Measuring the Corrosion Rate of Reinforcing Steel in Concrete

U．S．JEPARTMENT OF COMMERCE
National Bureau of Standards
National Measurement Laboratory
Center for Materials Science
Nietallurgy Division
Washington．DC 20234

Apr：1 1984

Sponsored bv
－verai Highwav Aáministration
ashington，$D C 20590$

MEASURING THE CORROSION RATE OF REINFORCING STEEL IN CONCRETE

E Escalante. M Cohen. A. H. Kahn

U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
National Measurement Laboratory
Center for Materials Science
Metallurgy Division
Washington, DC 20234

April 1984

Sponsored by:
Federal Highway Administration
Washington, DC 20590

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

iheasuring the corrosion rate of reinforcing steel in concrete

The deterinration of concrete bridge decks as a result of corrosion action on the reinforcing steel is a serious and costly problem to the nation (1). It is recognized that this corrosion is caused by the diffusion of chloride ions into the concrate resulting in the breakdown of the passive iron oxide film that normally protects the steel. The corrosion product that forms generates sufficient pressure to crack the concrete allowing moisture, oxygen, and more chloride to enter, further accelerating the deterioration process (2).

Methods have been developed that: a) block the chloride from coming in contact with the steel, (b) stop the chloride from entering the concrete, (c) remove the chloride from the vicinity and (e) others, such as cathodic protection, which modify the reactions at the surface of the steel (3-7). $\lambda 11$ of these approaches require some method to evaluate their effectiveness, and the most direct method is to measure the corrosion rate of the steel before and after a modification to the concrete.

Procedure

The plan for this study is divided into the following five phases which are: A literature review, preliminary studies, measurements in concrete, field measurements, and the development of a microprocessor system. More than half of these phases have been accomplished and reported as will be described.

Phase I. Literature Review - At the outset, a literature search was undertaken to identify the information available on the corrosion of steel in concrete and methods for measursment. A total of 394 papers, reports, and talks from 1964 through 1978 were identified on the subject, and are indexed under subject and author (3). The Subject Index was further subdiyided into six subgroups such as general survey, factors affecting corrosion, measuroment
techniques, protection techniques, concrete design, and related fields. In the Author Index, the references are listed alphabetically by author.

A study of this literature revealed several interesting facts. For example, it was found that over thirty references discussed the effect of chloride on corrosion, but only one reference discussed the effect of oxygen content. Furthermore, the effect of moisture was considered in just four of these references. Not one study on the corrosion of steel in an alkaline environment was found. Clearly, most of the attention had been directed towards the effects of chloride.

Phase II. Preliminary Studies - From the information gathered through the literature search, it was evident that more information was needed on the effects of oxygen, pH , and moisture, and therefore an experimental program was designed to evaluate these factors. Three environments were used on this phase of the study, and these were alkaline solutions of $\mathrm{Ca}(\mathrm{OH})_{2}$ with controlled oxygen, Cl^{-}, and pH ; wet sand/salt mixtures; and mortar (9).

Flat steel specimens $100 \times 20 \times 1 \mathrm{~mm}$ were immersed in controlled solutions and the initiation time for visible corrosion was noted. At a pH of 10.5 or less, corrosion started immediately on immersion. However, as the pH was raised to 12 , initiation times increased to 200 h , and at higher pH corrosion did not occur during the period of the experiment. The experiment was repeated in the presence of chloride, and it was found that chloride did reduce the initiation time to corrosion but otherwise had little effect. Once initiated, the corrosion rates were constant in all cases. Not surprisingly, the oxygen content of the solution had a large effect on the corrosion rate of the steel with lower concentrations leading to lower corrosion rates.

Further experiments were carried out.as described which indicated that the interaction of oxygen, pH , and chloride is more complex and in combination can develop conditions that lead to corrosion even at high values of pH . Figure 1 is a summary of these data showing these three parameters. Illustrated is a three dimensional figure with boundaries within which corrosion does not occur. However, outside of this boundary corrosion of steel is observed. For example, where it was shown earlier that chloride or oxygen acting alone could not cause corrosion of steel at a pH of 12.5 , this figure reveals that at an oxygen concentration as low as 2 ppm and at a Cl^{-}concentration of $6 \mathrm{~mol} / \mathrm{l}$, corrosion does occur, and can also develop at lower concentrations of Cl^{-}at higher oxygen contents.

To observe the effect of moisture on the corrosion or steel, specimens were imbedded in a mixture of sand, $\mathrm{Ca}(\mathrm{OH})_{2}$, and NaCl . The mixture was held in small perforated crucibles in an atmosphere of flowing air with controlled moisture content. This configuration allowed the specimens to be removed for weight loss determination during the course of the experiment. Specimens in a moisture saturated sand mixture did not corrode, but during the same period, specimens in a dry mixture began to corrode almost immediately as moisture was introduced. However, the corrosion rate of these specimens decreased steadily as moisture content of the sand mixture increased; and at saturation, the corrosion ceased. Clearly, the degree of moisture, which affects oxygen concentration, plays a very important role as expected, but the cassation of corrosion at saturation was not anticipated.

After the study of steel in solutions and in sand mixtures was completed, the work was extended to include steel in mortar. Specimens as described above were cast with a 5 mm cover of chloride-containing mortar. After 24h, half of the specimens were immersed in a $\mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{NaCl}$ solution and hal:
were allowed to dry for one week before immersion. The corrosion current of each specimen was determined by polarizing the specimen from -10 to +10 mV with a potentiostat and plotting the overvoltage as a function of the polarizing current. As in the case of the sand mixture, the corrosion of the steel in mortar that was kept continuously wet was near zero, but the specimens that were allowed to dry for one week, and then immersed, initially developed a high corrosion rate that decreased with time to a very low value.

In summary, these studies have shown that at low concentrations of O_{2} and Cl^{-}, pH controls the initiation of corrosion. But as O_{2} and Cl^{-}increase, corrosion can initiate even at a pH of 12.5 . It is hypothesized that in the moisture saturated concrete, the concentrations of Cl^{-}and oxygen are sufficiently low for conditions to exist within the "no corrosion" boundary of Figure 1. However, as the concrete dries, the Cl^{-}concentration in the pore water eventually increases to saturation. This drying process also allows oxygen to diffuse more rapidly through the concrete setting up conditions outside of the "no corrosion" boundary where corrosion of steel does take place. Once corrosion is initiated, the pH is reduced at the anodic areas by the corrosion reaction, making it easier to reinitiate corrosion in future times when moisture and oxygen are available.

Phase III. Measurements in Concrete - The purpose of this portion of the work was to compare several polarization techniques for measuring the rate of corrosion of steel in concrete(9). All polarization techniques are essentially the same in that the measurement is based on the observation that the polarizing current necessary to change the potential of a metal in an electrolyte, in this case concrete, is directly related to the rate of corrosion of the metal. The techniques differ only by how this change
in potential is achieved. Initially, four techniques were used in this study and are described as follows: Stern and Geary consider the derivative of the potential of the specimen versus the applied current for deviations from the corrosion potential not greater than 10 mV (10). This slope is related to the corrosion current, $I_{\text {corr, }}$, by the relationship:

$$
\lim _{d E \rightarrow 0} \quad \frac{d E}{d I}=\frac{b_{a} \cdot b_{c}}{2.3\left(b_{a}+b_{c}\right) I_{c o r r}}
$$

where b_{a} and b_{c} are the anodic and cathodic Tafel Slopes respectively. For calculation of the corrosion current, I corr, values for the Tafel slopes must be obtained from other sources, or by trial and error for the best fit to the data. In this case ΔE was 6 mV and the assumption made that $b_{a}=b_{c}=100 \mathrm{mv}$. Thus:

$$
I_{\text {corr }}=\frac{21.7 \Delta I}{\Delta E}
$$

The second technique used is an empirical approach described by Schwedtfeger in which I corr is determined from the change in slope of the polarization curve (11). The cathodic corrosion current, I_{p}, and the anodic corrosion current, I_{q}, are found at this "break" in the curve, and the corrosion current is then calculated from:

$$
I_{\text {corr }}=\frac{I_{p} I_{q}}{I_{p}+I_{q}}
$$

The technique requires that polarization, \mathcal{E}, extend over a range of $=100 \mathrm{mV}$ so that the "breaks" in the polarization curve may be observed.
The three point method of Barnartt is the third technique that has been used (12). Three voltage/current data points are measured along the polarization curve, and from this b_{a}, b_{c}, and $I_{\text {corr }}$ are calculated as follcws. If the first potential point is at \mathbb{E}, then the second and third are at $2 \mathscr{E}$ and $-2 \Delta E$ respectively. The resulting currents at each potential are measurec and substituted into the ratios

$$
r_{1}=I_{2 \Delta E} / I_{-2 \Delta E}
$$

and

$$
r_{2}=I_{2} \Delta E / I_{\Delta E}
$$

which in turn are related to each other through the quadratic equation

$$
u^{2}-r_{2} u+r_{1}=0
$$

The roots of this equation are

$$
\exp \frac{2.3 \Delta E}{\mathrm{~b}_{\mathrm{a}}} \text { and } \exp \frac{2.3 \Delta E}{\mathrm{~b}_{\mathrm{c}}}
$$

from which b_{a} and b_{c} are calculated. Using the relationship of I / I corr versus ΔE, the corrosion current for the process is found.

The fourth technique is a computer analysis of polarization data developed by Mansfield (13). The computer makes a best fit analysis to theoretical curves generated from the Stern-Geary equation for different values of Tafel slopes and in this way b_{a}, b_{c}, and $I_{\text {corr }}$ are found.

Each of the polarization techniques described employs a three electrode system having the steel specimen as one electrode, a voltage reference as a second electrode, and a counter electrode as a third electrode from which polarizing current is applied to the specimen. The circuit used for these measurements is Holler's (14) which incorporates a Wheatstone bridge for IR compensation as illustrated in Figure 2. The IR compensating design takes advantage of the fact that when a polarizing current is applied to the specimen, its rate of change in potential due to polarization is very small compared to the rate of change in potential due to IR. By repeated applications of current of short duration (e.g. 0.5 s), and by adjusting the Wheatstone balancing resistance, the IR component is compensated. Once this balance is achieved, then the polarizing potential, free of IR, can be measured for all values of applied current.

Small concrete slabs $55 \times 30 \times 5 \mathrm{~cm}$ were cast each with three imbedded 1.27 cm diameter steel rods. Two small stainless steel rods were also encased in the concrete and were used to determine the resistivity of the slab. The concrete was treated in two ways. Four of the slabs were cast with 0.06 parts NaCl to one part cement ($38.4 \mathrm{lbs} \mathrm{NaCl} / \mathrm{cu} . \mathrm{yd}$), and the remaining eight slabs were cast without Cl^{-}. After curing for approximately thirty days, two of the Cl^{-}free slabs were immersed in a saturated solution of NaCl for six days, withdrawn, and left in a dry laboratory atmosphere. Two other slabs were immersed in a $3.5 \% \mathrm{NaCl}$ solution for 24 h , withdrawn, and also left in a laboratory atmosphere. Corrosion measurements showed that steel specimens in Cl^{-}free slabs developed very low corrosion rates ($<0.007 \mathrm{mg} / \mathrm{dm}^{2} /$ day). However, those slabs with Cl^{-}in the concrete immediately developed a corrosion rate of $4.4 \mathrm{mg} / \mathrm{dm}^{2} /$ day or more than two orders of magnitude greater than those in Cl^{-1} free concrete. Figure 3 illustrates the decreasing rate of corrosion as the concrate dried. In the case where the chloride free concrete slabs were immersed for six days in a sodium chloride saturated solution, the corrosion rate increased by over an order of magnitude within a few hours as shown in Figure 4. The second group of chloride free concrete slabs that were immersed for only 24 h in a solution of $3.5 \% \mathrm{NaCl}$ behaved similarly to those immersed longer in a more concentrated solution. The average weignt loss of steel on these specimens, based on electrochemical measurements, was $0.33 \mathrm{mg} / \mathrm{dm}^{2} / \mathrm{day}$. The resistivity of the concrete was also measurod with time, and the data reveal that the resistivity decreases as moisture increases. However, the effect of immersion on the corrosion rate is much greater than its effect on the rasistivity of the concrete. As the concrate dries and the resistivity increases above 7,000 onm-cm, the resistance appears :o have a direct influence on the degree of corrosion observer.

Weight losses were calculated from the electrochemicaly determined corrosion currents measured as a function of time, and were compared to gravimetric weight loss measurements on the same cleaned steel rods. A comparison of the data from the four electrochemical techniques described is shown in Table 1 and indicates that all methods overestimated the weight loss of steel. The Stern-Geary method overestimated weight loss by 17% while Schwerdtfeger's, Mansfeld's, and Barnartt's techniques overestimated weight loss by 40%, 56%, and 83% respectively. Since the differences in the corrosion rates between a corroding and a non-corroding system are over an order of magnitude, then even the data with an overestimation of 83% will reveal the existence of high corrosion.

In summary, the data indicate that the corrosion of steel in chloride free concrete is negligible and less than $0.007 \mathrm{mg} / \mathrm{dm}^{2} /$ day while the corrosion rate in chloride contaminated concrete is more than order of magnitude greater with an average of $0.33 \mathrm{mg} / \mathrm{dm}^{2} /$ day, but can be as high as $4.4 \mathrm{mg} / \mathrm{dm}^{2} /$ day. Comparison of the gravimetrically determined weight loss to the weight losses calculate from the polarization data indicates that the electrochemical measurements overestimate weight loss by 17% to 83%. However, even with an overestimation of 83%, the polarization techniques will differentiate between a corroding and a noncorroding condition of steel in concrete.

An important part of this study is the characterization of the current distribution during polarization measurements. This distribution must be known in order to determine the area of the steel being polarized which, in turn, makes it possible to calculate a corrosion current density or weight loss of steel per unit length of steel bar.

Under controlled laboratory conditions, determining this area is not a serious problem since the specimens are small and the geometry of the
electrodes can be arranged so that the entire specimen electrode is polarized with a uniform current. But in extending these polarization measurements to a bridge deck we are faced with limitations brought on by the relatively large size of the structure. The major constraint being that, unlike our small slabs in the laboratory, we cannot polarize the entire bridge at once, but can only polarize a small area at a time, and it is this area that must be characterized.

