

NBS Publications

NBSIR 84-2816

Laboratory Evaluation of the **Steady-State and Part Load Performance of Absorption Type Heating and Cooling Equipment**

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory **Center for Building Technology Building Equipment Division** Washington, DC 20234

March 1984

Sponsored by:

-QC -

100

.U56

U.S. Department of Energy (via Oak Ridge National Laboratory) Washington, DC 20585 84-2316 1984

NBSIR 84-2816

LABORATORY EVALUATION OF THE STEADY-STATE AND PART LOAD PERFORMANCE OF ABSORPTION TYPE HEATING AND COOLING EQUIPMENT NATIONAL BUT = OF STATISTY LITERAL

160

1984

84.2816

Reinhard Radermacher Mark McLinden Sanford Klein David Didion

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Building Technology Building Equipment Division Washington, DC 20234

March 1984

Sponsored by: U.S. Department of Energy (via Oak Ridge National Laboratory) Washington, DC 20585

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

.

ABSTRACT

An absorption water chiller and an absorption heat pump were extensively tested under steady-state and cyclic operating conditions. The tests were performed on two different units, one for a cooling only and one for a heating only application, and the results are reported in two separate parts.

In addition to the "black box tests" of the units, the causes for the degradation during part load operation were investigated in more detail using the absorption chiller. Migration of the fluids during the off periods were found to be a major contribution to the degradation.

Furthermore, the influence of various heating water temperatures and flow rates and the sensitivity of the charge on steady-state performance was more closely investigated employing the absorption heat pump.

Key Words: Absorption heat pump; absorption water chiller; causes of degradation; part load performance; steady-state performance

ACKNOWLEDGEMENTS

This study was sponsored by the U.S. Department of Energy, Office of Building Energy Research and Development through the program management service of Mr. Robert DeVault of the Energy Division of Oak Ridge National Laboratory.

The support of R. Radermacher during this investigation by a scholarship from the NATO Science Committee by the German Academic Exchange Service is gratefully acknowledged.

TABLE OF CONTENTS

Abstract				•	•	•	•		•	•	•	•	•	•	•			iii
Acknowledgements		•		•	•	•	•		•	•	•	•	•	•	•	•	•	iv
List of Figures (Parts I and II)		•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	vi
List of Tables (Parts I and II)	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•	vii

PART I - TESTING OF THE ABSORPTION WATER CHILLER

Introduction	1
Experimental Set-Up	1
Testing Procedure and Evaluation	3
Results and Discussion	5
Steady-State Performance	5
Part Load Performance in the Original Operating Mode	5
Part Load Performance with the Valves in Operation	
and Without Insulation Applied	7
Part Load Performance with Insulation and the Valves in Operation	9
Part Load Performance at High Cycle Rates	11
Seasonal Performance	11
Conclusions	12
References	12
Appendix	15

PART II - TESTING OF THE ABSORPTION HEAT PUMP

Introduction	33
Experimental Set-Up	33
leat Pump Description	33
Test Facility	35
Instrumentation	35
Steady-State Test Procedure	36
Cyclic Tests	36
Results and Discussions	37
Steady-State Test Results	37
Cyclic Test Results	10
Charge Sensitivity	04
Further Tests	4
Conclusions	4
References	5
Appendix	+7

LIST OF FIGURES

Part I

Figure	1.	Scheme of the absorption water chiller under investigation	2
Figure	2.	Steady-State capacity of the absorption water chiller versus outdoor air temperature	6
Figure	3.	Part load factor versus cooling load factor for different cycle rates and operating modes of the absorption chiller	8
Figure	4.	Comparison of typical behavior of high- and low-side pressures during a cycle with and without valves in operation; spindown was enabled in the latter case	10
		Part II	
Figure	1.	Schematic of the absorption heat pump	34
Figure	2.	Coefficient of performance and heating capacity for the absorption heat pump as a function of ambient temperatures	38
Figure	3.	Effect of varying inlet load water temperatures on COP for three ambient temperatures	39
Figure	4.	Cyclic performance of the heat pump	41
Figure	5.	Capacity and evaporator inlet and outlet temperatures as a function of time for a typical cyclic test	42
Figure	6.	COP as a function of ambient temperature and refrigerant charge	43

LIST OF TABLES

Part I

Table 1.	Cyclic Test Results	14
Table 2.	Calculated Seasonal Performance Results	14
Table 3.	Thermocouple Locations, Absorption Chiller	16

Part II

.

Table 1.	System Pressures and Concentrations and Evaporator Conditions as a Function of Refrigerant Charge and	
	Ambient Temperature	46
Table 2.	Channel Numbers and Thermocouple Locations	48

.

PART I

TESTING OF THE ABSORPTION WATER CHILLER

INTRODUCTION

An experimental investigation designed to determine the part-load performance of an ammonia-water absorption water chiller is described. The steady-state and cyclic performance of the chiller were measured under controlled conditions in an environmental chamber. Two valves were installed in the chiller to separate high- and low-pressure regions during off times, and insulation was applied to the chiller components. By these measures, losses due to cyclic operation were reduced by over 50%, resulting in a 6% to 7% increase in the calculated seasonal performance factor for typical northern and southern climates in the United States. The use of the valves eliminated the need of the "spindown" period, thereby reducing the consumption of parasitic electrical energy.

EXPERIMENTAL SETUP

An air-cooled ammonia-water absorption chiller was used in the experimental investigation. The chiller was rated by the manufacturer as capable of cooling 0.45 1/s (7.2 gpm) of water from 12.8°C (55°F) to 7.2°C (45°F) at 35°C (95°F) outdoor dry-bulb temperature; this corresponds to a nominal capacity of 10,550 W (36,000 Btu/hr). The unit is fired by natural gas and requires an energy input of 23,150 W (79,000 Btu/hr) to the combustor. It was designed for residential service, with all of the absorption system components included in one modular package. Also included is a pump for circulating chilled water through the evaporator. The electrical energy required to run the blower and the chilled water and solution pumps is 1050 W.

The chiller was installed in an environmental chamber at the National Bureau of Standards in which the operating conditions (i.e., the air and inlet water temperatures) could be controlled. Air was circulated within the chamber to ensure a uniform air temperature. During cyclic tests, the air temperature was maintained within $\pm 1^{\circ}$ C ($\pm 1.8^{\circ}$ F) of the set point, while fluctuations during steady-state tests were less than 0.3° C (0.5° F). The test facility was designed to allow a once-through passage of chilled water through the evaporator at a constant inlet temperature of 12.8° C (55° F).

A schematic diagram showing the major components of the absorption chiller appears in Fig. 1. Thermocouples were installed at the inlet and outlet of every component, which provided meaningful temperature measurements at these locations when the solution pump was in operation. The thermocouples were connected to a data acquisition system, which recorded the temperatures at these locations at one-minute intervals.

The capacity of the chiller was obtained by measuring the flow rate and temperature change of the water flowing through the evaporator. A turbine meter was installed in the inlet stream and calibrated in situ at the design

- **1 CONDENSER**
- 2 REFRIGERANT HEAT EXCHANGER
- **3 EVAPORATOR**
- **4 SOLUTION COOLED ABSORBER**
- **S STRONG SOLUTION**
- WEAK SOLUTION
- a AMMONIA VAPOR
- W CHILLED WATER

- **5 RECTIFIER**
- 6 GENERATOR
- **7 SOLUTION PUMP**
- 8 AIR COOLED ABSORBER
- V VALVES BUILT IN TO SEPARATE HIGH AND LOW PRESSURE REGIONS
- T RESTRICTORS

Figure 1. Scheme of the absorption water chiller under investigation.

flow rate. An electronic counter was connected to the turbine meter to allow recording of the instantaneous and average flow during a test. The chilled water flow rate and inlet temperature were maintained constant at 0.45 l/s and 12.8°C (55°F) in all tests. Thermocouples were installed in the chilled water inlet and outlet streams close to the unit and were connected to the data acquisition system. In addition, two thermopiles were installed between the two streams and connected to a strip-chart recorder to provide a continuous record of the temperature difference. The estimated precision of the capacity measurement is within 1%.

The volumetric flow rate, temperature, and pressure of the natural gas were measured in each test. The higher heating value of the natural gas was determined in a calorimeter in operation at the National Bureau of Standards. The energy consumption of the combustor heating the generator was determined with an estimated precision of 2%.

Pressure gauges were mounted on the generator and absorber of the unit to measure the high- and low-side pressures. These pressures were recorded at the beginning and end of the burner on-time and spindown periods. In addition, for some cyclic tests, the pressures were recorded at short time intervals during the entire cycle. Both pressure gauges were calibrated on a deadweight gauge-tester prior to the tests.

Before most of the tests were conducted, two remote-activated ball valves were installed. Their positions within the unit are indicated in Fig. 1. In order to install the valves, it was necessary to remove ammonia and to replace it again after the work was completed. The ammonia charge was adjusted to maximize the steady-state capacity at the standard rating point (35°C [95°F] outdoor air temperature, 12.7°C [55°F] chilled water return temperature). This capacity was within 1% of that obtained before the valves were installed.

After testing the influence of the valves, the following parts of the absorption chiller were insulated with glass wool: the solution-cooled absorber, the receiver located before the solution pump, and the rectifier and that part of the generator that is not in direct contact with the burner. In addition, the panel between the components listed above and the condensing unit was insulated. To prevent further heat losses from the generator by convection, the exhaust for the flue gases was closed during off-times. The effect of the insulation on the steady-state performance was checked, and no change in the capacity was detectable.

TESTING PROCEDURE AND EVALUATION

All tests were conducted with a chilled water flow rate of 0.45 1/s (7.2 gpm) and a chilled water inlet temperature of $12.8^{\circ}C$ (55°F). Prior to each steady-state test, steady conditions were first established in the environmental chamber and then data were taken and averaged over a 30-minute period. The steady-state capacity, Q_{ss} , was determined by the relationship

$$\dot{Q}_{ss} = \dot{m}C_{p}\Delta T_{ss}$$
(1)

where m is the mass flow rate of chilled water, C_p is the specific heat of water, and ΔT_{ss} is the steady-state temperature difference between the inlet and outlet chilled water streams. Q_{ss} is the instantaneous capacity which is equal to the average capacity in steady-state operation

The steady-state coefficient of performance (COP_{ss}) is defined here as the ratio of the capacity to the sum of the rate of gas energy input to the combustors and the steady-state electrical power input to the blower and pumps, E_{ss} .

$$\dot{P}_{ss} = \frac{\dot{Q}_{ss}}{\dot{E}_{ss}}$$

This definition of COP weights the rate of gas energy input and power consumption equally. Since other equally appropriate definitions of COP exist, the experimental results in Tab. 1 contain the ratio of the electrical power to the rate of gas energy inputs.

