

Economizer Algorithms for Energy Management and Control Systems

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Building Technology Building Equipment Division Washington, DC 20234

February 1984

Sponsored by: Office of Building and Community Systems U.S. Department of Energy

- J.S. Navy Civil Engineering Laboratory J.S. Department of Defense

QC 100 .U56 34-2332 1934

ECONOMIZER ALGORITHMS FOR ENERGY MANAGEMENT AND CONTROL SYSTEMS

HATICHAL EVEN J OF STALL

Ref QC 100

. 1156

1984

7.4-28-32

Cheol Park George E. Kelly James Y. Kao

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Center for Building Technology Building Equipment Division Washington, DC 20234

February 1984

Sponsored by: Office of Building and Community Systems U.S. Department of Energy

U.S. Navy Civil Engineering Laboratory

U.S. Department of Defense

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

ABSTRACT

Economizer cycles have been recognized as important energy conservation measures for building air handling systems and have been included in most Energy Management and Control Systems (EMCS). This report describes the psychrometric processes of the most commonly used economizer cycles and presents algorithms for implementing these cycles on a typical Energy Management and Control System.

Economizer cycles included in this study are dry-bulb and enthalpy types, as applied to both dry coils and sprayed coils. In addition, an enhancement to the normal enthalpy economizer cycle algorithm is presented for dual-duct or multi-zone system which takes into account differences in the costs of heating energy and cooling energy. Computer program listings of the algorithms and sample input/output data are shown in the appendices. A brief discussion of common types of air handling systems is also given to help the reader better understand the application of the algorithms presented in this report.

Key words: control strategies; cooling energy; dry-bulb economizer cycle; energy management and control system; enthalpy economizer cycle; heating energy.

iii

TABLE OF CONTENTS

			Page	
ABSTR	ACT .	•••••••••••••••••••••••••••••••••••••••	iii	
LIST	OF FIGU	RES	iv	
1.	INTRODU	CTION	1	
2.	COMMON	TYPES OF HVAC SYSTEMS	3	
3.	THE DRY	-BULB ECONOMIZER CYCLE	11	
4.	DRY-BUL	B ECONOMIZER ALGORITHM	22	
5.	ENTHALP	Y ECONOMIZER CYCLE	28	
6.	ENTHALP	Y ECONOMIZER ALGORITHM	33	
7.	DUAL-DU	CT SYSTEMS	38	
8.	ALGORIT	HM ENHANCEMENT FOR DUAL-DUCT AND MULTI-ZONE SYSTEMS	41	
9.	SUMMARY	••••••••••••••••••••••••	45	
REFERENCES				
APPEN	NDIX A.	COMPUTER PROGRAM LISTING OF THE DRY-BULB ECONOMIZER		
		ALGORITHM (DBE), AND SAMPLE INPUT AND OUTPUT	A-1	
APPEN	IDIX B.	COMPUTER PROGRAM LISTING OF THE ENTHALPY ECONOMIZER		
		ALGORITHM (ETC1), AND SAMPLE INPUT AND OUTPUT	B-1	
APPEN	DIX C.	DERIVATION OF THE DIMENSIONLESS FACTOR, λ	C-1	
APPEN	IDIX D.	COMPUTER PROGRAM LISTING OF THE ENTHALPY ECONOMIZER		
		ALGORITHM WITH ENHANCEMENT (ETC2), AND SAMPLE INPUT AND		
		OUTPUT	D-1	

LIST OF FIGURES

			rage
Figure	1.	Single-zone air handling unit	4
Figure	2.	Single-zone air handling unit with reheat system	6
Figure	3.	Single-zone air handling unit with sprayed coil	7
Figure	4.	Variable air volume (VAV) system	8
Figure	5.	Dual duct system	10
Figure	6.	Psychrometric chart of dry-bulb economizer cycle for	
		systems not using sprayed coils or air washers	12
Figure	7.	Operation of a dry-bulb economizer cycle on a single-zone	
		air handling unit (refer to figures 1 and 6)	15
Figure	8.	Operation of a dry-bulb economizer cycle on a single-zone	
		reheat system (refer to figures 2 and 6)	17
Figure	9.	Psychrometric chart of dry-bulb economizer cycle for	
		systems employing sprayed coils or air washers	18
Figure	10.	Operation of a dry-bulb economizer cycle on an air	
		handling system with sprayed coils or air washers	
		(refer to figures 3 and 9)	20
Figure	11.	Logic flow diagram of dry-bulb economizer cycle	26
Figure	12.	Psychrometric chart of enthalpy economizer cycle for	
		systems which do not employ sprayed cooling coils or	
		air washers	30
Figure	13.	Psychrometric chart of enthalpy economizer cycle for	
		systems with sprayed cooling coils or air washers	31
Figure	14.	Logic flow diagram of the enthalpy economizer cycle	36

V

Figure 15. Psychrometric charts of the dual-duct system without	rage
sprayed coil or air washer	40
Figure 16. Logic flow diagram of the enhancement routine for	
dual-duct and multizone systems	43

1. INTRODUCTION

Rising energy costs, accompanied by decreasing prices for computers and microprocessors, have resulted in a rapid increase in the use of Energy Management and Control Systems (EMCS) in new and existing buildings. With the proper application algorithms, these EMCS are capable of implementing building control strategies which minimize the use of heating and air conditioning equipment to save appreciable amounts of energy. One such control strategy which is commonly found on today's EMCS is the use of outdoor air for cooling a building's interior when outdoor temperature and humidity conditions permit. Such a strategy is usually referred to as an economizer cycle.*

There are two basic types of economizer cycles. A dry-bulb economizer, which is the simpler of the two, utilizes the outdoor and return air dry-bulb temperatures to position the outdoor, return, and relief air dampers. An enthalpy economizer performs the same functions using the enthalpies of the outdoor and return air. The latter has been shown to save more energy [1,2,3], but requires the installation of additional sensors to measure the relative humidities or dew point temperatures of the outdoor and return air. These sensors require frequent maintenance and calibration to prevent measurement errors which can lead to a significant increase in building energy consumption [4] through the improper use of outdoor air for cooling.

^{*}The phrase "economizer cycle" is misleading since there is really no thermodynamic "cycle" involved. However, this terminology has been commonly used in the literature in the past and it is adopted in this paper to avoid additional confusion.

This report describes both the dry-bulb and enthalpy economizer cycles and presents algorithms for implementing them on a typical Energy Management and Control System. In addition, an enhancement to the enthalpy economizer is presented for dual-duct systems which takes into account the relative costs of heating and cooling the air supplied to the conditioned space.

Computer programs, written in Fortran 77, are presented in the appendices for the two economizer algorithms, and for the enhancement covering dual-duct systems, with calling routines that can be used to check the operation of the economizer programs. Sample input data and resulting output are also included. It should be pointed out, however, that these programs do not contain software for reading sensors, actuating the outdoor, return, and relief air damper motors, or positioning these dampers so as to obtain the desired mixed air temperature, since these functions are typically system dependent.

In addition, since there are many different kinds of systems and many ways of controlling each type, it is always important to thoroughly analyze an application before implementing a new control strategy. The algorithms presented in the report, while covering most typical HVAC installations, may require some modifications before being used in the actual operation of a specific building system.

2. COMMON TYPES OF HVAC SYSTEMS

The numerous types of HVAC systems used in buildings and the various methods employed for controlling their operation have been discussed extensively elsewhere [5,6,7]. While it is beyond the scope of this report to try and review this information, it is useful to briefly discuss some of the more common systems found in commercial buildings in the United States. This will serve as background material for better understanding the algorithm presented in the following sections.

Figure 1 shows a typical single-zone air handling unit found in many small buildings [6]. This system is controlled to provide either heating or cooling, but not both at the same time. During cooling, there is no direct control of the humidity level in the conditioned space, although some indirect control can be achieved by properly selecting the cooling coil to provide the desired ratio of sensible to total cooling capacity at full load.

Two techniques are commonly employed for implementing dry-bulb economizer control on the above system [1]. The first utilizes an outside, return, and relief air damper controller to regulate the mixed air temperature to a given set point. The second sequences the dampers and cooling coil flow rate control valve so that the cooling coil discharge controller regulates the damper position before the cooling coil valve opens. Although the former is easier to implement with pneumatic controls, the latter is slightly more

Figure 1. Single-zone air handling unit

general in that it assures that there is no conflict between control of the cooling coil valve and control of the dampers. In addition, it is capable of providing proper control for both dry coil and sprayed coil systems. Because of these features, the second control technique (i.e., the one utilizing the cooling coil discharge temperature) was selected as the basis of the economizer algorithms presented in this report.

In order to limit the maximum relative humidity in a conditioned space [6], a HVAC system designer will often interchange the relative position of the cooling and heating coils in the system discussed above. This results in the single-zone reheat system shown in figure 2. If more than one zone is involved, the single heating coil can be replaced by reheat coils or induction reheat units in each zone.

If tighter humidity control in the conditioned space is desired, a designer will often use a sprayed cooling coil or even an air washer in place of a cooling coil [6]. The former system is shown in figure 3. Again, the single reheat coil in these figures can be replaced by multiple reheat coils or induction reheat units in each of the different zones.

Another system that is enjoying immense popularity these days because of high energy costs is the Variable Air Volume (VAV) system shown in figure 4 [6,8]. The rate of air flow may be controlled by a fan inlet (vortex) damper, a fan discharge damper, mechanical or electrical fan speed control, variable volume boxes in each zone, or some combination of these.

Figure 2. Single-zone air handling unit with reheat system

Figure 3. Single-zone air handling unit with sprayed coil

Figure 4. Variable air volume (VAV) system

Applications involving multiple zones are also handled using dual-duct and multi-zone systems to provide conditioned air to the occupied spaces in a building [6]. Both of these systems mix chilled and heated air to obtain the desired supply air conditions. The only difference is that the dual-duct system, shown in figure 5, mixes the cold and hot air at each zone, while the multi-zone system mixes it at the air handling unit and then ducts the mixed air to the zone.

Figure 5. Dual-duct system

3. THE DRY-BULB ECONOMIZER CYCLE

Dry bulb economizer cycles employing outdoor air for "free cooling" have become a common feature on air handling systems. For systems not using sprayed cooling coils or air washers, the basic dry bulb economizer cycle can be described using the sketch of the single air handling unit in figure 1 and the psychrometric chart shown in figure 6.

When the outdoor air temperature is above a changeover temperature, T_{CO}, and in region Ib in figure 6, it is always desirable to minimize the amount of outdoor air used because the enthalpy of the outside air will be greater than the enthalpy of the return air. In region Ia, the enthalpy of the outside air is less than the enthalpy of the return air, and, under certain conditions, there could be some advantage in using the maximum amount of outdoor air. However, to utilize outdoor conditions in this entire region requires measurement of the thermodynamic states of the outdoor air and return air. These measurements are, however, not available since if they were, an enthalpy eonomizer cycle would be used. For this reason, the outdoor and relief air dampers should be at their minimum open position and the return air in either Region Ia or Ib. These damper positions should also be set to satisfy the minimum fresh air requirements of the zone served by the air handling unit.

then the outdoor air is in region IIa of figure 6, its dry-bulb temperature is greater than (or equal to) the dry-bulb set point temperature of the cooling coil discharge air, T_{CASP} , but less than the changeover temperature, T_{CO} . In this region, the maximum amount of outdoor air should be used, along with mechanical cooling to reduce the temperature of the mixed air to T_{CASP} . The changeover temperature, T_{CO} , should be selected so as to maximize the sum of the positive savings from region IIc and the negative savings (loss) from region IIb over the entire year. The latter is due to the high humidity conditions that exist when the outdoor air conditions are in this region (i.e., IIb). The value of T_{CO} varies with the climate and the typical conditions assumed for the thermodynamics state of the return air. Typical values of T_{CO} are given in reference [8] for most of the major U.S. cities.