The experimental procedure used is simple in principle. In an attempt to simulate the large scale geometry in a small slab, it was decided to use a long line specimen in concrete and polarize it from a point or small line current source. The potential of the steel in the concrete would be monitored by reference electrodes positioned along its length. Three variables were considered as having an effect on the distribution of the current, and these are the distance between the counter electrode and the specimen, the amount of current applied, and the resistivity of the concrete.

Using small concrete slabs similar to those descibed earlier, a new geometric arrangement of electrodes was designed as shown in Figure 5. As before, the steel rod is imbedded horizontally along the length of the concrete slab. The counter electrode is a small diameter (3 mm) rod positioned vertically adjacent to the steel specimen. Three counter electrodes at different distances ($1,2,4 \mathrm{~cm}$) from the specimen are illustrated. Ten reference electrodes, imbedded in the concrete, are located 8.5 cm apart along the length of the steel rod and 2 cm from its surface. This arrangement of electrodes allowed a polarizing current to be applied to the steel specimen from a small vertical line source. Any changes along the length or the specimen are detected by the reference electrodes. Heasurements were
made using one of the three counter electrodes. The resistivity of the concrete was controlled by controlling its moisture content. During an experimental run, the potential along the length of the specimen was measured before any current was applied. Subsequent potential measurements were made with reference to this initial base potential. The polarizing current was increased in increments and the potential measurements repeated until a maximum of approximately 10 mV was achieved. Initial measurements were made manually using the Holler bridge circuit for compensation of IR. More recent measurements were made using a computer controlled system which applies a cycling direct current of 5 seconds on and 0.25 seconds off. The potential of the specimen was then read during the current off cycle so that the IR component was zero. Figure 6 illustrates the distribution of current as indicated by the change in potential along the length of a steel rod in concrete. This curve is a measure of the extent of current distribution along the length of a horizontal steel rod when the current source is a small vertical rod in the concrete. The shape of the curve is an indication of how uniformly the current is distributed within the polarized area. This type of data have been obtained as a function of counter electrode distance, applied current, and resistivity of concrete. Preliminary analysis of the data indicates that, as expected, the extent of the current distribution decreases as the resistivity of the concrete increases, and the general shape of the current distribution curve does not appear to be affected. In addition, as the electrode distance is decreased, the area of steel rod polarized also decreases. The largest effect observed is that of the applied current. As the current is increased, the area of distribution
increases. But perhaps the most important observation is that current distribution is very limited and 90% of the current ancompasses a distance of less than $10 x$ the distance between the specimen and the current source electrode.

A mathematical model has been developed that takes these variables into consideration and generates a current distribution curve along a cylinder from a point source in free space as follows. The electric current distribution in a conductive medium containing electrodes held at arbitrarily fixed potentials may be obtained by a standard application of potential theory. For the case of an infinitely long cylindrical conductor embedded in an electrolyte with a point source of current at a fixed distance from the cylinder, an extension of the formulas given by Jackson gives a complete solution for the current distribution in the electrolyte (15).

The following geometric arrangement is treated as illustrated in Figure 7. Consider an infinitely long metallic cylinder of radius a, held at ground potential, and at a distance, d, from the axis of the cylinder, a point electrode emits a total current I_{0}. By application of the methods stated above, the current density at any point, P, on the surface of the cylinder is described.

$$
J(Z, \theta)=\frac{I_{0}}{\pi^{2} a} \sum_{\pi=0}^{\infty} \frac{\cos m \theta}{\varepsilon_{m}} \int_{0}^{\infty} d k \cos k z \frac{K_{m}(k d)}{K_{m}(k a)}
$$

where

$$
\begin{array}{rl}
J(Z, \theta)= & \text { Current density at point } P \text { on the cylinder } \\
I_{0} & =\text { Total current emitted by source at } d \\
m & =\text { Integer index for sumation } \\
= & \text { Variable of integration } \\
k & 2 \text { for } m=0 ; 1 \text { for } m>0 \\
\varepsilon_{m}(x) & = \\
k_{m}(x) & \text { A modified Besse? function of the second kind, order } m, \\
& \text { argument } x \text {, see ref. (16) }
\end{array}
$$

Although this formula is a closed mathematical expression with a precisely defined meaning, its evaluation to a specified accuracy requires numerical integration of a function which is rapidly oscillating and the summation of a convergent series. Use of digital computing methods to produce graphical or tabular representation of the results is essential. A preliminary evaluation of the function, illustrated in Figure 8, demonstrates that it does follow the general shape of the measured data. Further analysis of this function and its correlation to the data is required for a more accurate assessment of their relationship.

Phase IV. Field Measurements - After gaining some experience in performing the corrosion
measurements on concrete slabs in the laboratory, the measurements were extended to the field on an operating bridge deck. With the cooperation of the Virginia Highway Department arrangements were made to perform corrosion rate measurements on a bridge deck (Number 2063) on Interstate 66 near the Washington, DC Beltway. The primary objective of this portion of the study was to evaluate the background electrical noise and determine whether the measurements could be made.

Measurements were made on two separate decks that were a few hundred meters apart. Two sets of measurements were made on a seven year old deck (area A) repaired and widened (area B) eighteen months earlier and now in use, and one set was made on a deck (area C) over a year old but not yet opened to traffic. The major difference between the two decks is that the older deck with its new widened section had been exposed to de-icing salts while the new deck, barricaded to traffic, was not salt contaminated.

During the measurements, electrical contact was made to the steel rebar with modified locking pliers. The counter electrode was a $500 \mathrm{~cm}^{2}$ rectangle of aluminum foil wrapped in a towel wetted with a saturated solution of
$\mathrm{Ca}(\mathrm{OH})_{2}$. A $6 . \mathrm{cm}$ diameter hole was cut out of the center of the counter electrode to accommodate the $\mathrm{Cu} / \mathrm{CuSO}_{4}$ reference electrode positioned at this point on a small wetter sponge. Using the Stern-Geary technique and the Holler bridge circuit, measurements were made at areas A, B, and C, and a portable Tetronix Model 214 oscilloscope was employed to monitor the background electrical noise.

The background electrical noise was found to be a very high frequency signal beyond the kilohertz range of our instrument, but more importantly, it was of very low amplitude and less than 1 mV . Apparently the steei structure of the deck acts as a very good antenna for radio frequency radiation. The corrosion measurements revealed that area A on the 7 year structure developed a corrosion current of 9.8 LA , while area 3 on the recently widened section of the same structure had a corrosion current of 6.9 . The new deck not open to traffic displayed the lowest corrosion current of 1.2 w . Thus, though the data could not be verified by examination of the steel, it did seem reasonable. That is the oldest contaminated structure did display the highest corrosion and the new uncontaminated deck the lowest corrosion. Furthermore, it was found that the measurements could be made and that background interference was negligible.

Phase V. Microprocessor System - It is recognized that the corrosion measurements are tedious, time consuming, and require some knowledge of the concepts involved, and because these measurements lend themselves to automation, the ultimate goal of this projec: is to develop an instrument that will make these measurements automaticaliy. Field measurements would then be performed with a microprocessor controlled device whicn would relieve the operator of most of the detailed adjustment, data acquisition, and calculations required. This device is to be as simole
allowing minimally trained personnel to perform the measurements. A description of the design of such a device follows.

The instrument is designed around a set of commercially available microcomputer printed circuit cards. These are based on a MC 6809 microprocessor circuit giving the system a very capable and powerful controller. The modules used in the system are:
1.) The processor card
2.) Battery backed-up memory
3.) Serial, parallel, and timing card
4.) Analog to digital converter
5.) Digital to analog converter (modified)
6.) Vacuum fluorescent display

In addition to these commercial cards, several other cards have been constructed at NBS, and serve two functions. First, to provide an interface between the user and the system are the following:
1.) Keyboard and display panel
2.) Test and keyboard control

Second, to interface the instrument to the experimental cell, these cards were constructed:
3.) Voltage to current converter
4.) Input amplifier and distribution card

Schematics of these cards and the modification to the digital to analog converter are illustrated in Figures 9 through 13.

The instrument operates in the following manner. At turn on, if the test switch is on, the unit is in a display test mode. The system will not function except for the display which will demonstrate the full character
set on a character by character basis. When the test switch is deactivated, followed by a reset, the system goes into operational mode and instruction messages appear on the display.

In the nperational mode, the processor requests information from the user, and when all necessary parameters are stored, sets up the system for zero levels and enters a wait state until the operator lets it know that final hook up to the cell is complete. This information is transmitted to the instrument by pressing the "RUN" key thereby activating the microprocessor to begin data acquisition. Output current is generated by a precision voltage to current converter. Voltage driving this converter is derived from a 10 bit digital to analog converter under control of the processor. The full scale output current range is also selectable by the processor software. Input potentials are measured by a 12 bit analog to digital converter. Three channels are used in this measurement. One channel measures the current applied, another the counter electrode to working electrode potential, and the third the reference electrode to working electrode potential where the working electrode is steel in the concrete. The data are then saved in a battery backed up memory remaining there until deliberately erased. When data acquisition is complete, calculations are performed and the results displayed. A permanent record can then be printed out and the data erased, or another experiment can be performed while the data is saved for later printing. The software has been developed as a system of modular routines, the majority of which are single function stand alone subroutines (Appendix A). Links between modules have been made absolute, and therefore the overall program is not relocatable. However, relocation can be put into the system with little difficulty, if it should prove desirable. The software design is such that changes to the
measurement technique can be made by changing 3 or 4 of the modules. Such a change is necessary to the present modules since interfacing problems have resulted in an error in the measurements. These changes are in the process of being implemented.

Summary

This National Bureau of Standards study has revealed the following information.
1.) A total of 394 papers, reports, and talks from 1964 to 1978 were found pertinent to the subject of the corrosion of steel in concrete. A study of this literature indicated that information was lacking on the effect of oxygen, pH , and moisture.
2.) Oxygen concentration, chloride concentration, and pH have been found to control the initiation of the corrosion of steel in concrete. Moisture content of the concrete also plays an important role through its effect on the concentration of oxygen and chloride.
3.) The comparison of four polarization techniques for measuring the corrosion of steel in concrete reveals that all the techniques overestimated the weight loss from 17 to 83%. Current distribution measurements indicate that the extent of current distribution along a steel bar in concrete is very limited and of the order of 10 times the distance between the specimen and the current source. A mathematical model describing this current distribution is being developed.
4.) Corrosion rate measurements on operating bridge decks verify that polarization techniques can be used in this situation, and furthermore, background electrical noise is negligible.
5.) A microprocessor controlled instrument for making corrosion rate measurements has been designed and constructed. However, complications in interfacing the cards have developed requiring a change in its design. These improvements are in the process of implementation.

1. An Economic Analysis of the Environmental Impact of Highway Deicing, U. S. Environmental Protection Agency, EPA-600/276105, May 1976.
2. Cornet, I., Bresler, B., Galvanized Steel in Concrete: Literature Review and Assessment of Performance, Galvanized Reinforcement for Concrete-II, International Lead Zinc Research Organization, Inc., Vol. 2, May 1981.
3. Clifton, J. R., Protection of Reinforcing Bars with Organic Coatings, Materials Performance, 15, No. 5, 14-17, May 1976.
4. Internally Sealed Concrete Guide to Construction and Heat Treatment, Federal Higtway Administration, Implementation Package 77-9, April 1977.
5. Slater, J. E., Lankard, D. R., Moreland, P. J., Electrochemical Removal of Chlorides from Concrete Bridge Decks, Materials Performance, 15, 11, 21-26, 1976.
6. Lundquist, J. T., Rosenberg, A. M., Gaidis, J. M., Calcium Nitrite as an Inhibitor of Rebar Corrosion in Chloride Containing Concrete Materials Performance, 18, 36-40, March 1979.
7. Fromm, H. J., Wilson, G. P., Cathodic Protection of Bridge Decks: A Study of Three Ontario Bridges, Transportation Research Board, Transportation Research Record No. 604, 38-47, 1976.
8. Escalante, E., ITO, S., A Bibliography on the Corrosion and Protection of Steel in Concrete, National Bureau of Standards Special Publication 550, August 1979.
9. Escalante, E., Ito, S., Cohen, M., Measuring the Rate of Corrosion of Reinforcing Steel in Concrete, National Bureau of Standards NBSIR 80-2012, March 1980.
10. Stern, M., Geary, A. L., A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochemical Society, 104, 56, January 1957.
11. Schwerdtfeger, 'W. J., Mciorman, O. N., Measurement of the Corrosion Rate of a Metal From Its Polarization Characteristics, J. Electrochemical Society, 99, 407, October 1952.
12. Sarnartt, S., Two-Point and Three-Point iAethods for the Investigation of Electrode Reaction Mechanisms, Electrochimica ACTA, 15, 1313, 1970.
13. Mansfeld, F., Tafel Slopes and Corrosion Rates from Polarization Resistance Measurements, Corrosion, 29, No. 10, October 1973.
14. Holler, H. D., Studies of Galvanic Couples, J. Electrochemical Society, 97, 271, September 1950.
15. Jackson, J.D., Classical Electrodynamics, John Wilesy and Sons, i.Y., 84, 1962.
16. Handbook of Mathematical Functions with Formulas, Graohs, and iAathematical Tables, National Bureau of Standards, Applied Mathemarics Series Vo. 5ミ, 1954.
TABLE 1
Comparison of Weight Loss Determined Gravimetricallyto
Weight Loss Calculated From Polarization Data
Technique Weight Overestimate
Loss, mg $\%$
Gravimetric 147
Stern-Geary 172 17
Schwerdtfeger 206 40
Mansfeld 230 57
Barnartt 269 83

FIGURES

l.) A three dimensional. plot of Cl^{-}concentration, oxygen concentration, an pH showing the regions of corrosion and no corrosion.
2.) A simplified schematic of the Holler bridge circuit as used in a manual measurement of corrosion rate of steel in a concrete slab.
3.) A plot of corrosion current and resistivity versus time for steel in salt contaminated concrete.
4.) A plot of corrosion current and resistivity versus time for steel in concrete contaminated with salt after curing.
5.) Geometry of electrodes for current distribution measurements.
6.) A plot of current distribution along a steel bar in concrete as indicated by its change in potential.
7.) Geometry of electrodes used in model of the current distribution calculation.
8.) A plot of one half of the current distribution along an infinitely long cylinder as calculated from the model.
9.) Schematic diagram of the keyboard and display panel circuit.
10.) Schematic diagram of the keyboard and display panel circuit.
11.) Schematic diagram of the keyboard scanner circuit.
12.) Schematic diagram of the voltage to current convertar circuit.
13.) Schematic diagram of the input amplifier and distribution circuit.