COE

For the cyclic tests, steady conditions were first established in the environmental chamber. After a warm-up period, the unit was cycled on and off for the amount of time appropriate for each test for three cycles. The averaged data from the last two cycles were used in the following calculation.

The total cooling during a cycle, Q_{cvc}, was determined by

$$Q_{\rm cyc} = {}^{\star}{\rm mC}_{\rm p} \int_{t_1}^{t_2} \Delta T \, dt$$
(3)

where ΔT is the instantaneous temperature difference between the inlet and outlet chilled water streams and t_1 and t_2 are the times that the chilled water pump was turned on and off, respectively.

The pump operating time coincided with the burner on-time when the spindown period was disabled. Otherwise, the pump operating time was about 4.5 minutes longer than the burner on-time. (In the following discussion, the term "on-time" always means burner on-time, although the capacity was evaluated for the entire period in which the chilled water circulation pump was in operation.) The total gas and electrical energy input to the unit over the interval t_1 to t_2 , $E_{\rm CyC}$, was measured and used to calculate the coefficient of performance for cyclic operation.

$$COP_{cyc} = \frac{Q_{cyc}}{E_{cyc}}$$
(4)

(2)

The cyclic test data are presented in Tab. 1 in terms of a cooling-load factor and a part-load factor, similar to the factors used to describe the cyclic performance of vapor compression machines.⁵ The cooling load factor, CLF, is defined

$$CLF = \begin{pmatrix} Q_{cyc} \\ Q_{ss} & T_{cyc} \end{pmatrix}$$

(5)

(6)

where Q_{cyc} is the integral cyclic capacity over one cycle, Q_{ss} is the steady-state capacity rate at the same air temperature as for the cyclic test, and T_{cyc} is the cycle period which is the sum of the burner on- and off-times.

Defined in another (equivalent) way, CLF is the ratio of the cooling that is supplied at a particular outdoor air temperature to the steady-state capacity of the machine at that temperature. It is a dimensionless measure of the degree of part-load operation. Values near unity indicate that the machine must operate nearly continuously to meet the load; values near zero occur when the machine is off for most of the time.

The part-load factor, PLF, is defined

$$PLF = \begin{array}{c} COP \\ COP \\$$

The part-load factor is less than or equal to unity; it is a dimensionless measure of the performance penalty for cyclic operation.

RESULTS AND DISCUSSION

STEADY-STATE PERFORMANCE

Steady-state tests were conducted at air temperatures of $21.7^{\circ}C$ ($71^{\circ}F$), $26.7^{\circ}C$ ($80^{\circ}F$), $35.0^{\circ}C$ ($95^{\circ}F$), and $38.0^{\circ}C$ ($100.4^{\circ}F$). The test results appear in lines 1, 2, 3, and 4 of Tab. 1. A plot of the measured capacity versus air temperature is shown in Fig. 2. The capacity is strongly dependent on the air temperature, especially for temperatures higher than about $30^{\circ}C$ ($86^{\circ}F$). Increasing temperatures decreased the capacity significantly.

PART-LOAD PERFORMANCE IN THE ORIGINAL OPERATING MODE

Cycle rates were chosen for most of the tests according to the thermostat characteristics supplied by the manufacturer. (Thermostat cycle rates are not constant but rather a parabolic function of burner on-time.³ The maximum recommended cycle rate for this absorption chiller is about 1.5 cycles per hour (CPH), which occurs at 50% on-time. At 20% and 80% on-time, the cycle rate with the recommended thermostat is 1.0 CPH.)

Figure 2. Steady-state capacity of the absorption water chiller vs. outdoor air temperature.

The tests listed in lines 5, 6, 7, 8, and 14 of Tab. 1 were conducted to measure the part-load performance of the absorption chiller in its original operating mode (i.e., without additional insulation, without the valves in operation, and with the spindown period enabled). The tests shown in lines 5 and 8 were conducted under the same conditions but at the beginning and in between the other tests, respectively, to check the reproducibility of the experimental data, which was found to be satisfactory. During a cooling season, an absorption chiller is operated at a variety of cycle rates and outdoor air temperatures. Tests were conducted to determine how changes in the outdoor temperature affect the part-load factor (PLF) at a given cycle rate. The results in lines 5, 6, and 7 of Tab. 1 show that both the part-load factor and the cooling load factor (CLF) decrease with increasing outdoor air temperature. The deviation in PLF between 21.6°C (71°F) and 35°C (95°F) is about 7%, while the change in CLF is about 9% In an installation in which the chiller is appropriately sized, part-load operation is more likely to occur at temperatures below the design condition. Therefore, all of the remaining cyclic tests were conducted at $26.6^{\circ}C$ ($80^{\circ}F$) as a representative condition.

The circles in Fig. 3 show the experimental values of PLF plotted versus CLF for the absorption chiller in its original operating mode over a range of part-load operating conditions. The size of the symbols in Fig. 3 is indicative of the uncertainty in the measured values. For comparison, the part-load performance of vapor compression systems (at a maximum cycle rate of 3 CPH), as assumed in Ref 4, is indicated by line a in Fig. 3. The performance of the absorption system is not considerably lower than that of vapor compression systems when it is operated at the recommended cycle rate, which is about one-half the cycle rate for vapor compression systems.

PART-LOAD PERFORMANCE WITH THE VALVES IN OPERATION AND WITHOUT INSULATION APPLIED

In this section, the part-load performance of the chiller in its original operating mode (lines 5, 6, 7, 8, and 14 of Tab. 1) is compared with its performance when the valves are closed during the burner off-time and open during the burner on-time (lines 10 and 16). The spindown period was disabled when the valves were operated. Tests were also conducted in which the valves were closed after the spindown period was completed. However, these tests resulted in slightly lower part-load factors than those with disabled spindown, and they required significantly more electrical energy. Apparently, the operation of the valves eliminates the need of the spindown period.

Comparing the temperature changes within the unit during the on-time, it was obvious that the average temperatures during the cycle are closer to their steady-state values when the valves are operated than when they are not. Further, when the valves were operated, there was no time delay for the temperature rise of the fluid leaving the solution-cooled absorber. This time-delay, which was 1.5 minutes in the original operating mode, indicates that the liquid absorbent solution traveled during the off-time from the generator to the solution-cooled absorber and needed to be pumped back to the generator. A similar time-delay was observed for the capacity in the original operating mode. Again, it took approximately 1.5 minutes after turning on the unit

Part load factor vs. cooling-load factor for different cycle rates and operating modes of the absorption chiller. Figure 3.

until it started to cool down the incoming water. This time-delay was not present when the valves were operated.

The valves also affect the behavior of the pressures as illustrated in Fig. 4. During the off-time, the high- and low-side pressures converge to the same pressure, and then they both drop at the same rate in the original operating mode. The low-side pressure remains unchanged during the off-time when the valves are operated, while the high-side pressure drops significantly in the beginning of the off-time but then stabilizes at a relatively high value. During the on-time, the high-side pressure achieves higher values (closer to the steady-state values) when the valves are operated, while the low-side pressure remains stable at its steady-state value. The peaks shown by the high- and low-side pressures after turning off the unit were observed in all cases in which spindown was disabled including those cases in which the valves were not operated. They are due to time-delays in heat and mass fluxes in generator and absorber, respectively. During cyclic operation at high outdoor air temperatures, these peaks could cause the pressure relief valve to open. The peaks could be significantly reduced by a short spindown period, e.g., thirty seconds.

The above described behavior was qualitatively observed for all cycle rates. It indicates that, during the on-time, these variables return toward their steady-state values from higher initial values, resulting in an increased COP and PLF. The increase in performance is significant. For example, at 1.0 CPH and 20% on-time, the PLF increases by more than 13% (lines 5 and 10 of Tab. 1). In this case, the valve operation reduces the degradation in performance as a result of cyclic operation to almost half its original value.

Less electrical energy is used when the spindown period is disabled. The difference in electrical use increases as the on-time decreases. For 1.0 CPH and 20% on-time, the power consumption is reduced by 30%; this can be evaluated by comparison of the electricity to gas input ratio in Tab. 1 lines 8 and 10.

PART-LOAD PERFORMANCE WITH INSULATION AND THE VALVES IN OPERATION

The chiller was insulated as described earlier in an effort to further improve its part-load performance. The insulation produced no detectable change in the steady-state performance. With the insulation in place, the chiller was operated with the spindown period disabled and the valves in operation (Tests 11, 13, 17, 18, Tab. 1). The effect of the insulation could be seen by examining the temperatures at various points within the unit. With the insulation in place, the temperatures were generally higher when the unit was turned on. For example, the temperature of the weak solution leaving the generator was 75°C (167°F) at the beginning of the on-time in the case of the insulated unit and 47°C (117°F) when the unit was not insulated; the valves were operated in both cases. (For comparison, the steady-state value is 115°C [239°F]). The behavior of the pressures was, within experimental error, not affected by the insulation. Qualitatively, these effects were observed for all cycle rates.

Figure 4. Comparison of typical behavior of high- and low-side pressures during a cycle with and without valves in operation; on the latter case, spindown was enabled.

Insulating the chiller components improved the part-load performance of the chiller. The triangles in Fig. 3 show values of PLF plotted versus CLF for the insulated unit with the valves in operation and the spindown period disabled (Tests 11, 13, Tab. 1). The square symbol in Fig. 3 represents a test that was conducted without insulation (line 16, Tab. 1). However, since the PLF for this test was 0.994, a further increase in PLF due to insulation is not expected; the test result indicated by the square in Fig. 3 thus represents both the uninsulated and insulated results with the valves in operation. The PLF at 20% on-time and 1.0 CPH is 15% higher than that for the unit in its original operating mode. The insulation itself achieves an increase in PLF of 3% compared to operation of the valves alone, which is a much smaller contribution than that attributed to the operation of the valves alone (Tests 10, 11, Tab. 1).

PART-LOAD PERFORMANCE AT HIGH CYCLE RATES

The maximum cycle rate recommended for the absorption chiller (1.5 CPH at 50% on-time) is about half of that commonly employed for vapor compression systems. Lower cycle rates result in larger temperature fluctuations in the airconditioned space and, presumably, lower occupant comfort. To see if this disadvantage of the absorption chiller could be relaxed, the unit was tested with the insulation in place and with the valves in operation at 2.0 CPH, 20% on-time and 3.0 CPH, 50% on-time. The results are shown in lines 17 and 18 of Tab. 1. The performance is almost as good as for the lower cycle rates, which are displayed in lines 11 and 16. The maximum deviation in PLF is 2%. These results demonstrate that, with the insulation and valves, the absorption unit may be operated at cycle rates typical for vapor compression systems while still showing a considerably higher performance than vapor compression systems, as indicated by line a in Fig. 3.

