
Comparing Software Development
Methodologies forAda* *:

A Study Plan

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Center for Programming Sciences and Technology

Washington, DC 20234

-ebruary 1 934

*Ada is a trademark of the U.S. Department of Defense (AJPO)

’ QC

100

.1156

04-2327

1934

IJ.S. DEPARTMENT OF COMMERCE

ONAl BUREAU OF STANDARDS

V
mm

NBSIR 84-2827

COMPARING SOFTWARE DEVELOPMENT
METHODOLOGIES FOR ADA*:

A STUDY PLAN

Peter Freeman

NAmv.u BUP.SAU
.or S7Atrrj/uTu>s

f i I

(
^ -»

I
60

* \j/\

X 4-Z

IW

Information and Computer Science

University of California, Irvine

Irvine, CA 92717

Anthony I. Wasserman

Medical Information Science

University of California, San Francisco

San Francisco, CA 94143

Edited by

Raymond C. Houghton, Jr.

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Center for Programming Sciences and Technology
Washington, DC 20234

February 1 984

*Ada is a trademark of the U.S. Department of Defense (AJPO)

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director

TABLE OF CONTENTS

PREFACE iii
MOTIVATION AND PROBLEM FORMULATION 1

DESCRIPTIVE OVERVIEW 3

STUDY PLAN 6

Prime Contractor 6

Advisory Board 8

Development Teams 9

IV&V Team 9

Maintenance Teams 9

Pr oj ec t Phases 10
Phase 1 - Initiation 10
Phase 2 - Development 11

Phase 3 - Change 13
Phase 4 - Evaluation 14
Phase 5 - Reporting 14

DISCUSSION 15
Overall Structure 15
Prime Contractor 15
Adv isory Board 16
Development 16
IV&V Team 16
Maintenance Team 16
Project Phases 17

Phase 1 - Initiation 17
Phase 2 - Development 18
Phase 3 - Change 19
Phase 4 - Evaluation 19
Phase 5 - Reporting 19

FURTHER STUDIES 19
ACKNOWLEDGMENTS 19

APPENDIX 1 - Suggested Methods for Study 21

APPENDIX 2 - Design Problem 22
APPENDIX 3 - Observational and Data Collection

Requirements 26
APPENDIX 4 - Maintenance Manual Outline 28
APPENDIX 5 - SADT Model of Project Plan 29

PREFACE

The study that is outlined in this paper has been proposed
as one of the early activities in the Support Systems Task Area
of the DoD STARS Program (See IEEE Computer, November, 1983).
This study is an update of the study that was originally proposed
by Freeman and Wasserman in a group of papers titled, "Software
Development Methodologies and Ada". These papers were published
in a report submitted to the Ada Joint Program Office (AJPO) in
November, 1982. The original study emphasized the design phase
of a methodology. In particular, it attempted to isolate the
design phase from the implementation phase so that one could
study the effects of one phase on the other, e.g., a poor design
followed by corrective implementation. In subsequent review, the
editor and other reviewers felt that this level of
differentiation added much initial complexity and risk to the
study. Consequently, the version that follows treats the
methodology as a "black box" and is therefore simpler than the
original. After this study has been successfully completed, a

future study should be planned based on the outcome of this one
that attempts a higher degree of differentiation.

R. Houghton, Editor

NOTE: The mention of trade names
development methodologies does not
those methodologies by the National Bu

for several software
constitute endorsement of

reau of Standards.

Editing was performed under DoD contract AJPO-83-27

Page 1

MOTIVATION AND PROBLEM FORMULATION

Much has been said about the cost of software maintenance in
the Department of Defense (DoD). In particular, one of the main

j

goals of the Software Technology for Adaptable, Reliable Systems
(STARS) program is to reduce the cost of maintenance. The
motivation for the study described in this paper is to help
determine the characteristics of software development

!

methodologies that contribute to reduced costs for maintenance.
!

When defined, these characteristics will form a basis for the
definition of standards for development methodlogies

.

j

Many recommendations have been made for improving the
process of software development over the past 30 years. High
level languages, timesharing systems, and programming techniques
are among the ideas that have been successfully used. Many other

|

ideas have been proposed, but not used extensively, making it
difficult to determine their effectiveness.

The discipline of software engineering has emerged over the
past 15 years as a focal point for efforts to improve both the

;j

quality of software products and the process by which they are
created and evolved. After initial attempts in which isolated
methods were developed to address different phases of the
software lifecycle, recent work has concentrated on integration
of methods.

i

!

The integration of technical methods and management
procedures across the software lifecycle yields a methodology for
software development - a process that can be systematically
followed from the initial system concept through product release
and operation. The methodology may be supported by automated

-j

tools, which may also be integrated into a programming support
environment. Finally, the methodology and the programming
support environment normally are used in a work setting, one or
more physical locations in which the software development occurs.

While one would like to evaluate software development
methodologies objectively, it is very difficult to do so since
they are dependent upon the programming support environment, the
software development organization applying the methodologies, and
the physical setting of the organization. As a result, there are
many variables to control, e.g. (1) the methodology itself, (2)
the skill of the developers in the methodology, (3) the quality
of the software tools in the support environment, (4) the typing
speed of the developers, and (5) the degree to which the
workspace permits uninterrupted concentration on the task at

j

hand.

Thus, it is not possible to construct precise experiments
involving methodologies in the same manner as one might perform
experiments in psychology, using control groups and a limited
number of independent variables. Nor is it possible to conduct
experiments similar to those in the natural sciences, since it is
difficult to obtain meaningful, statistically significant,

Page 2

numerical data that characterize well what can be observed in
this type of situation. However, it is possible to obtain useful
information from carefully designed investigations of software
maintenance

.

