NBSIR 84－2847（R）

National Bureau of Standards Response to the 1982 National Measurement Requirements Survey of the NCSL National Measurement Requirements Committee

U．S．DEPARTMENT OF COMMERCE
National Bureau of Standards
National Measurement Laboratory
Office of Physical Measurement Services
Washington，DC 20234

March 1984

Prepared for
U．S．DEPARTMENT OF COMMERCE
National Bureau of Standards
Washington，DC 20234

NATIONAL BUREAU OF STANDARDS RESPONSE TO THE 1982 NATIONAL MEASUREMENT REQUIREMENTS SURVEY OF THE NCSL NATIONAL MEASUREMENT REQUIREMENTS COMMITTEE

B. C. Belanger
R. K. Kirby
J. D. Simmons

U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
National Measurement Laboratory
Office of Physical Measurement Services
Washington, DC 20234

March 1984

Prepared for
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS RESPONSE

 TO THE1982 NATIONAL MEASUREMENT REQUIREMENTS SURVEY OF THE
NATIONAL MEASUREMENT REQUIREMENTS COMMITTEE NATIONAL CONFERENCE OF STANDARDS LABORATORIES

Edited by:
B. C. Belanger
R. K. Kirby
J. D. Simmons

CONTENTS

Page
Response to Section 2B
dc and Low Frequency Measurement Requirements 4
Response to Section 2C rf and Microwave Measurement Requirements 13
Response to Section 2D Electro-optics Measurement Requirements 22
Response to Section 2E
Temperature, Pressure, and Related Measurement Services 29
Response to Section 2F Physical/Mechanical Measurement Requirements 38
Educational Seminars and Workshops 41

NBS RESPONSE TO THE 1982 NCSL NATIONAL MEASUREMENT REQUIREMENTS SURVEY

INTRODUCTION

This report constitutes the response of the National Bureau of Standards (NBS) to the 1982 National Measurement Requirements Survey Report published by the NCSL's National Measurement Requirements Committee in May 1983.

Information of the kind contained in the Survey Report is extremely useful to NBS in evaluating the effectiveness of ongoing programs and for planning future programs. The Report is particularly important to NBS because of the large number of organizations that have responded and because of the detailed technical requirements identified in the report--quantities to be measured, ranges, and accuracies. NBS is grateful to the National Measurement Requirements Committee (NMRC) of NCSL for their extensive effort in collecting, summarizing, and tabulating the material and to the NCSL members (and nonmembers) who took the time to respond to the questionnaires.

The NCSL NMRC Report represents primarily the viewpoint of the standards laboratory community. NBS and the NMRC recognize that there are other users of NBS measurement services whose requirements may not be communicated to the standards laboratories that participated in this survey. For example, the views of many users of NBS ionizing radiation measurement services in the medical and health field are not well represented. Also, requirements from classified military programs cannot be included for obvious reasons. In spite of these constraints, NBS believes that the NCSL NMRC Report is one of the most comprehensive sources of technical requirements information for measurement services currently available.

The Report could have been even more useful had it contained more economic analysis and data that would permit NBS to evaluate the relative importance of the requested measurements to industrial productivity and quality control. NBS recognizes the difficulty of developing quantitative economic data and anecdotal material and encourages continued efforts to collect such data. In addition, in the continuing effort of NCSL to keep NBS aware of measurement requirements an attempt should be made to provide a prioritized list from each of the NMRC subcommittees that is ordered according to their perceived need.

The needs for expanded NBS services will probably always exceed the resources available to NBS for responding to those needs. Accordingly, NBS must set priorities carefully to ensure that resources are allocated to those measurement areas that are currently most important to the country. Since needs change as technology changes, some services will be closed while other new services are started. Because of the long lead times that are typically required to develop new calibration services and the high cost of research and development in new measurement areas, decisions to develop new services cannot be made without careful justification. The National Measurement Requirements Survey Report provides critically important information for project justification and priority decisions.

The subcommittees involved in the preparation of the Survey Report generally worked closely with the corresponding technical groups responsible
for NBS calibration services. In some cases information concerning the current status of NBS services and future plans was incorporated directly into the Survey Report. In such cases, this document includes only material deemed necessary to clarify or expand on the information in the NMRC Report or to cover those requirements for which NBS' current status and plans were not addressed. The format for the presentation of the material in the NMRC Report also varies from section to section. Each section in this report is labeled to correspond with the relevant section in the NMRC Report.

Some respondents to the NCSL questionnaire indicated that they were not aware of existing NBS services. NBS Special Publication 250, "Calibration and Related Measurement Services of the National Bureau of Standards" describes NBS' services and is updated every two years. The next edition of SP 250 will be issued in late 1984. An Appendix to SP 250 giving current prices and recent changes in services is published every 6 months. These publications are provided to anyone interested in using NBS services. Persons not already on the mailing list who wish to receive these publications should contact:

> Office of Physical Measurement Services
> Physics Bldg., Room B362
> National Bureau of Standards
> Washington, DC 20234
> (301) 921-2805

For certain types of measurements, NBS Standard Reference Materials are a more convenient method of obtaining traceability to NBS. For information on Standard Reference Materials contact:

> Office of Standard Reference Materials
> Chemistry Bldg., Room B311
> National Bureau of Standards
> Washington, DC 20234
> (301) 921-2045

In some cases, services that are not listed explicitly in SP 250 can be performed by NBS on a special test basis. Before concluding that NBS does not provide a particular service, the Office of Physical Measurement Services or appropriate NBS line managers should be contacted to see whether or not a special test can be arranged.

RESPONSE TO SECTION 2B
 DC AND LOW FREQUENCY MEASUREMENT REQUIREMENTS

INTRODUCTION

The responsibility for providing calibration services and for carrying out research and development in dc/lf electrical measurements falls within two different Centers at NBS. The Electricity Division of the Center for Basic Standards (CBS) is responsible for dc voltage, impedance, ac-dc difference and resistance, whereas the Electrosystems Division of the Center for Electronics and Electrical Engineering (CEEE) is responsible for phase angle, power and energy measurements, and high voltage measurements.

Since the termination of the magnetic calibration services at NBS several years ago, no NBS group has carried out work in this area directed towards calibration services. The CEEE, however, has been surveying the field to determine whether there is sufficient justification for establishing a new magnetic measurements program at NBS. The Electricity Division also has expertise in magnetic measurements and is following this survey with interest. If the survey results and other considerations support a decision to reestablish magnetic measurement services, NBS will be in a position to draw on expertise in both centers (see Section on Magnetic Field Strength below).

The NCSL NMRC Report describes the general state of affairs in the metrology community and the needs expressed in it represent a wide range of opportunities for future NBS activity. In some cases, however, the accuracy requirements indicated in the NCSL Report are more stringent than those identified to NBS previously; e.g., the requirement for phase angle uncertainty in the NCSL Report is ± 0.001 degree, other inputs had indicated an uncertainty requirement no better than ± 0.005 degree. Also, NBS has received requests for dc/lf measurement services through other channels in addition to those indicated by the respondents to the NCSL Survey.

GENERAL COMMENTS ON NBS PRIORITIES AND PLANS
NBS Contact: Norman B. Belecki (301) 921-2715
The highest priorities in this area are to continue to maintain services related to fundamental standards with the highest level of quality; to reduce turnaround time in those services where there is room for improvement; to reinstate previously curtailed services in the resistance area; and to document the technology and procedures used to deliver existing services. The second priorities are to expand existing services and to initiate new services as indicated in this study and by the various members of the metrology community. These include:
a) Developing a calibration capability for capacitance dissipation factor;
b) Extending the ranges of measurement and applied frequency for the impedance calibration services;
c) Providing a calibration service for ac resistors at frequencies up to 100 kHz ;
d) Developing a MAP procedure for alternating voltage and current measurements; and
e) Developing a MAP for dc voltage sources at the 10 V level.

At present resource levels, services in these latter areas will not be available for several years.

NBS has increased the staff in this dc/lf area by two professionals and one technician. The first assignment of the professionals will be to automate the calibration of thermal current and voltage converters. This effort is expected to reduce the backlog of work in this key area and to allow some improvement in our measurement uncertainties. The second assignment of the professionals will be in the impedance area.

The new technician should allow the restoration of services for odddecade value resistance standards. Calibration of resistors at the teraohm level and higher is also expected to be resumed when an automated capacitive discharge system for making the measurements is completed. Several publications covering measurement techniques in the voltage and resistance areas will be prepared.