For outdoor air dry-bulb temperatures below T_{CASP} , the cooling coil valve should be closed and the outdoor, return and relief air dampers modulated to maintain a cooling coil discharge temperature equal to T_{CASP} . Under these conditions, the outdoor and relief air dampers will be at their maximum open position when the outdoor air dry-bulb temperature is near T_{CASP} and gradually close, until they reach their minimum open positions, as the outdoor temperature continues to decrease. The return air damper operates in the opposite direction - gradually opening as the outdoor temperature falls below T_{CASP} .

For systems with preheat coils, such as the one in figure 2, the outdoor and relief air dampers go from whatever position they are in to a minimum open

position when the outdoor dry-bulb temperature drops to some minimum value, T_{MIN} . In region IV, with outdoor temperature below T_{MIN} , only the minimum amount of outside air, needed to satisfy the building's fresh air requirements, is used and the preheat coils are operated to raise the mixed air temperature to T_{CASP} . The value of T_{MIN} may be selected to correspond to that outdoor temperature which results in a mixed air temperature of T_{CASP} when the minimum amount of outside air is mixed with return air. However, this may not protect the preheat coils from freezing and, depending on the system employed, it may be necessary to select a higher value for T_{MIN} .

All of the systems shown in figures 1 through 5 are usually controlled in the manner described above when a dry-bulb economizer cycle is employed. However, there are some interesting differences in the actual operation of the systems that are worth discussing. For the single-zone air handling unit in figure 1, the outdoor and return air are mixed to obtain a temperature T_{CASP} leaving the cooling coil (with no mechanical refrigeration) when the outdoor temperature is in region III of figure 6. Maximum and minimum outdoor air, plus mechanical refrigeration, is used to maintain this same cooling coil discharge temperature when the outdoor temperature is in region II and I, respectively. Operation in these three regions is shown in figure 7. The value of T_{CASP} is selected to satisfy the space conditioning needs of the zone served. For the reheat system in figure 2, T_{CASP} is usually lower than the supply air temperature needed to cool the conditioned space. This is done to remove moisture from the air and thus limit the maximum relative humidity

Figure 7. Operation of a dry-bulb economizer cycle on a single-zone air handling unit (refer to figures 1 and 6)

allowed in the space and/or to satisfy a diversity of cooling loads among a number of zones. As a result, the air leaving the cooling coil must be reheated, either using a single reheat coil as illustrated in figure 8, or using separate coils in each of the different zones.

Figure 9 shows the psychrometric chart for a system using a sprayed coil (as shown in figure 3) or an air washer. The dry-bulb temperature measured leaving the coil or air washer is actually very close to the dew point temperature of the leaving air. Air entering the spray or washer will be cooled down along its constant enthalpy line until it is nearly saturated. Thus the various regions on the psychrometric chart for this type of system are somewhat different than those discussed above. Region III in figure 9 is bounded on the right by the constant enthalpy line passing through the saturation curve at a dew point temperature equal to T_{CASP}. Outdoor air in region III is mixed with return air so that the thermodynamic state of the mixed air falls on this constant enthalpy line. Actual control of the system is unchanged, since the mixing is done to maintain a cooling coil discharge air temperature (or air washer discharge air temperature) equal to T_{CASP}. Since T_{CASP} is usually lower than the temperature required to satisfy the sensible cooling load in order to maintain close humidity control in the conditioned space, this air will typically be reheated to the desired supply air temperature. The minimum amount of outside air is used in regions Ia and Ib for the same reasons discussed above for systems not employing sprayed coils or air washers. The changeover temperature, T_{CO}, is, however, likely to shift somewhat due to changes in the shape of regions II and III and because the energy requirements

Figure 8. Operation of a dry-bulb economizer cycle on a single-zone reheat system (refer to figures 2 and 6)

Figure 9. Psychrometric chart of dry-bulb economizer cycle for systems employing sprayed coils or air washers

to condition the supply air in these regions is different for systems employing sprayed coils or air washers. Since this changeover temperature will vary with climate and the value chosen for T_{CASP} , each system should be analyzed separately to determine the optimal value of T_{CO} . Operation of a dry-bulb economizer cycle in regions I, II, and III for systems employing sprayed coils or air washers is shown in figure 10.

The variable air volume system, shown in figure 4, behaves like either the single zone air handling unit in figure 1 or the reheat system in figure 2, depending on whether a heating coil (not shown in figure 4) is placed upstream or downstream of the cooling coil. The difference is that the variable volume system provides multi-zone control with a single supply duct by varying the quantity of air supplied to each zone. The psychrometric charts for a drybulb economizer cycle applied to this type of system are identical, respectively, to the ones discussed above in figures 6 and 9 for VAV systems which do not employ spray coils or air washers and for those that do.

As mentioned earlier, dual duct systems and multi-zone systems differ only in the location where hot air and cold air mixing takes place. These systems may use either non-sprayed or sprayed cooling coils. In a system using a sprayed cooling coil (or an air washer), all of the air is usually passed through the sprayed coil, and then part is reheated and mixed with the cooling air to satisfy the various zone requirements. However, the most common system configuration uses a non-sprayed cooling coil and such an arrangement (for a

Figure 10. Operation of a dry-bulb economizer cycle on an air handling system with sprayed coils or air washers (refer to figures 3 and 9)

dual-duct system) was shown in figure 5. The psychrometric charts for the typical application of dry-bulb economizer cycles to these systems are given in figures 6 and 9 for systems with non-sprayed and sprayed coils, respectively.

4. DRY-BULB ECONOMIZER ALGORITHMS

Although the presentation in the previous section on how a dry-bulb economizer cycle works tends to be somewhat complex because of the different types of coils and systems involved, the actual dry-bulb economizer algorithm is very simple. In addition, it is usually implemented on the various HVAC systems described above in almost an identical manner. The algorithm may be expressed in words as follows:

- (a) If the measured outdoor air temperature, T_{OA} , is greater than or equal to the preselected changeover temperature, T_{CO} , then the outdoor, return and relief air dampers should be positioned to admit the minimum amount of outside air to the building that is necessary to satisfy the fresh air requirements.
- (b) For HVAC systems not using sprayed coils (or air washers), the dampers should be positioned to admit the maximum amount of outdoor air when the outdoor temperature, T_{OA} , is greater than or equal to T_{CASP} but less than the changeover temperature, T_{CO} . For systems employing sprayed cooling coils (or air washers) the dampers should be positioned to admit the maximum possible outdoor air as long as T_{OA} is below T_{CO} and mechanical cooling is required to maintain the cooling coil discharge air temperature, T_{CA} , at its set point, T_{CASP} .

- (c) The outdoor, return, and relief air dampers should be positioned to mix outdoor air and return air when T_{OA} is less than T_{CASP} for systems not using sprayed coils (or air washers) or when T_{OA} is less than T_{CO} and mechanical cooling is not required to maintain T_{CA} at T_{CASP} for systems with sprayed coils (or air washers). In both cases, the mixing should be controlled so as to maintain the cooling air discharge temperature, T_{CA} , at its set point, T_{CASP} .
- (d) For systems with preheating coils, the mixed damper control should be overridden and the dampers positioned to admit the minimum amount of outdoor air when the outdoor air temperature, T_{OA}, is equal to or below some assigned value, T_{MIN}. The minimum amount of outdoor air should be that required to meet the minimum fresh air requirements of the conditioned space.

The actual sequencing of the dampers and the cooling coil valve can be accomplished in a number of ways. If pneumatic actuators are used, the dampers and coil actuators can be assigned different pressure ranges so that it is physically impossible for controlled mixing and cooling coil operation to occur at the same time. For direct digital control systems, the same thing can be accomplished by introducing a small control differential or dead zone, Δ , about the set point temperature of the cooling coil discharge air. This is to prevent excessive switching between control of the cooling coil and control of the dampers when the outside air temperature is very close to T_{CASP}. This approach is implemented by checking to see if T_{CA} is greater than or equal to

 $T_{CASP} + \Delta$ before switching from mixing control of the dampers to control of the cooling coil. Likewise, T_{CA} must be less than or equal to $T_{CASP} - \Delta$, before switching from cooling coil valve control to control of the dampers for mixing purposes.

When the outside air temperature, T_{OA} is at or close to the changeover temperature, T_{CO} , the use of control differential, Δ , can minimize the frequency of switching between the outdoor air damper position to admit the maximum amount of outside air (Region II) and that to admit the minimum amount of outdoor air (Region I). This floating region associated with Δ is bounded by $T_{CO} \pm \Delta$.

Actual control of the outdoor, return, and relief air dampers when operating in the mixing mode and control of the cooling coil valve will depend upon the type of control system used. A dedicated pneumatic or electronic controller could be employed or direct digital control can be provided by the energy management and control system. It will be pointed out, however, that direct digital control of valves and dampers can be accomplished either using position algorithms which require feedback on the position of a valve or a damper, or using velocity algorithms which do not require feedback.

A logic flow diagram representing the operation of the dry-bulb economizer algorithm is shown in figure 11. The input variables to this algorithm are:

neasured utdoor air dry-bulb temperature

A

- T_{CO} specified changeover temperature (TCHG is used in the computer program)
- T_{CA} measured cooling coil discharge air dry-bulb temperature T_{CASP} set point value of cooling coil discharge air dry-bulb temperature
- △ control differential (or dead zone) to minimize the switching frequency of damper or coil valve opening. For simplicity, a single control differential is used for all floating regions in the dry-bulb economizer cycle algorithm in this report.
- T_{MIN} specified outdoor air dry-bulb temperature where the minimum position of the outside air damper is reached
- SPRAY logical variable indicating type of cooling coil, SPRAY = TRUE if system uses a sprayed coil or air washer, FALSE otherwise

The output variables of the algorithm are:

- CCLV logical variable indicating whether cooling coil valve is to be controlled to maintain T_{CA} equal to T_{CASP} (CCLV = TRUE) or closed (CCLV = FALSE)
- DAMPOA integer variable for controlling dampers
 = 0 for admitting minimum outdoor air
 = 1 for controlling damper to mix outdoor and return air
 to maintain T_{CA} equal to T_{CASP}
 - = 2 for admitting maximum outdoor air

Figure 11. Logic flow diagram of dry-bulb economizer cycle

The above algorithm assumes that the building return air temperature, T_{RA} , is at or close to the set point temperature of the conditioned space. If the HVAC system has recently been started up after the end of an unoccupied period and T_{RA} is not near the desired conditioned space temperature, then this economizer algorithm should not be used or else it should be overridden or supplemented with a building warm-up or cool down control algorithm.

A computer program, DBE, for this dry-bulb algorithm, written in Fortran 77, is contained in Appendix A. A calling routine, DBEMAIN, is also presented there. Sample input and output of the program using a Sperry 1100/82 computer are provided.