In this context, the study has been formulated with the
following objective:

Determine what is the effect of various software
development methodologies on the maintainability of
systems, specifically ones that are constructed in Ada.

In short, we want to know which methods help to produce the most
maintainable systems.

Furthermore, we wish to focus still further on the critical
components of a methodology. For example, much attention has
been paid to the detailed design aspects of software development
(relative to efforts expended in other areas), and it is
extremely important to understand which methods help most in
establishing good software structure. The importance of
structure (at the module organization level) is well understood
by those who have looked deeply at the problem of software
maintenance [e.g., L.A. Belady and M.M. Lehman, "A Model of
Large Program Development,” IBM Systems J ournal 15,3 (1976), pp.
225-252]. What is less well understood is the effectiveness of
different methods (or classes of methods) in helping software
developers achieve a "good” structuring of a system (measured in
terms of how easy it is to maintain the resulting system). Thus,
a refined version of the key objective is:

Determine how well various software development
methodologies help structure systems built in Ada, as
measured by the ease of maintenance of the resulting
sy s tern

.

There are, of course, many aspects of software development
methodologies for which additional objectives can be defined,
just as there are other aspects to investigate (for example, the
correctness of the resulting systems) . The choices are motivated
by current perceptions of the relative importance of the various
aspects of software development methodologies and the overall
objectives of the Ada program. Likewise, in the hope of making a

clear advance in the understanding of methods, the focus of this
study is on software development rather than the larger sphere of
system development. If this and other studies shed light on the
software development problem, then extension of these results to
the systems domain can be considered.

Page 3

DESCRIPTIVE OVERVIEW

Software for the DoD is typically developed under contract.
After development, it is turned over to a DoD agency for use. If
maintenance is required on the software, it is either performed
in-house, or it is contracted out to either the original
developer or to a different (possibly low-bidding) contractor.
In either case, it is rare that the individuals who developed the
software are the same to also maintain it.

The cost of performing maintenance is dependent on how easy
it is for a person to modify the software. Ease of modification
depends on many factors, most of which relate back to the
development methodology that was used. In particular, these
characteristics are discussed in "Ada Methodologies: Concepts
and Requirements" [Peter Freeman and Anthony I. Wasserman,
"Software Development Methodologies and Ada", Software
Engineering Notes, Vol. 8, No. 1, 19831. These characteristics
include unders tandability

,
readability, complexity, and

correctness.

The comparative study described in the following paragraphs
is modeled after the typical DoD software procurement. Figure 1

illustrates the overall structure and flow of information of the
comparative study.

The study concentrates on one primary issue: the imp act of
a lternative d evel opment methodologies on the mainta in ability of
Ada code. To the extent possible, all parameters of the study
have been chosen to maximize the collection of objective
information on this issue. The basic elements of the study
include

:

1. experts in each of several methods (see Appendix 1) create
Ada implementations for a specific problem (see Appendix 2);

2. each implementation is modified by each of several
maintenance teams;

3. the impact of the methodology on the maintainability of the
resulting Ada-coded systems is evaluated and reported.

Throughout the plan we have made assumptions and set
parameters to control the variability of the investigation. To
the extent that we have succeeded, the evaluation results will
provide new insight into the relative ability of various
characteristics of methodologies to reduce the cost of system
evolution

.

The investigation will be managed by an organization
experienced in project management and DoD procedures. This prime
contractor will run the investigation "development" as though it
were a normal contract; greater than normal oversight will be
needed, however, to perform data collection. A separate

Page 4

contractor will perform an informal independent verification and
validation (IV&V) function to insure that each "deliverable”
(design, code, documentation, etc.) meets the substantive
requirements of the project.

A single problem (outlined in Appendix 2) has been chosen
that is representative of a fairly broad sample of the problems
for which Ada is intended. We are not concerned with how easy it
is to learn or use different methodologies, so established
experts will be used to produce implementations that are as
nearly perfect an application of each methodology as possible.
Wherever feasible, the creator of a methodology should develop
the implementation.

In order to more strongly reflect the DoD software
acquisition environment, a change in requirements will be issued
during the development phase. This change is also expected to
discourage the developers from jumping too far ahead of schedule.

Variability in maintenance performance (caused by the
learning effect of multiple maintenance tasks by a single team
and differences in ability) will be controlled by using multiple
maintenance teams. To further control variability, each
maintenance team will maintain the systems in a different order,
providing a basis for statistical analysis of the resulting data.

Evolution of each system will be carried out using the
documentation that is developed as a product of the methodology,
a maintenance manual (see Appendix 4), and specific maintenance
instructions. The maintenance teams will carefully measure the
effort required to make modifications. Secondary information
will be obtained from the subjective evaluations of all parties
involved in the study (see Appendix 5).

This structural overview of the study defines the general
outlines of the investigation. The next section provides
detailed explanation of each aspect, a detailed project plan, and
some justifications for the particular choice of investigation
parameters made. More extensive discussion of the investigation
rationale is provided in the Discussion Section.

LEGEND:

DTi

=*

Development

Team

i

Page 5

I

li

qo tn

c sh a>u
^ 73

O
3 V3

03

C
co
—<
tn

0)

a

Figure

1:

Comparative

Study

Information

Flow

Page 6

STUDY PLAN

This section presents the proposed comparative study plan in
detail. The overall project is broken into five phases of
activity. Figure 2 indicates these major phases and shows the
major project personnel involved in each phase. The presentation
first discusses each major participant and then describes each
phase of activity.

P rim e Con tr actor

The entire comparative study must be under the management
control of a single organization; the substantive control of the
project, however, will be shared with the advisory board.
Specific characteristics and responsibilities include:

The contractor must be familiar with DoD procedures and (in
general terms) the software development methods and
philosophies involved in the study.