NBS also assigns a high priority to maintaining reference standards and providing calibration services for electrical power, energy, and phase angle. In the Power/Energy area, existing services will be upgraded by increasing the accuracy and the range of quantities that are currently measured. The calibration service for phase angle, now provided on a special test basis up to 5 kHz , is expected to become a regularly-offered calibracion service for frequencies up to 50 kHz . Work is underway with existing funding to accomplish this upgrade. These plans will permit NBS to address the principal needs indicated in the NCSL survey in a time span of about 3-5 years. Without additional funding, however, all of the needs indicated in the NCSL survey cannot be fully met; e.g., phase angle uncertainty within ± 0.001 degree. As our plans are responsive to the needs of the users, no major modifications of these plans are necessary, only the funding to carry them out in a timely fashion.
DC VOLTAGE MEASUREMENT
NBS Contact: Norman B. Belecki (301) 921-2715
The requirements, current status, and future NBS plans were covered in the NCSL Report but are repeated here for convenience of the reader.
2. 0.01 to 1000 volt MAP or calibration service having an uncertainty
of about 1 to 10 ppm . different accuracy levels. The highest accuracy is at
the 0.3 to 0.5 ppm . The highest accuracy is at
the 0.3 to 0.5 ppm .

Requirement

Current NBS Capability
 on an automated measurement system is now available with 0.3 to 0.5 ppm accuracies.
The NBS ratio capability would need to be rejuvenated and transport standards and procedures developed. No plans and procedures developed. No plans
have been made at this time. New transport standards are being
developed but will not be available
for several years. Turnaround time
has been reduced to five weeks which
is the best we can do at this time.

> None.
Work on the development of improved transport standards will be completed in 1 to 2 years.

$$
\text { Plans and Comments }
$$

Work on the development of improved
transport standards will be completed
in 1 to 2 years. Two MAPs are available at -גəs uoṭfexq!tes pue d甘W 子ron of $\cdot I$ vice with an uncertainty in the order of 0.1 to 0.3 ppm .

[^0]AC/LF VOLTAGE MEASUREMENT
NBS Contact: Norman B. Belecki (301) 921-2715 The requirements, current status, and future NBS plans were covered in the NCSL Report but are repeated The reader is also directed to the voltage measurement requirement in
Plans and Comments
Two new staff members will work toward the automation of the test equipment. Planned completion in 1985.
transfer standard.
No plans have been made at this time but the development of such a MAP for
 use of either sources or measurement systems as the transfer standard.
In addition, it should be noted that work is underway in the Electrosystems Division to develop two automated列 1000 V , up to 100 kHz . This system can also characterize the ac-dc difference of thermal A second more portable system is being developed for calibrating dc/ac voltmeters in the $\pm 5 / \pm 50 \mathrm{ppm}$ accuracy range which may ultimately cover frequencies up to 1 MHz . The primary application is calibration of programmable sources and automated test equipment. This work is jointly funded by NBS and the Calibration Coordination Group of the Department of Defense.
DC AND AC RESISTANCE MEASUREMENT

[^1]\[

$$
\begin{aligned}
& \text { Plans and Comments } \\
& \text { There are no current plans to provide } \\
& \text { services for ac resistors above } 1 \Omega \text { and } \\
& \text { frequencies above } 10 \mathrm{kHz} \text {. The capaci- } \\
& \text { tance work must be completed first. } \\
& \text { Services for the range above } 1 \mathrm{~T} \Omega \text { were } \\
& \text { suspended several years ago. It is } \\
& \text { anticipated that these services will be } \\
& \text { reinstated upon completion and testing } \\
& \text { of a new automated measurement system. } \\
& \text { Planned completion in } 1984 \text {. } \\
& \text { There are no immediate plans to improve } \\
& \text { this capability. Requests for calibra- } \\
& \text { tions at higher currents have been } \\
& \text { referred to the National Research Council } \\
& \text { in Canada. }
\end{aligned}
$$
\]

NBS Contact: Norman B. Belecki (301) 921-2715
Services are available for the range $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at voltages between 1.5 and 500 V.
None.

None.

$$
\begin{aligned}
& \text { Requirement } \\
& \text { 1. Calibration of ac resistance } \\
& \text { standards over the range } 0.1 \mathrm{to} \\
& 100 \mathrm{k} \Omega \text { at frequencies from } 60 \mathrm{~Hz} \\
& \text { to } 10 \mathrm{MHz} \text {. } \\
& \text { 2. Calibration of multimegohm resis- }
\end{aligned}
$$

Shunt calibrations are for resistors with capacities up to 1 kA at accuracies of 0.01%. Above 1 kA , values with 0.03% accuracy are arrived at by measurement at 1 kA but at the elevated temperatures expected from desired current levels.

Currently suspended
4. Calibration of ratio devices
such as direct reading ratio
sets.
3. Calibration of resistors for high current measurements with
capacities of up to 2 kA at the
0.02% accuracy level.
CAPACITANCE MEASUREMENT
NBS Contact: Norman B. Belecki (301) 921-2715
Curcent MBS Capability
Services are available.
Curcent NBS Capability
Services are available.
to better th
 the capability of measuring the dissipation factor with an accuracy of better than 1 ppm .
This service will be resumed with new
 cies from 400 Hz to 1 kHz . Future work will increase the frequency range.
There are no current plans to extend
these services until the completion of
1 . and 2 . above.
 voltages above 50 V the accuracy is ± 10 ppm for capacitance and $\pm 5 \mathrm{ppm}$ for the quəxxnכ ou əxe əxวчJ •xоұכeł uotұed!sstp plans to upgrade this capability.
Requirement
Services are available.
Service is available for capacitors up to $0.1 \mu \mathrm{~F}$ at frequencies up to 10 kHz .
NBS Contact: Robert E. Hebner, Jr. (301) 921-3121
Services are available
on a special test basis.
-วa!ə!p-se8 fo גołวej uo!fed!ss!p dissipation fid
tors at power frequencies and high voltage.

MAGNETIC FIELD STRENGTH

NBS Contact: Frederick R. Fickett (303) 497-3785
The information presented in the Report regarding calibration needs in the area of magnetics is consistent with information we have gathered in a preliminary assessment of the field. Prior to the survey on magnetics service, NBS had identified a relatively small number of organizations in need of this type of magnetic calibration service. However, our investigation has shown that need for the service is likely to increase significantly in the near future as pointed out in the Report. This is due in large part to the increased use of nuclear magnetic resonance techniques in medicine and to the introduction into commerce of new magnetic materials such as soft amorphous magnetic alloys and the NdFe hard ferromagnets.

It should be pointed out that there are magnetic measurement areas not addressed by the NCSL survey, such as magnetic recording media and other computer-related fields, that are quite active and in which we have found a significant interest in standards and calibration.

The extent of the need and/or desire of industry and other government agencies for a magnetics service by NBS has been assessed in part by CEEE through numerous contacts with representatives of industry and of the industrial standards-setting organizations. Results are being analyzed from an extensive survey questionnaire mailed to about 2,000 individuals, including members of the IEEE Magnetics Society, ASTM Committee A-6 on Magnetic Properties, and the Magnetic Materials Producers Association. The results of this survey, in conjunction with other input and financial considerations, will determine the future direction of our magnetics work. NBS cannot operate a viable calibration facility unless it is based on a strong state-of-the-art research program in the field. Thus, our first priority is to determine if sufficient interest exists to support creation of a magnetics program which would involve basic research and development of magnetic metrology as well as the creation of additional Standard Reference Materials and, possibly, calibration services.

At the present time CEEE has a capability for making nearly all conventional magnetic measurements in the Electromagnetic Technology Division in Boulder. Operating equipment includes: fluxmeters and gaussmeters of various sorts that can measure flux densities from less than a microtesla to greater than ten tesla (field strengths from 0.8 to $8,000,000 \mathrm{~A} / \mathrm{m}$); vibrating sample, ac induction and cryogenic (SQUID) magnetometers for measurement of susceptibility and permeability over the temperature range from 4 K to room temperature; and superconducting and normal magnetic systems with fields to $9.5 \mathrm{MA} / \mathrm{m}$. None of these systems are now configured or calibrated for true standards work.

The Electricity Division of CBS has the expertise and some of the required apparatus to carry out magnetic field strength calibrations with the highest possible accuracies achievable, especially at low field levels, but there is no plan at this time to reinstate a calibration service.

NBS Contact: Robert E. Hebner, Jr. (301) 921-3121
Current transformers in the power frequency range are calibrated by the Electrosystems Division on a routine basis. Calibration of ac shunts at power and audio frequencies is performed on a special-test basis in the range of 1 to $100 \mathrm{~m} \Omega$.

Funding has been obtained to develop a capability to evaluate shunts and current transformers used to measure welding currents. This application requires the measurement of current pulses with amplitudes up to 100 kA and durations of tens to hundreds of milliseconds. Development of a bridge for calibrating shunts down to $0.1 \mathrm{~m} \Omega$ and up to frequencies of 100 kHz is progressing slowly with the present funding level.

Long range plans include support of dc current measurements from 5 to 2000 A as a step toward developing support for dc revenue metering in high voltage dc systems.

POWER AND ENERGY MEASUREMENT
NBS Contact: Robert E. Hebner, Jr. (301) 921-3121
NBS' present capabilities for power and energy calibration are restricted to power frequencies, 50 to 400 Hz , with a routine uncertainty of $\pm 0.05 \%$. Under special conditions, we are able to achieve uncertainties in the range ± 0.01 to $\pm 0.02 \%$. These capabilities are for unity and 0.5 power factor, but no measurements at zero power factor and no VAR's.