5. ENTHALPY ECONOMIZER CYCLE

In an enthalpy economizer cycle, the specific enthalpy or heat content of both the outdoor air and the return air are determined. This information is then used to decide whether the minimum or maximum amount of outside air should be used or if the outside and return air should be mixed to satisfy the sensible and latent cooling requirements of the conditioned space. Since these decisions are made in real time and can dynamically account for any changes in the thermodynamic state of the outside and return air, the enthalpy economizer tends, in general, to save more energy than the dry-bulb economizer cycle [2,3]. The need for an assigned changeover temperature, T_{CO}, to account for typical outdoor and return air conditions is also eliminated.

The operation of the enthalpy economizer cycle can most easily be explained using psychrometric charts similar to the ones discussed above. Figure 12 is such a chart for a system which does not employ a sprayed cooling coil or an air washer. In region Ia of this figure, the enthalpy of the outside air is greater than that of the return air and thus the dampers should be set to admit the minimum amount of outside air required to meet the fresh air needs of the conditioned space. In region Ib, the enthalpy of the cutside air is less than the return air enthalpy, but the amount of sensible cooling necessary to reduce the temperature of the outside air to the set point of the cooling coil discharge air is greater than the amount needed if return air is used. Because of this and because the majority of HVAC systems will be doing
only sensible cooling when the outside temperature is in most of region Ib, the minimum amount of outside air should be used in this region. In region II, the use of the maximum possible outside air will reduce the system's energy consumption since both the enthalpy and dry-bulb temperature of the outside air are less than the corresponding values for the return air.

When the outside temperature is in region III of figure 12, the outside and return air streams should be mixed to obtain a mixed air temperature of T_{CASP} and the cooling coil value should be closed (i.e., no mechanical cooling is done). For HVAC systems with preheat coils, such as the one in figure 2, the outdoor and relief air dampers should be reset to their minimum open position whenever the outside air temperature falls below an assigned minimum value, T_{MIN} (Region IV).

The psychrometric chart for an enthalpy economizer cycle applied to HVAC systems using a sprayed cooling coil or air washer is shown in figure 13. As in the case of the dry-bulb economizer cycle applied to this type of system, region III is larger and extends, on the right side, to the enthalpy line passing through T_{CASP} . This is because if outside air and return air streams are mixed to obtain this enthalpy, the resulting mixed air will be cooled down to approximately T_{CASP} by means of evaporative cooling as it passes through the sprayer or air washer without mechanical cooling being done. The region corresponding to maximum outside air use, region II, is also extended, on the right, to the enthalpy line of the return air. Thus, for systems employing sprayed coils or air washers, it is desirable to use the maximum amount of

Figure 13. Psychrometric chart of enthalpy economizer cycle for systems with sprayed cooling coils or air washers

outside air whenever the outside air enthalpy is less than the enthalpy of the return air but greater than the desired enthalpy of the cooling coil discharge air.

6. ENTHALPY ECONOMIZER ALGORITHM

The enthalpy economizer may be expressed as follows:

- (a) For systems not employing sprayed coils (or air washers), the outdoor, return and relief air dampers should be positioned to admit the minimum amount of outside air (needed to meet the space's minimum fresh air requirements) when either the enthalpy or the dry-bulb temperature of the outside air is greater than or equal to the enthalpy or the dry-bulb temperature of the return air, respectively. For systems using sprayed coils or air washers, the minimum amount of outside air should be used whenever the enthalpy of the outside air is greater than or equal to the return air enthalpy.
- (b) The maximum amount of outside air should be used with systems which do not contain sprayed coils (or air washers) whenever the dry-bulb temperature of the outside air is greater than or equal to T_{CASP} and both the dry-bulb temperature and the enthalpy of the outside air is less than the dry-bulb temperature, and enthalpy of the return air, respectively. For systems containing sprayed coils (or air washers), the maximum amount of outside air should be used as long as mechanical cooling is required to maintain the cooling coil discharge air temperature, T_{CA}, at its set point, T_{CASP}, and the enthalpy of the outside air is below the enthalpy of the return air.

- (c) Controlled mixing of the outside and return air should be done when T_{OA} is less than T_{CASP} for systems not employing sprayed coils (or air washers) or when mechanical cooling is not required to maintain T_{CA} at T_{CASP} for systems with sprayed coils (or air washers). The mixing should be done to maintain the cooling air discharge temperature, T_{CA} , at its set point, T_{CASP} .
- (d) For systems with preheating coils, controlled mixing should be overridden and the dampers positioned to admit the minimum amount of outside air when the outdoor air temperature, T_{OA} , is equal to or below some assigned value T_{MIN} . The minimum amount of outside air should be that required to meet the minimum fresh air requirements of the conditioned space.

The same points, regarding sequencing and control of the dampers and cooling coil, that were discussed in the section entitled "Dry-Bulb Economizer Algorithm," also apply to the enthalpy economizer cycle. Briefly, if direct digital control is used on a system with a sprayed cooling coil (or an air washer), sequencing of the cooling coil and dampers will require the use of a small control differential or dead zone, Δ , about the set point temperature T_{CASP} to prevent excessive switching between control of the cooling coil and control of the dampers. The same Δ can also be applied to prevent excessive switching between the minimum and maximum open positions of the outdoor damper. For both sprayed coil and non-sprayed coil systems, controlled mixing of the outdoor and return air streams, as well as control of the cooling coil, may also be accomplished using dedicated pneumatic or electronic controllers.

A logic flow diagram for the enthalpy economizer algorithm described above is presented in figure 14. The input variables to this algorithm are:

AOL	outdoor all dry-buib temperature
TRA	return air dry-bulb temperature
T _{CA}	measured cooling coil discharge air temperature
TCASP	set point value of cooling coil discharge air dry-bulb
	temperature
TMIN	specified outdoor air dry-bulb temperature where the minimum
	position of the outside air damper is reached.
Δ	control differential (or dead zone) to minimize the switching
	frequency of damper or coil valve opening. For simplicity, a
	single control differential is used for all floating regions
	in the dry-bulb economizer cycle algorithm in this report.
BP	measured barometric pressure
SPRAY	logic variable indicating type of cooling coil, SPRAY = TRUE,
	if system uses a sprayed coil or air washer, otherwise
	SPRAY = FALSE otherwise
METRIC	logical variable indicating whether metric or English units are
	used, FALSE if English units are used
DEWPT	logical variable. Set TRUE if outside and return air dew

points are measured. Set FALSE if outside and return air relative humidities are measured.

In addition, the following measured data are also required:

DPOA dew point of outside air DPRA dew point of return air or RHOA relative humidity of outside air RHRA relative humidity of return air

depending whether the value of DEWPT is set TRUE or FALSE, respectively. Output variables are CCLV and DAMPOA, which have been described in section 4 of this report.

If the HVAC system has recently been started up after the end of an unoccupied period and T_{RA} is not near the setpoint temperature of the condition space, then the enthalpy economizer algorithm given above should not be used or should be overridden or supplemented with a building warm-up or cool down control algorithm.

A computer program, called ETCl for this enthalpy economizer algorithm, is presented in Appendix B. A calling routine, ETCLMAIN, and a routine for calculating the required psychrometric properties of moist air (PSYCHR) [9,10] are also listed. Sample input and output are included.

7. DUAL-DUCT SYSTEMS

Dual-duct systems utilize two ducts to distribute the conditioned air to conditioned spaces. One duct delivers chilled air, and the other carries heated air at all times. In order to satisfy the thermal load requirement of the conditioned zone, the hot and cold air is mixed in proper proportion in the mixing box, which is located at each zone. The damper of the mixing box operates in response to the zone thermostat [6]. A basic dual-duct system is shown in figure 5. As briefly mentioned in section 2, dual-duct systems are similar to multi-zone systems. The difference between the two systems is the location where the cold and hot air is mixed. In the multi-zone system, air mixing takes place at the air handling unit and then the mixed air is ducted to various conditioned spaces using a single-duct. In addition, the multizone system has a set of cold and hot deck dampers serving for each zone. These dampers are located at the air handling unit and are controlled by each zone thermostat. Due to similarity of the two systems, only the dual-duct system is discussed in this section.

As shown in figure 5, the outside air and the return air by-pass dampers and are mixed prior to the supply fan. The supply fan delivers the supply air to the hot and cold decks respectively. In the hot deck, the air passing through the heating coil is heated, while the air passing through the cooling coil is chilled in the cold deck. Usually no mechanical cooling is needed during the heating season (winter) and no heating is required during the cooling season

(summer). The temperature of the mixed air satisfies adequately the zone requirement [6]. But at certain conditions, both heating and cooling operations are required.

Figure 15 depicts the psychrometric chart of a dual-duct system without sprayed coil or air washer. This figure shows the thermodynamic conditions of the air during the cooling season with both heating and cooling coils in operation. The mixed air (MA) temperature is slightly raised to that of the supply air (SA) due to the fan heat gain. The two air streams after the supply air fan are then chilled and heated to the conditions of CA and HA, respectively. In the mixing box, they are mixed to the conditions of zone air (ZA).

When an economizer cycle is applied to the dual-duct system, the cooling energy is reduced by the free cooling of the outside air. However, the overall energy cost of the system may be more wasteful than the system without the economizer cycle, depending on the difference in the unit costs of the cooling and the heating energy, the mass flow ratio of the cold and hot air streams, and the temperature of the hot air (HA). Therefore, an enhancement algorithm for the dual-duct system was developed and is described in the next section.

HUMIDITY RATIO

DRY-BULB TEMPERATURE

Figure 15. Psychrometric charts of the dual-duct system without sprayed coil or air washer

8. ALGORITHM ENHANCEMENT FOR DUAL-DUCT AND MULTI-ZONE SYSTEMS

The enthalpy economizer algorithm presented in section 6 assumes that the heating cost is the same as the cooling cost for the same amount of energy used. The correctness of this assumption has no effect on single-zone systems. But a more complex evaluation of the system operation is needed for the dual-duct and multi-zone systems to determine the overall energy effect of the enthalpy economizer operation. The enhancement algorithm described in this section is an optional procedure which supplements the enthalpy economizer algorithm presented previously. Application of the optional enhancement requires the input of additional information which will be described later.

As seen in figure 12, when the enthalpy economizer is employed to a singlezone system, the use of a minimum amount of outdoor air is economical if the thermodynamic state of outdoor air is in region I, and admitting the maximum amount of outdoor air is cost-saving if the psychrometric property of the outdoor air is in region II. This statement is not always true for dual-duct and multi-zone systems. The optional procedure introduces a dimensionless factor, λ , to be used to compare the energy costs of the system in these two regions. The factor λ is defined as the ratio of the total energy cost (cooling and heating) of the air-handling system with the outside air damper at the minimum opening position to that with the damper at its maximum opening position. The derivation of λ may be found in Appendix C.

In regions I and II, a decision based on the cost evaluation of λ replaces the decision made by the enthalpy algorithm described previously. If λ is greater than 1.0, the maximum amount of outside air is allowed to enter the system. Otherwise, the minimum amount of outside air is admitted. When the psychrometric condition of the outside air is in regions III and IV, no cost evaluation is performed and the algorithm described previously applies. The logic flow diagram of the enhancement routine is shown in figure 16. This cost comparison routine incorporates the enthalpy economizer algorithm, ETCl, and requires the following additional data:

COST logical variable indicating whether cost evaluation is desired (COST = TRUE), or not (COST = FALSE).