In order to show the influence the cycle rate on the absorption chiller performance in its original operating mode, the chiller was tested at 3.0 CPH, 50% on-time. The test results appear in line 19 of Tab. 1. The PLF is 7% lower at the higher cycle rate than at the recommended cycle rate (line 14).

Higher cycle rates with spindown enabled result in a larger percentage of electrical energy input. A 37% reduction in electrical energy consumption is achieved at 3.0 CPH, 50% on-time, by eliminating the spindown period (Tab. 1 lines 18 and 19).

SEASONAL PERFORMANCE

The performance data obtained in this investigation were used to calculate the seasonal performance factor, SPF, of the absorption chiller. The seasonal performance factor is defined as the ratio of the total cooling load supplied to the total fuel and electrical energy consumed by the chiller during the cooling season. In the results given below, the fuel and electrical energy were equally weighted. To fairly compare absorption chillers with vapor compression machines, however, the electrical energy consumption should be divided by the efficiency of its generation for both systems. The calculations were made for residential applications according to the modified bin-temperature method given in Ref 5. The modified bin-temperature calculation procedure uses the information in Fig. 3 to estimate the part-load performance of the chiller in each temperature bin and thereby provides an estimate of the seasonal performance including the effects of cyclic operation. The calculations were done for a generalized northern and southern climate;⁵ the results are shown in Tab. 2.

Column 1 in Tab. 2 shows the values of SPF that would be achieved if the unit were to operate under all circumstances with the steady-state COP for any given air temperature. This is an upper limit for the SPF. Column 2 in Tab. 2 displays the SPF obtained by the unit in its original operating mode, while column 3 shows the SPF achieved by the unit with insulation in place, the valves in operation, and the spindown period disabled. Compared with the original operating mode, the insulation and valves increase the SPF by 7.0% in the southern climate and by 6.4% in the northern climate. Expressed in another way, these figures indicate that the losses due to part-load operation can be reduced by approximately 50% by the insulation and valves.

CONCLUSIONS

The results show that migration of the working fluids during the off-time is a major factor contributing to the degradation of the absorption chiller performance during cyclic operation. This migration can be reduced by the installation of automatic valves that separate the low- and high-pressure regions during the off-periods. The use of the valves eliminates the need for the spindown period and results in a significant reduction of electrical energy consumption during cyclic operation. Insulating the chiller components in this way also increased the part load performance but not to the same extent as the valves. A 6% to 7% increase in the calculated seasonal performance factor results from the use of the valves and insulation.

REFERENCES

- J. M. Froemming, B. D. Wood, and J. M. Guertin, "Dynamic Test Results of an Absorption Chiller for Residential Solar Application," <u>ASHRAE Transactions</u>, 85:II (1979), pp 777-786.
- W. H. Parken, P. E. Beausoliel, and G. E. Kelly, "Factors Affecting the Performance of a Residential Air-to-Air Heat Pump," <u>ASHRAE Transactions</u>, 83:1 (1977).
- 3. Low Voltage Room Thermostat, NEMA Standards Publication No. DC 3-1978, New York: National Electrical Manufacturers Association (1972).
- 4. G. E. Kelly and W. H. Parken, "Method of Testing, Rating, and Estimating the Seasonal Performance of Central Air-Conditioners and Heat Pumps Operating in the Cooling Mode," National Bureau of Standards, NBSIR 77-1271.
- 5. Proposed ASHRAE Standard 116, Methods of Testing for Seasonal Efficiency of Unitary Air Conditioners and Heat Pumps," (currently in public review).

6. James M. Guertin, "Residential Solar Absorption Chiller Thermodynamics," thesis, Mechanical Engineering Department Arizona State University, 1981.

No.	A	ir	Cycle	Burner	Burner	Electric to	Valves	Insula-	Spindown	PLF	CLF
	Te	mp.	Rate	On/off	On	Gas Input	Applied	tion	Enabled		
	°C(°F)	СРН	Time	Time	Ratio		Applied			
				[min]	percent	102		· · ·			
1	21.7	(71)	Stead	ly State	e Test	4.69	N.A.	no	N.A.	1.0	1.0
2	26.7	(80)	••		**	4.64	N.A.	no	N.A.	1.0	1.0
3	35.0	(95)	"		**	4.73	N.A.	no	N.A.	1.0	1.0
· 4	37.8	(100)				4.80	N.A.	no	N.A.	1.0	1.0
5	26.7	(80)	1	12/48	20	6.27	no	no	yes	0.771	0.153
6	21.7	(71)	1	12/48	. 20	6.10	no	no	yes	0.788	0.164
7	35.0	(95)	1	12/48	20	6.56	no	no	yes	0.735	0.149
8	26.7	(80)	1	12/48	20	6.26	no	no	yes	0.769	0.152
9	26.7	(80)	1	12/48	20	6.21	yes	no	yes	0.870	0.171
10	26.7	(80)	1	12/48	20	4.78	yes	no	no	0.882	0.172
11	26.7	(80)	1	12/48	20	4.86	yes	yes	no	0.918	0.180
12	26.7	(80)	0.6	10/90	10	6.52	no	yes	yes	0.679	0.068
13	26.7	(80)	0.6	10/90	10	4.75	yes	yes	no	0.783	0.076
14	26.7	(80)	1.5	20/20	50	5.68	no	no	yes	0.912	0.451
15	26.7	(80)	1.5	20/20	50	5.67	yes	no	yes	0.979	0.489
16	26.7	(80)	1.5	20/20	50	4.72	yes	no	no	0.994	0.491
17	26.7	(80)	2	6/24	20	4.87	yes	yes	no	0.898	0.175
18	26.7	(80)	3	10/10	50	4.86	yes	yes	no	0.996	0.483
19	26.7	(80)	3	10/10	50	6.65	no	no	yes	0.849	0.429

TABLE 1Oyclic Test Results

TABLE 2 Calculated Seasonal Performance Results

	Maximum Achievable SPF	Absorption Chiller in Original Operation Mode	Modified Absorption Chiller
Southern Climate	0.434	0.387	0.413
Northern Climate	0.436	0.386	0.405

APPENDIX

Experimental Data in Detail

In the following, the original experimental data will be presented for all the tests performed. Table 3 gives all thermocouple locations. In Table 4, all steady-state test data are presented. The cyclic test data follow.

Channel No.	Location
0	Icebath
1	Pump in
2	Pump Out
3	Solution into Cenerator
4	Solution out of Generator
5	Solution into Absorber Heat Exchanger
6	Unit Planum Air DR
7	Ammonia into Condensor
8	Ammonia out of Condenser
q	Ammonia into Evaporator
10	Ammonia out of Evaporator
11	Ammonia out of Evaporator
12	Liquid Ammonia into Pofr Heat Fy
13	Liquid Ammonia aut of Pofri Hoat Fr
14	Coporator Top
15	Generator Top Middlo
16	Pottom
17	Solution cooled Abcorbor Ten
18	Bottom
10	Air appled Absorber Petter
20	
20	Tep
21	Condonaer Ten
22	Middle
25	Retter
25	Evaporator Top
26	Evaporator rop Middlo
20	Rottom
28	Air Inlot
20	Air off Condensor Coile
30	Stack Cases
31	Water Inlat
32	Water Intel Water Outlet
33	Water Bunnes
3/1	Ambiant Air DR
25	Ambient Air UB
36	Temperature Difference Mater Inlet/Outlet (16 Junction
50	Thermonila Panding in mU)
37	Europarator Mator Discharge Line
38	Evaporator Water Discharge bine
30	Evaporator water bottom
40	Top
40	Top Evenerator Mater Inlet Line
42	Solution out of Aboorbor
43	Solution out of Absorber Coils
44	Absorbent into Absorber
45	Refrigerant into Refr. Heat Fy
46	Cas Supply Temperature
47	Teebath
	100 dell

1	1	1		totot florent in	Hz x 2.247 ⁻¹⁰ = water	TTOWIALE IN GAL/MIN.								
4	30	37.6	5.2	29.6	326	59/325	534	239	8.9	49.0	66	41	.085	100
e S	30	37.6	5.2	29.7	325	57/310	528	233	8.5	50	100	42	.087	95
2	30	38.25	5.2	29.6	326	42/260	526	222	0.6	50	66	40.5	.053	80
1	30	38.2	5.2	29.5	324	36/245	524	219	I	ł	1	ł	0.53	71
NUMBER OF TEST	Time (min)	Gas Meter (ft ³)	Gas Pressure (in H ₂ 0)	Bar. Pressure (in Hg)	Water Flow Rate (Hz)	Pressures Low/High (psig)	Power to Unit (kWh)	Power to pumps only (kWh)	Oxygen %	CO ₂ Sample %	Span %	Zero %	Composition of Weak Solution $\left\{\begin{array}{c} \text{lb} (\text{NH}_3) \\ \text{Ib} (\text{NH}_3 + \text{H}_20 \end{array}\right\}$	Outdoor Temperature °F

STEADY-STATE TEST DATA

No. 5	A	ß	Cyclic Test C	12/45 min on/off time 20% on time	80°F outdoor temperature
Burner on time (min)	12	12	12		
Gas meter (ft ³)	15.35	15.30	15.2		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in hg)	29.1	29.1	29.1		
Water flow rate (Hz)	323	323	323		
Power (cycle) kWh	275	277	276		
Pressure: Low/high side (psig) at start of burner on time: at end of burner on time: at end of spin down:	112 71/75 45/259 36/153	112 67/175 45/256 33/150	112 50/56 45/260 33/145		
Capacity (Btu/hr)	5479	5482	5459		
Gas input (Btu/hr)	15352	15340	15238		
Electricity (Btu/hr)	941	945	942		
coP _{cyc}	.337	.337	.337		
PLF/ CLF	.77/.15	.77/.15	.77/.15		
Steady State COP Capacity	.439 35500				

No. 6	A	ß	Cyclic Test 1 2 C	.2/48 min on/off time 20% on time	70°F Outdoor temperature
Burner on time (min)	12	12	12		
Gas meter (ft ³)	16.0	15.4	15.4		
Gas pressure (in H_2^{0})	5.2	5.2	5.2		
Barometer (in Hg)	29.1	29.1	29.1		
Water flow rate (Hz)	320	323	32.3		
Power (cycle) kWh	285	276	271		
<pre>Pressure: Low/high side (psig) at start of burner on time:</pre>	114 42/47	113 58/65	115 60/67		
at end of burner on time: at end of spin down:	36/235 23/130	37/242 -/-	-/-		
Capacity (Btu/hr)	6018	5845	5805		
Gas input (Btu/hr)	15957	15358	15373		
Electricity (Btu/h)	972	141	926		
COP _{cyc}	.356	.359	• 356		
PLF/ CLF	.785/.167	.792/.162	.786/.161		
Steady State COP Capacity (Btu/hr)	.453 36122				

