+2D.3D,2X,+2D.3D,4X)
440 IHAGGE 2D,2X,+2D.3D,2X,+2D.3D
450 PRIHT
450 N3=INT(N9/3)
470 IE N9 iOD 3=0 THEN 490
400 NOCNO+1
490 FOR I=1 TO iv %
500 \textrm{H}=\textrm{I}+1%0
j10 ?= I + 2*NO
520 IF H9 HOD 3<>0 THEN 550
530 PRIHT USING 420:I,V1(I),I1(I),H,V1(N),I1(N),P,V1(P),I1(P)
540 GO TO 650
550 IF N9 HOD 3=2 THEN 0 }1
560 IF I=NS THEN 590
5 7 0 ~ P R I H T ~ U S I N G ~ 4 2 0 : I , V 1 (I) , I 1 (I) , N , V 1 (i i) , I 1 (N) , P - 1 , V 1 (P - 1) , I 1 (P - 1)
500 GO TO 650
5 9 0 ~ P R I N T ~ U S I N G ~ 4 4 0 : I , V 1 (I) , I 1 (I) ,
```

```
ULO UO TO 650
610 Ir I=Tv THEN 640
020 PHIHT USING 420:I,V1(I),I1(I),N,V1(H),I1(N),P,V1(P),I1(P)
630 GO TO 650
640 PRINT USING 430:I,V1(I),I1(I),N,V1(N),I1(N)
050 NEXT I
660 GIN X,i
<70 HOVE 0,0
6 8 0 ~ P R I N T T
UGO IE L$="C" THEN 990
7 0 0 ~ P R I N T ~ U 1 S ; " ~ O U T P U T " ~
710 IHAGE 3D,2X,4(+2D.4D,7X)
7 2 0 \text { U2\$=SEG(U1\$,1,1)}
730 INAGE /,20A,40T,"Dial Settinf: ",4D,/
740 IF U2$="㣙 THEN 790
750 J1=(U2$=D中)+2*(U2$="S")+3*(U2$="B")+4*(U2$="O")+5*(U2$="E")+5
7 6 0 ~ P R I N T
770 GOSUB 2500
780 GO TO 1310
790 PRINT "JHASS FLOW I|J""
300 J1=4
$10 GOSUB 2500
820 PRIITR "JNASS rLOW OUTJ"
830 J1=2
840 GOSUB 2500
850 PRIHT "JTEMPERATURE INJ"
860 J1=5
870 GOSUB 2500
$00 PRIHT USING 730:"TEMPEKATURE OUT",26
390 J1=3
900 GOSUB 2500
910 PRINT USING 730:"CALORIMETEF RTD",25
920 J1=1
930 GOSUB 2500
940 GO TO 1310
9 5 0 ~ R E I I ~ O U T P U T ~ L \& C ~ R U H S ~
900 IF H=1 THEN 980
970 COPY
980 PAGE
990 FOR J1=1 TO 10
1000 GO TO J1 OF 1010,1040,1060,1030,1100,1120,1170,1190,1210,1230
1010 PRINT USIHG 730: "lIAIN CALORIMETER RTD",Z5
1020 J2=6
1030 GO TO 1250
1040 PRINT "JHASS FLOW OUTJ""
1050 GO TO 1250
1060 PRINT USING 730:"TEllPERATURE OUT",ZU
1070 GO TO 1250
1030 PRIHT "JMASS FLOW INJ"
1090 GO TO 1250
```

```
1100 PRIHT "JTEHiPERATURE INJ"
1110 GO TU 1250
1120 Ir D$="r" ThtM 1150
1130 PRI!!T "JDErLECTORJ"
1140 LO TO 1240
1150 PRINT "JFOIL REFLECTOKJ"
1160 GO IU 1240
1170 PRINT "JSEPAFATION TUBEJ"
1180 GO TO 1240
1190 PRINT "JBACKSCATTER MOHITORJ"
1200 GO TO 1240
1210 PRIWT "JOVERSPILL HOHITORJ"
1220 UO TO 1240
1230 PRIMT "JEXIENSION TUBEJ"
1240 J2=11-J1
1250 GOSUB 2000 ! ilISSING MODULE DETECT
1260 IF F=1 THEN 1290
1270 PRINT "NULL DATA"
1200 GO TO 1300
1290 GOSUB 2500
1300 NEXT J1
1310 IF M=2 THEN 1390
1320 PRINT "JGDO YGU WANT A COPY OF THE DATA? (Y or N) ";
1330 INPUT R$
1340 GO TO (右$="Y")+2%(R$="s") Or 1360,1430
1350 GO TO 1320
1360 PRINT e32,26:3
1370 H=2
1330 GO TO 310
1390 CALL "wAIT",3
1400 COPY
1410 i = =
1420 PKINT 巳32,26:0
1430 REM GRAPH OF SENSOR OUTPUT
1440 PRINT "DO YOU WISH TO PKINT A GRAPH OF ANY SEINSOR'S OUTPUT?"
1450 PRINT "Y OR N"
1460 INPUT E$
1470 IF S$="行" THEN 1500
1480 IF BS="Y" THEN 1490
1490 GOSUB 4000
1500 PRINT "JGPROGRAH FIMISAZED. RE-RUN TO ACCESS IIOKE FILES."
1510 END
2000 REH HISSING HODULE DETECTIOIN HOUTINE
2010 F=0
2020 J2$=STR(J2)
2030 J2$=TRIM(J23)
2040 FOR L=1 TO 6
2050 023=SEG(01$,L,1)
2060 IF 02$<>J2$ THEN 20U'O
2070 F=1
```

```
2030 HEAT L
2090 RETUNN
2500 REll Prinit OUT' SENSOR DATA
2510 IlIAGE 3D,2X,4(+2D.4D,7X)
2520 POR K=1 TO 17U STEP 4
2530 PKIHT USING 2510:K,VO(K,J1),VO(K+1,J1),VO(K+2,J1),VU(K'+3,J1)
2540 HEXT K
2550 KE゙TUR゙N
3000 POLL X,I;4
3010 INPUTT U4,30:2
3020 IF Z<>7 THEN 3070
3030 PRINT "JGNO CARTRIDGE INSERTED IN 4924."
3040 PRIWT "JPRESS <return> WHEM READY"
3050 IlJPUT ZS
3060 FUN
3070 PRINT "JGERROR MESSAGE ";Z;" F'KOM 4924. SEE PAGE 2-20 OF IINSTKUC'";
3000 PRINT "ION BOOK."
3090 STOP
3100 RETURN
4 0 0 0 ~ R E H ~ G R A P H ~ O F ~ S E N S O R ~ O U T P U T ~
4 0 0 5 ~ P A G E ~
4010 PRIWT " 1","MAIN CALORIMETER FTD"
4 0 2 0 ~ P R I N T ~ " ~ 2 " . " H A S S ~ F L O W ~ O U ' I ~ T H E R H I S T O R " ~
4 0 3 0 ~ P R I N T ~ " ~ 3 " , " T E H P E R A T U R E ~ O U T ~ T H E R L I S T O R " ~
4040 PRINT " 4","HASS FLOW IN THERMISTOR"
4050 PRINT " 5","'EEMPERATURE IN THERHISTOR"
4 0 6 0 ~ P R I N T ~ " ~ 6 " , " D E F L E C T O R ~ K T D " ~
4070 PRINT " 7","SEPARATION TUBE RTD"
4 0 8 0 ~ P R I N T ~ " ~ 3 " , " B A C K S C A T T E K ~ H O N I T O R ~ R T D " ~
4 0 9 0 ~ P R I N T ~ " ~ 9 " , " O V E R S P I L L ~ \| O N I T O K ~ R T D " '
4100 PRINT "10","EATELSIOIN TUBE RTU"
410 PRINT
4120 PRINT
4130 PRINT "TYPE IN THE INDEX OF THE SENSOR'S OUTPUT THAT YOU"
4140 PRINT "WISH TO GRAPH AND PRESS RETURN."
4150 INPUT J1
4160 DIM A(176)
4170 FOR K=1 TO 170
4130 A(K)=VO(K,J1)
4190 HEXT K
4200 REM GRAPH OF SENSOR OUTPUT
4 2 1 0 ~ P A G E ~
4220 VIEWPORT 10,125,10,00
4230 WINDOW 0,175,-14,14
4240 AXIS 10,1
4242 AXIS 0,0,175,14
4244 AXIS 10,0,0,-14
4250 HOVE O,A(1)
4260 FOR I=0 TO 175
4 2 7 0 ~ D R A W ~ I , A (I + 1)
```

```
4200 NEXT I
4290 HOVE ЈO`,-14
4300 PRIHT "OJHElHH11HE";"READINGS, IIINUTES"
4520 FOOK I=-14 TO 14
4330 110VE - 10,I
4340 PHIHT I
```



```
430́0 FOR I=1 TO 1?
4370 110VE 10*I, -14
4000 P和质 "J";I
4390 i.EXT I
4 4 0 0 ~ V \psi = " V O L T S " ~
4410 HOVE - 15,0
4420 FOR I=1 TO LEN(V$)/2
4430 PKINT "K
4440 1IEXT I
4450 FOR I=1 TO LEN(V$)
4460 Wis=SEG(V$,I,1)
4470 P&INT W$;"JH";
400 NEXT I
5000 IF J1<>1 THEN 5030
5010 A$= "MAIN CALOKIMETER KTD"
5020 GO TO 6000
5030 IF J1<>2 TIIEN 5060
5040 A$= "FASS ELOW OUT"
5050 GO TO 6000
5060 IF J1<>3 THEIV 5090
5070 A$="TEMPERATURE OUT"
50४0 GO TO ÚOOO
5090 IF J1<>4 THEN 5120
5100 A$="!1ASS FLOW IN"
5110 GO TU 6000
5120 IF J 1<>5 THEN 5150
5130 A$="TEMPERATURE IN"
5140 GO TO 6000
5150 IF J 1<>6 THEN 5100
5160 A$="DEFLECTOR"
5170 GO TO 6000
5180 IF J1<>7 THEN 5210
5190 A$="SEPARATION TUBE"
5200 GO TO 6000
5210 IF J 1<>8 THEN 5240
5220 A$="ВACKSCAT'NER HONITOK"
5230 GO TO 6000
5240 IF J1<>9 THEN 52?0
5250 A$="OVERSPILL MONITOn"
5200 GO TO 6000
5270 IF J1<>10 THEN 5300
5280 A$="EXTENSIOH TUBE"
5290 GO TO 6000
```

```
5300 110VE ÖO,14
```



```
5315 FUR I=1 IO 32
520 PRIHT
5321 1NEXT I
5325 PAGE
5330 PRIHT "JDO YOU WANT TO HAKE A GRAPH OF ANY OTHER SENSOR? Y UK il"
5 3 4 0 ~ I T I P U T ~ C O , \$
5350 If C$="Y" THEN 4000
5360 IF C$="N" THEN 5390
5370 PRINT "JGWHAT?"
5300 GO TO 5340
590 RETURN
6000 MOVE 8O, 14
6010 FOR I=1 TO LEN(A$)/2
6 0 2 0 ~ P R I N T ~ " \underline { + 1 " ; }
6025 NEXT I
6030 PRINT "KK";A$
6040 GO TO 5300
```

```
A - array containing sensor output values to be graphed
A$ - name of sensor output being graphed-graph label
By - barometric pressure in mm of Hg
B$ - answer to graphing question
C$ - answer to "graph again" question
U$ - deflector-type descriptor (D = mirror deflector, F = foil reflector)
El - nominal electrical energy injected
F - flay in missiny module routine (O = missiny, l = present)
I - counter
11 - array containing electrical calibration current readinys
Jl - column index in V| indicating particular sensor
J2 - numeric indicator of module
J2$ - string equivalent of J2 for comparing in missing module routine
K - counter
L - counter
Ll - number of data storage file to be read
L$ - run type (L = laser, C = combination, E = electrical)
M - results output-type descriptor (1 = display, 2 = nardcopy)
N - line number of second column of V1 - Il data
N8 - number of lines of V1 and Il readings to be displayed
N9 - number of V1 (and Il) data points
N$ - run numbers
01$ - calorimeter configuration description
02$ - seyment of U1$ in missing module routine
P - index of third column of V1 - Il data being displayed
R$ - alpha answer to questions
T9 - ambient temperature in degrees C
To - duration of injection period in seconds
Ul - number of module receiviny energy (laser or electrical)
U1$ - name of module receiving electrical energy
U2$ - one letter descriptor of unit receiving electrical eneryy
V1 - array containing electrical calibration voltaye readinys
V6 - matrix (176 x lU) containing output values for all sensors
V$ - graph ordinate label
W$ - segment of V$ for printing ordinate label vertically
X - GIN variable in routine to create PAGE FULL
Y - GIN variable in routine to create PAGE FULL
Y1$ - column heading title for printing out V1 - Il data, also POLLing variable
Z - error message number from tape deck
Z5 - main calorimeter RTD dial setting
Z6 - temperature out dial setting
```

```
1 TNIT
SET KEY
3O TO 100
16 FELI CONTINUE AFTER INDEFINTE PAUSE
17 F8=1
18 RETUKN
100 REM ****** PROGRAII CALCULATE RESULTS ******* DATE-TIME u40210 \ 13:30
110 REH
120 REH ***** TAPE CLOP PROGRAISS ***** FILE }
130 ON SRQ THEN 5000
140 DI| D$(1),G$(19),L$(1),H$(19),N$(9).01$(0),R$(1),U1$(19),U2$(1)
1 5 0 \text { DIH F1(10),I1(55),K0(10),V(176, 10),V1(55),YO(3,10),Y1(3,10),Y2(3,10)}
160 PRINT "LWHAT FILE DO YOU WISH TO ACCESS?"
170 PRINT "JChoices are files 2 through 11."
130 INPUT L1
190 IF L1<2 OR L1>11 THEN 160
200 L1=INT(L1)
210 FIND e4:L1
220 READ @4:N$,L$,01$,D$,T9,B9,U1
230 IF U1<>0 AiND U1<>6 THEN 250
240 READ 94:25,26
250 READ Q4:V
260 IF L$="L" THEN 280
270 READ Q4:U1$,T0,E1,N5,V1,I1
230 PRINT "LGContents of file ";L1;" are in memory."
290 PRINT "JRun No: ";H3
300 PRINT "JRun Type: ";L$
310 PRINT "J_Calor. Config: ";01$
320 IF L$="C" OR L$="L" THEN 1920
330 U2$=SEG(U1$,1,1)
340 IF U2$<>"M" THEN 3?0
350 | 1 1=1
300 N2=5
370 IF U2$<>"こ" THEN 410
380 N 1=10
390 N2=10
400 L2=22
410 IF U2$<>"O" THEN 450
420 N1=3
430 N2=9
440 L2=21
450 IF U2$<>"B" THEN 490
460 N1=8
470 N2=8
480 L2=20
490 IF U2$<>"S" THEN 530
500 N1=?
510 N2=?
520 L2=19
530 IF U2$<>"D" THEN 570
```

```
540 : 11=0
550 iv2=0́
500 L2=10
570 IF U2$く>"F" THEN Ó10
530 N1=6
590 N2=6
600 L2=17
010 il$=U1$
620 GOSUB 4000
630 GOSUB 4500
6 4 0 ~ R E H ~ G E T ~ C A L ~ F A C T O R ~
6 5 0 ~ O N ~ S I Z E ~ T H E N ~ 6 0 0 0 ~
660 T2=1 ! ASSUPE TEMP BEFORE SHUTTER OPENS=TEMP AETEK SHUTTER CLOSE゙S
670 FOR I=N1 TO N2
680 KO(I) =(YO(3,I)-YO(1,I)-Y1(1,I)*T2*SQR(12))/JO
6 9 0 ~ H E X T ~ I ~ I
7 0 0 \text { REH OUTPUT RESULTS}
710 M=1
720 Y9=32
7 3 0 ~ P A G E
740 PRINT eY9:"Run No: ";iN$
750 PRINT eY9:"JRun Type: ";L$
700 PRIHT @Y9:"Unit Calib:
 ";
70 U1$=TRIM(U1$)
700 FOR I=1 TO LEN(U1$)
790 PRINT 2Y9:"自";
8 0 0 ~ N E X T ~ I ~
810 PRINT EY9:U1$
820 PRINT PY9: USING "30A,6A":"Calor. Config:",01$
830 PKINT ⿹勹巳9: USING "31A,-2D.D.6A":"Room Temp:",T9," def C"
840 PRINT @Yg: USING "31A,3D.D,6A":"Barom. Press:",E9," mm rig"
850 PRINT eY9: USING "31A,5!,2A":"Elec. Energy",JO," J"
860 PRINT @Y9: USING "34A,2D,5A":"Inject. Time:",T0," secJ"
870 IF U2$<>"M" THEN 900
880 PRINT EY9: USING "32A,4D":"RTD dial setting:",25
890 PRINT EY9: USING "32A,4D":"TEHP OUT dial setting:",26
900 IF H=2 THEN 930
910 GOSUS 6500
920 GO TO 940
930 COPY
940 IMAGE 20A,24T,+4E
950 FOR I=N1 TO N2
960 IF I<>1 THEN }99
970 11$="RTD"
980 GO TO 1100
990 IF I<>2 THEN 1020
1000 M$="MASS FLOW OUT"
1010 GO TO 1100
1020 IF I<>3 THEN 1050
1030 4$="IEMPERATURE OUT"
```

```
1040 GO TO 1100
1050 IF I<>4 THEN 1030
1060 11%="IIASS FLOW IN"
1070 GO TO 1100
1080 IF I<>5 THEN 1100
```



```
1100 PAGE
1110 PFIINT QYg:"run No: ";N$
1120 PRINT OY9:"J";M$
1130 こRINT 0Y9:
1140 PRINT QY9:"JZERO RATING PERIODJ"
1150 PRINT EY9: USING 940:"Oth MOMENT:",YO(1,I)
1160 PRINT EY9: USING 940:"1st MOMENT:",Y1(1,I)
1170 PRINT @Y9: USING 940:"2nd MOMENT:",Y2(1,I)
1180 PRINT @YY:"J'IRANSITION PERIODJ"
1190 PRINT 巴Y9: USING 940:"Oth MOMENT:",YO(3,I)
1200 PRINT @Y9: USING 940:"1st HOMENTS",Y1(3,I)
1210 PRINT @Y9: USING 940:"2nd HOMENTS:",Y2(3,I)
1220 IF I=2 OR I=4 OR I=5 THEN }125
1230 PRINT 0Y9: USING 940:"JCALIBRATION FACTUF:",KOO(I)
1240 GO TO 1260
1250 PRINT @Y9: USING 940:"JSTABILITY FACTOR:",KO(I)*JO
1260 PRINT 0Y9:"JFINAL RATING PERIODJ"
1270 PRINT OYg: USINS 940:"Oth MOMENT:",YO(2,I)
1230 PRINT EY9: USING 940:"1st MOMENT:",Y1(2,I)
1290 PRINT eY9: USING 940:"2nd HOMENT:",Y2(2,I)
1300 IF H=2 THEN 1330
1310 GOSUB 0500
1320 GO TO 1350
1330 CALL "WAIT",?
1340 COPY
1350 NEXI I
1360 IF M=2 THEN 1430
1370 PRINT "GDO YOU WANT A COPY OF THE RESULTS? (Y OR iv) ";
1330 INPUT R&
1390 GO TO (R食="Y")+2*(R$="N") OF 1410,1440
1400 GO TO 1370
1410 M=2
1420 GO TO 720
1430 M=1
1440 PhINT "LGDO YOU WA!NT TO STOFE IN SUMHAKY FILE? (Y OR N) ";
1450 INPUT R$
1450 GO TO (R$="I")+2*(R$="N") OF 1430,3100
1470 GO TO 1440
1400 FOR I=N1 TO N2
1490 IF I<>1 THENS 1520
1500 L2=12
1510 GO TO 1б́30
1520 IF゙ I<>2 THEN 1550
1530 L2=13
```

```
1540 GO TO 16́30
1550 IF I<>3 THEN 1580
1560 L2=14
1570 ЗO TO 1630
1580 IF I<>4 THEN 1610
1590 L2=15
1600 GO TO 1630
1610 IF I<>5 THEN 1630
1020 L2=16
1630 J=0
1640 FIND @4:L2
1650 INPUT e4,6:Q1,Q2
1660 GO TO Q1 OF 1770,1690,1720,1740
1670 PRINT "GJNEW FILE"
1630 GO TO 1\overline{810}
1690 PRINT "GJASCII file! It should be binary. File no. is ";L2
1700 PFINT "Fix problem. Then type RUN 1430" !FIX LINE# AFTER RENU|BEK
1710 STOP
1720 READ @4:G
1730 GO TO 1650
1740 READ @4:G$
1750 J=J+0.5
1760 GO TO 1650
1770 IF J<55 THEN 1810
1780 PRINT "GJFile is full. Take appropriate action."
1790 GOSUB 6500
1800 GO TO 1440
1810 WRITE Q4:J$,01$,T9,B9
1820 IF I<>1 IHEN 1840
1830 WRITE @4:Z5
1840 IF I<>3 THEN 1060
1850 WRITE 04:Z\sigma
1860 WRITE E4:JO,KO(I),YO(1,I),YO(2,I),YO(3,I),Y1(1,I),Y1(2,I),Y1(3,I)
1870 WRITE @4:Y2(1,I),Y2(2,I),Y2(3,I)
1800 PRINT C4,2:
1890 PRINT "GJ";J+1;" lines stored in file ";L2
1900 NEXT I
1910 GO TO 3100
1920 REH DO L&C RUNS
1930 FOR J1=1 TO 10
1940 J2=11-J1
1950 IF J2<5 THEN 1970
1960 J2=6
1970 GOSUB 5500
1980 IF F1(J1)=0 THEN 2030 ! MISSING MODULE TEST
1990 N1=J1
2000 N2=J1
2010 GOSUB 4000
2020 GO TO 2040
2030 GOSUB 5700
```

