

Measuring the Corrosion Rate of Reinforcing Steel in Concrete

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Materials Science Metallurgy Division Washington, DC 20234

April 1984

NBSIR 84-2853

MEASURING THE CORROSION RATE OF REINFORCING STEEL IN CONCRETE

NATIONAL BUREAU OF STANDARDS LICEARY

E Escalante, M Cohen, A. H. Kahn

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Measurement Laboratory Center for Materials Science Metallurgy Division Washington, DC 20234

April 1984

Sponsored by: Federal Highway Administration Washington, DC 20590

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

MEASURING THE CORROSION RATE OF REINFORCING STEEL IN CONCRETE

The deterioration of concrete bridge decks as a result of corrosion action on the reinforcing steel is a serious and costly problem to the nation (1). It is recognized that this corrosion is caused by the diffusion of chloride ions into the concrete resulting in the breakdown of the passive iron oxide film that normally protects the steel. The corrosion product that forms generates sufficient pressure to crack the concrete allowing moisture, oxygen, and more chloride to enter, further accelerating the deterioration process (2).

Methods have been developed that: a) block the chloride from coming in contact with the steel, (b) stop the chloride from entering the concrete, (c) remove the chloride from the vicinity and (e) others, such as cathodic protection, which modify the reactions at the surface of the steel (3-7). All of these approaches require some method to evaluate their effectiveness, and the most direct method is to measure the corrosion rate of the steel before and after a modification to the concrete.

Procedure

The plan for this study is divided into the following five phases which are: A literature review, preliminary studies, measurements in concrete, field measurements, and the development of a microprocessor system. More than half of these phases have been accomplished and reported as will be described.

Phase I. Literature Review - At the outset, a literature search was undertaken to identify the information available on the corrosion of steel in concrete and methods for measurement. A total of 394 papers, reports, and talks from 1964 through 1978 were identified on the subject, and are indexed under subject and author (8). The Subject Index was further subdivided into six subgroups such as general survey, factors affecting corrosion, measurement techniques, protection techniques, concrete design, and related fields. In the Author Index, the references are listed alphabetically by author.

A study of this literature revealed several interesting facts. For example, it was found that over thirty references discussed the effect of chloride on corrosion, but only one reference discussed the effect of oxygen content. Furthermore, the effect of moisture was considered in just four of these references. Not one study on the corrosion of steel in an alkaline environment was found. Clearly, most of the attention had been directed towards the effects of chloride.

Phase II. Preliminary Studies - From the information gathered through the literature search, it was evident that more information was needed on the effects of oxygen, pH, and moisture, and therefore an experimental program was designed to evaluate these factors. Three environments were used on this phase of the study, and these were alkaline solutions of Ca(OH)₂ with controlled oxygen, Cl⁻, and pH; wet sand/salt mixtures; and mortar (9).

Flat steel specimens 100 x 20 x 1 mm were immersed in controlled solutions and the initiation time for visible corrosion was noted. At a pH of 10.5 or less, corrosion started immediately on immersion. However, as the pH was raised to 12, initiation times increased to 200h, and at higher pH corrosion did not occur during the period of the experiment. The experiment was repeated in the presence of chloride, and it was found that chloride did reduce the initiation time to corrosion but otherwise had little effect. Once initiated, the corrosion rates were constant in all cases. Not surprisingly, the oxygen content of the solution had a large effect on the corrosion rate of the steel with lower concentrations leading to lower corrosion rates.

Further experiments were carried out.as described which indicated that the interaction of oxygen, pH, and chloride is more complex and in combination can develop conditions that lead to corrosion even at high values of pH. Figure 1 is a summary of these data showing these three parameters. Illustrated is a three dimensional figure with boundaries within which corrosion does not occur. However, outside of this boundary corrosion of steel is observed. For example, where it was shown earlier that chloride or oxygen acting alone could not cause corrosion of steel at a pH of 12.5, this figure reveals that at an oxygen concentration as low as 2 ppm and at a C1⁻ concentration of 6 mol/l, corrosion does occur, and can also develop at lower concentrations of C1⁻ at higher oxygen contents.

To observe the effect of moisture on the corrosion of steel, specimens were imbedded in a mixture of sand, Ca(OH)₂, and NaCl. The mixture was held in small perforated crucibles in an atmosphere of flowing air with controlled moisture content. This configuration allowed the specimens to be removed for weight loss determination during the course of the experiment. Specimens in a moisture saturated sand mixture did not corrode, but during the same period, specimens in a dry mixture began to corrode almost immediately as moisture was introduced. However, the corrosion rate of these specimens decreased steadily as moisture content of the sand mixture increased; and at saturation, the corrosion ceased. Clearly, the degree of moisture, which affects oxygen concentration, plays a very important role as expected, but the cessation of corrosion at saturation was not anticipated.

After the study of steel in solutions and in sand mixtures was completed, the work was extended to include steel in mortar. Specimens as described above were cast with a 5 mm cover of chloride-containing mortar. After 24h, half of the specimens were immersed in a Ca(OH)2/NaCl solution and half

were allowed to dry for one week before immersion. The corrosion current of each specimen was determined by polarizing the specimen from -10 to +10 mV with a potentiostat and plotting the overvoltage as a function of the polarizing current. As in the case of the sand mixture, the corrosion of the steel in mortar that was kept continuously wet was near zero, but the specimens that were allowed to dry for one week, and then immersed, initially developed a high corrosion rate that decreased with time to a very low value.

In summary, these studies have shown that at low concentrations of O_2 and Cl⁻, pH controls the initiation of corrosion. But as O_2 and Cl⁻ increase, corrosion can initiate even at a pH of 12.5. It is hypothesized that in the moisture saturated concrete, the concentrations of Cl⁻ and oxygen are sufficiently low for conditions to exist within the "no corrosion" boundary of Figure 1. However, as the concrete dries, the Cl⁻ concentration in the pore water eventually increases to saturation. This drying process also allows oxygen to diffuse more rapidly through the concrete setting up conditions outside of the "no corrosion" boundary where corrosion of steel does take place. Once corrosion is initiated, the pH is reduced at the anodic areas by the corrosion reaction, making it easier to reinitiate corrosion in future times when moisture and oxygen are available.

Phase III. Measurements in Concrete - The purpose of this portion of the work was to compare several polarization techniques for measuring the rate of corrosion of steel in concrete(9). All polarization techniques are essentially the same in that the measurement is based on the observation that the polarizing current necessary to change the potential of a metal in an electrolyte, in this case concrete, is directly related to the rate of corrosion of the metal. The techniques differ only by how this change

in potential is achieved. Initially, four techniques were used in this study and are described as follows: Stern and Geary consider the derivative of the potential of the specimen versus the applied current for deviations from the corrosion potential not greater than 10 mV (10). This slope is related to the corrosion current, I_{corr} , by the relationship:

$$\lim_{E \to 0} \frac{dE}{dI} = \frac{b_a \cdot b_c}{2.3(b_a + b_c)I_{corr}}$$

where b_a and b_c are the anodic and cathodic Tafel Slopes respectively. For calculation of the corrosion current, I_{corr} , values for the Tafel slopes must be obtained from other sources, or by trial and error for the best fit to the data. In this case ΔE was 6 mV and the assumption made that $b_a = b_c = 100$ mV. Thus:

$$\frac{I_{corr}}{\Delta E} = \frac{21.7\Delta I}{\Delta E}$$

The second technique used is an empirical approach described by Schwedtfeger in which I_{corr} is determined from the change in slope of the polarization curve (11). The cathodic corrosion current, I_p , and the anodic corrosion current, I_q , are found at this "break" in the curve, and the corrosion current is then calculated from:

$$I_{corr} = \frac{I_p I_q}{I_p + I_q}$$

The technique requires that polarization, ΔE , extend over a range of $\pm 100 \text{ mV}$ so that the "breaks" in the polarization curve may be observed.

The three point method of Barnartt is the third technique that has been used (12). Three voltage/current data points are measured along the polarization curve, and from this b_a , b_c , and I_{corr} are calculated as follows. If the first potential point is at ΔE , then the second and third are at $2\Delta E$ and $-2\Delta E$ respectively. The resulting currents at each potential are measured and substituted into the ratios

$$r_1 = I_{2\Delta E}/I_{-2\Delta E}$$

and

$$r_2 = I_2 \Delta E / I \Delta E$$

which in turn are related to each other through the quadratic equation

 $U^2 - r_2 U + r_1 = 0$

The roots of this equation are

exp
$$\frac{2.3 \Delta E}{b_a}$$
 and exp $\frac{2.3 \Delta E}{b_c}$

from which b_a and b_c are calculated. Using the relationship of I/I_{corr} versus ΔE , the corrosion current for the process is found.

The fourth technique is a computer analysis of polarization data developed by Mansfield (<u>13</u>). The computer makes a best fit analysis to theoretical curves generated from the Stern-Geary equation for different values of Tafel slopes and in this way b_a , b_c , and I_{corr} are found.

Each of the polarization techniques described employs a three electrode system having the steel specimen as one electrode, a voltage reference as a second electrode, and a counter electrode as a third electrode from which polarizing current is applied to the specimen. The circuit used for these measurements is Holler's (14) which incorporates a Wheatstone bridge for IR compensation as illustrated in Figure 2. The IR compensating design takes advantage of the fact that when a polarizing current is applied to the specimen, its rate of change in potential due to polarization is very small compared to the rate of change in potential due to IR. By repeated applications of current of short duration (e.g. 0.5s), and by adjusting the Wheatstone balancing resistance, the IR component is compensated. Once this balance is achieved, then the polarizing potential, free of IR, can be measured for all values of applied current.

Small concrete slabs 55 x 30 x 5 cm were cast each with three imbedded 1.27 cm diameter steel rods. Two small stainless steel rods were also encased in the concrete and were used to determine the resistivity of the slab. The concrete was treated in two ways. Four of the slabs were cast with 0.06 parts NaCl to one part cement (38.4 lbs NaCl/cu.yd), and the remaining eight slabs were cast without Cl⁻. After curing for approximately thirty days, two of the Cl⁻ free slabs were immersed in a saturated solution of NaCl for six days, withdrawn, and left in a dry laboratory atmosphere. Two other slabs were immersed in a 3.5% NaCl solution for 24h, withdrawn, and also left in a laboratory atmosphere. Corrosion measurements showed that steel specimens in Cl⁻ free slabs developed very low corrosion rates (<0.007 mg/dm²/day). However, those slabs with Cl⁻ in the concrete immediately developed a corrosion rate of 4.4 mg/dm²/day or more than two orders of magnitude greater than those in Cl⁻ free concrete. Figure 3 illustrates the decreasing rate of corrosion as the concrete dried. In the case where the chloride free concrete slabs were immersed for six days in a sodium chloride saturated solution, the corrosion rate increased by over an order of magnitude within a few hours as shown in Figure 4. The second group of chloride free concrete slabs that were immersed for only 24h in a solution of 3.5% NaCl behaved similarly to those immersed longer in a more concentrated solution. The average weight loss of steel on these specimens, based on electrochemical measurements, was 0.33 mg/dm²/day. The resistivity of the concrete was also measured with time, and the data reveal that the resistivity decreases as moisture increases. However, the effect of immersion on the corrosion rate is much greater than its effect on the resistivity of the concrete. As the concrete dries and the resistivity increases above 7,000 ohm-cm, the resistance appears to have a direct influence on the degree of corrosion observed.

Weight losses were calculated from the electrochemicaly determined corrosion currents measured as a function of time, and were compared to gravimetric weight loss measurements on the same cleaned steel rods. A comparison of the data from the four electrochemical techniques described is shown in Table 1 and indicates that all methods overestimated the weight loss of steel. The Stern-Geary method overestimated weight loss by 17% while Schwerdtfeger's, Mansfeld's, and Barnartt's techniques overestimated weight loss by 40%, 56%, and 83% respectively. Since the differences in the corrosion rates between a corroding and a non-corroding system are over an order of magnitude, then even the data with an overestimation of 83% will reveal the existence of high corrosion.

In summary, the data indicate that the corrosion of steel in chloride free concrete is negligible and less than $0.007 \text{ mg/dm}^2/\text{day}$ while the corrosion rate in chloride contaminated concrete is more than an order of magnitude greater with an average of $0.33 \text{ mg/dm}^2/\text{day}$, but can be as high as $4.4 \text{ mg/dm}^2/\text{day}$. Comparison of the gravimetrically determined weight loss to the weight losses calculate from the polarization data indicates that the electrochemical measurements overestimate weight loss by 17% to 83%. However, even with an overestimation of 83%, the polarization techniques will differentiate between a corroding and a noncorroding condition of steel in concrete.

An important part of this study is the characterization of the current distribution during polarization measurements. This distribution must be known in order to determine the area of the steel being polarized which, in turn, makes it possible to calculate a corrosion current density or weight loss of steel per unit length of steel bar.

Under controlled laboratory conditions, determining this area is not a serious problem since the specimens are small and the geometry of the

electrodes can be arranged so that the entire specimen electrode is polarized with a uniform current. But in extending these polarization measurements to a bridge deck we are faced with limitations brought on by the relatively large size of the structure. The major constraint being that, unlike our small slabs in the laboratory, we cannot polarize the entire bridge at once, but can only polarize a small area at a time, and it is this area that must be characterized.

The experimental procedure used is simple in principle. In an attempt to simulate the large scale geometry in a small slab, it was decided to use a long line specimen in concrete and polarize it from a point or small line current source. The potential of the steel in the concrete would be monitored by reference electrodes positioned along its length. Three variables were considered as having an effect on the distribution of the current, and these are the distance between the counter electrode and the specimen, the amount of current applied, and the resistivity of the concrete.

Using small concrete slabs similar to those described earlier, a new geometric arrangement of electrodes was designed as shown in Figure 5. As before, the steel rod is imbedded horizontally along the length of the concrete slab. The counter electrode is a small diameter (3 mm) rod positioned vertically adjacent to the steel specimen. Three counter electrodes at different distances (1,2,4cm) from the specimen are illustrated. Ten reference electrodes, imbedded in the concrete, are located 8.5 cm apart along the length of the steel rod and 2 cm from its surface. This arrangement of electrodes allowed a polarizing current to be applied to the steel specimen from a small vertical line source. Any changes along the length of the specimen are detected by the reference electrodes. Measurements were

made using one of the three counter electrodes. The resistivity of the concrete was controlled by controlling its moisture content. During an experimental run, the potential along the length of the specimen was measured before any current was applied. Subsequent potential measurements were made with reference to this initial base potential. The polarizing current was increased in increments and the potential measurements repeated until a maximum of approximately 10 mV was achieved. Initial measurements were made manually using the Holler bridge circuit for compensation of IR. More recent measurements were made using a computer controlled system which applies a cycling direct current of 5 seconds on and 0.25 seconds off. The potential of the specimen was then read during the current off cycle so that the IR component was zero. Figure 6 illustrates the distribution of current as indicated by the change in potential along the length of a steel rod in concrete. This curve is a measure of the extent of current distribution along the length of a horizontal steel rod when the current source is a small vertical rod in the concrete. The shape of the curve is an indication of how uniformly the current is distributed within the polarized area. This type of data have been obtained as a function of counter electrode distance, applied current, and resistivity of concrete. Preliminary analysis of the data indicates that, as expected, the extent of the current distribution decreases as the resistivity of the concrete increases, and the general shape of the current distribution curve does not appear to be affected. In addition, as the electrode distance is decreased, the area of steel rod polarized also decreases. The largest effect observed is that of the applied current. As the current is increased, the area of distribution

increases. But perhaps the most important observation is that current distribution is very limited and 90% of the current encompasses a distance of less than 10x the distance between the specimen and the current source electrode.

A mathematical model has been developed that takes these variables into consideration and generates a current distribution curve along a cylinder from a point source in free space as follows. The electric current distribution in a conductive medium containing electrodes held at arbitrarily fixed potentials may be obtained by a standard application of potential theory. For the case of an infinitely long cylindrical conductor embedded in an electrolyte with a point source of current at a fixed distance from the cylinder, an extension of the formulas given by Jackson gives a complete solution for the current distribution in the electrolyte (15).

The following geometric arrangement is treated as illustrated in Figure 7. Consider an infinitely long metallic cylinder of radius a, held at ground potential, and at a distance, d, from the axis of the cylinder, a point electrode emits a total current I_0 . By application of the methods stated above, the current density at any point, P, on the surface of the cylinder is described.