Figure 1

Figure 5

PANEL WIRING

Modification to 1614 Module (10 Bit DAC)

Keyboard Scanner Card

Voltage to Current Converter

Input Card

Figure 13

* EEGIN
* THIE ROUTINE ISGUES FROMFTS AND ETORES CONSTANT * data fof the fortable ingitrlment

OFT EXF

* system equates

0800	EUFFER	EQU	\$0800
FEC:A	WF:	EQU	\$FECA
F9A3	getdata	EQU	\$F9A3
6743	ETAFTD	EOU	\$0743
979B	dateuf	EQU	\$970E
FE9C	FACKE	EQU	\$FB9C
FAB3	CUDTE	EQU	\$FAB3
0731	FINFLG:	EQU	\$0731
FE6A	GETR	EQU	\$FE6A
F194	MEABUR	EQU	\$F1

6745				ORG	\$6745	
0745			RUNEET	FME	4	
07.15			TIMEET	FME	4	
0740			AREAST	FMB	4	
Q75			WOFE	FIME:	5	
		9697		EETDF	$\$ 67$	
F606				ORG	\$F009	
F006		31	BEGIN	CLF'	RUNFLG	
F002	EE	0800		LDX	\#EUFFER	GET ETART OF EUFFER
Fobs		6 E		STX	DATEUF	GAVE IT
			MEG	MACRO		
				LBSR		
				$F C B$	$\$ 00 . \$ 0 \mathrm{~A}$	
				FCC	'81'	
				FCE	$\$ 0$	
				LDE	$\# \$ 82$	
				LBEF	GETDATA	
				EEQ	80	
				ENDM		.
F607			ID	MSG	"1]	(15 CHAF'-MAX) $=*, " 150$
F907	17	QECO		LBEf	WES	
Foba	0 D	6A		FCB	\$0D. 50 A	
Finc	49	442028		FCC	, ID 15	(HAFi - MAX) $=$
F010	31	$35-43$				
F914	4 B	4152 E				
Fole	20	40.458				
F91C.		203020				

F13C 168 E	0751	CUTIM	LDY	\#WORK	
Fid6 C6	6		LDE	\#\$3	
F14286	30		LDA	4\$30	
F144 A7	A ${ }^{\text {a }}$	THIFTY	ETA	Y+	
Fi46 5A			DECB		
F147 -6	FE		ENE	THIFTY	
F149 $\mathrm{C} / 6$	02		LDE	\#\$ ${ }^{\text {a }}$	
F14E A6	86	EIXTY	LDA	X+	GET DATA
FidD A7	AO		ETA	$Y+$	EAUE IT
FidF SA			DEC: B		
F150-6	F9		ENE	EIXTY	
F152 1F	21		TFF	Y, X	
F15430	18		LEAX	-5, x	
F15647	092 A		LEGR	CUDTE	
Fi59 39			FTS		
F15A 4 F		CG	Clfa		
F15E A7	1F		ETA	$-1, \mathrm{X}$	FEFLACE CF BY ZERO
F150 20	$9 F$		ERA	C.NTCM	
FiSF 34	26	DATEAU	F:HE	Y	gave y
F161 169E	43		LDY	STAFTD	GET CMOS MEMEOFY ETART
Fib4 8E	9800		LDX	\#EIJFFEF'	FOINT TO DATA
F167 DE	0 O		LDD	DATBUF	
F165 E3	0 EbO		EUED	\# EUFEER	
F16C:47			ASFA		DIUIDE EY 4
F60 E6			FOFEB		
F16E 47			A:EA		
F16F Sb			FOFE		
E170 17	9A: 29		LEER	FACCS	
F17E 6095	13		ETY	STAFTD	GAVE NEXT CMOS DATA ADDFESE
F176 5E	6E		LDX	DATEIF	FOINT TO DATA INFIT AFEA
Fi7e 35	A ${ }^{3}$		FULE	$Y, F C$	FEETOFE Y, RETURN
			END		

Q ETROF (S) DETECTED
EUMEO- TAELE:

AREA	FOBE	AREAST	6740	BEGIN	F000	EUICFER	9800	CG	F15A
CHAFN	FOFE	CNTCM	FGFE	CRTOU6	FOFS	CUDTE	FAEZ	CUTIM	F13C:
DATEUF	676 E	DATE	F628	DATEAV	FiSF	getdat	F9A3	GETF'	FB6A
ID	F067	InEAU	F136	MEABUF'	F:54	FACKS	FE9C:	FIUNFLG	0731
RUN:	$\mathrm{FOC4}$	FUNEET	0745	SIXTY	FidB	STAFTD	6743	THIFTY	F144
TME	F940	TIMEET	6749	WF:	EECA	WOFK	075:		

F62\% 17	9242	-6:- LBEF	SMEELT
F62S 27	6251	LESF	CONUFT
F\%' 6	02	LDD	ADCUAL
FGEA ED	81	STD	X + +
Fbec 86	60	LIA	\# \$ 6b
F62E 97	94	GTA	CHNUM
F6S0:7	9215	LESF'	CHEELT
F633 17	6231	LESR	SMEELT
$\mathrm{F} 636,7$	0200	LBEF	TIMCHK
F639 37	9230	LEGR	CONURT
F636 17	028	LESF'	SMEELT
F69F 17	927D	LESR	SWNZER
Fbaz DC:	92	LDD	ADCVAL
Fbad ED	8:	STD	X++
F64t 39		FTS	

GET AFFLIED VOLTAGE-I ON TETFIEUE CE TO WE FGTENTIAL save it

FOINT TO CURRENT CHANEL AGAIN

GET DROF ACROGE R
TURN OFF ZERO CURFENT FETFIEVE DFOF ACROES Fi save IT

F6. 47 DD	06	SETIO1	STD	DACUAL	gave zero cilirient value
F6, 1917	9275		LBEF	LDEAC	SET OURIRENT TO NEW ZERO
F6-46 17	9261		Lesr	SWNGET	TURN ON CURRENT
F6at $: 7$	91 E 7		LEEF	TIMC:HK:	
F652 17	92 C		LEER	CONURT	GET NEW CURFENT ZERO
F6SE 17	9267		LBER	SWNZER	TUFN OFF EWITC:H
Fbse do	02		LDD	adCual	fetrieve value
FESA ED	14		ETD	$-12, x$	gave it in zero location
FSEC 17	9208		LBER	gmeelt	
F65F39			FTE		
Fteg 17	92EA	SWEEGN	LESFi	INITDA	INITIALIzE DAC:
F603 9F	00	SWzeio	STX	INDEX	gave index
F6ds 5E	DET0		LDX	\#DDAC	SET OUTFUT TO ZERO ROUTINE
Fbsb 60	8000		LDD	\#\$8000	
F66E ED	84		STD	X	
FE6D E7	0.5		sta	$5, \mathrm{x}$	TURN OFF EWITCH
FGGF 9E	00		LDX	INDEX	FEETORE INDEX

9 ERROF(B) DETECTED
EYMEOL TABLE:

ADCUAL	6702
ChEEIT	F85\%
DACUAL	6766
INITDA	F890
OFWCry	6759
RUNGET	6745
Ence-	Fe67
GWNZEF	F8BF
Tivilf	-6\%

CALCII FEDG
CUREET FIEA
DDAC: DE56
MEAGUF F194
FDONE F243
BELCH FIB:
EWEEGN FE69
TIMCHK FB39
WFE FECA

CCTIME FBEF
DACADJ 975B
END F672
MORE F2TA
FEVEIG 9756
EETIO F669
EWNSET FBEG
TIMEOT FOSB WOFK 0751

CHNBM 6704
DACINI 9757
INDEX 0766
NEXT FIEC
FUINCNT 6753
EETIO1 F647
SWNUM 0795
TIMEET $6 T 49$
＊this routine does calculatione for the aduet－
＊ment of the curfirent to fiegill in a fixed ref to ＊wofking electitiode fotential

0759	OFNCFE	EQU	\＄0759
0733	FIUNC：NT	EQU	\＄6733
675 E	DACADJ	EQU	\＄075E
0706	DACUAL	EQU	\＄0706
6705	SWNLM	EQU	\＄9705
07.5	FEUFLG	ES	\＄0756
9757	DACINI	EGU	\＄07．57
FECA	WFS	EQU	\＄FECA
9731	FIUNFLG	EQU	\＄9731
FE6B	GETT	EQU	\＄FE68
FCO6	STAFTCL	EQU	\＄FCOO
F647	EETIO1	EOU	\＄F647
		OFG	\＄Fこ7A
90937		SET	\＄07

COLD ETART ON EFFOA

F27A	9 A	33	$\begin{aligned} & \text { CALCI } \\ & * \end{aligned}$	DEC．	FIUNCNT	FEDUCE RIUN COUNT TO REFIECT dATA NOT YET FOUIND
F27C	EC．	$1 E$		LDE	－2，	GET EEF TO WE FOTENTIAL
F27E	A3	12		SUED	－14． X	GET DIFFERENCE FAOM OFEN CIFCOIIT
F280	2 B	19		EMI	FOLAF＇	
F282	B4	GF	TESTI	ANDA	\＃\＄${ }^{\text {GF }}$	CLEAF LIFFEF a BITE
F284	1083	900A		CMFD	\＃ 5060 A	IS THE DIEFERENCE 16 MU？
F288	2 D	1B		ELT	ADJIST	
F28A	96	5		LDA	$\begin{aligned} & \text { REUFLG } \\ & +5 F G \end{aligned}$	GET ELAG TO INDICATE CURFENT FOUNE
F28E	97	56		ETA	TEVFLG	
F250	37		F＇ETURN	FTG		
F291	85	98	TWOS	EITA	\＃\＄08	
F293	27	03		EEQ	Flus	
F295	BA	F8		CFA	\＃\＄Fe	EIT S－－SET，SIGN EXTEND，ALL ONE
$F 297$	37			FTS		
F98	B4	07	FLUS	ANDA	\＃\＄07	IF EIT 3 IS ZETO
F29A	37			RTE		EIGN EXTEND ALL ZERTOE，AND FEETIJTN
F29B	8D	62	FOLAF	ER	NECD	GET TWO＇GOMFIEMENT OF D
F290	20	E3		ERA	TESTI	
F25F	43		NEGD	COMA		
F2A	53			COME		
F2A1	ce	0001		ADCD	\＃等或1	
F2A4	39			F^{-5}		

* EyETEM EQUATES

6700	INDEX	EOU	\$0709
0705	SWNIMM	EOU	96705
976E	DATEUF	EQU	\$076E
9740	AFEAST	EQU	\$0740
67E:	WOतk	EQU	\$9751
9759	OFNCFK	EOJ	\$0759
9743	ETAFTD	EQU	\$9745
8002	EAUETG	EW	\$ E 902
8694	EAUETI	EQU	\$8694
529 F	NEGD	EOU	\$F29F
F7C0	MUllis	EQU	\$F7CO
FAB1	CVETD	EQU	\$FAEI
E7TE	DIVIS	EQU	\$F77E
- 868	GETF'	ESU	\$FECS
FECA	WFE	EQU	\$FECA
		ORG	\$0750

AFUIOF	FME	2
FOTENT	FME	2
APUION	FME	2
IFSW	FME	2
FIONEA	RME	2
FONEC	RME	1
EXFON	FME	1
KONEA	FME	2
KTHAEE	FME	1
FDAT 9	FME	1
RDATI	FME	9
KDATG	FME	1
KDATI	EMB	E
cdate	FME	2
TEN	RME	2
	Ofic	\$0790
Fregtr	FME	t

97909798		WSTCFECNT		Find	5			
		RMB	1					
		SETDF	$\$ 67$					
F2be						Ofig	\$F2D6	
F206	C.C			600A	CALCII	LDD	\#\$0A	
F2D?	DD	Bi		STD	TEN	SET SHIFT MLLTIFLIER		
FEDE	344	20		FGHE	Y	gave Y		
FQDL	169E	43		LDY	STAFTD	FOINT TO ZEFO DATA		
F2E0	EC	83		LDD	--X	get meablired value i-gFf		
FEE2	AS	AI		EUED	Y++	GLETAAC:T IETO UALIE		
FOEA	2A	92		BFL	STOFEI			
FeEt	BD	E7		BE「	NEGD	if negative, COMFLEMENT		
F2ES	OD	50	ETORE1	STD	AFUIOF			
FEEA	E	53		LID	--X	GET OFEN CIFCUIT UALHE		
FEEC	A3	Ai		SUED	Y+	glbtrac: measilied value		
FOEE	2A	的 2		BFL	STORE			
F2FO	80	$A D$		BSi	NEGD			
F2Fe	ए\%	$S F$	STORE	$5 T 0$	FOTENT	gAve It		
FeF 4	27	70		EEQ	EFROFS			
FWF6	EC	ES		LDD	--X	GET GET AFFLIED VOLTAGE, I-ON		
FCE	A3	A1		EUED	Y++	SIBTAACT CE TO WE, i-OFF		
F2FA	$2 A$	02		EFL	STORES			
ERE	80	A1		BER	NEGD	-		
F2FE	DD	61	STOFE3	570	AFUION			
ES00	27	7 i		EEG	Efitions			
F302	EC	$E \Xi$		LDD	--X	GET DFOF ACROSE RESISTOK		
F304	$A B$	A1		SUED	$Y++$	ELIETRACT ZEFO CIFFRENT VALUE		
F306	-A	62		EF'L	STOEE4			
FS08	ED	95		BER	NEGD			
FU0A	DL	43	ETOREA	STD	IFSW			
F300	27	65		BEQ	EfRORS			
FSOE	85	26		Flls	Y			
F316	$9 F$	98	FAPF'AF'	STX	DATEUF	SAVE INDEX		
F312	GF	9B		CLR	CNT			
F314	6F	6E		CLR	EXFON			
F316	34	20		FSHS	Y	save y		
F318	EE	6753		LDX	\#IF:EW			
F3iE	168 E	0761		LDY	\#AFUION	FOINT TO VOLTAGE(CE TO WE)		
F31F	17	6\% ${ }^{\text {a }}$		LBEF	SHIFT			
F322	DD	6.5		ETD	FONEA	gave binafy regill		
F32\%	BE	9760		LDX	\#FDATI	FOINT TO ASCII STOFAGE AREA		
FOT	17	6787		LESF	CUETD	MAKE AECII DATA AND STORE		
F32A	SS	20		Fllle	'			
5220	EE	FEAC	CUR	LDX	\#F'TEL	FOINT TO TAELE OF FEEISTANCES		
F32F	Dis	0.3		LDE	SWNLM	GET WOFYING SWITCH NUMBER		
FSE1	EA			ABX		FOINT TO VALUE		
F352	As	84		LDA	X			
5834	27	56		BEQ	EFíOR'			
Fe36	97	67		ETA	RONEC	SAUE FESISTANC:		
F308	EE	9760		LDX	\#FDA-1			
F33B	17	gofo		LESF'	DEC:IMF	GO SET UP AECII OUTPUT DATA		
PFSE	46	906F		LERA	COFFK			
F341	35	29	Efriors	FULS	Y			