```
2040 NEXT J1
2050 REN CALC. ELEC ENERGY OF C RUNS
2060 E2=0
2070 IF L$く>"C" THEN 2100
20d0 GOSUB 4500
2090 E2=J0
2100 REM OUTPUT RESULTS
2110 H:=1
2120 19=32
2130 PAGE
2140 PRINT @Y9:"iRun No: ";N$
2150 PRINT EY9:"JRun Type: ";L$
2160 PRINT QY9:"JCalorimeter Configuration: ";01$
2170 PRINT @Y9:"Room Temperature: ";T9;"deg C"
2130 PRINT QY9:"Barometric Pressure: ";B9;" mm HgJ"
2190 PRINT @Y9:"JRTD dial setting: ";Z5
2200 PRINT @Y9:"TEMP OUT dial setting: ";Z6
2210 IF L$="L" THEN 2240
2220 PRINT EY9: USING "23A,5D,2A":"JInjected Elect. Energy: ";E2;" j"
2230 PRINT EY9:
2240 FOR I=1 IO 10
2250 GO TO I OF 2260,2280,2300,2320,2340,2360,2410,2430,2450,2470
2260 PRINT QY9:"IMAIN CALORIMETER RTD"
2270 GO TO 2480
2280 PRINT @Y9:"IMASS FLOW OUT"
2290 GO TO 2480
2300 PRINT QY9:"ITEMPERATURE OUT"
2310 GO TO 2430
2320 P%IINT QY'9:"IMASS FLOW IN"
2330 GO TO 2480
2340 PRINT QY9:"ITEIMPERATURE IN"
2350 GO TO 2480
2360 IF D$="F" THEN 2390
2370 PRINT EY9:"IDEFLECTOR"
2330 GO TO 2430
2390 PRINT EY9:"IFOIL REFLECTOR"
2400 GO TO 2480
2410 PRINT EY9:"ISEPARATION TUBE"
2420 GO TO 2480
2430 PRINT QY9:"IBACKSCAT'fER MONITOR"
2440 GO TO 2480
2450 PRIN'T \supseteqqY9:"IOVERSPILL HONITOF"
2460 GO TO 2480
2470 PRINT EY9:"IEXTENSION TUBE"
2480 IF F1(I)=1 THEN 2510
2490 PRINT @Y9:"JNULL DATAJ"
2500 GO TO 2710
2510 PKINT QY9:"JZERO RATING PEIIIOD"
2520 PRINT @Y9: U'SING 940:"Oth MOMENT:".YO(1,I)
2530 PRINT 巴Y9: USING 940:"1st HOMENT:",Y1(1,I)
```

```
2540 PRIHT OY9: USING 940:"2nd HOMENT:",Y2(1,I)
2550 PRINT @YG:"JTRANSITION PERIOD"
2500 PNINT @Y9: USING 940:"Oth MOMENT:",YO(3.I)
2570 PKIHT eYy: USING 940:"1st HOMEiNT:",Y1(3.I)
2580 PKIHT ऐ义`り: USING 940:"2nd NOlENT:",Y2(3.I)
2590 PRINT ©Y9:"JFINAL KATING PERIOD"
2000 PKIHT OY9: USING 940:"Oth NONENT:",YO(2.I)
2610 PRINT PYG: USING 940:"1st HOMENT:",Y1(2,I)
20́20 PRINT @Y9: USING 940:"2nd MOMENT:",i2(2.I)
2630 PRINT 0Y9:
2640 IF I= 10 THEN 2660
2650 IE I-1 :MOD 2<>0 THEN 2710
2660 GIN X,Y
2670 HOVE O,O
2680 PRINT
2690 IF H=1 THEN 2710
2700 CALL "WAIT".3
2710 NEXT I
2720 IF H=2 THEN 2800
2730 PRIHT "JDO YOU WANT A COPY OF THE RESULTS? (Y OR N) ";
2740 INPUT R$
2750 GO TO (R$="I")+2*(R$="N") OF 2770,2840
2750 GO TO 2730
2770 H=2
2730 PKINT 032,26:3
2790 GO TO 2120
2800 IH SUM(F1' MOD 2=0 THEN 2820
2810 COPY
2820 M=1
2030 PhINT e32,26:0
2340 PRINT "GJDO YOU WANT TO SAVE RESULTS ON TAPE? (Y OR N) ":
2350 INPUT R$
2860 GO TU (R$="Y")+2*(R$="H") OF 2830.3100
2870 GO TO 2840
2880 PFINT "JWHAT FILE NUMBER? (Choices are 24 throurh 33) ";
290 PRINT "NOTE--each file can hold results of 13 runs"
2900 INPUT L2
2910 IF L2<23 OR L2>32 THEN 2830
2920 L2=INT(L2)
2930 FIND 04:L2
2940 INPUT 04,6:Q1,Q2
2950 GO TO Q1 OF 3040,2930,3000,3020
2960 PRINT "JG ilew File"
2970 GO TO 3040
2980 PRINT "JGASCII FILE! It should be binary. File number is ";L2
2990 STOP
3000 READ Q4:G
3010 GO TO 2940
3020 READ 04:G$
3030 GO TO 2940
```

```
3040 WRITE 04:N$,L$,O1$,D$,TY,B9,Z5,26
3050 IF L$="L" THEN 3070
3060 WRITE Q4:U1$,T0
3070 WKITE ए4:EZ,YO,Y1,Y2
3030 PRINT 04,2:
3090 PRINT "JGRESULTS STORED IN FILE ";L2
3100 PFINT "JDONE"
3110 END
4000 REM GET 0th, 1st & 2nd MOMENTS
4 0 1 0 ~ i n = 2 0
4020 X1=237
4030 X2=477
4040 X3=573
4050 X4=813
4060 X 5=1053
4070 X0= X2-X1
4080 X7=(X2+X1)/2
4090 X3=(X4+X5)/2
4100 X9=(X3+X4)/2
4110 A0=1-1/(4*N`2)
4120 CO=XO - 0.5
4130 C1=SQR(12/A0)/X0^1.5
4140 C2=SQR(180)/XO^2.5
4150 20=(X2-X1)/(2*N)
4160 PO=C0
4170 FOR J=N1 TO N2
4180 K1=^7
4190 GOSUB 7000
4 2 0 0 Y O (1 , J) = S 0
4210 Y1 (1,J) =S 1
4220 Y2(1,J)=S2
4230 K1=x8
4240 GOSUB 7000
4 2 5 0 ~ Y O (2 , J) = S 0
4260 Y1 (2,J)=S1
4270 Yこ(2,J)=S2
4230 K1=X9
4 2 9 0 \text { GOSUB 7000}
4 3 0 0 Y 0 (3 , J) = S 0
4310 Y1 (3,J)=S1
4 3 2 0 ~ Y 2 (3 , J) = S 2
430 NEXT J
4340 RETURN
4500 REIM CALCULATE EL,ECTRICAL ENERGY
4510 V2=0
4520 V 3 =0
4530 I2=0
4540 I 3 =0
4550 REH GET AVERAGE OF PRE- & POST INJECTION READING
4560 FOR I=1 TO 10
```

```
4570 V2=V2+V1(I)
4530 V3=V3+V1(I+TO+10)
4590 I2=I2+I1(I)
4500 I 3=I 3+I1(I+T0+10)
4010 NEXT I
4620 V2=V2/10
4630 I2=I2/10
4640 V 3 = V 3/10
4650 I 3=I3/10
4660 REM REMOVE LINEAR DRIFT & CALCULATE ENERGY
4670 J0=0
4680 FOR I=1 TO N5
4690 V4=V1(I)-V2-I*(V3-V2)/N5
4700 I4=I1(I)-I2-I*(I3-I2)/N5
4710 J0= J0+V4*I4
4 7 2 0 ~ N E X T ~ I ~
4?30 KETURN
5000 POLL C,D;4
5010 REM SPACE FOR COMPUTED "GO TO"
5020 INPU'R P4,30:FO
5030 IF FO=12 THEIN 5590
5 0 4 0 ~ I F ~ F O < > 2 ~ T H E N ~ 5 0 7 0 ~
5050 PRINT "GJFILE NOT FOUND! RUN PRUGRAM AGAIN."
5060 STOP
5070 IF FO<>7 IHEN 5500
5080 PRINT "GJNO CARTRIDGE INSERTED IN TAPE DECK. INSERT CAHTRIDGE."
5 0 9 0 \text { GOSUB } 6 5 0 0
5100 GO TO 2340
5110 IF FO<>9 THEN 5150
5120 PRINT "GJCARTKIDGE IS WRITE PROTECTED"
5130 GOSLUB 6500
5140 GO TO 2340
5150 IF FO<>4 THEN 5220
5160 PRINT "JGEMPTY FILE! DO YOU WISH TO START A NEW FILE? (Y OR N) ";
5170 INPUT R$
5180 GU TO (R$="Y")+2*(R$="削") OF 5250,5210
5190 PRINT "GJWHAT?"
5200 GO TO 5170
5210 GO TO 2840
5220 PRINT "JUERROR HESSAGE ";FO;" rROM TAPE DECK"
5230 PKINT "JPRESS <return> WHEN READY TO CONTIIJE"
5240 INPUT Z$
5250 RETURN
5500 RE! MISSING MODULE DETECTION SUBROUTIIJF:
5510 F1(J1)=0
5520 J2$=STR(J2)
5530 J2$=TRIM(J2$)
5540 FOR L=1 TO 6
5550 02$=SEG(01$,L,1)
5560 IF 02$<>J2$ THEN 55?0
```

```
5570 r'1(J1)=1
5j00) NEXT L
590 KETURN
5700 REM FILL NULL DATA ARRAY SLOTS
5710 FOR J=1 TO 3
5720 YO(J.J1)=-99999
5730 Y1(J.J1)= = 99999
5740 Y2(J.J1)=-99999
5750 NEX'\ J
5760 KETURN
OOOO REM SIZE ERROR SUBROUTINE
6010 KETURN
6500 REM INDEFINITE PAUSE
6J10 PRI:JT "JGPush UDK栍4 to continue"
6520 f8=0
6530 REM
6540 IF F3=1 THEN U560
6550 GO TO 6530
6560 F8=0
6570 RETURN
7 0 0 0 ~ R E M ~ M O M E N T ~ S U M M I I N G ~ R O U I I I N E ~
7010 SO=0
7020 S 1=0
7030 S2=0
7040 FOR I=-N TO N-1
7050 Z1=20*(I+0.5)
7060 P1=C1:%21
7070 P2=C2*(Z1`2-n0*X0*XO/12)
7030 S0 =S0+V(1+(K1+:21)/:O0,J)*P0
7090 S1=S 1+V(1+(K1+Z1)/Z0.J)*P1
7100 S2=S2+V(1+(K1+Z1)/20,J)*?2
7110 NEKT I
?!20 RETURN
```



- zeroth moment summiny variable

```
T2 - factor representing ratio of temp. after shutter closes to temp. before shutter opens
Ty - ambient temperature in deyrees C
Ty - duration in seconds of electrical eneryy injection period
Ul - numeric indicator of unit receiving energy (laser or electrical)
Ul$ - name of module receiving electrical eneryy
U2$ - sinyle letter descriptor of unit receiving electrical energy
V - array (176 x 10) containing voltage output readinys for the lU sensors
V1 - array containing electrical calibration voltage readings
V2 - average zero reading of V1 before injection
V3 - average zero reading of V1 after injection
V4 - V1 readings corrected for drift
X - GIN variable used in creating PAGE FULL
X1 - time in seconds of startiny point of zero rating period
X2 - time in seconds of ending point of zero rating period
X3 - time in seconds of starting point of transition period
X4 - time in seconds of ending point of transition period
xb - time in seconds of ending point of final rating period
X7 - midpoint of zero rating period in seconds
X8 - midpoint of transition period in seconds
xy - midpoint of final rating period in seconds
X \| ~ - ~ p e r i o d ~ d u r a t i o n ~ i n ~ s e c o n d s
Y - GIN variable used in creating PAGE FULL
Y1 - array containiny first moments of three time periods for all sensors
Y2 - array containing second moments of three time periods for all sensors
Yy - address of device outputting results
Y - array containing zeroth moments of three time periods for all sensors
21 - time coordinate of the point under question
Zb - main calorimeter RTD dial setting
Z6 - ternperature out dial setting
Z\emptyset - number of readings averaged to get one data packet
Z$ - throwaway answer to wait routine
```

```
100 REIF******* PROG READ ELECT SUHMARY FILE ** DATE-TIIE 3'40130 - vy:5G
110 REH
```



```
13C IHIT
14C ON SRQ THEN 2000
150 DIH R*(1),YO(3),Y1(3),Y2(3)
100 PAGE
```



```
100 C2引="VASS FLOW OUT"
190 С3$="TEHPERATUNE OUT"
200 C4$="i1ASS FLOW IN"
210 C5\hat{$}="TEHPERATURE IN"
220 D1$="FOIL REFLECTOR"
230 D2$="DEFLECTOR"
240 S1$="SEPARATIOH TUBE"
250 E1$="BACKSCATTER !HOHITOR"
260 02$="OVERSPILL MONITOR"
270 E1$="EXTENSIOH TUBE"
230 PRINT "Electrical Summary File for uhich sensor is to be accessec?J"
290 PRINT " 1. ";C1$
300 PRINT " 2. ";C2%
3iO PRIHT " 3. ";C3$
320 PRINT " 4. ";C4S
330 PRINT " 5. ";C5$
340 PRINT " 6. ";D1$
3j0 PRINT " 7. ";D2$
360 PRINT " o. ";S1S
370 PRINT " 9. ";B1$
300 PRINT " 10. ";02$
390 PRINT " 11. ";E1$
400 PRINT "JJEnter line number ";
410 IllPUT R
420 GO TO INT(F) OF 450,470,490,510,530,550,570,590,610,530,050
430 PRINT "JGVHAT?"
40 GO TO 410
450 T$=C1$
460 GO TO 660
470 T$=C2$
480 GO TO 660
490 T$=C3$
500 GO TO 660
510 T$=C4$
520 GO TO ÓUO
530 T*=C5今
540 GO TO 660
550 T$=D1$
560 GO TO 6́50
570 T$=D2$
530 GO TO ó60
590 TS=S1$
```

```
000 GG TO 060
610 TS=E1$
020 GO TU 0úO
630 T$=02$
040 GO TO 660
050 '\Gamma$=E1$
6 6 0 ~ L ~ 1 ~ = ~ R ~ + ~ 1 1 ~
670 F1=0
030 FIND 14:L1
6 9 0 ~ I F ~ F 1 = 1 ~ T H E \| ~ 6 7 0 ~
700 IF R<>2 AND R<>4 AND R<>5 THEN 730
710 F1$="Stability Factor:"
720 GO TO 300
730 F1$="Calibration Factor:"
740 IMAGE P,"Electrical Summary file: ",20A,66T,"Page"3D,/
750 IlMAGE /,5T,"Room Temperature:",30T,2D.D,45T,"deg C"
760 IlAAGE 5T,21A,6D,45T,5A
770 IMAGE 5T, 19A,30T,+4E
730 IMAGE /, 2T,13A,27T,17A,51T,"FINAL RATING PERIOD"./
790 IHAGE 3T,9A,4E,26T,9A,4E,50T,9A,4E
800 J1=0
810 INPUT 04,6:H1
8 2 0 ~ I F ~ H 1 = 1 ~ T H E N ~ 1 5 0 0
830 READ 94:N$,01$,T9,B9
340 IF R<>1 AND R<>S THEIJ 860
850 READ E4:Z0
360 READ (4:JO.KO,YO(1),YO(2),Y0(3),Y1(1),Y1(2),Y1(3),Y2(1),YZ(2),Y2(3)
870 J1= J 1 +0.5
8 8 0 ~ I F ~ J 1 = I N T (J 1) ~ T H E N ~ 9 0 0 ~
890 PRINT USING 740:T$,INT(J1+1)
900 PRINT "Run No: ";N$
910 PRINT USING 750:T9
920 PRINT USING 760:"Barometric 1ress:".B9,"mm H\Sigma"
930 PRINT USING 760:"Calor. Config:",VAL(O1$)," "
9 4 0 ~ P R I N T ~
950 PRINT USING 760:"Injected Ener¢y:".JO,"J"
960 PRINT USING 770:F1$,K0
970 IF R<>1 AND R<>3 THEN 1000
900 PRINT USING ?O0:"Dial Setting:",Z0,""
9.00 GO TO 1010
1000 PRINT
1010 PRINT USING 730:"ZERO RATIHG PERIOD","TRAHSITIOH PERIOD"
1020 PRINT USING 790:"Oth MOH:",YO(1),"Oth MOM:",YO(3),"Oth 11OH:".YO(2)
1030 PRILT USING 790:"1st HOH:",Y1(1),"1st HOM:",Y1(3),"1st MOH:",Y1(2)
1040 PRINT USING 790:"2nd HOH:",Y2(1),"2nd HOH:",Y2(3),"2nd HOM:",Y2(2)
1050 PRINT "Jֵ"
1060 GO TO 810
1500 IF J1<>0 THEN 1530
1510 PRINT "JGErıpty file"
1520 GO TO 1540
```

```
1530 PNINT "JHead out of file ";L1;" for ";T$;" completed"
1j40 PrINT "JGRe-run prosram to access other files"
15j0 ElID
2000 ?OLL Q1.02;4
2010 IHPUT U4,30:H
2020 GO TO H UF 2040,2060,2000,2100,2020,2100,2200,2250,2270, 2320
2030 GO TO H-10 OF 2340,2360
2040 PRIHT "JGDomain error or invalid argument--Error messare 1"
2050 STUP
2000 PRIIT "JGFile not found--Error messare 2"
2070 STOP
2030 PHINT "JGHar tape format error--Error messare 3"
2090 STOP
2100 PRIHT "JGIllegal access--Error message 4"
2110 FIND 04:L1
2120 PRINT "JHeaderJ"
2130 IHPUT C4.9:HO$
2140 PRIHT HO$
2150 STOP
2160 F1=1
2170 RETURN
2180 PRIHT "JGRead error (10 re-reads)--Error messare 6"
2190 STOP
2200 PRI|T "JGNo cartridge inserted--Error message7"
2210 PRINT "JPush <ret> when ready to continue"
2220 INPUT Z$
2230 F1=1
2240 RETUKN
2250 PRINT "JGOver-read (illegal tape record length)--Error messafc u"
2200 STOP
2270 PRINT "JGCartridre write-protected--Error nessafe 9"
2280 PRINT "JPush <ret> when ready to continue"
2290 INPUT Z$
2300 FIND L1
2310 FETURN
2320 PRINT "JGRead after write error--Error message 10"
2330 STOP
2340 PRINT "JGEnd of medium--Error message 11"
2350 STOP
2360 PRINT "JGEEnd of rile--Error message 12"
2370 PRIHT "JHit EKEAK twice to abort run"
2380 PFINT "JPush <ret> to continue"
2390 INPUT Z$
2400 RETURN
```

```
Variable Map
Program: READ ELECTRICAL SUMMARY FILE
B9 - barometric pressure in mm of Hg
B1$ - title "BACKSCATTER MUNITUR"
C1$ - title "MAIN CALORIMETER RTD"
C2$ - title "MASS FLOW UUT"
C3$ - title "TEMPERATURE OUT"
C4$ - title "MASS FLUW IN"
Cb$ - title "TEMPERATURE IN"
U1$ - title "FUIL REFLECTUR"
U2$ - title "UEFLECTOR"
E1$ - title "EXTENSIUN TUBE"
F1 - flay indicating tape deck has issued error message (U = no error, 1 = error)
F1$ - title "STABILITY FACTUR:" or "CALIBRATION FACTUR:"
H - tape deck error message
H1 - TYP(\emptyset) integer indicate tape type of character read
Hめ$ - header of data tape file
J1 - page counter (two runs per page)
J\emptyset - injected electrical energy in joules
K\emptyset - calibration or stability factor as appropriate
L1 - number of summary file to be accessed
N$ - run number
01$ - calorimeter configuration descriptor
U2$ - title "OVERSPILL MONITOR"
Q1 - POLLing variable
Q2 - PULLing variable
R - numeric answer to questions
R$ - alpha answer to questions
S1$ - title "SEPARATIUN TUBE"
Ty - ambient temperature in degrees C
T$ - transfer string variable for titles
Y1 - array containing first moments for zero rating, transition, and final rating periods
Y - array containing second moments for zero rating, transition, and final rating periods
Y - array containing zeroth moments for zero rating, transition, and final rating periods
Z0 - dial setting for either main calorimeter RTU or temp. out sensor
Z$ - throwaway string variable for creating a wait
```