At the present time we meet most (but not all) of the calibration requirements of our clients. Present plans are to gradually upgrade this facility during the next 5 years.

The goal is to develop a largely automated facility having the following characteristics:

| Frequency $: 40 \mathrm{~Hz}$ to 10 kHz | Waveforms :sinusoidal and
 distorted |
| :--- | :--- | :--- |
| Voltage : 10 to 240 V | Quantities:power, energy, VAR,
 power factor, voltage,
 and current |
| Current : 10 mA to 10 A | Accuracy $:$$\pm 0.01 \%$ to $\pm 0.05 \%$
 routine, $\pm 50 \mathrm{ppm}$ special |

Power Factor: all, zero to unity, positive and negative

PHASE ANGLE MEASUREMENT
NBS Contact: Barry A. Bell (301) 921-2727
Phase angle calibration up to 5 kHz is presently provided on a trial basis as a special test. After experience is gained and documentation completed,
it is intended to offer this as a regular calibration service. R\&D is underway on the higher frequency standard that will permit the extension of this service to 50 kHz . This high frequency capability (scheduled to be available on a trial basis by early 1986) is clearly important to support the calibration of Automated Test Equipment (ATE).

The capabilities that we are working toward are:

- Frequency: 10 Hz to 50 kHz
- Source-type standard (2 channel)
- Both channels voltages, balanced or unbalanced; or one channel voltage, the other current
- Sinusoidal signals and those with moderate distortion
- Accuracy: ± 0.005 degree (best, at low frequencies, balanced signals), ± 0.02 degree (at high frequencies)

OTHER DC AND LF MEASUREMENT AREAS

FIELDS

NBS Contact: Robert E. Hebner, Jr. (301) 921-3121

Special measurement services for electric and magnetic fields at dc and power frequencies are available as a result of work funded by the U.S. Department of Energy. These services should be particularly helpful to organizations involved in environmental and health-related investigations. For the measurement of relatively low field strengths, the strategy has been to maintain NBS traceability in the measurement of voltage and current (from which field strengths are derived), and to provide guidance in the construction of the test systems used to calibrate field meters. This approach is summarized in IEEE Standard 644-1979 "IEEE Recommended Practices for the Measurement of Electric and Magnetic Fields from AC Power Lines."

D/A AND A/D CONVERTERS
NBS Contact: Barry A. Bell (301) 921-2727

A calibration facility is available at NBS for high resolution data converters (12 bits and more). Calibration for static parameters is offered as an existing service; calibration for dynamic parameters is performed on a special test basis. The facility can also be adapted for calibrating certain parameters of DVM's (e.g., their linearity) but additional development funds are required for NBS to establish a regularly offered service.

RESPONSE TO SECTION 2C
 RF AND MICROWAVE MEASUREMENT REQUIREMENTS

Section 2C of the NCSL Report contains a considerable amount of information concerning NBS' currently-offered services and our future plans. Accordingly, this section of this report does not attempt to duplicate that information. Rather, it elaborates on NBS' plans for the measurement requirements identified in the survey report and explains current constraints in more detail.

GENERAL RF AND MICROWAVE METROLOGY

NBS Contact: Cletus A. Hoer (303) 497-3705

The effort to develop and implement automated six-port measurement methods to the point that they can be used to provide NBS measurement services is nearing completion. New management for the Microwave Metrology Group is thus developing plans for the microwave metrology program for the next 5 years with a real opportunity to take up new work. In doing so, our chief sources of guidance are information from the NCSL Measurement Requirements Study, together with comments from our customers and sponsors and other interactions, for example information from the Workshop on Future Needs in Microwave Metrology that we organized at the 1983 IEEE-MTT Symposium in Boston. After some follow-up with the people who proposed new efforts, in order to set priorities, we will have an unusual opportunity to be responsive.

The tasks of immediate urgency are to complete the evaluation of uncertainty, provision for quality control, and the documentation of the 6-port systems and to bring them on line to replace obsolete calibration systems. We must also provide calibration services for attenuation at 1.25 MHz and for standards with 3.5 mm connectors. We need to complete the documentation of some of the older calibration systems that will remain in service.

Upon completion of these tasks, we will turn our attention to providing more complete calibration coverage of the frequency bands up to 100 GHz (especially filling the gap that presently exists between 40 and 55 GHz). The timing of requirements above 100 GHz remains nebulous, so our response to those may be given lower priority.

It is clear that calibration of microwave power is needed over a wider dynamic range and with greater accuracy that at present. We intend to respond to this need.

Finally, two general areas to which we will turn our attention are techniques for making measurements of microwave and millimeter-wave integrated circuits on-chip, and the calibration of automated test and measurement systems.

The dates for new services given under the plans and comments column are provided for guidance and are to be taken as our present best estimates of when services will become available. In some cases a service will be offered on an experimental basis at first, to test both the mechanics of providing it and customer response. Rough estimates of the cost of developing a service are provided for some services for which funding is uncertain to provide some feeling for the support required. Priorities can be shifted, or projects can be accelerated, if the need is great enough for other government agencies to provide additional funding.
POWER MEASUREMENTS
NBS Contact: Cletus A. Hoer (301) 497-3705
None .
Now provide service from
Current NBS Capability 1 to $10 \mathrm{~mW}, 10 \mathrm{MHz}$ to 18
$\mathrm{GHz}, \pm 0.5$ to 1%.
Service available from 8 to 40 GHz and 55 to 110 GHz ted frequencies. Frequency limited in WR15 WR10 because of narrowband sources.

$$
\text { Plans and Comments }
$$

Service can be developed for $\$ 700 \mathrm{~K}$.
Estimate service available end of
1987 for either 3-port couplers or
bolometer-coupler combinations at
power levels up to 200 W and fre-
quencies to 1 GHz .
Because of the high cost and very
limited need, we have no plans to
develop this service. However, high
power, 60 dB directional couplers
have been developed for 40 kW over
the frequency range 1 to 30 MHz with
uncertainties of $\pm 1 / 2$ to 1 dB . These
couplers are described in NBS Report
9795 , April 1971 .
Service at 10 mW from 10 MHz to 26.5 GHz available by end of 1985. Service below 10 mW will be developed by capability of measuring S-parameters of a 3-port coupler to be used as a power ratio device for power levels әчา גәло (MH I•0 о7 uмор) Mш OI моןəq frequency range 10 MHz to 26.5 GHz . Service available in WR19 (40 to 55 GHz) at 10 mW by end of 1985. Extension of dynamic range by evaluating 3 -port couplers having coupling ratios up to
approximately 50 dB above and below 10 mW .

ATTENUATION MEASUREMENT
NBS Contact: Cletus A. Hoer (303) 497-3705

> Current NBS Capability Now provide service from 0 to $50 \mathrm{~dB}, 0.1$ to 18 GHz with uncertainties of $\pm 0.03 \mathrm{~dB} / 10 \mathrm{~dB}$.

Plans and Comments 001 woxł Kz!!!qedes gp 0 O 0 o 0

dynamic range to 80 dB by end of
1986 if other agency funding of
$\$ 500 \mathrm{~K}$ is available.

to measure the nominal 6 dB change in
attenuation of a 2 -position vollage

ty will be of the order of $\pm 0.001 \mathrm{~dB}$.
If the project is completely successful,

Provide service from 0 to 50 dB , and continuous frequency coverage from 18 to 110 GHz with uncertainties of
± 0.005 to 0.1 dB . This will be done on one console based on 6-port techniques.

Now provide service from 0 to
$50 \mathrm{~dB}, 8$ to $40 \mathrm{GHz}, 55$ to 65 GHz , and 94 to 96 GHz with uncertainties of $\pm 0.05 \mathrm{~dB} / 10 \mathrm{~dB}$ below 65 GHz and $\pm 0.06 \mathrm{~dB} / 10 \mathrm{~dB}$ from 94 to 96 GHz . 0.5 dB .
(table continued)

IMPEDANCE/ADMITTANCE MEASUREMENT		
NBS Contact: Cletus A. Hoer (303) 497-3705		
8. Measurement of capacitance (1 to 1000 pF) from 1 kllz to 10 MHz , with uncertainties from ± 0.002 to to 0.5%.	Now provide service from 1 pF to $0.1 \mu \mathrm{~F}, 30 \mathrm{kHz}$ to 250 MHz . for two-terminal capacitors with nominal uncertainties of $\pm 0.1 \%$. Provide service for three-terminal capacitors from 0.01 to 1000 pF , at 100 kHz and 1 MHz with nominal uncertainties of $\pm 0.02 \%$.	No plans to provide 4-terminal calibration service, but Tech. Note 1024, "Evaluation of three-terminal and fourterminal pair capacitors at high frequencies," provides techniques to accomplish these measurements. No plans to measure dissipation factor at NBS/Boulder. See comments in Section 2B under capacitance measurements regarding plans for dissipation factor measurements at NBS/Gaithersburg.
9. Measurement of " Q " from 5 to $10,000,10 \mathrm{kHz}$ to 70 MHz with uncertainties of ± 2 to 5%.	NBS can measure capacitive Q-standards from 1 to 10,000 at 1 MHz with uncertainties of ± 2 to 20%. NBS can measure inductive Q-standards from 100 to 600 over the frequency range 50 kHz to 45 MHz with uncertainties from ± 1 to 20%.	No plans to extend capability beyond what we now provide.
10. Measurement of four-terminal resistance to calibrate LCR meters.	None .	Research project in progress to determine how to evaluate these instruments. Measurement techniques describing how to evaluate four-terminal measurement instruments using two-terminal standards will be published by end of 1983.
11. Measurement of VSWR (1 to 1.5), 23 to 110 GHz , with uncertainties of ± 0.002.	VSWR measured in terms of reflection coefficient. See item 7.	Capability will be provided by 6-port console described in item 7.