 $J(Z,\theta) = \frac{I_0}{\pi^2 a} \sum_{m=0}^{\infty} \frac{\cos m\theta}{\varepsilon_m} \int_{0}^{\infty} dk \cos kz \frac{K_m (kd)}{K_m (ka)}$

where

J(Z, Ə)	=	Current density at point P on the cylinder
Io	=	Total current emitted by source at d
m	=	Integer index for summation
k	=	Variable of integration
επ	=	2 for m = 0; 1 for m > 0
$k_{m}(x)$	=	A modified Bessel function of the second kind, order m,
		argument x, see ref. (16)

Although this formula is a closed mathematical expression with a precisely defined meaning, its evaluation to a specified accuracy requires numerical integration of a function which is rapidly oscillating and the summation of a convergent series. Use of digital computing methods to produce graphical or tabular representation of the results is essential. A preliminary evaluation of the function, illustrated in Figure 8, demonstrates that it does follow the general shape of the measured data. Further analysis of this function and its correlation to the data is required for a more accurate assessment of their relationship.

Phase IV. Field Measurements - After gaining some experience in performing the corrosion

measurements on concrete slabs in the laboratory, the measurements were extended to the field on an operating bridge deck. With the cooperation of the Virginia Highway Department arrangements were made to perform corrosion rate measurements on a bridge deck (Number 2063) on Interstate 66 near the Washington, DC Beltway. The primary objective of this portion of the study was to evaluate the background electrical noise and determine whether the measurements could be made.

Measurements were made on two separate decks that were a few hundred meters apart. Two sets of measurements were made on a seven year old deck (area A) repaired and widened (area B) eighteen months earlier and now in use, and one set was made on a deck (area C) over a year old but not yet opened to traffic. The major difference between the two decks is that the older deck with its new widened section had been exposed to de-icing salts while the new deck, barricaded to traffic, was not salt contaminated.

During the measurements, electrical contact was made to the steel rebar with modified locking pliers. The counter electrode was a 500 cm² rectangle of aluminum foil wrapped in a towel wetted with a saturated solution of Ca(OH)₂. A 6-cm diameter hole was cut out of the center of the counter electrode to accommodate the Cu/CuSO₄ reference electrode positioned at this point on a small wetted sponge. Using the Stern-Geary technique and the Holler bridge circuit, measurements were made at areas A, B, and C, and a portable Tetronix Model 214 oscilloscope was employed to monitor the background electrical noise.

The background electrical noise was found to be a very high frequency signal beyond the kilohertz range of our instrument, but more importantly, it was of very low amplitude and less than 1 mV. Apparently the steel structure of the deck acts as a very good antenna for radio frequency radiation. The corrosion measurements revealed that area A on the 7 year structure developed a corrosion current of 9.8 µA, while area B on the recently widened section of the same structure had a corrosion current of 6.9 µA. The new deck not open to traffic displayed the lowest corrosion current of 1.2 µA. Thus, though the data could not be verified by examination of the steel, it did seem reasonable. That is the oldest contaminated structure did display the highest corrosion and the new uncontaminated deck the lowest corrosion. Furthermore, it was found that the measurements could be made and that background interference was negligible.

Phase V. Microprocessor System - It is recognized that the corrosion measurements are tedious, time consuming, and require some knowledge of the concepts involved, and because these measurements lend themselves to automation, the ultimate goal of this project is to develop an instrument that will make these measurements automatically. Field measurements would then be performed with a microprocessor controlled device which would relieve the operator of most of the detailed adjustment, data acquisition, and calculations required. This device is to be as simple

allowing minimally trained personnel to perform the measurements. A description of the design of such a device follows.

The instrument is designed around a set of commercially available microcomputer printed circuit cards. These are based on a MC 6809 microprocessor circuit giving the system a very capable and powerful controller. The modules used in the system are:

- 1.) The processor card
- 2.) Battery backed-up memory
- 3.) Serial, parallel, and timing card
- 4.) Analog to digital converter
- 5.) Digital to analog converter (modified)
- 6.) Vacuum fluorescent display

In addition to these commercial cards, several other cards have been constructed at NBS, and serve two functions. First, to provide an interface between the user and the system are the following:

1.) Keyboard and display panel

2.) Test and keyboard control

Second, to interface the instrument to the experimental cell, these cards were constructed:

3.) Voltage to current converter

4.) Input amplifier and distribution card

Schematics of these cards and the modification to the digital to analog converter are illustrated in Figures 9 through 13.

The instrument operates in the following manner. At turn on, if the test switch is on, the unit is in a display test mode. The system will not function except for the display which will demonstrate the full character set on a character by character basis. When the test switch is deactivated, followed by a reset, the system goes into operational mode and instruction messages appear on the display.

In the operational mode, the processor requests information from the user, and when all necessary parameters are stored, sets up the system for zero levels and enters a wait state until the operator lets it know that final hook up to the cell is complete. This information is transmitted to the instrument by pressing the "RUN" key thereby activating the microprocessor to begin data acquisition. Output current is generated by a precision voltage to current converter. Voltage driving this converter is derived from a 10 bit digital to analog converter under control of the processor. The full scale output current range is also selectable by the processor software. Input potentials are measured by a 12 bit analog to digital converter. Three channels are used in this measurement. One channel measures the current applied, another the counter electrode to working electrode potential, and the third the reference electrode to working electrode potential where the working electrode is steel in the concrete. The data are then saved in a battery backed up memory remaining there until deliberately erased. When data acquisition is complete, calculations are performed and the results displayed. A permanent record can then be printed out and the data erased, or another experiment can be performed while the data is saved for later printing. The software has been developed as a system of modular routines, the majority of which are single function stand alone subroutines (Appendix A). Links between modules have been made absolute, and therefore the overall program is not relocatable. However, relocation can be put into the system with little difficulty, if it should prove desirable. The software design is such that changes to the

measurement technique can be made by changing 3 or 4 of the modules. Such a change is necessary to the present modules since interfacing problems have resulted in an error in the measurements. These changes are in the process of being implemented.

Summary

This National Bureau of Standards study has revealed the following information.

1.) A total of 394 papers, reports, and talks from 1964 to 1978 were found pertinent to the subject of the corrosion of steel in concrete. A study of this literature indicated that information was lacking on the effect of oxygen, pH, and moisture.

2.) Oxygen concentration, chloride concentration, and pH have been found to control the initiation of the corrosion of steel in concrete. Moisture content of the concrete also plays an important role through its effect on the concentration of oxygen and chloride.

3.) The comparison of four polarization techniques for measuring the corrosion of steel in concrete reveals that all the techniques overestimated the weight loss from 17 to 83%. Current distribution measurements indicate that the extent of current distribution along a steel bar in concrete is very limited and of the order of 10 times the distance between the specimen and the current source. A mathematical model describing this current distribution is being developed.

4.) Corrosion rate measurements on operating bridge decks verify that polarization techniques can be used in this situation, and furthermore, background electrical noise is negligible.

5.) A microprocessor controlled instrument for making corrosion rate measurements has been designed and constructed. However, complications in interfacing the cards have developed requiring a change in its design. These improvements are in the process of implementation.

REFERENCES

- An Economic Analysis of the Environmental Impact of Highway Deicing, U. S. Environmental Protection Agency, EPA-600/276105, May 1976.
- Cornet, I., Bresler, B., Galvanized Steel in Concrete: Literature Review and Assessment of Performance, Galvanized Reinforcement for Concrete-II, International Lead Zinc Research Organization, Inc., Vol. 2, May 1981.
- 3. Clifton, J. R., Protection of Reinforcing Bars with Organic Coatings, Materials Performance, 15, No. 5, 14-17, May 1976.
- Internally Sealed Concrete Guide to Construction and Heat Treatment, Federal Highway Administration, Implementation Package 77-9, April 1977.
- Slater, J. E., Lankard, D. R., Moreland, P. J., Electrochemical Removal of Chlorides from Concrete Bridge Decks, Materials Performance, 15, 11, 21-26, 1976.
- Lundquist, J. T., Rosenberg, A. M., Gaidis, J. M., Calcium Nitrite as an Inhibitor of Rebar Corrosion in Chloride Containing Concrete Materials Performance, 18, 36-40, March 1979.
- 7. Fromm, H. J., Wilson, G. P., Cathodic Protection of Bridge Decks: A Study of Three Ontario Bridges, Transportation Research Board, Transportation Research Record No. 604, 38-47, 1976.
- Escalante, E., ITO, S., A Bibliography on the Corrosion and Protection of Steel in Concrete, National Bureau of Standards Special Publication 550, August 1979.
- Escalante, E., Ito, S., Cohen, M., Measuring the Rate of Corrosion of Reinforcing Steel in Concrete, National Bureau of Standards NBSIR 80-2012, March 1980.
- Stern, M., Geary, A. L., A Theoretical Analysis of the Shape of Polarization Curves, J. Electrochemical Society, 104, 56, January 1957.
- 11. Schwerdtfeger, W. J., McDorman, O. N., Measurement of the Corrosion Rate of a Metal From Its Polarization Characteristics, J. Electrochemical Society, 99, 407, October 1952.
- Barnartt, S., Two-Point and Three-Point Methods for the Investigation of Electrode Reaction Mechanisms, Electrochimica ACTA, 15, 1313, 1970.
- Mansfeld, F., Tafel Slopes and Corrosion Rates from Polarization Resistance Measurements, Corrosion, 29, No. 10, October 1973.
- Holler, H. D., Studies of Galvanic Couples, J. Electrochemical Society, 97, 271, September 1950.
- Jackson, J.D., Classical Electrodynamics, John Wilesy and Sons, N.Y., 84, 1962.
- Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series No. 55, 1964.

• ..

TABLE 1

Comparison of Weight Loss Determined Gravimetrically

to

Weight Loss Calculated From Polarization Data

Technique	Weight Loss, mg	Overestimate %	
Gravimetric	147		
Stern-Geary	172	17	
Schwerdtfeger	206	40	
Mansfeld	230	57	
Barnartt	269	83	

FIGURES

- 1.) A three dimensional plot of Cl⁻ concentration, oxygen concentration, an pH showing the regions of corrosion and no corrosion.
- A simplified schematic of the Holler bridge circuit as used in a manual measurement of corrosion rate of steel in a concrete slab.
- 3.) A plot of corrosion current and resistivity versus time for steel in salt contaminated concrete.
- A plot of corrosion current and resistivity versus time for steel in concrete contaminated with salt after curing.
- 5.) Geometry of electrodes for current distribution measurements.
- 6.) A plot of current distribution along a steel bar in concrete as indicated by its change in potential.
- 7.) Geometry of electrodes used in model of the current distribution calculation.
- 8.) A plot of one half of the current distribution along an infinitely long cylinder as calculated from the model.
- 9.) Schematic diagram of the keyboard and display panel circuit.
- 10.) Schematic diagram of the keyboard and display panel circuit.
- 11.) Schematic diagram of the keyboard scanner circuit.
- 12.) Schematic diagram of the voltage to current converter circuit.
- 13.) Schematic diagram of the input amplifier and distribution circuit.

Figure 1

:

..

Figure 5

:

PANEL WIRING

•

Voltage to Current Converter

Figure 12

8

Input Card

.

Figure 13

APPENDIX A

¥	÷	¥÷	¥÷	¥.	¥	¥	¥	a,	6.4	έ.	¥	¥	¥	-	4.	¥	¥	4	4	¢ .	¥	¥	: 4	ş.,	¥	¥	4	6.4	κ.	¥	¥	4	¢ .	¥	¥	ж	4 4	¥	¥	¥	¥	- 4	¢ .	۶.	¥	¥	¥	4.3	¢.	¥	¥	¥	- 4	6.4	¢ :	¥.	¥.	¥
\sim	~	<u>~</u>	<u>~</u>	<u>n</u>	~	~	- ^			۰	α.	~	- 25		5	π.	75	- 75		ς	ж.	- 6	- 7	κ.	κ.	*	- 7	57		75	- 75		5.3	π.	- 75	- 75	5 7	π.	π.	*	- 75		5 3	π.	74	7	- 75		5	ж.	ж	- 75		. 7	5 3	π.	σ.	25

BEGIN

* THIS ROUTINE ISSUES PROMPTS AND STORES CONSTANT * DATA FOR THE PORTABLE INSTRUMENT

OPT EXP

* SYSTEM EQUATES

×.

	0800 FECA F9A3 0743 0708 F89C FA83 0731 F86A F194	BUFFER WFS GETDATA STARTD DATBUF PACKS CVDTB RUNFLG GETR MEASUR	EQU EQU EQU EQU EQU EQU EQU EQU	\$0800 \$FECA \$F9A3 \$0743 \$0708 \$F89C \$F89C \$FA83 \$0731 \$F86A \$F194	
0745			ORG	\$0745	
0745 0749 074D 0751		RUNSET TIMSET AREAST . WORK	RMB RMB RMB RMB	य य य य र र र	
	0007		SETDP	\$07	
F000			ORG	\$F000	
F000 F002 F005	0F 31 BE 0800 9F 0B	BEGIN	CLR LDX STX	RUNFLG #BUFFER DATBUF	GET START OF BUFFER Save It
		MSG	MACRO LBSR FCB FCC FCB LDB LBSR BEQ ENDM	WFS \$0D,\$0A '&1' \$0 #\$&2 GETDATA &0	
F007 F007 F00A F00C F010 F014 F018 F01C	17 0EC0 0D 0A 49 44 20 28 31 35 20 43 48 41 52 2E 2D 4D 41 58 29 20 3D 20	ID	MSG LBSR FCB FCC	"ID WFS \$0D,\$0A 'ID (15	(15 CHARMAX) = ","10" CHARMAX) = '

F020 F021 F023 F026	00 C6 17 27	10 097D DF		FCB LDB LBSR BEQ ENDM	\$0 #\$10 GETDATA ID	
F028 F028 F028 F020 F031 F035	17 0D 44 20 4D	0E9F 0A 41 54 45 28 44 44 4D 59 52	DATE	ENDA MSG LBSR FCB FCC	"DATE WFS \$0D,\$0A 'DATE (DD	(DDMMYR) = "→7 MMYR) = '
F039 F03D F03E F040 F043	29 00 06 17 27	20 3D 20 07 0960 E3		FCB LDB LBSR BEQ ENDM	\$0 #\$7 GETDATA DATE	
F045 F045 F048 F048 F048 F048 F048 F052 F056 F056 F066 F066	17 05 40 50 40 50 40 50 50 50	0EB2 0A 49 4D 45 54 4F 20 45 38 54 4D 45 41 35 52 45 45 4E 54 28 4D 4D 53 29 3D	TIME	MSG LBSR FCB FCC	"TIME WFS \$0D,\$0A 'TIME TO	TO NEXT MEASUREMENT (MMSS)= ",5 NEXT MEASUREMENT (MMSS)= '
F068 F060 F060 F061	00 C6 17 27	05 0932 D2		FCB LDB LBSR BEQ ENDM	\$0 #\$5 GETDATA TIME	· ·
F073 F075 F077 F077 F07C F07E F07E F07E F083 F083 F085 F088 F088 F088	984 307 800 980 907 000 317 000 35	0B 20 1B 00C0 3C 49 0B 1D 00B4 49 49 20		LDX PSHS LEAX LBSR LDA MUL STD LDX LEAX LBSR ADDD STD PULS	DATBUF Y -5,X CVTIM #60 TIMSET DATBUF -3,X CVTIM TIMSET TIMSET Y	POINT TO DATA SAVE Y POINT TO MINUTES DATA GO CONVERT TO BINARY LOAD SEC/MIN MULTIFLY POINT TO DATA, AGAIN POINT TO DATA, AGAIN POINT TO SECONDS CONVERT TO BINARY
F08E F08E F091 F093 F097 F098 F097 F043 F043 F043 F048	17 0D 41 20 53 40 35 40 35 43	0E39 0A 52 45 41 4F 46 20 41 4D 50 45 20 28 2D 36 35 33 35 20 4D 5E 32	AREA	MSG LBSR FCB FCC	*AREA WFS: \$0D,\$0A 'AREA OF	OF SAMPLE (0-65535 CM+2)= ",6 SAMPLE (0-65535 CM+2)= '