```
100 \E|A*** ?ROG CALCOLATE CAL FACTON゙S #
110 コミ!1
120 にゴ1 ********* IAPE CLOP PROGRAHS
130 スミ\!
140 EEl; AP?LIES CORECTIOH RON DKIET TO IEMP OUT AHD HARM CALCE. E゙UR
150 REH OTHER MODULES PNOGRAll AVERAGES RESUITS. NO PNOVISIO.& EJK |ASN
150 REM ELOW IN AND OUT AND TEMP IN.
170 IHII
150 UlV SÑG TUEI; 8000
```



```
200 DIli V2(33),:゙2(38),V3(38)
210 PRIHT "LEnter line number of sensor desiredj"
220 PミI|T " 9. llain Calorimeter FTD"
230 PAI|T " 2. Eemperature Out"
240 PFINT " 3. Foil Feflector"
250 PRI:iI " 4. i!irror reflector"
200 PRIllT " j. SeDaration Iube"
270 PRI|T " S. Backscatter llonitor"
230 PRIHT " 7. Overspill lionitor"
290 PRI!T " o. Extension Tube"
300 PNIHT "JjEnter line number ";
310 Il:PUT R
320 R=INI(号)
330 SO TO NT OF 300,390,420,450,400,510,540,570
3H0 2RI:IT "JGWHAT?"
350 GO TO 310
360 L1=12
370 H3="IHAIL CALORIMETER ETD"
380 CO TO 590
390 -1=14
400 !!$="TEMPERATURE OUT"
410 GO TO 590
420 L1=17
430 11$="EOIL REFLECTOK"
440 GO TO 590
450 L I=10
460 H$="IIIRROR DEFLECTOぶ"
470 CO IO 590
430 -1=19
490 HS="SEPARATIOM TUBE"
500 GO TO 590
510 L 1 =20
j20 11$="EACKSCATTEN HONITOE"
530 GO TO 590
540 i 1=21
550 H3="OVESS?ILL HONIIOE"
560 CO TO 590
570 L1=22
500 Hき="EXIENSION IUEE"
590 FIHD \ॅ:L!
```

```
600 1.1=1
6 1 0 ~ D O ~
620 INPUT ए4,6:H1
6 3 0 ~ E X I T ~ I F ~ H 1 = 1 ~
640 READ 04:N3,01$,T9,B9
650 HO(N1)=VAL(N$)
660 IF R<>1 AND R<>2 THEN 600
670 IEAD 04:Z0
630 KEAD 14:J0, K1(N1),G,G,G,V1(N1),G,G,G,G,G
690 N1=11+1
700 LOOP
710 N1=N1-1
720 IF N1<37 THEN 730
725 PRINT "JGFile ";L1;" for ";|$;" is full."
70 IF N1<>0 THEN 760
740 PRINT "UGFile ";L1;" for ";|!;" is empty"
750 GO TO 2500
760 IF N 1<3 AND (}k=1\mathrm{ OR R=2) THEN 2200
7 7 0 \text { GOSUB ?000}
7 8 0 ~ R E H ~ S E L E C T ~ A P P R O O R I A T E ~ K U N S ~
790 IMAGE 6D,2D,19T,+4E,37T,+4E
800 PRINT "L";N$
810 PRIAT "JRUG NO. CAL FACTOR DRIFT TERIIJ"
820 FOR I=1 TO N1
830 PRINT USING 790:NO(I),K1(I),V1(I)
840 NEXT I
850 PRINT "JINFORHATION NOTE:_";I1$
360 PRINT "JDelete any run? (
8 7 0 ~ I N P U T ~ R \$ ~
880 GO TO (R$="Y")+2*(K$="iN") OF 910,1170
890 PRIHT "JGWHAT?"
900 GO TO 870
910 PRINT "JWhat run number? ";
9 2 0 ~ I N P U T ~ N 9 ~
930 PRINT "JIs ";N9;" the correct number? (Y or N) ";
940 INPUT R$
950 GO TO (R$="Y")+2*(R$="N") OF 9000,910
960 PFINT "JGVHAT?"
970 GO TO 940
980 N2=-1
990 FOR I=1 TO N1 ! FIND INDEX OF KUN
1000 IF NO(I)<>N9 THEN 1020
1010 N2=I
1020 iNEXT I
1030 IF H2<>-1 THEN 1070
1040 PRINT "JRun no. ";N9;" not found. GTry asain."
1050 CALL "WAIT",2
1060 GO TO 800
1070 FOR I=N2 TO N1-1
1080 IF N2=N1 THEN 1120
```

```
1090 HO(I)=NO(I+1)
1100 K1(I)=K1(I+1)
1110 V1(I)=V1(I+1)
1120 WEXI I
1130 IN 1=N1-1
1140 Ir N1>0 THE| 800
1150 PRINT "LGNo values left to be considered!"
1160 GO TO 2500
1170 IF N1<3 AND (}R=1\mathrm{ OR R=2) THEN 2200 ! NOT ENOUGH DATA FOK LST SUKS
1180 IF N1>1 OR K=1 OR R=2 THEN 1210
1190 GOSUB 6000
1200 GO TO 1640
1210 IF R<>1 AND R<>2 THEN 1230
1220 GOSUB 3000
1230 IF R=1 OR R=2 THEN 1250
1240 GOSUB 4000
1 2 5 0 \text { GOSUB 5000}
1260 IF R<>1 AND R<>2 THEN 1640
1270 REM OUTPU'T TEIMP OUT OR RTD RESULTS
1280 IMAGE 15A, 19T,+4E
1290 IHAGE 15A,19T,4A,4E,39T,3A
1300 M=1
1310 PRINT "L"";M$,"J"
1320 PRINT USING 1230:"Calib Factor:",K
1330 PRINT USING 1260:"JStd Deviation:",Kठ
1340 PRINT USING 1290:"员td Dev:";"+H_H",ABS(100*K8/K),"考"
1350 PRINT USING 1290:"岁90% Conf. int:","+HHH",ABS(100*TO*R゙と/K),"%"
1360 PRINT USING 1290:"95% Conf. int:"."+HH",ABS(100*T5*KS/K),"訳
1370 PRINT USING 1290:"99% Conf. int:","+HH",ABS(100*T9*R8/K),"苗"
1380 PRINT USING 1280:"JDrift Coef:",A1
1390 PRINT USING 1230:"JStd Deviation:",A8
1400 PRINT USING 1290:"%Std Dev:","+H H",ABS(100*A⿱/A1),"""
```



```
1420 PRINT USING 1290:"95% Conf. int:","+H_H",ABS(100*T5*AO/A1),",0"
1430 PRINT USING 1290:"99% Conf. int:","+HH",ABS(100*T9*A8/A1),"%"
1440 PRINT "JNO. of points:",N1
1450 PRINT "J";I1$
1460 IF M=2 THEN 1610
1470 PRINT "JDo you want to change information note? (Y or if) ";
1480 INPUT RQ
1490 GO TO (R$="Y")+2*(R$="N") OF 1520,1540
1500 PRINT "JGWHAT?"
1510 GO TO 1480
1520 GOSUB 7500
1530 GO TO 1300
1540 PRINT "JDo you want a copy of the results? (Y or N) ";
1550 INPUT R$
1560 GO TO (R$="Y")+2*(RS="N") OF 1590,2000
1570 PRINT "JGWHAT?"
1580 GO TO 1550
```

```
1590 11=2
1000 GO TO 1310
1610 COPY
1620 li=1
1630 GO TO 2000
1640 REM OUTPUT ANCILLAKY HODULE RESULTS
1550 11=1
1660 PRINT "L";H$;"\underline{J"}
1070 PRINT USING 12צ0:"Calib Factor:",K
1 6 3 0 ~ P R I N T ~ U S I N G ~ 1 2 3 0 : " J S t d ~ D e v i a t i o n : " , K 8 ~
1690 PRINT USING 1290:"简 Std Dev:","+H H",ABS(100*K3/K),"""
1700 PRINT USING 1290:"\underline{J90% Conf int:","+H H",ABS(100*T0*Kठ/K),"%"}
1710 PRINT USING 1290:"95% Conf int:","+HH",ABS(100*T5*K8/K),"隹"
1720 PRINT USING 1290:"99% Conf int:","+HH",ABS(100*T9*K8/K),"者"
1730 PRINT "JNo. of points:",N1
1740 PRINT "J";I1$
1750 IF M=2 THEN 1900
1760 PRINT "JDo you want to change information note? (Y or N) ";
1770 INPUT R$
1780 GO TO (R$="Y")+2*(R$="N") OF 1810,1330
1790 PRINT "JGWHAT?"
1800 GO TO 1770
1810 GOSUB 7500
1820 GO TO 1650
1830 PRINT "JDo you want a copy of the results? (Y or N) ";
1840 INPUT R$
1850 GO TO (RS="Y")+2*(K$="N") OF 1380,2000
1860 PRINT "JGWHAT?"
1870 GO TO 1840
1880 H=2
1390 GO TO 1660
1900 COPY
1910 H=1
1920 GO TO 2000
2000 REM SAV RESULTS ON TAPE
2010 PRINT "JDo you want to save results on tape? (Y or N) ";
2020 INPUT R$
2030 GO TO (R$="Y")+2*(R$="N") OF 2060,2500
2040 PRINT "JGWHAT?"
2 0 5 0 ~ G O ~ T O ~ 2 0 2 0
2060 FO(R,1)=K
2070 FO(R,2) = 100*K8/K
2000 FO(R,3)=11
2090 IF R<>1 THEN 2120
2100 FO(1,4)=A1
2110 FO(3,4) = A⿱
2120 IF R<>2 THEN 2150
2130 FO (2,4)=A1
2140 FO(4,4) = A8
2150 FIND e4:23
```

```
2100 WRITE 04:FO,IO$
2170 PRINT U4,2:
<180 PRINT "JGDATA STOKEL IN FILE 23"
2190 LO TO 2500
2200 PKINT "JGNot enourh runs for least squares fit. Only ";N1;" runs."
2210 GO TO 2500
2500 PKIH'T "JGDONE!"
2510 EHD
3000 KEH LINEAK LEAST SQUARE FIT (NATRELLA)
3010 S1=0
3020 S2=0
3030 S3=0
3040 S4=0
3050 S5=0
3060 FOR I=1 TO N1
3070 V2(I)=V1(I)~2
3000 V3(I)=V1(I)*K1(I)
3090 K2(I)=K1(I)^2
3100 S1=S1+V1(I) ! SUM X'S
3110 S2=S2+R1(I) ! SUM Y'S
3120 S3=S3+V3(I) ! SUli XY's
3130 S4=S4+V2(I) ! SUl! X^2`s
3140 S5=S5+K2(I) ! SUM Y^2`s
3150 NEXT I
3160 REM W1=SxX;W2=Syy;W3=Sxy;VO=X-bar;K0=Y=bar
3170 W3=S3-S1*S2/N1
3180 W1=S4-S1^2/1N1
3190 W2=S5-S2^2/N1
3200 VO=S 1/N1
3210 K0=S2/N1
3220 REIN A1=SLOPE;K=Y-INT
3230 A1=W3/W1
3240 K=KC-A1*VO
3250 REM W4=S(Y)^2;W5=S(Y)
3260 W4=(W2-W3^2/W1)/(H1-2)
3270 W5=SQR (W4)
3280 REM A9=VAR OF SLOPE;K9=VAF OF Y-INF;&OU=S.D OF SLOPE;R゙U=S.D OF Y-INT
3290 A9=W4/W1
3300 K9=W4*(1/N1+V0^2/W1)
3310 AO=SQR(A9)
3320 N0=SQR(K9)
3330 RETURN
4000 REM AVERAGE AND STD DEV
4010 S 1=0
4020 S2=0
4030 S4=0
4040 S5=0
4050 FOR I=1 TO W1
4060 V2(I)=V1(I)^2
4070 K2(I)=K1(I)^2
```

```
4000 31=S1+V1(I)
4090 S2=32+N1(I)
4100 S4=34+V2(I)
4110 S5=S5+N22(I)
4120 NEXC I
4130 VO=S1/101
4140 K=S2/iv1
4150 V9=(N1*S4-S1^2)/(N1*(N1-1))
4160 V3=SQF(V9)
4170 に.9=(N1*S5-S2^2)/(N1*(N1-1))
4180 KO=SQR(K9)
4190 RETURN
5000 REUL t-STATISTIC--T0=90%.T5=95%,T9=99%
5010 IF R<>1 AND R<>2 THEN 5030
5020 N3=N1-2
5025 GO TO 5040
5030 iN3=N1-1
5040 IF N3>4 THEN 5030
505::T0=15.016+113*(-12.1829+N3*(3.0945-0.4135*N3))
5060 T5=34.958+N3*(-31.3655+N3*(10.208-1.0945*113))
5070 GO TO 5100
5080 T0 =N 3/ (-0.559925368278+0.60784409253*N3)+6.0E-4
5090 T5=N3/(-0.6115593191+0.5101102332*N3)+6.0E-4
5100 IF i/3>1 THEN 5130
う110 T'9=63.657
5120 GO TO 5170
5130 IF N3>5 THEN 5160
5140 T9=35.362+N3*(-20.6563+N3*(4.6965-0.36307*N3))
5150 GO TO 5170
5160 T9=N3/(-0.715572170161+0.337490270184*N3)+6.0E-4
5170 RETURN
6000 FEM ROUTINE FOR 1 DATA POINT
6010 K=K1(I)
6020 K3=0
6030 A8=0
6040 A1 = V1 (I)
6050 V8=0
6060 T0=1
6070 T5=1
6080 T9=1
6 0 9 0 ~ R E T U R N
7 0 0 0 ~ R E H ~ C A L ~ F A C T O R ~ H A T R I X ~ A N D ~ I N F O ~ N O T E S
7010 FIND e4:23
7020 READ C4:FO,IO$
7 0 3 0 ~ K E H ~ G E T ~ I N F O ~ N O T E ~
7040 J 1=1
7 0 5 0 ~ P = 0
7 0 6 0 ~ D O
7070 P1=P+1
7000 P=POS(IO$,"*",P1)
7090 IF J1<>R THEN 7120
7100 I1$=SEG(IO$,P1,P-P1)
7110 EXIT IF J 1=R
7120 J1=J1+1
7 1 3 0 \text { LOOP}
7140 RETURN
7 5 0 0 ~ R E I I ~ H A K E ~ N E W ~ I N E O ~ N O T E ~
7510 PRINT "JType new info note [max length=72 char.(1 line)]J""
7520 INPUT I$
7 5 3 0 ~ P 2 = L E N ~ (I 1 \$) ~
7540 IO$=REP(I$,P1,P2)
7550 I1 $=I$
7560 RETURH
8000 POLL Q1.Q2;4
8010 INPUT 24,30:H
8020 PRINT "JGError messare ";H;" from TAPE DECK"
8030 STOP
```

Al - drift coefficient (slope from least squares fit)
A8 - standard deviation of Al
A9 - variance of the slope
By - barometric pressure in mm of Hg
Fض - $8 \times 4$ array containiny "best" values of temperature sensors
li - tnrowaway variable
H - error messaye from tape deck
Hl - TYP ( $\varphi$ ) inteyer
1 - counter
I\$ - new information note to replace Il\$
I $1 \$$ - information note for data being considered
I $\| \$$ - alpha striny containiny info note and delimiters for all eiyht sensors
Jl - steppiny index to find info note of sensor
JW - electrical energy injected
K - "best" value of calibration factor
Kl - array containing cal factors read from elec. summary file
K8 - standard deviation of K
K9 - variance of K
Kゆ - average value of Kl
Ll - file number of electrical summary file to be accessed
M - results output type descriptor (1 = display, $2=$ copy $)$
M\$ - name of sensor for electrical summary file
Nl - counter of lines of data
N2 - index of run data to be edited out
N3 - deyrees of freedom in t-statistic subroutine
N9 - run number for data to be edited out
ND - array containiny numeric equivalents of N\$
N\$ - run number
U1\$ - calorimeter confiyuration descriptor
P - position of next delimiter in Ib\$
Pl - starting point in $I \not \ell \$$ to look for next delimiter
U1 - POLLing variable
Q2 - POLLing variable
R - numeric answer to questions
$R \$$ - alpha answer to questions
Sl - summation of Vl terms
S2 - summation of Kl terms
S3 - summation of $\mathrm{Vl}_{2} \times \mathrm{Kl}$ terms
. $\$ 4$ - summation of $\mathrm{VI}_{2}^{2}$ terms
S5 - summation of $K 1^{2}$ terms
T5 - 95 percent t-stat
T9 - ambient temperature in deyrees $C$; after line $2 b \cup$, 99 percent t-stat
TD - 90 percent t-stat
V1 - array containing first moments for zero ratiny from elec. sum. file
VD - ave value of V1
Wl - sum of the squares of the $V 1$ residuals
W2 - sum of the squares of the Kl residuals

W3 - sum of the squares of the V1 x K1 residuals
W4 - $\left(W 3^{2} / W 2\right) *(\mathbb{N} 1-2)$
Wb - square root of W4
$Z$ - dial settiny for either main calorimeter KTU or temp. out (as appropriate)

B8. KUN KEPCU (FILE 8)
Proyram Listing

```
I INIT
2 SET K.EY
3 GU TU 100
4 hE| TURIG OFF KEPCO
5 PimINTM U:"12000","22000"
6 PRIMT "JGńEPCO TURNED OFF."
24 KEH KEAD KEPCO VOLTAGE
25 PRINT (%):"12"
26 RETURN
2ठ REII READ KEPCO CURRENT
29 PRINT U6:"10"
30 HETURA
```



```
110 REH
```



```
130 PRINT "LWHAT VOLTAGE LIHIT? ";
140 INPUT V1
150 IF V 1> }10\mathrm{ THEN 180
160 K1=409.6
170 GO TO 190
180 K1=40.96
190 V0=INT(K1*V1)
200 D1$="1"
210 IF V 1> 10 THEN 250
220 D2$="2"
230 GOSUB 1000
240 GO TO 270
250 D2$="0"
260 GOSUB 1000
270 A = X$
200 REM SET CURREHT LIMIT
290 PRINT "JWHAT CURRENT LIHIT? ";
3 0 0 ~ I N P U T ~ V 2
310 D1$="2"
320 D2$="2"
330 VO=INT(409.6*V2)
340 GOSUB 1000
350 B$=X$
360 PRIHT CG:A$;B$
370 PRINT "LGKEPCO SET TO ";V1;"VOLTS AND ";V2;" AL仿."
380 PRINT "JJUPRESS UDK #1 TO TURN OFF KEPCO."
390 PRINT "JPRESS UDK #$6 TO READ VOLTAGE."
400 PRINT "PRESS UDK 非? TO READ CURRENT."
410 END
1000 REH CONVERT VO TO RADIX 10́
1010 E1=INT(VO/16)
1020 D5=V0-16*E1
1030 E2=INT(E1/16)
1040 D4=E1-16*E2
1050 D3=E2
```

```
1060 DO:% =STR(D5)
1070 DO$=TRIN(1رO$)
1030 IF D5<10 THEN 1100
1090 GOSUB 2000
1100 D5%=00%
1110 DO$=STR(D4)
1120 DO$=TRII(DO$)
1130 IF 14<10 THEN 1150
1140 GOSUE 2000
1150 144$=DO*
1160 D03=STR(D3)
1170 DO =TRIH(DO$)
1180 IF D3<10 IHEN 1200
1190 GOSUE 2000
1200 D3$=D0$
1210 X$=D1$&D2$&D3$&D4$&D5$
1220 FETUKN
2000 REH CONVERT LAFGER HEXADECIHALS TO ALPHAS
2010 D6=VAL(DO$)-9
2020 GO TO DU OF 2030,2050,2070,2090,2110,2130
2030 DO$="A"
2040 RETURH
2050 DO$="E"
2060 ल巨TURH
2070 DO贲="C"
2030 RETURIN
2 0 9 0 ~ D O \$ = " D " ~
2100 RETURN
2110 DO$="E"
2120 RETUKN
2130 D0$="F"
2140 RETURA
```