No. 7	A	В	U	12/48 min on/off time 20% on time	95°F Outdoor temperature
Burner on time (min)	12	12	12		
Gas rate (ft ³)	15.01	14.99	15.04		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in hg)	29.6	29.6	29.6		
Water flow rate (Hz)	325	323	324		
Power (cycle) kWh	289	292	287		
Power pumps only kWh Pressures: burner on burner off unit off	118 84/90 58/305 45/179	118 68/110 58/307 39/190	116 85/92 58/304 40/195		
Capacity (Btu/hr)	4921	4793	4730		
Cas input (Btu/h)	15009	15009	15049		
Electricity (Btu/h)	986	966	979		
coP _{cyc}	.308	.299	.295		
PLF/CLF	.753/.151	.732/.147	.721/.145		
Steady State COP Capacity	.409 32600				

No. 8	A	В	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	12	12	12		
Gas meter (ft ³)	15.05	15.7	15.4		
Gas pressure _, (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.6	29.6	325		
Water flow rate (Hz)	325	324	325		
Power unit (kWh)	272	282	289		
Power pumps only (kWh) Pressure (psi) burner on burner off unit off	110 36/120 47/267 42/155	115 53/60 46/262 32/150	116 77/85 47/270 35/150		
Capacity (Btu/hr)	5266	5607	5609		
Gas input (Btu/h)	14959	15655	15307		
Electricity (Btu/h)	928	962	986		
COP _{cyc}	.331	.337	.344		
PLF/CLF	.754/.148	.768/.158	.784/.158		
Steady State COP Capacity	.439 35500				

			Uyciic Test	12/48 on/off time	80°F 0.+ 400
No. 9	A	В	C	20 % on time	temperature
Burner on time (min)	12	12	12		
Gas meter (ft ³)	15.6	15.5	15.4		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.1	29.1	29.1		
Water flow rate (Hz)	323	323	323		
Power unit (kWh)	286	281	277		
Power pumps only (kWh) Pressure (psi) burner on burner off unit off	114 18/141 45/259 32/155	114 25/145 45/260 33/148	112 18/137 44/264 32/150		
Capacity (Btu/hr)	6270	6329	6297		
Gas input (Btu/h)	15589	15539	15439		
Electricity (Btu/h)	975	959	945		
cop _{cyc}	.379	.384	.384		
PLF/CLF	.87/.384	.87/.380	.87/.382		
Steady State COP Capacity	35500				

No. 10	A	£	Cyclic Test C	<pre>12/48 on/off time 20 % on time</pre>	80°F Outdoor temperature
Burner on time (min)	12	12	12		
Gas meter (ft ³)	15.2	15.2	15.2		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.7	27	29.7		
Water flow rate (Hz)	320	322	320		
Power unit (kWh)	211	213	212		
Power Pumps only (kWh) Pressure (psi) burner on burner off unit off	89 35/168 45/270 -/-	89 37/157 42/262 -/-	88 38/160 45/262 -/-		
Capacity (Btu/hr)	6240	6087	6150		
Gas input (Btu/h)	15238	15238	15231		
Electricity (Btu/h)	720	727	723		
COP _{cyc}	.391	.381	.385		
PLF/CLF	.88/.17	.88/.17	.11/.17		
Steady State COP Canadity	.439				

No. 11	A	£	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	12	12	12		
Gas meter (ft ³)	15.2	15.1	15.2		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.7	29.7	29.7		
Water flow rate (Hz)	322	327	328		
Power unit (kWh)	213	214	217		
Power Pumps only (kWh) Pressure (psi) burner on burner off unit off	90 38/162 43/265 -/-	89 37/160 45/265 -/-	92 38/160 46/273 -/-		
Capacity (Btu/hr)	6403	6328	6431		
Gas input (Btu/h)	15193	15059	15159		
Electricity (Btu/h)	727	730	740		
COP _{cyc}	.403	.401	.405		
PLF/CLF	.918/.180	.913/.178	.922/.181		
Steady State COP Capacity	.439 35500				

24

No. 12	Ą	ß	Test	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	10	10	10		
Gas meter (ft ³)	12.75	12.76			
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.6	29.0	29.0		
Water flow rate (Hz)	326	325	326		
Power unit (kWh)	244	249	242		
Power Pumps only (kWh) Pressure (psi) burner on burner off unit off	98 68/75 45/258 35/150	98 67/75 44/252 32/153	96 69/75 46/250 33/155		
Capacity (Btu/hr)			4019		
Gas input (Btu/h)	CHART DRIVE OUT	r of order	12678		
Electricity (Btu/h)			826		
COP _{cyc}			.298		
PLF/CLF			.679/.068		
Steady State COP Capacity	.439 35500				

No. 13	A	ß	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	10	10	10		
Gas meter (ft ³)	12.58	12.6	12.5		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.7	29.7	29.7		
Water flow rate (Hz)	324	321	324		
Power unit (kWh)	177	175	177		
Power pumps only (kWh) Pressure (psi) burner on burner off unit off	74 36/137 44/258 41/301	72 36/140 45/265 41/304	74 35/140 36/142 -/-		
Capacity (Btu/hr)	4616	4540	4510		
Gas input (Btu/h)	12617	12638	12537		
Electricity (Btu/h)	604	597	604		
COP _{cyc}	.349	.343	.343		
PLF/CLF	.745/.078	.781/.277	.782/.076		
Steady State COP Capacity	.439 35500				
No. 14	A	æ	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
--	--	-----------------------------------	--------------------------------------	-----------------------------------	-----------------------------
Burner on time (min)	20	20	20		
Gas meter (ft ³)	25.65	25.4	25.7		
Gas pressure (in H ₂ ⁰)	5.2	5.2	5.2		
Barometer (in Hg)	29.35	29.35	29.35		
Water flow rate (H_z)	32.3	325	323		
Power (cycle) kWh 417 174	$\left\{\begin{array}{c} 17/17 \\ 45/265 \\ -/ - \end{array}\right.$	426 86/94 174 48/275 35/150	422 (90/100 173 (47/270 34/155		
Capacity (Btu/hr)	10673	10702	10855		
Gas input (Btu/h)	25452	25204	25502		
Electricity (Btu/h)	1422	1453	1439		
coP _{cyc}	.397	.401	.403		
PLF/CLF	.904/.45	.915/.45	.918/.46		
Steady State COP Capacity	.439 35500				

			Cyclic		
No. 15	A	B	Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	20	20	n		
Gas meter (ft ³)	25.35	25.65	Z 0 E		
Gas pressure (in H ₂ 0)	5.2	5.2	ны.		
Barometer (in Hg)	29.35	29.35	¥Ω;		
Water flow rate (Hz)	323	32.3	Y :		
Power unit (kWh)	422	418	3 ⊲ 8		
Power pumps only (kWh) Pressure (psi) burner on burner off	171 30/150 47/270	173 30/150 47/273	- ш ж		
unit off .	-/-	33/155	ΗÞ		
Capacity (Btu/hr)	11350	11617	ο X ο		
Gas input (Btu/h)	25154	25452	ч EJ F		
Electricity (Btu/h)	1439	1426	4 4 E		
COP _{cyc}	.427	.432	- D 4		
PLF/CLF	.972/.48	.985/.49	द म्य		
Steady State COP Capacity	.439 35500				

91 -14		P	Cyclic Test	12/48 on/off time	80°F Outdoor
NO. 10	A	B	c	ZU % on time	temperature
Burner on time (min)	20	20			
Gas meter (ft ³)	25.3	25.45			
Gas pressure (in H ₂ 0)	5.2	5.2			
Barometer (in Hg)	29.35	29.35			
Water flow rate (Hz)	322	325			
Power unit (kWh)	348	353			
Power pumps only (kWh) Pressure (psi) burner on burner off unit off	149 38/210 46/258 -/-	149 30/205 47/270 -/-			
Capacity (Btu/hr)	11451	11552			
Gas input (Btu/h)	25105	25253			
Electricity (Btu/h)	1187	1204			
COP _{cyc}	.436	.437			
PLF/CLF	.992/.48	.995/.49			
Steady State COP Capacity	.439 35500				

No. 17	A	ß	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	9	6	9		
Gas meter (ft ³)	7.5	7.5	7.25		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.5	29.5	29.5		
Water flow rate (Hz)	325	326	327		
Power unit (kWh)	105	109	109		
Power pump only (kWh) Pressure (psi) burner on burner off unit off	45 37/200 49/260 -/-	45 42/170 49/265 -/-	45 43/190 50/260 -/-		
Capacity (Btu/hr)	3181	3095	3099		
Gas input (Btu/h)	7479	7479	7579		
Electricity (Btu/h)	358	372	372		
coP _{cyc}	.406	.394	• 390		
PLF/CLF	.925/.179	.898/.174	.888/.175		
Steady State COP Capacity	.439 35500				

30

No. 18	A	В	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
urner on time (min)	10	10			
Gas meter (ft ³)	13.0	12.5			
3as pressure (in H ₂ 0)	5.2	5.2			
Sarometer (in Hg)	29.7	29.7			
Vater flow rate (Hz)	325	323			
Power unit (kWh)	179	178			
Power pumps only (kWh) Pressure (psi) burner on burner off unit off	72 80/125 46/265 43/305	78 45/245 49/278 46/320			
Capacity (Btu/hr)	5708	5736			
as input (Btu/h)	12487	12437			
<pre>ilectricity (Btu/h)</pre>	610	610			
Coperation	.436	440			
PLF/CLF	.993/.482	1.0/.485			
Steady State COP Capacity	.439 35500				
		CYC	CLIC TEST DATA		

No. 19	A	Ø	Cyclic Test C	12/48 on/off time 20 % on time	80°F Outdoor temperature
Burner on time (min)	10	10	10		
Gas meter (ft ³)	12.75	12.75	12.7		
Gas pressure (in H ₂ 0)	5.2	5.2	5.2		
Barometer (in Hg)	29.4	29.4	29.4		
Water flow rate (Hz)	324	326	325		
Power unit (kWh)	250	251	24.7		
Power pumps only (kWh) Pressure (psi) burner on burner off unit off	107 77/122 45/256 31/137	100 65/116 45/256 32/150	101 77/127 47/262 35/149		
Capacity (Btu/hr)	5060	5182	5041		
Gas input (Btu/h)	12788	12788	2738		
Electricity (Btu/h)	853	856	843		
cop _{cyc}	.371	.380	.371		
PLF/CLF	.845/.428	.865/.430	.846/.426		
Steady State COP Capacity	.439 35500				

PART II

TESTING OF THE ABSORPTION HEAT PUMP

INTRODUCTION

A gas-fired air-to-water heating only absorption heat pump using ammonia and water as the working fluid has been investigated. This machine is a prototype unit developed by an American investigator under Government sponsorship and was tested in an environmental chamber. The steady state COP (based on total energy input) and capacity ranged from 0.81 and 14.3 kW at an ambient temperature of -21°C to 1.14 and 15.9 kW at 16°C with an inlet water temperature of 41°C. The sensitivity of the steady-state performance to inlet water temperature was also investigated. The performance was significantly decreased by cycling; for example, at a cycling rate of two cycles per hour and 20 percent burner on time the COP was 0.53 of the steady-state value.