F0AF F0B2 F0B3 F0B5 F0B5	29 00 06 17 27	3D 20 06 08EB D4		FCB LDB LBSR BEQ ENDM	\$0 #\$6 GETDATA AREA	
FOBA FOBC	9E 34 80	0B 20 76		LDX PSHS	DATBUF Y INGQU	POINT TO INPUT DATA SAVE Y
F0C0 F0C2	DD 35	4D 20		STD PULS	AREAST	SAVE BINARY AREA
F0C4 F0C7 F0C7 F0C9 F0C0 F0C1 F0D5 F0D5 F0D9 F0D0 F0E1	17020 200 40 450 450	0E03 0A 55 4E 53 43 4F 55 54 20 28 30 30 20 52 20 4C 53 53 29 20	RUNS	MSG LBSR FCB FCC	"RUNS WFS \$0D,\$0A 'RUNS COUN	COUNT (100 OR LESS) = ",6
F0E3 F0E4 F0E6 F0E9	00 C6 17 27	06 088a D7		FCB LDB LBSR BEQ ENDM	\$0 #\$6 GETDATA RUNS	
FØEB FØED FØEF	9E 34 8D	08 20 45		LDX PSHS BSR	DATBUF Y INSAV	POINT TO DATA SAVE Y
FØF1 FØF3	DD 35	45 20		STD PULS	RUNSET	SAVE BINARY NUMBER OF RUNS
F0F5 F0F8 F0F8 F0F6 F100 F102 F104 F107 F107 F107	8E A61 27 26 800 90 17 90	0800 80 0D 5C 08 F6 58 F194 31 0DBE 0A	CRTO00 CHARN CNTCM	LDX LDA CMPA BEQ CPX BNE BSR LDD STD LBSR FCB	#BUFFER X+ #\$0D CG DATBUF CHARN DATSAV #MEASUR RUNFLG WFS \$0D,\$0A	FOINT TO START OF INPUT DATA GET CHAR IS IT A CR? IF SO, CHANGE IT HAVE WE REACHED END? IF NOT, GET ANOTHER CHAR. FOINT TO MEASUREMENT ROUTINE
F10E F112 F116 F116 F118 F122 F126 F124 F122 F132 F133	55445500 444400 5400 400 400 400 400 400	52 45 53 20 52 55 20 57 48 4E 20 52 41 44 59 46 4F 52 4D 45 41 55 52 45 45 4E 54 0A34		FCC FCB LBRA	'PRESS RUI 00 GETR	NWHEN READY FOR MEASUREMENT'
F136 F138 F13B	30 17 39	1A 0948	INSAU	LEAX LBSR RTS	-6,X CVDTB	CONVERT TO BINARY

F13C F140 F142 F144 F144 F147 F148 F147 F148 F147 F148 F147 F150 F152 F150 F150 F150 F150	108E C6 B6 A7 526 C6 A7 A5 C6 A7 A5 C6 A7 526 17 39	0751 03 30 A0 FB 02 80 A0 F9 21 1B 092A	CUTIM THIRTY SIXTY	LDY LDB LDA STA DECB BNE LDA STA DECB BNE TFR LEAX LBSR RTS	#WORK #\$3 #\$30 Y+ THIRTY #\$2 X+ Y+ SIXTY Y,X -5,X CVDTB	GET DATA SAVE IT
F15A F158 F15D	4F A7 20	1F 9F	CG	CLRA STA BRA	-1,X CNTCM	REPLACE CR BY ZERO
F15F F161 F164 F167 F169 F160 F160 F160 F16E F16F	34 109E BE DC 83 47 56 47 56	20 43 0800 08 0800	DATSAV	PSHS LDY LDX SUBD ASRA RORB ASRA RORB	Y STARTD #BUFFER DATBUF #BUFFER	SAVE Y GET CMOS MEMEORY START POINT TO DATA DIVIDE BY 4
F170 F173 F176 F178	17 109F 9E 35	0A29 43 0B A0		LBSR STY LDX PULS	PACKS STARTD DATBUF Y,PC	SAVE NEXT CMOS DATA ADDRESS POINT TO DATA INPUT AREA RESTORE Y,RETURN

0 ERROR(S) DETECTED

AREA	FØBE	AREAST	074D	BEGIN	F000	BUFFER	0800	CG	F15A
CHARN	FØFB	CNTCM	FØFE	CRTO00	FØFS	CVDTB	FABS	CUTIM	F13C
DATBUF	070B	DATE	F028	DATSAV	F15F	GETDAT	F9A3	GETR	FB6A
ID	F007	INSAU	F136	MEASUR	F194	PACKS	FB9C	RUNFLG	0731
RUNS	FOC4	RUNSET	0745	SIXTY	F14B	STARTD	0743	THIRTY	F144
TIME	F045	TIMSET	6749	WFS	FECA	WORK	0751		

		******	*****	********	********
1		×		MEASUR	
		* THIS * THE P * STORE * FOR L	ROUTINE ORTABLE D IN THI ATER RE	HANDLES T INSTRUMEN E CMOS MEM TRIEVAL IF	HE MEASUREMENT SEQUENCE IN T. THE MEASURED DATA IS ORY AND THE ADDRESS UPDATED DESIRED.
		******	******	*********	*****
		* SYSTE	M EQUATI	ES	
	0700 0702 0704 0705 0706 0708 0733 0743 0743 0745 0749 8004 DE50	INDEX ADCVAL CHNUM SWNUM DACVAL DATBUF RUNCNT STARTD RUNSET TIMSET SAVST1 DDAC	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	\$0700 \$0702 \$0704 \$0705 \$0706 \$0708 \$0733 \$0743 \$0745 \$0745 \$0745 \$0745	
	0007		SETDP	\$07	
	F82F F839 F852 F867 F870 F890 F886 F88F F808 F808 F808 F808	CGTIME TIMCHK CHSELT SMSELT CONVRT INITDA SWNSET SWNSET SWNZER LDDAC WFS	EQU EQU EQU EQU EQU EQU EQU EQU	\$F82F \$F839 \$F852 \$F867 \$F879 \$F89D \$F880 \$F88F \$F808 \$F808 \$F808	
9751			ORG	\$0751	
0751 0756 0757 0757 0759 0758		WORK REVFLG DACINI OPNCRK DACADJ	RMB RMB RMB RMB RMB	5 1 2 2 2	
F194			ORG	\$F194	
F194 17 0D3 F197 0D 0A F199 57 4F 52 F19D 49 4F 47	33 2 4B	MEASUR	LBSR FCB FCC	WFS \$0D,\$0A 'WORKING'	OUTPUT MESSAGE
F1A0 00 F1A1 0F 33 F1A3 CC 01F F1A6 DD 57 F1A8 CC 003	F 33		FCB CLR LDD STD LDD	\$00 RUNCNT #\$01FF DACINI #\$0033	CORRESPONDS TO ZERO OUT SAVE INITIAL VALUE CORRESPONDS TO 1/2 MICROAMP

F1AB DD F1AD 9E F1AF BF	58 43 8004		STD LDX STX	DACADJ STARTD SAVST1	SAVE ADJUSTMENT VALUE GET START OF CMOS MEMORY AREA SAVE START OF MEMORY AREA
$\begin{array}{cccc} F1B2 & CC \\ F1B5 & ED \\ F1B7 & 17 \\ F1BA & B6 \\ F1BC & 97 \\ F1BE & 17 \\ F1C1 & 17 \\ F1C4 & 17 \\ F1C4 & 17 \\ F1C4 & ED \\ F1CC & 0C \\ F1CE & 17 \\ F1D1 & 17 \\ F1D4 & 17 \\ \end{array}$	000A 84 0675 01 04 0691 06A3 0672 06AF 81 04 0681 0673 06A2	SELCH	LDD STD LBSR LDA STA LBSR LBSR LBSR STD INC LBSR LBSR LBSR	#\$000A X CGTIME #\$01 CHNUM CHSELT SMSELT TIMCHK CONVRT X++ CHNUM CHSELT SMSELT CONVRT	SET TIMER FOR 1 MSEC TIMEOUTS SET A TO D FOR CE TO WE, I-OFF SELECT CHANNEL START SAMPLING MODE WAIT FOR TIMEOUT MEASURE SAVE VOLTAGE, I-OFF ZERO GET OPEN CIRCUIT POTENTIAL
F1D7 86 F1D9 97 F1DB 17 F1DE 17 F1E1 17	00 04 0674 0686 041C		LDA STA LBSR LBSR LBSR	#\$00 CHNUM CHSELT SMSELT SETIO	SET A TO D TO CURRENT CHANNEL SET TO SAMPLING MODE GET ZERO CURRENT VALUES
F1E4 DC F1E6 44 F1E7 56 F1E8 D3	5B 57	CURSET * * *	LDD LSRA RORB ADDD ****** ALTERNA OTHI	DACADJ DACINI ATE IS SUB ER POLARIT	GET ADJUSTMENT VALUE HALVE IT ADD INITIAL VALUE ************************************
F1EA DD F1EC 0C F1EE 9F F1F0 17 F1F3 17 F1F6 17 F1F6 17 F1F6 17 F1FF ED F201 0C F203 17 F206 17 F206 17 F206 17 F206 0C F210 17 F216 17 F216 17 F217 ED	06 33 51 0646 0605 0687 0630 067A 81 04 0640 81 04 065E 0640 81 04 065F 065A 81	NEXT	STD INC STX LBSR LBSR LBSR LBSR LBSR LBSR LBSR LBSR	DACVAL RUNCNT WORK TIMCHK EDDAC-TWAND SWNSET TIMCHK CONVRT X++ CHNUM CHSELT SMSELT CONVRT X++ CHNUM CHSELT SMSELT TIMCHK SWZERO CONVRT X++	SAVE INDEX WAIT FOR TIMOUT SET CURRENT SET SWITCH WAIT FOR ANOTHER TIMEOUT GET POTENTIAL DROP OVER RESISTOR SAVE R DROP SET TO READ CE TO WE POTENTIAL GET IT SAVE CE TO WE, I-0N TURN OFF CURRENT GET WE-REF, I-0FF SAVE IT
F221 0A F223 17 F226 17	04 0620 0629		DEC LBSR LBSR	CHNUM CHSELT CHSELT	POINT TO CE TO WE

÷

F229 F220 F22E	17 ED BF	064D B1 8004		LBSR STD STX	CONVRT X++ SAVST1	GET WE TO CE CURRENT OFF SAVE IT SAVE NEXT DATA BLOCK ADDRESS
F231 F233 F236 F239 F238 F230 F23F F23F	0F 17 17 2B 8D 9E 20	04 061C 062E 36 06 38 51 A9		CLR LBSR TST BMI BSR LDX BRA	CHNUM CHSELT SMSELT REVFLG RDONE CALCI WORK NEXT	SELECT CURRENT READ, AGAIN HAVE WE FOUND RANGE? YES, THEN CALCULATE PARAMETERS DO CHECK FOR APPROPRIATE RANGES RESET INDEX
F243 F245	DC 1027	45 008D	RDONE	LDD LBEQ	RUNSET	GET # OF RUNS TO BE PERFORMED IF ZERO GO CALCULATE
E249 E248 E248 E248 E251 E251	102F 0F 0F 0C	53 9087 48 40 2580			CALCII TIMSET+2 TIMSET+3 #\$2580	IF DONE, DO FINAL CALCULATIONS
F256 F258 F258 F258 F258 F258 F260	ED 17 17 DC C3	2380 84 05D4 05D8 48 0001	TIMEOT	STD LBSR LBSR LDD ADDD	x CGTIME TIMCHK TIMSET+2 #\$0001	SET TIMEOUT FOR ONE SEC
F263 F265 F268 F26A F26C	00 10 93 27 20 CC	48 49 82 EF 8884	TIMUP	STD CMPD BEQ BRA LDD	TIMSET+2 TIMSET TIMUP TIMEOT #\$000A	ARE WE DONE? Set for 1 millisec timeout
F26F F271	ED 17	84 0588		STD LBSR	X CGTIME	
F274 F277	BE 16	8004 FF72	MORE	LDX LBRA	SAUST1 NEXT7	
F27A				ORG	\$F27A	
F27A			CALCI	RMB	23	RESERVE AREA FOR NEXT PROGRAM
F2D6			CALCII	RMB	2	ADDRESS OF CALCULATION PROGRAM
F600				ORG	\$F600	
F600 F502 F604 F605	86 97 DC DD	03 05 57 06	SETIO	LDA STA LDD STD	#\$03 SWNUM DACINI DACVAL	POINT TO 5 MICROAMPERE FULL SCALE GET ZERO CURRENT EQUIVALENT SETUP TO OUTPUT IT
F608 F60A F60C F60F F611	DC ED 17 DD 17	02 81 FC82 59 0225	OPNSAU	LDD STD LBSR STD LBSR	ADCVAL X++ TWOS OPNCRK TIMCHK	GET OPEN CIRCUIT VOLTAGE SAVE IT IN CMOS MEMORY
F614 F617 F61A	17 17	0284 0276 0210		LBSR LBSR	LDDAC SWNSET	SET FOR ZERO CURRENT TURN ON ZERO CURRENT
F61D F61F	0C 17	04 0230		INC LBSR	CHNUM CHSELT	POINT TO CE TO WE VOLTAGE

F622 17 F625 17 F628 DC F628 ED F628 ED F628 17 F638 17 F638 17 F638 17 F639 17 F639 17 F637 17 F637 17 F637 17 F644 ED F644 39	0242 _ 0251 02 81 00 04 021F 0231 0200 023D 023D 0228 027D 02 81	6:2, -y+ =1+.	LBSR LDD STD LDA STA LBSR LBSR LBSR LBSR LBSR LBSR LDD STD RTS	SMSELT CONURT ADCVAL X++ #\$00 CHNUM CHSELT SMSELT SMSELT SWNZER ADCVAL X++	GET APPLIED VOLTAGE-I ON RETRIEVE CE TO WE POTENTIAL SAVE IT POINT TO CURRENT CHANNEL AGAIN GET DROP ACROSS R TURN OFF ZERO CURRENT RETRIEVE DROP ACROSS R SAVE IT
F647 DD F649 17 F640 17 F64F 17 F652 17 F652 17 F658 DC F658 DC F65A ED F65C 17 F65F 39	06 027F 0261 01E7 0224 0267 02 14 020B	SETIO1	STD LBSR LBSR LBSR LBSR LBSR LDD STD LBSR RTS	DACVAL LDDAC SWNSET TIMCHK CONVRT SWNZER ADCVAL -12,X SMSELT	SAVE ZERO CURRENT VALUE SET CURRENT TO NEW ZERO TURN ON CURRENT GET NEW CURRENT ZERO TURN OFF SWITCH RETRIEVE VALUE SAVE IT IN ZERO LOCATION
F660 17 F663 9F F665 8E F668 CC F668 ED F660 E7 F66F 9E F671 39	023A 00 DE30 8000 84 05 00	SWBEGN SWZERO	LBSR STX LDX LDD STD STB LDX RTS	INITDA INDEX #DDAC #\$8000 X 5,X INDEX	INITIALIZE DAC SAVE INDEX SET OUTPUT TO ZERO ROUTINE TURN OFF SWITCH RESTORE INDEX
F672		END			
0 ERROR(S)	DETECTED				

ADCVAL	0702	CALCI	F27A	CALCII	F2D6	CGTIME	F82F	CHNUM	0704
CHSELT	F852	CONVET	F879	CURSET	F1E4	DACADJ	075B	DACINI	0757
DACVAL	0706	DATBUE	0708	DDAC	DE50	END	F672	INDEX	0700
INITDA	FB9D	LDDAC	F8C8	MEASUR	F194	MORE	F274	NEXT	F1EC
OPINCRIK.	0759	OPNEAU	F608	RDONE	F243	REVFLG	0756	RUNCNT	0733
RUNSET	0745	SAVST1	8004	SELCH	F1B2	SETIO	F600	SETI01	F647
SMSELT	FB67	STARTD	0743	SWBEGN	F660	SWNSET	F880	SWNUM	0705
SWNZER	F8BF	SWZERO	F663	TIMCHK	FB39	TIMEOT	F25B	TIMSET	0749
TIMUE	F26C	TWOS	F291	WFS	FECA	WORK	0751		

