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The Modulation Transfer Function for Two-Point and Periodic Objects

Using Gaussian and Lorentzian Resolution Functions

by

Roald A . Schrack

The National Bureau of Standards
Washington, DC 20234

This paper presents an analytical study of the effect of Gaussian- and

Lorentzi an-shaped line spread functions in non-coherent noise-free imaging
systems. A mathematic development is given for the calculation of the

Modulation Transfer Function (MTF). This technique is used to calculate the

MTF for two-point and periodic objects using Gaussian and Lorentzian resolu-
tion functions. Figures and graphs are used to illustrate the comparison of

the results. Relationships between the results obtained are developed that
are useful in the interpretation of experiments used to determine the resolu
tion of experimental systems. The development covers only noise-free, inco-
herent, one-dimensional systems.
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Introduction

In the development of optical or electronic imaging systems some tech-

nique is usually employed to determine the resolution of the system--that is,

its ability to present detail in the image. The resolving power of optical

instruments is frequently given in terms of the ability to resolve two point

sources. Rayleigh's criterion is probably the most widely known example of

this approach. A technique that gives a much greater amount of information is

the determination of the modulation transfer function of a system. The

modulation transfer function shows how well an imaging system will handle

sinusoidal images as a function of the frequency of the sinusoidal image.

The work presented in this paper was done in connection with the develop-

ment of an imaging system used in neutron radiography employing a microchannel

plate electron multiplier. The resolution of the system was found to be

dependent on a number of variables in the optical and electronic components of

7
the system. In this paper the mathematical development of the modulation

transfer functions are given with comparisons to results for two-point image

resolutions for mathematical models that closely approximate the experimental

systems. The material developed in this paper was found to be useful in the

development of the neutron radiography system and should be of value in other

similar systems that are linear and stationary, having response functions that

are real and symmetric.

The resolution of many systems can be given as a response function of the

system. The image produced by the system is then obtained by a convolution of

the object and response functions. The Lorentz distribution and the Gaussian



distribution are analytic distributions that are similar in shape to response

functions that are encountered in many systems. Many of the response func-

tions one encounters have characteristics that lie between the Lorentzian and

Gaussian distributions so that a study of the characteristics of these two

functions is frequently helpful in predicting the characteristics of these

systems.

To simplify the discussion and mathematics this paper will consider only

one dimensional non-coherent noise-free imaging systems.

Tests of two-dimensional imaging systems are frequently done with pat-

terns of lines that effectively reduce the system to one dimension. The reso-

lution of a system is frequently described in terms of the system response to

a single line. This single line—or impulse response is called a Line Spread

Function. The two-dimensional analog is termed a Point Spread Function. If

the impulse response is Gaussian in shape, the Line Spread Function and Point

Spread Function are both Gaussian with the same width. This similarity is not

true for resolution functions that are Lorentzian in shape.

The systems are assumed to be noncoherent in order to avoid the complexi-

ties of phase and interference effects. These effects can be ignored if the

width of the line spread function is much greater than wavelength of the radi-

ation that carries the image. Noise has also been ignored in these calcula-

tions but must, of course, be considered in cases where the signal to noise

ratio is poor.

Two types of periodic objects and images are considered: square and sine

waves. The square wave is used because it most nearly represents the sharp
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change in contrast of black and white objects frequently used as test pat-

terns. Sine waves are considered because from them any other type of image

contrast change can be generated by Fourier analysis.

In this paper the properties of systems having Gaussian- and Lorentzian-

shaped Line Spread Functions when imaging objects with periodic sinusoidal and

square wave intensity distributions are given. These results are compared

with the imaging results obtained for objects having only two cycles.

Experimentalists making resolution measurements should find many of the rela-

tionships developed useful in the interpretation of results.