F373 17 GES4
F376 00 日A
F378 14 li 5441
F37C 26524541
F389 A4 53205 A
F384 4.5 52 4 F 21
F386 9
F389 16 07DC
F38C 17 9E3B
F38F にD 9 A
$\begin{array}{lllll}F 391 & 5 & 5 & 57 & 47 \\ 54\end{array}$
F395 43 48 2657
F399 41502653
F390 45 34 20 54
F3A1 AF 20 5A 4.5
F3AS S. $4 F 21$
F3A8 OO
F3AC: FITBL
FCB $\$ 60$
LEFA GETR
FCS $\$ 04, \$ 05, \$ 0$ THESE AFE EXFONENTE
OR EFRT INETAMMENT UEE $502, \$ 03, \$ 04$
CORF
TIMES AFEA - STOFE ASC:
DATA
F3DB $35 \quad 79$
F3DA EE B66\％ FSOD 9F 96 $F D E$
$E E F E D$
$E O 6 \%$ $\begin{array}{lll}F E 2 & E F & 8062 \\ B E E & 10 & 602\end{array}$ $\begin{array}{lll}F 3 E B & E E & 6767 \\ F S E B & 16 E E & 674 D\end{array}$ FBEE EC A4 FSF1 玉i 65 FOFS CC： 6601 FFFG ED A4 F马FE CE 675！ F3FB 17 6302

FILS $X, Y, 11$
LDX EAUETG
ETX INDEX
LDX GAUETI GET FINAL ADDFESS OF DATA ETX SAUETG STAFT FOF EAUE GMOE MEMOFY LEFA FUTDAT

MLAFEA	$L D X$	\＃K゙ONEA
	LDY	\＃AREAST
	LDD	Y
	ENE	MLD
	LDD	\＃\＄6691
	ETD	Y
MLD	LDII	\＃WOF\％
	LESR	M11－1i

FESTOFE REGISTERS

FOINT TO U／A DATA FOINT TO AREA DATA GET AFEA
IF NON－ZEFO GO IF AREA ZEFG DEFAll T TO 1
FOINT TO FFGULT BTOFAGE LOGATION
＊the next routine rounds off data to is bit

F3FE	$E C$	64
F466	$\because 7$	039
$F 462$	BL	16
F－16－1	EC：	42
F46\％	17	61 AF
F469	ED	－
F 46 B	EC．	4
$F+46 \mathrm{~L}$	DD	69
$F \cdot 49$	BE	9777
F412	17	6650
F41S	EE	6777
F41E	－6	1 A
Fai	84	F
Fatc	37	09
FalE	4혀	
F41F	56	
F4\％	17	0140
F	9C	9B
$F+$	26	F3
F47	0.4	FF
E429	$\because 7$	08
F － E	5－1	
	17	6194
$\mathrm{F}+\mathrm{F}$	6 C	7E
F431	E	FH
F433	37	
F434	76	67
F 436	万B	68
F 438	EE	6
F43A	97	68
F．43C：	S\％	9 A
－48E	$\because 7$	6 F
546	86	6F
［4］	EE	66

MLCHAR	LDD	11	FETCH STOFED FESULT
	EEQ	CNTMC	IF NON－ZETO－FOLNDOFF NEEDED
	BER	FOIINDE	
	LDL	$2 \cdot 11$	GET DATA
	LESR	SHIFTB	FINIEH FOUNDOFF FFOCEDUFE
	$E T D$	2，！	SAVE FEESULT
CNTMC：	LDD	2.11	GET FOLNDED DATA
	ETD	K゙ONEA	
	LDX	\＃KDAT1	POINT TO AECII ETOGAGE AFEA
	LEEF	CUETD	MAKE ASCIT AND ETOFE
	LDX	\＃FDAT1	
	ER＇A	LEC：InF	
FOINDF	ANDA	\＃\＄FF	BYTE ZEFO？
	BEQ	BYTE	
	LSFIA		GHIFT D KIGHT
	FORE		
	LESF	IIFDATE	ELSE AD．HST LOWEN HALF
	INC	CNT	
LOOF＇F＇	BF＇A	FOINNDF	DO NEXT EIT
BYTEZ	ANDE	\＃\＄FF	IS BYTE ZEFO？
	EEQ	ENDRND	GO：DONE
	LSFG		ELSE BHIFT NEXT EIT
	LESK	IIFDATE	
	INC：	CNT	
$\begin{aligned} & \text { LOOF'B } \\ & \text { ENDFND } \end{aligned}$	BRA	EYTEY	
	FiTS		
DECIMF	LDA	FONEC	GET FEGISTANCE EXFONENT
	ADDA	EXFON	ADJIET EXFONENT
	ADDA	\＃504	FOEITION ADUMET FOF DECIMAL FOINT
	STA	EXFON	SAVE IT
	CMFA	\＃\＄6A	IS EXFONENT 16
	EEQ	TENEXP	
	OUIEA	$\# \$ 0 \mathrm{~A}$	IG EXPONENT＞10
	EMI	GINGEX	

F-1. 4	$1 F$	89		TFF'	A, B	SAUE ONEE DIGIT
F.446	86	61		LDA	\# ${ }^{\text {d }} 1$	SET TENS
F 4.46	20	98		ERA	DEC:DAT	
F44A	4 F		SINGEX	CLRA		GET TENS TO ZEFO
F-14E	[b	68		LDE	EXFON	GET ONES DIGIT
F 4 d	20	03		ERA	DEC:DAT	
F 414	SF		TENEXF	CLFE		SET ONES DIGIT TO ZERIO
F450	B6	61		LDA	\#\$01	EET TENS TO ONE
F 9.52	EA	30	DECDAT	ORA	\# $\$ 30$	
F4.54	CA	30		ORE	\#\$36	MAKE EXFONENT AEC:II
Fist	E 7	67		ETB	$7, \mathrm{X}$	
F 4 S	A7	06		STA	$6, \mathrm{X}$	
F4SA	Ab	84		LDA	X	
F45C:	A 7	1 F		ETA	$-1, x$	
FusE	86	2 E		LDA	\#'。	PUT DECIMAL FOINT IN DATA
F460	A 7	B4		ETA	X	
F:462	86	45		LDA	\#' E	FIJT EXFONENTIAL EJGN IN DATA
F 4 d 4	4.7	0.5		ETA	$5, x$	
F466	39			RTS		
$F \div 6 A$				OFG	\$F46A	
F.46A			FIITDAT	RMB	2	GTARTING ADDRESE OUTFUT DATA
F9B0				ORG	\$F580	
F560	EC:	A 4	GHIFT	LDD	B, Y	GET MULTIFLICAND
F582	DD	50		STD	FRESTR	
FSB4	34	20		FEHE	Y	SAVE Y FOINTEF'
F5Es	68E	6750		LDY	\#FRESTF'	
FSEA	5 F	00		ETX	INDEX	SAUE FOINTEF
F586	SE	6781	SHIFTI	LDX	\#TEN	FOINT TO MILTIFLIER
FSBF	CE	0751		LDU	\#WOF゙K	FOINT TO STOFAGE
F55	17	92 B		LESF	MULI6	GO MLILTIFLY
FSOS	9A	6 B		DEC	EXPON	ADUST EXFONENT
FS57	DC:	51		LDD	WORE	GET UFFEF it EITS
5399	26	06		BNE	ISERND	IF NOT ZERO, ROIND OFF
F596	UC	53		LDD	WORK+2	GET DATA
5590	ED	A4		ETD	D, Y	
5SFF	29	EB		BFA	SHIFTI	IF ZEFIO, DO AGAIN
E5A1	17	EE76	USERND	LEGT	ROUNDF	ROUND OFF
FSAd	55	20		FULS	Y	
ESAC	DC:	53	HEEABL	LDD	WORK+2	get lisable faft of data
FSAE	27	2		EEQ	ERROF7	
FSAA	ED	A4		ETD	B, Y	EAVE UALIE
F5AC:	7 E	00		LDX	INDEX	FEGTOFE FOINTEF
FSAE	34	40	FROCES	Fins	U	gAve If FEGISTER
FSB6	CE	6796		LDU	\#W:STOFE	FOINT TO SCFATE:H AṄEA
F5B3	± 7	9108		LESR	DIVIG	
FSE6	35	46		Flls	1	
FSE	OD	78	EHIFTE	TST	CNT	TEET ADUISTMENT COINT
FSEA	27	96		EEG	ENDFFO	IF ZERO NONE NFCEESARY
FSEC	58			ASLE		ELSE MULIFL'Y ANENEF EY =
FSED	49			FOLA		
FSEE	09	5 B		DEC	CNT	

FIITDAT FMB 2

ORG \$F580

STD PFESTR
$\begin{array}{ll}\text { FEHE } & \text { Y } \\ \text { LDY } & \text { \#FRESTR }\end{array}$
ETX INDEX
LDU
-8En
LDD
BNE
LDO
ETD
LEGF
LDD
ETD
LDX

LDU
\#WGTOR
DIVIG
CNT

GTT

> GET MULTIFLICAND
> SAVE Y FOINTEF
> gave fointeri
> POINI TO MINTIFLIER
> GO MLILTIFLY
> ADUUST EXFONENT
> GET UFFEF it EITE
> IF NOT ZERO, RCIIND OFF
> GET DATA
> IF ZEFO, DO AGAIN
> ROUND OFF
> GET IGAELE FAFT OF DATA
> gave valide
> FEETOFE FOINTEF
> GAVE U REGIETEN
> FOINT TO SCFATI:H ANEA

> TEGT ADJISTMENT COINT
> IF ZERO NONE NFCEESARY
> ELSE MUTIFL'Y ANENEF EY =

FECg 0	Fib		EFA	SHIFTB	
FSCz 5		ENDFPO	FTS		FETLEN
F5C3 96	53	IIFDATE	F'OR	WOFK+2	BHIFT LOWEF WOFD
F505 66	54		FOR	WOFK+3	
FSC7 24	فこ		ECC	BACK	
FSCO 90	5.4		INC	WOFK+3	IF BIT WAS SET ADJUST LAET BIT
FSEE 39		EACK	FTS		
550635	20	EFFROR 7	FULS	Y	
FSCE 16	FDAZ		LERA	ERRORS	
			END		

GERKOF(E) DETECTED
EMEOL TABLE:

A	9750	AFUION	6761	T	0740	BAC.	8	E2	27
CALCII	F206	CNT	9798	CNTMC	F49E	COFRK	F3B0	CUBTD	FAB1
CUF	F320	DATEUF	679E	DECDAT	F4.2	DECIMF	F434	DIU16	FT7E
ENDFRC	F5Ca	EMDRND	F433	ERFORCA	F341	EFRORS	F373	EFRROR'S	F38C
EnGoby	FSCC	EXFON	6768	GETF	FE68	INDEX	6760	IFEW	0763
SDATO	0776	KDATI	0777	KDATG	977F	KONEA	0769	KTHREE	6768
LOOFS	F431	LOOFF	F425	MLAREA	F3EE	MLC'HAF	F3FE	MLD	F3FB
M1L16	F700	NEGD	F29F	OFNCFK	6759	FOTENT	675F	PFESTR	0790
Fac=	FSAE	fuldat	F ㄴft	FAFPAR	F310	RDAT 9	9760	FDAT1	6760
RONEA	976.5	RONEC:	9767	ROINDE	F41A	RTBL	FEAC:	SAUSTG	8602
Eaveri	8004	SHIET	F586	GHIFTI	Fsec:	SHIFTE	FSEE	EINGEX	F44A
STARTD	6743	STORE1	FCEB	STOREC	F2F2	STORE3	F2FE	STOFEA	F36A
Gondily	9765	TEN	6781	TENEXF'	F4, ${ }^{\text {a }}$	UFDATE	F5C3	USEAEL	FSAC
MEEND	ESA1	WFE	EECA	work	0751	WSTOR	0776		

FIITDATA
. THTE FOUTTNE OUTFUTS THE FINAL FEGULTE TO THE

* DJEFLAY. IT THEN FFOMFTG FOR CMOE MEMORY SAUE.
* AND THEN FOF CONTINLATION. IF NOTHING EIRTHEF
* IG DESTEED. TT GOES TNTO AN ENDLEES WAIT LOOF * divtil POWET DOUN.
* Evetem eouates