T _{HA}	dry-bulb temperature of heating coil discharge air
X _{CA}	ratio of cooling coil air flow rate to supply air flow rate
X _{HA}	ratio of heating coil air flow rate to supply air flow rate
XOAMIN	ratio of minimum outside air flow rate
	to supply air flow

HGTOCL cost ratio of heating energy to cooling energy for the same amount of energy

> = \$ of heating per Btu or KJ \$ of cooling per Btu or KJ

DPCA dew point of cooling coil discharge air

DPHA dew point of heating coil discharge air

or

RHCA relative humidity of cooling coil discharge air RHHA relative humidity of heating coil discharge air

A computer program, ETC2, of the enthalpy economizer algorithm incorporating the optional enhancement reoutine (HCCOST) is given in Appendix D. Sample input and output are included. When the logical value of COST is false, the program ETC2 performs the same role as the program ETC1, and the logical flow becomes identical.

9. SUMMARY

Commonly used air handling systems were briefly reviewed in this report. These systems included single-zone, reheat, variable air volume, and dual-duct types having either dry cooling coils or sprayed coils. Energy Management and Control Systems often incorporate dry-bulb or enthalpy economizer cycles in order to reduce energy consumption. In this study, the psychrometric chart of atmospheric air was divided into various regions, using the psychrometric states of the return air, cooling coil discharge air, supply air, and other pertinent parameters. Algorithms were developed for an EMCS to determine the amount of outside air to be admitted into the air handling systems for outside air conditions in the different regions and the types of coils used (dry or sprayed).

For the economizer cycles based upon measured dry-bulb temperatures, the algorithms require values of the outside air temperature, a specified changeover temperature and its control differential, the actual and setpoint temperatures of the cooling coil discharge air, a specified outdoor air temperture below which the minimum position of the outside air damper is to be used, and knowledge of the type of cooling coil (dry or sprayed). For the enthalpy economizer cycle, the changeover and outside air temperatures in the above list are replaced by the return air temperature and outside air enthalpy, respectively. In addition, the return air humidity is also required.

Since the energy savings of dual-duct and multi-zone systems are complicated by the relative costs of heating energy and cooling energy, an enhancement algorithm for these systems was also developed which utilized the relative costs of heating and cooling energies and the mass flow rates of the heating and cooling air.

Computer programs, written in Fortran 77, were presented in the appendices to assist the reader in implementing these algorithms.

REFERENCES

- Shavit, G., "Enthalpy Control Systems Increased Energy Conservation," Handbook of Energy Conservation for Mechanical Systems in Buildings, edited by R. W. Roose, Van Nostrand Reinhold Co., 1978, pp. 449-460.
- [2] Parken, W.H., Kao, J.Y., and Kelly, G. E., "Strategies for Energy Conservation in Small Office Buildings," Natl. Bur. of Standards, NBSIR 82-2489, June 1982.
- Kao, J.Y., Parken, W.H., and Pierce, E.T., "Strategies for Energy Conservation for a Large Retail Store," Natl. Bur. of Standards, NBSIR 82-2580, Sept. 1982.
- [4] Kao, J.Y., and Pierce, E.T., "A Study of Sensor Errors on Building Energy Consumption", 7th Energy Management and Control Soc. Conf., Salt Lake City, Utah, Nov. 14-17, 1982.
- [5] ASHRAE, System Handbook, Chapter 3, 1980.
- [6] Haines, R.W., Control Systems for Heating, Ventilating and Air Conditioning, 3rd ed., Van Nostrand Reinhold, 1983.
- [7] Croome, D.J., and Roberts, B.M., Air Conditioning and Ventilation of Buildings, 2nd ed., Vol 1, Pergamon Press, 1981.
- [8] Honeywell, Energy Conservation with Comfort, 2nd ed., 1979
- [9] Brokaw, R.S., "Calculation of Flue Losses for High-Efficiency Furnaces and Appliances," ASHRAE Journal, Jan. 1979, pp. 49-51.
- [10] ASHRAE, Fundamentals Handbook, Chapter 5, 1981.

APPENDIX A. COMPUTER PROGRAM LISTING OF THE DRY BULB ECONOMIZER ALGORITHM (DBE), AND SAMPLE INPUT AND OUTPUT

QSQSQS*ETC(1).DBEALL(Ø)	
2	č	
3 (C DBE:	Dry-bulb economizer cycle algorithm for building air handling systems
5	C JULY :	29, 1983 C.P.
8	L C C	
1Ø 11 12	C CCLV C	Logical variable for controlling a cooling coil valve. CCLV=T when the valve is open and CCLV=F when it is closed.
13 14 15 16	C DAMPOA C C	Integer variable for controlling dampers. DAMPOA = Ø for admitting minimum outdoor air = 1 for modulating dampers
17 18		= 2 for admitting maximum outdoor air
2ø 21	C DELTA C	the switching frequency of damper or coil valve opening
22 23 24	C SPRAY C	Logical variable indicating type of cooling coil, SPRAY = T if system uses a sprayed coil or air washer, SPRAY = F otherwise.
25 26 27	C TCA	Measured cooling coil discharge air dry-bulb temperature
28 29	C TCASP C	Set point value of cooling coil discharge air dry-bulb temperature
31 32	C TCHG C	Specified changeover temperature
33 34 35	C TMIN C	Specified outside air dry bulb temperature below which minimum outside air is admitted
36 37	C TOA C	Measured outdoor air dry-bulb temperature
38 39 49	C C *********	Either English or metric unit can be used.
41 42 43	C SUBROU LOGICA	TINE DBE L CCLV,SPRAY
44 45 46	INTEGE COMMON &	R DAMPOA /BK1/ TOA,TCHG,TCA,TCASP,TMIN,SPRAY,DELTA /BK2/ CCLV,DAMPOA
47 48 49	C Dry-bu C	lb economizer
5Ø 51 52	C Determ C operat C	ine outdoor air damper opening and cooling coil valve ion
53 54 55	IF (TOA	LE.TMIN) THEN CCLV=.FALSE. DAMPOA=Ø
56 57	ELSEIF	(TOA.GE.TCHG+DELTA) THEN CCLV=.TRUE.

50		
59		ELSEIF (TOA.LE.TCHG-DELTA) THEN
6.Ø		IF (SPRAY) THEN
61		IF (TCA.GE.TCASP+DELTA) THEN
62		CCLV=.TRUE.
63		UAMFUA=2 Electron le trasp_deltal then
65		
66		DAMPOA=1
67		ENDIF
68		ELSE
69 7a		IF (IDA.GE.ICASP+DELIA) THEN
71		DAMPOA=2
72		ELSEIF (TOA.LE.TCASP-DELTA) THEN
73		CCLVFALSE.
74		DAMPOA=1
/5		ENDIF
77		ENDIF
78	С	
79		RETURN
810	C ##	END
82	č	
83	Ċ	DBEMAIN : Main program to call the dry-bulb economizer
84	C	algorithm for building air handling systems
85	ç	
87	č	00LT 23, 1363 C.T.
88	Č **	***************************************
89	С	
90		CHARACIER IIILE(2)*80
92		INTEGER DAMPOA
93		COMMON /BK1/ TOA, TCHG, TCA, TCASP, TMIN, SPRAY, DELTA
94		& /BK2/ CCLV, DAMPOA
95		NAMELIST /INPUT/ SPRAY, TCHG, TCASP, TMIN, DELTA
97		OPEN(7,FILF='DEFDATA')
98		REWIND 7
99	С	
100	Ç	Read initial input data
101	C	READ(7 1999) TITLE
1.03		READ(7, INPUT)
1Ø4		PRINT 1000, TITLE
1.05	~	PRINT INPUT
100	C C	Pand messured input data
108	č	
1Ø9	1Ø	IF(SPRAY) THEN
110		READ(7, *, END=999) TOA, TCA
112		FRINI 2000, IUA, IUA
112		READ(7.* END#999) TOA
112		
114		PRINT 2000, TOA

116	С	
117	С	Call the dry-bulb economizer algorithm
118	C	
119	-	CALL DBE
120	C	
121	Ŭ	PRINT OUTPUT
122		
122	~	
123	L L	
124	С	Damper and cooling coil valve control routines should be
125	С	called here. These routines are machine-dependent.
126	С	
127		GOTO 18
128	С	
129	. č	Format statements
130		
121	1000	
131	2000	
132	2000	FURMATURE 10.47
133	3000	FORMAT(1X,79('-'))
134	С	
135	999	STOP
136		END

asasas*Di	BEDATA(1)						
1	I	NPUT DATA	FOR DBE PRO	GOGRAM				
2		DRY COIL	TOUO-77 7		1N-00 0 DELT			
3	SIN	PUT SPRAY=	+,1CHG=//,1	CASP=55., IM	IN=30.0, UEL 1	A=1.0, SEND		
4	95.0 75 0							
5	73.0 67 α							
7	10 0							
8	4 <i>0.0</i> 8 <i>0</i> 0							
ğ	71 0							
1 ตั	50.0							
11	53.0							
12	55.Ø							
13	55.5							
14	55.Ø							
15	57.Ø							
16	55.5				*			
17	55.Ø							
18	54.Ø							
19	55.0							
2и	50.0							
AVOT ETC	DRCC							
TNPHT	DATA FOR	DRE PROOC	P A M					
		DEL TROOM						
SINPUT	016							
SPRAY =	F.TCHG =	.778888888	+ØØ2.TCASP	55000000	+ØØ2.TMIN =	. 30000000+	02.DELTA -	.10000000+001
\$END								
95.000	ø							
\$OUTPUT								
CCLV = T	, DAMPOA	-	ø					
SEND								
75.000	Ø							
SOUTPUT	DAMPOA	0	2					
	, UAMPUA	-	2					
3ENU								
67 aaa	a a							
SOUTPUT	D							
CCIV = T	DAMPOA	-	2					
\$END	,		-					
40.000	ø							
\$OUTPUT								
CCLV = F	, DAMPOA	•	1					
\$END								
80.000	19							
SOUTPUT	DAMPON		~					
CULV = T	, DAMPOA	-	0					
JENU								
74 000								
SOUTION	<i>b</i>							
CCLV = T	DAMPOA	=	2					
\$END	, DAIN OA		-					

50.000 \$OUTPUT CCLV = F,DAMPOA = 1 \$END -----53.0000 SOUTPUT CCLV = F, DAMPOA = 1 \$END _____ _____ _____ 55.0000 SOUTPUT CCLV = F,DAMPOA = SEND 1 -------_____ 55.5000 **SOUTPUT** CCLV = F,DAMPOA = \$END 1 -----____ 55.0000 SOUTPUT CCLV = F,DAMPOA = 1 SEND 57.0000 SOUTPUT CCLV = T, DAMPOA = \$END 2 -----55.5000 SOUTPUT CCLV = T,DAMPOA = SEND 2 _____ ______ 55.0000 SOUTPUT CCLV = T,DAMPOA = \$END 2 -----_ _ _ _ _ 54.0000 SOUTPUT CCLV = F,DAMPOA = SEND 1 -----_____ 55.0000 \$OUTPUT CCLV = F,DAMPOA = 1 \$END _____ 50.0000 SOUTPUT CCLV = F,DAMPCA = SEND 1 -----_____