				****	******	******	* * * * * * * * * * * * * * * * * * * *
				×		CALCI	
				* THIS F * MENT (* WORKIN	ROUTINE OF THE (NG ELEC	DOES CALCI CURRENT TO TRODE POTEI	JLATIONS FOR THE ADJUST- RESULT IN A FIXED REF TO NTIAL
				*****	******	* * * * * * * * * * *	******
				* SYSTE	M EQUATI	ES	
		07 07 07 07 07 07 07 FF	759 733 758 706 705 756 757 ECA 200 868 200	OPNCRK RUNCNT DACADJ DACVAL SWNUM REVFLG DACINI WFS RUNFLG GETR STARTCL SETIO1	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	\$0759 \$0733 \$0758 \$0706 \$0705 \$0756 \$0757 \$FECA \$0751 \$FB68 \$FC00 \$F647	COLD START ON ERROR
F27A					ORG	\$F27A	
		90	007		SETDP	\$07	
F27A	0A	33		CALCI	DEC	RUNCNT	REDUCE RUN COUNT TO REFLECT
F27C F27E F280 F282 F284 F288 F288 F28A	EC A3 2B 84 1083 2D 96 8A	1E 12 19 0F 000A 1B 56 F0		* TEST1	LDD SUBD BMI ANDA CMFD BLT LDA ORA	-2,X -14,X POLAR #\$000A ADJUST REVFLG #\$F0	DATA NOT YET FOUND GET REF TO WE POTENTIAL GET DIFFERENCE FROM OPEN CIRCUIT CLEAR UPPER 4 BITS IS THE DIFFERENCE 10 MV? SET FLAG TO INDICATE CURRENT FOUND
F28E F290	97 39	56		RETURN	STA RTS	REVFLG	
F291 F293 F295 F297	85 27 8A 39	08 03 F8		TWOS	BITA BEQ ORA RTS	#\$08 PLUS #\$F8	BIT 3BET, SIGN EXTEND, ALL ONES
F298 F29A	84 39	07		PLUS	ANDA RTS	#\$07	SIGN EXTEND ALL ZEROS, AND RETURN
F29B F29D	8D 20	02 E3		POLAR	BSR BRA	NEGD TEST1	GET TWO'S COMPLEMENT OF D
F29F F2A0 F2A1 F2A4	43 53 C3 39	0001		NEGD	COMA COME ADDD RTS	#\$01	

F2A5 F2A7 F2A9 F2AD F2AF F2B1	DC D3 1083 2C DD 39	06 58 03FF 03 06	ADJUST CHANGE	LDD ADDD CMPD BGE STD RTS	DACVAL DACADJ #\$3FF RANGE DACVAL	GET OLD CURRENT SET HAVE WE REACHED FULL SCALET
F2B2 F2B4 F2B6 F2B8	DC 0A 27 16	57 05 03 03BC	RANGE	LDD DEC BEQ LBRA	DACINI SWNUM ERROR3 SETI01	GET INITIAL VALUE
F2BB F2BE F2CØ F2C4 F2C8	17 0D 04 4F 55 4F 48 41 4I	0C0C A 5 54 20 5 20 52 5 47 45	ERROR3	LBSR FCB FCC	WFS \$0D,\$0A 'OUT OF Ri	ANGE'
F2CC F2CD F2DØ F2D2	00 CC DD 17	FC00 31 0873		FCB LDD STD LBSR	\$00 #STARTCL RUNFLG GETR	
F2D6				ORG	\$F2D6	
F2D6			CALCII	RMB	2	ADDRESS OF NEXT ROUTINE
				END		

0 ERROR(S) DETECTED

.

ADJUST	F2A5	CALCI	F27A	CALCII	F2D6	CHANGE	F2AF	DACADJ	075B
DACINI	0757	DACVAL	0706	ERRORS	F2BB	GETR	FB6B	NEGD	F29F
OPNORK.	0759	PLUS	F298	POLAR	F29B	RANGE	F2B2	RETURN	F290
REVFLG	0756	RUNCNT	0733	RUNFLG	0731	SETI01	F647	STARTC	FC00
SWNLM	0705	TEST1	F282	TWOS	F291	WFS	FECA		

·*************************************	
* CALCII	
* THIS ROUTINE DOES FINAL CALCULATIONS PRIOR TO THE * OUTPUT OF DATA, RESULTS ARE CALCULATED AND FORMAT * DETERMINED	
* ALGORITHMS ARE: R'=(CE TO WE)/V(ACROSS RESISTOR) * TIMES R	
* OHMS X CM+2 = KV(REF TO WE)-V(OPEN CIRCUIT)/I XAREA	
* K IS CONVERSION FACTOR TO VOLTS/AMPS	
***********	i**
* SYSTEM EQUATES	
0700 INDEX EQU \$0700 0705 SWNUM EQU \$0705 0708 DATBUF EQU \$0708 074D AREAST EQU \$0740 0751 WORK EQU \$0751 0759 OFNCRK EQU \$0759 0743 STARTD EQU \$0743 8002 SAVST0 EQU \$8002 8004 SAVST1 EQU \$8004	
F29FNEGDEQU\$F29FF7C0MUL16EQU\$F7C0FAB1CVBTDEQU\$FAB1F77EDIV16EQU\$F77EFB68GETREQU\$F868FECAWFSEQU\$FECA	
0RG \$075D	
APVIOF RMB 2 POTENT RMB 2 APVION RMB 2 IRSW RMB 2 RONEA RMB 2 RONEC RMB 1 EXPON RMB 1 KONEA RMB 2 KTHREE RMB 1 RDATØ RMB 1 RDATØ RMB 1 RDATØ RMB 1 KDATØ RMB 1 KDATØ RMB 2 TEN RMB 2	
ORG \$0790	
PRESTR RMB 6	

075D

0796 0798			WSTORE CNT	RMB RMB	5 1	
		0007		SETDP	\$07	
F2D6				ORG	\$F2D6	
F2D6 F2D7 F2D8 F2D8 F22D0 F22E4 F22F4 F2300 F2004 F2300 F2004 F200	CCD407E A26DE3AD07C3AD07C3AD07C3AD075 E	000A 81 20 43 83 A1 02 87 50 87 50 87 50 87 50 87 87 87 87 87 83 40 2 81 02 81 02 81 02 81 02 83 83 83 83 83 83 83 83 83 83 83 83 83	CALCII STORE1 STORE2 STORE3	LDD STD PDD SUBD SPL SUBD SPL SUBD SPL SUBD SPL SUBD SPL SEDD SEDD SEDD SEDD SEDD SEDD SEDD SED	#\$0A TEN Y STARTD X Y++ STORE1 NEGD AFVIOF X Y++ STORE2 NEGD POTENT ERROR5 X Y++ STORE3 NEGD AFVION ERROR5 X Y++ STORE4 NEGD IRSW ERROR5 Y	SET SHIFT MULTIPLIER SAVE Y POINT TO ZERO DATA GET MEASURED VALUE I-OFF SUBTRACT ZERO VALUE IF NEGATIVE, COMPLEMENT GET OPEN CIRCUIT VALUE SUBTRACT MEASURED VALUE SAVE IT GET GET APPLIED VOLTAGE, I-ON SUBTRACT CE TO WE, I-OFF
F310 F312 F314 F316 F318 F318 F318 F318 F318 F324 F324 F324 F324	9F 0F 34 8E 108E 17 DD 8E 17 35	0B 9B 20 0763 0764 025E 65 0760 0760 0787 20	RAPFAR	STX CLR CLR PSHS LDX LDY LBSR STD LDX LBSR PULS	DATBUF CNT EXFON Y #IRSW #APVION SHIFT RONEA #RDAT1 CVBTD Y	SAVE INDEX SAVE Y POINT TO VOLTAGE(CE TO WE) SAVE BINARY RESULT POINT TO ASCII STORAGE AREA MAKE ASCII DATA AND STORE
F32C (F32F) F331 (F332) F334 (F338) F338) F338) F338) F338)	8E D6 3A 27 97 85 17 16	F3AC 05 84 56 67 076D 00F6 006F	CVR	LDX LDB ABX LDA BEQ STA LDX LBSR LBRA	#RTBL SWNUM X ERROR6 RONEC #RDAT1 DECIMP CORRK	FOINT TO TABLE OF RESISTANCES GET WORKING SWITCH NUMBER FOINT TO VALUE SAVE RESISTANCE GO SET UP ASCII OUTPUT DATA
T 341	33	2.83	ERRURA	FULS	1	

F343 F346 F348 F340 F350 F354 F358 F350 F360 F364 F368 F360 F360	17 0D 04 44 40 20 45 45 45 41 40 57 40 57 40 54 45 49 41 40 45 54	0884 1 54 41 5 58 43 5 44 20 5 4C 4F 1 42 4C 5 50 4F 5 4E 54 1 4C 20 9 4D 49 3 21		LBSR FCB FCC	WFS \$0D,\$0A 'DATA EXC	EED ALLOWABLE POTENTIAL LIMITS!'		
F36F F370	00 16	07F5		FCB LBRA	\$00 GETR			
F373 F376 F376 F370 F380 F384	F373 17 0B54 F376 0D 0A F378 44 41 54 41 F37C 20 52 45 41 F380 44 53 20 5A F384 45 52 4F 21 F388 00 F389 16 07DC		ERROR5	LBSR FCB FCC	WFS \$0D,\$0A 'DATA READS ZERO!'			
F386 F387				FCB LBRA	\$00 GETR			
F38C F38F F391 F395 F399 F390 F341 F345	17 0D 0A 58 57 43 48 41 53 45 54 45 29 45 45	0B3B 7 49 54 8 20 57 6 20 53 4 20 54 9 5A 45 7 21	ERROR6	LBSR FCB FCC	WFS \$0D,\$0A 'SWITCH W4	AS SET TO ZERO!'		
F3A8 F0A9	00 16	07BC		FCB LBRA	\$00 GETR			
FBAC FBAD	00 04 05	5 06	RTBL	FCB FCB	\$00 \$04,\$05,\$0	VALUES CORRESPONDING TO SWITCH 36 THESE ARE EXPONENTS		
			******* * F(****	******* DR EPRI ******	*********** INSTRUMENT	**************************************		
5380 5382 5384 5386 5388 5386 5386 5386 5386 5386 5302 5302	86 97 04 108E DC 1083 102E SE	00 68 98 20 075F 3F 5F 0041 FF78 0763	CORRK	LDA STA PSHS LDY LDD CMPD LBGT LDX	#\$00 EXPON CNT Y #POTENT POTENT #\$0041 ERROR4 #IRSW	SET CONSTANT FOR CONVERSION GET VALUE OF REF TO WE GREATER THAN 65 MILLIVOLTS, ERROR POINT TO POTENTIAL ACROSS RESISTOR		
F3C9 F3C8 F3CE F3D0 F3D2 F3D4 F3D4	0C 17 0A DD 35 8D	78 0182 68 69 20 70 10		INC LBSR DEC STD PULS PSHS BSR	CNT SHIFT EXPON KONEA Y X,Y,U MLAREA	SET TO MULTIPLY ANSWER BY TWO DIVIDE ANSWER BY TEN TIMES AREA - STORE ASCII DATA		

F3D8 F3DA F3DD	35 BE 9F	70 8002 00		PULS LDX STX	X,Y,U SAUSTØ INDEX	RESTORE REGISTERS
F3DF F3E2 F3E5	BE BF 16	8004 8002 0082		LDX STX LBRA	SAVST1 SAVSTØ PUTDAT	GET FINAL ADDRESS OF DATA START FOR SAVE CMOS MEMORY
F3E8 F3E8 F3E5 F3F1 F3F3 F3F4	BE 10BE 26 CC ED	0769 074D A4 05 0001 A4	MLAREA	LDX LDY LDD BNE LDD STD	#KONEA #AREAST Y MLD #\$0001 Y	POINT TO V/A DATA POINT TO AREA DATA GET AREA IF NON-ZERO GO IF AREA ZERO DEFAULT TO 1
F3F8 F3FB	CE 17	0751 0302	MLD	LDU LBSR	#WORK MUL16	POINT TO RESULT STORAGE LOCATION

* THE NEXT ROUTINE ROUNDS OFF DATA TO 16 BIT

F3FE EC F400 27 F402 BD F404 EC F406 17 F409 ED F409 ED F408 EC F400 DD F40F 8E F412 17 F415 8E F418 20	C4 09 16 42 01AF 42 42 69 0777 069C 0777 1A	MLCHAR CNTMC	LDD BEQ BSR LDD LBSR STD LDD STD LDX LBSR LDX BRA	U CNTMC ROUNDF 2,U SHIFTB 2,U 2,U KONEA #KDAT1 CVBTD #KDAT1 DECIMP	FETCH STORED RESULT IF NON-ZERO - ROUNDOFF NEEDED GET DATA FINISH ROUNDOFF PROCEDURE SAVE RESULT GET ROUNDED DATA POINT TO ASCII STORAGE AREA MAKE ASCII AND STORE
F41A 84 F41C 27 F41E 44 F41F 56	FF 09	ROUNDF	ANDA BEQ LSRA RORB	#\$FF BYTE2	BYTE ZERO? SHIFT D RIGHT
F420 17 F423 0C F425 20	01A0 98 F3	LOOFR	LBSR INC BRA	UPDATE CNT ROUNDF	DO NEXT BIT
F427 C4 F429 27 F428 54 F42C 17 F42F 0C F421 20 F433 3 9	FF 08 0194 98 F4	BYTE2 LOOPB ENDRND	ANDB BEQ LSRB LBSR INC BRA RTS	#\$FF ENDRND UPDATE CNT BYTE2	IS BYTE ZERO? GO, DONE ELSE SHIFT NEXT BIT
F434 96 F436 98 F438 88 F43A 97 F43C 91 F43C 91 F43E 27 F440 80 F442 28	67 68 04 68 04 06 06	DECIMF	LDA ADDA ADDA STA CMFA BEQ SUBA BMI	RONEC EXPON #\$04 EXPON #\$0A TENEXP #\$0A SINGEX	GET RESISTANCE EXPONENT ADJUST EXPONENT POSITION ADJUST FOR DECIMAL POIN SAVE IT IS EXPONENT 10 IS EXPONENT >10

F444 F446 F448 F448 F448 F448 F448 F449 F447 F450	1 F 86 20 4F 06 20 5F 86	87 01 08 68 03 01	SINGEX TENEXF	TFR LDA BRA CLRA LDB BRA CLRB LDA	A,B #\$01 DECDAT EXPON DECDAT #\$01	SAVE ONES DIGIT SET TENS SET TENS TO ZERO GET ONES DIGIT SET ONES DIGIT TO ZERO SET TENS TO ONE
F 452 F 454 F 456 F 456 F 458 F 456 F 456 F 456 F 456	BA CA E7 A7 A7 A7 B6	30 30 07 06 84 1F 2E	DECDAT	ORA ORB STB STA LDA STA LDA	#\$30 #\$30 7,X 6,X X -1,X #',	MAKE EXFONENT ASCII PUT DECIMAL FOINT IN DATA
F462 F462 F464 F466	A7 86 A7 39	84 45 05		STA LDA STA RTS	x #'E 5≠X	PUT EXPONENTIAL SIGN IN DATA
F46A				ORG	\$F46A	
F-16A			PUTDAT	RMB	2	STARTING ADDRESS OUTPUT DATA
F580				ORG	\$F580	
F588246ACF25798DF1468AC	EC DD 34 108E 95 207 00 200 207 207 207 207 207 207	A4 90 20 0790 0751 0751 0228 68 51 06 53 A4 EB FE76 20 53 22 A4	SHIFT SHIFT1 USERND USEABL	LDD STD PSHS LDY STX LDX LDU LBSR DEC LDD BNE LDD STD BRA LBSR PULS LDD BEQ STD	0,Y PRESTR Y #PRESTR INDEX #TEN #WORK MUL16 EXPON WORK USERND WORK+2 0,Y SHIFT1 ROUNDF Y WORK+2 ERROR7 0,Y	GET MULTIPLICAND SAVE Y POINTER SAVE POINTER POINT TO MULTIPLIER POINT TO STORAGE GO MULTIPLY ADJUST EXPONENT GET UPPER 16 BITS IF NOT ZERO, ROUND OFF GET DATA IF ZERO, DO AGAIN ROUND OFF GET USABLE PART OF DATA SAVE VALUE
F5AE F5BØ F5BØ F5BB F5BB F5BB F5BC F5BD F5BE	34 34 17 30 27 30 27 54 90	40 0796 01CB 40 9B 06 9B	PROCES SHIFTB	PSHS LDU LBSR PULS TST BEQ ASLB ROLA DEC	U #WSTORE DIV16 U CNT ENDPRO	SAVE U REGISTER POINT TO SCRATCH AREA TEST ADJUSTMENT COUNT IF ZERO NONE NECESSARY ELSE MULTIPLY ANSWER BY 2