Description

The Modulation Transfer Function (MTF) describes the response of an opti-

cal system in producing images of different spatial frequency. It is analo-

gous to the frequency band pass curve used to describe the response of an

electrical circuit to electrical signals. In analogy to the gain of an elec-

trical circuit the MTF shows the "visibility" of an image as a function of

spatial frequency. Visibility (V) is defined in terms of the relative inten-

sity in the image:

V = (H
+ - HJ / (H+ + H_)

where H+ is the maximum intensity and H_ is the minimum intensity of the

image. The MTF is the response of system to a periodic object of sinusoidal

intensity variation. Because of the experimental interest the response to

periodic objects having square wave intensity variation will also be develop-

ed. The spatial frequency is usually given in cycles per mm. The term "line

pairs per mm" is equivalent to cycles per mm.
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The image produced by a system for a delta function object is termed

-

the Line Spread Function (LSF) of the system. The symbol G will be used to

denote the LSF distribution. The LSF is defined to have unit area:

G- 60 4 x - 1- •

-CO
The image H, of any other object is the convolution of the line spread

function, G and the object intensity distribution, I:

He*) « 6-cm ® Iw = / (x-^)cUj
-CP

Since it is usually difficult to get a delta function object of sufficient

intensity to produce an experimentally useful image the LSF of an optical system

is frequently determined by using a step function object (."knife edge"). The

image of the "knife edge" object will be the cumulative integral of the LSF, Q

) = J
-(Co

The derivative of Q is then the LSF, G.

- G-M
The MTF and the LSF are complementary ways of describing the response of a

system. Both may be determined by experimental methods but it is easiest to

measure the LSF. The MTF may then be obtained from the LSF by calculation.

Calculation of MTF for Sinusoidal Objects

For an object having a sinusoidal intensity variation of one frequency

the intensity may be written: X(x) = 0.5* ( I + Su^ X )

The image, H produced by an optical system will then have an intensity:

H (X) = 0.5 (( f- V\ h X
)
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and the "visibility", V of H is given by:

v =
- H (3TT/Z) _ |V\

note that:

where

and

H (TT/2.) V M (3TT/2) |^\‘

+oo

H(*) = f g^j ch
f -CO

H[ir/z)- U(W/z) =0.5j^ G Oj) )- ^ "3 )]

5^ (^.TT/i-y
)

— 5 (^v ^TT/x (Las — <2oS wTr/z. 5^^
Using the above relationships it can be shown that the visibility, V

is the Fourier transform of the LSF:
tc^

vc-fO - y ^ = syyoy

The most commonly encountered LSF forms are the Gaussian and the Lorentzian.

The Fourier transform of the Gaussian is a Gaussian. The Fourier transform of a

Lorentzian is an exponential. In Appendix A a number of properties of these

functions and their transforms are given.

let the Fourier transform of I(x), the object distribution be

and the Fourier transform of H(x), the image distribution be

Then the MTF is defined to be:

= <1 (7 )

MTF (p) = &Lf)/ J(f)

but 1<i [?>) m] = & ooj = tT{r
wj

= J-tyMif)

thus mff Cf) =

and for objects with sinusoidal distribution the image visibility is the MTF.

V(p) = MTF(p)
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Calculation of Visibility for Square Wave Objects

Strictly speaking the visibility is equivalent to the MTF only for sinu-

soidal objects. The frequency response of a system to a square wave input is

frequently desired however, because most test object distributions are square

wave in nature, i.e., alternate bands of black and white.

The square wave distribution can be expanded in terms of a Fourier series

of sinusoidal components. Consider the square wave given by the following

conditions:

I(x) = 1.; - ir/2^x < n/2

I ( x )
= 0 ;

ir/2 < x 1 3 it/ 2

I(x+2-mn) = I(x), m = 1, 2, 3

The cosine expansion for this square wave is given by:

where

note that for I(o) = 1. = 0.5 [1 + J(1
- 1/3 + 1/5 - 1/7 + 1/9 + )]

yields the known series: it = 4(1 - 1/3 + 1/5 - 1/7 + 1/9 + ).

Note that

vn= i

The image H(x) is the convolution of the LSF and I(x)

H(x) = G(x) 8 I(x).