9760	INDEK	EQU	-
086	EUFEEF	ESu	\$0860
6760	RDATG	EOU	\$676C
6776	CDAG	EQU	\$6776
DEC 6	ACIA	EQU	SDECG
9756	FEUFLG	ESU	\$0756
976E	QATEIF	EQU	\$0708
9743	STAF	EO	\$0

| DEZB | KEYFAD EQU |
| :--- | :--- | :--- | :--- |
| F94 | KBINCH EQE |
| EQU | |

FCOG STAFTCL EOH \$FCOO
FETD FGMEAU EQU $\$ F E 7 D$

F46A

$F 46 A$	$9 C$
$F+6 C$	$E 6$
$F 46 E$	26

F476 6F S6

F4ie $\quad 7 \quad 6 \mathrm{ym}$
Fars 8E 6806

```
F47E [6 oF
F4%A %68E DEO
F47E 17 60% 
F481 +6 E0
F483 16%% b0nE
```

F487 17 6054
FABA CL 96
F480 17 कीE6
F4E: 17 6950

SYME: TAELE:

ACIA	DECO	ANOTHR	E50.4	EUFFEA	9860	CALCII	F206	CHARSN	FSE
CrLF	FSEA	DATELE	676E	DSAUE	FS35	END	FS67	ERROFT	55
EXIT	FAE:	HEADEG	F470	INDEX	0706	CEINC:H	F949	F-DATG	9776
KENAD	DES	<0\%	F-EE	0 OH 4	FCTE	OLITSAT	FSE	OSITE	FiE]
Mmenv	FE75	mitdat	F464	RDAT'	6760:	TEUFLG	0756	FOU	F 49
SiAF?	FCom	GArrb	6743	UNFAES	EECC	WFE	EECA	WFCO	FF6

```
DiV151 F78E
DIU153 F799
DIU16 F77E
\begin{tabular}{|c|c|}
\hline 5700 & \\
\hline F7C9 6F & 6.4 \\
\hline F7C2 6F & 41 \\
\hline F7C4 AG & 91 \\
\hline F7C6 E6 & 21 \\
\hline F7C8 30 & \\
\hline \(F: 9 \mathrm{ED}\) & 42 \\
\hline F7CB Ab & 8.4 \\
\hline 57 CD EG & 21 \\
\hline F7CF 3D & \\
\hline F70日 E3 & 41 \\
\hline Fiod ED & 41 \\
\hline F\%14 24 & 02 \\
\hline 9706 6C & C. 4 \\
\hline F708 A6 & 01 \\
\hline FIDA EG & A 4 \\
\hline F7DC 3D & \\
\hline F700 ES & 41 \\
\hline F7DF ED & 41 \\
\hline F7E: 24 & 02 \\
\hline F7E3 6C & C4 \\
\hline F7E5 A6 & B. 4 \\
\hline F7E 7 E6 & A4 \\
\hline F7E9 30 & \\
\hline FTEA ES & C.4 \\
\hline F7EC ED & C4 \\
\hline
\end{tabular}

FTEE 3 ?
f7EF
9 EfFOR(S) DETECTED
जMEOL TABIE:
FTDS ABE FTES END FTEF MULI6 FTCG
```

* ASTIMER

```
* THIS FOUTINE INITIALIZES THE TIMER IN THE
* MODLLLAS ONE SYSTEM, AND ALEO EETE TIMEG
* FERIOD AND CHECKS FOR TIMEOUT OF TIMER \(\dot{\theta}\).
* HANDLING OF TIMEF ONE AND TWO CAN EE DONE
* IF DESIFED. EEE DATA BHEETS FOR TIMEF AND
* MODILLE 1140 MANIIAL
* gystem equateg
\begin{tabular}{llll}
0034 & CTFLTO & EQU & \(\$ 34\) \\
6066 & CTRLT1 & EOU & \(\$ 69\) \\
0099 & CTRLT2 & EOU & \(\$ 99\) \\
0025 & MEBTG & EOU & \(\$ 25\) \\
\(00 B 6\) & LSBTG & EQU & \(\$ 80\) \\
\(00 F F\) & LEET1 & EOU & \(\$ F F\) \\
0010 & MSBT2 & EOU & \(\$ 10\)
\end{tabular}

INITIAL CONTROL STATE TIMER G INITIAL CONTROL ETATE TIMER INITIAL CONTFIOL STATE TIMEF MOST EIGNIFICANT BYTE COUNTEF \(\theta\) LEAET EIGN. EYTE COUNTER G LEAET ETGN. EYTE COLINTEF : MOET GIGN. BYTE GOUNTER 2
* ADDRESESS
\begin{tabular}{|c|c|c|c|c|}
\hline DE2C & C:TS & EOU & \$DECC & COUNTER G ADDFESE \\
\hline DE:D & CTI & EOU & \$DECD & COLNTEF 1 \\
\hline DEZE & CT2 & EQU & SDETE & COINTER 2 \\
\hline DE2F & TIMER & EOU & \$DEVF & CONTFOL WOFD FOF FROGAAMMING \\
\hline DE29 & CRA & EQU & \$DE\% & FIA GONTFOL REGESTEA A \\
\hline DE二B & FFD & EQU & \$DEC8 & DATA REGISTEF A-KEYFAD \\
\hline
\end{tabular}
* INITIALIZATION

ORG \$FEOG
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{ll}
\mathrm{FBOO} \\
\mathrm{FBOE} & 86
\end{array}
\] & \[
\begin{aligned}
& 3 A \\
& D E 2 F
\end{aligned}
\] & INTIME & \[
\operatorname{BTA}
\] & \[
\begin{aligned}
& \text { \#CTRLTO } \\
& \text { TIMER: }
\end{aligned}
\] & RESET TIMERS \\
\hline F605 Bt & 60 & & LDA & \#CTFLT1 & \\
\hline F867 ET & DE2E & & ETA & TIMEF & \\
\hline FEGA B6 & 79 & & LDA & \#CTFLTE & \\
\hline FEDC E7 & DEZF & & STA & TIMER & \\
\hline FegF 86 & 80 & & LDA & 4, SET0 & GET INITAAL VAlldeg \\
\hline F811 \(\quad 87\) & DE2C & & STA & CTO & \\
\hline FE14 86 & 25 & & LDA & * MSETG & \\
\hline F816 E7 & DE2C & & STA & GTO & \\
\hline F817 86 & FF & & LDA & \# GETI & \\
\hline F81E E7 & DE2D & & ETA & CT: & \\
\hline F81E 86 & 10 & & LDA & \#MEETZ & \\
\hline FE29 E7 & DEZE & & ETA & CTE & \\
\hline FB23 39 & & & FTS & & \\
\hline
\end{tabular}
* WHEN THE TIMEF iS fiEAD , IT INDICATES THE
* NIMEER OF CloCl fertode Elaf ged gince the
* LAST INTEFFIIFT (TIMEOUT) WAS gENEEATED.
* hefe, the timef has been initiaizzed o
* generate a timecuit pllese evefy gecond.
* THE INFUT GLOCE iE A goge hertz Fulse TNPUT
* FFom the bald fate genefatof; and the timeolit
* affeafis at cal of the fia.
* TO ChANGE THE TIMEF FEFIOD, THE GOUNTEF ig
* LOADED WITH A NEN VAlle. THIE NEW COUNT
* is effective after the next timeolit period.
\begin{tabular}{|c|c|c|}
\hline FE24 & & \\
\hline FE2S & E 7 & DE2F \\
\hline FESE & Fb & DE2C \\
\hline FE2B & Et & DE2C \\
\hline
\end{tabular}
* fiEAD TIMER--A AND E fEGISTERE DEGTROYED
FDTIME \begin{tabular}{lll} 
GLFA & & \\
& GTA & TIMER \\
& LDA & GTG \\
& GDA & GOUNTEF \\
& GTS &
\end{tabular}
* GHANGE TIMER FEFIOD-A DEGTROYED
* GONTARSGLOCATION
* OENEN UALIE

\(*\) TIMCHK IE ALEO BEED AE EUEROUTINE GALL
FOG TIMENG NEEDG.

END
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{9 EfROR(E) DETECTED} \\
\hline \multicolumn{9}{|l|}{SMEOL TAEIE:} \\
\hline CG ME FBEF & \(C r^{\prime} A\) & DE2? & \(0 \cdot 6\) & DECC & CT1 & DE2D & CTE & DE2E \\
\hline UR゙LT0 6034 & CTFLTI & D0e6 & CTFIT2 & 6097 & INTIME & FEOS & FD & DE2E \\
\hline LEETG 9080 & LEETI & 60 FF & MEETO & 0925 & MBETZ & 0010 & FDTIME & FE24 \\
\hline IMCHK F839 & TIMEF & DEF & & & & & & \\
\hline
\end{tabular}

> * THis routine frovides a utility Frogeam to
> * oferiate the adaftive systems modulas due
> * A T0 D MODLIE \#iba.
＊SYETEM EGUATES
\begin{tabular}{|c|c|c|c|c|c|}
\hline & DE10 & DADC： & EOU & \＄DE16 & EAEE ADOFESE OF IG4\％MODIUE＝FiA \\
\hline 6760 & & & ORG & \＄6769 & \\
\hline 0706 & & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { INDEX } \\
& \text { ADCUAL } \\
& \text { CHMLM }
\end{aligned}
\]} & FME & 2 & \multirow[t]{3}{*}{FEEEVUE TWO LOCATIONE FOF X TEMF LOGATEO FGE LATEST ADG VALUE STOFAGT OOF CIIFRENT CHANNE－} \\
\hline 0762 & & & FME & 2 & \\
\hline 0704 & & & FME & ： & \\
\hline \multirow[t]{3}{*}{F243} & \multirow{3}{*}{9697} & & ORG & 4 FE 43 & \\
\hline & & & EETDF & \＄07 & \\
\hline & & \multicolumn{4}{|l|}{＊INITIALIZATION－－－ASGIMES RESET HAE OCCUFRED} \\
\hline F843 8E & DE19 & \multirow[t]{7}{*}{INITAD} & LDX & \＃DADC： & \multirow[t]{2}{*}{GET ADLFESE OF FIA} \\
\hline FE46 CC & 345 & & LDO & \＃\＄34F0 & \\
\hline FE49 AT & 91 & & ETA & \(1, \times\) & \multirow[t]{3}{*}{GET A GIDE－ALL INFUTT，CAZ DUTFIT EET E GIDE－FER－7 OUT，FEG－E} \\
\hline FSAE ET & 6 & & GTE & \(2 \times X\) & \\
\hline F84D Et & \multirow[t]{3}{*}{\[
\begin{aligned}
& 3 C \\
& 63
\end{aligned}
\]} & & LDA & \(\# \ddagger \underline{C}\) & \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{ll}
F E 4 F & A 7 \\
F 851 & 39
\end{array}
\]} & & & ETA & \(3 \cdot X\) & \multirow[t]{2}{*}{EET OEZ－OUTFUT，ING＇S MAESED} \\
\hline & & & STS & & \\
\hline & & \multicolumn{4}{|l|}{＊Channel gelection} \\
\hline & \multirow[t]{6}{*}{\[
\begin{aligned}
& 90 \\
& 6 E 10
\end{aligned}
\]} & \multirow[t]{8}{*}{CHEELT} & ETX & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { INDEX } \\
& \text { \#DADC } \\
& \text { CHNUM }
\end{aligned}
\]} & \multirow[t]{6}{*}{GAVE INDEX GET EABE ADDIEEG} \\
\hline \[
\begin{aligned}
& 58548 E \\
& F 85796
\end{aligned}
\] & & & LDX & & \\
\hline Fes 4 de & & & AGLA & & \\
\hline 585A 46 & & & AELA & & \\
\hline FE5B 48 & & & ABLA & & \\
\hline F85C 4 B & & & ASLA & & \\
\hline F850 AT & 92 & & STA & ご火 & EIT IN OHANNE SELECT \\
\hline F85F C6 & 9 B & & LDE & \＃E & DC AFESOX，SG MICFOEESE＿AT \\
\hline F86： 58 & & \multirow[t]{3}{*}{ADC：} & DECE & & \multirow[t]{2}{*}{FOE OF AMF TO ヨABILさこ三} \\
\hline F862 26
786455 & F0 & & ENE & ADC 1 & \\
\hline F866 37 & 50 & & LDX & INDEX & CEETOEE INDEX \\
\hline
\end{tabular}
＊SEEECT BAMFLING MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline F867 5F & 690 & EMEELT & STX & INDEX & GAVE こNzE゚ \\
\hline F869 EE & DE19 & & LDX & \＃DADC： & GE EAEE ADDİE \\
\hline F86C： 0 & 3 Sec & &  & \＃ 5 3－5 & \\
\hline FGF At & 61 & & STA & 1．X &  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6765 & & & OFG & 56705 & \\
\hline 0795 & & Ewnin & FMB & 1 & ETORAGE FOF latest switch value \\
\hline 0706 & & DACVAL & FME & 2 & STORAGE FOR LATEST INFUT UALIE \\
\hline 6768 & & DACOLD & Find & 2 & gTofage for figevigus infut value \\
\hline & 6607 & & EETD & \$67 & \\
\hline F890 & & & OFG & \$F890 & \\
\hline & & * INIT & Alizati & & \\
\hline FE90 BE & DES6 & INITDA & LDK & \#DDAC & GET EASE ADDFESE \\
\hline FBAl 4 A & & & CLFA & & \\
\hline FBA 64 & 66 & & LDE & \#6 & ZEFO DAC'S AND TUFN EWITCH DFF \\
\hline FEAS ED & 05 & & ESF & DACTNZ & \\
\hline FEAS CG & 6 A & & LDE & \$10 & \\
\hline FBA\% EE & 0700 & & LDX & \# INOEX & \\
\hline FEAA AT & 80 & DACINZ & ETA & X + & \\
\hline FEAC SA & & & DECE & & \\
\hline FEAD 26 & FE & & ENE & DACINZ & \\
\hline FSAF 37 & & & ETS & & \\
\hline & & * THEN & SWITCH & ON & \\
\hline FEBG FE & 66 & SWNEET & STX & INDEX & GAUE INDEX \\
\hline FBE\% EE & DES & & LDK & \#DENTTC & FOLNT TO EWITCH EELECT \\
\hline FEBS 96 & 05 & & LDA & EfNum & GET EWITCH NUMEEF \\
\hline FEE 7 th & & & FOFA & & MOUE NIMEEF TO EITE 6 AND 7 \\
\hline Fege it & & & ROFA & & \\
\hline Е®ए' & & & FO\%A & & \\
\hline EEEA AT & E4 & & ETA & \(\chi\) & SEND TO SWITCH SELECT \\
\hline -98\% 9 E & 06 & & LDX & INDEX & FEETORE INDE* \\
\hline ESEE 97 & & & RTE & & \\
\hline & & \[
\begin{aligned}
& \text { * TURN } \\
& \text { * }
\end{aligned}
\] & SWITCH DO & \[
\begin{aligned}
& \text { OFF-ALTE } \\
& E S N O T C H
\end{aligned}
\] & NATE TO GWNEET WITH GG NGE CONTENTE OF SWNIM \\
\hline
\end{tabular}
\[
2-1 B-82 \text { TEC ASEEMBLEF FAGE }
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline FSEF 9F & 96 & \multirow[t]{6}{*}{SWNZER} & STX & INDEX & \multirow[t]{4}{*}{gave index} \\
\hline FET: SE & DES & & LDK & \#DEWITC & \\
\hline FSCA B6 & 60 & & LDA & \#\$60 & \\
\hline FEGG AT & 84 & & STA & 6, X & \\
\hline F8C8 9E & \multirow[t]{3}{*}{06} & & LDK & INDEX & FESTOFE INDEX \\
\hline \multirow[t]{2}{*}{FBCA 39} & & & FiTS & & \\
\hline & & \multicolumn{3}{|l|}{* load dac valle} & \\
\hline EECE 9F & 00 & \(\angle D D A C\) & STX & INDEX & EAUE INDEX \\
\hline F60 8E & DESO & & LDX & \#DDAC & FOINT TO DAC 1 \\
\hline FEDe DE & 66 & & LDE & DACUAL & GET DAC INFUT \\
\hline FBDE 07 & 68 & & ETE & DACOLD & \\
\hline FETio 96 & 97 & & LDA & DACUAL+1 & \\
\hline FSDE 97 & 99 & & STA & DACOLD+1 & \\
\hline FBDe 54 & & & LSRE & & EHIFT SO THAT 2 LO EITS AFE IN \\
\hline FED9 46 & & & FORA & & EITS \& AND 7 OF B AND 8 HI BITE \\
\hline FEDA SG & & & FORE & & AFE IN A \\
\hline F8DE 4 & & & FOFA & & \\
\hline FELC S6 & & & FORE & & \\
\hline FBDD ED & 24 & & STD & X & OUITPUT UALUE TO DAC: \\
\hline FBDE GE & 60 & & LDX & INDEX & FESTOFE INDE: \\
\hline FEE1 39 & & & TTE & & \\
\hline & & & END & & \\
\hline
\end{tabular}

9 EFFOF(E) DETECTED