The contractor must not have any proprietary interest in any
of the development methodologies in the study and cannot
supply any of the: other personnel (e

.

g. IV&V team).

The contractor should provide sup port and administra tive
direction to the advisory board.

The contractor muist make this general pla n specific by setting
milestones, deliv ery dates, etc.

The contractor must insure that all requested data i s

collected

.

The contractor must monitor and be responsible f or the
successful completion of the study.

The contractor must draft the final technical summary of the
study

.

The contractor must publish and disseminate the results.

The contractor must provide liaison with other AJPO and
Ada-community activities.

Precise details of subcontracting are not a concern except that
it must be noted that: a) the prime contractor must have the
authority as well as the responsibility to make sure that the
study is successfully completed, and; b) contracting details
must not be allowed to interrupt or interfere with the
substantive work in any way that would prejudice the results.

Page 7

PARTICIPANT

Maintenance
Teams

Development
Teams

IV & V Team

Advisory Board

Prime Control

Approximate
Time (weeks)

PHASE

Figure 2: Study Plan

ACTIVITY

•—

LA

«

kkkk A

——.

—

» 0

AA Ai

-# -4

Ai-a

1'mii M M l ! It I ih htmif
\ T V)

'

i i I 1 i
* •

4->
** C 2O
•H
AJ

O)
E
CL

0
•H
4-1

00
c

cj O S3 u
•H r— 00 3 uu OJ c o> tfi CQ a.c
f-*

O)o 5 >
W a

• • • •
•-4 CN m sir LD

LEGEND:

• » Contact Point
A * Meeting

* Primary
Activity

* Secondary
Activity

Page 8

Adv is orv Board

The prime contractor will have responsibility for overall
control of the study. A high-level advisory board will share
responsibility for substantive technical decisions. We suggest a

board of fewer than 10 persons composed of one or more members
f rom

:

1. Ada Joint Program Office

2. prime contractor (technical person not under the control of
the project manager);

3. defense contractor (not otherwise involved in the study and
with no financial interest in any of the development
methodologies)

;

4. non-defense system developer;

5. academia;

6. the Ada community at large (chosen in as representative a

fashion as possible).

All members should be technically competent and capable of
substantively reviewing and contributing to the work being
conducted in the study.

The Board should be financially and administratively
supported by the prime contractor. A specific budget should
exist for obtaining specialized assistance (e.g. someone expert
in running studies of this type) if the Board decides it needs
additional information in order to fulfill its review
responsibilities.

The duties of the Board include:

1. reviewing and approving the detailed project plan;

2. reviewing and approving the choice of development
methodologies and teams, implementation teams, maintenance
teams, and IV&V teams;

3. reviewing and approving the problem statement, problem
change, maintenance changes, measurements to be taken, IV&V
procedures, and all other major technical decisions;

4. making an independent evaluation of the data and presenting a

written report to the prime contractor for inclusion in the
final report;

5. reviewing and approving the release of the final technical
summary of the study;

Page 9

6. writing and publishing an independent evaluation of the
study's methodology (to permit improvement of future
studies)

.

Develo pment Teams

There will be one development team per methodology chosen
for study. Wherever possible, the development team shall include
the developer of the methodology. The organization (number of
people, management structure) of each development team is
determined by that team, subject to the requirements and
constraints noted below in the description of each phase of work.

A development team shall not employ more than one method or
participate in more than one development effort that is a part of
this study. No member of a development team shall participate in
any other phase of the study except as noted.

Development teams will be responsible for implementing each
design in Ada on a common machine. Each development team shall
have members that are knowledgeable in Ada. Each team shall be
responsible for delivering the maintenance manual (see Appendix
4) in addition to carrying out the coding and checkout.

IVM. learn.

This team should be independent and unbiased. Its
responsibility is to ensure that the workproducts produced meet
the project standards. Although a single IV&V contractor should
be used, it is likely that separate teams will be assigned to
each development and maintenance team.

Maintenance Team s

The maintenance teams are a critical factor in the study and
must be carefully chosen. Their responsibilities and
characteristics include:

1. making specified changes to all systems in the study;

2. updating maintenance manuals to reflect the changes;

3. recording required data;

I

4. recording subjective observations on the ease of change in
each system;

Members of maintenance teams should be representative of
personnel that might be found in an Ada application situation:

Page 10

1. they should be competent in Ada coding, but not experts;

2. they should not have a detailed knowledge of any specific
development methodology;

3. they should have experience in reading and understanding
software documentation;

4. they should have significant experience in maintaining
software

.

The attempt is to simulate a maintenance group that may be
called upon to modify Ada code in an embedded system without
having participated in the design or coding process, working only
from the maintenance manual.

P roj ect Phase s

For each phase, we will define the primary focus and list
the major deliverables, activities, and considerations.

Phase 1_ i. Ini ti ations

Focus : Detailed planning and initiation of study.

Deliver ables : Detailed project plan, detailed technical
requirements, contracts with participant teams and advisory
board

.

Activit ies

:

1. form advisory board;

2. select and contract with all participant teams; the number
of development methodologies to be selected should be four or
fewer

;

3. refine statement of problera(s);

4. refine measurements to be taken;

5. outline final report;

6. establish secondary information to be collected;

7. establish IV&V procedures;

8. establish study monitoring mechanisms;

establish liaison with other AJPO and Ada-community projects.9 .

Page 1

1

C ons ider ations

:

The advisory board should be involved from
assist in making all technical decisions.

the start and

It is advisable to choose dissimilar development
methodologies, rather than choosing possibly competitive ones.