F5CØ 20 F5C2 39	F6	ENDFRO	BRA RTS	SHIFTB	RETURN
F5C3 04 F5C5 04 F5C7 24 F5C9 00 F5CB 39	53 54 02 54 54	UPDATE BACK	ROR ROR BCC INC RTS	WORK+2 WORK+3 BACK WORK+3	SHIFT LOWER WORD IF BIT WAS SET ADJUST LAST BIT
F5CC 35 F5CE 14	20 FDA2	ERROR7	PULS LBRA	Y ERROR5	

END

0 ERROR(S) DETECTED

AFVIOF	075D	APVION	0761	AREAST	074D	BACK	F5CB	BYTE2	F427
CALCII	F2D6	CNT	079B	CNTMC	F40B	CORRK	F3B0	CVBTD	FAB1
CVR	F320	DATEUF	070B	DECDAT	F452	DECIMP	F434	DIV16	F77E
ENDPRO	F5C2	ENDRND	F433	ERROR4	F341	ERROR5	F373	ERROR6	F380
ERROR7	F5CC	EXPON	0768	GETR	FB6B	INDEX	0700	IRSW	0763
KDATO	0776	KDAT1	0777	KDAT6	077F	KONEA	0769	KTHREE	076B
LOOPS	F431	LOOPR	F425	MLAREA	F3EB	MLCHAR	F3FE	MLD	F3FB
MUL16	F7C0	NEGD	F29F	OPNORK	0759	POTENT	075F	PRESTR	0790
FROCES	FSAE	PUTDAT	F-16A	RAPPAR	F310	RDATO	076C	RDAT1	076D
RONEA	0765	RONEC	0767	ROUNDE	F41A	RTBL	FBAC	SAVSTO	8002
SAVST1	8004	SHIFT	F580	SHIFT1	F58C	SHIFTB	F588	SINGEX	F44A
STARTD	0743	STORE1	FZEB	STORE2	F2F2	STORES	F2FE	STORE4	F30A
SWNUM	0705	TEN	0781	TENEXF	FAME	UPDATE	F5C3	USEABL	F5A6
USERND	F5A1	WES	FECA	WORK	0751	WSTORE	0796		

PUTDATA

* THIS ROUTINE OUTPUTS THE FINAL RESULTS TO THE * DISPLAY, IT THEN PROMPTS FOR CMOS MEMORY SAVE, * AND THEN FOR CONTINUATION. IF NOTHING FURTHER * IS DESIRED. IT GOES INTO AN ENDLESS WAIT LOOP * UNTIL POWER DOWN.

* SYSTEM EQUATES

¥

			0700 0800 074C 0776 DE20 0756 070B 0743	INDEX BUFFER RDATØ KDATØ ACIA REVFLG DATBUF STARTD	EQU EQU EQU EQU EQU EQU EQU	\$0700 \$0800 \$076C \$0776 \$DE20 \$0756 \$0708 \$0743	
			DE28 F949 FC00 FB7D FBCC FECA FE08 F2D6	KEYPAD KBINCH STARTCL PGMSAV UNPAKS WFS WRC CALCII	EQU EQU EQU EQU EQU EQU EQU	\$DE28 \$F949 \$FC00 \$FB7D \$FB7C \$FECA \$FECA \$FF08 \$F2D6	
			0007		SETDP	\$07	
F46A					ORG	\$F46A	
F46A F460 F46E	0D 26 20	56 02 22		PUTDAT	TST BNE BRA	REVFLG HEADER ROUT	IS THIS FIRST OUTPUT POINT? IF SET, OUTPUT HEADER ELSE OUTPUT NEXT DATA POINT
E470 E472 E475	0F 17 8E	56 60 68	CT 66	HEADER	CLR LBSR LDX	REVFLG CRLF #BUFFER	POINT TO HEADER DATA
E 478 E 478 E 478 E 47E E 483 E 483	C6 108E 17 A6 1026	0F DE: 00 80 00	20 C4 D8		LDB LDY LBSR LDA LBNE	#15 #ACIA OUTDAT X+ ERROR7	OUTPUT ID INCREMENT X, CHECK FOR LAST CHAR.
F487 F48A F48C F487	17 C6 17 17	00 05 00 00	C4 86 70	OUTSS	LBSR LDB LBSR LBSR	OUT4S #6 OUTDAT CHARIN	OUTPUT DATE Wait for character

F492 F495 F498	17 17 52	00A5 0A32 27 20 3D	ROUT	LBSR LBSR FCC	CRLF WFS "R' = ",so	00
F49C F49E F4A1 F4A3 F4A6 F4A6 F4A9	28E677700	076C 07 009F 0A21 4F 48 4D		LDX LDB LBSR LBSR FCC	#RDAT0 #9 OUTDAT WFS ' OHMS',\$0	POINT TO R'DATA OUTPUT R' 30
F4AF	eD	7D		BSR	CHARIN	WAIT FOR CHARACTER
F481 F484 F487 F488	17 17 48 99	0086 0A13 20 3D 20	КОИТ	LBSR LBSR FCC	CRLF WFS 'K = '+\$00	3
F48C F48F F4C1 F4C4 F4C7 F4C8 F4C7	8E6 17 17 20 4D	0776 09 0081 0A03 4F 48 4D 58 20 43 5E 32 20		LDX LDB LBSR LBSR FCC	#KDAT0 #9 OUTDAT WFS ' OHM X C	ОЫТРЫТ К М↑2 ',\$00
F4D3 2 F4D5 8 F4D7 9 F4D9 3 F4D8 9 F4D8 9 F4D8 2 F4D6 2 F4D7 9 F4E1 1	20 8D 9E 30 9C 27 9C 16	57 43 68 68 68 65 68 FDF2		BSR LDX LEAX CPX BEQ LDX LBRA	CHARIN STARTD B+X DATBUF EXIT DATBUF CALCII	WAIT FOR CHARACTER GET BEGINNING OF FILE OFFSET BY ZERO LOCATIONS HAVE WE REACHED END OF DATA ELSE, LOAD POINTER TO NEXT DATA GO DO IT
F4E9 F4E9 F4E0 F4E0 F4E1 F4E5 F4F5 F4F5 F4F5	8D 17 53 20 41 20 20	54 09E1 41 56 45 44 41 54 3F 20 20 59 45 53 3D 20 31	EXIT	BSR LBSR FCC	CRLF WFS 'SAVE DAT(A? YES = 1',\$00
F4FD F4FE F500 F502 F504 F504 F504 F504 F509 F511 F511 F515 F510 F510	00 80 20 80 80 80 80 80 80 80 80 80 80 80 80 80	2E 31 34 09C1 41 4E 54 41 4E 4F 48 45 52 52 55 4E 20 20 59 53 20 3D 31 00	ANOTHR	BSR CMPB BEQ BSR LBSR FCC	CHARIN #\$31 DSAVE CRLF WFS 'WANT ANO	IS IT A ONE? THER RUN? YES = 1',\$00
F524 F526 F528 F520	8D C1 10: 20	08 31 27 06D4 FE		BSR CMPB LBEQ BRA	CHARIN #\$31 STARTCL *	THIS IS AN ENDLESS LOOP!

F52E F531 F534	B6 17 39	DE28 0415	CHARIN	LDA LBSR RTS	KEYPAD KBINCH	CLEAR	KEYPAD	
F535 F538	17 20	0645 CA	DSAVE	LBSR BRA	PGMSAV ANOTHR	DISABL	E CMOS	MEMORY
F53A F53E F541 F544	108E 17 00 04 39	DE20 0787 4 00	CRLF	LDY LBSR FCB RTS	#ACIA WFS \$0D,\$0A,\$0	90		
F545 F547 554A 554B F54D	A6 17 5A 26 39	80 09BE F8	OUTDAT	LDA LBSR DECB RNE RTS	X+ WRC OUTDAT	ΟυΤΡυτ	CHAR,	
F54E F550 F554 F557 F558	9F 108E 17 20 20 00	00 DE20 0973 3 20 20	OUT4S	STX LDY LBSR FCB	INDEX #ACIA WFS \$20,\$20,\$	20,\$20,	\$00	
F55C F5SE	9E 39	00		LDX RTS	INDEX			
F55F F561 F564	86 17 16	3F 09A4 FF20	ERROR7	LDA LBSR LBRA	#'? WRC OUTSS			

F567

END

DERROR(S) DETECTED

ACIA	DE20	ANOTHR	F504	BUFFER	0800	CALCII	F2D6	CHARIN	FS2E
CRLF	F53A	DATBUE	070B	DSAVE	F535	END	F567	ERROR7	F55F
EXIT	FAEA	HEADER	F470	INDEX	0700	KBINCH	F949	KDATØ	0776
KEYPAD	DE2S	KOUT	F4B1	011748	F54E	OLITDAT	F545	OUTSS	F487
FGMEAU	FB7D	PUTDAT	FALA	RDATO	076C	REVELG	0756	ROUT	F492
STARTO	FC00	STARTD	0743	UNPAKS	FBCC	WFS	FECA	WRC	FF08

DIV151 F78E DIV153 F799 DIV16 F77E DIV163 F7A1 DIV165 F7AB

E7CQ

Ø

MUL16

×

* THIS ROUTINE IS A 16 BIT BY 16 BIT MULTIPLY! * ONE NUMBER IS POINTED TO BY X, THE OTHER BY Y. * U POINTS TO STORAGE FOR THE RESULT. THIS * ROUTINE GENERATES A 32 BIT UNSIGNED RESULT.

×	(A:B)	Х	(C;D)	=	BDH: BDL
¥				+	BCH: BCL
¥				+	ADH: ADL
¥				+	ACH:ACL
¥					

080 \$5700

				uno	VI 7 00	
F7C0 F7C2 F7C4 F7C6 F7C8 F7C9 F7C9 F7C9 F7C9 F7C9 F7C9 F7C9 F7C9	6F 6F 6C 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 8D 80 80 80 80 80 80 80 80 80 80 80 80 80	C4 41 01 21 42 84 21 41 41 02 C4	MUL16	CLR CLR LDA LDB MUL STD LDA LDB MUL ADDD STD BCC INC	0,U 1,U 1,X 1,Y 2,U 0,X 1,Y 1,U 1,U 4B1 0,U	LEAST SIGN, BYTE NUMBER A LEAST SIGN, BYTE NUMBER A SAVE RESULT MOST SIGN, BYTE NUMBER A LEAST SIGN, BYTE NUMBER A
F7D8 F7DA F7DC F7DD F7DF F7E1 F7E3	A6 E6 BD ED ED 40 C	01 A4 41 41 02 C4	AB1	LDA LDB MUL ADDD STD BCC INC	1,X 0,Y 1,U 1,U AB2 0,U	LEAST SIGN, BYTE NUMBER (Most sign, byte number b
F7E5 F7E7 F7E9 F7EA F7EC F7EC	A6 E6 3D E3 ED	84 A4 C4 C4	AB2	LDA LDB MUL ADDD STD RTS	0,X 0,Y 0,U 0,U	MOST SIGN, BYTE NUMBER A Most sign, byte number b
F7EF			END			
ERROR	R(S) I	DETECTED				
MBOL	TABL	ε:				
	E7DS	AB2	E7E5	END	F7EF	MUL16 E7C0

×

ASTIMER

* THIS ROUTINE INITIALIZES THE TIMER IN THE

- * MODULAS ONE SYSTEM, AND ALSO SETS TIMER
- * PERIOD AND CHECKS FOR TIMEOUT OF TIMER 0.
- * HANDLING OF TIMER ONE AND TWO CAN BE DONE
- * IF DESIRED. SEE DATA SHEETS FOR TIMER AND
- * MODULE 1140 MANUAL

* SYSTEM EQUATES

0034	CTRLTØ	EQU	\$34	INITIAL CONTROL STATE TIMER 0
0060	CTRLT1	EQU	\$60	INITIAL CONTROL STATE TIMER 1
0099	CTRLT2	EQU	\$99	INITIAL CONTROL STATE TIMER 2
0025	MSBT0	EQU	\$25	MOST SIGNIFICANT BYTE COUNTER 0
00B0	LSBTØ	EQU	\$80	LEAST SIGN. BYTE COUNTER 0
00FF	LSBT1	EQU	\$FF	LEAST SIGN, BYTE COUNTER 1
0010	MSBT2	EQU	\$10	MOST SIGN, BYTE COUNTER 2

* ADDRESSES

DE2C	стø	EQU	\$DE2C	COUNTER Ø ADDRESS
DE2D	CT1	EQU	\$DE2D	COUNTER 1
DE2E	CT2	EQU	\$DE2E	COUNTER 2
DE2F	TIMER	EQU	\$DE2F	CONTROL WORD FOR PROGRAMMING
DE29	CRA	EQU	\$DE29	FIA CONTROL REGISTER A
DE2B	KPD	EQU	\$DE28	DATA REGISTER AKEYPAD

* INITIALIZATION

part on 1	A.,	
free and	64	61
10	. /	~

F800 F802 F805 F807 F80A	86 87 86 87 86	34 DE2F 60 DE2F 99	INTIME	LDA STA LDA STA LDA	#CTRLTØ TIMER #CTRLT1 TIMER #CTRLT2	RESET TIMERS
10031	8/	DEZE		518	HIMER WINDTO	
roor	66	50		LUA	#L2210	SET INTITUE ANTOES
F811	87	DE2C		STA	CTO	
FB14	66	25		LDA	#MSBT0	
F816	B7	DE2C		STA	CTØ	
F819	86	FF		LDA	#LSBT1	
F818	B7	DE2D		STA	CT1	
F81E	86	10		LDA	#MSBT2	
F820	B7	DE2E		STA	CT2	
F823	39			RTS		

0RG \$F800

			* WHEN * NUMBEI * LAST * HERE, * GENER, * GENER, * THE I * FROM * AFPEA	THE TIME R OF CL(INTERRUF THE TIM ATE A TIM ATE A TIM ATE A TIM ATE A TIM ATE AT CL RS AT CL	ER IS READ, DCK PERIODS PT (TIMEOUT HER HAS BEE IMEOUT PULS DCK IS A 90 DCK IS A 90 DCK IS A 90 ATE GENE A1 OF THE F	IT INDICATES THE ELAPSED SINCE THE WAS GENERATED. IN INITIALIZED TO E EVERY SECOND. GOM HERTZ PULSE INPUT FRATOR, AND THE TIMEOUT PIA.				
			* TO CH * LOADE * IS EF	* TO CHANGE THE TIMER PERIOD, THE COUNTER IS * LOADED WITH A NEW VALUE. THIS NEW COUNT * IS EFFECTIVE AFTER THE NEXT TIMEOUT PERIOD.						

			* READ	TIMER4	AND B REC	SISTERS DESTROYED				
F824 F825 F828 F828 F828 F82E	4F 87 F6 86 39	DE2F DE2C DE2C	RDTIME	CLRA STA LDB LDA RTS	TIMER CTØ CTØ	LATCH COUNTER Ø GET LSB OF COUNT GET MSB OF COUNT				
			× CHANG * *	E TIMER	PERIODA X	DESTROYED CONTAINS LOCATION OF NEW VALUE				
F82F F831 F834 F836	A6 B7 A6 B7	01 DE2C 84 DE2C	CGTIME	LDA STA LDA STA	1,X CT0 X CT0	GET LSB OF NEW VALUE GET MSB OF NEW VALUE COUNTER 0 NOW CONTAINS	NEW	PERIOD		
F839	B6	DE29	ТІМСНК	LDA	CRA	CHECK FOR TIME OUT				
F83C F83D F83F F842	48 24 86 39	FA DE2B		ASLA BCC LDA RTS	TIMCHK KPD	CLEAR IRQ TIMER NOW OPERATING AT	NEW	PERIOD		
			* TIMCH	K IS ALS FOR T	SO USED AS (MING NEED)	SUBROUTINE CALL				
				END						
0 ERROF	R(S)	DETECTED								
AMEN	TAR	Ft								

CGTIME	F82F	CRA	DE29	CTØ	DE2C	CT1	DE2D	CT2	DE2E
CTRLTØ	0034	CTRLTI	0060	CTRLT2	0077	INTIME	FB00	KPD	DE28
LSBTO	0080	LSBT1	ØØFF	MSBTØ	0025	MSBT2	0010	RDTIME	F824
TIMCHK	E839	TIMER	DE2E						

NO SUCH FILE

ASATOD

* THIS ROUTINE PROVIDES A UTILITY PROGRAM TO

- * OPERATE THE ADAPTIVE SYSTEMS MODULAS ONE
- * A TO D MODULE #1642.