```
Variable Ma\mu
Proyram: KUN KEPCU
A$ - voltaye command to power supply
B$ - current command to power supply
U3 - first hexadec. digit (MSD) of voltage part of power supply command
D4 - second hexadec. diyit of voltage part of power supply command
US - third hexadec. digit (LSD) of voltage part of power supply command
U6 - amount hexadec. number exceeds 9
D1$ - first character in power supply command (channel)
D2$ - second character in power supply command (ranye)
U3$ - third character in power supply command (MSD)
D4$ - fourth character in power supply command (second hexadec. diyit)
US$ - fifth character in power supply command (LSD)
D&$ - temporary striny variable for convertiny hexadec. digits to string variables
El - quotient derived duriny hexadecimal conversion
E2 - quotient derived duriny hexadecimal conversion
Kl - scaliny constant for calculating power supply command
V1 - voltaye limit
V' - current limit
V& - decimal equivalent of hexadecimal number part of power supuly command
X$ - transfer string variable for calculatiny power supply commands
```

Appendix C．System H Program Listings and Variable Maps

C1．＂AUTOST＂
Proyram Listing

2GFEM FrGRHM＂GLIF？STGFED A
 ix ここ：こも

 1．0． 15
40 LDEL 724
玉亏＂G OUTFUT PGG LEIHG＂K＂ I＂
5 L LLEAR E DISF＂FFEHERTEF EOHT FOLS SHOULI EE＂
 F＂ H－－MAが
8日 ロISF＂UOLTAGE KHOE－－－－－ ＂OLTS＂
Э以［ISF 区 UISP＂Fissh CONT whem resux
100 Fhige
116 GLEAR Q［ISP＂STATIS LIGHT CHECK＂
120 ■ISF＂AFE SHUTTEF ETATIS LIG HTE RE［T：\＆OF R？＂
13日 INFUT RS

150 IF REF＝＂H＂THEN 1 EQ
16 EEEF E IISP＂WHAT？＂
17 ら曰TG12ら
130 ELEAF Q［ISF＂ISE MANHHL FUS HEUTTOHS TG CLISE SHUTTEFE＂
190 UISP［IE［IE＂Puミh EONT when status ijshts arereg＂
20日 FAいSE
21日 GOTG11日
220 $05 F$＂KEPEO STATUS LIGHT SHO ULI EE FEG＂
 ce uris ロ！＂＂
249 ФISP＂Push EOHT when ready＂
250 FRLIGE
25G ELEAR E DFTIUH SHSE G
27 GLEAR E［ISF＂GAS FLOW 三t与tu singht should be RED＂
 मts sroula be GFEEN＂
296 ［ISF＂［u／t shoult bie ori 100 F FHIGE．IHT．TRIG．，ASEII FDRM FT，ZERO［ELFY＂
305 DISF＂SCRNHER Ehoula be ELAN F．＂
31日 OISF E OISP aFUSH EOHT when ready
30 PH РЕ



 24，25． 26 ．INTELER G9．T日，U1


36G IMTEGEF F：I，IR
37 OUTFUTT 709 USINL＂K＂＂14＂
336 C：LEAF

469［ISF＂IG EQUIFIENT WAFMED LF （Y）日R H＂
41日 IHFUT Fit
42日 IF 民．t＝＂と＂THEH 680
430 IF Fif＝＂N＂THEN 468
446 UISF EEEF
4EG［IIEF WHHATO＂E GOTO 4GE
46 REM WARM UF PEFIID
47 CLEAF E LISF＂45 MIH NARM LIF FERIOD STARTED＇ロISF
480 DISF MCHECK PUWEF EUFPL＇Y WOL TAGES＂区 EEEP
49 a 析


5 包 $-1=1$
5 50 IF MO日 THEH 560
S46EEEF Q OISF＂19 MIN ELAFSE［＂
55 GETO 510
564 IF $\ 1206$ THEN 59
579 EEEF GISP＂ 2 G MIH ELAPSE0＂
560 GOTO 510
5 S日 IF Jく18日G THEN E2日
E60 EEEF 世［ISF＂3日 MIN ELAFSE［＂
E1月 GOTO 516
E20 IF $1<2496$ THEN ESC
E．3日 BEEF GISP＂4G MIN ELAPSED＂
540 T0TO 519
E50 IF 1 人27日月 THEN 516
E6日 UFF TIMER\＃ 1 E EEEF E IISF＂＂ WFRM UP FEFIOD CUMFLETED＂® WHIT 2日E
67日
ESG REM PNR CHK－NG NARM UF
Gg ClEFR E EEEF
FGU IISP＂EHECK FOWER SUPFLY UDL TAGES＂世 LISF
T1日［ISF＂PMSh EONT when Gherk i s ᄃomplete＂
7 2日 PR SE
T．3G REM INPUT RUN PARAMETERS
74 CLEAF
$\because 5 Q$ OISP＂NHAT IS THE FUN NO．＂：
76 G I HFUT NE
TアQ IISF E GISP＂IS THIS H LASER （L），ELEGTRICAL（E）OF COME INATIUN CE RUN＂：

アヨG IF Lき＝＂L＂THEN IG日日
8近 IF L $\$=$＂C＂THEN 840
810 IF Lक＝＂E＂THEN 850
BCE EEEF E UISF E LISF＂みHAT？＂
330 口10T0 77日
846 U1＝世 GOTO 950
350 ELEAR
B6日［ISP＂WHAT UNIT IS TO EE CAL IEFATEDC＂EISF

B70［ISF＂1．ENTEHSION TUBE＂
ESQ IISF＂ 2 DUERSFILL MOHITDR
 OF＂
G日G GIEF＂4．EEFHFHTIDH TUEE＂
916［ISF＂5．DEFLECTOFFDIL FE FLEETOF＂
GE OIEF＂E．MHIH EALDRIMETEF＂
GS凶ISF 区［ISF＂EHTER LIHE HO．＂
94 INFUT U1
956 IF U1＜＝ $\mathrm{H} H[11\rangle=1$ AHD FF《U1 $3=6$ THEN E8E


G日G REM GET CALOR．COHFIGURATIDH
9日に に0T0 1 01E
1日G区 リ1＝6 凹 リ1き＝＂MFIN EHLDRIMETE

 ＂DEFLEETDF：
1日と国 LF L＝＂L＂THEN 1日4日
103 OISF＂SEt LASER FUN－COMEI HATION EWitah to LOMEIHATIO H＂E GTO 105
1日4［ISF＂SEt LASER FUH－EOMEI NATIOH smitary to LASEE＂
 read：＂『 FRUSE
$16 \mathrm{G} \mathrm{FOF} \mathrm{I}=1 \mathrm{~T} \mathrm{O}$
1日ア日 CLEAF 区 OISF＂REEDRD KHLDRI METER COHFIGUEATIDH＂区［ISF
1080 ［ISF＂G．HO MODULE＂
1090 IISF＂1．EXTENSIDH TUEE＂
110日［ISF＂$\quad$ 2．ONERSFILL MONITO
111日［ISF＂3．EACKSEATTER MOHI TOE＂
11玉日［IEF＂4．SEFAFATIOH TUEE＂
113日 ロISF＂5．DEFLEOTOFFFILF EFLECTOR＂
114日 115 F ＂$\because$ MAIH ERLORIMETER
115 DISF＂FFOMH THE IHFUT EHD，W HAT MODULE IS NUMEER＂：I
1169 IHFUT F：
117 IF F东く＂5＂THEH 1250
113 CLEFF： CISF ＂WHICH DEUICE IS EEING USE［？＂
1196 ［ISF OISF＂1．LEFLECTOR ＂G GISF＂z．FDIL REFLEET OF＂
$1200 \square 1 \mathrm{GF}$ ■ISF＂ENTEF LIHE NO．
1210 IFFIIT R
12こ日 IF R＝1 DR R＝2 THEH 1230 ELG E 12国
1230 ON R GOTO $125 日, 124$ 日
1240 M5\％＝＂FDIL REFLEETOF：＝


|  | $\begin{aligned} & F=1 \\ & 01 \$=01 \$ \& E F \end{aligned}$ |
| :---: | :---: |
| a | HEXT I |
| 1290 | IF $F=1$ THEH 1341 |
| 13 匂旬 | EEEF E ELEHF |
| 1316 |  IH EALDE EOHFIGURATI IN＇ |
| 132 a | ［ISF E［ISF＂Fush סOWT wher Froblefi is resolved＂区 FFII SE |
| 13 | 口0T0 396 |
| 1.346 | IF Lif＝＂L |
| 1350 | FEM GET ELECTRIICAL FHRAMETE FE |
| 13 E |  436日，446，46気 |
| 1376 | EEEM GET HMEIEHT EOHEITTII |
| 1380 | ELEAR 区 DISF＂MHAT IS THE A MEIENT TEMFEEATURE IN DEG ■＂ |
| 1359 | INFUT TS |
| 146 | CLEAF E CISF＂WHAT IS THE E AROMETEIC：FRESSUEE IN mim＂ |
| 1． 416 | INFUT BGE ELEAR |
| 142.1 | IF U1く¢ THEN 171区 |
| 1436 | REM SET RTD \＆TEMF DUT［IFFL |
| 1446 | DUTFUT アGG USIVG＂K＂，＂或＂ |
| 14.56 | CLEAF：ロISP＂Set RTD aial for convenient reasing orn UM＂ |
| 146 | $\begin{aligned} & \text { GIEF 区 GISF "InFut Gigl rea } \\ & \text { data } \end{aligned}$ |
| 1476 | INFUT 25 |
| 1486 | OUTFUT アG马 USING＂K゙＂；＂日2＂ |
| 1496 | CLEAF 区 DISF＂SEt TEMF OUT dial for Eonwerient resdrag an［0円＂ |
| 1560 | ［ISF 区［ISF＂Infut di．ョl rea ding |
| 1519 | IHFIT 25 |
| 152日 |  |
| 15.31 | OUTFUT 224 ；＂R3T20． 9055 |
| 1540 |  |
| 15.5 | ENTEF 724 ； 21 |
| 156 |  |
| 1570 | EHTER 324 ：こ2 |
| 1581 | OUTFUT 709 USINI＂K＂：＂Й4＂ |
| 15 | EHTER 724 ； 23 |
| 16.6 |  |
| 1619 | ENTER 724 ； 24 |
| 1620 | OUTFUT ア24；＂T10．15＂E LOCH L アこ． |
| 16．3 | IMALE MARSE FLGH in zEFG FO口：$\quad 1,2 \%, 5[2, ~ 2 a ~$ |
| 1646 | IMAISE＂TEMF IN ZERD FEMG＂．z \％．502． 20 |
| 16．5］ | IMHEE＂MASS FLOW OUJT こERD |
|  | 吅：＂，ごめ，802．2口 |
| 1． $66 \square$ | IMFGE＂TEMF OUT ZEFG FGG |

$F=1$
12 EQ HEXT I
1290 IF $F=1$ THEH 346
13 EEEF E ELEFF
131日 EISF USIHL "K"; U1丰: " IST
G REEEIUE EHERG'Y EIIT IS HGT
ISF 区 [IGF "F'山ミh EOHT wher
Frotulefi $\mathrm{i}=\mathrm{resalwed"} \mathrm{~F} \mathrm{FH}$
0T0 930
1346 IF L\$="L" THEH 137日
135 FE GET ELELTEIGHL FHRAMETE
FE
1370 FEM GET HMEIENT EOHEITIOHS
13S日 LLEHE 区 [ISF "HHAT IS THE A
MEIEHT TEMFERFTURE IN DEG
HFUT TG
139 INFUT TS

HFDMETFIE FFESSURE IW mm?"
1.410 INFUT B9E ELEAR

143 REM EET RTD : TEMF DUT [IFL


for converient reasing Grl [

INFUT 25
148日 OUTFUT ア
1496 CLEAF 区 [ISF "SEt TEMF DUT
- ヨi for にonweriert rejolrヨ


HFIIT $2 B$
152日 REM ロET MAIN EAL ZERO REらG
1536 OUTFUT 724 ; "RZT2ロ. 655 "

15.5 EHTEF 724; 21

1570 ENTEF 724 : 22

1616 ENTER 724 ; 24
1629 OUTFUT 724 ; "T10.15" 区 LOCH
L 724
163 IMALE "MASE FLOM IH ZEFGFO



ぞ

```
167g Disf usmblege: 21
158 OLGF HETHIL 1550 ; ここ
16G日 UISF E [ISF LEINE 164日; こう
179 [15F WSIHE 16E日: こ4
ITIGFEN FFINT RUA FAREM
T 2 G FRINT "RUH HD: ": N\$
分会 Frint EFINT "FUIN TYFE: ";
 しま
```



```
17゙臬 FRINT 区 FFINT "BNIT RECEIUI
 His ELECTRICAL ENERGY"
```



```
17FG FRINT "NMMINAL ELEC. EHEFG'
 ": E!:"."
1FBQ FFIHT GFINT "EHLOR. EDHFI
 G: ": 口1才
17G日 FEINT "HiNEIEHT TENF: ": TG:"
 [IEG 「: "
18GG FRINT "BAPGM FRESS: ":EG:"
 filfita"
```




```
1 BSn FFINT "FTE OIFL SETTING
 "; こE EFRINT "TENF OUT -
 IHL SETTING: ": E E FPINT
1846 FRINT E FRINT UEING IESG;
 21
1550 FRIHT HSIHG 1850 : 2
\(186 G\) FRItNT E FRINT UGING 1640 ;
 23
197 FRINT USING 1E日日: 24
\(16 E G\) REM STHEILIZE GFE ZERO TEMF
```



```
1.GEG CLEFF:
1310 UISF "WE GPE REAGY TO SET T
 HE GHE FLOM" EISF
\(192 G\) OISF "GRS FLOW WILL EE FFOM
 --" 世15F
1936 [ISF" 1 GIFECT FROM IHD
 IWIDUFL" [IISF: CYLI
 HUERS GNE FT F TIME"
1940 [ISF " \(2 . S E N E F H L C H I N D E\)
 FS I州 A" 目 GISF " HIGH
 FRESGUFE MANIFGL[1"
1950 UISF E [ISP "EHTER LINE HO
1969 INFlI 69
1 日可 IF G'G=1 UR Gg=2 THEN 1990
\(1 த E\) EX BEF E IISF "AMSNEF MUST EE
 1 ⿹R こ" 区 GTG 1955
1994 IF G9=2 THEN 2こ7g
200G FEM INO. EYLINDEF ROHTINE
2010 LLEAF E DISP "OFEN MAHURL \(V\)
 HLUES DH IWPUT TO FLL ELECT
 FICAL UALIES USEEI."
```



```
 ES GH HOH-COHNECTEG ELECTEI
 GHL WRLVES HRE ELOSED TO FR
 EUEMT":
2日39 DISF " BACK LEAKAGE."
```

204日 GuSuE FGUM
2G5 M MAF＂ERROR1 AHEWEF MUST EE 1．2． 3 OF $4^{\prime \prime}$
206G LLEAR O DISF＂TO WHAT UFLUE IE THE FEIMAF゙Y CYLIULEE EO NNEETE［I？＂
207E INFUT $F$
208 IF $E=1$ OR $\mathrm{E}=2 \mathrm{OF} \mathrm{E}=3 \mathrm{OR} \mathrm{E}=4$ THEN ב1 10


211日 0ISP E DISF＂TG WHAT MHLUE IS THE \＃A EFCK－LIF GYLINDEF： COAWECTEU？＂
212日 INPUT F
213 B if $\mathrm{R}=1 \mathrm{OR} \mathrm{R}=\mathrm{G}$ DR $\mathrm{F}=3 \mathrm{OR} \mathrm{E}=4$
 54
2140 OISF MG事＂FHO＂：R：＂IS TH E FFINFFY GYLINEEF UHLUE＂E EEEF G GOTI こ 110

216日［ISP 日［ISF＂TG WHAT UFLUE IG THE \＃Z EACK－UF CYLINGER GONNETTED？＂
2176 INFHT F
2160 IF $R=1$ DR $R=2 \mathrm{DR} \mathrm{R}=3 \mathrm{OR} \mathrm{R}=4$ FHI E（VMFiL52ま）－33 THEH 2こ 6H
2190 GISF ME事：＂AN［＂； E ：＂IS THE \＃1 EACF－UF C＇YLIHEIEF ：UHLWE＂ E EEEF G GGTロ zing

$22150 I S F$ Q DISP＂TO WHRT WALUE IE THE \＃S EFEK－UF EYLINDER CDNNECTED？
2ここ日 IMFIJT F
223 IF $\mathrm{E}=1 \mathrm{OR} \mathrm{R}=2 \mathrm{OR} \mathrm{R}=3 \mathrm{OR} \mathrm{R}=4$
 56
 \＃2 EACK－UF CYLIHDEF URLUE＂ E BEEF G GDTD az10

2こも0 GOTG 2526
2276 KEM GAS FROM MANIFGLO
228G LLEFF © IISF＂MFKE SURE ALL UHLUES OH MAMIFBLD ANG EYL INDEFE FRE SHUT UFF．＂E DIS F
$239 \boxed{\square I S F}$＂COWNEGT J DR MORE GHS C．YLIHLIEFS TO MAHIFOLI WITH THE EDFFER TUEIHI FIGTAILS

23日G むISP ETSF＂OFEH ALL MANIF GLE VALUES TO CYLINDEFE＂＠ UISP
231日 UTSF＂OFEN VALUES TD E EYLI HLIERS．＂


| 23 | CLEHF IG IISF＂FOF YGUE INFG FMATIGM－－＂LISP |
| :---: | :---: |
| 2346 | ［1］SF LHANGE CVLIHDEFS IF F |
|  | FESSIPE GROPS TG 10以\＃＂ |
| 2354 | ［ISF＂FROCELIURE TO FOLLOW I |
|  | 5：＂区［IISP：1．SHiIT GFF |
|  | Mrtargla Urlve to orde |
|  | ETLIHCEE＊ |
| 23 ¢и | UISF＂ב．TUEH DH LYLINDE |
|  | F WHLVE TO A NEW CYLI |
|  | HEER |
| 2375 | UISF＂3．CLISE THE CYLIH |
|  | ［EF UFLUE DH THE E＇IL |
|  | IMIIEF IH STEF 1＂ |
| 2350 | ［isF＂4．FEFLACE C＇YLINDE |
|  | F INSTEF 1 WITH H HEN |
|  | C＇YLIHEEF： |
| 2395 |  |
|  | HLYE OH THE FEPLHCEMEH |
|  | T C＇GIMCIER |
| 2460 | G¢SUE 5816 |
| 2410 | CLEAR 区［ISP＂GONTINJIHTS WI |
|  | TH SETTING UF THE GHS MAHIF |
|  | OLロ－－＂区 EISF |
| 2420 | ［ISF＂OPEN MANIFOLD VALVE T |
|  | 0 PRESURE REGILATOR．＂Q IIS |
| 2430 | ［ISP＂SET REGILATGR TG |
|  | 51 |
| 2446 | G0SUE 581日 |
| 2450 | ELEAR 区 GISP＂TO HHAT ELEET |
|  | FICHL WALVE IS THE REGULATG |
|  | F CONHECTEO？＂ |
| 2460 | INFIIT F |
| 2479 | IF R＝1 OR $R=2$ OR $R=3$ DR $\mathrm{F}=4$ |
|  | THEN 2496 |
| 2486 | $\square I S F$ Q 015 F MS乐 E BEEF 区 WA |
|  | 1T 26日6 世 G0T0 2450 |
| 2490 |  |
| 2569 | ［15F ®－ISF＂MAKE SURE MANU |
|  | FL UHLVE ON UNUSED ELECTRIC |
|  | Fl Whl UES fre clasea．＂ |
| 2516 | GロSUB 5919 |
| 2520 | Clear e uISP＂We are now 三e |
|  |  |
|  | ISP |
| 25.30 | UISP＂In the IHPUT GAS TEMP COHT－－＂［IIEF |
| 2549 | UISP＂1．Fut the RuH－SET |
|  | SuIrchto SET |
| 2550 | USSP＂2．Hijuust the ERLA |
|  | HEE knob $0^{\circ} \mathrm{G}$ the HEAT E |
|  | YCLE LED Just＂ |
| 2564 | U1SF＂daes reminin Ext． |
|  | 1rivulshed．＂ |
| 2570 | UISP＂ 3 Fut the RLiH－SET |
|  | Ewitch to FiJN |
| 2580 | G0SUE 5819 |
| 2595 | ■ISP Q 口ISF＂On the PREHEAT |
|  | EF：COHTEGL UHIT＂区ISF |

 FESSIJRE GROPS TG 1 DE\＃＂
2350［ISF＂FRUCEDURE TO FOLLOW I S：＂区［ISP： 1 SHITT GFF ETLIMDEF：＂
 FYHLUE TU A NEW EYLI

23T日 UISP＂3．CLDEE THE CYLIH BER OHLUE THE ETL IHCIER IH STEF 1＂
33®日 पISF＂4．FEFLACE CYLIMEE F IN ETEF 1 WITH H HEW ＂YLIHEEF．＂
239 －ISP＂ 5 DPEN MANIFDLD $\because$ HLYE IH THE FEEPLACEMEH T C＇fiLINERE．
2464 GSUE 5816
2410 ELEAF W［ISP＂GONTINIJFHG WI TH SETTING UF THE GHS MAHIF ロLロー－＂区 UISF
2420［ISF＂OPEN MAHIFGLD WALVE T 0 PRESURE REGILATOR．＂Q IS
2430 GISF ＂SET REGILATGR TG $4 \overline{\mathrm{~S}} \mathrm{~F}$
244 凸ロSUE 5日1以
2450 ELEHR E EISP＂TO WHAT ELECT FICHL WALUE IS THE REGULFTG F CONHECTED？＂
24E日 INFUT F
247 IF $R=1$ OR $R=2$ OR $R=3$ DR $R=4$ THEN 2490
$24 B 015 F$ OISF MSt E BEEF 世 WH 17 2060 世 GロTG 2456
$2430 \mathrm{G} 1 \pm=\mathrm{VAL}(33+\mathrm{F}) \mathrm{E}$ EEEF
$2509[15 F$ Q IISF＂MAKE EURE MANU AL UHLVE ON UNUSED ELECTRIC FL UALUES FRE ELOSED．＂
2516 GOGUB 5819
2520 LLEAR 区 aISF＂We are now se ting uF the ヨes flow．＂ E ISF
2530 OISP＂OH the INPUT GAS TEMP EOHT－－＂EIEF
2549015 P ＂1．Fut the RUH－SET EbIrGh ta EET．＂
2550 －15P＂2．Hijuust the EALA NEE knob $E 0$ the HEAT E YCLE LED Juミt＂
2560 T15F＂does rembin Ext
25TQ UISF＂$\because$ FUt the RLIN－SET三witch to FunN．＂
2586 GOSUE 5819
259 BISF Q DISF＂On the PREHEAT EF：EOHTFRGL UHIT＂区［ISF

| 00 |  |
| :---: | :---: |
| 2610 | HisF＂ 2 ，Froste the uriLt |
|  | H1GE knob to FliLl ClOUCK |
| 26ご | －ISF＂J Fut the JFF－DH |
|  | 三witerito bry |
| 26．56 | 二口SUE 5819 |
| 264 | こ⿹\zh26＝！THIS URLUE DETEFMIME |
|  | ［1 EffFIFICALL |
| 2645 |  |
|  | UE FOUM TEMF |
| 2656 | ON KEY\＃1，＂GAS 日H＂GOSUE SJ |
|  |  |
| 2656 |  |
| 2576 |  |
| 2680 |  |
|  | 「らら |
| 2695 | DH KEY\＃5．＂MASS IH＂G0¢UE 与 |
|  | 506 |
| 27日可 | OH KET\＃6，＂TEMF IN＂GOEUE 5 601 |
| 2715 | OH KEY\＃日，＂EOHT＂GOTO ごぎ或 |
| 2726 | OUTPUT 769 USING＂\＆＂：＂GE |
| 2730 | CLEAR E KE＇${ }^{\text {g }}$ LAEEL |
| 2746 | ［isf＂MESS FLOW IN readiras on 0 以川＂ |
| 2750 | DISF＂MEke sure reglilhtipa |
|  | areset to 40 |
| 276边 | UISP＂GFER FLOW URLUE 2 ＋br |
|  | $\underline{15}$ |
| 2776 | ¢5148 5319 |
| 2786 | GG5UE 5364 |
| 2794 |  |
| 2869 | ［ISP＂Ehect HEAT Cotcle Lea |
|  | 1EELIHKIHK＂ |
| 2814 | ［IEP＂USE FLOW WHLUE and Eifi |
|  | LAHCE kriob respectively to |
|  | 9et below PASE＂1 |
| 2820 | Disp＂IN and TEMP IN readin 35．＂ |
| 233 ¢ | ［ISF＂MASE IN＝＂；こ1＋この |
| 2841 | ［ISF＂TEMF 1H＝＂；T4 |
| 2350 | IF $-\exists=2$ THEN 286 日 |
| 2868 | DISF＂Switch to each FEGULF |
|  | TDR and setit to ヨet these |
|  | UISP＂Ewitch to |
|  | 1 rider |
| 2339 | DISP MMSS IH snd TEMP IN a |
|  | re coufled．Suitch back and |
|  | torth to monitorboth resil |
|  | $3 E$ |
| ら | UISF＂Fush k8 to E |
| 2969 | GGTU 2980 |
| 2919 | DUTPITT T⿹З נSInta＂K＂：＂3＂ |
| 2925 | OFF KEY\＃ 1 区 OFF KEY\＃こ 0 |
|  | FF KEY\＃ 3 ¢ DFF KE＇r\＃ 5 Q DF |
|  | F KEY\＃\＆¢ LLEFF： |

2610 LIGF 2 Fotse the BriLT HIE knob to FliLL GLOCK WISE＂
25こ日 DISF＂3．Fitt the JFF－DH

264日 ごニЭ！THIS リHLUE ロETERMIHE ［I ETFFIFICALL＇
2645 T4＝ 35 ！REITRAR $\because$ HLIJE FEG UE FUDH TEMF
 06

464
2670 IF GЭ $=2$ THEH Z 59 G
268日 DN KE＇\＃З：＂CHG EVL＂GOSHE E アらら
 604
2710 OH KEV\＃E，＂COHT＂GOTD ごヨ10
272日 OLTFOT TGG beING＂K＂：＂6き＂
－LER－KEV LABEL on［u川＂ DIS＂MEKE sure REGLATGFS areset to 40 PSI． ris．＂
277日 らけSUB 5319
2780 GISUE 5364
279 BEEP Q CLEAR 区 KEY LABEL $1 \Xi E L I H K I H G "$
L1EP USE FLOW WHLVE and EiF LAHCE krob respectively to SEt beiob MHEE
2Sこ日 UISF＂IH and TEMP IN readin 3E．＂
2339 ［ISF＂MASE IH＝＂；こ $1+2$＂
2350 TF THEM

TOR and set t each regulh rogdiriss Ht End＂
237日 UISP＂E心ItGh to primary ロ・1 1rider．＂ re coufled．Suitch back and torth to monitorboth resdin 3E：
EBY ULSF ：Fush k8 to Gontanue＂
－96日 GاTU 2906
2920 OFF KEY\＃i FF KEY\＃ 3 巴 DFF KE＇Y \＃ 5 DF F KEY\＃\＆氏 LLEFF：