Expand H(x) into its sinusoidal components:

= 2 ~yr\ - 1
,
3,^ 7

let H
q

= 0.5, H
m = 0.5 b

m (G(x) 8 cos mx)

but G(x) 8 cos mx = G(mx) 8 cos x
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thus +°°

H
m
(x)= J G(mZ) cos (x-Z) dZ

— oo

and cos(x-Z) = cos x cos Z + sin x sin Z

.

max: (o) = Jjr (mi) CoS £ di_ = L™?)} = XJ(-y„-

^

thus V (p)
=M(0hHM =2 b-Jftm?)

H(0)+H(ir‘) m=l
m

m odd

Square Wave Visibility for Lorentzian LSF

The Lorentzian LSF is given in Appendix A as G (x) = air/ (a 2
*- x 2

) . The

Fourier transform is:

J
= X(y) - *f.p (_-

XTTcLy)

The visibility of a square wave object is then
CO Q&

Vt 1

}) «£ - Z bm [Wf (-2F<vmj)] w =

VW=I
J • m*,

or V(u) = Z bvw Qrj=(-zrr^M )J

The values of V(p) are calculated in Appendix B. The results are

plotted in Fig. 1 and shown in Table 1. The abscissa p is:

p = ya = y -r

2

where y is the number of cycles per unit length (usually given as line pairs

per mm) and r is the full -width half-maximum of the LSF: r = 2a.
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Thus to find the visibility for the value of line pairs per mm that is the

1 r
reciprocal of the full-width half maximum of the LSF we let p = ya = y • ^

= 0.5

and get a value of V(0.5) = 0.055.

This corresponds to a density ratio of

D = - log io(I f
/l-j )

= " log 10 (0 .055) = 1.26.

For comparison purposes Fig. 1 also shows the visibility of a sinusoidal

object.

Square Wave Visibility for Gaussian LSF

The Gaussian LSF is given in Appendix A as

G
g
(x) = B exp(-u 2

)

.

The Fourier transform is

= -iKi0
) = ex-jo and

the visibility of a square wave object is then:

o? P=>

^ (yrv-jo) = E k. L- (^ip) 1 } : va = 3
_,

J

The values of V(p) are calculated in Appendix C, plotted in Fig. 2 and shown

in Table I.

The abscissa p is:

P = Ty/c

where y is the number of cycles per unit length, r is the full width half-

maximum of the Gaussian LSF and the constant c = 2/
|

1 n( .5) |

= 1.67.

To find the visibility for the value of y that is the reciprocal of r we let

and get a value of V( 0.6) = 0.036.

This corresponds to a density ratio of 1.44.
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Comparison of Sinusoidal and Square Wave Visibility

Because of the different width parameters used in the normal representation

of the Lorentzian and Gaussian LSF it is not easy to compare their relative

visibilities as shown in Figs. 1 and 2. A common basis of comparison is the

full-width half-maximum of the LSF distributions, r . Figure 3. shows the

visibility for both distributions plotted as a function of p where

P = ry

and y is the number of cycles per unit length. Note that the visibility for the

Gaussian LSF is greater than that for the Lorentzian distribution for values of

p less than 0.9. For values above that the visibility for the Gaussian

distribution drops rapidly in comparison to the Lorentzian.

The ratio of visibility of the sine wave image. to the visibil ity. of the

square wave image is shown for the two LSF in Fig. 4. Note that for p = ry

greater than about 0.6 the ratio for both approaches tt/4 because by then only

the first term in the square wave expansion is contributing significantly.

Visibility of Two-Cycle Objects

Up to this point the image visibility has been considered for periodic

objects having a large number of cycles. In many cases it is interesting to

know what the resolution of the system is for discerning the existence of two

objects.