Research project in progress to determine how to evaluate these instruments. Measurement techniques describing how to evaluate four-terminal measurement instruments using two-terminal standards will be published by end of 1983.

Capability will be provided by 6 -port console described in item 7.
Plans and Comments

Requirement

(table continued)
VOLTAGE MEASUREMENT Normal

Current NBS Capability
Capability exists.
Capability exists except for
requested uncertainties which
range from $\pm 0.005 \%$ over the
frequency range 20 Hz to
$20 \mathrm{kHz}, \pm 0.01 \%$ over the fre-
quency range 20 to 50 kHz ,
and $\pm 0.05 \%$ over the frequency
range 50 kHz to 1 MHz .

NBS Contact: Cletus A. Hoer (303) 497-3705
 PHASE SHIFT MEASUREMENT

MODULATION MEASUREMENT
NBS Contact: Cletus A. Hoer (303) 497-3705
None
15. Modulation measurements to

Requirement

12. Measure voltage from 0.5 to
to $20 \mathrm{~V}, 1 \mathrm{kHz}$ to 100 MHz .

13. VOR measurements of phase angle from 0 to 360° at a frequency
of 9960 Hz to an accuracy of
$\pm 0.005^{\circ}$. from 0 to 360° at a frequency
of 9960 Hz to an accuracy of
$\pm 0.005^{\circ}$. from 0 to 360° at a frequency
of 9960 Hz to an accuracy of
$\pm 0.005^{\circ}$.
,

$$
\pm 0.005
$$

NBS Contact: Cletus A.

Capability exists.
from ± 0.002 to 0.025%.

- 8utpunj
calibrate HP 8901/11715A
equipment
to calibrate modulation analyzers if funded by other agencies. Cost
estimated in excess of $\$ 250 \mathrm{~K}$.
calibration service with uncertainties of $\pm 0.0023^{\circ}$. The ILS service has been taken over by Aerospace Guidance and
Metrology Center, Newark Air Force Station, Ohio.

(table continued)

NBS Contact: Cletus A. Hoer (303) 497-3705
Current NBS Capability
6. Measurement of phase noise from Capability exists
5 MHz to 300 GHz .
DIELECTRIC CONSTANT
NBS Contact: Charles K. S. Miller (303) 497-3131
17. Standard Reference Materials for None. dielectric constants at microwave frequencies.
FREQUENCY MEASUREMENT
NBS Contact: Roger Beehler (303) 497-3335
18. Frequency measurements from 75
to 110 GHz .
PULSE TRANSITION DURATION MEASUREMENT
NBS Contact: Robert A. Lawton (303) 497-3339

NBS is looking to the recently developed automated total-power radiometer coupled with two noise standards, one at ambient and the other at cryogenic temperatures, to provide enhanced frequency coverage for reference noise temperature measurements. The automated radiometer system offers the potential of providing measurements at any frequency within ranges covered by a series of "front-end" sections and is intended eventually to replace earlier total power radio-meters, and sum-and-difference radiometers with both hot and cold noise standards, and the still earlier manually switched radiometers having only high-temperature noise standards. The new system is suitable for evaluating the new generation of solid-state noise sources and is now operational at 30 and 60 MHz and the nominal $94-\mathrm{GHz}$ region. The range of 2 to 4 GHz is expected to be covered within about a year. With current levels of resources, NBS estimates that noise temperature measurement service based on the automated radiometer will be available over the range 500 MHz to 18 GHz in from seven to ten years. A service based on a total power radiometer is available in the range 55 to 65 GHz and we are currently seeking support from other government agencies to develop services with the automated radiometer in the nominal 20 , 30 , and 44 GHz regions. The requirements for noise measurements at frequencies below 500 MHz identified in the NMRC Report exceed our current plans to provide service in that we anticipate providing spot frequency coverage, rather than broadband coverage, in this region. The reason is that broadband isolators having the required low insertion loss are not available. Should this situation change, the automated radiometer concept could in principle then be extended to lower frequency ranges to provide broadband coverage

Plans and Comments
 pue 06－甘M ұuәsəлd әч7 uI •zHり $\ddagger 07$ 乙 WR－62 frequency ranges it is econom－ ically impractical to offer coax services．Coax connector adapter evaluation will be initiated in 1984； sliding shorts and loads for APC 3.5 need to be found．Current plans are ［ pue G86L ut zH9 807 ゅ ssวコppe 07 to 2 GHz in 1986．Other bands can only be addressed beyond this time frame．

$$
\begin{aligned}
& \text { Now provide } 30 \text { and } 60 \mathrm{MHz} \\
& \text { and } 3 \mathrm{frequencies} \mathrm{in} 2.6 \text { to } \\
& 3.95 \mathrm{GHz} \text { range. ENR and } \\
& \text { accuracy can be met. } \\
& \text { Limited connectors available } \\
& \text { in each frequency range; } \\
& \text { adapters from one size to } \\
& \text { another have not been com- } \\
& \text { pletely evaluated; APC } 3.5 \\
& \text { not addressed as yet. }
\end{aligned}
$$

（table continued） Noise temperature of solid－state 10 GH 5 to 20 dB ；accuracy ± 0.1 to $\pm 0.3 \mathrm{~dB}$ ； transmission lines，coaxial； connectors，type $\mathrm{N}, \mathrm{APC}-7$ ， APC－3．5．

Requirement

FIELD STRENGTH MEASUREMENT
NBS Contact：Charles K．S．Miller（303）497－3131
While the Report acknowledges the need for R
While the Report acknowledges the need for R\＆D to develop better emission and susceptibility testing methods for electromagnetic interference，the only requirements identified relate to more traditional antenna measurements for field strength of far fields．There are greater measurement challenges than these that need to be addressed，but standards laboratories traditionally are not involved with them．

NBS can respond to the requirements identified in the NMRC Report by means of measurement services in the＂special test＂category．At the same time，NBS is aware of other measurement needs in industry that are driven by ever－increasing EMI problems and that challenge the more traditional measurement approaches of the electromagnetic community．The NBS EMI program plans to develop measurement methods that are responsive to national and international specifications and regulations through the establishment of a metrology base to support reliable immunity and emission testing．Specifically，the program intends to address the requirements of the Federal Communications Commission（especially computer emissions）and the Food and Drug Administration．

$$
\cdot \mathrm{zH} \mathrm{H} \quad 0 \mathrm{~L}
$$

(table continued)
Plans and Comments

Requirement

Available as special test service. becoming available at the end of 1984.

POWER DENSITY MEASUREMENT

accuracy $\pm 3 \%$; frequency range 150
to 200 kHz ; TEM cell at 50 ohms.
NBS Contact: Charles K. S. Miller (303) 497-3131 Field strength of 100 to $600 \mu \mathrm{~A} / \mathrm{m}$;
 ional safety and health with respect to electromagnetic radiation. NBS expects power density measurements to become increasingly important as regulations are established and enforced by federal, state, and local governments. The NBS EMI program is developing the capability to respond to most of the identified requirements through measurement services in the "special test" category. These services are expected to start
The frequency range covered by plans in place for the NBS EMI program has an upper limit of 18 GHz. At
east one NMRC respondent requests service at 26.5 GHz ; it is unlikely that NBS will be able to meet this need
ervices

$$
\begin{aligned}
& \qquad \text { Plans and Comments } \\
& \text { Instrumentation being installed will } \\
& \text { extend range to } 18 \mathrm{GHz} \text { and power } \\
& \text { density levels greater than } 100 \mathrm{~mW} / \mathrm{cm}^{2} \\
& \text { with accuracy of better than } \pm 1 \mathrm{~dB} \text { by } \\
& \text { end of } 1984 \text {. Error evaluation will } \\
& \text { not be complete until end that time. }
\end{aligned}
$$ and even higher. and even higher

The frequency range covered by plans in place for the NBS EMI program has an upper limit of 18 GHz. At
east one NMRC respondent requests service at 26.5 GHz ; it is unlikely that NBS will be able to meet this need of its EMI program, NBS recognizes that measurement
frequency capability above
diation hazard monitor having
Current NBS Capability
Range: 0.1 to $10 \mathrm{~mW} / \mathrm{cm}^{2}$ to
Frequency range from 0.3 to 2 GHz .