*

APPENDIX B. COMPUTER PROGRAM LISTING OF THE ENTHALPY ECONOMIZER ALGORITHM (ETC1), AND SAMPLE INPUT AND OUTPUT

Q\$Q\$Q\$*ETC(1).ETC1	ALL(Ø)			
1 2 3 4	C C C	ETC1 :	Enthalpy economizer algorithm for building air handling systems		
5 6 7		VERSION	I July 29, 1983 C.P.		
9 1 <i>Ø</i> 11 12		CCLV	Logical variable for controlling a cooling coil valve. CCLV=T when the valve is open a when it is closed.	ind CCLV=	F
13 14 15 16 17	00000	DAMPOA	Integer variable for controlling dampers. DAMPOA = Ø for admitting minimum outdoor at = 1 for modulating dampers = 2 for admitting maximum outdoor at	r	
18 19 2Ø 21		DELTA	Temperature difference of floating zone to the switching frequency of damper or coil w	minimize valve ope	ning
22 23 24	0000	DEWPT	Logical variable. Set TRUE if outside and r dew points are measured. Set FALSE if outsi air relative humidities are measured.	eturn ai de and r	r eturn
25 26	C	DPOA	Dew point temperature of outside air	(F)	(C)
28		DPRA	Dew point temperature of return air	(F)	(C)
30	C	НОА	Enthalpy of outside air	(Btu/Lb)	(KJ/kg)
32	C C	HRA	Enthalpy of return air	(Btu/Lb)	(KJ/kg)
34 35 36	Č C C	METRIC	Logical variable. Set TRUE if metric unit i Set FALSE if English unit is employed.	s used.	
37	č	PB	Barometric pressure	(in.Hg)	(Pa)
39 40	č	RHOA	Relative humidity of outdoor air	(percent	.)
41	Č C	RHRA	Relative humidity of return air	(percent	.)
43 44 45	0000	SPRAY	Logical variable indicating type of cooling SPRAY = T if system uses a sprayed coil or SPRAY = F otherwise.	coil, air wash	ier,
47	č	TCA	Measured cooling coil discharge air dry-bui	lb temper	ature
49 5Ø 51	0000	TCASP	Set point value of cooling coil discharge a temperature	iir dry-b	ulb
52 53 54	C C C	TMIN	Specified outside air dry bulb temperture b minimum outside air is admitted	below whi	ch
55	c c	TOA	Measured outdoor air dry-bulb temperature		
57	č	TRA	Retrun air dry-bulb temperature		

58	C	
59	C ***	
6.0	C	
61		
62		INTEGER DAMPOA
63		LOGICAL CCLV, SPRAY, DEWPI, METRIC
64		COMMON /BKI/ ICA, ICASP, IMIN, SPRAY, DELTA
65		& /BK2/ DEWPT, METRIC
66		& /BK3/ CCLV, DAMPOA
67		L /BK4/ TOA, DPOA, RHOA, TRA, DPRA, RHRA, PB
68	_	NAMELIST /OUT1/ HOA,HRA
69	C	
7Ø	C	Enthalpy economizer
71	C	
72	C	Compute enthalpies of outdoor and return air
73	C	
74		CALL PSYCHR(TOA, DPOA, RHOA, PB, HOA)
75	_	CALL PSYCHR(TRA,DPRA,RHRA,PB,HRA)
76	C	
77	C	Determine outdoor air damper opening and cooling coil valve
78	Ç	operation
79	C	
80		IF(TOA.LE.TMIN) THEN
81		CCLV=.FALSE.
82		DAMPOA=Ø
83		ELSEIF (HOA. GE. HRA+DELTA) THEN
84		CCLV=.TRUE.
85		DAMPOA=Ø
86		ELSEIF (HOA.LE.HRA-DELIA) THEN
87		IF (SPRAY) THEN
88		IF (ICA. GE. ICASP+DELTA) THEN
89		CCLV=.IRUE.
90		
91		ELSEIF (ICA. LE. ICASP-DELTA) THEN
92		
93		
54 0E		
95		ELSE
07		
90		
99		
aa		
a i		
<i>a</i> ²		
ã3		FISELE(TOA LE, TCASP-DELTA) THEN
ØA		CCIVE, FALSE,
Ø5		
ØG		FNDIF
Ø7		ENDIF
ØB		ENDIF
Ø9		ENDIF
1Ø		PRINT OUT1
11	С	
12		RETURN
13		END
14	C ***	***************************************
15	С	

.

PSYCHR : Psychrometric properties of moist air between 60 F (15.6 C) and 140 F (60 C) with estimated error of 0.02 X С C C 0000 Sources : ASHRAE 1981 Fundamentals Handbook, Chapter 5 ASHRAE Journal Jan. 1979 (R. S. Brokaw) PP. 49-51 Č C English Metric ----F DB Dry-bulb air temperature С Dew point temperature С DP F Enthalpy Btu/Lb KJ/kg Н PB Barometric pressure in.Hg Pa PSW Saturated water avpor pressure Pa in.Hg PW Water vapor pressure in.Hg Pa Relative humidity Humidity ratio RH percent percent W С SUBROUTINE PSYCHR(DB,DP,RH,PB,H) LOGICAL DEWPT,METRIC COMMON /BK2/ DEWPT,METRIC C C Dew point temp or relative humidity С IF(DEWPT) THEN TEMP=DP RH = 1.00.0ELSE TEMP=DB ENDIF C C C Compute psychrometric properties using metric units IF(METRIC) THEN PSW=3.37685E+3*EXP(15.4636-7284./(1.8*TEMP+424.)) PW=RH/100.*PSW W=Ø.62198*(PW/(PB-PW)) H=DB+W*(25Ø1.+1.8Ø5*DB) IF(.NOT.DEWPT) THEN PWLOG=ALOG(PW) DP=-35.957-1.8726*PWLOG+1.1689*PWLOG*PWLOG ENDIF C C C Compute psychrometric properties using English units ELSE PSW=EXP(15.4636-7284./(TEMP+392.)) PW=RH/1000.*PSW W=Ø.62198*(PW/(PB-PW)) H=Ø.24*DB+W*(1Ø61.+Ø.444*DB) IF(.NOT.DEWPT) THEN PWLOG=ALOG(PW) DP=79.047+30.5790*PWLOG+1.8893*PWLOG*PWLOG ENDIF

116

117 118 119

12Ø 121 122

123 124

125

126

127

128

129

13Ø

131

132

133

134

135

136 137

138 139 14Ø

141 142

143

144

145

146

147

148

149

15Ø

151 152

153

154 155

156

157 158 159

16Ø 161

162

163

164 165

166 167

168 169

17Ø 171

172

174 175 176 177 178 ENDIF C C RETURN 179 С 18Ø С 181 ETCIMAIN : Main program to call the enthalpy economizer algorithm for building air handling systems 182 183 184 185 VERSION I July 29, 1983 C.P. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 186 187 188 TITLE Title of the input data set Input data array 189 Y(I) Y(1) = PBY(2) = TO190 191 192 TOA Y(3) = DPOA IF DEWPT=T, RHOA IF DEWPT=F Y(4) = TRA 193 194 195 Y(5) = DPRA IF DEWPT=T, RHRA IF DEWPT=F TCA Y(6) = 196 197 LOGICAL CCLV, SPRAY, DEWPT, METRIC INTEGER DAMPOA CHARACTER TITLE(2)*8Ø DIMENSION Y(6) COMMON /BK1/ TCA, TCASP, TMIN, SPRAY, DELTA & /BK2/ DEWPT, METRIC & /BK3/ CCLV, DAMPOA & /BK4/ TOA, DPOA, RHOA, TRA, DPRA, RHRA, PB NAMELIST /INPUT/ METRIC, DEWPT, SPRAY, TCASP, TMIN, DELTA & /OUTPUT/ CCLV, DAMPOA OPEN(7, FILE='ETCIDATA') REWIND 7 198 č 199 200 2Ø1 2Ø2 2Ø3 284 Ł 285 ž 2ø6 Ł 2Ø7 208 å 2Ø9 218 **REWIND 7** 211 CCC 212 213 Read initall input data 213 214 215 216 217 READ(7,1000) TITLE READ(7,INPUT) PRINT 1000,TITLE PRINT INPUT 218 С IF(SPRAY) THEN 22ø 221 N=6 ELSE 222 N=5 223 ENDIF С С С 225 Read measured input data 226 READ(7,*,END=999) (Y(I),I=1,N) PRINT 2000,(Y(I),I=1,N) PB =Y(1) TOA=Y(2) TRA=Y(4) 227 18 228 229 23Ø 231

232		TCA=Y(6)
233	C	
234	C	Dew point temp or relative humidity
235	C	
236		IF (DEWPT) THEN
237		RHOA=1ØØ.Ø
238		RHRA=1ØØ.Ø
239		DPOA=Y(3)
24.0		DPRA=Y(5)
241		ELSE
242		DPOA=Ø.Ø
243		DPRA=Ø.Ø
244		R HOA = Y(3)
245		RHRA=Y(5)
246		ENDIE
247	C ·	
248	č	Call the enthalow control algorithm
249	č	eart one energy concret a get term
250	•	CALL FTC1
251	С	
252	Ŭ	PRINT OUTPUT
253		PDINT 3000
254	c	
255	č	Desper and cooling coil unlue control routines should be
256	č	called bars These and these are machined and and
257	č	carred here. These routines are machine-dependent.
250	C	COTO 1 <i>4</i>
250	c	
255	č	Format statements
261	č	ronmat statements
262	1 000	FORMAT/A00/A00
202	1000	
203	2000	
204	3000	FORMATCIA, 75C = 77
200	000	5T08
200	333	
26/		ENU

Q\$Q\$Q\$*ETC1DATA(1) INPUT DATA FOR ETC1 PROGRAM 1 DRY COIL \$INPUT METRIC=F, DEWPT=T, SPRAY=F, TCASP=55.0, TMIN=30.0, DELTA=1.0, SEND 29.921 95.0 60.0 77.0 55.0 2 3 4 5 29.921 75.0 64.0 77.0 55.0 29.921 67.0 57.0 77.0 55.0 6 7 29.921 4Ø.Ø 35.Ø 77.Ø 55.Ø 80.0 57.0 77.0 55.0 8 29.921 õ 29.921 74.0 51.0 77.0 55.0 29.921 50.0 40.0 77.0 55.0 1Ø 29.921 53.0 40.0 77.0 55.0 11 55.0 40.0 77.0 55.0 12 29.921 29.921 55.5 4Ø.Ø 77.Ø 55.Ø 29.921 55.Ø 4Ø.Ø 77.Ø 55.Ø 13 14 15 29.921 57.0 40.0 77.0 55.0 55.5 4Ø.Ø 77.Ø 55.Ø 55.Ø 4Ø.Ø 77.Ø 55.Ø 29.921 16 17 29.921 55.0 40.0 29.921 54.0 40.0 77.0 55.0 18 19 29.921 55.0 40.0 77.8 55.8 29.921 50.0 40.0 77.0 55.0 20 @XQT ETC.ETC1\$ INPUT DATA FOR ETC1 PROGRAM DRY COIL SINPUT METRIC = F, DEWPT = T, SPRAY = F, TCASP = .55000000+002, TMIN = .30000000+002, DELTA = .10000000+001+001 SEND. 29.921Ø 95.0000 60.0000 77.0000 55.0000 \$OUT1 HOA = .34966373+ØØ2, HRA = .28536576+ØØ2 \$END **SOUTPUT** CCLV = T, DAMPOA = ø SEND 29.9210 75.0000 64.0000 77.0000 55.0000 \$OUT1 HOA = .31938431+ØØ2,HRA = .28536576+ØØ2 \$END **\$OUTPUT** CCLV = T, DAMPOA = ø \$END 29.921Ø 67.ØØØØ 57.0000 77.0000 55.0000 \$OUT1 HOA = .26861820+002, HRA = .28536576+002 \$END **\$OUTPUT** CCLV = T, DAMPOA =2 SEND -------29.9210 40.0000 35.0000 77.0000 55.0000 \$OUT1 $HOA = .14181454 + \emptyset \emptyset 2, HRA = .28536576 + \emptyset \emptyset 2$ \$END SOUTPUT

```
CCLV = F, DAMPOA =
                          1
SEND
 29.9210 80.0000 57.0000 77.0000 55.0000
 $OUT1
HOA = .30038875+002,HRA = .28536576+002
$END
 SOUTPUT
CCLV = T, DAMPOA =
                          ø
$END
_____
 29.9210 74.0000 51.0000 77.0000 55.0000
 $OUT1
HOA = .26412566+ØØ2,HRA = .28536576+ØØ2
$END
 SOUTPUT
CCLV = T, DAMPOA =
                          2
$END
29.9210 50.0000 40.0000 77.0000 55.0000
 $OUT1
HOA = .17612815 + \emptyset \emptyset 2, HRA = .28536576 + \emptyset \emptyset 2
SEND
 $OUTPUT
CCLV = F, DAMPOA =
                          1
SEND
        -----
 29.9210 53.0000 40.0000 77.0000
                                       55.0000
 $OUT1
HOA = .18339717 + 002, HRA = .28536576 + 002
SEND
 SOUTPUT
CCLV = F, DAMPOA =
                          1
SEND
                                                                 ______
  29.9210 55.0000 40.0000 77.0000 55.0000
 SOUT1
HOA = .18824318+ØØ2,HRA = .28536576+ØØ2
$END
 $OUTPUT
CCLV = F, DAMPOA =
                          1
$END
----------------
  29.9210 55.5000 40.0000 77.0000 55.0000
 $OUT1
HOA = .18945469 + \emptyset \emptyset 2, HRA = .28536576 + \emptyset \emptyset 2
$END
 SOUTPUT
CCLV = F, DAMPOA =
                          1
$END
_____
                                       _____
  29.9218 55.8888 48.8888 77.8888 55.8888
 $OUT1
HOA = .18824318+ØØ2,HRA = .28536576+ØØ2
$END
 SOUTPUT
CCLV = F, DAMPOA =
                          1
SEND
```