```

* gYETEM EGUATEG

DE2A	OFE	EQU	\$DEこA	ADDEESG OF DATA FEG OF FIA
DE20	AC:A	EOU	\$DECO	
FECA	WFS	EQU	\$FECA	FOLITINE TO WRITE STRING
670A	SAUFG:	Ebil	\$076A	
0607		EETDF	\$07	
		OFG	\$FEF ${ }^{\text {a }}$	

FEF ${ }^{\text {a }}$	16PE	DE20	GAVECK	LDY	\#ACIA	FOINT TO COMMINICATIONE REGIETEF
FEF 4	Fis	DEEA		LDE	OFE	GET FIIA E DATA
FSF7	C4	46		ANDE	\# \$ 96	IE BIT \& HI?
FETG	27	64		EES	CONT:	IF NOT HIGH, MEMORY HAE EEEN SAVED
FEFE	0 F	9 A		Cir	SAUFLG	
FEF	\square	31		EfA	CONT	MEMORY AVAILAELE-CONTINUE
FEFE	86	FF	GONTI	LDA	\# $\$ \mathrm{FF}$	GET FLAG
F964	77	9A		ETA	EAUFLG	
F903	17	950.4		LEGR	WFS	FEQUEST CLEARANCE OF DISAELE
F96\%	-1]	$5 \mathrm{E}-\mathrm{AF}$		FCC:	' MEMOF'Y	NOT AUAILAE: E--INEAUE:
100A	52	920 dE				
F96E	4 F 5	42041				
5912	56.	41946				
F916	41	4 tc 45				
F91A	2 D	0554 E				
FGIE	53	1156				
F922	21					
F923	60			$F C B$	0	
F924	86	64	CHEOK	LDA	\#\$4	
F9\%	C6	40	CHECX1	LDE	\# 5.49	
F928	FS	DECA		BITE	OFE	
F9\%E	\%	F7		EEQ	CHECK	
F920	4A			DECA		
F9\%E	26	Fit		ENE	CHECK1	CHECK FOUR TIMES FOF COMFLETION
F936	17	6597	CONT	LEST	WFE	
F95s	6D 6			FG: E	\$60: ${ }^{\text {b }}$ -	

```
\begin{tabular}{|c|c|c|}
\hline F935 52.5414 .4 & FCO & 'FEADY' \\
\hline F939 39 & & \\
\hline F93A 96 & FCB & 9 \\
\hline F938 3 ? & FTS & \\
\hline & END & \\
\hline
\end{tabular}
(3) ERTOR (气) DETECTED
SYMEOL TAELE:
\begin{tabular}{lllllll} 
ACIA DEO CHECK F924 CHECKI F92G CONT F930 CONTI FBFF \\
OFE & DEZA SAVECK FEFG SAUFLG G7OA & WFS & FECA
\end{tabular}
* KPDCTL
* this foutine contfole the oferation of the
* keyfad on the fortable ingifiment. this
* UTility ig concerined only with the immediate
* oferation of the keyfad and the entfy of a
* eingle chafactef. and ite tranglation into * abcit. other abpecte of keypad igade afie to * be controlled ey the calling foutines.
* sygtem equates

F930
\begin{tabular}{|c|c|}
\hline F93C ee & DE2S \\
\hline F9EF B6, & 14 \\
\hline F94i A7 & 91 \\
\hline F9te CC & 3 FO 4 \\
\hline F9,4e ED & 92 \\
\hline F94e 39 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DESE & SEPFAD & EQU & \$DEZB & DFA OF FIA ON 1146 MODULE \\
\hline 0760 & INDEX & EOU & \$0760 & \\
\hline \multirow[t]{2}{*}{0007} & & SETDP & \$07 & \\
\hline & & Ofg & \$F93C & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline INITKF & LDX & \#KEYFAD & get fia bage addrese \\
\hline & LDA & \#\$14 & A EIDE-INFIT, IRQ'E MAERED \\
\hline & gTA & i, X & Cal goes lo. Caz goes hi \\
\hline & LDD & \#SEFS4 & ESIDE-Z IN, of Mask Irge \\
\hline & STD & \(2, x\) & CE1 AND CEE GO LO \\
\hline
\end{tabular}
* read keyfad--no match shown ey zero bit set
\begin{tabular}{|c|c|c|c|c|c|}
\hline 5949 FF & 00 & kbinct & STX & INDEX & gave index \\
\hline F94E 34 & 49 & & F:OH & & gave ! \\
\hline F9AD CE & DE2S & & LDU & \#KEYFAD & \\
\hline F950 e6 & 46 & & LDA & \#\$49 & SET MAEK \\
\hline F952 4.5 & 41 & CHAFIN & EITA & 1,11 & dO WE HAVE A CHAFACTER(CAZ-HI) \\
\hline F954 27 & FO & & EEQ & CHAFIN & LOOF, IF NOT \\
\hline F9, 6 At & C:4 & & LDA & \(1!\) & el.se, get charactef \\
\hline F958 EE & F960 & & LDX & \#KEYTEL & \\
\hline Fise Ai & E1 & kBINI & CMFA & X + + & \\
\hline F950 27 & Q & & EEG & KBINE & \\
\hline Fisf EC & F989 & & cFX & KEYTEL +28 & have we feached end of table? \\
\hline F96: 26 & F7 & & ENE & KBINi & \\
\hline 59645 F & & & Cimb & & EHOW NO MATCH FOUND! \\
\hline F965 9E & 00 & KEIN3 & LDX & INDEX & fegtore index \\
\hline F967 55 & 00 & & Fuls & \(11, \mathrm{EC}\) & RESTORE U FEGISTER, RETUIN \\
\hline FGGG ES & 2F & kEINE & LDE & -i, X & GHOW MATCH \\
\hline F565 20 & FB & & ERA & KEINE & \\
\hline
\end{tabular}

\footnotetext{
* taele to conuert keyfad valle to abcii
}
\begin{tabular}{|c|c|c|}
\hline F96F 12 33 & FCE & \$12, \$33 \\
\hline F9\%i 14.3t & FCE & \$14, \$36 \\
\hline F973 18 39 & FCE & \$18,\$39 \\
\hline F975 - 20 & FCE & \$21, 530 \\
\hline \(F 977\) 22 32 & FCE & \$2. \({ }^{\text {2 }}\), 32 \\
\hline F979 2- 55 & FCE & \$24, 535 \\
\hline F97E 2E SQ & FCE & \$28,38 \\
\hline F970 41 7F & FCE & \$41, \$7F \\
\hline F97F 4231 & FCE & \$42, \$31 \\
\hline F981 44 34 & FCB & \$44, \$3.4 \\
\hline F983 4837 & FCB & \$48, \$ \({ }^{\text {\% }}\) \\
\hline F985 814 & FCB & \$E1, \$4A \\
\hline \(F 987\) B2 48 & \(F C E\) & \$82, \$48 \\
\hline & END & \\
\hline
\end{tabular}

SYMEOL TABLE:
\(\begin{array}{llllllll}\text { CNAIV F952 } & \text { INDEX } 9790 & \text { INITGF F93C: KEINI F9SE KEINZ F969 } \\ \text { KBIN3 F965 KBINCH F949 KEYFAD DEVE KEYTBL FG6D } & \end{array}\)
```

* GETDATA
* THIE FOUITINE GETE A DATA STFING FFIOM THE
* EEYFAD OF THE FORTAELE INSTFIMMENT. ENTFY
* FiEQuifeg that e contain the nlmeef of chaf.
* FEQUESTED AND X CONTAINS THE STAFTING ADDFEGE
* FOR gTORAGE, thE FO|TINE FORMATS THE gTFING
* go that leading zefos afe ingefted to fill
* the fegligten data blogk, gTofage ig in the
* Fofm of agcil chafacter:G.
* INGLUDED IN THIS FOUTINE IS A SUBFOUTINE TO
* Al.LOW FOF AFFFOXIMATEL'' 1GG MILLIGEC FEF
* CHAF'ACTER

```
＊system equateg
\begin{tabular}{|c|c|c|c|c|c|}
\hline 9768 & & & OFG & \＄0708 & \\
\hline 076 E & & DATEUE & FME & 2 & STORAGE FOF LATEGT EUIFER ADDRESE \\
\hline 0700 & & TCOUNT & FME & 1 & STOFAGE FOF WOF＇EING COBNT \\
\hline 67 EE & & TCHAF & FME & 1 & ETORAGE FOR WORKING CHAFACTEF \\
\hline 676F & & TCHCNT & FME & 1 & COUNTEE FOF ACESEE TO CHAF． \\
\hline 0716 & & TBUFFE & FMB & 30 & Ellfenit afea for string storage \\
\hline 6731 & & Filday & FME & 2 & FLAG TO indicate fun giatug \\
\hline & 0007 & & EETDF & \＄07 & \\
\hline F9A3 & & & OFG & \＄F9A3 & \\
\hline F9AE 7E & 9 E & getdat & LDX & DATEUF & GET ETORAGE FOINTEF \\
\hline F9A5 D7 & 90 & & ETB & TCOLNT & \\
\hline F9A7 7 F & 86 & & ETX & INDEX： & EAVE INDEX \\
\hline F9A9 EE & 0710 & & LDX & \＃TEIJFFi & FOINT TO TEMFORARY EUFFET \\
\hline F9AC GF & QE & & CLis & TCHAR & \\
\hline Fgat bid & DE2E & & LDA & KEYFAD & CLEAF ANY FEEIDIAL CHAFACTEF IRG \\
\hline F9E1 ED & 96 & DATA1 & E\％ & KBINCH & get a Chatacten \\
\hline F9B3 27 & 1 D & & EES & EFROR & ZERO EIT IG EFIOR FI＿AG FOF KEINCH \\
\hline FFES5 17 & 6975 & & LEGF & CHAFCK & CHECE FOF TIMEOUT \\
\hline F9E8 9a & Q & & DEC & TCOUNT & IfPDATE CHAF．COln T \\
\hline F9EA 26 & 25 & & ENE & NXTCHE & \\
\hline FGEC Ci & 60 & & CMFE & \＃\＄0゙ & \\
\hline F9CE 26 & 5 A & & ENE & EFFOFi & LAET CHAR，MLET EE CAT \\
\hline F906 E7 & 80 & RET & ETE & \(x+\) & \\
\hline F9C\％\({ }^{4}\) & 40 & & FSTH： & 1 & EAVE II \\
\hline F9C4 1F & 13 & & TFFi & X，11 & \\
\hline
\end{tabular}

INFIUT CHAFACTEF FFCM KEYFAD STFING OUTFITT FOUTINE TEMFORAN゙Y ETOFAGE FOR INDEX

STORAGE FOF LATEGT BUFEER ADDRESG ETOFAGE FOF WOFKING COUNT ETORAGE FOR WOREING CHAFACTER COUNTEE FOF ACEEGE TO CHAN． EIIFEER AREA FOR ETRING STORAGE FLAG TO iNDIGATE FUN ETATUE
```

GET GTOFIAGE FOINTEF
GAUE INDEX
FOINT TO TEMFOFARY EUFFER'
GLEAF ANY F'ESIDMAL CHAFACTEF' IFQ
GET A GHARAGTEN
ZEFO EIT IG EFNOR FLAG FOR ドBINCH
EHEGFEGK TIMEOUT
IFDATE CHAF' COIJNT
LGET CHAR, MIST EE CGN
EAVE !1