The formalism used up to this point does not easily allow for the calcula-

tion of the two cycle visibility. Numerical calculations of the convolution of

different LSF and object distributions were performed. The cases of Gaussian

and Lorentzian LSF and sine and square wave object distributions of several

cycles were calculated and were found to agree with calculations based on the
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analytic expressions derived in the previous sections. The computer program

was then modified to do the case of the two cycle object distributions. The

image amplitude distributions were obtained for different values of the width

of the LSF. Figure 5 shows the image amplitude distributions obtained for a

convolution of the Lorentzian LSF and a two cycle square wave object. The

visibility, V, is defined in the same manner as before:

with H_ being measured at the midpoint of the distribution. When the curva-

ture at the midpoint becomes zero, V is taken to be zero. The visibility is

not defined for cases of negative curvature at the midpoint. The visibility

as determined from Fig. 5 is shown as a function of cycles per unit length' y

as a dashed line labeled L 2 in Fig. 3. Note that for values of p = yr less

than 1 there is little difference between the results for a multi-cycle object

and a two cycle object. The difference becomes quite large however as p

approaches 1.5, where V = 0 for the two cycle case.

Figure 6 shows the image amplitude distributions obtained for a convolu-

tion of the Gaussian LSF and a two cycle square wave. The visibility as

determined from Fig. 6 is shown as a dashed line labeled G 2 in Fig. 3. In

this case the visibility goes to zero for p = 1.03.
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Most test objects have a pattern with a square wave intensity distribu-

tion. If the intensity distribution has a rectangular wave shape—i „e . , other

than a 50% duty cycle, the visibility of the image will be greater and the

value of y for which the visibility goes to zero will be slightly altered.

Figure 7 shows the image amplitude distribution obtained for a convolu-

tion of the Gaussian LSF and a two cycle delta function. The visibility is

about 40% greater than for the comparable square wave and the visibility goes

to zero at p = 1.1.

The square wave and the delta function are the most extreme cases of the rect-

angular wave shape so that the results for other values of the duty cycle will

lie between these cases.

- 11 -



FIGURES

1. Visibility of Image formed by Lorentzian LSF.

2. Visibility of Image formed by Gaussian LSF.

3. Comparison of Lorentzian and Gaussian visibilities.

4. Comparison of Ratios of visibility for sinusoidal and square wave objects.

5. Image distribution for convolution of Lorentzian and two cycle square wave
object.

6. Image distribution for convolution of Gaussian and two cycle square wave
object.

7. Image distribution for convolution of Gaussian and two cycle delta function
object.



p

Figure 1. Visibility of image formed by convolution with Lorentzian line spread
faction. Results are shown for sinusoidal and square wave objects.
The abscissa is p = ry/2.
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Figure 2. Visibility of image formed by convolution with Gaussian line spread

function. Results are shown - for sinuso idal and square wave objects

The abscissa is p = Fy/ 2 f
)

1 n ( 0 . 5 )

|

'

.
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Figure 3c Comparison of visibility of image of square wave object for Gaussian
and Lorentzian line spread functions. The curves labeled Goo and l*
show the image visibility for a square wave object with an infinite

number of cycles for Gaussian and Lorentzian line spread functions.
The dashed curves labeled G 2

and L 2
show the image visibility for

objects having only two cycles. The abscissa p = Ty

.



sine

/
v

square

p = ry

Figure 4. Ratio of visibility of sinusoidal and square wave objects for

Gaussian and Lorentzian Line Spread Functions. The ordinate is the
ratio of visibility of the sine wave object to the visibility of the

square wave object. The curves labeled G and L refer respec-
tively to the ratio obtained for Gaussian and Lorentzian line spread
functions. The abscissa p = yr where r is the full-width half-
maximum of the line spread function and y is the line pairs per

unit length. It is interesting to note that the shape of the ratio
curves replicates the shape of the line spread functions.



X

Figure 5* Convolution of Lorentzian line spread function and two cycles of a

square wave object. The wavelength of the square wave is c = 1/y.
Amplitude of the convolution is shown as a function of position for
five different values of p = Ty. Note that the curvature of the
convolution at the midpoint of the two square waves goes to zero for

p = 1.5. The visibility as a function of p obtained from these
curves is shown as the dashed line in Fig. 1.



RELATIVE

AMPLITUDE

X

Figure 6. Convolution of Gaussian line spread function and two cycles of a

square wave object. The wavelength of the square wave is c = 1/y.