The problem stated in Appendix 2 is of moderate size so that
the developer can illustrate the development methodology
clearly, and so that others can comprehend the basic concepts
of the methodology. Ideally, the methodologies should also be
applied to a design problem of significant size, e.g., several
months of design work, which is more characteristic of
large-scale embedded systems applications. However, time and
cost considerations may make it infeasible for the
methodologies to be applied to a large scale problem, and the
results from the medium-sized problem of Appendix 2 may have
to suffice.

Every care should be exercised to review the functional
specf ications thoroughly before development begins to prevent
changes or misunderstandings. It is suggested all development
teams, the advisory board, and the prime contractor meet
before development begins.

Phase 2 - Developments

Focus : Design and implementation of system by different
development teams to satisfy Problem Statement (4 different
methodologies)

D eliv erables : One implementation by each team, maintenance
manual, IV&V report, measurements, observations, and other
software documentation as required by the methodology.

1. technical design, detailed design, and coding by each
development team;

2. response to a change in requirements;

3. observation and data collection on development activities;

4. verification that each development product (design, detailed
design, code) meets the functional specification;

5. production of maintenance manual;

6. IV&V of development activities.

Page 1

2

C onsi derations

:

An upper bound on the time for development should be
established, but each development team should have sufficient
time, in the team’s judgment, to produce as good an
implementation as possible using the methodology. Modifying
this consideration, however, is the requirement that the
software should be produced in a straightforward manner with
only normal time permitted for review and rework.
Specifically, complete redesign, recoding, or excessive
polishing should not to be permitted. The advisory board
should determine appropriate limitations.

The change in requirements should be determined by the
advisory board and the prime contractor at a meeting to be
held a few weeks after the start of development. It should be
a typical change that is representative of those that occur in
DoD. The actual change should not be known prior to this
meeting. The change must be issued simultaneously to all
development teams by the prime contractor.

Complete data collection and observational requirements and
techniques must be established in advance -- suggestions are
made in Appendix 3.

An IV&V team member should be assigned to each development
team to make independent observations and to relieve
developers of the burden of data collection (insofar as
possible). IV&V should not interfere with the progress of the
development.

Any questions or changes regarding the problem requirements
that arise during the development must be handled explicitly
by the project monitor. Questions should be transmitted in
writing to the prime contractor, who should prepare a written
reply, with the advice of the advisory board if necessary.
All replies must be distributed to all development teams.

Each development methodology is assumed to provide its own
definition of what information results from applying the
method (and in what form). This definition must be made
explicit and reviewed by the advisory board to insure
conformity with the information outlined in Appendix 4,
Section 3.

The study is not a race between methods. Rather it is a

comparison of development methodologies of different types.

The IV&V function is intended primarily to make sure that the
study requirements have been fulfilled, not to check the
technical accuracy or quality of the design.

Any major inconsistencies in the development or correct
operation of the code that is found by the IV&V team must be
corrected by the development team before any software is

Page 1

3

turned over to the maintainers.

The maintenance manual is outlined in Appendix 4. It should
contain all information about the software needed by the
maintainers. This information should describe the design
representation (charts, etc.) so that both the design
documentation and the code can be maintained.

Standard Ada coding must be employed in the implementation.

Coding style guidelines should be established and followed.

A standard test should be established so that each
implementation can be checked.

The maintenance manual should be completed, and verified to be
complete, for the maintenance activity.

Phase 1 - Chang e

; Focus : Change of each system to meet a specific set of change

|

requests.

Deliverables ; Changed systems, IV&V maintenance reports,
! measurements and observations.
i

||

l

Activities :

1 . code changing

;

2. documentation changing;

3. observation and data collection on maintenance activity;

4. IV&V of changes.

Considerations

:

It is critical and essential that the development and
maintenance teams not know the nature of the changes before
the initiation of this phase. It is suggested that the
advisory board develop the set of changes.

As with the implementation, the changes are to be made and
tested for accuracy against a standard set of tests.

The IV&V effort should verify the changes and validate the
system operation.

All changes should be reflected in the code, the maintenance
manual, and all other affected documentation.

Page 14

Phas e 4 ~ E valuation

Focus : Evaluation of the impact of the different methodologies
on maintenance from several different perspectives.

De live rables ; Individual evaluation reports, final report.

A ctiv ities

:

1 . evaluation of the correctness of changes to the software by
each development team;

2. evaluation of the change process by the maintenance teams;

3. evaluation of the changes by the advisory board;

4. collection and summary of individual reports by prime
contractor

.

Considerations

:

Individuals and teams involved in the study will perform an
evaluation and write a report on their perceptions of the
relation between the maintainability of each system and the
development methodology used to develop it.

The prime contractor has the responsibility for going beyond
these individual reports, to generalize from all of the data,
observations, and individual evaluations collected in earlier
phases. The advisory board will assist in refining this final
report.

Phase 5. - Reporting

Focus : Distribution of results to the technical community.

Deliver abl es : Distribution of reports, successful completion of
conf er ence

.

JLities

:

1 . widespread distribution of report;

2. conference to present and discuss results;

C onsi derations

:

The results of this study will not be definitive and will be
open to interpretation in most instances. It is essential
that an open forum be held to permit discussion of the
results, questioning of the methods used, and investigation of
the data collecting techniques.

Page 1

5

DISCUSSION

In this section we provide rationale for some aspects of the
study presented in the previous section and discuss several
alternatives

.