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline F9C: & SE & 80 & & LDX & INDEX1 & FOINT TO STORAGE AFIEA \\
\hline F9CG & DF & 80 & & STH & INDEX1 & \\
\hline F9CA & 06 & 0 D & & LDE & TCOLNT & FETCH FEMAINING NUMEEF OF CHAF \\
\hline F9CC & 27 & 67 & & EEQ & CHAF: 1 & \\
\hline F9CE & 8.6 & 30 & & LDA & \#\$30 & LOAD A WITH ASCII ZEFOO \\
\hline F909 & A7 & 86 & ZEFOE & ETA & X + & \\
\hline F90: & 5 A & & & DECE & & \\
\hline 5903 & 26 & FB & & ENE & ZEFOS & \\
\hline F9DE & 3.1 & 26 & CHAF'S 1 & Fins & \(Y\) & gave y \\
\hline F907 & 108 E & 0710 & & LDY & \# TEIJFFR & \\
\hline F908 & At & A 9 & CHAFS & LDA & \(Y+\) & \\
\hline F9DD & A7 & 86 & & ETA & X+ & \\
\hline F90 & 1090 & 86 & & CMFY & INDEXI & \\
\hline F9E2 & 27 & 02 & & EEQ & RETI & \\
\hline F9E- & 20 & FS & & EFA & CHAFS & \\
\hline FREd & 9F & 0 B & RET1 & ETX & DATBUF & \\
\hline FYE & 35 & E 6 & & FUJLS & \(\mathrm{Y}, \mathrm{H}, \mathrm{FC}\) & CLEAN ETACK, तETUFN \\
\hline F9EA & C 1 & 0 D & NXTCHF & CMFE & \#\$00 & IS CHAR. A CF \\
\hline FSEC & 26 & 92 & & ENE & NXTONE & \\
\hline FGEE & 20 & D6 & & EriA & FET & \\
\hline FOFG & Ci & 75 & NXTONE & CMFB & \# \(\$ 7 \mathrm{~F}\) & IE It A DELETE \\
\hline F9F2 & E'o & 92 & & ENE & CHAR & \\
\hline F9F- & 5 F & & & CLFE & & SHOW CANGELLATION OF ENTF'Y \\
\hline F9F5 & 39 & & & FTE & & \\
\hline F9F6 & E7 & 86 & CHAF & ETB & \(x+\) & gave chaiticten \\
\hline FSFE & \(1 F\) & 58 & & TFF' & E,A & \\
\hline FGFA & 17 & 0568 & & LESG & WFC' & ECHO CHAFACTEF \\
\hline FST & 5 E & & & ASLE & & \\
\hline FSFE & 2E & 4 D & & EMI & CMD & IF CMD, FROCESO \\
\hline FAb0 & 20 & AF & & ERA & DATA1 & \\
\hline FAO2 & 17 & 6465 & ERROF & LBSत & WF: & OLITFUT ET天ING \\
\hline FA0. & 494 & C 20.45 & & FCC & ' ILLEGAL & CHAFACTEF!' \\
\hline FA09 & 474 & 1420 & & & & \\
\hline FA60 & 43 & 84152 & & & & \\
\hline FA11 & - 1 & 3544 & & & & \\
\hline FA15 & 52 & & & & & \\
\hline FA1B & 20 & 18 & & \[
\begin{aligned}
& \text { FCB } \\
& \mathrm{BRA}
\end{aligned}
\] & WAIT & \\
\hline FA1A & 17 & 94AD & EFROR1 & LESR & WFS & \\
\hline FA1[ & 5430 & \(030-6\) & & FCC: & - TOG MAN' & CHABACTEAE!' \\
\hline EA21 & 4 L 4 & 14559 & & & & \\
\hline FA & 20 & 348 & & & & \\
\hline FAT & 52 & 14354 & & & & \\
\hline FACD & 45.5 & 25321 & & & & \\
\hline FA31 & 60 & & & FCB & \(\theta\) & \\
\hline FA3E & 17 & FFid & WAIT & 1-5\% & KEINCH & WAIT FOE AN'Y CHAFA INEUT \\
\hline FASE & 5F & & & CLFE & & EHOU ERTFOG \\
\hline FA36 & 39 & & & FTE & & \\
\hline FA37 & 51 & OE & CHAḞCX & CMFE & TCHAET & COMPARE TO FFEUIOIE CHAF'. \\
\hline 549 & 27 & 07 & & EEQ & Cemitc & \\
\hline FABE & 07 & QE & NEW & ETB & TChaf & gave ghari if no match \\
\hline FABD & 86 & 6 & & LDA & \#3 & gue -har. IF NO MATCH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline FABF 97 & 6F & & ETA & TCHCNT & SET FOR THFEE INFUTS OF CHAR \\
\hline FA．41． 37 & & & FTE & & \\
\hline FAAC 9A & 9F & \multirow[t]{5}{*}{Gmatc：} & DEC： & \multirow[t]{2}{*}{TCHCNT
NEW} & \\
\hline FA44 27 & FS & & EES & & \\
\hline FAat 5 S & 02 & & FUE & A & \\
\hline FAdB 35 & 62 & & Fllis & A & \\
\hline FAMA 16 & FFE4 & & LEFA & DATA1 & \\
\hline FA4D EE & \(F A O C\) & CMD & LDX & \＃CMDADF & GET CMD EASE ADDEESS \\
\hline FAS6 57 & & & ASRB & & FESTORE CHAF \\
\hline FAS：3A & & & \(A B X\) & & \\
\hline FASE SE & 8.4 & & ．MF＇ & \(x\) & \\
\hline \multirow[t]{4}{*}{FASA 20} & 67 & CMDH & ERA & CMDH1 & HALT COMMAND FOUTINE \\
\hline & & \multicolumn{4}{|l|}{} \\
\hline & & \multicolumn{4}{|l|}{\begin{tabular}{l}
＊Locaticn funflg must be loaded with the \\
＊ADOFEES OF THE FOUTINE TO BE STARTED ON FIUN \\
＊COMMAND．ELEE，AN EFROF WILL EE RETIFNED．
\end{tabular}} \\
\hline & & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { FASE } \\
& \text { EAS } \\
& \text { EASA } \\
& \text { FASC } \\
& \text { FA }
\end{aligned}
\]} & 31 & \multirow[t]{4}{*}{CMDF} & LDD & \multirow[t]{2}{*}{FIINFLG EFRORZ} & FUN COMMAND FOUTINE \\
\hline & 06 & & EEQ & &  \\
\hline & 96 & & FSHE & \multirow[t]{2}{*}{} & FUIT D INTO EIEFOUTINE RETUFN \\
\hline & & & RTE & & \\
\hline & & \multicolumn{4}{|l|}{＊＊＊＊＊＊＊＊＊＊＊＊} \\
\hline & & \multicolumn{4}{|l|}{＊THE HALT COMMAND ENTERG A LOOF AND STAYE THERE} \\
\hline & & \multicolumn{4}{|l|}{＊until a run command is rieceived．} \\
\hline & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{＊LEON RECEIET OF THE \(\bar{T}\)}} & GMD．THE PROCESGOR WILL \\
\hline & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{＊FEEMME AT THE FOUTINE THAT WAE IN DFEFATION
＊WEN HALT WAE CALLED．THIE IS DONE BY}} \\
\hline & & & & & \\
\hline & & \multicolumn{4}{|l|}{＊FEFORTING AN EFFOR AND LETTING THE FOUTINE} \\
\hline & & \multicolumn{4}{|l|}{＊LIE ITG ExGEFTION CALL．} \\
\hline & & \multicolumn{4}{|l|}{＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊} \\
\hline FASD 17 & FEE 9 & CMDH： & LESR & KBINCH & WAIT FOR A CHAFACTEF \\
\hline FAES Ci & 4 A & & CMFE & \＃\＄4A & IS IT AN F＇？ \\
\hline EAGE 26 & ET & & BNE & CMDH： & If NOT LOOF AgAIN \\
\hline FAGA SF & & & CLES & & ELSE，EHOW EFROF \\
\hline FACS 39 & & & FTS & & AND FETIIRN \\
\hline \multirow[t]{2}{*}{Fabi 20} & 9 A & \multirow[t]{2}{*}{EFRORC} & ERA & \multicolumn{2}{|l|}{ERFOR} \\
\hline & & & END & & \\
\hline
\end{tabular}

0 ERRQR（E）GETECTED EyMEOL TABLE：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0 & F9F6 & CHAFEK FABT & CHAFS & LB & CHAṄS 1 & E & CMATC： & \\
\hline CMO & FA40 & CMDADF FAOC & CuTH & FAS．4 & CMDH1 & FASO & CMDF & FAS 6 \\
\hline DA：AI & FSEI & DATEUF 670E & ERSOR & FAGE & EFROF & FALA & EスデOた & FAód \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1.ETCAT & F9A3 & INDEX 1 & 6786 & KEINC:H & F9, 49 & & & & \\
\hline \(\mathrm{Nx} \mathrm{C}^{-}+\mathrm{Fr}\) & FSEA & NXTONE & F9F6 & FET & F9C6 & FET: & & & \\
\hline i \({ }^{\text {ar }}\) & 6719 & TCHAR & \(679 E\) & TCHCNT & 676F & TCOUNT & 9760 & RAME & 731 \\
\hline W. & FECA & WFC: & EFG8 & ZEFOS & F506 & POMNT & 976D & WAI i & A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|l|}{* CLFEUF} \\
\hline & & \multicolumn{4}{|l|}{\begin{tabular}{l}
* This foutine cleafe afieag of memofy in the as \\
* EYETEM. THE sTARTING AND ENDING ADDREGGEG AFE TO \\
* be flaced in the zogations indigated. ey the \\
* calling frogram. a and \(x\) are destioued.
\end{tabular}} \\
\hline & & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{2}{*}{6708} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{0067}} & ORG & \$670E & \\
\hline & & & EETDF & \$67 & \\
\hline 97 DE & & \multirow[t]{2}{*}{TEUFET TEUFND} & FME & 2 & \multirow[t]{2}{*}{gtart addrege to ee hefe END ADDRES TO EE HERE} \\
\hline 67DA & & & FME & 2 & \\
\hline FA69 & & \multicolumn{4}{|c|}{OFG \$FACG} \\
\hline FAEF 34 & 46 & \multirow{8}{*}{NEXT} & F:EHS & 1 & gave Il FEGTSTEF \\
\hline FAGB DE & \(D A\) & & LDU & TBUFND & LOAD II WITH END ADDRESS \\
\hline FAbl 4 F & & & CLFAA & & \\
\hline FASE 36 & 62 & & F:HLI & A & STOFE A IN LAET LOCATION \\
\hline FA76 1193 & DB & & CMFU & TEUFSi & HAVE WE DONE ALL \\
\hline FA73 26 & F\% & & ENE & NEXT & LOOF IF NOT DONE \\
\hline FA75 36 & 02 & & F'GHE & A & \\
\hline FA77 35 & C6 & & Fllle & H.FC & FESTORE M, RETURN \\
\hline \multicolumn{6}{|c|}{END} \\
\hline \multicolumn{6}{|l|}{EFFOR(G) DETECTED} \\
\hline \multicolumn{6}{|l|}{GYMEOL TABLE:} \\
\hline EXT FAbE & & G7DA & TEUFST & 9708 & \\
\hline
\end{tabular}
* EIN2BCD
* this routine converts a le bit einary
* numeer to bce and etofeg the fegllitig
* 5 characteiti.
* CN ETAF'T, D CONTAINS THE EINAFY NIMBEFF,
* and x contains the fointer to decimal
* storiage

\section*{* zystem equates}

> FA79 KIUK EQU \$FA79
* TEMFOFAF'Y ETOFAGE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{673 E} & ORG & \$673E & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 97 \Xi E \\
& 973 F \\
& 07=1
\end{aligned}
\]} & & gavea & FME & 1 & ACCLMLLATOR A \\
\hline & & SAVEX & FMB & 2 & gTORE DATA FOINTER \\
\hline & & EAUEX: & FME & 2 & FOINTEF TO CONETANTE \\
\hline & \multirow[t]{2}{*}{0067} & & SETDF & 367 & \\
\hline \multicolumn{2}{|l|}{FAE: 1} & & ORG & \$FAEI & \\
\hline FAE1 9F & 3 F & CUBTD & STX & gavex & GAve data fointent \\
\hline FABS EE & FA79 & & LDX & \#Kく 16 K & POINT TO CONSTANTE \\
\hline FABC OF & 3E & CUDEC: & CLF' & gavea & INITIALIzE DEC C-AA \\
\hline FABE AS & 84 & CUDECZ & SHED & ¢ & \\
\hline FAEA - 5 & 0 & & ECS & OUDEC & OUEFFLOW \\
\hline FAEC ES: & 3 E & & INC. & savea & ING GHAF EEING BMILT \\
\hline FAEE 26 & Ef & & ERA & CUDECF & \\
\hline FACG ES & B4 & CUDECS & ALDC & \(\chi\) & FEETOFE FAFTIAL FESHLT \\
\hline FAC2 \(\square^{6}\) & 62 & & Fibl & A & SAVE A FEGISTER \\
\hline FACO 9 F & 4 & & ETX & SAVEX1 & \\
\hline FAC6 SE & 3F & & LDX & EAUEX & FOINT TO STORAGE FOF REGLLT \\
\hline FACE 96 & SE & & LDA & EAVEA & \\
\hline FACA EB & 30 & & ADLA & \#\$30 & MAEE AECI CHAEACTEF \\
\hline FAC:C AT & 日 4 & & ETA & X & \\
\hline FACE \(]\) ? & 92: & & Fluly & A & RESTORE A FEGISTEA \\
\hline FADG 56 & 61 & & LEAX & \(\pm+\%\) & INCREMENT \({ }^{\text {O }}\) \\
\hline FADE FE & 3 F & & ETX & BAUEX & \\
\hline FADA 9 F & 41 & & \(\operatorname{LDX}\) & SAVEX1. & FOINT TO CONETANTE \\
\hline FADG Ea & 2 & & LEAX & \(2, \%\) & \\
\hline FADE EC & FAES & & CFX &  & AİE WE DONE \\
\hline FADE 26 & D9 & & ENE & CUDEC: & \\
\hline FAD) 9 ? & & & RTE & & \\
\hline
\end{tabular}