Amplitude of the convolution is shown as a function of position for

five different values of p = ry. Note that the curvature of the

convolution at the midpoint of the two square waves is closest to

zero for p = 1. Analytic extrapolation indicates the curvature is

zero at p = 1.03. The visibility as a function of p obtained
from these curves is shown as the dashed line in Fig. 2.



Figure 7„ Convolution of Gaussian line spread function and two cycle delta
function object . The amplitude of the convolution is shown as a

function of position for four different values of p = Ty = r/c

where c is the spacing between the delta functions. Note that the
visibility goes to zero at p = 1.1.
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TABLE I. Visibility of Images Derived From Convolution of LSF With
Sinusoidal and Square Wave Objects*

LSF Gaussian Lorentzian

P V(sine) V(square) V(sine) V(square)

0 1.00 1.00 1.00 1.00

0.05 0.98 0.99 0.73 0.81

0.10 0.91 0.99 0.53 0.62

0.15 0.80 0.96 0.39 0.47

0.20 0.67 0.85 0.28 0.35

0.25 0.54 0.69 0.21 0.26

0.30 0.41 0.52 0.15 0.19

0.35 0.30 0.38 0.11 0.14

0.40 0.21 0.26 0.081- 0.10

0.45 0.14 0.17 0.059 0.075

0.50 0.085 0.11 0.043 0.054

0.55 0.051 0.064 0.032 0.040

0.60 0.029 0.036 0.023 0.029

0.65 0.015 0.020 0.017 0.021

0.70 0.008 0.010 0.012 0.016

0.75 0.004 0.005 0.009 0.011

p = ry/2 for the Lorentzian LSF and

p = ry/1.67 for the Gaussian LSF.



APPENDIX A

INTRODUCTION

The line shape functions most commonly encountered are the Gaussian and

Lorentzian. The Gaussian shape is the most frequently encountered and is

closely associated with counting type experimental data and other situations

where Poisson statistics obtain. It is also the result when many different

distributions are convoluted together as might occur in an experiment where

the total response function of the system is a result of a sequence of

response functions affecting the observed result. The second function con-

sidered is the Lorentzian distribution, which is frequently the response func-

tion associated with experiments in which scattering plays a role in producing

the observed result.

The Gaussian Distribution " -

Figure A shows the shape of the Gaussian distribution G(x) and its inte-

gral Q(x), where x

The form of the response function of a system may be determined by

obtaining the image of a "knife edge" object. The "knife edge" is mathemati-

cally represented by 0 for x < 0 and 1. for x >_ 0. The image is the distribu-

tion Q(x). The derivative of this distribution is then the line shape func-

tion G(x). If the functional form of the line spread function is known to be

Gaussian, the full-width half-maximum r characterizing the Gaussian may be

obtained directly from the observed image Q without differentiation. Figure

A shows that r is the distance between the 0.12 and 0.88 amplitude points on

the image Q. It should be noted that the distance between the 0.25 and 0.75

amplitude points is r/1.74 for the Gaussian distribution.

c>Qw = G- l%)
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The following table shows the relationship between a number of different

mathematical forms of G(x) that are commonly encountered and their fourier

transforms^} (p) . G(x) is normalized to unit area. The full-width half-

maximum of G(x) is r o

G(x) = B exp(-u Z
) 9 J<J (p) = exp(-p 2

).

the Fourier transform

where

of G(x) is
£
G(x)|

J*

e

1xp
G(x) dx.

= ^(P)

let C = 2 / |1 n ( . 5 ) |

= 1.67

width
parameter

full-width
at half-
maximum

standard
devi at ion B u p

a /T Co a 1/ (
/ 2 it a) x/(/T a) / 2 way

r r r/(/T C) r) Cx/r irTy/C

X c/n 1// 2x / X/ IT f~\ X wy//"!

The Fourier transform of the convolution of two functions is the product of

the transforms:

G
a
(x) 0 G 2

(x) J^Gi(x)j tfi' |^G 2(x)j =/i/x(p) J 2(P)



using this relationship it is easy to show that the convolution of two

Gaussians characteri zed by Tj and r2 produces a Gaussian distribution

characterized by width r
3

where

The Lorentzian Distribution

Figure B shows the shape of the Lorentzian distribution L(x) and its

integral Q(x). Note that for the Lorentzian line shape function r is the

distance between the 0.25 and 0.75 amplitude points on the "knife edge" image

distribution Q.