In the second set of steady-state tests samples of the strong and weak absorbent were taken, heat flows across the components of the absorption cycle were measured and the sensitivity to varying refrierant charges was investigated. The performance of the heat pump was found to be sensitive to the charge of ammonia with the optimum charge a function of ambient temperature.

EXPERIMENTAL SET UP

HEAT PUMP DESCRIPTION

The unit tested in this study was an air-to-water absorption heat pump using ammonia and water as refrigerant and absorbent. It is fired by natural gas and is designed for heating-only operation in a residential application. The complete absorption cycle, burner, controls, etc. are contained in a single package which will be located outdoors; only the heating coil and load water circulating pump would be located inside.

The heat pump utilizes an ammonia-water absorption cycle with the addition of flue gas heat exchanger as shown in Fig. 1. In the generator, direct firing by natural gas supplies the heat necessary to boil refrigerant vapor out of the weak absorbent returning from the absorber. Cooling water flows in parallel to the absorber and condenser. The rectifier employs a "triple heat exchanger" which preheats the weak absorbent flowing into the generator by both cooling the exiting strong absorbent and partially condensing the exiting vapor, thus purifying the refrigerant vapor.

In the falling-film type absorber, solution absorbs refrigerant vapor as it drips over tubes while load water inside the tubes removes the heat of absorption.

The evaporator is a finned coil which extracts heat from ambient air, vaporizing liquid refrigerant supplied by the condenser.

Defrosting of the evaporator coil is accomplished by routing refrigerant vapor from the rectifier through the solenoid-operated defrost valve directly to the evaporator. A defrost is initiated when the difference between the ambient and evaporator outlet temperatures exceeds a given value which depends on ambient temperature. For the purposes of these tests the temperatures were monitored and the defrost cycle was initiated manually.

TEST FACILITY

The heat pump was tested in an environmental chamber with controlled dew point and dry bulb temperatures. The chamber had sufficient volume such that air was internally circulated to insure a uniform temperature distribution. Ambient air temperature was maintained within ± 0.3 °C during steady state tests and ± 1 °C during cyclic tests.

Load water circulates in a closed loop between the heat pump and indoor heating coil which would normally be located in a supply air duct. In the test facility, this was modified to a once-through flow arrangement with a constant ($\pm 0.2^{\circ}$ C) water temperature supplied to the unit. This arrangement eliminated any transient effects of an indoor coil during cyclic operation and provided better control of the water temperature.

INSTRUMENTATION

The mass flow rate of the load water, \dot{M}_{load} , was measured with a turbine flow meter. The temperature rise of the water was measured with a 16 junction copper-constantan thermopile installed in thermowells. Literature values were used for the specific heat capacity, C_p of water.

The gas input to the heat pump was measured with a dry volume flow test meter. The volume of gas used by the machine over a given time was corrected to standard conditions and multiplied by the higher heating value of the gas, which was determined on the NBS site daily, to obtain the energy supplied. The electrical energy needed to power the solution pump, fan and controls was measured with a watt-hour meter.

A turbine flowmeter and thermopile were installed in the condenser water loop so that the heats of condensation and absorption could be separated. A thermopile was installed across the air side of the evaporator to measure the temperature change of the air. This ΔT was multiplied by a measured correction factor to account for the temperature distribution over the evaporator coil. The volume rate of the air flow was determined by traversing a vane anemometer across the face of the evaporator coil were used to calculate the heat supplied to the evaporator. Finally, samples of the strong and weak absorbent were taken for determining the mixture composition.

In addition to these data, the temperatures at various points in the cycle (as indicated in Fig. 1) were measured with thermocouples attached to the outside of the tubes. The pressure in the generator and absorber were recorded. The heat input to generator and the gas heat exchanger was determined by an analysis of the combustion products in the exhaust. The heat lost through the exhaust stack was calculated from the temperature of the flue gas (measured by a six junction averaging thermocouple) and its CO₂ content determined by an infrared analyzer.

The output of the thermocouples, thermopiles and pressure transducers were scanned by a datalogger and stored by a microcomputer. The gas and electric consumption and turbine flowmeter readings were recorded manually.

STEADY-STATE TEST PROCEDURE

The steady-state tests followed the procedures outlined in (1) where applicable. The entire test set up was operated until steady conditions were obtained. A test lasting for 30 minutes was then started. The datalogger recorded data every two minutes; the gas, electric and flow meters were recorded at the beginning and end of the test, and samples of the weak and strong absorbent were taken and analyzed. Average values for all measurements were then used for analysis.

The primary indices used for the performance of a heat pump were COP and capacity. The heating capacity of the unit was determined by:

$$\dot{q}_{load} = \dot{M}_{load} C_p \Delta T$$
 (1)

(2)

)

The coefficient of performance was defined as:

$$COP = \frac{Q_{load}}{\dot{Q}_{gas} + \dot{E}_{elec}}$$

CYCLIC TESTS

In the cyclic tests, which also followed the procedures of (1), part load operation was simulated by manually cycling the unit on and off. The chamber and water supply were allowed to reach the desired conditions and then the heat pump was turned on and allowed to reach steady-state. The unit was then turned off for the predetermined time and cycled on and off for two or three complete cycles until reproducable behaviors were observed. The next cycle was then used for the determination of cyclic performance. During the "off" portion of the cycle the load water system continued to operate, but the water was diverted past the heat pump.

Cycling rates of 1.5 and 3 cycles per hour at 50% burner on time were tested. At 20% on time, the rates were decreased to 1 and 2 CPH following the characteristic parabolic thermostat behavior as discussed in (2). The on time refers to that fraction of a complete cycle where the burner is operating. The machine continued to operate for a 3.5-4 minute "spindown" period after the burner shut off to recover residual heating capacity in the unit.

The total heat provided by the heat pump during a cycle was given by:

$$Q_{\text{load,cyc}} = \dot{M}_{\text{load}} c_p \int_{t_0}^{t_2} \Delta T \, dt$$
 (3)

where the temperature difference of the water entering and exiting the unit, ΔT , was integrated between t_0 , the time at which the unit was turned on and t_2 , the time the machine was shut off (i.e., after "spindown"). This was determined by integrating the output of the load water thermopile recorded on a strip chart recorder with a planimeter. The energy input to the machine during a cycle is the total gas input from t_0 to t_1 , the time that the burner was operating and the electrical input measured for the entire cycle length τ . The cyclic coefficient of performance was then calculated by:

$$COP_{cyc} = \frac{Q_{load,cyc}}{t_1 \quad t_0} \int_{t_0}^{\tau} \dot{Q}_{gas \ dt} + \int_{0}^{\tau} \dot{E}_{elec} \ dt$$

The cyclic performance can also be expressed as a fraction of the steady-state performance. The heating load factor, Γ_h , represents the fractional capacity in cyclic operation:

$$\Gamma_{\rm h} = \frac{Q_{\rm load,cyc}(T)}{\dot{Q}_{\rm load,ss}(T) \bullet \tau}$$
(5)

(4)

where $\dot{Q}_{load,ss}$ is the steady-state capacity and τ is the time for a complete cycle. The COP penalty in cyclic operation is given by the part load factor:

$$PLF = \frac{COP_{cyc}(T)}{COP_{cs}(T)}$$
(6)

where COP_{ss} is the steady-state coefficient of performance, determined for the same ambient temperature as COP_{cvc}.

RESULTS AND DISCUSSIONS

STEADY-STATE TEST RESULTS

The steady-state performance of the heat pump was tested over a range of ambient and inlet load water temperatures. The coefficient of performance and the capacity variations with ambient temperature are shown in Fig. 2 for a load water temperature of 41°C and flow rate of 0.38 &/sec (which are the manufacturer's design conditions). The COP and capacity curves have similar shapes because the energy inputs were almost independent of the ambient temperature. The gas input varied from 13.4 to 14.3 kW and the electric input from 0.55 to 0.65 kW as the ambient temperature decreased.

The performance levels off at both high and low ambient temperatures. Below about 0°C, a two-phase mixture of liquid and vapor refrigerant exits the evaporator (as indicated by a constant temperature profile throughout the evaporator). At the extreme case of -21°C, the COP is slightly lower than the combustion efficiency of 0.84, any heat extracted from ambient is thus offset by heat losses from the unit. Above about 5°C, the performance is relatively insensitive to ambient temperature.

The effect of varying inlet load water temperature on COP is shown in Fig. 3. At an ambient temperatures of -21 and -9°C, the COP decreases as inlet water temperature increases. At an ambient temperature of 9°C, performance does not depend on water temperature over the range investigated. This and the fact that the performance levels off at high ambient temperatures indicates that the generator is the component limiting the performance at high ambient temperatures.

Coefficient of performance and heating capacity for the absorption heat pump as a function of ambient temperature. Figure 2.

In another series of tests, the load water flow rate was varied 6 percent above and 16 percent below the nominal value of 0.38 ℓ/sec at 8 and -8°C ambients with no significant effect on COP or capacity.

CYCLIC TEST RESULTS

Since in normal operation, a heat pump will cycle on and off to meet varying loads, the cylic performance is of particular interest. Tests were performed at an 8°C ambient and the design load water conditions. Two cycling rates were investigated: the typical vapor compression heat pump cycle rate of 3 cycles per hour at 50 percent on time (3) and half this rate (1 1/2 cph), which is commonly used for absorption chillers (4). The results expressed in terms of the part load and heating load factors are shown in Fig. 4. With decreasing heating load factor the part load factor decreases very rapidly, especially for short on times; indicating that a substantial performance penalty is associated with the cyclic operation. As can be seen from the symbols in Fig. 4, the performance penalty is less severe for a lower cycle rate ("." in Fig. 4) than for the higher rate ("0" in Fig. 4). Although the lower cycle rate yields better performance it is not clear whether it is practical because longer off-periods may result in less comfort control in a heating application. The cyclic performance of the heat pump is dependent not only on the cycle rates but also on the ambient temperature. All cyclic tests were conducted at 8°C except one at 20% on time, 1 cycle per 3 hours, which was also conducted at -8 °C (" \diamond " in Fig. 4). As can be seen in Fig. 4 by comparison of the symbols, \bullet , \diamond , at 20% on time that a decrease in ambient temperature reduces the cyclic performance.