Field strength to 40 dB above
$1 \mu \mathrm{~V} / \mathrm{m}$; accuracy $\pm 2 \mathrm{~dB}$; frequency range: 30 to 1000 MHz ; vertical
polarization on open-field range.
Requirement

 None.

RESPONSE TO SECTION 2D

ELECTRO-OPTICS MEASUREMENT REQUIREMENTS

The usefulness of the study is somewhat compromised by the small number of responses to the electro-optics portion of the survey. Dr. Richard Miller, Chairman of the Electro-Optics Subcommittee has indicated his plans for a program to reach the electro-optics community and provide additional input. When these additional data are available, the report should be very valuable to future planning for optical electronic metrology.

NBS recognizes that many of the needs in this technical area are classified or proprietary. In addition to the information presented in this NCSL Report, NBS does receive through other channels information that is used in establishing priorities. An important segment of the electro-optics community is represented by the Council on Optical Radiation Measurements (CORM). NBS works very closely with CORM, and CORM periodically publishes survey reports on measurement requirements. In Section 2D of the NCSL Report, the most recent CORM is summarized.
LASER AND OPTICAL FIBER MEASUREMENT
NBS Contact: Aaron A. Sanders (303) 497-5341 A numbe assurance programs have been developed for the more common types of lasers and other special calibrations can be
accomplished for the common measurements not advertised in the NBS Special Publication 250 Appendix. Current
calibration capability for lasers at 10.6 micrometers is about 500 watts. A transfer standard is being charac-
terized and documented that will be available during calendar year 1984 for use to about 5 kilowatts (this
transfer standard could also be characterized for 1.06 micrometer lasers). The BB calorimeter developed and
constructed by NBS, which provides cw measurements to 200 kilowatts, was transferred to the Air Force some few
years ago and is currently maintained by the Aerospace Guidance and Metrology Center, Newark Air Force Station,
Ohio. They have agreed to provide measurements with this system. We are currently working on an absolute
standard for use with lasers for the spectral interval of 400 nm to l5 micrometers working to pulse energy
levels of about lf picojoules. Measurements from this standard will be available during l985. We currently
have plans for developing laser beam profile standards andmeasurement services, but this program is contingent
upon obtaining additional funding. A research program is presently being pursued to develop detectors and
the electronic measurement apparatus for laser pulse measurements of about one picosecond. The implementation
of measurement services around this standard is several years away. This time schedule could be compressed if
additional funding became available.
Current NBS Capability

Available

Requirement

1. Attenuation of optical fibers in the range of 0 to 50 dB with 0.1 dB accuracy.

Laser power for welding; 0 to 400 watts at $1.06 \mu \mathrm{~m}(5 \%)$ and 2 to 5 kW (5 to 10\%) Wedged beamsplitter (14 dB at
4. Ultra low level laser power

Available
Limited $\pm 1 \%$ and 59 dB at $\pm 10 \%$). 2.

Plans and Comments

Transfer standard available during 1984 at 5% total uncertainty Devices supplied to U.S. Air Force and Bureau of Radiological Health. Documentation available for customer to purchase from a commercial supplier. Transfer standards available for 1 femtojoule. Units supplied to Air Force and Navy for 0.1 femtojoule/cm ${ }^{2}$
(10 to 0.1 femtojoules at
(table continued)

This section of the NCSL Report was structured to compliment and supplement the work of other groups addressing measurement needs in radiometry. Of particular note is the prior work of the Council on Optical Radiation Measurements (CORM). In preparing the NCSL Report, however, particular emphasis has been given to the needs of the aerospace community. This segment of the electro-optics community has not been completely represented in CORM. The NCSL Report thus forms a valuable addition to the information base utilized in planning future NBS activities in this area.

The measurement needs identified by the respondents to the NCSL survey and the NBS comments are presented in summary form in the following table. Because of the small number of responses to the NCSL survey, only part of the NBS program in radiometry and spectrophotometry is presented here.
RADIOMETRY
NBS Contact: Donald McSparron (301) 921-3613
Plans and Comments
Proposals to obtain DOD funding to upgrade the present capabilities are being actively pursued; progress is dependent on obtaining such funding.
> uncertainty goal of $0.01{ }^{\circ} \mathrm{C}$ is being developed.
NBS facilities have been inactive for 8 years due to lack of demand, calibration services are available from Newark Air Force Station. In accord with the recent redefinition of the photometric units, NBS is implementing a radiometric basis for the photometric scales. Reduced uncertainties are expected to be available in about 1 year. Active research programs are
attempting to extend the spectral
and flux ranges available.
Current NBS Capability
NBS now provides special test
services in the range 200 to
400 K with an uncertainty of
5%.
NBS now provides special test services in the range -50 to $100{ }^{\circ} \mathrm{C}$ with an uncertainty of $0.05{ }^{\circ} \mathrm{C}$ (using a radiometer on loan from DOD)

Inactive

 NBS currently provides lamp standards in the range 2,000 to $3,000 \mathrm{~K}$ with an uncertainty with respect to NBS of about 10 K .NBS now provides absolute
spectral response calibra-
tion in the range 1 to 400
$\mu \mathrm{~W} / \mathrm{cm}^{2}, 250-500-960 \mathrm{~nm}$ with
corresponding uncertainties
of $5 \%-1 \%-1.5 \%$.
Requirement

1. Calibration of cryogenic black-
500 K with an uncertainty of 5%. bodies in the range 100 to
2. Calibration of an ambient temperature blackbody in the range of 0 to $99{ }^{\circ} \mathrm{C}$ with an range of 0 to $99^{\circ} \mathrm{C}$ with an
uncertainty of $0.02{ }^{\circ} \mathrm{C}$. 3. Calibration of radiant and spectral temperature of blackbodies in the range 232 to $1,000{ }^{\circ} \mathrm{C}$ with an uncertainty of $0.5^{\circ} \mathrm{C}$.
3. Calibration of incandescent lamps for luminous intensity, tristimulus coordinates, and color temperature in the range 2,000 to $3,000 \mathrm{~K}$ with an uncertainty of 25 K .
4. Calibration of UV radiometers in the range 10 to $400 \mu \mathrm{~W} / \mathrm{cm}^{2}$, with uncertainties of 1 to 5%. 6. Seminar on photometry and radiometry fundamentals.
\qquad

Requirement

 500 K with an uncertainty of tainty of 0.5 5. Calibration of UV(table continued)
RADIOMETRY
NBS Contact: Donald McSparron (301) 921-3613
Current NBS Capability
NBS provides these calibra-
tions on a routine basis with deuterium lamp uncertainties of 6% and quartz halogen lamp uncertainties un 0乌て 7e \%L'Z woxf 8uṭ8uex to 1.2% at 600 mm and 1.2% at 1600 nm .
NBS presently provides calibrations in the range 250 to 960 nm with uncertainties ranging from 5% to 1% (see item 5 above).

[^2] sensitivity in the range 200 to 400 nm with an uncertainty of 5%.
SPECTROPHOTOMETRY
NBS Contact: Jack J. Hsia (301) 921-2791
Current NBS Capability
Plans and Comments

A MAP program is being developed to cover the transmittance range 0.1% to 0.03%. This MAP program will be 0.03%. This MAP program will be
available in 1985 .
Measurement capability is presently
being developed for the spectral range
2 to 25 fm with accuracies of 1 to 3%
of measured value. Progress is
dependent on continued availability of
funding. to 90% with uncertainties of 0.5% to
Standard Reference Material 930 is a set of neutral density filters with transmittances of $10 \%, 20 \%$, and 30% with an uncertainty of 0.5\%.
Requirement
None
None。
lal

TEMPERATURE MEASUREMENT
RESPONSE TO SECTION 2E
TEMPERATURE, PRESSURE, AND RELATED MEASUREMENT SERVICES
The major area for development in thermometry is a Measurement Assurance Program (MAP). The NBS presently
has a MAP in the SPRT and Industrial PRT's, which cover the temperature range from 14 to 900 K . We wish to
establish a MAP for the range 0.5 to 30 K (EPT-76) and such a MAP has been started by the calibration of sensors
for several laboratories. Its maintenance will depend strongly on MAP funding for 1985 . The region above 904 K
is probably not ready for a MAP yet: issues are being raised as to whether thermometry would be best conducted
using new PRT's, thermocouples or even an optical fiber thermometer. Until these issues are resolved (1 to 2
years) a MAP is probably not advisable.
NBS has completed an evaluation of the triple point of Argon and is presently examining Oxygen. NBS also plans to evaluate the triple points of Neon, Nitrogen, and Deuterium. NBS is providing design information to commercial manufacturers and will conduct certifications of commercial units.
The Succinonitrile SRM is in production and should be available by late 1984. Indium SRM production will then follow.