The most frequently encountered mathematical form for the Lorentzian

distribution normalized to unit area is

The convolution of two Lorentzians of width r
x

and r
2
produces a Lorentzian of

L(x) * < a/lT >

where the full -width half-maximum r = 2a.

The Fourier transform of L(x) is ^(y):

ly I)

width r
3
where



APPENDIX B. Visibility of a Square Wave Folded with a Lorentzian

The visibility V of the image of a square wave object formed by a sys-

tem with a Lorentzian line spread function is given by
oetA. •yn - •

V17 2* t~0 )~] / -yn.

where p = Ty/2.

r is the full width at half maximum of the Lorentzian line shape
function

and y is the inverse wavelength of the object usually given as line

pairs per mm.

The program listed for the Texas Instruments calculator model TI-59 will

calculate five terms of the expansion for V(p). To operate the code load the

starting value for p into storage register 01, press RST and R/S. When done

the calculator will print four numbers:

1. P

2. V(p)

3. exp(-2irp)

4. R(L) = exp(-2Trp)/V(p)

The value of exp(-2Trp) is the visibility for a sine wave object. The

ratio R(L) is then the ratio of the visibilities of sine and square wave

objects

.

After printing the four numbers the program will cause p to be incre-

mented by 0.05 and restarted.

The program will continue until stopped externally.

Table I gives the numerical output produced by the code.



APPENDIX C. Visibility of a Square Wave Folded with a Gaussian,,

The visibility V of the image of a square wave object formed by a sys-

tem with a Gaussian line spread function is given by

where p = Fy/ ( 2 / |
In (.5) | )

= Ty/1 „67 ~ J~2 ay

r is the full width at half maximum of the Gaussian line shape
function

The program listed for the Texas Instruments calculator model TI-59 will

calculate seven terms of the expansion for V(p). To operate the code load the

starting value of p into storage register 01, press RST and R/S. As with

the program described in Appendix B; when done the calculator will print the

four numbers:

and y is the inverse wavelength of the object usually given as line

pairs per mm.

1. P

2. V ( p

)

3. exp(-( irp) 2
)

4. R(G) = exp(-( irp)
2)/V(p)

Table I gives the numerical output produced by the code.



Relative

Area

Q(x)

Relative

Fig. A. The Gaussian Line Shape Function G(x) and its integral 0(x).

The abscissa scale is in units of half the full-width half-

maximum, r. Dashed lines indicate that r is the distance
between the 0.12 and 0.88 relative amplitude points on the

0 distribution.
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Q(x)
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Amplitude

L(x)

Fig. B. The Lorentzian Line Shape Function L(x) and its integral Q(x).
The abscissa scale is in units of half the full -width half-
maximum, r. Dashed lines indicate that r is the distance
between the 0.25 and0.75 relative amplitude points on the Q
distribution.



Program listing for TX-59 to calculate the visibility of
images produced by square and sine wave objects and a Gaussian
line spread function.

000 43 RCL
00

1

0 1 0

1

002 65 x
003 U d iLL

004 65 x
005 8 9 vi

006 95 =

007 42 STD
nos 02 02
009 01 1

0 1

Q

42 STO
Oi 1 0 4 0 4
0 i 2 71 SBR
0 i 3 15 E
0 1

4

42 STO
015 06 06
016 42 STO
017 03' 03
n i h 03 3
0 i 9 42 STO
020 04 04
021 71 SBR
022 15 E
cnzo 94 -

024 44 SUM
025 03 03
026 05 5
027 42 STO
0 2 3 0 4 0 4
0 2 9 71 SBR
030 15 E
031 44 SUM
0 3 2 0 3 0 3
U o
034

U f

42 STD
035 0 4 0 4
036 71 SBR
037 15 E
038 94 +/-
0 3 9 44 SUM
n - n 03 03
041 09 9
0 4 2 42 STD
0 - 3 04 04
044 7l SBR
0-5 15 E
0 4 6 44 SUM
ijr? 0 3 O 3
0 4 3 01 1