The capacity versus time behavior for a cyclic test with 10 minutes on, 10 minutes off is shown in Fig. 5. This response is typical. The capacity appears to rise very quickly when the machine turns on; however, this is when the warm load water which was sitting in the unit flows out across the exit thermopile. The refrigerant side capacity soon dominated causing a drop in water side capacity which starts to rise after about 3 minutes. (The cause of the small "bump" in the curve at 4 minutes was not determined but is very reproducible and appears in varying degrees in all the tests.) The unit had not yet reached steady-state when the burner shut off. During the "spin-down" period the capacity continued to rise briefly and then fell off sharply.

While the machine was off, the difference in the high and low side pressures caused hot solution to migrate from the generator to the absorber and from there into the evaporator. The refrigerant from the condenser also migrates into the evaporator. These migrations resulted in a significant heat loss to ambient air. Also, since the absorber is filled with solution, a reduced area for heat and mass transfer is available when the unit cycled back on; consequentially, absorption starts gradually while the solution pump pumps the solution out of the absorber back into the generator. During this period the capacity is severely limited.

CHARGE SENSITIVITY

The heat pump was tested with varying charges of ammonia. The optimum charge was found to be a function of ambient temperature (Fig. 6). The overall effect of reduced charge is to give a more constant COP over the range of ambient temperatures investigated. The original charge was adjusted for

Figure 4. Cyclic performance of the heat pump.

Figure 5. Capacity and evaporator inlet and outlet temperatures as a function of time for a typical cyclic test.

43

E. ...

optimum performance of 2°C. The highest and lowest charges investigated were adjusted for optimum performance of about 9°C and -9°C, respectively.

The refrigerant charge has a significant effect on the evaporator pressure and temperature, thus controlling heat transfer from ambient due to the amount of refrigerant present in the evaporator. Table 1 shows values for pressure, temperature and compositions of the solution and their dependence of ambient temperature and charge.

FURTHER TESTS

a) The effects of frost accumulation on the evaporator coil were investigated according to the procedures outlined in (1). The unit was brought to steadystate operation at a 1.5°C ambient temperature with -1°C dewpoint temperature. A defrost cycle was initiated and upon its completion the frost accumulation test was begun. The evaporator accumulated frost very slowly and operated for 8.4 hours before requiring defrosting. The average COP and capacity over the test were 0.96 of steady state dry coil values at the same ambient temperature.

b) The split of load water between the condenser and absorber was investigated at -8 and 8°C ambient with the condenser flowrate being varied from 33% to 67% of the total flowrate. Over the entire range of conditions the change in COP was no more than 2%.

c) A turbine flowmeter was installed in the cycle to measure the flow rate of the strong absorbent (absorber inlet) line. The measured flow rate was compared against the value which can be obtained by calculation using the heat of condensation and the compositions of the weak and strong solution assuming that saturated refrigerant vapor is leaving the rectifier. The values agree within 4%.

In order to check the consistency of the measurements an energy balance was calculated for each steady-state test. The heat delivered by the heat pump was typically 8% smaller than the amount of energy supplied. The error in the overall energy balance is due to neglecting heat losses to the ambient.

CONCLUSIONS

The prototype absorption heat pump tested shows a significant performance degradation in cyclic operation; this would suggest modifications to the absorption cycle to improve cyclic performance or possibly some type of heat storage system to reduce the need for cycling. Except at very low ambient temperatures the steady-state performance of the heat pump would be superior to that of a natural gas furnace, however any meaningful comparison must be based on a seasonal efficiency which takes cycling into account. Finally, the performance is sensitive to the refrigerant charge. Unlike a vapor compression heat pump, however, there is no single optimum charge for this absorption machine; rather, the optimum charge varies with temperature.

REFERENCES

- W. H. Parken, et al., "Method of Testing, Rating and Estimating the Heating Seasonal Performance of Heat Pumps," National Bureau of Standards, Washington, D.C., NBSIR 80-2002, April 1980.
- 2. "Low-Voltage Room Thermostats," NEMA Standards Publication no. DC3-1978, National Electrical Manufacturers Association, New York, 1972.
- 3. Lorne Nelson, Honeywell, Inc., Minneapolis, MN, private communication.
- 4. Richard Merrick, Arkla Industries, Inc., Evansville, IN, private communication.

Relative	Ambient Temp.	Pre: (M	ssure P _a)	NH 	3 c.	Ev Temp	vap. . (°C)	Qevan
(kg)	(°C)	gen	abs	strong	weak	inlet	outlet	(kW)
+1.0	-9.1	2.15	0.27	0.169	.363	-10.8	-10.9	.93
+0.6	-8.4	2.14	0.26	0.149	.342	-11.2	-11.3	2.17
0	-8.7	2.10	0.25	0.134	.320	-12.1	-12.1	2.83
-0.5	-8.9	2.10	0.21	0.096	.280	-13.7	-12.5	5.48
+1.0	8.8	2.22	0.44	0.200	.393	2.4	3.4	6.49
+0.6	8.0	2.22	0.41	0.186	.381	0.8	8.0	7.00
0	8.6	2.20	0.38	0.173	.369	- 0.4	8.8	6.63
-0.5	7.5	2.15	0.27	0.129	.316	- 7.5	6.8	7.11

Table 1.System Pressures and Concentrations and Evaporator Conditionsas a Function of Refrigerant Charge and Ambient Temperature

*Ammonia charge of heat pump relative to original charge of unit

APPENDIX

In Table 2 a listing of channel numbers and thermocouple locations is given. All other test data refer to these channel numbers.

Following Table 2 all test data are presented, first those for the steadystate tests and second, those of the cyclic tests.

[ab]	.e	2.	Channel	Numbers	and	Thermocoup.	le	Locations
------	----	----	---------	---------	-----	-------------	----	-----------

	Original	
Channel No.	Units	Location
0	°F	Icebath
1	°F	Solution Pump Outlet, Weak Absorbent
2	°F	Flue Gas HX. Outlet, Strong Absorbent
3	°F	Condenser Inlet Ref. Vanor
4	°F	Refrigerant Heat Exchanger Inlet (Condenser Side)
5	°F	Refrigerant Heat Exchanger Outlet (Condenser
	*	Side)
6	°F	Evaporator Outlet, Refrigerant HX Inlet
7	°F	Refrigerant Heat Exchanger Outlet (Evaporator Side)
8	°F	Triple Heat Exchanger Inlet, Weak Absorbent
9	°F	Absorber Inlet, Strong Absorbent
10	°F	Load Water Outlet
11	°F	Load Water Out of Absorber
12	°F	Rectifier Shell
13	°F	3% of way through Evaporator
14	°F	Generator Outlet/Triple HX Inlet (Strong Absorber)
15	۳°	82% of Way through Condenser
16	Ŧ°	62% of Way through Condenser
17	- F	41% of Way through Condenser
18	- T°	20% of way through Condenser
19	°F	Condenser Outlet
20	- T°	Load Water into Mixing Barrel
25	- च°	Load Water out of Condenser (in thermocounlewell)
26	т°	Load Water Inlet (in thermowell)
27	mV	Condenser Load Water Thermonile (10 June Cu-Co)
28	٩	Air Into Evaporator (averaging T C)
29	mV	Evaporator Air Thermonile (4 June Cu-Co)
30	°F	Stack Cas Exhaust (Chromel-Alumel T C)
31	a°	Load Water Inlet (in thermocouplewell)
32	т°	Load Water Outlet (in thermocouplewell)
33	a r	Bunass Water (not used when unit is operating)
34	т°	Dry Bulb Near Evaporator Inlet
35	a a a a a a a a a a a a a a a a a a a	Wet Bulb Near Evaporator Inlet
36	mV	Load Water Thormopile (16 june Cu-Co)
37	°F	Rectifier Outlet Refrigerent Vener
38	4°F	33% of Way Through Evaporator
39	°F	67% of Way Through Evaporator
40	°F	19% of Way Through Evaporator
41	°E	48% of May through Evaporator
42	°E	85% of Way Through Evaporator
76	Ľ	05% OI way Infough Evaporator

46	°F	Natural Gas Supply at Meter
47	v	Pressure Transducer Supply Voltage
48	mV	Absorber Pressure
49	mV	Generator Pressure

NOTES: In data sheets that follow, temperatures have been converted to °C, thermopile readings to temperature difference in °C, and pressures to MPa.

Unless noted, all thermocouples are copper-constantan and installed on outside of pipe.

07540V 07475 7707	
STEADY STATE TEST	NU: AB1/01
	DATE: 11/ 3/82
TEST CONDITIONS.	
ILSI CONDITIONS.	
AMFIENTDRY BULB:	-8.6 C BEW PT: -17.8 C
COOLING WATERTEMP:	40.5 C TOT FLOW: .366 L/SEC
	COND FLOW: .139 L/SEC
AMMONIA CHARGE:	•0 KG
ENERCY INDUTO:	
ENERUT INPUTS:	
6A5: 13.71 KW	ELECTRICTUTAL: +579 KW
	FAN: .214 KW
QGEN: 11.56 KW	COMB EFF: .843
DEVAP: 7.27 KW	
ENERGY UUTPUTS:	
QLOAD: 14.18 KW	
QCOND: 5.64 KW	QARS: 8.54 KW
ENERGY DALANCES	
QGEN + QEVAF ? QLOAD	L.O.C.* = .65 KW = 4.6 %
COP: .973	COP-GAS: 1.035
CANOLE CONCENTRATIONS!	
SHAFLE CUNCENTRALIUNS:	
STRUNG ARS: .135	WEAK ABS: +320
.137	.313

СН	AVG	5	TO DEV	СН	AVG	STI	DEV
0	.2	С	.03	26	40.2	C :	.08
1	42.4	С	.13	27	9.92	CD	.03
2	58.9	С	.16	28	8.6	C	.10
3	75.4	С	.12	29	2.11	CD	.04
4	15.1	С	•23	30	69.1	C	.24
5	-12.2	С	•08	31	40.5	С	.08
6	-12.3	С	•07	32	49.9	С	.08
7	11.7	C	.43	33	38.0	С	.07
8	41.8	С	.16	34	9 . 0	C	.14
9	74.8	C	.08	35	-8.6	С	.11
10	45.4	С	.07	36	5.48	CD	.04
11	49.6	C	.08	37	75.7	С	.16
12	115.3	С	.20	38	12.1	С	.09
13	-12.3	С	•08	39	-12.2	С	.07
14	127.1	С	.18	40	12.1	C	.08
15	52.0	С	.06	41	12.1	С	.07
16	52.8	С	.06	42	-12.1	С	.06
17	54.4	C	• 07	46	22.0	С	.03
18	58.1	С	.10	47	10.126	V	.000
19	48.5	Ć	.12	48	.243	MPA	.002
20	40.1	С	.16	49	2.137	HPA	.003
25	49.8	С	•08				

*Lack of closure

.