```
29368070297
```



```
 WFLま (1E-11)
z95 LLEAP © BEEF [i]SF USING *
 \(\mathrm{k}^{\mathrm{H}}\); U14: " DUTFUT REAUING:
 DH [10M"
```



```
29TG 口ISF "SHUTTEFG EEIHE TESTED
```



```
 6.
```



```
36EE MFIT 16606
3⿹勹口 EEEF E DISF "SHUTTEP LEU'
 SHOULI EE GREEH" Q WHIT za@
 G
```




```
3日4 WHIT 180 G G [IISP E EEEF
3И5日 UISP "SHUTTER LED' E SHDULD
 EE REEI" 世 [ISF
```



```
 (T OF N)"
```




```
3095 IF RE="N" THEN 3120
316 EEEF E DIEF "WHAT?"
3110 GOTO 3060
312 G LLEAF:
З13ด [ISP "ENERCISE BALKY SHUTTE
 F: WITH FUSHEUTTGHE. IT MUST
 OFERATE IN 18 SEE" Q DISF
3140 [isF "Fush CGivt unen ready"
3154 FHIJE
3160 LLEAR 区 GDTE 2GF
317 CLEHF:
3130 IF L*く" "L" THEN 322日
319日 U1F="MHIH CFLGFIMETER"
320日 リi = 可
\(3215015 F\) "FIHAL FRE-FUH EHECK 1
 IST" ש [ISF
```



```
 HELE IS ISOHAECTEG TO "; U
 1ま 『ISF
```



```
324 CISP "TURH OH KEPEO PDWER S
 UPPL'Y" 区 GOTO 3260
325 U15F "UERLF'KEFEO FGNER SU
 FF'G lG GFF"
3269 IF \(11=6\) UF \(1 J 1=6\) THEN 3ES日
327日 UISF 世 [ISF "GHS EOTTLES SH
 OHLI EE TIRHED OFF AT CYLIH
 [EFE"
32BU CISP Q DISP "MAKE SHFETY EH
 ECK GF GFEF"
```



```
 ready"
33 G日 FRUSE
3314 CHAIH "CLOFE"
```

4 GGH FEM MAX FHEAM FGF：EXT TUEE
$4010 E E=1060$
402 $\sqrt{60}=16$
4536 रि $=346$
404
4 45 1 11年＝＂EKTENSIDN TUEE＂
406 GOTO 47 T 6
41日G KEM MAK FARAM FGR OSM
$4116 E \mathrm{E}=10 \mathrm{ax}$
$4120 \quad 40=51.2$

414 IG末＝＂22日TF＂
4156 U1F＝＂OWEFEFILL MOAITOF＂
4 15日 GढTO 47日6
42 GE REM MAX FGFAM FUE ESM
4216 ED＝1日可
4220 V 0 ＝86． 4
$4230 \mathrm{KG}=22.2$

425 U1s＝＂BACKSCATTER MOMITOR＂
426 GOTO 476 G
430 KE K MA：FREAM FOR SEF TIEE
4316 E $=1060$
$4.320 \quad$ V $=100$
$4330 \mathrm{RE}=346$
434日 1 の末＝＂ここのアウ＂
4356 U1＝＂SEFFFATIOH TUEE＂
4.36 G 5 GT 47 GE

4 40日 FEM MHK FARHM FGR DEFLECTOR
4416 IF M5牛［1：1］＝＂F＂THEN 4486
442 E $=1500$
44 3i4 $V$＝ 26.
$444 \overline{\mathrm{~V}} \mathrm{FD}=3.55$
4450 I摬＝＂ことEAE＂
446 リI $5=$＂DEFLECTOR＂
4476 GOTO 47E16
$4480 \quad E=1060$
$4496 \quad$ Va $=78.9$
$450 \mathrm{FE}=25.5$
4ち16 1区の＝＂をこ4Fご
45こ日 リ1：＝＂F IIL REFLECTER＂
4536 GUTO 47 OQ
$45 \mathrm{G} \overline{\mathrm{G}} \mathrm{REM}$ MAX FARAM FGR MAIN EAL
$4616 \mathrm{E}=15 \mathrm{E}=16$
$452 \mathrm{WE}=160$

454 1日ま＝＂2こんम回＂
4656 U1＝＂MAIN CHLORIMETER＂
47 G日 CLEAR E DISF＂HOW MRHY JOUL ES HFE TO BE IN IEGTE［？＂
471 g Infllt E 1
472日 IF Ei
473 BEEP ® DISF USIME＂K＂：＂TO G MUCH ENERGY．TRY＂：ED：＂ 1 GULES OR LESS．＂Q WHIT 1060
474日 GOTG 4760
4750 TE $=5$

4776 IF $V 1<=v 6$ THEN 4810



```
4#WG BEEF 甘 DISF "IHJEETIIN TIME
 LENETHENEG TG ":TB;" SEGOHt
 05" W WHIT こらすら
4E1E FEM EET FEEFGO EOMMHNLI
48ご IF UIン1日 THEH 子5ジ
4ぶ吅 ト1=4に5.5
4545 ■こ二2
48G以 G心T\488区
43たら K゙1=4戶.95
48つめ Uご=息
4:3\ K゙ヨ=INTGK1:まり1`
48G日 FEM EOHNEFT KG TO FR[II% 1E.
4ま日G vコ=INT!K゙ヨ゙1%`
4916 [!゙心=K゙\Xi-1E*いG
49`日 05=INT(UG/15)
4535 [14=65-1E*[13
4%4日 [G音=WALD(DS)
4956 IF [5%S THEN GUSUE 51EU
```



```
497日 [15年=UFL韦(014)
43B日 IF [4>5 THEN GOSiJR 51GO
```




```
501G IF [J>5 THEN GUSUE S1GE
502日 [5%=00%
```



```
 ま
5リ4@ FETUFN
510@ FEM LONUERT LHF゙GE HEX DIG
```



```
5120 DN O5 B0T0 51.30.5150.5170.5
 15[5,5210,52.30
5130
514日 FETUF゙ト
51.50 [馬東="g"
51E自 FETUF:N
517日 [牙守="「"
51SG FET!IRN
519日 [C&$="D"
5こと目 FETUF゙N
5こ1可牙="E"
5ここ日 KETUFN
52.30 [方方="F"
5%4 FETUFN
530日 FEEM TURN DN 5HS
```



```
5.52G FEETUFH
540B FENH TUFN DFF GFE
541E DUTPUT 709 USING "K": "Э"
5429 FETUFN
5S日G REM MASS IN UILTS
5510 DIUTFUT FGS USING "K": "Gぶ"
5520 KETUFN
SEGG FEM TEMF IN WGLTG
5010 DUTPUT FGS USIHG "K": "G4"
SEこE FETUFN
5OG FEM EHIG GAS EDTTLE FOUTINE
51\overline{0}\textrm{FEM}
5725 1.5%=51%
```


㭡1平
575 日
576を GこまニG4安

578 REETUF R
58OG REM FRUSE SUERDITIHE
5810 EEEF E［ISF
552 DISP ＂Fush ROtT when resa\％＂
583n Finuse
5 540 FETURN

B9 - barometric pressure in mm of Hg
(c)

D2 - number indicating power supply voltage range
D3 - first hexadec. digit (MSD) of voltage part of power supply command
U4 - second hexadec. digit of voltage part of power supply command
US - third hexadec. digit (LSU) of voltage part of power supply command
U6 - amount hexadec. number exceeds 9
U3\$ - third character in power supply command (string version of D3)
U4\$ - fourth character in power supply command (string version of U4)
US\$ - fifth character in power supply command (string version of U5)
UИ\$ - temporary string variable for converting hexadec. digits to string variables

E1 - nominal electrical eneryy input
Ey - maximum allowable electrical eneryy
F - flag to look for unit missing from calorimeter confiyuration descriptor

G9 - method of gas supply (1=1ow pressure manifold, 2=high pressure manifold)
G1\$ - electrical valve channel for primary gas cylinder (L.P. and H.P. supply)
electrical valve channel for \#l back up gas cylinder (L.P. supply) (L.P. supply)

Gb\$ - temporary string variable for changing order of gas cylinders in L.P. supply

IW\$ - current limit command to calibration power supply

K1 - scaling constant for calculation power supply command
K9 - decimal equivalent of hexadecimal voltage part of power supply command

L\$ - run type ( $L=$ laser, $C=$ combination, $E=e l e c t r i c a l$ )
Mb\$ - deflector type name display message duriny monitor period
M9\$ - error message in gas set-up routine
N\$ - run number
$01 \$$ - calorimeter configuration descriptor
R - numeric answer to questions
$R \emptyset$ - resistance of calibration heater
K\$ - alpha answer to questions
T4 - temperature in reading desired while gas is flowing
Ty - ambient temperature in degrees $C$
T甲 - electrical energy injection period duration in seconds

U1 - numeric indicator of unit receiving electrical
eneryy (c)
Ul\$ - name of unit to be calibrated
(c)
V1 - required voltage settiny of electrical calibration
power supply
vy - yuotient derived duriny hexadecimal conversion
vo - maximum allowable electrical calibration voltage
VI\$ - voltaye command to calibration ower supply
(c)
Ll - mass flow in zero readiny
(c)
L'z - mass flow out zero reading
$\angle 3$ - temperature in zero reading
(c)
24 - temperature out zero reading
Zb - main calorimeter RTD dial setting
(c)


- temperature out dial setting
(c)
$Z 0$ - change in mass flow in reading when gas is
turned on
(c)

2G OFTIOH EHEE G
30 [1] 民里[1]

日":"226日F" ELEHF




24, 25.26. IHTEGEF G9, T0. U1

(16), U1 (55), I1 (55)
SGIHTEGEF I, I, II, I2,K.L,HG, F
G日 FDF I=G TO 9
100 HICI\%=
110 HEXT I
ustment feriodi

THEN 18感
140 万人 G9+1 G0TG $130,156.160$
159 OH KEY\# 1. "CHG ETL" GOSUE J母
50

96
150 OH KEY"\# B, "HBORT" BOTB З


THEN こ2 20
219 OUTFUT TEG USING "K" : "玉."\&
G1
236 OH TIMER\# 1 , 36 G日 GOTO 260
240 G0T0 249
250 LLEAR E KEY LHBEL
279 FGF $1=0$ TG 9
$29 日$ GUTFUT 769 USIME "K", Eも
309 EHTER 724 , VCI
36 UISF "MASS IN= "; WC
З3日 GISF "MASE DUT= ": WC1
349 [ISF "TENF IH= ":W64
コ. OISF "TEMF DUT= ":UCZ
360 DISF "MAIN EAL FTE= ": UCG

36日 [ISF "SEF TUEE= ":Uく
39Q BISF "BSM RTE= ":V(F



```
 940
T10 IF J>1136 THEN E3G
72日 IF J<>1日G日 THEH 子E日
F3日 OUTF|T 70, MSING "K" : "3,3日
 32"
```



```
76010TG50
TG日 IF <>111日 THEN BG氏
```



```
 ,3"
78日 O!TFF!T 70G \EINL "K" : "З"
790 F0TO 950
G日G IF & \12G THEN G50
810 OUTPUT 7GG IEING "K" ; "E,"%
 ً1生
```



```
830 IF L$="L" THEN E5@
846 OUTP|T 709 |EING "K": "1日"
850 EHTER T24; I1(J-11\Xi1)
86日 пUTFUT FGG IEING "K"; "12"
870 EHTEF アこ4; V1(.1-1131)
880 IF |<>1140+TG THEN ?16
```



```
90日 G0T0 马5自
910 IF |<114日 THEN 950
920 OUTFUT 70G : |1%:ID#
936 50T0 950
940 IF J>1651 THEN 970
950 J= I+1
960 GOTO 520
97G DFF TIMER# 1 区 DUTF|IT 7G9 UG
 ING "K" ; "\Xi"
98日 DUTFIIT 724 :"RET1GI.1S" 区 LDG
 HL 724
906 OLITF||T FGG ISING "K゙"; "14"
1EDGEEEF ELEFFE DIGF "FOHNEN
 I EHECK LIST" W UISF
1010 ISF "GHEGK EFLGRINETEF HHO
 EHUIFOHS FGR LIAMAGE" & LIS
 F
10こ巨 GIEF "FREHEATEF SHOULO EE T
 UFHEG DFF" 心 |ISF
1日SG DISP "TIRRH DFF UFLUES OH GA
 S EYLINDEFS" © [ISF
104日 [ISF "CHECK FOWEF SIJFFYY UO
 LTAGES FREE HOMINAL"
```



```
10EQ IISF "TIIRH DFF KEFEO FOWER
 SUPFL'Y"
1070 [ISF E DISF "FAEF EOHT Whにん
 re.gdy"
105G FHIISE
1096 ELEHF E [IIGF "[ATH-SUM FALK
 ETS EEING AUERFGE[I"
1.10E FGR K=0 TO G
1116 FOF I=G TO 175
1. 20 wणGI,Kう=WGGI,Kう,E
113日 HEXT I
1140 NEXT K
```


166 CISF＂Calibration wGltage

 Y 16 EECALIEE OF CIIVIGER IH v－I EOW

1196 HE KT I
 FRIHT GIIT OF THE FESUl TS？
（YOR H）＂
1こ1日 INF！R R

1236 IF $E=$ 寺 $=$＂H＂THEH 1906
124 EEEF 区［ISP 区［ISF＂WHAT＂

126 IF L₹＝＂L＂THEH 157日
127G FRIHT 区 FRIHT＂ELEE UHTH＂甘 FEIIHT

1290 IMAGE 3［1，3x，SDZ． $20,2 x, 502, ~ 2$ ［1
$130 \mathrm{FOR} \mathrm{I}=0 \mathrm{TO} \mathrm{Hg}-1$
 3，I14 1 ）
132日 HENT I
133 IF L真二＂巨＂THEN 157日
 E FEIHT
135 M IMAGE 3［1， $3 \%, 5[12.4[1$
1． 36 E IF II＝6 THEH 1416
1370 FEIHT
$1386 \quad 11=1$ 可－11

1406 GOTO 1906
141 GFFINT Q FFEIAT＂MABGFLDG IH
1420 J1＝3 EFRIHT
1430 GOEUE 456日
1446 FFIMT E FFINT＂MES FLOW DU $T^{\prime \prime}$
145 FEINT 区 $11=1$
146 GOSUE 45 G
1476 FFINT E FRIHT＂TEMF IH＂
148 BFFINT 区 $J 1=4$

15 6 GFEIHT 区 FRIINT＂TEMF DUT＂
1516 FRIHT 畐 $11=2$
1526 G05UE 450日
1536 FRIHT 世 FRIAT＂CHL RTO＂
154 FREIHT 区 $11=0$
1556 凸5 5 E 4506
156め БOTG190日
1576 FUF I＝日 TO 9
 156日，1650，1769，173ら，175日．17 7日，179日
159 FFEIHT ＂MAIH EAL FTD＂
16の日 Jここも
161日 にTO 1816

```
1Eこと FRIN" "Mnse FLDM DUT"
15.30 ज0TO 1630
184 FHIHT "TEMF OUT"
1650 GOTO 1810
16E日 FFINT "MHES FLDG IH"
1576 以TO 1810
1E日G FFINT "TEMF IN"
160 GOTO 181 G
1761日 [F N5: 1.1\(]=\) "口" THEH PRINT
 "IEFLEOTOR"
17tif iF
 FGIL REFEETOR'
```



```
173日 FRIINT "SEF TUEE"
1740 ज口TO 1800
175G FFINT "ESM"
\(1760150 T 01890\)
1776 FFIHT "回Sti"
178 GOTO 18 GQ
1FGE FFIHT "ECT TUEE"
\(1509 \quad 12=16-1\)
1816 GUSUE 5006
132日 IF \(F=1\) THEN 185日
\(183 G\) FFIHT "HULL DHTF"
1846 GOTO 158日
1650 FOFK=6 TG 175
```




```
1570 NENT K
18EG HEXT I
\(18 Э 0\) LLEAF E EEEF
19 GG [ISF "UO YOU WANT TO ETORE
 DATA DH TAPE? \& ITR H""
191日 i WFIT Fま
192日 IF 尺क="ヶ" THEN 19日日
1936 IF F 矣="N" THEH 214E
1946 EEEF Q 015 F 区 [ISF "WHHT?"
1956 WHIT 10 QU G GOTD 189 E
15日G GISP "Insert tョfe RUH OHTH
 in tafedrlye"
1970 OISF Q DISF "P山sh EOHT when
 tead\%" e FHuGE
```



```
1996 [ISF "Choices are DATHG thit
 OUFh DATA19"
2旬可 INF゙白T Fま
2010 HGSI以ト\# 1 TIF:
```