0 4 9 01 1

050 42 STO
051 04 04
052 71 SBR
053 1 5 E
0 5 4 94 +x -

055 44 SUM

056 Uo U 3
057 01 1

058 03 j

059 42 STO
0 6 O 04 04
061 71 SBR
062 15 E
063 sr

-J J -r

064 02 hmm

065 95 =

066 44 SUM
067 0 3 03
063 43 RCL
069 0 3 0 3
070 65 x

071 04 4
072 55 -

073 39 n

074 95
075 42 STO
076 05 05
077 93 RDV
hj 7 8 43 RCL
079 01 01
080 65 x

081 02
082 95 =:

083 99 PRT
084 43 RCL
085 05 05
086 99 PRT
087 43 RCL
088 06 0 6
089 99 PRT
090 IT =T

•J —

09! 43 RCL
092 05 05
093 95 =

0 4 9 8 PRT
0 9 5 43 RCL
0 9 6 01 01
097 O trO J 4-

0 9 8 83 P

099 0 0 0
1 00 02 XL

101 05 zr

102 95 =

103 42 STO
104 01 01
105 6 1 GTO
106 00 0 0
107 0 0 00
108 !

' 6 LBL
108 15 E
110

•=* -
•J •.1*

1 1

1

«

112 43 RCL
113 02 02
114 65 X
115 43 RCL
116 04 04
117 54 **:

1 1

3

-J
Vi

119 94 +x -

120 £ £> IHv
121 LN2
122 54 ’)

123 55
124 43 RCL
125 04 04
126 95 =

127 92 RTN
1 23 91 RxS
-129 00 0
130 00 0
131 00 o
132 00 0
133 00 • o



*

Program listing for TX-59 to calculate the visibility of images
produced by square and sine wave objects and a Lorentzian
line spread function

.

019 03
i

020 95 = '

066 04 4
021 94 +/'-

0 6 7 •j -r

022 42 STO 068 39 11'

023 04 04 0 6 9 95 =
024 43 RCL 0 7 0 42 STD
025 04 04 071 05 05
1j 'ci o 35 + 072 9 H RDV
027 43 RCL 073 43 RCL
023 02 02 074 01 01
029 95 = 0,5 99 PRT
030 42 STD 076 43 RCL
031 0 3 0 3 077 05 05
032 43 RCL 073 99 PRT
0 3 3 02 02 079 43 RCL
034 45 YX 0 8 0 02 02
035 05 5 031 99 PRT
036 95 = 0 8 2

— —
j -j

-4

037 55 -
0 3 3 43 RCL

033 05 5 084 05 05
029 95 = 085 95
0 4 0 44 SUM 086 99 PRT
04

1

03 03 087 43 RCL
04-2 43 RCL 0 8 8 01 0

1

043 0 2 0 2 0 8 9 85 +
04 4 45 YX 0 9 0 9 3
045 07 7

*-

000
00

1

43
01

RCL
0 1

U 4 6
047

95
55

09

1

fj Q 6
00
05

IJ

cr

U u 2 65 X 048 07 i* 093 95
U ij

.

0 0 4
005
006
0 0 7

U 2
65
39
95
94

X

+,••• -

049
050
051
059
053

95
94
44

1

+ X -

SUM
03

RCL

094
095
096
097

42
01
61
00

STD
01

GTD
00

003
0 0 9
0 1

0

95

INV
LNx

054
055
056

02
45
09

02
i * *. .*

i

9

1 !
*5

099
100

i II i

91
00

i iij

R/S
0

0 ] 1 42 STD 057~ 95
I Li i 1J !J U

0 1

2

02 02 053 55
0-J 3 43 RCL 059 09 q
U1

4

02 02 06 0 95
0 1

5

45 YX 061 - 44 SUM - _

0 1

6

03 062 03 03
017 95 = 063 43 RCL
013 55 -r 064 03 0 3
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