Overall St ructure

The overriding principle in devising the entire study is
s impl ic i tv . It is felt strongly that careful investigation of a

specific question can be more valuable than a more broadly-based
study providing less detailed data. This position is supported
by the impact of Dijkstra's use of structured programming and
levels of abstraction in the development of the T.H.E. operating
system [E.W. Dijkstra, "The Structure of the 'THE’
Mul tiprogrmraing System," CACM 11,5 (1968), pp. 341-346], Baker
and Mills' use of structured programming technology in the New
York Times experiment [F.T. Baker, "System Quality Through
Structured Programming," P roc AFI PS L9.Z2. FJCC, pp. 339—3 43 J »

and
Parnas' use of information hiding in the design of his KWIC
system [D.L. Parnas, "On the Criteria to be Used in Decomposing
Systems into Modules," CACM 15,12 (1972) , pp 1053-1058]. None
of these cases yielded statistically significant results and the
results were open to interpretation. Yet they have had an
extremely strong impact on the thinking of software developers
and have been widely adopted. A large measure of their impact
was due to their narrow focus, so that one associates pro j ect
success with the particular
employed.

new items of technology being

It is not anticipated that there will be a strong
differentiation between the various development methodologies
employed. Indeed, it would not be surprising if the final
conclusion is that the use of any. explicit development
methodology produces significant improvements in maintainability.
While many believe this already, a convincing demonstration would
go far toward facilitating the adoption of improved methods.

The conduct of this study is intended to provide a clear
model of the use of good software engineering project principles.
This is part of the motivation for use of IV&V

,
external

reviewers, and other devices.

P rime Contractor

A prime contractor was specified to maintain fidelity to the
way business is done in the Ada community and to have a single
point of control and responsibility for the project. Most of the
details of the study are in outline form to permit the prime
contractor to refine the plan to fit the specifics of the actual
investigation. This, coupled with the responsibilities of the
prime contractor, means that the organization fulfilling that
role must be highly capable of providing technical as well as
managerial leadership.

Page 1

6

Adv is orv B oard

There are three primary reasons for having an advisory
board. First, it provides the necessary technical overview for
the entire study by performing detailed tracking of the
investigation. While the prime contractor could do this alone,
it is better to separate, at least partially, the day-to-day
contract administrative matters from the technical advice so
neither is shortchanged. Second, since this study could have a

large impact, it is important to get the very best guidance
possible from as wide a segment of the technical community as
possible. Third, the board can serve as a resource for the prime
contractor

.

Development Te ams

It would be interesting to have multiple designs based on
each method in order to obtain quasi-s tatistical results. This,
however, introduces many more problems (capabilities of different
groups, for example) than it solves. As we noted above, we are
striving to obtain some results that can be as strongly
interpreted as possible. Thus, we have chosen to not address
issues such as whether a particular method can be applied in
production environments by someone other than its inventor. (All
of the methods suggested have previously been successfully
transferred .

)

IM. learn

The IV&V team is to mirror the actual development
environment that is promoted within DoD work. Furthermore, it
provides a simple way to assure that the technical work of the
study conforms to plan. Finally, it will introduce an added
guarantee of objectivity and, through their observational
activities, partially free the development teams from the
distraction of record keeping required by the nature of the
study

.

Maintenance Teams

It is often argued that the best programmers should be
assigned to the maintenance activity. However, it has been
observed that this rarely happens. Instead, the model has been
that maintainers are faced with a broken (or inadequate) piece of
equipment. They are given an instruction manual to go with their
limited knowledge of the design process that created the piece of
equipment. Their task is to fix the equipment. This analogy is
used with appropriate modifications to make it fit the software
situation

.

Page 1

7

P roi ect Phase s

Phase L - Initiation

As noted above this plan will need to be refined at the
start of the study to make it fit the actual situation at that
time and place. It is urged, however, that changes in structure
or intent be made sparingly and only after careful review.

A standard procedure in an investigation of this type is to
run a pilot study (perhaps on only one method) to help refine the
details of this plan. It is recommended that this be done in
this case. Methodological experimentation in general and
especially in the software area is still at a rudimentary stage.
Thus, it is impossible to specify accurately data collection
procedures, establish control and coordination mechanisms, and
foresee other problems. With a pilot study, the refined
investigation can be reasonably assured of success; without one,
there is a danger of a flawed investigation.

The problem selection -- an electronic mail system
comparable to the UC Berkeley mail system developed in the
Computer Systems Research Group -- was influenced by several
considerations, including the following:

t . a realistic problem of moderate size, i.e., nontrivial,
not huge;

but

2. limited expert knowledge needed;

3. a problem involving real time processing
concurrency

;

and potential

4. suitable for programming in Ada, involving Ada
as tasks, packages, and exception handling;

features such

5. balance between process design and data design
1

6 . a number of different possible solutions.

Outlining the final report is required during project
initiation. It is expected that this activity will force those
people responsible for its content (the prime contractor and the
advisory board) to precisely specify what information they must
collect during the investigation.

As noted above, there is only limited experience with measurement
of parameters of interest in this type of investigation. This
experience, though, shows that the measurement activities should
be planned from the outset and that ample time and resources
should be allocated for data collection during the investigation.

Page 18

PtLi.se 2: - Dg_y.glgpriig.nL

It is important to try to strike a balance between letting
developers have as much time as needed to produce "perfect"
software (necessary if we want an accurate test only of the
technical capabilities of the method) and reality in which there
is never enough time for perfection.

Making observations and collecting data in this type of
investigation takes a surprising amount of time and effort.
Since this normally would not be a part of a development effort
(it should be, but it usually isn't) these activities should not
interfere with the development any more than necessary. The
solution is the introduction of an IV&V team member as an adjunct
to each development team (this should be done during maintenance
as well) to help with the data collection. All of the teams must
expect to devote some effort to data collection, however.

Change during the development effort is inevitable since
formal specifications that can be interpreted in different ways
are being used. Careful review of the problem statement and a

face-to-face meeting between all developers and the project
management at the beginning should serve to prevent many of the
problems. For those that do arise, it is essential that everyone
have the same information so that implementation won't differ
because of differences in knowledge about the problem statement.