```
 11
29.3日 FRIHT\# 1 ; T9.EG. 引1
2046 IF UI CE THEH 2EG日
20.5日 FPINT\# 1 : 25.26
266日 FFINT\# 1 ; VOC?
207日 IF L\$="L" THEN 211
```



```
2096 PRINT\# 1 : TG, E1, NE
2160 FREINT\# 1 ; U1《SII\%
211日 HSSIINA 1 T口
```



```
 orea irt file": F本
```




2156 OISP＂RUH HO゙：＂；Ho ；＂LOMPLE TE［＂E DISF
21EG UISF＂INGICHTE EHDICE＂
2170 ［i5F＂ 1 EHE RUHS＂
218日 OISF＂2．NEA RUN＂
21GG［ISF＂З．KEFD［＇ATF FILE＂
2206 DISP＂4．FEFFORM EFLEULAT IGHS：
221G OISP＂5．TRAHSFEF DATA OH Fら23き＂
2220815 B ： 5 ．FFIHT DUT EURFEH T RUA EIATF＂
 ATOFiLE＂
2こ46［ISP R DISF＂EHTEF LINE NO
2こSG INPUT R
2200 IF $R=1$ AHD $P<=7$ AllD $F P(R)=$ 8 THEN z290
2こT日 BEEF Q DISF 区 OISP＂WHAT？＂
2256 GUTO 2148
2250 OH R G0TO 2530，23013．2310．23

 EHL $\overrightarrow{\text { Ea E HEGFTIO }} \boldsymbol{F}$ E EHAIN ＂Hutost＂
 ＂FILEXM＂；CHEF（34）：＂．Then PuEh ENGI LINE．＂
2320 ［15F＂GAUTIUH－－This will wi pe out Eurrent frogram and data from memory © EEEF
こうこけ GもTロ 237日
2． 40 CLEAF 区［ISP＂Make sure taf e CLOF iE in taFe drive．＂
2345 EEEF 区［ISF＂Push COHT when reade ：E FAUSE
2350 aISP USIHG＂K＂：＂TYFE LOAD ＂：CHEFC34）：＂CALC＂；CHFま（34） ；and fush EHCI LIME key＂＂
23E日［iSF＂When laading is compl EtE．FuSh FUH．＂
ころ可 FGUSE
2JBG SEEP Q DISP＂ERROR！－DO not FUEh COHT！＂
239010702070
240日 OISP＂PROGRAT HEELS TO EE I EVELGFEG TU SUIT FARTICULAR SERIAL TRHNSFER SHSTEM．
2410 WFIT 2060 GOTG 2140
$242 \mathrm{KEM}===========$
24 Z 2 FEM SPADE
244 民EM

FUTIRE

2456 REM
24EG FEM
247 KEM
$F I R$

248 FEM

```
24GGFE!
25G要 REM
251G FEM ROUTINE HEFE
252 FEM = = = = = = = = = =
25.3日 FEM EHU FUN
254G OUTF|T F24;"FET1[DG"
255日 LDCAL }324\mathrm{ E HEORTID ?
256日 EEEF 凹 UISF [IISF "[IINE"
2579 EN[I
35@g FEM CHG GAG BOTTLE FOUTINE
301日 䂞末=与方
30ご心1年に与こま
```



```
 4G19
3049 G2x=に3年
365日 G戸方=G4%
3050 G4标に5%
30%0 FETUKN
350G REM GAS ON ROUTINE
3514 OUTFUT 709 USINE "K": "З:"
 &1洛
З520 FETUFN
3600 &EM GA゙S DFF RDUTINE
3610 DUTFUT FबG |EING "K" ; "马"
352G RETUFH
37G日 REM HEORT # & ROUTIHE
3715 GFF TIMEF# 1
Зアこら DFF KEY# 1 Q DFF KEY# z O
 FF KE'Y# З E OFF KE'Y# E
37?ज G0SUE 3500
3740 EEEF 40,364 E EEEF 50.506
3755 CLEAR
```



```
 GUNT to start ower!" E UIE
 F
37ア日 DUTPUT 724 ;"E.3,T1,[15"
37EG LOCAL P24 世 AEOFTIG F
37905 FH!ISE
3600 F0T0 120
40日G EEM HBORT #Z FOUTIHE
4010 GFF TIMEF# I
4020 SEEP 40,30日 E SEEP 50.506
4030 BEEF 40,306 E BEEF 50,500
404G OIGP "HBORT HETIURTED! WE A
 FE RETFEATIHG TG z MIN H[INI
 STMEHT FEFIDO"
4050}\mathrm{ WFIT E啲 E GOTG 12@
456G FEH ELEGT. SENSOR FRIHT OUT
451G FOFI=E TO 175
4520}\mathrm{ FRINT USIHG "30, 3%,SUZ.40"
 :I,VOCI,.11)
45.35 HEXT I
454E FETURT
50QG REM MISSIHE MOUULE FOUTIHE
501日 F=0
502G FOR L=1 TO E
```



```
 5㫜50
5044 F=1
5050 NENT L
```

```
B9 - barometric pressure in mm of Hy
(c)
C$ - scanner channel command for switching sensor channels
E1 - nominal electrical energy input
F - flay to look for unit missiny from calorimeter
 configuration
F$ - name of file in which run data is to be stored
G9 - method of gas supply (1 = low press. manifold, 2 = high
 press. manifold)
G1$ - electrical valve channel for primary gas cylinder
 (LP and HP supply)
(c)
G2$ - electrical valve channel for #l back-up gas cylinder
 (LP supply)
(c)
G3$ - electrical valve channel for #2 back-up gas cylinder
 (LP supply)
G4$ - electrical valve channel for #3 back-up gas cylinder
 (LP supply)
Gb$ - temporary string variable for changiny order of gas
 cylinders in LP supply
Hl - array for acyuiring by summiny sensor output
 data packets
H\emptyset - measured sensor output voltage to be summed to Hl
I - counter
I1 - array containing electrical calibration current readinys
I夕$ - current limit command to calibration power supply
J - counter
J1 - index indicatiny sensor data being handled
J2 - index indicating unit being searched for missing
 module routine
K - counter
L - counter
L$ - run type (L = laser, C = combination, E = electrical)
N9 - number of V1 (and I1) readings
N$ - run number
(c)
U1$ - calorimeter configuration descriptor
(c)
(c)
U1 - numeric indicator of unit receiving electrical
 eneryy
 (c)
U1$ - name of unit being calibrated
\(V \quad\) - array for storing sensor output readings duriny monitor period
V1 - array containing electrical calibration voltage readinys
V \(\emptyset\) - matrix for storing all data packets acquired through H1
V1\$ - voltage command to calibration power supply
```

```
(c)
```

```
(c)
```

21 - mass flow in zero readiny
$Z 2$ - mass flow out zero reading
$\angle 3$ - temperature in zero readiny
$Z 4$ - temperature out zero readiny
$Z 6$ - main calorimeter RTU dial settiny
$Z 0$ - temperature out dial setting
(c)
(c)
(c)
(c)
(c)
(c)

```
 1E FE| FROG "GLE" GATE-TIME E4
 \27 % 15:45
 2G GFTION EHSE G
 30 इHGET 44175.1月%.61455%.I1455
 %,TG,EG,F1!16%,2E, IG
```



```
 M*[19].M1*[20],N*[9],臬汼[E]
 , Fक[1].1]1क[1:3]
```



```
 #%,K日(16)
EQ IHTEGER I,N,II,JE,K,L.HI.NE,
 H5, H4 , NE, TG
 7日 111金="F゙ush COHT when ready"
 SQ ELEAR E EEEF
 9E DiGF "Insert tape RUN DATA }
```



```
10日 FHUSE
110 CLEAF
12日 [ISF" "WHAT FILE [D YDU| WISH
 TG HCCESS?:
1.36 INFUT FF
14% FSEIGN# 1 TO F:
```



```
160 REFU# 1 ; TG.EG.U1
170 IF |1<>6 THEH 196
160 REFII# 1; 25.ZE
1ЭG REFO# 1 ; 多,`
26@ IF L$="L" THEN こ4@
21日 REFO# 1; |1$
22G FEFFI## 1 ; T6.E1,N5
23@ REF[## 1 ; U16%.116%
24@ HSSIGN# 1 TO *
35G ELEAR e EEEF
260 [ISF "Gontents of tile "SF丰;
27日 [ISF "Fun No: ";NF e IISF
2GQ 0ISF "Re-insert tare GLOF in
 drive":M17
29G PAUSE
30G CLEAR
```



```
32@ [ISF" "Ruri TYFE: ";L# 区 [ISF
330 [ISF ME.alor Eontiョ: ";D1%
349 IF L&="L" THEN 2066
35W DISP 区 [IsP "Unit reにeiving
 ElEG EHEfgy"
Ј50 UISFU15 UOISF
3ig [ISF "Nominal Energy: ";E1,"
30日 IF L&="C" THEN 2006
590 IF H1尓[1.1]<>"M" THEN 40日 EL
 SE N1=0 E N2=4
40日 IF UI$[i:I]<`"E" THEN 41日 EL
 SE H1=9 (H2=9 Q MF=|1多 & F1
 \ddagger="EKTUE*" ๕ 」1=G
410 IF U1+[1,1]>"日" THEN 42日 EL
 SE H1=S e NE=8 e M类=U1% 区 F1
 F="OSMON耒" | J1=S
420 IF Ul曺[1,1]<>"E" THEN 43@ EL
```



```
 $="ESMON*" 区 .l1=\overline{*}
```

```
430 iF U1机1,1]<"E" THEN 44E EL
```



```
 =SFT|E" 世 J1=6
44[IF U1F[1.1]<>"F" THEN 450 EL
```



```
 #="FOREF耒" (11=5
4EG IF L1轫1,1]<"[1" THEN 46E E!
```



```
 &= "DEFLC*" 区 J1=5
450 50SU8 360G
476 LOSUE 35G6
40日 REIT GET GHL FACTOR
465 TE=1,NO HENT FLGW WHILE SH
 UTTER IS OPEH
496 FOF I=H1 TG HE
```



```
 I)*TE*SUR&12%%」!
510 HENT I
520 REM DUTPUT ELEL RESULTS
536 M=1
546 ERT IS M
556 GLEHF w EEEF
550 DISF "RUN NO: ";恀 区 DISF
5%G LISF "PUH TYFE: ";Lま
500ISF "UNIT IHLIE: ":U1$
EgQ [ISF "EFLOF COMFIG: ":01$
6GB DISP E OISP USING "13A.3&.SD
 .4IE,zA" : "ELECT EHERG'r':":.l
 日," J"
61日 [ISP USING "12G.4&,20,4日" ;
 "IFJECT TIME":TG." SEC"
52G 0ISF
E30 IF U1$[1,1]<>"M" THEN 65日
G4@ [ISF' "RTG dial Eettimg:
 ":25
E.5@ 0ISF "TEMF O|JT dial setting
60日 IISF E IF M=2 THEN 590
6.0
5SG IMHिE 1ご月, 1%,SD. उDE
E90 FOF I=N1 TO Nz
70Q IF I=& THEN M:="RTO"
P16 IF I=1 THEN ##="MASS FLOM OU
 T"
T2日 IF I=2 THEH M*="TEMF DUT"
7S日 IF I=` THEN m&="MASS FLOW IN
74日 IF I=4 THEN M寺="TEMP IN"
75GG [15F E [15F M& Q [ISF
T6日 DISF "ZERO RHTIHG PERIOO" E
 GIEF"=================="
F7日 DISF USING ESG; "日th MONENT
 1% 400.I)
FBQ UISF USING 5BM: "1ST MONENT
TYG DISP USING ESE: "En& MOMENT
```



```
806 [15F
810 IF M=2 THEN 540
```



```
8ご5!こん
```



```
 SF "==================
35日 0ISF GEING 5SG: "#+h MOMEHT
马EQ [IEF HEIMG 5SG; "IEt MDMENT
E,TOLEF UEING 5BQ; "Znd MOMENT
डS@ IF I=1 OR I=g ORF i=4 THEN 三1
 Q
```



```
 =1; K田呈?
#g 1000 -26
BIG OSEF JEINGEBQ, STAEIL FAL
29 [1IOF
```



```
G4G UISF Mi手 E EEEF & FRUSE
#56 01SF
35囯 OISF "FINAL RATING FERIOU" E
 \square1SF"===================""
#7日 EISF USING 580; "GTh MOMENT
 ,Y゙G&1,IJ
78Q DISP USING SEG: LST MOMEHT
 M,Y1CIOIZ SBQ: uZrd MOMENT
GGG DISF bSING SSQ; "End MONENT
 ",12\1,I
106G UISF
1016 IF p =2 THEN 1G4G
1026 [1SF Ml& E EEEF E FF|GE
10.36 DISF
104G NENT I
1050 IF M=? THEN 1120
1GEG [ISF "GG YOH WFNT H FEINT-G
 UT DF THE RESULTS? &Y GF H)
197.9 IHPUTT Rま
108G DN 1+<たF="Y")
 T01 1050,1:0日, 1120
109G EEEP & GUTO 1GEG
110区 缺=
111日 G0T0540
1120 M=1 P CRT IS M E ELEFR
11ड区 IISF MIO YOU WHFT TU STGFE
 In SUMmFRY'? (Y OR N)"
```




```
 TU1106.1176,2826
11EQ EEEP R GUTD 1126
IITG [ISF FInEeft tafe ELEL Summ
 ARY in taFe dribeu
118日 UISFM1ま
113G FHUSE
12QG FOR I=N1 TO NZ
1210 HE=1z
12z0 IF I= OR I=2 THEN NE=1E
12SG IF I=0 THEN FIS="MCRTE%
```



```
1250 IF I=2 THE&F F!5="TEOUT***
```




```
```

    127 IF I=1 THEN FI \(5=\) TEMIN: "
    ```
```

    127 IF I=1 THEN FI \(5=\) TEMIN: "
    128度 RESIGNFTOFま
    ```
```

    128度 RESIGNFTOFま
    ```
```




```
```

    1Jgh IR EFROR GOTO 1412
    ```
```

    1Jgh IR EFROR GOTO 1412
    1319 READ\# 1
    ```
```

    1319 READ\# 1
    ```
```






```
```

    134E REH[\# 1 : E
    ```
```

    134E REH[\# 1 : E
    1250 NEXT
    1250 NEXT
    15EG NENT
    ```
```

    15EG NENT
    ```
```












```
```

        inne ses.
    ```
```

        inne ses.
    14日G FGUSE
14日G FGUSE
1416 OFF EFROR
1416 OFF EFROR
4

```
```

4

```
```




```
```

    EREL=": ERRL
    ```
```

    EREL=": ERRL
    144 HESIETH \(170 \%\)
    144 HESIETH \(170 \%\)
    145 F Flles
145 F Flles
468 REM ROD NEW OETA
468 REM ROD NEW OETA
1478FFINTH:
1478FFINTH:
148g FrindT\# 1; TG.E日
148g FrindT\# 1; TG.E日
1456 IF I<8 THEN ! SiE
1456 IF I<8 THEN ! SiE
150日 FRINT\#: こE

```
```

150日 FRINT\#: こE

```
```




```
```

152 GFRINT F I 2E

```
```

```
```

152 GFRINT F I 2E

```
```










```
```

1548 คEGIGN\# 1 TG

```
```

1548 คEGIGN\# 1 TG
155 EEEF

```
```

155 EEEF

```
```




```
```

    ":F15
    ```
```

    ":F15
    157G NEXT I
157G NEXT I
I5E日 WMIT zG日G

```
```

I5E日 WMIT zG日G

```
```






```
```

150 GIGF [19

```
```

150 GIGF [19
1516 FHUSE
1516 FHUSE
162 GOTO 2G20
162 GOTO 2G20
206 FE M 1014 OUNS
206 FE M 1014 OUNS
2062 IF LS="に" THEN ZG18

```
```

2062 IF LS="に" THEN ZG18

```
```




```
```

2 の日

```
```

2 の日
261日 FGR $11=0$ TOS
261日 FGR $11=0$ TOS
2026 $\quad$ E=15-」1
2026 $\quad$ E=15-」1
26З IF JE>E THEN $12=0$
26З IF JE>E THEN $12=0$
2940 COSUB 4E106! MISEING MOU

```
```

2940 COSUB 4E106! MISEING MOU

```
```




```
```

206日 $\quad \mathrm{M}_{1}=11 \quad \mathrm{~W} \quad \mathrm{M}=11$

```
```

```
```

206日 $\quad \mathrm{M}_{1}=11 \quad \mathrm{~W} \quad \mathrm{M}=11$

```
```




```
```

$29 \% 510702085$

```
```

$29 \% 510702085$
2086 G 5055206
2086 G 5055206
2G35 MEXT J 1

```
2G35 MEXT J 1
```

```
 HEXT
```

```
 HEXT
```

```
 EGGG EEN EALL EL ENEF DF G FUNG
 2190}E=
 211日 IF Lक<`"に" THEH こ14日
 21こ6 GOGUE SEG6
 21.301 E2=10
 214G REEM D|TFUT RESULTS
 2156 FRINT "EUHH NG: ";Nま 区 FEI
 HT
21EG FRIHT "RUHN TYFE: ";L& E FET
 HT
2170 FEINT "EALOR COMFIG: ":口1#
218w FFIINT "FOON TENF: ":EG
219G PFINT "EFFOM PFESS: ";TG
2zG日 FFINT E FRINT "ETLI dial set
 !1n马: ";25
2ご四 FRINN E FFINT "TEMF" OUT dia
 l \Xiettin\ni: ": こ5
2ここ FFINT
2ここG if L&="L" THEN 2こ6品
2こ4区 FFIHT USING "1PF.5D.ZH" : "
 IH.J ELEC EMERG`': ";EZ:" J"
ここち6 FFINHT
2260 FUR I=0 T0 G
2こ⿱一𫝀口儿
 FTO"
223日 IF I=1 THEN PRINT "MHSS FLE
 W\mp@code{OTT"}
2こG IF I=こ THEM FRINT "TEMP IOT
23日G IF I=3 THEN FRIHT "MHSS FLD
 WIN"
2J10 IF I=4 THEN FRINT "TEMF IN"
23こ日 IF I=5 AN[I ム&="ロ" THEN FFIH
 T "GEFLECTOR"
233日 if I=5 FHH[I [I*="F" THEH FRIH
 T "FOIL REFLEETOR"
 IF I=E THEN PFIINT "GEF TIEEE
235G IF I=7 THEN FRINT "BACKSCAT
 TEF MONITOF"
235G IF I=8 THEN FRINT "DUERSFIL
 L MOWITOF"
237日 IF I=9 THEN FRINT "ENT TUBE
23BD F'RIMT
23@M IF FI<i%=1 THEH 24.30
246LG FFINT "NULL IHTA" F FFINT
241日 G0SリB 4500
2420 GOTG 2550
2430 FRINT "ZERG RHTIHG FERIDO"
 GFRINT "===================
244D FRINT USING 58日: "Gth MOME
 HT:",YE@区,I%
245日 FRINT JSING68日: "1E+ MOME
 HT:",'146.I)
245Q FRINT JSIMG 68日; "2nd MOME
 HT:",YことG.I) E FEINT
247日 FRINT "TRAHSITIONFERIOI" Q
 FCRINT "=================="
```

28S日 ABSIG 1 TO
 ＂：F1要 EEEF
2．G日 WHIT 206ロ
2日1日 ELEAF E［ISF＂REーirsert taf E CLDF in tヨFE grive＂
ごG日 ITSF＂［1OUE＂
293 EHU
SWG REM EHLEHLATE MOWEHTS
 $=57$ 区 $\because 4=813$ 区






364 FOF $\quad \mathrm{l}=\mathrm{H} 1 \mathrm{TO} \mathrm{NZ}$
3的気 K1＝人7
306 50SUE 5060
 $2(0,1)=52$
З 日 B K $k=\%$
3696 GOSUE 5日G
 2（1，1）＝5 2
उ115K1＝89
3120 GロSUE 5060
 2（2，J）＝5
314日 HEXT J
こ15 RETURN
$356 \mathrm{~F} E \mathrm{EM}$ ELEE ENEFGY IHJ
3516 ひこ＝
こと旬 $43=6$
353 I $\mathrm{I}=\mathrm{C}$
3541 I $=6$
35．5 FGFI＝TO G

$3570 \quad W 3=\| 3+W 1(I+T 0+16)$
$358 \mathrm{I} \quad \mathrm{Z}=\mathrm{I} \mathrm{Z}+\mathrm{I} 1$（I）
$359 \mathrm{I}=\mathrm{I}=\mathrm{I}(\mathrm{I}+\mathrm{T} \mathrm{E}+16)$
उEGG HENT I
3616 标 $=10$
$3620 \quad 43=43<10$
$3530 \quad I z=12,16$
3640 I $=13 / 16$
उた56 」 18
$3660 \mathrm{FOR} I=0 \quad T 0$ HE－



3706 NERT I
3716 FETURH
4000 REM MISSING MOG DETEGT
$4010 \mathrm{~F} 1011=0$
$402 \mathrm{FOR} L=1$ TOE
 4 是与
404日 F（J1）＝1

4気至 HERT L
466 EETDFH
45 FEEAFILL HULL EIATH SLITG
451 FDR I＝TO

45.3 Y 1 （J．I $)=-I N F$

454 Y゙き（J）I＝＝I HF
4 4．5 HEKT－
45 EETUEN
EGE FEM MONENT EHLE FOITIUE

E日2 FOR $I=-H \quad$ TG $H-1$

564 F1＝－ 1 丰 21



568 Ee＝
5090 HEXT I
51 GU FETUFF
5206REM FILL HLILL［IHTH FOR L FII HE
5 216 TV＝I INF
52EG E1＝－IHF
5こう Eこ＝－IHF

525 FETUFH

Variable Map

| Proy | ram: | CALC |
| :---: | :---: | :---: |
| A 1 | - | first order correction factor to get orthoyonality between moments |
| by | - | barometric pressure in mm of Hy |
| C1 | - | normalization factor for lst moment |
| C2 | - | normalization factor for 2nd moment |
| Cゆ | - | normalization factor for Uth moment |
| U\$ | - | deflector type descriptor ( $D=$ mirror deflector, $F=$ foil reflector) |
| E1 | - | nominal electrical eneryy injected |
| E2 | - | eneryy injected during C run |
| F1 | - | array containiny flays indicating missing modules |
| F\$ | - | name of file containing raw run data |
| F1\$ | - | name of file in which results are to be stored |
| G | - | throw away numeric variable |
| G\$ | - | throw away string variable |
| I | - | counter |
| I1 | - | array containiny electrical calibration current readings |
| I2 | - | average zero reading of Il before injection |
| I3 | - | average zero reading of Il after injection |
| I4 | - | Il readinys corrected for drift |
| J | - | counter |
| J1 | - | index of sensor data in $V$ being processed |
| J2 | - | number indicatiny unit being searched for in missiny mod test |
| J0 | - | electrical eneryy injected during calibration run |
| K1 | - | midpoint of period beiny calculated |
| $K \emptyset$ | - | calibration factor |
| L | - | counter |
| L\$ | - | run type (L=laser, C=combination, E=electrical) |
| M | - | results output type descriptor (1=display, 2=print) |
| M\$ | - | temporary label for printing name of unit |
| M1\$ | - | -messaye- "Push CUNT when ready" |
| N | - | number of data packets in half duration of any time period |
| N1 | - | lower sensor index of data to be processed |
| N2 | - | upper sensor index of data to be processed |
| N5 | - | number of V1 (and I1) readinys |
| N6 | - | number of throw away numerical variables per line in electrical summary file |
| N\$ | - | run number |
| 01\$ | - | calorimeter confiyuration descriptor |
| P1 | - | 1st moment function |
| P2 | - | 2nd moment function |
| PD | - | Uth moment function |
| R\$ | - | alpha answer to questions |
| S1 | - | lst moment summiny variable |
| S2 | - | 2nd moment summiny variable |
| SV | - | Uth moment summiny variable |

Ay - first order correction factor to get orthoyonality
between moments
B9 - barometric pressure in mm of Hy
Cl - normalization factor for lst moment
C2 - normalization factor for 2nd moment
U\$ - deflector type descriptor ( $D=$ mirror deflector, $F=$ foil reflector)
E1 - nominal electrical eneryy injected
E2 - energy injected during C run
F1 - array containiny flays indicatiny missing modules
F\$ - name of file containing raw run data
F1\$ - name of file in which results are to be stored
G - throw away numeric variable
G\$ - throw away string variable
I - counter
I1 - array containiny electrical calibration current readings
I2 - average zero reading of Il before injection
I3 - average zero readiny of Il after injection
I4 - I1 readinys corrected for drift
J - counter
Jl - index of sensor data in $V$ beiny processed
J2 - number indicatiny unit being searched for
in missiny mod test
$J W$ - electrical eneryy injected during calibration run
K1 - midpoint of period beiny calculated
$K \emptyset$ - calibration factor
L - counter
L\$ - run type (L=laser, C=combination, $E=e l e c t r i c a l)$
M - results output type descriptor (1=display, 2=print)
M\$ - temporary label for printing name of unit
M1\$ - -messaye- "Push CONT when ready"
$N$ - number of data packets in half duration
of any time period
N1 - lower sensor index of data to be processed
N2 - upper sensor index of data to be processed
N5 - number of V1 (and I1) readinys
N6 - number of throw away numerical variables
per line in electrical summary file
run number
U1\$ - calorimeter confiyuration descriptor
P1 - $\quad$ lst moment function
P2 - 2nd moment function
P甲 - Uth moment function
R\$ - alpha answer to questions
S1 - $\quad$ lst moment summiny variable
S - 2nd moment summiny variable