* SYSTEM EQUATES

¥

	D	E10 DADC	EQU	\$DE10	BASE ADDRESS OF 1642 MODULE = PIA
0700			ORG	\$0700	
0700 0702 0704		INDEX ADCVAL CHNUM	RMB RMB RMB	2 2 1	RESERVE TWO LOCATIONS FOR X TEMP LOCATION FOR LATEST ADD VALUE STORAGE FOR CURRENT CHANNEL
F843			ORG	\$F8⊴3	
	90	907	SETDP	\$07	
		* INIT	IALIZATI	ONASSU	MES RESET HAS OCCURRED
F843 E	E DE10	INITAD	LDX	#DADC	GET ADDRESS OF PIA
F849 A7 F848 E7 F84D 86 F84F A7 F851 39	7 01 7 02 6 30		STA STB	+++34r0 1+X 2+X +++20	SET A SIDEALL INPUT,CA2 OUTPUT SET B SIDEPB4-7 OUT,PB0-5 IN
	47 Ø3 89		STA RTS	3,X	SET CB2OUTPUT, IRQ'S MASKED
		* CHAN	NEL SELE	CTION	
F852 9 F854 8 F857 9 F859 4 F858 4 F858 4	PF 00 DE DE10 26 04 46 48	CHSELT	STX LDX LDA ASLA ASLA ASLA	INDEX #DADC CHNUM	SAVE INDEX GET BASE ADDRESS
F850 4 F85D A F85F 0 F861 5	18 17 02 16 08 14	ADC1	ASLA STA LDB DECB	2,X #8	PUT IN CHANNEL SELECT Do Approx, 50 microsec delay For op amp to stabilize
F862 2 F864 9 F866 3	:6 FD 25 00		BNE LDX RTS	ADC1 INDEX	RESTORE INDEX
		* SELE	CT SAMPL	ING MODE	
F867 9 F869 8 F860 0 F865 0	F 00 E DE10 C 343C	SMSELT	STX LDX LDD	INDEX #DADC #\$343C	SAVE INDEX Get base address
	() () T		STA	1 + X	OF CHITLY FOR HIV SHIT, NG

нтттт	871 872 873 874 874 876 878	12 12 12 E7 9E 39	03 00		NOP NOP STB LDX RTS	3,X INDEX	RESET ADC Restore in	DEX		
				* A/D C(DNVERSIO)N				
H H H H	879 878 878 87E	9F 8E CC A7	00 DE10 3C34 01	CONVRT	STX LDX LDD STA	INDEX #DADC #\$3C34 1,X	SAVE INDEX	FOR HOLD MO	DE	
нтнт	883 885 887 887 889 888	86 E7 E6 28 4A 26	04 03 03 03 F9	ADCB	LDA STB LDB BMI DECA BNE	#\$4 3,X 3,X ADC4 ADC3	START ADC CECK FOR E IF RECEIVE IF NOT FOU UNTIL LOOP	CONVERSION (OC DREAD VALL ND, LOOP COUNTER = 0	CB2-LO) JE)
F F F	88E 870 872 874	A6 8A E6 40	02 F0 84	ADC4	LDA ORA LDB NEGA	2,X #\$F0 0,X	READ UPPER MASK OUTPU GET LOWER DATA IS CO	: 4 BITS NT BITS 8 BITS MPLEMENTARY	OFFSET	BINAF
ү БШКК Б	895 896 898 898 890	50 82 DD 9E 39	00 02 00		NEGB SBCA STD LDX RTS	#0 ADCVAL INDEX	MUST BE NE ADJUST OVE SAVE RESUL RESTORE IN	GATED RFLOW T IDEX		
					END					
6 E	RROR	(S) E	ETECTED							
SYM	BOL	TABLE	E:							
ADC CHS SMS	ELT ELT	F861 F852 F867	ADC3 CONVRT	F887 (F879)	ADC4 E DADC I	FBBE ADC DE10 IND	UAL 0702 EX 0700	CHNUM 0704 Initad FB43		

ASDTOA

* THIS ROUTINE PROVIDES A UTILITY PROGRAM TO

- * OPERATE THE ADAPTIVE SYSTEMS MODULAS ONE
 - * D TO A MODULE #1614

OPT PAG

* SYSTEM EQUATES

×

		DE50 DE55 0700	DDAC DSWITC INDEX	EQU EQU EQU	\$DE50 \$DE55 \$0700	DAC BASE ADDRESS ANALOG SWITCH SELECT ADDRESS TEMP STORAGE FOR INDEX
0705 0705 0706 0708			SWNUM DACVAL DACOLD	ORG RMB RMB RMB	\$0705 1 2 2	STORAGE FOR LATEST SWITCH VALUE STORAGE FOR LATEST INPUT VALUE STORAGE FOR PREVIOUS INPUT VALUE
		0007		SETDP	\$07	
F89D				ORG	\$F89D	
			* INITI	ALIZATI	ON	
F89D	8E	DE50	INITDA		#DDAC	GET BASE ADDRESS
F8A1 F8A3 F8A5 F8A7	C4 SD C4 SE	06 05 0A 0700		LDB BSR LDB LDX	#6 DACINZ #10 #INDEX	ZERO DAC'S AND TURN SWITCH OFF
FBAA FBAC FBAD FBAF	A7 5A 26 39	30 FB	DACINZ	STA DECB BNE RTS	X+ DACINZ	
			* TURN	SWITCH	ON	
F880 F882 F885 F887 F888	9F 8E 96 46	00 DE53 05	SWNSET	STX LDX LDA RORA RORA	INDEX #DSWITC SWNUM	SAVE INDEX POINT TO SWITCH SELECT GET SWITCH NUMBER MOVE NUMBER TO BITS 6 AND 7
FBBA FBBC FBBE	-0 47 99 39	84 00		STA LDX RTS	X INDEX	SEND TO SWITCH SELECT Restore index
			* THEN	CUITCU	AFEALTER	NATE TO CONCET LITE OG

* TURN SWITCH OFF-ALTERNATE TO SWNSET WITH 00 * DOES NOT CHANGE CONTENTS OF SWNUM

2-18-82 TSC ASSEMBLER PAGE 1

.

FSBF FBC1 F8C4	9F 8E 86	00 DE35 00	SWNZER	STX LDX LDA	INDEX #DSWITC #\$00	SAVE IN	DEX
FBC3	A7	84		STA	0+X		
FSC8	9E	00		LDX	INDEX	RESTORE	INDEX
F8CA	37			RTS			

* LOAD DAC VALUE

LDX LDB STB LDA STA	#DDAC DACVAL DACOLD DACVAL+1 DACOLD+1	POINT TO DAC 1 GET DAC INPUT	
LSRB RORA RORB RORA RORB		SHIFT SO THAT 2 BITS 6 AND 7 OF ARE IN A	LO BITS ARE IN B AND B HI BITS
STD LDX RTS	X INDEX	OUTPUT VALUE TO Restore index	DAC
	LDX LDB STB LDA STA LSRB RORA RORB RORB STD LDX RTS END	LDX #DDAC LDB DACVAL STB DACOLD LDA DACVAL+1 STA DACOLD+1 LSRB RORA RORB RORA RORB STD X LDX INDEX RTS END	LDX #DDAC POINT TO DAC 1 LDB DACVAL GET DAC INPUT STB DACOLD LDA DACVAL+1 STA DACOLD+1 LSRB SHIFT SO THAT 2 RORA BITS 6 AND 7 OF RORB ARE IN A RORA RORB STD X OUTPUT VALUE TO LDX INDEX RESTORE INDEX RTS END

0 ERROR(S) DETECTED

DACINZ	FBAA	DACOLD	0708	DACVAL	0706	DDAC	DESO	DSWITC	DE55
INDEX	0700	INITDA	F89D	LDDAC	FSCB	SWNSET	FBBØ	SWNUM	0705
SUN7ER	EBBE								

		*******	*****	{****	* * * * * * * * * * * * * * * * * * *				
		*		SAVECK					
		* THIS ROUTINE CHECKS FOR DISABLING OF THE * CMOS MEMORY ON STARTUP. THE CONTENTS OF * THIS CMOS MEMORY ARE SAVED BY BISABLING * THE INPUT TO THE MEMORY. THIS IS DONE BY * CLOSURE OF THE STORE KEY (ALTERNATE ACTION) * PRIOR TO POWER-OFF OR WHENEVER DESIRED. * ON RESET OR POWER-UP, THE UNIT WILL CHECK * AND REQUEST RELEASE IF NEEDED. THAT IS THE * FUNCTION OF THIS ROUTINE.							
		********	******	*********	************				
		* SYSTEM	1 EQUATE	ES					
	DE2A DE20 FECA 070A	ORB ACIA WFS SAVFLG	EQU EQU EQU EQU	\$DE2A \$DE20 \$FECA \$070A	ADDRESS OF DATA REG OF PIA ROUTINE TO WRITE STRING				
	0007		SETDP	\$07	-				
F8F0			ORG	\$FBF0					
		* CHECK *	FOR SAU ASSUME	VE AND REQU ES INITIALI	EST RELEASE ZATION COMPLETE!				
F8F0 10 F8F4 F6 F8F7 C4 F8F9 27	98E DE20 0E2A 4 40 7 04	SAVECK	LDY LDB ANDB BEQ	#ACIA ORB #\$40 CONT1	POINT TO COMMUNICATIONS REGISTER GET PIA B DATA IS BIT 6 HI? IF NOT HIGH, MEMORY HAS BEEN SAVED				
F8FB ØF F8FD 20 F8FF 86 F901 97 F903 17 F906 4D F906 52 F906 4F F902 4F	0A 31 FF 0A 05C4 045 40 4F 57 20 4E 57 20 4E 54 20 41 54 49 4C	CONT1	CLR BRA LDA STA LBSR FCC	SAVFLG CONT #\$FF SAVFLG WFS 'MEMORY NO	MEMORY AVAILABLE-CONTINUE SET FLAG REQUEST CLEARANCE OF DISABLE OT AVAILABLEUNSAVE!'				
 F716 41 F71A 20 F71E 53 F722 21 F723 00 F724 86 F724 86 F726 C6 F728 F5 F728 75 F728 27 F728 26 F728 17 F738 00 	42 4C 45 2D 55 4E 41 56 45 04 40 5 DE2A 7 F7 6 F6 7 0597 00A	CHECK CHECK1 CONT	FCB LDA LDB BITB BEQ DECA BNE LBSR FCB	0 #\$4 #\$40 ORB CHECK CHECK1 WFS \$0D,\$0A	CHECK FOUR TIMES FOR COMPLETION				

F935 52 F939 59	45 41	ন্ব	FCC	'READY'
F93A 00 F938 39			FCB RTS	0
			END	

@ ERROR(S) DETECTED

ACIA Orb	DE20 DE2A	CHECK SAVECK	F924 FBF0	CHECK1 F926 SAVFLG 070A	CONT WES	F930 FECA	CONTI	FSFI
			- w.		WEG	FECA		

KPDCTL

* THIS ROUTINE CONTROLS THE OPERATION OF THE

- * KEYPAD ON THE PORTABLE INSTRUMENT, THIS
- * UTILITY IS CONCERNED ONLY WITH THE IMMEDIATE
- * OPERATION OF THE KEYPAD AND THE ENTRY OF A
- * SINGLE CHARACTER, AND ITS TRANSLATION INTO
- * ASCII. OTHER ASPECTS OF KEYPAD USAGE ARE TO
- * BE CONTROLLED BY THE CALLING ROUTINES.

* SYSTEM EQUATES

DE28	KEYPAD	EQU	\$DE2B	DR'A	0F	PIA	ON	1140	MODULE
0700	INDEX	EQU	\$0700						

0007 SETDP \$07

¥.

F93C

* INITIALIZATION--ASSUMES RESET

ORG

F93C	8E	DE28	INITKP	LDX	#KEYPAD	GET PIA BASE ADDRESS
F938	86	14		LDA	#\$14	A SIDE-INPUT, IRQ'S MASKED
F941	A7	01		STA	i + X	CA1 GOES LO,CA2 GOES HI
F943	CC	3F04		LDD	#\$3F04	B SIDE-2 IN, 6 OUT MASK IRQ'S
F946	ED	02		STD	2+X	CB1 AND CB2 GO LO
F948	39			RTS		

\$F93C

* READ KEYPAD--NO MATCH SHOWN BY ZERO BIT SET

F949 F94B F94D F950 F952 F954 F956 F958	9F4 8E65 8A7 8E	00 40 DE28 40 41 FC C4 F96D	KBINCH CHARIN	STX PSHS LDU LDA BITA BEQ LDA LDX	INDEX U #KEYPAD #\$40 1,U CHARIN U #KEYTBL	SAVE INDEX SAVE U SET MASK DO WE HAVE A CHARACTER(CA2-HI) LOOP, IF NOT ELSE, GET CHARACTER
F958 F950 F95F F962 F964 F965 F967	A1 27 BC 26 5F 9E 35	81 0A F989 F7 00 C0	KBIN1 KBIN3	CMPA BEQ CPX BNE CLRB LDX PULS	X++ KBIN2 KEYTBL+28 KBIN1 INDEX U,PC	HAVE WE REACHED END OF TABLE? SHOW NO MATCH FOUND! RESTORE INDEX RESTORE U REGISTER, RETURN
F969 F963	E6 20	1F FB	KBIN2	LDB BRA	-1,X KBIN3	SHOW MATCH
			* TABLE	TO CONU	VERT KEYPAD	VALUE TO ASCII
F96D	11 01	2	KEYTBL	FCB	\$11,\$0D	
176F	12	33	FCB	\$12,\$33		
-------	-----	-----	-----	---------------------------------------		
E971	14	36	FCB	\$14,\$36		
F973	18	39	ECB	\$18.\$29		
F975	21	30	FCB	\$21,420		
F977	22	32	FCB	400.400		
E979	24	25	ECD	*24)*32 *34 *00		
070		00	FCB	\$24,\$33		
F416	28	33	FCB	\$28,38		
F97D	-11	7F	FCB	\$41,\$7F		
E97E	42	31	ECB	\$47.\$31		
F981	44	34	FCB	4 A A . 40 A		
F983	49	07	FOD	· · · · · · · · · · · · · · · · · · ·		
1700		57	FCB	\$48,\$37		
F 282	81	-1A	FCB	\$B1,54A		
F987	82	48	FCB	\$82,\$48		

© ERROR(S) DETECTED

CHARLN	F952	INDEX	0700	INITKE	E930	KRINI	2050	12TO TIMO	
KBIN3	F965	KBINCH	F949	KEVRAD	BEOO	VEVED	F7-00 F0/8	NDINZ	1767
			* / 7 /	NET LE HO	VEKO	NEY BL	F76D		