Maintainers of systems rarely have the luxury of direct
contact with the developers -- that is one of the factors that
makes maintenance so expensive. The critical issue in this
investigation is to determine the impact of various methods on
the maintenance of the resulting system. The impact may come
through two channels -- via improved structure in the design
itself and via improved structure in the documentation.

For most (if not all) of the methods that may be studied,
competent programmers should be able to understand the resu l

t

s of
applying a methodology with only a minimum of training (to be
supplied by the documentation itself). This same minimal
training should permit the maintenance team not only to use the
documentation to help speed up and improve the quality of the
maintenance activity but also to record their changes in altered
editions of the documentation. An interesting point raised by
one researcher (Rob Kling) is that the work style of the design
teams may have more influence than the method they use. While
this may be true, we do not know how to control for it and can
only warn the investigators to be on the lookout for such
effects.

An alternative to the entire structure of this investigation
would be to have construction teams implement a design developed
by design teams (as was defined in the original version of this
study). This would provide information relating to the
effectiveness of alternative design methods, however, it adds
considerable complexity and expense.

Page 1

9

Phase. 1 - CJiang.e

More than one maintenance team, representing different
organizations, should be chosen. Each maintenance team should
have exactly the same task -- to prepare a set of revisions to
e ach of the implementations.

Phas e 4 - Evaluation

Evaluation should be performed by as many different people
as possible since the subjective evaluations will be an important
adjunct to the data collected. Indeed, if several more or less
independent groups concur in their subjective evaluations, then
this will strengthen (or weaken) the objective data that is
collected. It will also help make the results more believable to
the community.

Phase 5. - Re porting

The purpose of holding a workshop
not to argue about them, but rather
probe how the results were obtained in
This will be beneficial in exposin
corrected in future investigations as w
more believable (because they are
communi ty

.

to present the resul ts is
to permit the communi ty to
as much detail as de si red

.

g weaknesses that can be
ell as making the r esul ts
open to inspection) to the

FURTHER STUDIES

Because software development is a relatively
would be superfluous to outline several possi
recent issue of Software Engineering Notes
contains several concrete proposals),
replicating this (or any) investigation
different circumstances would be notable.

new

[vol. 7,
but the

several

field, i t

es here (a
no. 1]

value of
times in

obj ecti ve
ed must be
decisions

However, two things need to be emphasized. First,
investigations of the ways in which software is develop
carried out to permit us to make more rational
regarding the way we organize and carry out system development.
Second, the investigative process must be refined greatly from
its present state.

ACKNOWLEDGMENTS

The work was aided by the results of the ACM SIGSOFT
Symposium on Tool and Methodology Evaluation, as published in
S oftwa re Engin eering Notes . vol. 7, no. 1 (January, 1982), pp.
6-74. Comments given on the initial draft of this document by
Ruven Brooks, Bill Curtis, Rob Kling, and Ben Shneiderman were
appreciated. Those of Deborah Boehm-Davis and Elizabeth Kruesi
were especially detailed and instrumental in preparation of the
final draft. Susan Richter did the artwork and assisted with the

Page 20

text editing and formatting. Comments affecting the edited

version of this report were provided by Elizabeth Kruesi, Barry

Boehm, J. A. McDermid, John Mellby (and other unnamed software
managers at Texas Instruments), and D. Lefkovitz.

Page 21

APPENDIX 1 - Suggested Methods for Study

We have identified upwards of 40 methodologies for software
development and have sent questionnaires to the creators of these
methodologies. (See "Ada Methodology Questionnaire Summary,” by
M. Porcella, P. Freeman, and A. I. Wasserman.) While we may
have overlooked some approaches, we believe that we have
identified those that have been most widely used.

In selecting methodologies to be compared, we have used four
subjective criteria:

1) widespread use

2) publicly available documentation

3) use of the method within DoD

4) mapping of design or specification primitives to Ada

However, not all of the recommended methodologies satisfy all of

j

the criteria.

We also have sought to identify methods spanning a range of
i

formalism. On that basis, we recommend that the comparative
study choose from the following methodologies:

1) STRADIS (McDonnell Douglas)

2) Yourdon

3) Jackson Design Method

4) HQS (Higher Order Software)

5) ISAC (Mats Lundeberg)

6) SADT (SofTech)

7) SARA (G. Estrin, UCLA)

Other potential candidates if broader diversity is desired, are:

1) HDM (SRI International)

2) Wellmade (Honeywell)
I

3) User Software Engineering (A.I. Wasserman, U.C. San
Francisco)

I

4) Warnier/Orr (Ken Orr & Associates)

5) PSL/PSA (D. Teichroew, U. of Michigan)

Page 22

APPENDIX 2 — Problem

This problem is divided into two parts: an initial problem,
which should be designed and coded in Ada, and a set of requested
changes that should be given to a maintenance team for redesign
and code modifications.

This is a moderate sized problem, exhibiting elements of real
time processing and concurrency, and necessitating both process
and data design. It is suitable for programming in Ada, and
represents a problem of realistic interest to the Ada community.
Although it is not in itself an embedded system, it could easily
be part of an embedded communication system.

The moderate size is intended to strike a balance between a

trivial problem that can be solved without the aid of any
development methodologies and the mammoth design problems that
characterize many of the larger command-and-control systems.

If time permits, the prime contractor could construct a much
larger design problem for the development teams. However, we do
not believe that such an exercise would be cost effective in
showing the efficacy of development methodologies.

The Problem S tatem ent

We wish to design and build an electronic mail system for a

distributed setting. The setting consists of one or more local
networks, each of which are known by an alphanumeric name of 1 to
8 characters, e.g. berkeley. These local sites are connected by
common carrier to the ARPA network.