```
TL - factur representiny ratio of temp after
 shutter closes to temp before shutter opens
 ambient temuerature in deyrees C
 - duration in seconds of electrical energy
 injection period
Ul - numeric indicator of unit receiviny eneryy
 (electrical or laser)
U1$ - name of unit receiving electrical eneryy
 array (176 x 10) containiny voltaye output
 readinys for 1U sensors
 array containiny electrical calibration voltage readinys
 - averaye zero readinys of Vl before injection
 - averaye zero readiny of Vl after injection
 - Vl readinys corrected for drift
 - time in seconds of starting point of zero rating period
 - time in seconds of endiny point of zero ratiny period
 - time in seconds of startiny \muoint of transition period
 - time in seconds of endiny \muoint of transition period
 - time in seconds of endiny point of final ratiny period
 - midpoint of zero ratiny period in seconds
 - midpoint of transition period in seconds
 - midpoint of final ratiny period in seconds
 - period duration in seconds
 - array containing 1st moments of 3 time periods
 for all sensors
 array containiny 2nd moments of 3 time periods
 for all sensors
 array containiny Uth moments of 3 time periods
 for all sensors
 - time coordinate of the point under question
 - main calorimeter RTU dial setting
 - temperature out dial settiny
 number of readings averayed to get one data packet
```

```
 1E FEM FRGL "ELGCHH" UHTE-TIME
 8492% % 0.2:25
 ZG IFTIOH EHSE G
```




```
 44 SHGET B.Э.TG.25.2E
 5@ IHTEGEFR I.M.E:
 69 Mis="Fush COHT when resoy"
 TG ELEHF: E GISF"Insert taFe EL
 EO. SUmmAF'Y in driwe"
```



```
 90 ELEAF
10日 [ISF" "IHTA FILE FOE WHILH SE
 HSOR IS TGEE FILCESSE[O"
11日 [ISF" 1. MAIN EHL. RTO"
12G DISF: 2. MASG FLGW OUT"
13@ IISF" 3. TEMFEFATURE OUT*
140 [ISF " 4. MASE FLGW IH"
150 IIEF" 5. TENFERGTURE IM"
160 [ISF" G. DEFLEETGR"
170 0ISF " 7. FOIL FEFLECTOR"
180 [1EF " S. SEFHRATIOH TUEE"
190 [ISF " Э. BHCKSLATTER MONIT
 咋"
20日 [ISF " 1日. OUERSFILL MONITGR
21日 [ISP " 11. EKTENSIOH TUBE"
z2自 [ISF # UISF "ENTEF LINE HO
234 INFLIT F
24日 IF F% = =1 ANO &<=11 THEN 2TG
25G EEEF 区 [IEF E 口ISF "月HAT?"
26@ WमIT 2回日 区 GUTO 90
```



```
 \boxed{,3.35,34日, 350,360,37日,380}0
```



```
 IMETER RTO" & LOTO 3'डW
```



```
 区 F0TG 3.90
30日 F卉="TEOUT*" 区 N$="TEMPERATUR
 E OUT" 区 GGITO z90
马1日 F事="MASI快" [隹="MASS IN" 区
 GT0 39G
32日 F事="TEMIN*" 区 M本="TEMFERETUR
 E IH" G GOTO 390
3可 F$="GEFLC*" Q M$="MIRROR EEF
 LECTOF" E GOTG 3.96
Z40 Fक="FOREF*" (1) M*="FOIL REFLE
 GTGE" E GOTG בGE
35日 F事="与FTUB*" 区 M音="SEPARHTION
 TLEE" E GOTG 396
36日 F事="8SMUN*" % M=="BHCKSCHTTE
 F MONITOR" E GOTG ZGC
37日 Fक="0SMUN*" 区 M*="口VERSPILL
 MONITOR" E GOTG JGG
38多 F="ENTUB:*" & M= "ENTENSION
 TUEE"
39日 M=1
40041%="ア"
41日 CRT IS M
```

420 CLEHF E GIEF M\＄
43 IMAGE 12H．1\％，SU．JUE
440 FSEIGN\＃ 1 TO F
450 FOR $I=5$ TO 59
46 GH ERRGR GOTG 96日
47日 RERD\＃1：N\＄，01F
48 GEH RE\＃ 1 ：TE，EG
490 IF Rく 1 AHE Rく》 THEN 5 ［日
504 REHO\＃ 1 ：こ



52 E ［ISF＂LINE＂：I＋1 区［ISF
536 DISF＂RUN NO：＂：N Q OISF
54 ［ISF＂ELEL：EHERGY：＂，四；＂ ＂
55 ［ISF＂CHL EONFIG＂：Diき
566 LISF＂POGM TEMF：＂：TS：＂aEG E＂
57区 DISF＂BRROM FRESS：＂：BG：＂mm Hヲ＂世［ISF
5 S日 IF $\mathrm{F}<1$ THEH EG0
596 ［IIGF＂RTG［IIHL SETTIHG：＂：Z 0区 IISP
E日 IF F＜ 3 THEN 62g
G10 OISF TEMF OUT OIAL EETTING

52日 IF M＝2 THEN 5．5日
E30 EEEP 世［ISF MIF e FHUSE
E4日 DISF
650［ISF＂EERO RATING FERIO［＂区 ■ISF＂$=================="$
ESQ OISF USING $43 \overline{3}$ ；＂GTh MOMENT

ETG［ISF USiNG 430：＂1三t MONENT ： 1 Yl 6
ES日 DISP USING 430 ；＂2nd MOMEHT ＂，＇ど（0）
69日 ロISF
700 IF M＝2 THEN 730
716 EEEF 世 GISF M1年 E FHUSE
T2日 UiSF
73日 ■ISF＂TRAHSITION FERIDO＂区 $15 \bar{F} n================{ }^{\prime \prime}$
T4日 DISF USING 430 ：＂Eth MOMENT ：＂，＂回
F5B［ISF USING 4.3 B ：＂ $1 \equiv$ T MOMEHT

 ：＂，「ごい 区［ISF
770 IF $\mathrm{F}=2$ OR $\mathrm{R}=4 \mathrm{OR} \mathrm{R}=5$ THEN 8 O E
TS日 UISF USIHG $430:$＂CHL FHCTOR ：＂：\＆ 6
$796 \mathrm{GTO} \mathrm{B10}$
E0G DISF ISING 430 ：＂STAEIL FAC T：＂，K 6 米」
日1日 पISF
320 IF M＝2 THEH 85
836 EEEF 世［ISF M1年 世 FPUSE

```
64日 [ISF
E5G [ISF "FINAL FHTING FEFIGI" #
 [IBF"===================="
EEG [ISF HEING 430; "Eth MOMENT
 1,%区<1)
ETGISF |SING 430: "1ET MOMENT
 "%161%
8日G [ISF BGIHG 430% "End MOMEHT
 1, %201
EG6 IISF
90% IF M=z THEH 9.0
910 EEEF [[ISF M1% E FHUSE
926 [ISF
9.30 NEKT I
946 IF M=2 THEH GEM
956 EEEF 回 [ISF "File ":F来;" iE
 full" EFF EFROR E GOTO 104
 |
GEG OFF EFROR
976 IF EFFEH=71 THEH 1016
G8日 EEEF E CISF "EFFH="; EFRFH;"ER
 FL=":ERRL
990 ASEIGけ# 1 TO $
10日G FHUSE
1010 IF Ø1&く\"F" THEH 105@
10EG BEEF 区 [ISF "FILE IS EMFT'!
1030 F0TG1136
164日 IF M=E THEH 112E
1050 [ISF "DO 'VG NANT A FRIIHT-0
 UT DF THE FILE'% &'OE H`""
 i
1060 INFUT F゙ま
```



```
 TG 16S0,1106,1130
1日EG EEEF 区 [ISF "HHFT:"
1096GGTG 10EG
1106 M=z
1110 GOTD410
1.2GM=1 & EFT ISM
1130 EEEP 区 [ISF "[IUHE!"
1146 LISF G DISF "TG HCDESS MORE
1150 EHD
```

Variable Map
Proyram: ELSCAN
Date: 840'2.
B9 - barometric pressure in mm of Hg
F\$ - name of summary file to be accessed
I - counter
Jy - injected electrical energy in joules
$K \emptyset$ - calibration or stability factor as appropriate
$M$ - data output method descriptor (1=display, $2=p r i n t)$
M\$ - name of unit in F\$
M1\$ - -messaye- "Push CUNT when ready"
N\$ - run number
Ul\$ - calorimeter configuration descriptor
$K$ - numeric answer to questions
K\$ - alpha answer to questions
Ty - ambient temperature in deyrees $\mathbb{C}$
Yl - array containing lst moments for zero rating, transition, and final rating periods
Y2 - array containing 2nd moments for zero rating, transition, and final rating periods
$Y \emptyset$ - array containing Uth moments for zero rating, transition, and final rating periods
$Z \emptyset$ - dial settiny for either main calorimeter RTD or temp out sensor

10 FEF FFOM＂FACTGE＂■IATE－TJME日4624 『 16： 5
こG FEM FF＇FIES GOFE FGF LFEIFT F EOM DUTSIDE AMEIENT TO FTC A HI TEMF GUT．FGE OTHEE MOLUL E5
3月 REM HWERHGES ELEDTFILHL FEGU LTS NIG FEUMISIUNS FGF MASE IN OR OUT GF：TEMF IH
4 4 LIFTICN EHSE G
5 ELEHR

 3．5．［0 $5[28 \mathrm{E}]$
 4），
30 DISF ＂Insert tsFE ELEE．EUMM HEX 1 ri driwé
G日 EEEF 世 LISF＂Puミh CONT when「ショのが
109 FHUSE
110 ELEFR Q DSF＂Enter line mo at semsar desired＂


190 ［İF＂$\quad$（ Extシnsion Tube＂

21日 INFUT RE $\bar{R}=I N T$（R）
2201F F$\rangle=1$ OF $\mathrm{F}<=\varepsilon$ THEH 24 E
230 DISF E EEEF \＆LISP＂WHATE＂世 GOTO 216
24日 6． $504,314,320$
 T近 世 BUTG 三ヨG
区 GUTG 3.36
 CTOF＂E GOTO 3כめ
26日 LEGTOF＂E GOTO 3 3 G
 TUEE E GGTE ZこE


310 F手＝＂0SMOH＊＂区 Ms＝＂0UERSFILL

329 Fs＝＂ENTUE＊＂区 Ms＝＂ENTEHSIDH TUEE
330 ASEIGH\＃ 1 T日 F末
$33 \mathrm{k} 1=\mathrm{y}$
34 FOR I＝0 TO 58

| $\begin{aligned} & 350 \\ & 350 \end{aligned}$ | OW EFFGR GOTO 470 REFD\＃ 1 ，Hま，D1李 |
| :---: | :---: |
| Э 9 |  |
| 36世 |  |
| 396 | IF F＜ 1 AHEFCQ THEN 4 1E |
| 400 | FEFC\＃1 ；2 |
| 416 |  <br>  |
| 420 | $\cdots \mathrm{N}=\mathrm{Ni}+1$ |
| 4.36 | HECT I |
| 440 |  ＋411＂ |
| 459 | OFF ERPDR |
| 46 C | Whit zab 区 Gota sag |
| 476 | OFF ERPOR |
| 450 | IF EEFH＝Ti THEN EIE |
| 496 | EEEF E ISP＂EREN＝＂：EREM：＂ER FLL＝＂：EFEL |
| 509 | FHUSE |
| 510 | IF H1＞0 THEH 540 |
| 520 | ELEAF E［iSF＂File＂；Fi＂$: \equiv$ <br>  |
| 536 | ［ISF E GOTG 2564 |
| 546 |  |
| 556 | $\text { IF HI } \Xi \text { FH[ } F=1 \text { OF } F=\Xi \text { THE }$ H 22013 |
| 55 | GuEuE 76 ba |
| 560 | REA EELECT HFPDFRIATE RUNS |
| 576 |  OE |
| 585 | ELEFR Q DIEF M |
| 595 |  |
| 609 | ［ISF ISING 57日：W以！O．K1： ，vicil |
| 610 | HENT I |
| S20 |  H． |
| 63.3 | IHFIT R |
| 546 |  （i）E50． 60.896 |
| 6.56 | BEEF E UISP＂INHAT？＂E GTO E 36 |
| E59 | GISF－DISF＂What rean noe |
| 879 | I AFUT Hב |
| 586 | ［SFF USIHG＂K＂：＂IE＂，HG |
| 59 | the EGrtect no？\＆i ur N＇ HFUT PE |
| T $0^{5}$ |  |
| 716 | BEEF E UISF＂INHAT＂G GOTD 5 4 |
| 720 | $\mathrm{HE}=-1$ |
| 739 | FOR I＝TG N1－1 A FINGINGE\％ |
| 74 |  |
| 759 | HE＝1 |
| P6． | HEST I |
| 779 | IF H2\％－1 THEN 5以 |
| 76区 |  |
|  | ヨミてい！ |

350 OH EFFOR GUTO 476
350 REFD\# 1 , Hま, 日1条

390 IF Fく, 1 FHIC Fくる THEN 416
4可 REFU\# 1 ; Z


4 E 的 $\mathrm{N}=\mathrm{N}+1$
430 HECT I
44 EEEF W UTGF "FILE ":F: : 1 "
+411"
450 GFF ERPDR

47G OFF ERROR
4 SG IF EFFH=Ti THEH EIE
49 EEEF E DISP "ERRH="; EREH:"ER
FLL =": EFEL
510 IF H1>0 THEH 546

EmF! ${ }^{\circ}$
3 UISF W GOTG 250
54 HSSIGH 1 TV :
55 IF H1\& FHLI \&F=1 GR F:ニこう THE
H 22010
555 GUEUE 7604
56 REM GELECT HFEOFRIATE RUNG

DE
509 CLEFR P DISF Mt
596 FGR $I=6$ T $01+1$

, V1ध1
E10 HEXT I

G39 [HFUT R



ES日 GISF i世 OISF "What reun no?
G79 IHFUT Hヨ
EG日 LSEF リSING "K": "LE"•NG

E可 IHFUT F 手


TIG BEEF 世 UISF "NHAT" G GOTD Б
E
720 $+6=-1$
T3日 FGR I=日 TG NI-1 FIMG INUE:

7.5 मだ=1
PE日 NE ${ }^{\text {PT }}$ I
F79 IF H2く>-1 THEN B95
ヨふ2け!