ł.

STEADY STATE TEST	ND: AR1702
	DATE: 11/ 3/82
TEST CONDITIONS:	
AMBIENT BRY BULK:	-9.2 C REW PT: -17.8 C
COOLING WATER TEMP:	35.5 C TOT FLOW: .366 L/SEC
	COND FLOW: 139 L/SEC
AMNUNIA CHARGE:	.0 KG
ENERGY INPUTS:	
GAS: 13.80 KH	ELECTRICTOTAL: .561 KW
	FAN: .21A KW
00EN1 11.64 KH	COND CEE: 047
DEUAR! A.00 KW	COND EFF: 1045
ENERGY OUTPUTCH	
ENERUT UUTPUIS:	
ULUAD: 14.70 KW	
RCUND: 5.76 KW	UABS: 8.94 KW
ENERGY DALANCE:	
QGEN + QEVAF ? QLOAD	L.O.C. = .94 KW = 6.4 %
COP: 1.023	COPGAS: 1.065
×	
SAMPLE CONCENTRATIONS:	
STRONG ABS: .133	WEAK ABS: .320
.133	.339

/

AVERAGE AND STANDARD DEVIATION OF RECORDED CHANNELS

СН	AVG	ST	D DEV	СН	AVG	STI	DEV
0	•2	С	.03	26	35.1	С	.06
1	38.2	С	.10	27	10.24	CD	.02
2	53.8	С	.06	28	-9.2	С	.09
3	67.0	c	.08	29	2.57	CO	.06
4	15.2	č	.16	30	66.9	c	.09
5	-13.4	c	.06	31	35.5	c	.05
6	-13.5	Ċ	.08	32	45.2	c	.05
7	-13.2	ē	.36	33	33.5	ē	.05
8	37.6	С	.08	34	9.2	С	.11
9	70.4	С	.05	35	-8.8	С	.11
10	44.7	Ē	.05	36	9.93	CD	.03
11	44.9	С	.05	37	69.2	С	.07
12	107.0	С	.09	38	13.3	С	30.
13	-13.5	С	.06	39	-13.3	С	.07
14	119.3	C	.10	40	13.2	С	.06
15	47.6	С	.03	41	-13.3	С	.07
16	48.3	C	.03	42	-13.3	C	.06
17	47.5	Ċ	.05	46	22.1	С	.03
18	52.6	ē.	.06	47	10,126	Ū	.000
19	42.1	č	.07	48	. 228	MPA	.001
20	34.9	ā	.10	49	1,911	MPA	.001
25	45.1	c	.06				

1

STEADY STATE TEST	NO: AR1703
	DATE: 11/16/82
TEST CONDITIONS:	
AMBIENTDRY BULK:	-8.7 C DEW P1: -16.1 C
COOLING WATERTEMP:	40.7 C TOT FLOW: .337 L/SEC
	COND FLOW: .167 L/SEC
AMMONIA CHARGE:	•0 KG
ENERGY INPUTS:	
GAS: 14.02 KW	ELECTRIC10TAL: .577 KW
	FAN: .220 KW
QGEN: 11.80 KW	COND EFF: .842
QEVAP: 2.83 KW	
ENERGY OUTPUTS:	
QLOAD: 14.15 KW	
QCOND: 5.77 KW	QABS: 8.37 KW
ENERGY DALANCE:	
QGEN + QEVAP ? QLOAD	L.O.C. = .49 KW = 3.5 %
COP: .969	COP-GAS: 1.009
SAMPLE CONCENTRATIONS:	
STRONG ABS: .135	WEAK ABS: 7323
.132	+316

СН	AVG	ST	DEV	СН	AVG	STI	DEV
0	• 2	С	.02	26	40.4	С	.12
1	42.1	С	.11	27	8.47	CD	.02
2	58.6	С	.15	28	8.7	С	.09
3	75.7	С	.14	29	-1.79	CD	.03
4	17.2	ē	.10	30	73.6	c	•27
5	-12.0	С	.03	31	40.7	С	.12
6	-12.1	Ċ	.05	32	50.9	C:	.11
7	-11.9	ē	.14	33	26.4	Ċ	.05
8	41.1	č	.13	34	8.9	c	.14
9	74.7	C.	.09	35	8.7	ĉ	.09
10	50.A	č	.17	34	10.25	ČD.	.02
11	51.5	č	.13	30	74.7	C	. 1.4
10	31.3	5	•13	37	11 0	5	• 10
12	116+4	C	+21	28	-11.9	C	.0/
13	-12+1	С	+04	39	-12.0	С	•06
14	127.9	С	.18	40	-11.8	С	.07
15	51.3	С	.13	41	-11.7	С	.06
16	52.1	c	.12	42	-11.9	c	.07
17	53.6	Ē	.13	46	20.8	c	.06
18	57.1	č	.15	47	10,125	Ū	.000
19	47.5	č	.14	48	.246	HPA	.011
20	39.7	č	.14	49	2,101	MPA	.006
25	40.7	č			2.101		

ł

STEADY STATE TEST NO: AB1704 DATE: 11/16/32 TEST CONDITIONS: AMRIENT---DRY BULB: -8.9 C DEW PT: -16.1 C COOLING WATER---TEMP: 40.8 C TOT FLOW: .339 L/SEC COND FLOW: .113 L/SEC AMNONIA CHARGE: .0 KG ENERGY INPUTS: GAS: 14.01 KW ELECTRIC---TOTAL: .579 KW FAN: .220 KW Comp EFF: .840 QGEN: 11.77 KW QEVAP: 2.98 KW ENERGY OUTPUTS: QLOAD: 14.17 KW QCOND: 5.43 KW QADS: 8.74 KW ENERGY DALANCE: QGEN + QEVAP ? QLOAD L.O.C. = .57 KW = 4.1 % CUP--CAS: 1.011 COP: .971 SAMPLE CONCENTRATIONS: STRONG ABS: .137 WEAK ABS: .325 .137 .318

• • •

AVERAGE AND STANDARD DEVIATION OF RECORDED CHANNELS

СН	AVG	S	ID DEV	СН	AVG	STI	DEV
0	.3	С	.03	26	40.5	С	.06
1	42.1	C	.09	27	11.76	CD	.03
2	60.4	С	+12	28	8.9	C	.10
3	77.9	С	.13	29	-1.88	CD	.05
4	16.2	С	.16	30	74.4	С	.07
5	-12.3	С	.06	31	40.8	С	•07
6	-12.4	С	•08	32	51.0	С	.08
7	-12.0	С	.18	33	26.3	С	.09
8	41.2	С	.08	34	-9.0	С	.14
9	75.9	С	.10	35	-8.9	С	•07
10	50.6	C	.08	36	10.21	CD	.02
11	50.5	С	•07	37	76.5	С	.09
12	119.5	C	.10	38	-12.2	С	30.
13	-12.4	C	• 07	39	-12.2	С	.09
14	131.8	C	.09	40	-12.2	С	•05
15	54.0	С	.06	41	-12.2	С	•08
16	54.9	С	.07	42	-12.2	C	.09
17	56.5	С	.09	46	20.6	С	.03
18	60.6	С	.07	47	10.125	V	.000
19	51.4	С	.06	48	.242	MPA	.001
20	40.0	С	•07	49	2.245	MPA	.004
25	52.1	С	.08				

STEADY STATE TEST	NO: AB1705
	DATE: 11/18/82
TEST CONDITIONS:	
AMBIENTDRY BULB:	-8.4 C DEW PT: -16.1 C
COOLING WATER- TEMP:	40.6 C TOT FLOW: .324 L/SEC
	COND FLOW: .159 L/SEC
AMMONIA CHARGE:	.6 KG
ENERGY INPUTS:	
GAS: 13.97 KW	ELECTRICTUTAL: 583 KW
	FAN: .218 KW
QGEN: 11.81 KW	COMB EFF: .845
REVAP: 2.17 KW	
ENERGY OUTPUTS:	
QLOAD: 13.81 KW	
QCOND: 5.85 KW	QABS: 7.96 KW
ENERGY BALANCE:	
QGEN + QEVAP ? QLOAD	L+0+C+ = +17 KW = 1+3 %
COP: .948	COP-GAS: .988
CANDLE CONCENTRATIONS!	
STRONG ARS! . 149	HEAK ARS!
140	. 1040
• 1 4 7	+ 327

AVG	S1	D DEV	CH	AVG	ST	DEV
• 2	С	.03	26	40.3	С	.05
41.3	С	.06	27	9.03	CD	.02
57.6	С	.07	28	-8.4	С	.07
73.5	С	.09	29	-1.38	CD	.05
18.6	С	.16	30	73.4	0	.10
-11.2	С	.04	31	40.6	С	.04
-11.3	С	.05	32	51.0	С	.05
-11.3	С	.08	33	39.1	С	+04
40.3	С	.05	34	8.8	C	.18
73.5	С	.06	35	- 8.6	С	.09
50.5	С	.05	36	10.42	CN 👘	.03
51.3	С	.06	37	71.5	С	.06
110.5	С	.13	38	-11.1	С	.03
-11.2	С	.03	39	11.1	С	.01
122.2	С	.11	40	-11.0	С	.05
52.1	С	.06	41	-11.1	С	.05
52.9	С	.07	42	-11.1	C:	.03
54.1	С	.06	46	21.3	С	.02
57.2	С	.07	47	10.125	V	.000
47.8	С	.08	48	.257	MPA	.001
39.9	С	.06	49	2.143	MPA	.003
49.1	С	.06				•
	AVG .2 41.3 57.6 73.5 18.6 -11.2 -11.3 -11.3 40.3 73.5 50.5 51.3 110.5 -11.2 122.2 52.1 52.9 54.1 57.2 47.8 39.9 49.1	AVG S1 .2 C 41.3 C 57.6 C 73.5 C 18.6 C -11.2 C -11.3 C -11.3 C 73.5 C 50.5 C 51.3 C 110.5 C -11.2 C 52.1 C 52.2 C 54.1 C 57.2 C 47.8 C 39.9 C 49.1 C	AVG STD DEV .2 C .03 41.3 C .06 57.6 C .07 73.5 C .09 18.6 C .16 -11.2 C .04 -11.3 C .05 -11.3 C .05 73.5 C .05 73.5 C .05 73.5 C .06 50.5 C .05 51.3 C .06 110.5 C .13 -11.2 C .03 122.2 C .11 52.1 C .06 57.2 C .07 54.1 C .06 57.2 C .07 47.8 C .08 39.9 C .06	AVG STD DEV CH .2 C .03 26 41.3 C .06 27 57.6 C .07 28 73.5 C .09 29 18.6 C .16 30 -11.2 C .04 31 -11.3 C .05 32 -11.3 C .05 34 73.5 C .06 35 50.5 C .05 34 73.5 C .06 35 50.5 C .05 36 51.3 C .06 37 110.5 C .13 .38 -11.2 C .03 .39 122.2 C .11 .40 52.1 C .07 .42 54.1 C .06 .46 57.2 C .07 .47	AVGSTDDEVCHAVG.2C.032640.341.3C.0627 9.03 57.6C.0728 -8.4 73.5C.0929 -1.38 18.6C.163073.4-11.2C.043140.6-11.3C.053251.0-11.3C.0534-8.873.5C.0635-8.650.5C.053610.4251.3C.063771.5110.5C.1338-11.1-11.2C.0339-11.152.1C.0641-11.052.1C.0641-11.154.1C.064621.357.2C.074710.12547.8C.0848.25739.9C.06472.14349.1C.06472.143	AVG STD DEV CH AVG STD .2 C .03 26 40.3 C 41.3 C .06 27 9.03 CD 57.6 C .07 28 -8.4 C 73.5 C .09 29 -1.38 CD 18.6 C .16 30 73.4 C -11.2 C .04 31 40.6 C -11.3 C .05 32 51.0 C -11.3 C .05 34 -8.8 C 73.5 C .06 35 -8.6 C 50.5 C .05 36 10.42 CD 51.3 C .06 37 71.5 C 110.5 C .13 .38 -11.1 C 52.1 C .03 .39 -11.1 C 52.1