		*****	******	*******	******
		×		GETDATA	
		* THIS * KEYPA * REQUI * REQUE * FOR S * SO TH * SO TH * THE R * FORM	ROUTINE D OF TH RES THA STED AN TORAGE. AT LEAD EQUESTE OF ASCI	GETS A DA E PORTABLE T 8 CONTAI D X CONTAI THE ROUTI ING ZEROS D DATA BLO I CHARACTE	TA STRING FROM THE INSTRUMENT. ENTRY N THE NUMBER OF CHAR. NS THE STARTING ADDRESS NE FORMATS THE STRING ARE INSERTED TO FILL CK. STORAGE IS IN THE RS.
		* INCLU * ALLOW * CHARA	DED IN FOR AP CTER	THIS ROUTI PROXIMATEL	NE IS A SUBROUTINE TO Y 100 MILLISEC PER
		*****	*****	********	***************************
		* SYSTE	M EQUAT	ES	
	F949 FECA 0780 FA0C DE28 FF08	KBINCH WFS INDEX1 CMDADR KEYPAD WRC	EQU EQU EQU EQU EQU	\$F949 \$FECA \$0780 ERROR+\$A \$DE28 \$FF08	INPUT CHARACTER FROM KEYPAD STRING OUTPUT ROUTINE TEMPORARY STORAGE FOR INDEX
070B			ORG	\$070B	
070B 070D 070E 070F 0710 0731		DATBUF TCOUNT TCHAR TCHCNT TBUFFR RUNFLG	RMB RMB RMB RMB RMB RMB	2 1 1 33 2	STORAGE FOR LATEST BUFFER ADDRESS STORAGE FOR WORKING COUNT STORAGE FOR WORKING CHARACTER COUNTER FOR ACESSES TO CHAR. BUFFER AREA FOR STRING STORAGE FLAG TO INDICATE RUN STATUS
	0007		SETDP	\$07	
F9A3			ORG	\$F9A3	
F9A3 9E F9A5 D7 F9A7 9F F9A9 BE F9AC 0F	08 0D 80 0710 0E	GETDAT	LDX STB STX LDX CLR	DATBUF TCOUNT INDEX1 #TBUFFR TCHAR	GET STORAGE POINTER SAVE INDEX POINT TO TEMPORARY BUFFER
F9AE 86 F9B1 8D F9B3 27 ≻F9B5 17 F988 0A F988 26 F98A 26 F98C C1	DE28 96 4D 007F 0D 2E 0D	DATA1	LDA BSR BEQ LBSR DEC BNE CMPB	KEYPAD KBINCH ERROR CHARCK TCOUNT NXTCHR #\$0D	CLEAR ANY RESIDUAL CHARACTER IRQ GET A CHARACTER ZERO BIT IS ERROR FLAG FOR KBINCH CHECK FOR TIMEOUT UPDATE CHAR, COUNT
F9BE 26 F9C0 E7 F9C2 34 F9C4 1F	5A 80 40 13	RET	BNE STB PSHS TFR	ERROR1 X+ U X,U	LAST CHAR, MUST BE CR Save u

F9C6 F9C8 F9C0 F9C0 F9C2 F9D0 F9D2 F9D3 F9D3 F9D5 F9D5 F9D5 F9D5 F9D5 F9D5 F9D5 F9D5	9E DF D6 2786 7 867 526 340 8E A7 20 20 20 55	80 80 0D 07 30 80 FB 20 0710 A0 80 80 80 92 F5 0B E0	ZEROS CHARS1 CHARS RET1	LDX STU LDB BEQ LDA STA DECB BNE PSHS LDY LDA STA CMPY BEQ BRA STX PULS	INDEX1 INDEX1 TCOUNT CHARS1 #\$30 X+ ZEROS Y #TBUFFR Y+ X+ INDEX1 RET1 CHARS DATBUF Y,U,PC	POINT TO STORAGE AREA FETCH REMAINING NUMBER OF CHAR LOAD A WITH ASCII ZERO SAVE Y CLEAN STACK, RETURN
F9EA F9EC F9EE	C1 26 20	0D 02 D0	NXTCHR	CMPB BNE BRA	#\$ØD NXTONE RET	IS CHAR, A CR
F9F0 F9F2 F9F4 F9F5	C1 26 5F 39	7F 02	NXTONE	CMPB BNE CLRB RTS	#\$7F CHAR	IS IT A DELETE SHOW CANCELLATION OF ENTRY
F9F6 F9F8 F9FA F9FD F9FE FA00	E7 1F 17 58 28 20	80 98 0508 4D AF	CHAR	STB TFR LBSR ASLB BMI BRA	X+ B,A WRC CMD DATA1	SAVE CHARACTER ECHO CHARACTER IF CMD, PROCESS
FA02 FA05 FA09 FA00 FA11 FA15	17 49 40 47 41 43 48 41 43 52 21	04C5 2 4C 45 1 4C 20 3 41 52 3 54 45	ERROR	LBSR FCC	WFS 'ILLEGAL (OUTPUT STRING CHARACTER!'
FA17 FA18	00 20	18		FCB BRA	0 WAIT	
FA1A FA1D FA21 FA25 FA29 FA20 FA31	17 54 30 4D 41 20 43 52 41 45 52 00	04AD 30 20 4E 59 3 4B 41 43 54 2 53 21	ERROR 1	LBSR FCC FCB	WFS 'TOO MANY 0	CHARACTERS!'
FA32 FA35 FA36	17 5F 39	FF14	WAIT	LBSR CLRB RTS	KBINCH	WAIT FOR ANY CHAR. INPUT Show Error
FA37 FA39 FA3B FA3D	D1 27 D7 86	0E 07 0E 03	CHARCK NEW	CMPB BEQ STB LDA	TCHAR CKMATC TCHAR #3	COMPARE TO PREVIOUS CHAR. SAVE CHAR. IF NO MATCH

FA3F FA41	97 3 9	ØF		STA RTS	TCHCNT	SET FOR TH	HREE INPUTS (OF CHAR.	
FA42 FA44 FA46 FA48 FA48	0A 27 35 35 16	0F F5 02 02 FF64	СКМАТС	DEC BEQ PULS PULS LBRA	TCHCNT NEW A DATA1				
FA4D FA50 FA51 FA52	8E 57 3A 6E	FA0C 84	CMD	LDX ASRB ABX JMP	#CMDADR X	GET CMD BA RESTORE CA	ASE ADDRESS HAR		
FA54	20	07	СМДН	BRA	CMDH1	HALT COMM	AND ROUTINE		
			******	*****	******	******	*****		
			* LOCAT * ADDRE * COMMA	ION RUN SS OF T ND, ELS	FLG MUST E HE ROUTINE E, AN ERRO	E LOADED W TO BE STAI R WILL BE I	ITH THE RTED ON RUN RETURNED,		
			******	******	*******	******	*****		
FA56	DC	31	CMDR	LDD	RUNFLG	RUN COMMA	ND ROUTINE		
FA5B FA5A FA5C	27 34 39	ଡମ ଡଣ		BEQ PSHS RTS	ERROR2 D	PUT D INT	0 SUBROUTINE	RETURN C	AL
			******	*****	******	********	*****	×	
			* THE H * UNTIL * UPON * RESUM * WHEN * REPOR * USE I	ALT COM A RUN (RECEIPT E AT TH HALT WA: TING AN TS EXCE	MAND ENTER COMMAND IS OF THE R E ROUTINE B CALLED. ERROR AND PTION CALL	S A LOOP AN RECEIVED. CMD. THE PF THAT WAS IN THIS IS DO LETTING TH	ND STAYS THEF ROCESSOR WILL N OPERATION DNE BY HE ROUTINE	7E -	
			******	******	*******	*******	******	×	
FA5D FA60 FA62 FA64 FA65	17 C1 26 5F 39	FEE9 4A F9	CMDH1	LBSR CMPB BNE CLRB RTS	KBINCH #\$⊴A CMDH1	WAIT FOR IS IT AN I IF NOT LOO ELSE, SHO AND RETURN	A CHARACTER R? DP AGAIN W ERROR N		
FA66	20	7A	ERROR2	BRA	ERROR				
				END					
Ø ERROR	(S) [ETECTED							
SYMBOL	TABLE	E:							
CHAR CM D DATA1	F9F6 FA40 F9B1	CHARCK CMDADR DATBUF	FA37 FA0C 070B	CHARS CMDH ERROR	F9DB CHA FA54 CME FA02 ERR	RS1 F7D5 H1 FA5D OR1 FA1A	CKMATC FA42 CMDR FA56 ERROR2 FA66		

GETDAT NATCHR 1-UEFR WE	F9A3 F9EA 0710 FECA	INDEX1 NXTONE TCHAR WRC	0780 F9F0 070E FF08	KBINCH RET TCHCNT ZEROS	F949 F9C0 070F F9D0	KEYPAD RET1 TCOUNT	DE28 F9E6 070D	NEW RUNFLG WAIT	FA3B 0731 FA32
----------------------------------	------------------------------	----------------------------------	------------------------------	----------------------------------	------------------------------	--------------------------	----------------------	-----------------------	----------------------

CLRBUF

* THIS ROUTINE CLEARS AREAS OF MEMORY IN THE AS

- * SYSTEM, THE STARTING AND ENDING ADDRESSES ARE TO
- * BE PLACED IN THE LOCATIONS INDICATED, BY THE
- * CALLING PROGRAM. A AND X ARE DESTROYED.

07D8			ORG	\$07D8	
	0007		SETDP	\$07	
07DB 07DA		TBUFST TBUFND	RMB RMB	2 2	START ADDRESS TO BE HERE END ADDRESS TO BE HERE
FA69			ORG	\$FA69	
FA67 34 FA6B DE FA6D 4F FA6E 36 FA70 1193 FA73 26 FA75 36	40 DA 02 DB F9 02	NEXT	PSHS LDU CLRA PSHU CMPU BNE PSHU	U TBUFND A TBUFST NEXT A	SAVE U REGISTER LOAD U WITH END ADDRESS STORE A IN LAST LOCATION HAVE WE DONE ALL LOOP IF NOT DONE
FA77 35	CØ		PULS	U,PC	RESTORE U, RETURN

0 ERROR(S) DETECTED

SYMBOL TABLE:

NEXT FAGE TBUEND 07DA TBUEST 07DB

¥

		******	******	*****	******				
		×	BIN	2BCD					
		* THIS * NUMBE * 5 CHAN * ON ST * AND X * STORA	ROUTINE R TO BC: RACTERS ART, D (CONTAI) GE	ROUTINE CONVERTS A 16 BIT BINARY R TO BCD AND STORES THE RESULTING ACTERS, ART, D CONTAINS THE BINARY NUMBER, CONTAINS THE POINTER TO DECIMAL GE					
		******	******	*********	********				
		* SYSTE	M EQUATI	ES					
	FA79	К10К	EQU	\$FA79					
		* TEMPO	RARY ST	ORAGE					
073E			ORG	\$073E					
073E 073F 0741		SAVEA SAVEX SAVEX 1	RMB RMB RMB	1 2 2	ACCUMULATOR A STORE DATA POINTER POINTER TO CONSTANTS				
	0007		SETDP	\$07					
FAB1			ORG	\$FAB1					
FAB1 9F FAB3 BE FAB6 0F	3F FA79 3E	CVBTD CVDEC1	STX LDX CLR	SAVEX #K10K SAVEA	SAVE DATA POINTER POINT TO CONSTANTS INITIALIZE DEC CHAR				
FABA 25 FABC 0C FAPE 20	0- 0- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9- 9-	CVDECZ	BCS INC BRA	ĈVDEC5 SAVEA CVDEC2	OVERFLOW INC CHAR BEING BUILT				
FAC0 E3 FAC2 36 FAC4 9F	84 92 41	CVDEC5	ADDD PSHU STX	X A SAVEX1	RESTORE PARTIAL RESULT SAVE A REGISTER				
FAC8 96	BE BE			SAVEA	MAKE ACCIL CHADACTED				
FACC A7	84 62		STA	жэ.36 Х Л	DECTORE A DECISTED				
FADØ 30 FADØ 95	01 2E			4 1→X 9∆UEY	INCREMENT X				
FAD4 9E FAD4 30	41		LDX	SAVEX1	POINT TO CONSTANTS				
FADS SC FADB 26 FADO 39	FABS D9		CPX BNE RTS	#K10K+10 CVDEC1	ARE WE DONE				

0 ERROR(S) DETECTED

CVBTD	FAB1	CVDEC1	FAB6	CVDEC2	FABB	CVDEC5	FAC0	K10K	FA79
SAVEA	073E	SAVEX	073F	SAVEX1	0741				

			******	******	******	* * * * * * * * * * * * * * * *								
			* * THIS * ASCII * THE * 65,53 * X SHO * ASCII * THE R	* BCD2BIN * THIS ROUTINE CONVERTS A STRING OF 5 * ASCII NUMBERS TO A 16 BIT BINARY VALUE. * THE INITIAL STRING SHOULD NOT EXCEED * 65,535. * X SHOULD POINT TO THE START OF THE * ASCII STRING. * THE RESULT WILL BE IN D.										
			******	* * * * * * * * * * * * * * * * * * * *										
			* TEMFO	RARY ST	DRAGE									
073A				ORG	\$073A									
073A 0738 0730			TEMP1 COUNT	RMB RMB RMB	1 2 1	BCD STORAGE BINARY STORAGE STORAGE FOR CHARACTER COUNT								
		0007		SETDP	\$07									
			* CONST	ANTS										
FA79				ORG	\$FA79									
FA79 FA78 FA7D FA7F FA81	2710 03E8 0064 000A 0001		K10K	FDB FDB FDB FDB FDB	10000 1000 100 100 10									
FA83 FA85 FA87 FA89 FA89 FA85	0F 0F 0F 108E 86 97	3A 3B 3C FA79 05 3D	CVDTB	CLR CLR CLR LDY LDA STA	TEMP TEMP1 TEMP1+1 #K10K #\$05 COUNT	INITIALIZE STORAGE								
FA91 FA92 FA94 FA96 FA98 FA98	5F A6 80 27 97 4F	80 30 0E 3A	NEXT	CLRB LDA SUBA BEQ STA CLRA	X+ #\$30 SUM TEMP	GET ASCII CHARACTER MAKE BCD SAVE IT								
FA98 FA90 FA9E FAA0 FAA2 FAA4 FAA6 FAA6 FAA6	5F ES 0A 26 D3 D0 27 30 27	A4 3A FA 3B 3D 3D 04 22	CV . SUM	CLRB ADDD DEC BNE ADDD STD DEC BEQ LEAY	Y TEMP CV TEMP1 TEMP1 COUNT EXIT 2, Y	GET CONSTANT VALUE ADD UNTIL DONE								

FAAE DC 3B FABØ 39	EXIT	LDD RTS END	TEMP:	1			
0 ERROR(S) DETECTED)						
SYMBOL TABLE:							
COUNT 073D CV NEXT FA91 SUM	FA9C FAA6	CVDTB TEMP	FA83 073A	EXIT TEMP1	FAAE 073B	K10K	FA79

			*****	******	*******	**********
			×		FIRQHDL	
			* THIS * WHIC * A RE * MEAN * PANE * ISBU	ROUTIN H CHOOS PEAT RO S OF TH S OF TH L OF TH ED BY P	E IS AN IN ES BETWEEN UTINE, SEL E STATUS O E PORTABLE RESSING TH	TERRUPT HANDLER FOR FIRQ A JUMP TO MONITOR AND ECTION IS MADE BY F THE FUNCT SWITCH ON THE INSTRUMENT, THE FIRQ IS E KEY MARKED RPT(MONITOR),
			*****	******	* * * * * * * * * *	************
		07F6 DE2A FC3C 0700	* SYST) EFIN FRQFLG NMI INDEX	EM EQUA EQU EQU EQU EQU	TES \$07F6 \$DE2A \$FCSC \$0700	STORAGE LOCATION FOR FIRQ VECTOR PIA B SIDE DATA REGISTER ENTRY ROUTINE FOR AS01
0733	8			ORG	\$0733	
		0007		SETDP	\$07	
0733 0734	1		RUNCNT RPTADR	RMB RMB	1 2	NUMBER OF REPEATS PERFORMED ADDRESS TO WHICH REPEAT GOES
FADE				ORG	\$FADE	
			* INITI	ALIZATI	ON	
FADE FAE0 FAE3 FAE5 FAE5 FAE0 FAE0 FAE0 FAE0 FAE0	9FE6EF 9B9FE609 109	00 FAF1 10 FC3C 34 00 52 0F	FRQINZ	STX LDX PSHU LDX STX LDX PSHU ANDCC RTS	INDEX #FRQVEC X #NMI RPTADR INDEX Y,X,A #\$0F	SAVE X GET ADDRESS FOR FIRQ ROUTINE SAVE IN STACK POINT TO MONITOR SAVE AS DEFAULT FIRQ ENABLE FIRQ
			* INTER	RUPT HA	NDLER	
FAF1 FAF4 FAF6 FAF9 FAF8	F6 28 8 8 8 8 8 8	DE2A 06 FC3C 61	FRQVEC DEBUG	LDB BPL LDX STX RTI	FRQFLG REPEAT #NMI 1,S	READ FIA FOR FUNCTION FLAG IF BIT7 = 0 REPEAT ROUTINE DO MONITOR STARTUP SET LOCATION TO JUMP TO JUMP TO AS01
FAFC FAFE	00 6E	33 9F 0734	REPEAT	INC JMP	RUNCNT ERPTADR 3	
ERROR	2(3)	DETECTED		END		

Ø

SYMBOL TABLE:

..