Each local site has one or more machines. If a local network has
more than one machine, each is named by a single letter (upper or
lower case)

.

Every machine has one or more users, each of whom has a login
code of 1 to 8 alphanumeric letters, e.g., druffel. Each login
name is unique on a machine, but the same login name may exist on
any number of machines within the entire system. Thus, an
individual may have any number of login names, not necessarily
the same, on any number of machines at any number of sites.

Valid addresses may therefore be described by the following
syntax

:

[machine ":"] loginname [
,, § H site]

The following constructs are thus permissible:

f reeman
j ones@dec
v : wasserman

Page 23

A: good@texas

There are, within the network, a known set of sites at any time.
Furthermore, there is a known set of local machine
identifications at each site.

The command

mail addressee

will then accept text to be sent to the addressee at the
designated site and machine. Input is accepted until the input
stream receives an EOF character (ctrl-D). An alternative form
is to transmit a file to the addressee. This is accomplished
with the command

mail addressee < fname

where fname is a file for which the user has read/copy
permission.

If mail cannot be sent to addressee, the message is returned to
the person sending the message, preceded by the text

Could not send mail to "addr essee" -- text follows

It is then seen by the user as a message sent to oneself.

When a user logs on a given machine, the system will print the
message

You have mail.

if mail has arrived for the user (according to that login name
for that machine) since that user’s previous login. (Note: if
necessary for your solution, you may assume that transmission of
the message occurs within a day, but is not necessarily
immediate.

)

The user can then access the mail by typing the command

mail

with no parameters. If there are no waiting messages (the user
simply typed the mail command in the absence of the "You have
mail" message), the system will reply

No mail.

Otherwise, the system will produce a list of unread messages, in
the following form

N sender date lines/chars

where N is an integer, sender is the login name and site of the

Page 24

sender of the message, date is the time that the message was
received, lines tells how many lines are in the message, and
chars gives the number of characters in the message. (Note that
untransrai tted messages, as described above, are returned in this
manner .

)

Thus, the list might appear

1 freeman@eclb Sep 12 13:50 25/1204
2 wasserman@berkeley Sep 12 14:25 40/1723

The user may then issue the following commands:

N typing a number causes the message to be printed;
N must be a valid message number or a

diagnostic will be printed

dN causes message N to be deleted

s fname causes most recently printed message to be stored
in a local file named fname

h prints the header line for all unprocessed messages

q quit, saving any unread messages for the next login

Thus, the following sequence of commands would cause message 1 to
be printed and deleted, and message 2 to be printed and saved in
file berk.12Sep before quitting.

1

dl
2

s berk.12Sep
q

S ample Modif ications

We wish to make the following set of modifications to the system
described above. The result of this set of changes should be a

revised design document and revised code, along with supporting
documentation showing the affected modules and the relevant
design decisions. Wherever possible, the module changes should
be linked to the changed requirements.

(1) Allow user names to 1 to 10 characters instead of 1 to 8

characters

.

(2) Permit a message to be sent to more than one user at a time.
This may be accomplished in two different ways:

Page 25

a) mail addresseelist

where addresseelist is a sequence of (1 or more)
addressees with names separated by commas, e.g., mail
a:smith, J:williams, casey@bat

b) mail alias

where alias is a predefined string in a file of aliases
that creates an equivalence between the alias and a list
of addressees.

Thus, the entry

friends = a:smith, Jrwilliams, casey@bat

would cause the command

mail friends

to have the same effect as the command in part a).

(3) Add the reply command (r) to permit the user to reply
directly to the most recently processed message. Thus, if
one had read a message from freeman@eclb

,
the command

r

would accept input from the user and transmit it to
f reeman@eclb. Similarly, the command

r < fname

would transmit the contents of file fname to f reeman@eclb

.

(4) Add the list command (1) to permit the user to obtain a list
of all unprocessed messages in the same format as is given
in response to the original mail command.

Page 26

APPENDIX 3: Observational and Data Collection Requirements

NOTE: These requirements are only in outline form at this point. They must be expanded and

refined before the actual study is carried out A good reference for additional suggestions on

dita collection is Part V of Tutorial: Models and Metrics for Sojr*arc Management and Engineering

by Victor R Basili (IEEE Computer Society).

We suggest the following information, at least, be collected at each stage:

DESIGN

team information

names of all participants

technical background of each

environment description

working conditions

on-line aids

technical activity

accurate record of actual hours worked by individual

breakdown into categories, including

background research

meetings

working group sessions

individual technical work

documentation (low creative component)

non-project activity (interruptions, etc.)

*** where possible, measurements should be on 1/4 hour breakdown

technical results

number of modules

number of distinct data structures

pages of documentation

characters of documentation

CONSTRUCTION

team information as above

technical activity as above, but modified to include

coding

waiting for system

correcting compile errors

interpreting design

seeking clarification of design

results to include

number of Ada statements

number of declarations

number of characters in Ada representation

Page 27

CHANGE

team information

technical activity

time spent understanding change requests

lime spent understanding design,

time spent understanding code

time spent making changes to code

time spent making changes to design

time spent compiling changes

technical results

lines of code changed

number of modules changed

Page 28

APPENDIX 4: Maintenance Manual Outline

The Maintenance Manual must contain all information that the
maintainers of a system need in order to make changes
efficiently. The precise content of the information will depend
on the development methodology used, but the format of the
document should be approximately the same for each method.