_ _ _ _ _ _ 29.9218 57.8888 48.8888 77.8888 55.8888 \$OUT1 HOA = .19308920+002, HRA = .28536576+002 \$END **SOUTPUT** CCLV = T, DAMPOA = 2 SEND ------_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 29.9210 55.5000 77.0000 55.0000 40.0000 \$OUT1 -HOA = .18945469+882, HRA = .28536576+882 \$END **\$OUTPUT** CCLV = T, DAMPOA = 2 \$END ----29.9210 55.0000 40.0000 77.0000 55.0000 \$OUT1 HOA = .18824318+002, HRA = .28536576+002 \$END **\$OUTPUT** CCLV = T, DAMPOA = 2 \$END ----------29.9210 54.0000 40.0000 77.0000 55.0000 SOUTI HOA = .18582Ø18+ØØ2,HRA = .28536576+ØØ2 SEND **\$OUTPUT** CCLV = F, DAMPOA = 1 SEND -------29.9210 55.0000 40.0000 77.0000 55.0000 SOUT1 HOA = .18824318+002,HRA = .28536576+002 \$END SOUTPUT CCLV = F,DAMPOA = 1 \$END 29.9210 50.0000 40.0000 77.0000 55.0000 \$OUT1 HOA = .17612815+882,HRA = .28536576+882 \$END \$OUTPUT CCLV = F,DAMPOA = \$END 1 _____

APPENDIX C. DERIVATION OF THE DIMENSIONLESS FACTOR, λ

For dual-duct and multi-zone systems, the basic enthalpy economizer algorithm described in section 6 is modified to take into account the differences in the costs of heating energy and cooling energy. This is discussed in sections 7 and 8. A dimensionless factor, λ , is introduced as the ratio of the total energy cost (cooling and heating) of the air-handling system with the outside air damper at the minimum opening position to that with the damper at the maximum opening position. The derivation of λ is presented here (see figures 5 and 14).

Energy equations for the system shown in figure 5 are as follows:

$${}^{m}_{OA}{}^{h}_{OA} + {}^{m}_{RA}{}^{h}_{RA} = {}^{m}_{MA}{}^{h}_{MA} \tag{1}$$

$$m_{MA}h_{MA} + q_F = m_{SA}h_{SA}$$
(2)

$$\mathbf{m}_{\mathrm{HA}}\mathbf{h}_{\mathrm{SA}} + \mathbf{q}_{\mathrm{H}} = \mathbf{m}_{\mathrm{HA}}\mathbf{h}_{\mathrm{HA}} \tag{3}$$

$${}^{n}_{CA}{}^{h}_{SA} + {}^{q}_{C} = {}^{m}_{CA}{}^{h}_{CA} \tag{4}$$

where m, h, and q represent mass flow rate, enthalpy, and heat flow rate, respectively.

Subscripts are:

OA: outdoor air
RA: return air
MA: mixed air
CA: the air leaving the cooling coil

HA: the air leaving the heating coil

- SA: supply air
- C: cooling coil
- H: heating coil
- F: supply fan

Assume that q_F is negligible $(q_F^{\approx 0})$, and that the mass of added or removed moisture is negligible with respect to air mass. Applying the mass conservation principle, heat flow rates for heating and cooling can be expressed, from equations (1) through (4), as:

$$q_{\rm H} = m_{\rm HA}h_{\rm HA} - (m_{\rm HA}/m_{\rm SA})(m_{\rm OA}h_{\rm OA} + m_{\rm RA}h_{\rm RA})$$
 (5)

$$q_{C} = m_{CA}h_{CA} - (m_{CA}/m_{SA})(m_{OA}h_{OA} + m_{RA}h_{RA})$$
(6)

When the outside air damper is positioned to admit the minimum amount of outdoor air,

$$m_{RA} = m_{SA} - m_{OA,min}$$

171

$$m_{OA} = m_{OA,\min}$$
(8)

where $m_{OA,min}$ is the mass flow rate of the outside air with its damper at the minimum opening position.

When the outside air damper is positioned at its maximum opening,

$$m_{RA} = 0 \tag{9}$$

$$m_{OA} = m_{SA}$$
(10)
Substituting equations (7) and (8) into (5) and (6), we obtain:

$$q_{\rm H,min} = m_{\rm HA}h_{\rm HA} - (m_{\rm HA}/m_{\rm SA}) \left[m_{\rm OA,min}h_{\rm OA} + (m_{\rm SA} - m_{\rm OA,min})h_{\rm RA} \right]$$
(11)

$$q_{C,min} = m_{CA}h_{CA} - (m_{CA}/m_{SA}) \left[m_{OA,min}h_{OA} + (m_{SA} - m_{OA,min})h_{RA} \right]$$
 (12)

Similarly, with the damper at maximum position, the heat flow rate equations become:

$$q_{\rm H,max} = m_{\rm HA} \left(h_{\rm HA} - h_{\rm OA} \right) \tag{13}$$

$$\mathbf{h}_{\mathrm{C,max}} = \mathbf{m}_{\mathrm{CA}}(\mathbf{h}_{\mathrm{CA}} - \mathbf{h}_{\mathrm{OA}}) \tag{14}$$

We can normalize equations (11) through (14) by m_{SA} . From equations (11) and (12), we have

$$q'_{C,min} = x_{CA}^{h}_{CA} - x_{CA} \left[x_{OA,min}^{h}_{OA} + (1 - x_{OA,min}^{h})^{h}_{RA} \right]$$
 (16)

where x_{HA} = the ratio of heating coil air mass flow rate to supply air mass flow rate

> x_{CA} = the ratio of cooling coil air volumetric flow rate to supply air mass flow rate

Assume that density variation due to temperature differences is negligible, then x_{HA} , x_{CA} , and $x_{OA,min}$ can be volumetric flow rate ratios instead of mass flow ratios.

Equations (13) and (14) yield:

$$q'_{H,max} = x_{HA}(h_{HA} - h_{OA})$$
 (17)
 $q'_{C,max} = x_{CA}(h_{CA} - h_{OA})$ (18)

Defining β as a unit energy cost ratio in terms of dollars of heating to cooling, the dimensionless factor, λ , can be expressed as:

$$\lambda = \frac{(\beta q'_{H,\min}) + (-q'_{C,\min})}{(\beta q'_{H,\max}) + (-q'_{C,\max})}$$
(19)

In equation (19), $q'_{H,\min}$ and $q'_{H,\max}$ should be zero or positive, and $q'_{C,\min}$ and $q'_{C,\max}$ should be zero or negative. As a result, λ is always positive and can be used as a criteria to decide the outside air damper position. When λ is greater than 1, it is more economical to have the maximum amount of outside air entering the system than the minimum amount of outside air. Therefore, the outside air damper should be opened fully. Otherwise, it should be at its minimum opening position.

APPENDIX D. COMPUTER PROGRAM LISTING OF THE ENTHALPY ECONOMIZER ALGORITHM WITH ENHANCEMENT (ETC2), AND SAMPLE INPUT AND OUTPUT

Q\$Q\$Q\$*ETC(1)	ETC2ALL(Ø)	******************	*******	******
2 0 3 0 4 0 5 0 0	ETC2 :	Enhanced enthalpy economizer algorithm for building air handling systems nancement is applicable to a dual-duct syste	əm	
7 (VERSIO	N II July 29, 1983 C.P.		
1Ø (1 11 (1 12 (1 13 (1)	CCLV	Logical variable for controlling a cooling coil valve. CCLV=T when the valve is open a when it is closed.	and CCLV=	۶F
15 16 17 18	COST	Logical variable for economical cost analys determining the damper opening. Set TRUE the cost analysis routine is desired. FALS Only dual-duct systems are applicable in co	sis in if SE otherw ost analy	rise. /sis.
2Ø 21 22 23	DAMPOA	Integer variable for controlling dampers. DAMPOA = Ø for admitting minimum outdoor a = 1 for modulating dampers = 2 for admitting maximum outdoor a	lr fr	
24 25 26	DELTA	Temperature difference of floating zone to the switching frequency of damper or coil w	minimize valve ope	ening
28 29 3Ø	C DEWPT	Logical variable. Set TRUE if outside and a dew points are measured. Set FALSE if outs air relative humidities are measured.	eturn af Ide and r	r eturn
32	C DPOA	Dew point temperature of outside air	(F)	(C)
34	C DPRA	Dew point temperature of return air	(F)	(C)
36	C HOA	Enthalpy of outside air	(Btu/Lb)	(KJ/kg)
38	C HRA	Enthalpy of return air	(Btu/Lb)	(KJ/kg)
4Ø 41 42	C METRIC	Logical variable. Set TRUE if metric unit Set FALSE if English unit is employed.	ls used.	
43	C PB	Barometric pressure	(in.Hg)	(Pa)
45	C RHOA	Relative humidity of outdoor air	(percent	.)
47	C RHRA	Relative humidity of return air	(percent	.)
49 5Ø 51 52	C SPRAY C C	Logical variable indicating type of cooling SPRAY = T if system uses a sprayed coil or SPRAY = F otherwise.	g coil, air wash	ier,
53	C TCA	Measured cooling coil discharge air dry-bu	lb temper	ature
55 56 57	C TCASP C	Set point value of cooling coil discharge a temperature	air dry-b	ulb