DEPHC:	EDEA	FEIN	07E6	FRQFLG DI	E2A FRQINZ	FADE	FRQVEC	FAF1
DEDDG	1 11 0	G. 1 . 1 . 1				0703	CUINCIST	0700
TABEX	6376363	NMT	FC3C	REPEAT FR	AFC RETAUR	0/34	RUNCINI	0755

×

FB1F

FB1F 36 FB21 8D FB23 86 FB25 1E FB27 17 FB2A 17 FB2D 17 FB30 17 FB33 BE FB36 9F F838 6E FB3B 9F FB3D 17 FB-0 8E F843 9F FB45 BE FB48 9F F84A 17 FB4D 17 F850 0D F852 26

STARTUP

* THIS ROUTINE IS ENTERED WHEN RESET IS RECEIVED BY

* THE ADAPTIVE SCIENCE SYSTEM, IT PERFORMS ALL

* REQUIRED INITIALIZATIONS, AND THEN POINTS TO THE

* START OF THE ROUTINE, AND WAITS FOR A RUN COMMAND

* SYSTEM EQUATES

	F800 F843 F89D F93C 07D8	INTIME INITAD INITDA INITKP TBUFST	EQU EQU EQU EQU EQU	\$F800 \$F843 \$F89D \$F93C \$07D8	INITIALIZE TIMER INITIALIZE A TO D INITIALIZE D TO A INITIALIZE KEYPAD
	07DA FC00 FADE FBF0 070A FA69	FBUEND RES FRQINZ SAVECK SAVELG CURBUE	EQU EQU EQU EQU EQU	\$07DA \$FC00 \$FADE \$F8F0 \$070A \$E049	INITIALIZE MONITOR AND ACIA SET UP FIRQ ROUTINE CMOS MEMORY SAVE CHECK
	8010 0743 0731 F949 FA56	BEGDAT STARTD RUNFLG KBINCH CMDR	EQU EQU EQU EQU EQU	\$8010 \$0743 \$0731 \$F949 \$FA56	START OF CMOS DATA STORAGE
	8002 F000	SAVSTO BEGIN	EQU EQU	\$8002 \$F000 \$F664	POINTER TO CMOS DATA STORAGE LOCATION FOR START OF SEQUENCE
	0007		ORG	\$07 \$FB1F	
-	20 BB 07 8B FCD6 FD13 FD13 FE09	STARTUP	PSHU BSR LDA EXG LBSR LBSR LBSR LBSR	Y FRQINZ #\$07 A,DP INTIME INTIME INITAD INITAD INITKP	9 O - # \$ 18
	0000 DB 07D7 DA FF29		LDX STX LDX STX LBSR	#\$0000 TBUFST #\$07D7 TBUFND CLRBUF	POINT TO START OF SCRATCHPAD POINT TO END OF SCRATCHPAD
	0800 D8 0FFF DA FF1C		LDX STX LDX STX LBSR	#\$0800 TBUFST #\$0FFF TBUFND CLRBUF	POINT TO DATA STORAGE POINT TO END OF DATA STORAGE
	FDA9 0A 20		LBSR TST BNE	SAVECK SAVELG SAUBAT	HAS CMOS MEMORY BEEN PROTECTED?

FB54	8E	8010		LDX	#BEGDAT	
FB57	9E	43		STX	STARTD	SAVE POINTER TO DATA AREA
F859	9F	DB		STX	TEUFST	CLEAR CMOS MEM.
FESB	ΘE	87FF		LDX	#BEGDAT+\$7	7EF
FBSE	9F	DA		STX	TBUEND	
FB60	17	FF06		LBSR	CLRBUF	
FB63	CC	F000	GO	LDD	#BEGIN	
FB66	DD	31		STD	RUNFLG	POINT TO PROGRAM ENTRY
FB68	17	FDDE	GETR	LBSR	KBINCH	
FB6B	C1	46		CMPB	#\$-4A	
FB6D	26	F9		BNE	GETR	IF CHARACTER NOT R LOOP
FB6F	17	FEE4		LBSR	CMDR	
FB72	27	AB		BEQ	STARTUP	TRY AGAIN, IF ERROR
F874	BE	8002	SAVDAT	LDX	SAVSTO	GET NEXT DATA LOCATION
FB77	9F	43		STX	STARTD	STORE IN POINTER
FB79	20	EB		BRA	GO	

0 ERROR(S) DETECTED

BEGDAT	8010	BEGIN	F000	CLRBUF	FA69	CMDR	FA56	FRQINZ	FADE
GETR	FB68	GO	FB63	INITAD	F843	INITDA	F89D	INITER	F930
INTIME	F800	KBINCH	F929	RES	FC00	RUNFLG	0731	SAVDAT	FE74
SAVECK	FBFØ	SAVELG	070A	SAVSTO	8002	STARTD	0743	STARTU	FB1F
TELEND	07DA	TBUEST	07D8						

PGMSAVE

- * THIS ROUTINE WILL DISABLE AND ENABLE ACCESS
- * TO THE CMOS MEMORY WHILE THE PORTABLE UNIT
- * IS POWERED UP. TO RETAIN MEMORY DURING
- * POWER OFF, THE SAVE BUTTON MUST BE DEPRESSED

* SYSTEM EQUATES

¥

	DE2A	ORB	EQU	\$DE2A	DATA REGISTER PIA B SIDE
F87D			ORG	\$FB7D	
FB7D CC FB80 7F FB83 FD FB86 86 FB88 87 FB88 39	7F04 DE2B DE2A 3F DE2A	PGMBAU	LDD CLR STD LDA STA RTS	#\$7F04 0RB+1 0RB #\$3F 0RB	DISABLE CMOS MEMORY CLEAR CONTROL REGISTER B SET B SIDE BIT 7-IN, REST-OUT SET BIT 6 LO
FB8C 86 FB8E 87 F891 39	7F DE2A	UNSAVE	LDA STA RTS	#\$7F ORB	SET BIT 6 HI
FB92 CC FB95 7F FB98 FD FB98 39	- 3F04 DE2B DE2A	EXT	LDD CLR STD RTS	#\$3F04 0RB+1 0RB	RETURN TO EXTERNAL CONTROL CLEAR CONTROL REGISTER B SET B SIDE 2-IN 6-OUT
			END		
ERROR(S)	DETECTED				

SYMBOL TABLE:

Ø

EXT	FB92	ORB	DE2A	PGMSAV F	FB7D	UNSAUE	FRRC
-----	------	-----	------	----------	------	--------	------

		*****	****	********	**********
		*		UN/PACH	<
		* THIS * INTO * BIT B * IS AL * FOR P *	ROUTINE THREE S YTES IN SO DONE ACKING,	PACKS FOUR BIT BYTES TO FOUR BYT ON ENTRY X POINTS Y POINTS 1 D CONTAINS	R 6 BIT CHARACTERS(ASCII) OR UNPACKS THREE EIGHT TES. RECONVERSION TO ASCII * TO THE START OF DATA TO THE START OF STORAGE S THE NUMBER OF 4 CHAR BLOCKS
		* FOR U * *	NPACK,	X CONTAINS Y CONTAINS D CONTAINS	B THE START OF STORAGE B THE START OF CHAR, STORAGE B THE NUMBER OF 4 CHAR BLOCKS
		*****	******	********	******
FB9C			ORG	\$F89C	
FB9C 4C FB9D 34 FB9F 8D FBA1 6A FBA3 26 FBA3 6A FBA5 6A FBA7 26 FBA9 35	06 0A 61 FA E4 F6 86	PACKS PAC1	INCA PSHS BSR DEC BNE DEC BNE FULS	D PACK 1,S PAC1 0,S PAC1 D,PC	ADJUST COUNT OF MS BYTE PUT COUNT ON THE STACK PACK 4 INTO 3 LS COUNT MS BYTE CLEAN UP STACK, RETURN
FBAB EC FBAD 58 FBAE 58 FBAF 58 FBBØ 49 FBB1 58 FBB1 58 FBB2 49	81	PACK	LDD ASLB ASLB ASLB ROLA ASLB ROLA	X++	GET FIRST TWO CHARACTERS
		* ACCA *	IS NOW LEF	PACKED AND T JUSTIFIE	ACCB CONTAINS 4 BITS D
FBB3 A7 FBB5 A6 FBB7 44 FBB8 44	A0 80		STA LDA LSRA LSRA	Υ+ X+	STORE FIRST PACKED BYTE GET THIRD CHAR.
FBB9 B4	ØF		ANDA	#\$0F	CLEAN UP MS NYBBLE
		* ACCA	HAS MS	NYBBLE AND	ACCB HAS LS NYBBLE
FBB8 34 FBBD AA FBBF A7 FBC1 EC	04 E0 A0 81		PSHS ORA STA LDD	B S+ Y+ X++	PUT B IN TEMP STORAGE PUT CHAR TOGETHER, CLEAN STACK STORE SECOND PACKED BYTE GET LAST TWO CHAR,
		* PICK	UP 2 LS	B FROM A A	3 2 MSB IN B
FBC3 59 FBC4 58			ASLB ASLB		

FBCG	59
TRICE	= -
TEL-	28

FBC5 FBC6 FBC7 FBC8 FBC9 FBC8	44 56 44 56 E7 39	AØ	* * * * * * *	LSRA RORB LSRA RORB STB RTS	Y+ *******	STORE THIRD PACKED BYTE
FBCC FBCE FBCF FBD3 FBD3 FBD7 FBD7 FBD9 FBD8	34 40 80 64 26 26 35	20 06 0A 61 FA E4 F6 A6	UNPAKS UNP1	PSHS INCA PSHS BSR DEC BNE DEC BNE PULS	Y UNPACK 1,S UNP1 S UNP1 D,Y,PC	ADJUST COUNTER MS BYTE PUT COUNT ON THE STACK UNPACK 3 INTO 4 LS COUNT MS COUNT CLEANSTACK.RETURN
			* UNPAC * CHARA	K RETUR CTERS F	NS FOUR RI(ROM THREE F	GHT-JUSTIFIED 6-BIT PACKED 8-BIT BYTES
FBDD FBDF FBE1 FBE2 FBE3 FBE4	34 포C 44 5 6 56	06 80	UNPACK	PSHS LDD LSRA RORB LSRA RORB	D X+	SAVE D REGISTER : 16-BIT SHIFT, TWO PLACES :
			* ACCA	IS NOW	UNFACKED	
FBE5 FBE6	54 54			LSRB LSRB		
			* ACCB	IS NOW	UNPACKED	
FBE7 FBE9 FBE0 FBE0 FBED FBEE	ED EC 589 549 549	A1 80		STD LDD ASLB ROLA ASLB ROLA	Y + + X +	STORE 1ST AND 2ND CHARS GET 2ND AND THIRD BYTES ANOTHER SHIFT, TWO PLACES
FBEF	84	35	* ACCA	ANDA IS NOW	#\$3F	CLEAR TOP 2 BITS
FBF1 FBF3	E6 C4	80 3F			X+ #\$3F	GET 3RD BYTE AGAIN
			* ВОТН	ARE NOW	UNPACKED	
FBF5 FBF7	ED 35	A1 86		STD FULS	Y++ D,PC	STORE THIRD AND FOURTH CHARS RECOVER D, RETURN

@ ERROR(S) DETECTED

PAC1	FB9F	PACK	FBAB	PACKS	FB9C	UNP1	FBD1	UNPACK	FBDD
UNP'AKS	FBCC								

			3 Publication Date
U.S. DEPT. OF COMM.	1. PUBLICATION OR REPORT NO.	2. Performing Organ. Report No.	J. I doncation bate
BIBLIOGRAPHIC DATA	NBSIR 84-2853		April 1984
TITLE AND SUBTITLE			•
Measuring the Rate	of Corrosion of Rei	inforcing Steel in Concre	te
AUTHOR(S) E. Escalante, M. C	ohen, and A. H. Kahr	n	
	TION (If joint or other than N	(BS see instructions)	1 Contract/Grant No
NATIONAL BURGANIZA		ba, see manuellonsy	P0-8-3-0118
DEPARTMENT OF COMM	ERCE	1	. Type of Report & Period Covered
WASHINGTON, D.C. 2023	4		Interim 1980 - 1983
Washington, DC 20	590	, III - 22	
FHWA Contract Mana	ger: Y. P. Virmani		
Document describes a	a computer program; SF-185, F	FIPS Software Summary, is attached.	
. ABSTRACT (A 200-word o	or less factual summary of mo	st significant information. If docume	ent includes a significant
1. ABSTRACT (A 200-word c bibliography or literature The progress method for measuri	or less factual summary of mo survey, mention it here) on a research progra ng the corrosion of	am directed at developing steel in concrete as rel	a nondestructive ated to bridge deck
1. ABSTRACT (A 200-word c bibliography or literature The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development	or less factual summary of mo survey, mention it here) on a research progra ng the corrosion of eported. This repor n this project. The nary studies, 3) mea of a microprocessor	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	a nondestructive ated to bridge deck rk and describes the re: 1) a literature) field measurements,
ABSTRACT (A 200-word c bibliography or literature The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development	e entries; alphabetical order;	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	ent includes a significant a nondestructive ated to bridge deck rk and describes the re: 1) a literature) field measurements,
ABSTRACT (A 200-word c bibliography or literature The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development . KEY WORDS (Six to twelv Bridge deck corros rebar corrosion.	or less factual summary of mo survey, mention it here) on a research progra ng the corrosion of eported. This repor n this project. The nary studies, 3) mea of a microprocessor of a microprocessor	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	eparate key words by semicolons)
ABSTRACT (A 200-word c bibliography or literature The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development 2. KEY WORDS (Six to twelv Bridge deck corros rebar corrosion. 3. AVAILABILITY	e entries; alphabetical order;	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	eparate key words by semicolons) ent, polarization technic
ABSTRACT (A 200-word c bibliography or literature The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development C. KEY WORDS (Six to twelv Bridge deck corros rebar corrosion.	or less factual summary of mo survey, mention it here) on a research progra ng the corrosion of eported. This repor n this project. The nary studies, 3) mea of a microprocessor of a microprocessor	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	eparate key words by semicolons) ent includes a significant a nondestructive ated to bridge deck rk and describes the re: 1) a literature) field measurements,) field measurements, eparate key words by semicolons) eel, polarization techni
 ABSTRACT (A 200-word c bibliography or literature The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development KEY WORDS (Six to twelv Bridge deck corros rebar corrosion. AVAILABILITY Unlimited For Official Distributi 	or less factual summary of mo survey, mention it here) on a research progra ng the corrosion of eported. This repor n this project. The nary studies, 3) mea of a microprocessor of a microprocessor e entries; alphabetical order; tion; corrosion in co	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	eparate key words by semicolons) eel, polarization technic eparate key words by semicolons
 ABSTRACT (A 200-word c bibliography or literature) The progress method for measuri deterioration is r new developments o review, 2) prelimi and 5) development 2. KEY WORDS (Six to twelv Bridge deck corros rebar corrosion. Bridge deck corros rebar corrosion. B. AVAILABILITY W Unlimited For Official Distributi Order From Superinter 20402. 	or less factual summary of mo survey, mention it here) on a research progra ng the corrosion of eported. This repor n this project. The nary studies, 3) mea of a microprocessor of a microprocessor ion; corrosion in co ion. Do Not Release to NTIS ident of Documents, U.S. Gov	am directed at developing steel in concrete as rel rt summarizes the past wo e five phases described a asurements in concrete, 4 r system.	ent includes a significant a nondestructive ated to bridge deck rk and describes the re: 1) a literature) field measurements, eparate key words by semicolons) eel, polarization techni 14. NO. OF PRINTED PAGES 36 D.C. 15. Price

, ,