Current NBS Capability

Traceability exists with wire resistors (platinum and germanium) and superconducting fixed points (SRMs 767A and 768).

Requirement

1. $2<T<273 \mathrm{~K}$; Cryogenic Range -
are required. Standards require $\pm 1 \mathrm{mK}$ reproducibility or better and will be used for calibration of thermometers.

$$
\begin{aligned}
& \text { 2. } 272<\mathrm{T}<473 \mathrm{~K} \text {; Biological } \\
& \text { (Medical) Range require fixed } \\
& \text { point standards such as freezing } \\
& \text { point of gallium (} 29.77{ }^{\circ} \mathrm{C} \text {), } \\
& \text { rubidium }\left(37{ }^{\circ} \mathrm{C}\right) \text {, indium } \\
& \text { (} \left.156{ }^{\circ} \mathrm{C}\right) \text {, succinonitrile (Triple } \\
& \text { Point at } \left.58{ }^{\circ} \mathrm{C}\right) \text {. Standards } \\
& \text { require } \pm 1 \mathrm{mK} \text { reproducibility or } \\
& \text { better and will be used for } \\
& \text { calibration of thermometers. }
\end{aligned}
$$

\sim

service in 1985.

Development work for higher accuracy TC standards is being done.
 will serve as evaluator of stability and reproducibility of commercial units.

NBS efforts in this area may be curtailed in the future due to reduction of MAP funding. An extended program for GRT, $\mathrm{Rh}-\mathrm{Fe}$, and TC's will require additional manpower.

Resistance Thermometer MAPs are already available for PRT's. The procedure consists of sending PRT's from the NBS to MAP participants who measured the PRT's several times at several
fixed points or other standards. Data is then analyzed by NBS.
(table continued)
Requirement
3. $273<\mathrm{T}<1200 \mathrm{~K}$; Covered by
Thermocouple calibration services up to $2000{ }^{\circ} \mathrm{C}$ are available with accuracies better than $3^{\circ} \mathrm{C}$.
NBS is conducting studies of them.

them.

platinum resistor thermometers. Freezing point standards exist for primary points. Advantageous to develop secondary standards in order to cover smaller temperature intervals between fixed points and to serve as checks on calibration. Standards require $\pm 1 \mathrm{mK}$
reproducibility or better and will be used for calibration of thermometers.
4. $\mathrm{T}>1200 \mathrm{~K}$; Higher accuracies in the calibrations and (Steel industry for thermocouples).
High Temperature PRT's
6. MAP; Reinitiate program for PRT's and extend to TC's as well as GRT's. Eventually even rhodium-iron thermom-
eters should be added.
A new book emphasizing measurements
in practical situations is in progress.
Planned completion 1984 .
A Special Publication is planned for
the EPT- 76 scale which will cover tem-
perature measurements down to 0.5 K .
Planned completion 1984.
NBS will take the experience gained on
the prototype system and apply it to
other calibration services - a big job
requiring new facilities. Plans are as
follows:
a. Automation of RhFe resistance and

 software will be completed in 1984. b. Automation of capsure PRT (13 to 373 K). This project requires new apparatus and could be completed by late 1985 if resources are available. c. Semi-automation of SPRT's is anticipated in 1985.
d. Automation of thermocouple calibration service was completed in 1983. e. Automation of liquid-in-glass thermometry not feasible.

8uṭettutu woxf SgN S7!q!̣oxd 7Soد puey məu dofəләр pue xeuṭшas 2ч7 u!

production project at this time.
> -equaumsop วұวtduos sey S\&N -ut-p!nb!̣ !s, L甘d : uo uoṭ glass; thermocouples; gas thermometry; and medical ач7 8ич̣лалоว Кхұәшошхวч7 \&I moxf a8uex axnfexaduat to 1200 K .

> The prototype automation project for temperature measurement from 0.5 to 30 K has gone extremely well.
 Thermometry Seminars per year.
7. Documentation
PRESSURE MEASUREMENT
NBS Contact: Charles Tilford (301) 921-2121
The NCSL study indicates two areas in pressure measurements in need of improvement: (1) documentation
and (2) improved accuracy in calibrations offered. The first area includes improvement of the calibration reports
and development of NBS Special Publications which describe the service in great detail. Improved calibration
reports are expected in 1984 and the NBS Special Publications will be completed in 1985 and 1986 .
Plans and Comments
Calibration of 3 piston gages with
high precision manometer has
been completed.
Results will be transferred to the
calibration service at the 10 ppm
accuracy level in 1984 .
Document describing improved calibra-
tion service will be completed in 1984
NBS plans are: Develop primary piston gage standard by 1984 and offer
calibration service at 30 ppm accuracy level in 1985.
Documentation will be completed in 1985.
No improvement planned here. NBS now provides accuracies exceeding NCSL needs. The statement that "NBS can handle up to 1000 psi only at 0.01% level" is in error. Current NBS Capability
Service available at
50 ppm accuracy level.
No calibration service
offered.
Service available at
75 ppm accuracy level.
2. Calibration of gas piston

gages for $P>600 \mathrm{psi}$$\quad$| 3. Calibration of oil piston |
| :--- |
| gages for pressures from |
| 4000 to 40,000 psi. |

Requirement

1. Calibration of gas piston
gages for P < 600 psi.
ppi accuracy
\dot{m}
VACUUM AND LEAK MEASUREMENT
NBS Contact: Charles R. Tilford (301) 921-2121

Calibration of any device
below 10^{-6} Torr.
m
standards in pressure below 10^{-6}
Plans and Comments
Research program initiated in 1984
(1.5 MY). Expect development of
primary leak standard and calibration
service in 1987 .
Current NBS Capability
$\stackrel{\dot{0}}{\stackrel{\circ}{z}}$
Requirement

(table continued)
LIQUID AND GAS FLOW MEASUREMENT
NBS Contact: James R. Whetstone (301) 921-3681
> the survey are only a small served by the NBS wirn for improvement of the currently offered services meet their future needs, nex for for a capability in steam flow measurement. We have no current plans for development of a service in this area. Judging from the Report, the members of the requirements committee and the respondents primarily deal with single phase fluids. In our discussions with industry there is a major need for flow measurement capability in the area of multiphase flows, solid-fluid flows in particular. There have been extensive reports by the American Institute of Physics and American Society of Mechanical Engineers citing the need for accurate measurements and metering of solid-fluid flows. We are now initiating projects to attack the problems of making accurate solid-fluid flow measurements.

Presently the Center for Chemical Engineering plans to maintain the currently offered calibration services The current emphasis is placed upon upgrading the uncertainty statements for each

A substantial fraction of the effort in the Flow When development of this exper11 be offered in this area
Plans and Comments

Similar intercomparisons for gas flow will be initiated when a sufficient number of participants is found. continue.

NBS Contact: James R. Whetstone (301) 921-3681

K7tTTqEdej SgN 7uəxanว

Requirement Laboratory intercomparisons for flow measurements have been arranged by NBS,
service is not available
Documentation is available concerning the physical properties of gases vital
to flowmetering.
4. Gas flow for rates of 1 to 50,000 SCIM at $\pm 0.1 \%$ i.v.
5. Steam flow
(table continued)
3. Liquid flow accuracy of
0.05% at rates of up to
110 GPM .
Requirement
3. Liquid flow accuracy of
0.05% at rates of up to
110 GPM .

Plans and Comments
Current plans and efforts are aimed
at upgrading the facility using new
methods for all parameter measure-
ments that are more directly tied to
the base units so that facilities can
be automated. In doing so the ac-
curacy of the facilities may approach
0.05%. The primary objectives are to
decrease the turnaround time and
cost of the calibration services and
improved ties to the base units of
measurement.
Current plans are aimed at improving
the accuracy to $\pm 0.1 \%$ i.v.

There are currently no plans to develop in-house facility for steam flows.

Present gas flow accuracy is $\pm 0.2 \%$ i.v.

None.
Current NBS Capability
Present liquid flow accuracy
is 0.1%. Tone

The NCSL Report indicates the need for a much wider range of SRMs including both a wider range of temperatures and of thermal conductivities. Within the funds available, NBS is attacking the highest priority needs.

NBS' Center for Chemical Engineering (CCE) provides measurement services of interest to the chemical process industries. The small but continuing effort of CCE is directed towards satisfying needs of the kind identified by the NCSL Report. The most critical needs of industry at present are:
a) A low conductivity solid SRM with a range of conductivity comparable to geologic, plastic, composite, or agggregate materials.
b) A low conductivity insulation SRM for use above ambient temperatures.

The high cost of production may prohibit the preparation of the low conductivity solid but work has started on the insulation material. A glass-fiber board (SRM 1450) is available for use at ambient temperatures.