58 59	C C	TMIN	Specified outside air dry bulb temperature below whic minimum outside air is admitted	:h
5Ø 51	C C	TOA	Measured outdoor air dry-bulb temperature	
62 63	C C	TRA	Retrun air dry-bulb temperature	
64 65	C C ***	******		******
66 67	C	SURROU	TINE ETC2	
68		INTEGE	R DAMPOA	
7Ø		COMMON	I /BK1/ COST, TCA, TCASP, TMIN, SPRAY, DELTA	
71 72		& &	/BK2/ DEWPT,METRIC /BK3/ CCLV,DAMPOA	
73 74		& NAMELI	/BK4/ TOA,DPOA,RHOA,TRA,DPRA,RHRA,PB	
75	C C	Enthal	py aconomizer	
77	č	Comput		
79	c	comput	e enthalpies of outdoor and return air	
8Ø 81		CALL P CALL P	'SYCHR(TOA,DPOA,RHOA,PB,HOA) 'SYCHR(TRA,DPRA,RHRA,PB,HRA)	
82 83	C C	Determ	nine outdoor air damper opening and cooling coil valve	
84	C	operat	ton	
86	Ŭ	IF (TOA	(LE.TMIN) THEN	
88			DAMPOA=Ø	
89 9ø		ELSEIF	CLV=.TRUE.	
91 92		ELSEIF	DAMPOA=Ø (HOA.LE.HRA-DELTA) THEN	
93		IF (S	SPRAY) THEN	
95		± r	CCLV=.TRUE.	
96 97		EL	SEIF(TCA.LE.TCASP-DELTA) THEN	
98 99			CCLV=.FALSE. DAMPOA=1	
00 01		EN	DIF	
Ø2		IF	(TOA.GE.TRA+DELTA) THEN	
03 04			DAMPOA=Ø	
05 06		EL	IF(TOA.LE.TRA-DELTA) THEN IF(TOA.GE.TCASP+DELTA) THEN	
07 08			CCLV=.TRUE. DAMPOA=2	
Ø9			ELSEIF (TOA.LE.TCASP-DELTA) THEN	
11			DAMPOA=1	
12		EN	IDIF	
14 15		ENDI	F	

PRINT OUT1 CCCCCC At this point, the outdoor air damper opening can be changed from maximum to minimum, and vice versa depending on the result of the cost analysis. This cost analysis is only recommended to a dual-duct system. IF(COST.AND.CCLV.AND.(DAMPOA.EQ.Ø .OR. DAMPOA.EQ.2)) THEN CALL HCCOST PRINT OUT1 ENDIF С RETURN END ******* *** С 000000 PSYCHR : Psychrometric properties of moist air between 60 F (15.6 C) and 140 F (60 C) with estimated error of 0.02 % Sources : ASHRAE 1981 Fundamentals Handbook, Chapter 5 ASHRAE Journal Jan. 1979 (R. S. Brokaw) PP. 49-51 Ĉ Č С _____ English Metric ----F DB Dry-bulb air temperature С Dew point temperature Enthalpy DP F С Btu/Lb KJ/kg H PB Barometric pressure Pa in.Hg in.Hg PSW Saturated water avpor pressure Pa PW Water vapor pressure in.Hg Pa RH W Relative humidity percent percent Humidity ratio ******************* Ĉ SUBROUTINE PSYCHR(DB,DP,RH,PB,H) LOGICAL DEWPT,METRIC COMMON /BK2/ DEWPT,METRIC 000 Dew point temp or relative humidity IF(DEWPT) THEN TEMP=DP RH=100.0 ELSE TEMP=DB ENDIF С C Compute psychrometric properties using metric units IF(METRIC) THEN PSW=3.37685E+3*EXP(15.4636-7284./(1.8*TEMP+424.)) PW=RH/100.*PSW W=0.62198*(PW/(PB-PW)) H=DB+W*(25Ø1.+1.8Ø5*DB)

116

118

119 12Ø 121

122

127

128

129

130

131

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

158

159

16Ø 161

162

163

164 165

166

167

168

169

174 175 176 177		IF(.N PWL DP= ENDIF	OT.DEWPT) THEN OG=ALOG(PW) -35.957-1.8726*PWLOG+1.1689*PWLOG*PWLOG
178 179	C C	Compute	psychrometric properties using English units
18Ø	č		
181		ELSE	
182		PSW=E	XP(15.4636-/284./(EMP+392.))
184		Fw=κπ ₩≈∅.6	/100.~~SW 2198*(PW/(PR-PW))
185		H=Ø.2	4*DB+W*(1Ø61.+Ø.444*DB)
186		IF(.N	OT.DEWPT) THEN
187		PWL	OG=ALOG(PW)
188		ENDIE	/9.04/+30.5/90*PWLOG+1.8893*PWLOG*PWLOG
190		ENDIF	
191	с	LIDI	
192	С		
193		RETURN	
194	C ****	END	
195	C		
197	č	HCCOST	: Outside air damper opening based upon the economic
198	С		decision on heating and cooling costs for dual duct
199	C		systems
200	C	1	1002 C B
282	č		, 1903 C.F.
203	č		
2Ø4	С		
2015	C	DPCA	Measured dew point of cooling coil discharge air
2106 2017	C	прил	Measured dev point of besting coil discharge air
2018	č	UTIA	Reasoned dew point of nearing corr discharge an
2Ø9	Ċ	HCA	Enthalpy of cooling coil discharge air
211	C	HGTOCL	Unit energy cost ratio in terms of dollars of
212	С		heating to cooling
213	C		≈(\$ of heating per Btu or KJ)/(\$ of cooling per Btu or
214	C		KJ)
215	c	нна	Enthaloy of heating coil discharge air
217	č		
218	С	LAMMDA	Real variable indicating the ratio of the cost with
219	C		minimum damper opening to that with maximum damper
220	C		opening.
222	č	RHCA	Relative humidity in percent of cooling coil discharge air
223	С		
224	C	КННА	Relative numidity in percent of heating coll discharge air
226	č	TCA	Dry-bulb temp, of cooling coil discharge air
227	č		
228	C	THA	Dry-bulb temp. of heating coil discharge air
239	c	XCA	Ratio of cooling coil discharge air flow rate to supply
231	C		air flow rate

232 С 233 С Ratio of heating coil discharge air flow rate to supply XHA 234 С air flow rate 235 C Č 236 XOAMIN Ratio of outside air flow rate thru the minimum damper 237 С opening for fresh air requirment to supply air flow rate Č 238 С 239 ----- Either metric or English unit can be used. -----240 С 241 С 242 C SUBROUTINE HCCOST Logical CCLV,SPRAY,COST Integer Dampoa 243 244 245 246 REAL LAMMDA 247 COMMON /BK1/ COST, TCA, TCASP, TMIN, SPRAY, DELTA /BK3/ CCLV, DAMPOA /BK4/ TOA, DPOA, RHOA, TRA, DPRA, RHRA, PB /BK5/ HGTOCL, DPCA, RHCA, THA, DPHA, RHHA, XOAMIN, XCA, XHA 248 8 249 å 25Ø & 251 С Ĉ 252 Compute enthalpies 253 254 CALL PSYCHR(TOA, DPOA, RHOA, PB, HOA) CALL PSYCHR(TRA,DPRA,RHRA,PB,HRA) CALL PSYCHR(TCA,DPCA,RHCA,PB,HCA) CALL PSYCHR(TCA,DPCA,RHCA,PB,HCA) CALL PSYCHR(THA,DPHA,RHHA,PB,HHA) 255 256 257 258 С Compute the ratio of the cost with minimum damper opening to the cost with maximum damper opening Ċ 259 Č C 260 261 262 QHMIN=XHA*HHA-XHA*(XOAMIN*HOA+(1-XOAMIN)*HRA) 263 QCMIN=XCA*HCA-XCA*(XOAMIN*HOA+(1-XOAMIN)*HRA) QHMAX=XHA*(HHA-HOA) 264 265 QCMAX=XCA*(HCA-HOA) С 266 267 IF(QHMIN.LT.Ø) QHMIN=Ø.Ø IF(QHMAX.LT.Ø) QHMAX=Ø.Ø IF(QCMIN.GT.Ø) QCMIN=Ø.Ø 268 269 27Ø IF(QCMAX.GT.Ø) QCMAX=Ø.Ø С 271 272 CMIN=HGTOCL*QHMIN-QCMIN CMAX=HGTOCL*QHMAX-QCMAX 273 IF (CMAX.GT.Ø .AND. CMIN.GT. Ø) THEN 274 LAMMDA=CMIN/CMAX 275 276 ENDIF 277 С 278 IF(LAMMDA.GT.1.8) THEN 279 DAMPOA=2 280 ELSE DAMPOA=Ø 281 282 ENDIF 283 PRINT 1000, LAMMDA 284 C FORMAT(/5X,'COST EVALUATION HAS BEEN MADE ---'/ & 5X,'LAMMDA = ',F1Ø.4/) 1000 285 286 287 С RETURN 288 289 END

290 ------C 291 292 293 ETC2MAIN : Main program to call the enhanced version of the enthalpy economizer algorithm for building air handling systems 294 The enhancement is applicable to a dual-duct systems. ---295 ----296 297 VERSION II July 29, 1983 C.P. 298 299 _____ 300 3Ø1 TITLE Title of the input data set Ý(I) 3Ø2 Input data array Y(1) = PBY(2) = TOA3Ø3 3Ø4 Y(3) = DPOA 1f DEWPT=T, RHOA 1f DEWPT=F 3Ø5 Y(3) = DFOA IT DEWPI-T, RHCA IT DEWPI-F Y(4) = TRA Y(5) = DPRA 1f DEWPT=T, RHRA 1f DEWPT=F Y(6) = TCA Y(7) = DPCA 1f DEWPT=T, RHCA 1f DEWPT=F 3Ø6 3.07 3Ø8 3Ø9 Y(8) = THA Y(9) = DPHA 1f DEWPT=T, RHHA 1f DEWPT=F 31Ø 311 $Y(1\emptyset) = XCA$ Y(11) = XHA312 313 314 ****************************** 315 316 317 LOGICAL CCLV, SPRAY, DEWPT, METRIC, COST CHARACTER TITLE(2)*80 318 319 320 INTEGER DAMPOA INTEGER DAMPOA DIMENSION Y(11) COMMON /BK1/ COST,TCA,TCASP,TMIN,SPRAY,DELTA /BK2/ DEWPT,METRIC /BK3/ CCLV,DAMPOA /BK4/ TOA,DPOA,RHOA,TRA,DPRA,RHRA,PB /BK5/ HGTOCL,DPCA,RHCA,THA,DPHA,RHHA,XOAMIN,XCA,XHA NAMELIST /INPUT/ METRIC,DEWPT,SPRAY,TCASP,TMIN,DELTA,COST /OUTPUT/ CCLV,DAMPOA /HCIN/ HGTOCL,XOAMIN OPEN(7,FILE='ETC2DATA') REWIND 7 321 322 323 & 324 & 325 & 326 Ł 327 328 r 329 & 33Ø 331 С С С С 332 333 Read initial input data 334 READ(7,1000) TITLE READ(7,INPUT) PRINT 1000,TITLE PRINT INPUT 335 336 337 338 IF(COST) THEN READ(7,HCIN) PRINT HCIN 339 34Ø 341 342 N = 11ELSEIF(SPRAY) THEN 343 344 N=6 345 ELSE 346 N=5 347 ENDIF