END

EMMEOL TABLE:
CUETD FAE: CUDEC: FABG CUDECZ FABB CUDEGS FACG rigK FATG
EAUEA \(673 E\) SAVEX G73F SAUEXI 9741

\begin{tabular}{|c|c|c|c|c|}
\hline FAAE DC: & 3 B & EXIT & LDD & TEMF1 \\
\hline FABO 39 & & & FTS & \\
\hline & & & END & \\
\hline
\end{tabular}

0 ERFOR(E) DETECTED
EYMEOL TAELE:
COUMT 9730 GU FA9C CUDTE FAB3 EXIT FAAE KIGK FA7F NEXT FAFI SIM FAAG TEMF G73A TEMFI 673B


> ETOFAGE LOCATION FOR FIFG UECTOR FIA E EIDE DATA FEGISTER' ENTFY FOUTINE FOF AEGI
NLIMBEA OF FEFEATS FENFORMED ADDFESE TO WHICH TEFEAT GOES
6756
\(D E 2 A\)
\(F C E G\)
6790

6967
\$ 57 F 6 \$DE:A \$FCEC 56760
\(\$ 6733\)
\(\$ 67\)
* SYETEM EQUATES
\begin{tabular}{lll} 
EFIN & EQU & \(\$ 67 F G\) \\
FRQFI_G & EQU & \(\$ D E O A\) \\
NMI & EQU & \(\$ F G E C\) \\
INDEX & EQU & \(\$ 6766\) \\
& \(O R G\) & \(\$ 6733\) \\
& SETDF & \(\$ 67\)
\end{tabular}
* initialization

ENAELE FIFG

FEAD FIA FOR FIINCTICN FLAG IF EITT = 0 FEFEAT FOUITINE DC MONETOR GTAFITJF SET LOCATION TO JIMP TO JIMF TO ASG1

END

6756 FCOC

FRQFLG DEZA FFQINZ FADE FEFEAT FAFG FPTADF 9734

FFGUEC: FAFI
FUNCNT 9733
FB00
FE43
F89D
\[
\mathrm{FgEC}
\]

\section*{0708}
G7DA TEUFNE
\[
F 600
\]
FACE FFQINZ
FEF SAUEGF
G7GA EAUELG
FAG9 OLFEIF
8016 BEGEAT
\[
\begin{array}{ll}
6743 & G T A R T D \\
07 S 1 & \text { FUNFLS }
\end{array}
\]
E949 KEINCH
FASE CMDR
B602 EAUETO
FOOG EEGIN EQU
\[
6097 \quad \text { SETDF } \$ 07
\]
\begin{tabular}{|c|c|}
\hline FE1F St & 26 ST \\
\hline FB2－ \(\mathrm{PL}^{\text {a }}\) & EB \\
\hline FE2 E6 & 67 \\
\hline FE\％S IE & 8E \\
\hline FE\％7 17 & FCDG \\
\hline FB2A 17 & F車FBシ \\
\hline FSCD 17 & FD13 \\
\hline FB36 1.7 & FEO9 \\
\hline FO3 8E & 9006 \\
\hline FB36 9F & D8 \\
\hline FB38 eE & 9707 \\
\hline FESE 9F & DA \\
\hline FESD 17 & FE 27 \\
\hline FS\％ \(\mathrm{ES}^{\text {E }}\) & 0 0 6 \\
\hline Fe43 9F & De \\
\hline FB 4 EE & QFF＝ \\
\hline FEAB \(9 F\) & DA \\
\hline FBAA 17 & FEIC \\
\hline FE4D 17 & FDAS \\
\hline Fsed 0 & 6 A \\
\hline F8S2 6 & 20 \\
\hline
\end{tabular}

ORG \＄FELF
ETARTIJF FGHIJ Y
ESF FFiginz
LDA \＃क 07

EXG A．DF
LBER INTIME

LESR INITAD
LESF INITKF
LDX \＃\＃
ETX TEUFET FOINT TO START OF ECFATCHFAD

ETX TEUENE FOINT TO END OF ECFATCHFAL
LBER CLFEUF
LDX \＃\＄0E06
ETX TEUFET FOINT TO DATA ETOFAGE
LDX \＃すGFFF
ETX TEUFND FOINT TO END OF DATA STCFAGE
LEER CLEEJ
LEST GAUECK
TST SAUF：
ENE GAVDAT YEE，GET ETART OF IINFFOTECTED AFEG

INITIALIZE TIMETG
INITIALIZE A TOD
INITIALIZE D TOA
INITIALIZE KEYFAD

INITIALIZE MONITOR AND ACIA
SET UF FIZG FOUTINE
GOO MEMOFY EAUE GHECK

ETART OF GMOE DATA STOFAGE

FOINTEF TO GMOE DATA STOFAGE LOCATION FOR GTAET OF SEOLIENCE
\begin{tabular}{|c|c|c|c|c|c|}
\hline FES-EE & 8019 & & \(\operatorname{LDX}\) & \#BEGDAT & \\
\hline FES 96 & 43 & & STX & ETAFTD & GAVE FOINTEF TO DATA AFEA \\
\hline F859 GF & D8 & & ETX & TEUFST & CLEAR CVOS MEM. \\
\hline FESE EE & B7FF & & LDK & \#BEGDAT+ & \\
\hline FESESF & DA & & STX & TEITFND & \\
\hline EE60 17 & FF96 & & LESR & CLFEUF & \\
\hline FEdS CC & F000 & 60 & LDD & \#BEGIN & \\
\hline FEbe DD & 31 & & ETD & RUNFLG & POINT TO PROGRAM ENTRY \\
\hline FB6日 17 & FDDE & GETF & LBER & KBINCH & \\
\hline FE6B Ci & 4 A & & CMFE & \#\$ 4A & \\
\hline FE6L 26 & F9 & & BNE & GETF & IF CHAFACTEF NOT F LOOF \\
\hline FEGE 17 & FEES & & LEST & CMDR & \\
\hline FB7-27 & AE & & EEG & STAFTIUF & TFY AGAIN: IF EfR'OR \\
\hline \(\mathrm{FE74EE}\) & 8002 & EAVDAT & LDX & EAVETO & GET NEXT DATA LOCATION \\
\hline FB77 9F & 43 & & ETX & ETARTD & GTORE IN PGINTEG \\
\hline FE/720 & EE & & ERA & 60 & \\
\hline
\end{tabular}
```

0 ERFOR(\Xi) DETECTED
EMMBOL TABIE:

EEGDr.	2016	E	0	CLFEBIF	FA69	CH	FAS6	FFQINZ
GETF	FE68	60	EE63	INITAD	F843	INITDA	F89D	INITEF F93C
INT ME	F800	KEINOH	F9-9	$\Pi \mathrm{E} 5$	FCOO	F'MFLG	6731	EAUEAT FETA
AUECK	FEF6	GAUELG	676A	EAVETO	8062	ETARTO	6743	GTARTII FEIF

```

(1) ERFOR(S) DETECTED

EMEOL TAELE:
ETT FEG2 ORE DECA FGMEAU FETD UNGAUE FEEC
\begin{tabular}{|c|c|c|c|c|c|}
\hline FEFC & & & ORG & \$FE9C & \\
\hline EE7C 4 C & & FACKS & INC:A & & ADUST COUNT OF MS EYTE \\
\hline F390 34 & 96 & & F'SH: & D & PITT COUNT ON THE STACK \\
\hline FBFF ED & 9 A & F'AC1 & ESFi & FACK & FACK 4 INTO 3 \\
\hline FBA1 GA & 61 & & DEC & 1, & LS COINT \\
\hline FBA3 -6 & FA & & ENE & FACI & \\
\hline PEAS GA & E4 & & DEC & 0, \({ }^{\text {a }}\) & ME EYTE \\
\hline FEAT 26 & Fib & & ENE & PAC1 & \\
\hline FEA9 35 & 86 & & FUS & D, FC & CLEAN IUF STACK,RETURN \\
\hline FEAE EC & 81 & PACK & LDD & X++ & GET FIRET TWO CHAFACTERE \\
\hline FBAD 58 & & & ASLE & & \\
\hline feat Se & & & \(A: E\) B & & \\
\hline FEAF SB & & & ASLE & & \\
\hline FEEG 49 & & & FOLA & & \\
\hline FEE: SE & & & ASLE & & \\
\hline FBEZ 49 & & & FiOLA & & \\
\hline & & \[
{ }_{*}^{*} A C C A
\] & \[
\begin{aligned}
& \text { IS NOW } \\
& \text { LE }
\end{aligned}
\] & \[
A C K E D
\] & ACCB GONTAINE A EITE \\
\hline FEE3 AT & A0 & & ETA & \(Y+\) & GTORE FIRST FACKED EYTE \\
\hline FEBS Ac & E0 & & LDA & X + & GET THIRD CHAF. \\
\hline FEE, \({ }^{-14}\) & & & LEFA & & \\
\hline FEES 44 & & & LSRA & & \\
\hline FEEG EA & QF & & ANDA & \#\$0F & CLEAN UF MS NYBELE \\
\hline & & * ACCCA & HAS ME & NYEBLE & ACCE HASE LS NYBELE \\
\hline FEEE 34 & 04 & & FSHS & B & FUIT B IN TEMF ETOFAGE \\
\hline GEED AA & E0 & & OFA & E+ & FITT CHAF TOGETHER, CLEAN \\
\hline FETE Ar & A0 & & GTA & \(Y+\) & ETOFE SECOND FACAED EYTE \\
\hline EEGI EC & Q1 & & 1.10 & \(x++\) & GET LAET TWO CHAF. \\
\hline & & * FICK & UF2 & F FFOM & - MEE IN E \\
\hline FEOS 5S & & & \(A B L B\) & & \\
\hline FEC: 88 & & & ASLE & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{UNFAKS} & FSHE & \(Y\) & \\
\hline & INCA & & ADUUST COUNTEF MS EYTE \\
\hline & F：HE & D & FUT COLIAT ON THE ETACK \\
\hline \multirow[t]{6}{*}{UNF 1} & ESF & UNFACK & UNFACE 3 INTO 4 \\
\hline & DEC & \(\square\) & LE COLINT \\
\hline & ENE & UNF 1 & \\
\hline & DEC & 5 & MS COUNT \\
\hline & BNE & UNP 1 & \\
\hline & FUJS & \(D, Y, P C\) & CLEANSTACK，RETUF＇N \\
\hline
\end{tabular}
＊UNFACK FETUFNE FOUF FIGHT－USTIFIED E－BIT
＊CHAFACTEFG FROM THFEE FACKED E－BIT BYTES

\begin{tabular}{|c|c|c|c|c|c|}
\hline FEET ED & \multirow[t]{3}{*}{\[
\begin{aligned}
& A 1 \\
& B 0
\end{aligned}
\]} & & \(\operatorname{STD}\) & \(y++\) & STORE \(15 T\) AND \(2 N D\) C：HARS \\
\hline FEEP EC： & & & LDD & \(x+\) & GET 2ND AND THIFD EMTES \\
\hline FEEB 58 & & & ASLB & & \\
\hline FSEC 49 & & & FOLA & & ：ANOTHEF EHIFT，TWO FLACES \\
\hline FESD SE & & & ASLB & & ！ \\
\hline FEEE 49 & & & FOLA & & ： \\
\hline \multirow[t]{2}{*}{FPEF B4} & 35 & & ANDA & \＃\＄3F & CLEAF TOF 2 BITS \\
\hline & & ＊ACCA & IS NOW & IJNFACKED & \\
\hline \multirow[t]{3}{*}{FEFI EG FEFS G4} & 86 & & LDE & X＋ & \multirow[t]{2}{*}{GET 3FD EYTE AGAIN} \\
\hline & 3 F & & ANDE & \＃すご & \\
\hline & & ＊EOTH & AFE NOW & UNFACEED & \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { FEFS ED } \\
\text { FEF } & 35
\end{array}
\]} & A1 & & \(E T D\) & \(Y++\) & \multirow[t]{2}{*}{GTOFE THIFD AND FODRTH CHAF： FECOUER D，RETLEN} \\
\hline & 86 & & Fuls & D，FC： & \\
\hline
\end{tabular}

9 ERFOR(E) DETECTED
ByMEO- TABLE:
FAC1 FEPF FACK FBAB PACKE FB9C INNF1 FBDI UNFACK FBDD UNFARS FECC:
1. PUBLICATION OR REPORT NO.
NBSIR 84-2853
2. Performing Organ. Report Nof
3. Publication Date

April 1984

BIBLIOGRAPHIC DATA
SHEET (See instructions)
4. TITLE AND SUBTITLE

Measuring the Rate of Corrosion of Reinforcing Steel in Concrete
5. AUTHOR(S)
E. Escalante, M. Cohen, and A. H. Kahn
6. PERFORMING ORGANIZATION (If joint or other than NBS, see in structions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
7. Contrace/Grant No. P0-8-3-0118
8. Type of Report \& Period Covered

Interim 1980-1983
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)

Federal Highway Administration
Paving and Structural Materials Group, HRS-22
Washington, DC 20590
10. SUPPLEMENTARY NOTES

FHWA Contract Manager: Y. P. Virmani
\(\square\) Document describes a computer program; SF-I85, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliogrophy or literoture survey, mention it here)

The progress on a research program directed at developing a nondestructive method for measuring the corrosion of steel in concrete as related to bridge deck deterioration is reported. This report summarizes the past work and describes the new developments on this project. The five phases described are: 1) a literature review, 2) preliminary studies, 3) measurements in concrete, 4) field measurements, and 5) development of a microprocessor system.
12. KEY WORDS (Six to twelve entries; alphabetical order: capitalize only proper names; and separate key words by semicalans) Bridge deck corrosion; corrosion in concrete; corrosion of steel, polarization technique: rebar corrosion.
13. AVAILABILITYUnlimitedFor Official Distribution. Do Not Release to NTISOrder From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.
[ X — Order From National Technical Information Service (NTIS), Springfield. VA. 22161
14. NO. OF
PRINTED PAGES
36
15. PrICe
S11.50
\[
\bullet
\]```