1 . SYSTEM OVERVIEW

1.1 Basic purpose of system
1 .2 Functional description of operation
1 .3 Implementation considerations
1.4 Operational considerations
1 .5 Guide to Maintenance Manual

2. SYSTEM SPECIFICATION

2.1 Complete definition of all external functions
2.2 Complete definition of all external data items
2.3 Complete definition of all internal functions
2.4 Complete definition of all internal data items
2.5 All constraints (design, implementation, operation)

3. SYSTEM STRUCTURE

3.1 Overview of system modularization
3.2 Logical data definitions
3.3 Module Interface definitions
3.4 External module definitions

4. IMPLEMENTATION

4.1 Detailed design of modules
4.2 Physical data structures
4.3 Code listings

Page 29

APPENDIX 5 -- SADT Model of Project Plan

A complete SADT model consists of two kinds of diagrams:
activity diagrams (called actigrams) and data diagrams (called
diagrams). The view of an actigram is that data objects flow
between activities while the view of a datagram is that
activities during their operation access data objects. The only
difference is the center of attention. Only actigram models will
be discussed in this appendix.

THE ELEMENTS OF AN ACTIGRAM

An actigram depicts three to six activities which are
represented as boxes. The limit on the number of activities
depicted helps to limit the amount of information a reader of an
actigram must deal with. The boxes of an actigram are connected
by arrows which represent data objects. Actigrams are data-flow
diagrams. This means that the activity of a box takes place only
when the data objects represented by incoming arrows to a box are
present.

The positions of the arrows on the box determines what type
of data an arrow represents as shown in Figure 5.1. When input,
control, and mechanism objects are present, the activity uses the
m.echanism as an agent to transform the input data objects into
the output data objects under the guidance and constraints of the
control data objects. Activity names should be verbs, while data
object names should be nouns. Each activity must have at least
one control and output.

A double headed dotted arrrow may be used as a shorthand in
SADT to denote data relations between activities as shown in
Figure 5.2.

THE STRUCTURE OF AN SADT MODEL

Each actigram is an elaboration of an activity box in a

higher-level diagrsm called the parent diagrsm. If a page number
appears in parentheses just outside the lower righthand corner of
an activity box, then this number specifies the page of the
actigram which elaborates the box. The inputs, outputs,
controls, and mechanisms used in an actigram are the same as
those as those on the corresponding activity box in the parent
diagram. Each actigram should include from three to six activity
boxes.

The highest-level actigram of a model is the only exception
to the three to six activity rule and it presents only one
activity, the one being modeled. The inputs, outputs, controls,
and mechanisms which are used in the rest of the model are
specified on this highest-level actigram called A-0. The A-0
actigram represents the context in which the system being modeled
operates. As a part of the context the A-0 actigram explicitly

Page 30

states in prose the purpose of the model and from what viewpoint
the model was made.

CONTROL

INPUT

f

1

j
ACTIVITY

i i

OUTPUT

MECHANISM

Figure 5.1.

denotes

and

Figure 5.2.

SAOT^OI

AGHAM

FORM

ST098

9/75

Fonn

&

1975

SolTech.

Inc.,

400

To

lien

Pond

Road.

Waltham,

Mass

021

54.

USA

X
ui
K
Z
o
cj

LU
h-
<
Q

CC
Ul
Q
<
Ui
CC

a
2
5
CC

o
5

O

Ul ..

52
Q GC

o
r-

O)

00

r*

(O

in

«r

m

CN 5 ,> d
«

1

< cs v"

vS v£

£

'A—o

s
A)
et
<tc

£

a
CA

'Ai

<

l/\

Ck_

.C

^ a.

Z <

A)

2
c_
2
Q

\<

I

<
(ft

D

s
(N
o

* £

3) 2
a 5
s 5
I— a
on ^
2 x
X -
O 2X 3

2 s< v
X =
a =

Joa to

© ^
t- wQ =
< -
CO £

»i

on
to
r~m

£
o
X

X
XI
H
Z
o
u

X
1-

<
a

cc
X
a
<
X
cc

Q
X
a z
z o

(3 X t-

z <
H 5 (JX

ac
X
< o
a X

00O cc X 33 a cc X

*

x ..

H >
< XI
a cc

0

01

CO

I**

<
•=: o
ui OX -o.

5
C
Ct

<2l*«c
I:

CC “
9^
§ 3

H
<
G
x
oo
3

to

in

co

{N

V
00
X
H
O
z

SADT

^DIAGRAM

FOnM

ST090

9/75

Form

€>

1975

SolTech.

Inc..

460

Totten

Pond

Road.

Waltham.

Maw.

02154.

USA

U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report NoJ 3. Publication Date

BIBLIOGRAPHIC DATA
REPORT NO.

SHEET (See instructions) NBSIR 84-2827 March 1984

4. TITLE AND SUBTITLE

Comparing Software Development Methodologies for Ada: A Study Plan

5. AUTHOR(S)

Peter Freeman and Anthony I. Wasserman(Univ. of CA), Raymond C. Houghton, Jr., Editor

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

AJPO-83-27

8. Type of Report & Period Covered

Final Report

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Department of Defense
Ada Joint Program Office
3D139 (400AN), The Pentagon
Washington, D.C. 20301

10. SUPPLEMENTARY NOTES

| j

Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bl iography or literature survey, mention it here)

A study plan is presented that concentrates on the impact of alternative development
methodologies on the maintainability of Ada code. The basic elements of the study
include: (1) experts in each of several methods create Ada implementation for a

specific problem, (2) each implementation is modified by each of several maintenance
teams, and (3) the impact of the methodology on the maintainability of the resulting
Ada-coded systems is evaluated and reported.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Ada; software design, software development; software engineering; software maintenance;
software methodologies.

13. AVAILABILITY

[jjJ Unlimited

| |

For Official Distribution. Do Not Release to NTIS

| |

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

14. NO. OF
PRINTED PAGES

39

15. Price

[XJ Order From National Technical Information Service (NTIS), Springfield, VA. 22161
$8 . 50

USCOViM-DC 6043-080