ELECTROLYTIC CONDUCTIVITY
NBS Contact: William F. Koch (301) 921-2883
We fully agree with the Report that electrolytic conductivity is an area in which there are real needs for high-accuracy standards and traceability to NBS over the full range of 10^{-6} to 1 siemens $/ \mathrm{cm}$. These measurements are important in the pharmaceutical and power industries as well as for oceanographic studies, environmental issues (acid rain, water quality, etc.), and fundamental studies in the theory of electrolytes. These measurements have implications in health related areas, such as the effect of electric fields on living cells and tissue.

NBS is currently funding a project to study the feasibility of providing aqueous conductance standards as SRMs. This is essentially a start-up effort to explore needs and capabilities, after years of inactivity in this field of research at NBS. The needs of the scientific and industrial community will best be met through NBS participation and research, and through the issuance of a set of SRMs for electrolytic conductance.

RESPONSE TO SECTION 2F PHYSICAL/MECHANICAL MEASUREMENT REQUIREMENTS

The material included in this section of NBS' Response is supplemental to that already included in the NCSL Report.

SHOCK MEASUREMENT

NBS Contact: Myroslav R. Serbyn (301) 921-3607
The NCSL Report confirms our conclusion that there is a need for a shock calibration service to fill the void left when the former NBS shock calibration service was terminated in 1975. We are in the process of reestablishing the shock calibration facility. Our shock-test machine has been factory overhauled during the past year and space for its installation has been obtained. It is expected that it will be installed and operating before the end of this year. Initially the service provided will be on a comparison basis, but if funds permit, this will ultimately be upgraded to an absolute service.

Requirement

Calibration of shock accelerometers using comparison methods to $30,000 \mathrm{~g}$'s with an certainty of 1% to 5% and to $10,000 \mathrm{~g}$'s with an uncertainty of 5% to 10%.

Current NBS Capability
None

Plans and Comments

Calibration services for shock accelerometers, using comparison methods, from 50 to 3000 g 's with an uncertainty of 5% is expected to be available in one year.

HUMIDITY (HYGROMETRY) STANDARDS
NBS Contact: Saburo Hasegawa (301) 921-2794
No new requirements were identified, but one respondent requested that existing services be continued. Our present services for humidity measurement devices are being automated to improve turnaround time.

PARTICLE SIZE STANDARDS
NBS Contact: Lee J. Kieffer (301) 921-2536
The NCSL Report confirms our conclusions that there is a need for particle-size Standard Reference Materials. The NBS Office of Standard Reference Materials has two new particle SRMs ($0.3-\mu \mathrm{m}$ and $0.9-\mu \mathrm{m}$ spheres) that are available and will soon start work on $3-\mu \mathrm{m}$ and $10-\mu \mathrm{m}$ spheres.

Requirement
Spherical particle SRMs having 0.5 to $1.0 \mu \mathrm{~m}$ diameters with uncertainty of 5%.

Current NBS Capability
SRMs now available for spherical particles of nominal diameter of 0.3 and $0.9 \mu \mathrm{~m}$ with uncertainty of 1%.

Plans and Comments

Plans are to prepare a series of polystyrene spheres having diameters of $0.1,0.3,0.9,3,10$, and $30 \mu \mathrm{~m}$.

LIQUID DENSITY (HYDROMETRY) MEASUREMENTS

NBS Contact: James R. Whetstone (301) 921-3681
No new requirements were identified, but one respondent requested that existing services be continued. NBS plans to maintain the currently offered calibration services for hydrometers. To support new technology in the measurement of liquid density, Standard Reference Materials are planned. These will provide a direct tie to the unit of density as embodied in the single-crystal silicon density standards maintained by NBS.

DIMENSIONAL MEASUREMENT
NBS Contact: James R. Shaver (301) 921-2983
Our goal is to structure the Dimensional Metrology Program to handle the broad range of industrial needs, both now and in the long term. Specifically, we plan to maintain calibration services for manual artifacts such as gage blocks, spheres, and cylindrical standards. We also plan to maintain our support to the gaging community through the calibration of thread gages, plug gages, etc.

Our long term plan is to gradually reduce the number of such calibrations, allowing them to be done by secondary laboratories. Our current priority with respect to coordinate measuring machines is towards the adoption of the B89.1.12 Interim Standard as a National Standard, thus providing a traceability chain to NBS through the use of laser wavelengths or simple calibrated artifact standards such as step gages. In this way we seek to avoid calibrating large numbers of large, heavy, difficult to maneuver gages such as ball and hole plates. We intend to continue to offer one-of-a-kind special tests for these artifact standards should they be required by a particular organization.

The major priority of our program is to develop the new technology which we believe will be necessary for metrology in the factory of the future. That is, metrology techniques that control the dimensions of the part during the time it is being manufactured. We call this approach "Deterministic Metrology", and the major thrust of the program is the characterization of machine tools, tooling, thermal and other errors that lead to incorrect parts, and sensors for monitoring such errors. This approach involves ensuring that quality assurance is built into the manufacturing process rather than focussed on inspection after the part is manufactured.

The only specific comment in the NCSL Report that dealt with Dimensional Metrology concerned coordinate measuring machines. We do have an extensive program in coordinate measuring machines, and we will continue to support the development of this technology and the dissemination of information to users. Through the Office of Standard Reference Materials we have made available a socketed-ball-bar set (SRM 2083) which can be used to determine the performance of a coordinate measuring machine in accordance with ASME Standard B89.1.12. We will also continue to develop the software supplied with such machines, including the computational algorithms for acquiring metrology information. We believe in the long run that the standardization of such algorithms will lead to more accurate measurements.

HARDNESS STANDARDS
NBS Contact: David Lashmore (301) 921-2958
NBS has conducted a research project on the development of diamond pyramid hardness standards and now currently offers two SRMs through the Office of Standard Reference Materials. These are in the nominal ranges of 125 KHM (SRM 1894) and 550 KHM (SRM 1895) and will be certified both for Vickers and Knoop hardness at three commonly used loads of 25,50 and 100 gf . The accuracy of the SRMs are certified at $\pm 5 \%$ and information is supplied to the purchaser to allow use at other loads.

Presently research is underway to develop additional diamond pyramid hardness standards at ranges of $60 \mathrm{KHM}, 800 \mathrm{KHM}$, and 1200 KHM . All of these standards have had all of the individual components which are involved with their certification calibrated against NBS fundamental standards of mass and length. Their surface finish is standardized and the measurements carried out in accordance with the appropriate ASTM recommended practice.

The need of industry for uniform diamond pyramid hardness standards has been widely known and documented. However, it remains unclear the extent to which industry requires NBS certified Rockwell standards. If Rockwell standards were necessary, electroforming techniques similar to those currently used with the diamond hardness SRMs could be used to fabricate the Rockwell standards, however, cast alloys may be more economical and serve just as well. This processing technology results in an extremely uniform material.

AUTOCOLLIMATOR MEASUREMENT

NBS Contact: William Gallagher (301) 921-2216
One respondent requested the calibration of an autocollimator with 10 minute nominal range and 0.1 sec and of arc accuracy. While turnaround times for this service are longer than we would like, this service is readily available from NBS.

REQUIREMENT:

The NCSL national measurements requirements survey states: "One of the requirements common to most of the data packages and common to most of the respondent laboratories is the need for educational seminars and workshops along with technical information. There is a continuing need for these extremely important services in order to maintain well qualified and knowledgeable personnel in our laboratories. There is no more authoritative source for personnel working with primary standards to obtain this type of training and information than through the NBS."

NBS SEMINARS AND WORKSHOPS

SEMINAR ON DIGITAL METHODS IN WAVEFORM METROLOGY
October, 1983 at NBS Gaithersburg
Contact: Barry A. Bell (301) 921-2727
This two-day seminar on Digital Methods in Waveform Metrology incorporated a program of lectures and laboratory demonstrations by NBS staff and discussion sessions. The seminar was intended to familiarize technicians, engineers, and scientists with the fundamental principles relating to precision waveform metrology in the dc-to- 10 MHz regime, and to acquaint the attendees with the specific metrology program being carried out at NBS. The program was divided into presentations on precision waveform synthesis (digital waveform synthesis techniques, phase angle standards and calibration methods) ; precision waveform sampling (characterization of waveform recorders, dual-channel sampling systems); data converter characterization
(static/dynamic data converter testing, settling-time measurements); and instrumentation metrology (automatic thermal voltage converter calibrations, conductance measurements of gallium arsenide switches, automatic test equipment performance measurements and standards, conducted EMI effects on test equipment). Future similar seminars are planned.

WORKSHOP ON LASER BEAM PROFILE MEASUREMENTS
March 20, 1984 at NBS Boulder
Contact: Eric G. Johnson (303) 497-3234
This one day workshop will be held to identify problems in laser beam profile measurements, to discuss what NBS can do to help solve these problems, and the decide on the future role of NBS.