349	č	READ MEASURED INPUT DATA
350	C	
351	110	$\begin{array}{c} K E A U(1), F E N U U(1), I = I, N U U(1), U = U U(1),$
353		PR = V(1)
354		TOA=Y(2)
355		TRA=Y(4)
356		TCA=Y(6)
357		THA=Y(8)
358		XCA=Y(10)
359	~	XHA=Y(11)
36.6	C	Developed the second way an analytic building
361		new point temperature or relative numidity
363	C	TE(DEWPT) THEN
364		RHOA = 190.9
365		RHRA=188.8
366		RHCA=1 <i>80.0</i>
367		RHHA=1 <i>00.0</i>
368		DPOA=Y(3)
369		DPRA=Y(5)
370		
3/1		UPHA=Y()
372		
374		
375		DPCA=Ø.Ø
376		DPHA=Ø.Ø
377		RHOA=Y(3)
378		RHRA=Y(5)
379		RHCA=Y(7)
380		RHHA=Y(9)
381	<u>_</u>	ENUIF
302	č	
384	č	Call the enthalpy economizer algorithm
385	č	
386		CALL ETC2
387	С	
388		PRINT OUTPUT
389	~	PRINT 30,00
390	c c	Demon and coll usive control neutines should be
392	č	called here. These routines are machine-dependent.
393	č	
394		GOTO 1Ø
395	С	
396	C	FORMAT STATEMENTS
397	C	FORMAT/ 40// 40//
398	1000	
499	3999	FORMAT(1X, 79('-'))
401	C	
4.02	999	STOP
4.03		END

24

L INPUT DATA FOR ETC2 PROGRAM DRY COIL WITHOUT COST EVALUATION \$INPUT METRIC=F, DEWPT=T, SPRAY=F, TCASP=55.0%, TMIN=30%.0ELTA=1.0%, COST=F, \$FND 29.921 85.0% 50.0% 77.0% 55.0% 29.921 56.0% 57.0% 55.0% 29.921 56.0% 577.0% 650.0% 55.0% 29.921 500.0% 40.0% 77.0% 600.0% 55.0% 29.921 500.0% 40.0% 77.0% 600.0% 55.0% 55.0000 60.0000 60.0000 55.0000 60.0000 48.8888 77.8888 77.88888 77.88889 HOA = .23982294+882,HRA = .28536576+882 77.88889 HOA = .36132675+882, HRA = .38558234+882 77.88888 40A = .26Ø93338+ØØ2,HRA = .3Ø558234+ØØ2 HOA = .21711853 + BB2, HRA = .28536576 + BB2HOA = .17612815+002, HRA = .30558234+002 exot etc.etcss input data for etc2 program dry coil without cost evaluation 50.0000 50.0000 65.00000 40.0000 0 2 2 9 85.0000 56.0000 65.0000 98.88.86 50.0000 ososos*ETC2DATA(1) 8 II Ħ lt \$OUTPUT CCLV = T,DAMPOA CCLV = T, DAMPOACCLV = F, DAMPOA SEND CCLV = T, DAMPOA SEND CCLV = T, DAMPOA 29.9210 29.921.0 29.9218 29.9210 29.921.0 SOUTPUT SOUTPUT SOUTPUT \$0UTPUT \$INPUT \$OUT1 \$OUT1 NO TO ON O \$OUT1 \$0UT1 \$0UT1 SEND SEND SEND SEND SEND SEND SEND **SEND** 1

```
METRIC = F, DEWPT = T, SPRAY = F, TCASP = .55000000+002, TMIN = .30000000+002, DELTA = .10000000+001, COST = T
           INPUT DATA FOR ETC2 PROGRAM
DRY COIL WITH COST EVALUATION
$$INPUT METRIC=F,DEWPT=T.SPRAY=F,TCASP=55.0%,TMIN=30.0%,DELTA=1.0%,COST=T,$END
$$HCIN HGTOCL=0.69,XOAMIN=0.1,$END
29.921 85.0 40.077.0 55.0 55.0 54.0 90.0 55.0 25 75
29.921 85.0 50.077.0 55.0 55.0 54.0 90.0 50.0 25 75
29.921 56.0 50.077.0 55.0 55.0 54.0 90.0 50.0 25 75
29.921 50.0 65.0 77.0 60.0 55.0 54.0 90.0 55.0 25 75
29.921 50.0 40.0 77.0 60.0 55.0 54.0 90.0 55.0 25 75
29.921 50.0 40.0 77.0 60.0 55.0 54.0 90.0 55.0 25 75
29.921 50.0 40.0 77.0 60.0 55.0 54.0 90.0 55.0 25 75
29.921 50.0 40.0 77.0 60.0 55.0 54.0 90.0 55.0 25 75
                                                                                                                                                                                                                                                                                                                                                                       90.000.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     188.8988
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      54.0000 100.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     54.0000
                                                                                                                                                                                                                                                                                                                                                                       54.0000
                                                                                                                                                                                                                                                                                                                                                                     55.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   55.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      55.0000
                                                                                                                                                                                                                                                                                                                                                                     60.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   55.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      55.0000
                                                                                                                                                                                                                                                                                                                                  77.8888
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  77.88888
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   77.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HOA = .26093338+002, HRA = .30558234+002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HOA = .21711853+ØØ2,HRA = .28536576+ØØ2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     HOA = .2390/2294+0/02,HRA = .28536576+0/02
$END
                                                                                                                                                                                                                                                                                                                                                                                                                      .30558234+002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HOA = .21711853+002,HRA = .28536576+002
$END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        COST EVALUATION HAS BEEN MADE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         COST EVALUATION HAS BEEN MADE
LAMMDA = .7117
                                                                                                                                                                                                         @XQT ETC.ETC2$
@XQT ETC.ETC2$
INPUT DATA FOR ETC2 PROGRAM
DRY COIL WITH COST EVALUATION
$INPUT
                                                                                                                                                                                                                                                                                                                                                                    4.8.8000
.7500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      50.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   50.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .7500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .7500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Ø
                                                                                                                                                                                                                                                                                                                                                                                                                      HOA = .26Ø93338+ØØ2,HRA = 
SEND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .6542
                                                                                                                                                                                                                                                                                                                                                                    85.00000
.2500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                56.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   65.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .2500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .2500
OSOSOS*ETC2DATA(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CCLV = T, DAMPOA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CCLV = T, DAMPOA
SEND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          LAMMDA =
                                                                                                                                                                                                                                                                                                                                                                    29.9218
55.8888
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               29.9210
50.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 29.9218
50.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               $OUTPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SOUTPUT
                                                                                                                                                                                                                                                                                                                   SHC IN
                                                                                                                                                                                                                                                                                                                                                                                                       $0UT1
                          - N M + G M - 80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     $OUT1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           $OUT1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     $0UT1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            $0UT1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SEND
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SEND
                                                                                                                                                                                                                                                                                                 $END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               SEND
```

```
9888.86
                                                                                                                                                                                                                                                                                                            98.8838.86
                                                                                                                   54.0000
                                                                                                                                                                                                                                                                                                           54.8888
                                                                                                                  55.0000
                                                                                                                                                                                                                                                                                                            55.0000
                                                                                                                  60.0000
                                                                                                                                                                                                                                                                                                           68.8888
                                                                                                                  77.00000
                                                                                                                                                                                                                                                                                                          77.88888
                                            HOA = .23982294+882, HRA = .28536576+882
                                                                                                                29.9218 98.8888 65.88888 77.88888
55.88888 .2588 .7588
$0UT1
HOA = .36132675+882,HRA = .38558234+882
$END
                                                                                                                                                                                                                       $0UT1
HOA = .36132675+882,HRA = .38558234+882
                                                                                                                                                                                                                                                                                                                                            HOA = .17612815+002,HRA = .30558234+0002
$END
                                                                                                                                                                                       COST EVALUATION HAS BEEN MADE ---
LAMMDA = .7158
COST EVALUATION HAS BEEN MADE ---
LAMMDA = .7617
                                                                                                                                                                                                                                                                                                          40.0000
                                                                                 8
                                                                                                                                                                                                                                                                          0
                                                                                                           1981111
                                                                                                                                                                                                                                                                                                          58.8888
.2588
                                                                   $OUTPUT
CCLV = T,DAMPOA =
$END
                                                                                                                                                                                                                                                           SOUTPUT
CCLV = T,DAMPOA =
SEND
                                                                                                                                                                                                                                                                                                                                                                               CCLV = F, DAMPOA = SEND
                                                                                                                                                                                                                                                                                                   29.9218
55.88888
$0UT1
                                                                                                                                                                                                                                                                                                  $OUTPUT
                                  $OUT1
                                                         SEND
```

NBS-114A (
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No. 3. Pt	ublication Date			
BIBLIOGRAPHIC DATA	REPORT NO.		MARCH 108/			
SHEET (See instructions)	NBSIR 84-2832		MARCH 1504			
4. TITLE AND SUBTITLE						
Economizer Algorit	thms for Energy Manage	ment and Control Systems				
Chaol Bork Coore	E Volle oud Ismes	V Voo				
Cheol Park, George	E. Kelly, and James	I. Kao				
6. PERFORMING ORGANIZA	TION (If joint or other than NBS,	, see instructions) 7. Cor	ntract/Grant No.			
DEPARTMENT OF CONN	STANDARDS FRCF	8. Typ	e of Report & Period Covered			
WASHINGTON, D.C. 2023	4					
9. SPONSORING ORGANIZAT	TION NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP)				
Office of Building	gs & Community Systems	U.S. Navy Civil Engin	eering Laboratory			
U.S. Department of	f Energy	U.S. Department of De	fense			
1000 Independence	Avenue, SW	Washington, DC 20310				
Washington, DC 20	0585	0				
10 SUDDI EMENITARY NOTE	e					
10. SUPPLEMENTART NOTE	.5					
		C. C. farmer Commence in antical ad				
Document describes a	Computer program; SF-185, FIP.	S Software Summary, is attached,	I deal a startificant			
bibliography or literature s	r less factual summary of most s survey, mention it here)	significant information. If document inc	ludes a significant			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Economizer cycles h	nave been recognized a	s important energy conserv	ation measures			
for building air ha	andling systems and ha	ve been included in most E	nergy Management			
and Control Systems	s (EMCS). This report	describes the psychrometr	ic processes of			
the most commonly u	used economizer cycles	and presents algorithms f	or implementing			
these cycles on a f	typical Energy Managem	ent and Control System.				
Economizer cycles	included in this study	are dry-bulb and enthalpy	types, as			
applied to both dry	y coils and sprayed co	ils. In addition, an enha	ncement to			
the normal enthalpy	y economizer cycle alg	orithm is presented for du	al-duct or			
multi-zone system w	which takes into accou	nt differences in the cost	s of heating			
energy and cooling	energy. Computer pro	gram listings of the algor	ithms and sample			
input/output data a	are shown in the appen	dices. A brief discussion	of common types			
of air handling sys	stems is also given to	help the reader better un	derstand the			
application of the algorithms presented in this report.						
		· · · · · · · · · · · · · · · · · · ·				
12. KEY WORDS (Six to twelv	e entries; alphabetical order; ca	pitallze only proper names; and separat	e key words by semicolons)			
control strategies: cooling energy: dry-bulb economizer cycle: energy management and						
control system; enthalpy economizer cycle; heating energy.						
		,				
13. AVAILABILITY			14. NO. OF			
			PRINTED PAGES			
X Ontimited						
For Official Distribution, Do Not Release to NTIS 81						
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.						
20102.						
X Order From National	Technical Information Service (N	TIS), Springfield, VA. 22161				
			\$11.50			
			USCOMM-DC 6043-P80			