```
80日 FIR I = VE TO \(+1-2\)
giv if He=ta-1 THEM BEG
```




```
34日 (1) (I)=61 (I+1)
BEGT NEKT I
86. \(\mathrm{H} 1=\mathrm{H} 1-1\)
QTG IF H1\% THEN 58日
ETS ELEAR Q EEEF Q GISF "Ho vヨlu
 es iett to be considered"
ESG GOTO 25日以
Q90 IF H1 AHロ \(\mathrm{R}=1\) DF \(\mathrm{R}=2\)) THE
 If zebu
```



```
 36
```



```
Gこの GOTO 1EG6
936 IF RくI HHE Fく, THEN 950
949 G0E11E 3606
950 IF \(R=1\) DF \(R=2\) THEN GTV
96 GD5リE 40®®
979 F05118 5606
```



```
G96 REM OUTPUT RTD \& TEMF UUT FE
 SULTS
```




```
\(1029 \quad M=1\) 区 CLEAR
1034 CRT is M UISFMt EISF
```



```
 Ctロr:".は
```



```
 to [धサ1ヨtion:".KE
```




```
1079 DISP 巴 DISF JSING 101日: "9
 E\% Cort int:", FIES(10日迷T畨Kк人，＂\％＂
1036 UISP USIHG 1010 ; "95\% Cont
```



```
1530 UISF USIHE 1016 ; "90\% Gonf
```



```
11 可 IF \(\mathrm{H}=2\) THEN 1130
1110 BEEF © [ISF "Fush COHT wher
 ready"
1120 PHisE
1130 UISP Q DISF LSINA 10日G : "D
 ritt CoEt: "Ai
1146 UISF E OISF USING 1610 : "S
 ta. [iev: "f fie
1150 [i5SP USIHE 1日16; "\% Sta [e
```



```
1160 [15P 巴 DISF ISING 1日1日: G
```



```H1）．＂\％＂
1176 UISP USIHG 1 月1日. "95\% EOnt
```



```
113 DISF USING 191日; "F9\% EOMt
```




```
S日G FDR \(I=N E\) TO \(+1-2\)
316 if He＝ti－1 THEN B5
```



```
3．301）（I）＝ki（1＋1）
ESG NEXT I
－ \(1=+H_{1}^{-1}\)
Q日 IF H1＞0 THEN SE日
GS CLEHR Q EEEF Q GISF＂Ho vヨlu es lett ta be considered＂
ESG GOTO 25日以
```



``` 36
```



```
ごG GUTO 1EGQ
94日 F050E 3606
Э50 IF \(R=1\) DR \(R=2\) THEN GTV
96 GD51JE 4046
\(95 \mathrm{IF} R\) R 1 HHO R \(>2\) THEN 140 M
G99 REM OUTFUT RTD \＆TEMF HUT FE SULTS
```



```
1016 IMHGE IEA， \(2 \times, ~ \Xi D E, ~ 2 X, ~ A\)
1636 CRT is M UISF M 世［ISF
194 ロISP リSIHF 19日も；＂Galit Fa ctor：＂．K
1050 UISF E OISF USING 10日G：＂S ta［ív1ation：＂，KE
```




```
1月7日 ロISP 巴 DISF USING 101日：＂g
```



``` k．）＂．
1036 UISP USIHG 1010 ；＂95\％Cont
```



```
1030 UISP USIHG 1016 ＂ \(99 \%\) GORf
```



```
11 日G IF \(\mathrm{H}=2\) THEN 113 G
1110 BEEF［ISF＂Fush COHT wher ready＂
112甘 PHIEE
1130 CISP Q DISF LSING 1日G日 ；＂D ritt CoEt：＂Ai
114 ［ISP 巴 OISF USING 1 日の0：＂S ta．［IEv：＂．FB
1150 ［iSS USIMG 1日10；＂\％Sta 口e
```



```
1150 ［15P D DISF USING 1010 ： 9
```



``` UISP リSIHG 101日＂95\％Cont
```



```
1130 DISF USING 1015；＂ЭG\％EQnt
```


 ＂．${ }^{\text {H2 }}$
120日 U15F Q OIEF II
1玉16 IF $M=2$ THEN 135 E


1 そुG IHPUT E

TG 1254．126日．1260
125日 BEEP 世 ■ISP＂WHAT＇？＂巨 GTO 1ここも
126日 ज051日 7506
127060101624
 the results＇©（Yor Hy＇；
1290 INFUT E 丰
 TO $1316.1320,1350$
 1290

1336 Hi＝ERT IS
$134950 T 02060$
140 E EM DUTPUT HHE ILLAR＇Y MODILE 5
$1416 \mathrm{~m}=1 \mathrm{~L} \mathrm{LEAF}$
142 ORT IS M 世 IISF M E［ISF
1430 LISF USIHE 10 GQ ；＂GIIGFB Ct：：K
 ta［1Ewiation：＂くく


14E日 UISP［ISP USIMG 1010：＂G
 ペ，＂\％＂
1479 CIGP USIHG 101日 ： $95 \%$ Ent

1436 UISP ISIAG 1016 ；＂ $99 \%$ Conf

 ＂．N1
150 0iSp GISF I1F
1510 IF $M=\approx$ THEN 1E3G
1520 ［15F＂［io vou want to inange 1rita note？\＆or H\％＂：
1534 IHFUT Eक
 T0 1556，156日，1586
155 БEEP P DISF＂WHAT？＂E GOTO「こど
1569 g08U8 7506
1570 GUTO 1420
158 BISF ＂OQ You want ヨ GOP\％gf the resulte？\＆Y ar N\％＂：
I5G日 INPUT RD
150日 TG161日，162区，163世
151日 GEEF Q OISP＂WHAT？＂Q GOTO 1596


```
! 5月 M=1 区 EFT I'S M
1646 GOTO
2曰日g FEM SHUE RESHLTS DH TAFE
2区14 GLEFF 区 [ISF "IG You wart t
 ロ ミavに result
 ar H:
ごこの INFUT 民゙ま
```



```
 T1 2046, 2056, 2506
```



```
 CH2
2 פ5 FGR, \(1=\mathrm{K}\)
```




```
2084 lF Fixl THEH 2116
2990 F
```



```
211 जि IF Rくこ THEH 214 G
212日 FG(z.4)=H1
\(2130 \mathrm{FD} 4,4)=1\) 日可 \(4 \mathrm{~B}, \mathrm{H}\)
214日 ASEIGNO 2 TO "GALFAX"
2150 FRINT\# 2 ; FQ
216日 FRINT\# こ ; I以
2179 HSSIGN\# ב T门
```



```
 +ile CALFAK
```



```
22日Ğ BEEP QISP UISF "HOT EHO
 UGH RUNE FOF LEAET SQUAFES
 FIT"
2こ10 以ロT0 ここのム
250 BEEEF Q [ISF "[IINE"
2516 ENL
30日G REM LIN LST S日F FIT धHATEEL
 L号
3010 51=9 日
 \(5 E=1\)
302ら FiRR \(I=\) G TO M1-1
303日 VZ(I)=ण141) 2
```



```
305日 K2(I)=K1(1) こ2
\(305051=51+4<I\),
307 日 \(52=53+414\)
308日 \(53=53+43\) (I)
3096 54=54+62CI)
5106 55=55+k3 (I)
311 WEXT I
```




```
3130 4J=53-31*S2/41
```



```
3150 W2=55-52へこんH1
\(316 \mathrm{G} \quad \mathrm{W}=5 \mathrm{~B}\) 人1
317日 K \(5=5 \mathrm{CH}\)
3180 FEM A1=SLOFE:K=Y-1Ht
\(3130 \mathrm{HI}=43 \mathrm{H} 1\)
3200 K= K0ーH1まり日
3219 REM M4 \(=6\) (Y, \(2: 45=66^{3}\)
```



3236 $\mathrm{H}=\mathrm{B}=\mathrm{OF} \mathrm{F} 4$



32GE FE＝SURCHO


उこGQ RETURN


402日 FUF $1=0$ TG＋4－1


$495051=51+11.1$ ，
$406 \mathrm{Gc}=5 \mathrm{E}+\mathrm{k} 1 \mathrm{l}$

$40865=55+r 2$ CI
4 49G HERT I

$4116 k=52 \mathrm{HI}$

4150 US＝SWFUG

$4150 \mathrm{KE}=\mathrm{GBR} \mathrm{CG}$
41 E日 RETIJEN

T5 595

560 KI
$502.60 T 0 \quad 5640$
$5630 \quad$ H2 $=$ 性 $1-1$
ED4日 IF H3＞4 THEN 5DE日
565
5． $3945-4135$＊（4．3）


567 GOTO 518 E


$5590 \quad T 5=N 3 /-6115593191+.510110$


5115 TE＝63．EET

513 IF Mび〉 THEN 51E日


515 に可 5 176
 5日270184＊13）＋（1606
517 FEETURH
E日G FEM ROUTINE FDF 1 UATA FT
6日1曰k＝kl！
Eの20 K8＝
$5 \bar{\sigma} \quad \mathrm{HE}=9$

60 に T

607 T T＝


```
EGGG RETURH
TGOE EE& TDEN INFG
T010 IF F==1 THEN FIT="员" FES="
```




```
 IF R=4 THEH F1车=":" & E%="
```







```
7日G日 HGSIG的# 3 TG "GFLFAK"
7100% FEH[井 \Xi ; FGO:
F119 REFD# 3 ; I多
7120 F1=FOS(I目,F1湾)
```




```
T150 RETURN
F5BD EEM MAKE NEM IHFO NOTE
7510 LISF E [ISF "TYFE in riew if
 t口 note[m.ヨx=35 &nar]"
7520 INF|IT 11%
753日 F.3=FDSG[G*,"子")
P54 IF R<<1 THEN T57G
```



```
ア56G EGTG 75@@
```



```
]
FSBG FETURN
```

```
Al - drift coefficient (slope from least squares fit)
A8 - standard deviation of Al
AY - variance of Al
F\emptyset - ४ x 4 array containiny "best" values
 of temperature sensors
F$ - name of electrical summary file to be accessed
l - tnrow away variable
1 - counter
1\varphi$ - alpha striny containing info notes and delimiters for
 all % sensors
11$ - information note for data being considered
J\ - electrical eneryy injected
K - "best" value of calibration factor
Kl - array containiny cal factor read from elec. summary file
K2 - array containing Kl terms
K8 - standard deviation of K
K9 - variance of K
K\emptyset - average value of Kl
M - results output type descriptor (1=display, 2=printer)
M$ - name of sensor represented by F$
N1 - counter of lines of data
N2 - index of run data to be edited out
N3 - deyrees of freedom in t-statistic eoutine
N9 - run number for data to be edited out
N\ell - array containing numeric equivalents of N$
N$ - run number
UI$ - calorimeter confiyuration descriptor
P1 - position of P1$ in I#$
P2 - position of P2$ in IV$
P3 - position of last delimiter in IИ$
P1$ - leading delimiter for info note
P2$ - trailing delimiter for info note
K - numeric answer to question
k$ - alpha answer to question
 - summation of V1 terms
S2 - summation of K1 terms
S3 - summation of }\mp@subsup{\textrm{VI}}{2}{}\times\textrm{kl}\mathrm{ terms
S4 - summation of V12 terms
S5 - summation of K1 terms
T5 - }95\mathrm{ percent t-stat
T9 - ambient temperature in deyrees C, also after line 97U,
 99 percent t-stat
T\psi - }90\mathrm{ percent t-stat
V1 - array containing lst moments of zero rating period from
 elec. summary files
V2 - array containiny squares of V1
V3 - array containing Vl x Kl terms
VQ - averaye value of V1
W1 - sum of squares of the V1 residuals
W2 - sum of squares of the Kl residuals
```

W3 - sum $_{2}$ of squares of the $V 1 \times K l$ residuals
W4 - $\left(W 3^{2} / W 2\right) \times(N 1-2)$
Wb - square root of W4
$Z \emptyset$ - dial setting of main calorimeter RTD or temperature out (as appropriate)

```
 CG FEM FFOG "FILENM" [IHTE-TIME
 -4 22 29 12:3.
Et UFTIOH EAEE G
```







```
PG CLEAR B SEEF
```



```
 1の明明品
G5 [15SF MI 区 FPIISE
GE CLEAR
```




```
こ日 INFUT F里
13 MSEIGN\# 1 TO Fま
```



```
15 FEEDA 1 ; TG, EG, U1
150 IF U1《○ THEN 18 B
176 EEFII\# 1 ; 25.2E
1马以 REHU\# 1 ; リ\&
1 G6 IF L母="レ" THEH 2ふ0
2旳 REFO\# i : แ1玉
216 FEFI\# 1 : TG.E1, NE
22 REAG\# 1 ; u1i . Il
236 ASEIGN\# 1 TO :
24日 GLEAR E OISP USING "K" : "Co
 nterte of tile ":F我: ョre if
 memory"
250 WHIT 20064
25. 101
270 LLEAR E EFT IS M
26区 [ISF "EUHI No: "; Ht
29G [ISF 世 OISF "Fun TYFE
```



```
 - 10
```



```
 - EEG \(\square^{\text {i. }}\)
32日 Disp "Rarom Fress: "iEP;
 "mm \(\mathrm{H}^{\prime \prime}\)
33. IF Lf="L" THEN B日
```



```
 " ; "Fom Enerョy: ", E1, " J"
350 IF M= THEN SEO
35 OISF 世 OISF M
37 FHLSE
```



```
 EF
```



```
\(40 \mathrm{FGR} I=\mathrm{G}\) TO HE
410 [ISF USING " \(50.3 \%, M 20.20 .2 \%\)
```



```
42 G HERT I
430 IF \(M=2\) THEH 466
44 OISP 日 OISFMF DISF
45 FFLUSE
```




```
 [IGF
450 IMHGE & "UIAL GETTIHG", & MEG
 2
49[[F U1本[1,1]="M" THEK E40
506 㐿=|1手[1,1]
```



```
52G G0SUE 2506
536 5010 1146
540 [ISF "MASS FLO!N IH" 区 [ISF
 | 1 = 5
 \square0Gue 2564
 [ISF & [ISF "NHES FiIM DUT"
 E LIEF
5%0. 11=1
500 6G51E 2500
```



```
 | [1]:F
Et贝 -1=4
```





```
60 GEGUE 2%06
GGG UISF E IISP "CFLDEIMETER RTU
670 [5SF USTNG 4BQ : 2S & J1= 人
68G FOE|E 2SGE
G0%GTO 1146
BGE REM DUTFUT L & E FLINE
810 FDF J1=6 TO G
```



```
 ,930,956,1606,1620,1040,1509
33G [ISF W DISF "CFLOFIMETEF FTC
84G [ISF USING 480; 25 区 -2=6
364010 1080
B50 DISF E OISF "MHSS FLDN OUT"
 E UISF
87日 G0T0 1480
8GG OISF W UISF "TEMFERNTURE DUT
BGE ISGFUSING 4B日; こた
906 50%O 1018G
G15 01SF E JISF "MASS FLLGM IN"
 &15SF
920 [口TO 1086
ЭGG DISF G UISP "TEMFERATUPE IH"
 | [ISF
G45 50T01089
950 IF [#="F" THEH #86
960 GISF छ UISP "DEFLECTOF" 区 |]
 GF
976 GOTG1日ア品
PS旦 OISP OISF "FOIL NEFLEGTOF"
 & [IEF
```



```
1坛 UISF Q IISF"SEFAFATION TUB
 E. i ETEF
```

```
161964070 107%
1520 OISF G DISF "BACKSCHTTER MO
103M 50T0 1075
104日 OISP Q GISP "OVENEPILL MONE
 TGF" & IISF
1050 G0T0 10%%
10EG OISP Q OISP "ESTEHEIDN TLEE
 E IISF
1076 |=10-11
148G GOSUE 20G4G
199日 IF F=1 THEH 112G
116M [ISF "HULL [IFTA"
1110 G0T0 1136
112G GOSUE 2500
113日 1&ENT J1
1146 iF M=% THEN 123G
115日 OISP E EEEF E UISF "OO %O|
 WFIMT F COFY OF THE [IATAF"
1160 INFUT FE车
```



```
 T0 1180,1200,1236
11E日 EEEF 巴 पISP 区 DISF "LHAT?"
1196 GUTO 11EG
1200 k= 2
1EIG CFT IEM
122G GOTO 2SQ
123白 戍=1
1240 ERT IS M
135日 BEEF E DISF 区 [ISF "MWNE"
12EG UISF & DIGF "RE-RUN PEOG TG
 READ MOEE FILES"
1270 ENG
2@जG FEM MISGINI MOUULE EIETEET
2016 F=0
```



```
2030 FOF:L=1 TOG
```



```
2056 F=1
2GEG HEXT L
2G7E RETURT
250G REM FRIHT OUT SEHSOR UHTA
2510 INAGE उ[1, 2X,NED,4[1,4%, उ[, z&
 H20.40
2520
2530 015P 1SING 2510; K+1.W(K,J
 1),K+8%,N(K+88,11)
254日 HERT K
2550] RETUFH
```

```
BY - barometric pressure in mm of Hg
U$ - deflector type descriptor (D=mirror deflector,
 F=foil reflector)
E1 - nominal electrical energy injected
F - flay in missiny module routine (U=missing, l=present)
F\ - name of temporary data file to be accessed
I - counter
11 - array containing electrical calibration current readinys
Jl - column index in V indicatiny particular sensor
J& - numeric indicator of module
J2$ - striny equivalent of J2 for comparing in missing
 module routine
K - counter
L - counter
L$ - run type (L=laser, C=combination, E=electrical)
M - results output type descriptor (1=display, 2=printer)
M$ - -messaye- "Push CONT when ready"
Nb - number of Vl (and Il) data points
N$ - run number
01$ - calorimeter configuration descriptor
K$ - alpha answer to questions
Ty - ambient temperature in deyrees C
T\emptyset - duration of injection period in seconds
U1 - number of module receiving energy (laser or electrical)
U$ - one letter descriptor of unit receiving electrical
 eneryy
U1$ - name of module receiviny electrical eneryy
V - matrix (176 x 10) containiny output values
 for all sensors
V1 - array containiny electrical calibration voltage readinys
Zb - main calorimeter RTU dial settiny
Z6 - temperature out dial setting
```

C7． ＂CHMUN＂
Proyran Listiny

```
 E FEM FFDG "CHMOR" IHTE-TIME E
 402% E-5#.5
1] ELEHF
```



```
4G DH KE!# E,"GE" GOTG EGG
50 OH KE%# s,"@7" GOTG 700
60 G% KE%# 4, "GE" GOTG 90G
79 OH KEY# 5."@5" GOTO 1100
SG4 O.f KEY# E,"E4" GGTG 1E0G
S5 OH KEY# F:"SELECT" GGTG 150日
96 OH KE'## E,"STOF" GOTG 14G
G ILEAR
92 [ISF "Fbsh U0K ta Eormert aF
 FrgFriate scgminer charmel to
```

    CHM " UTSF
    G3 [1]SF"FuEnitiz SELEET letミ
You choosegny Eharinel"
1 GO KE' LAEEL
110 REM IOLIMG LOUF
12 EEF
13 GOTO 110
14 LISF "PFGGRAM TERMIMATED"
15 EEEF
150 EHII
उロ0 DUTFUT 759 USING "K"; "ロの"
310 GOT0 91
506 DUTFUT アGS USING "K"; "GS"
510 G0T0 E1

71日 G0T0 91


- G16 GUT E1
110日 OUTPUT アGG USIHG "K": "ब5"
1110 G070 Gl

1316 GUTO 9
15 D日 ELEAR Q DLSF "INHAT CHAHNEL"
151日 INFリT Gま
152 GUTPUT アGG USIHG "K" ; 区
1550607091


## Variable Map

C\＄－channel command to scanner

```
 三 FEFM FFUG "KEFCG" IATE-TME E
```



```
 CLEAF
 [ISF WHAT BGLTHEE LIMIT";
 1HF口it Ul
 IF AESENO IG THEN TH
 1. \(1=4\) によ
 GけTE EG
 ト1 \(=4\) -
```



```
 \([1]=\)
 IF \(1<\) G THEH 1 BG
 IF \(1>10\) THEN 156
 ロこ=
30 GOEUE 10 GE
14 以0T0 240
\(150 \quad 52=6\)
15 以णEUB 1900
176 50T0 24
180 IF U1<-16 THEN 2この
\(190 \quad\left[\begin{array}{c}20 \\ \text { - }\end{array}\right.\)
```



```
こ16GOTO 246
229 \(\square^{2}=1\)
23世 G0SUE 1 世の区
24日月童二戠
25日 REM SET CURREMT LIMIT
26G [ISF
27G [ISF "GHAT LIRREHT LIMIT":
2S6 IHFUT UZ
290 11=2
36 C [10
```




```
33日 85= 吅
335 GGSLIE 5 GU
```



```
350 [ISF
369 EEEF
37日 [IEF "KEFEO SET TO : \(\because \mathrm{y}:\) : U0
```



```
 EHá
5 G日 REM - ROMTINE TO SET DUM \& B
 CFINIVEF:
51 IF HES(U1) 15 THEH 545
520 OUTFUT FEG USIHE "K"; "11"
530 GTTO 5.50
540 OUTPUT 709 USIHG "K" , "さ2"
556 OUTFUT FE4;"RE"
56 LDK HL アご
\(5 \%\) HEGRTIO
56 RETURH
10日G KEM CDHVERT UG TG RAGTK 16
1010 LET E1=FLGOF (vi/1E)
\(1020 \quad 45=\sqrt{0}-16\) 却 1
1036 LET EZ=FLGORCE1/1E)
1040 U4=E1-15*E
\(1054 \quad[13=E 己\)
```




```
Program: KEPCU
Uate: 84U2Z2
A$ - voltaye command to power supply
B$ - current command to power supply
U1 - number indicatiny SN488 channel (1=voltage, 2=current)
UZ - number indicatiny SN488 ranye
D3 - lst nexadecimal diyit (MSU) of power supply command
U4 - Znd hexadecimal diyit of power supply command
Db - 3rd nexadecimal diyit (LSD) of power supply command
U0 - amount nexadecimal number exceeds y
U3$ - 3rd character in power supply command (MSU)
D4$ - 4th character in power supply command
 (2nd hexadecimal digit)
DS$ - bth character in power supply command (LSD)
D\emptyset$ - temporary string variable for converting hexadec digits
 to string variables
El - quotient derived during hexadecimal conversion
K1 - scaling constant for calculating power supply command
V1 - voltage limit
V2 - current limit
V\emptyset - decimal equivalent of hexadecimal number part of power
 supply command
X$ - transfer striny variable for calculating power supply
 commands
```


## 4. TITLE AND SUBTITLE

A Calorimeter for Measuring High-Energy Optical Pulses
5. AUTHOR(S)
P. A. Simpson, E. G. Johnson, Jr., S. M. Etzel
6. PERFORMING ORGANIZATION (If joint or other than NBS, see in structions)
7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
8. Type of Report \& Period Covered

WASHINGTON, D.C. 20234
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Newark AFB
Newark, Ohio
10. SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)

Two similar calorimeters for measuring laser pulses in the range 1 kJ to 15 kJ are described. The calorimeters, which are electrically calibrated, can be operated anywhere from the ultraviolet to infrared by selecting the proper materials for the volume absorber and deflecting mirror. Operation of each calorimeter is controlled by a dedicated desk-top computer. The theoretical basis for the calorimeters is given as are the constructional and operational details. The computer programs that are used are included in the appendices.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) calorimeter; computer-controlled calorimeter; electrically calibrated calorimeter; high energy calorimeter; laser pulse; volume absorbing calorimeter.
13. AVAILABILITY

X Unlimited
$\square$ For Official Distribution. Do Not Release to NTIS
$\square$ Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

X Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF PRINTED PAGES 170
15. Price


[^0]:    *Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

[^1]:    Variable Map
    F-file number of proyram to run
    X-number indicating type of System $T$ computer beiny used