PRECISION THERMOMETRY SEMINAR
March 19-23 and October 15-19, 1984 at NBS Gaithersburg
Contact: Robert J. Soulen (301) 921-3316
This seminar will consist of integrated instruction in Platinum Resistance Thermometry, Liquid-in-Glass Thermometry, Thermocouple Thermometry, and Thermistor Thermometry to be given over a five day period. Material to be covered includes the International Practical Temperature Scale of 1968; its use in the laboratory; thermometers and instrumentation, including automatic
data acquisition; the treatment of calibration data; and innovations in thermometry. Time will be split between lecture sessions and hands-on measurements in the laboratory. The seminar is especially intended for calibration laboratory personnel and others who wish to undertake precision temperature measurements.

SEMINAR ON ELECTRICAL MEASUREMENT ASSURANCE PROGRAMS
March 26-30, 1984 in Dallas
Contact: Arthur 0. McCoubrey (301) 921-3301

This five-day intensive seminar on measurement quality assurance provides in-depth training for those involved in dc and low frequency electrical measurements. Participants will receive instruction on how to establish and maintain rigorous quality control programs in their own laboratories to ensure the accuracy of electrical measurements. The primary emphasis will be on quality control for dc voltage metrology; the techniques used are readily applicable to other electrical measurement areas.

SEMINAR ON ELECTROMAGNETIC NOISE MEASUREMENT
April 30-May 4, 1984 at NBS Boulder
Contact: Ramon C. Baird (303) 497-3301
This seminar is intended for practicing noise metrologists and technical managers responsible for antenna and communication systems where accurate noise measurements are important. Sessions will address the accurate measurement of noise power, amplifier noise, and antenna system noise such as noise equivalent flux and G/T. Practical and theoretical aspects of precision noise measurement will be presented.

CALIBRATION AND USE OF CONTROLIED-CLEARANCE PISTON GAGES
April 2-6, 1984 at NBS Gaithersburg
Contact: Joanne Packard (301) 921-2121

This course will cover the theoretical and practical aspects of the calibration and use of controlled-clearance piston gages. Particular emphasis will be placed on the 100,000 psi Harwood gage. It will include lecture seminars, laboratory demonstrations, and hands-on experience. Emphasis will be placed on the acquisition and analysis of data required for the characterization of the gage as a primary standard. Attendance will be limited and participants will be split into smaller groups to facilitate use of the equipment and opportunities for individual questions.

The agenda will include:

> Theory of controlled-clearance gas
> Acquisition of fall-rate data
> Crossfloating to determine effect of jacket pressure on area
> Analysis of laboratory data
> Error estimation

SEMINAR ON FREQUENCY MEASUREMENTS AND CALIBRATION April, 1984 at NBS Boulder
Contact: Mike Lombardi (303) 497-3212
This seminar is intended for engineers and standards lab technicians involved in frequency calibrations. The course will be taught at a practical level to satisfy those new to the field as well as more experienced users. Methods taught will use commercially-available equipment. Topics to be covered:

Crystal Oscillator Calibration Applications of Frequency Counters How to Choose a Frequency Calibration Care and Use of Frequency Sources Using Loran-C and WWBV for Frequency Calibrations
Time and Frequency Measurement Assurance Services at NBS Organization of Time \& Frequency in the U.S. NBS, USNO, and Other Publications

SEMINAR ON QUALITY ASSURANCE OF CHEMICAL MEASUREMENTS
May 2-3 and 9-10, 1984 at NBS Gaithersburg
Contact: John K. Taylor (301) 921-3497
This two-day seminar is concerned with techniques to improve the precision and accuracy of analytical measurements such as those needed in the compositional analysis of materials, process control, and regulatory enforcement. It is designed for supervisors of analytical laboratories, experienced analytical chemists, and those responsible for the development andior supervision of laboratory quality control programs. Topics discussed will include: general aspects of quality assurance; the role of Standard Reference Materials in quality assurance; statistical considerations used in the evaluation of data quality; good laboratory practices for precise and accurate chemical measurements.

SEMINAR ON THE CALIBRATION AND USE OF PISTON GAGES
May 17-18 and November 15-16, 1984 at NBS Gaithersburg
Contact: Bernard E. Welch (301) 921-2121
This seminar is held to help industrial and other users attain the highest possible accuracy in pressure measurements with piston gages. The seminar is directed at engineers and senior technicians. The two-day seminar presents information on the theory of piston gages, elastic distortion, design and types, calibration of controlled clearance piston gages, calibration by cross-float, error analysis, computer programs, demonstration of cross-float, hydrostatic weighing and transducer calibrations.

SEMINAR ON FREQUENCY STANDARDS AND CLOCKS
August, 1984 at NBS Boulder
Contact: Mike Lombardi (303) 497-3212
This seminar is intended for program managers, planners, and systems engineers. Topics to be covered:

> A History of Time Scales
> National and International Structure of Time \& Frequency Concepts, Definitions, and Measures of Short-Term Frequency Stability
> Techniques for Measuring Short-Term Frequency Stability and Noise in Oscillators
> Review of Performance of Commercial Frequency Standards Limitations of Present-Day Atomic Frequency Standards Possible Advances in Future Clocks and Frequency Standards The Process of Timekeeping (Clocks Modeling)
> Time Coordination: Methods for Comparison of Time Scales Propagation Effects on Radio Transmissions
> Optical Techniques and Propagation Effects

SYMPOSIUM ON OPTICAL FIBER MEASUREMENTS
October 2-3, 1984 at NBS Boulder
Contact: Douglas L. Franzen (303) 497-3346
This symposium will provide a forum for reporting the results of current research and an opportunity for discussion that can lead to further progress on experimental or analytical aspects of the characterization of optical fibers and fiber optics systems, including attenuation, bandwidth/distortion, dispersion, index profile, cut-off wavelength, mode diameter/core geometry, fiber device (e.g., joint, coupler, multiplexer, etc.) evaluation, physical measurements, link parameters (e.g., concatenation), polarization characteristics, system performance, field measurements, and standards.

WORKSHOP ON MEASUREMENT OF GAGE BLOCKS
Held every few years at NBS Gaithersburg
Contact: Theodore D. Doiron (301) 921-2216
There are no current regularly scheduled training programs in gage block metrology, however every few years on customer demand a one-week workshop is offered. Those interested in participating in such a workshop should contact the Dimensional Metrology Group.

LINEWIDTH TRAINING SEMINAR
This seminar has been held about twice a year at various locations Contact: Diana Nyyssonen (301) 921-3786

This seminar is primarily intended to transfer NBS linewidth measurement technology to users in industry. Participants receive instruction in the basic workings of the optical microscope and the NBS-recommended linewidth measurement procedures.

Lectures, discussion, and equipment demonstrations cover state-of-the-art theory of optical measurement equipment and edge detection for linewidths in the $0.5-$ to 10 -micrometer range. Specifically treated are procedures for setting up and calibrating equipment and analysis of calibration data with emphasis on establishment of precision and uncertainty. Lectures and discussion also include problems associated with linewidth measurements made with the scanning electron microscope (SEM) and other electron-beam systems.

NBS/ASTM SYMPOSIUM ON RADIATION THERMOMETRY
May 8, 1984 at NBS Gaithersburg
Contact: Kenneth G. Kreider (301) 921-3281
This symposium is sponsored by NBS and ASTM Committee E20, Temperature Measurement. Technical papers will be presented on principles of measurement, methods of calibration, industrial applications, and case studies and recent research developments, including optical fiber thermometry and gas temperature measurements in combustion systems.

ACKNOWLEDGMENT

The editors would like to thank the NBS staff members who contributed to this document.
4. TITLE AND SUBTITLE National Bureau of Standards Response to the 1982 National Measurement Requirements Survey of the National Measurement Requirements Committee, National Conference of Standards Laboratories.
NBS Response to the 1982 NCSL National Measurement Requirements Survey.
5. AUTHOR(S)
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
7. Contract Grant No.
8. Type of Report \& Period Covered
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)
10. SUPPLEMENTARY NOTES
C. Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)
This response of the National Bureau of Standards (NBS) to the 1982 National Measurement Requirements Survey Report published by the NCSL's National Measurement Requirements Committee in May 1983 contains detailed information on the measurement services presently available from NBS and our future plans for new and expanded services. The information contained in the Survey Report is extremely useful to NBS in evaluating the effectiveness of ongoing programs and for planning future programs. The Report is particularly important to NBS because of the large number of organizations that have responded and because of the detailed technical requirements identified in the report.
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons) Calibrations, NBS measurement services, standard reference materials
13. AVAILABILITYUnlimited
x
For Official Distribution. Do Not Release to NTIS
[$]$ Order\square Order From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF PRINTED PAGES

45
15. Price

[^0]: 3. 1 volt MAP with an uncertainty time must be reduced to four weeks.
[^1]: While ratio measurements are often difficult, ratios are, in principle,
 self-realizable by using bootstrap techniques. Thus, NBS has no plans
 in the near future. However, such mea surements are the keystone for resistanc and voltage scaling, and future Voltage MAP work will require their improvement squəwวanseəu oṭfex uo sxeuṭwวs əanłng will be considered.
 Σ

[^2]: Calibration of detector spectral