STEADY STATE TEST		ND: AB1706
		DATE: 11/24/82
TEST CONDITIONS!		
ANDIENT DOV		
ABBIENT TRA	BULK: "YIL DEW	P11, -17.8 L
CODLING WATER	-1LMP: 40.7 C 101 P	LOW: .336 L/SEC
	LADOEL 1 A KO	LOW: .1/1 L/SEC
ANNUNIA CH	IARGE: 1.0 KG	
ENERGY INPUTS:		
GAS: 13.93 K	ELECTRIC	TOTAL: .581 KW
		EAN! . 216 KH
00001 11 74 K		
00000 11.74 K		IB EFF: .043
GEVAP: 193 K	. ₩	
ENERGY OUTPUTS:		
01 0AD: 12.99 K	.u	
0COND: 5.97 K	W GARS: 7	.02 KH .
ENERGY BALANCE:		
QGEN + QEVAP ?	QLOAD L.O.C. = -	$\cdot \cdot 31 KW = -2 \cdot 4 Z$
COP: .895	COP-GAS!	.932
SAMPLE CONCENTRATI	ONS:	
STRONG ABS: .	169 WEAK ABS	.365
	169	,360

сн	AVG	ទា	D DEV	СН	AVG	STI	DEV
		_				_	
0	+1	C	• 00	26	40+4	C	• 06
1	39.3	С	+12	27	8.56	00	•03
2	55,9	С	• 09	28	7 + 1	C	.09
3	69.4	С	.06	29		CD	+04
4	19.7	С	.16	30	70.7	C	•08
5	-10.8	C	.08	31	40.7	С	.05
6	-10.9	С	.11	32	50.1	C	.06
7	-11.0	С	.18	33	38.3	С	.04
8	38.4	С	.11	34	9.1	C	.17
9	71.3	С	.06	35	-9.0	С	.09
10	49.6	С	.07	36	9.45	CD	.03
11	50.3	C	.07	37	67.7	С	.07
12	105.3	С	.07	38	-10.7	C	.07
13	-10.8	С	.07	39	-10.7	С	.07
14	117.5	С	.10	40	-10.6	С.	+11
15	52.1	С	.06	41	10.6	С	.09
16	52.8	C	•07	42	-10.6	C	.09
17	53.8	С	.06	46	20.7	С	.04
18	56.3	С	.06	47	10.125	V	.001
19	47.0	С	.06	48	.266	MPA	.003
20	39.9	С	.07	49	2.148	MPA	.005
25	48.7	C	.06				

STEADY STATE TEST	NO: AB1707
	DATE: 11/30/82
TEST CONDITIONS:	
ANBIENT DRY BULR:	-8.9 C DEW P1: -17.8 C
COOLING WATERTEMP:	41.0 C TOT FLOW: .328 L/SEC
	CONI FLOW: .164 L/SEC
AHMUNIA CHARGE:	4 KG
ENERDY INPUTS:	
BAS: 13.95 KW	ELECTRICTOTAL: .567 KW
	FAN: .216 KW
QGEN: 11.68 KW	COMB EFF: .837
QEVAP: 5.04 KW	
ENCROY OUTPUTS:	
QLOAD: 15.25 KW	
QCOND: 5.66 KW	QABS1 9.59 KW
ENERGY DALANCE	
USEN F GEVHF I GLOND	LIUICI - 1140 NW - 710 4
COP: 1.050	COP-OAS: 1.073
SAMPLE CONCENTRATIONS:	
STRUNG ABS: .096	WEAK AUS: +203
• 096	•277

.

СН	AVG	SI	D DEV	СН	AVG	STI	D DEV
0	•2	С	.03	26	40.7	с	.03
1	48.5	С	.06	27	8.44	CD	.01
2	65.6	С	.04	28	-8.9	C	.07
3	88.3	С	.05	29	-2.78	CD	.08
4	15.7	C	. 41	30	78.2	C	.05
5	-12.1	С	.15	31	41.0	С	.03
6	-12.5	С	.17	32	52.3	C	.04
7	15.1	ē	.41	33	38.7	Ċ	.03
8	47.6	С	.06	34	-9.1	C	.14
9	81.9	C	.03	35	-9.2	С	.21
10	51.6	С	.04	36	11.34	c:p	.02
11	53.0	С	+04	37	86.5	С	.05
12	127.9	С	.07	38	-13.7	С	.05
13	-13.7	С	.07	39	-13.6	С	+14
14	140.0	С	.09	40	-13.7	С	.10
15	51.6	С	.03	41	-13.7	С	.06
16	52.4	С	.03	42	-13.2	С	.12
17	54.9	С	.02	46	21.9	С	.03
18	61.0	С	.09	47	10.125	V	.000
19	49.3	С	.03	48	.210	HPA	.002
20	40.1	С	.04	49	2.097	HPA	.002
25	47.2	С	.03				

STEADY STATE TEST ND: AB4701 DATE: 10/28/82 TEST CONDITIONS: AMBIENT--DRY BULB: 8.3 C DEW FT: 5.1 C COOLING WATER--TEMP: 40.5 C TOT FLOW: .352 L/SEC COND FLOW: .124 L/SEC .0 KG AMMONIA CHARGE: ENERGY INPUTS: ELECTRIC--TOTAL: .569 KW Fan: .200 KW GAS: 13.45 KW QGEN: 11.46 KW CONB EFF: .852 REVAP: 6.56 KW ENERGY OUTPUTS: QLOAD: 16.57 KW QCOND: 5.94 KW 0ABS: 10.63 KW ENERGY BALANCE: DGEN + GEVAP ? GLOAD L.O.C. = 1.45 KW = 8.8 % CUP-GAS: 1.232 COP: 1.182 SAMPLE CONCENTRATIONS: STRONG ABS: .181 WEAK ABS: .366

AVERAGE AND STANDARD DEVIATION OF RECORDED CHANNELS

.368

.177

СН	AVG	SI	ro dev	СН	AVG	STI	DEV
0	.2	с	.02	26	40.3	C	.09
1	46.0	С	.10	27	11.70	CD	.03
2	60.0	С	.11	28	8.3	С	.28
3	73.1	С	.11	29	-4.16	CD	.08
4	33.1	Ē	.08	30	80.7	C	.22
5	21.0	С	.24	31	40.5	С	.10
6	6.7	С	.06	32	51.9	С	.07
7	34.3	Ċ	.04	33	39.7	С	.09
8	45.3	Ċ	.07	34	8.3	С	.30
9	75.3	C	.09	35	5.1	С	.09
10	51.5	C	.08	36	11.50	CD I	.04
11	51.7	Ċ	.07	37	73.3	C	.11
12	107.9	Ċ	.14	38	-2.1	c	.05
13	-2.3	č	.06	39	7.4	č	.08
14	117.1	Ē	.12	41	-1.7	c	.11
15	54.0	Ē.	.08	42	7.7	C.	.06
16	54.7	č	.07	46	21.4	č	.06
17	55.8	ē	.09	47	10.125	v	.000
18	58.8	č	.10	48	.354	MPA	.001
19	47.8	č	.17	49	2.253	MPA	,004
25	51.8	Ċ	.07				

STEADY STATE TEST		1	ND: AR4702
		DA	TE: 11/ 1/82
TEST CONDITIONS:			
AMBIENT DRY BU	ULR: 8.4	C DEW PT	: 4.4 C
COOLING WATER TE	EMP: 34.9	C TOT FLOW	375 L/SEC
AMMUNIA CHAP	RDE: .0	KG	
ENERDY INPUTS:			
GAS: 13.48 KW	E	LECTRICTOTA	AL: .545 KW
QGEN: 11.43 KW		COMD E	Ft .848
QEVAP: 6.74 KW			
ENERGY OUTPUTS:			
QLOAD: 16.42 KW			
RCOND: 5.98 KW		QARS: 10.43	кw
ENERGY BALANCE:			
QGEN + QEVAP ? C	RLOAD L	.0.0. = 1.75	K₩ = 10.7 %
COP: 1.171	CO	P-0AS: 1.216	3
SAMPLE CONCENTRATION	NGI		
STRONG ARC' 17	70	HEAK AND	777
	72	WENN MADI	349

СН	AVG	2.	TO DEV	CH	AVG	ST	D DEV
0	.2	С	.00	26	34.8	С	.05
1	40.7	C	.04	27	10.60	CD	.01
2	54.2	С	.03	28	8.4	С	.20
3	66.7	C	.03	29	-4.30	CD	.06
4	30.4	С	.05	30	77.7	C :	.11
5	16.8	С	.07	31	34.9	С	.05
6	6.8	С	.05	32	45.6	C.	.04
7	31.4	С	.04	33	33.2	С	.04
8	40.2	Ċ	.03	34	8.4	Ċ	.23
9	70.4	С	.04	35	4.4	С	.07
10	45.2	С	.05	36	10.80	CD	.01
11	45.5	С	.05	37	66.7	С	.04
12	100.5	С	.07	38	-4.5	C	.05
13	4.9	С	.06	39	8.3	С	.04
14	111.7	С	.07	41	5.2	C	.11
15	48.6	С	.04	42	7.9	С	.05
16	45.2	С	.03	46	22.2	C	.03
17	50.0	С	.05	47	10,125	V	.000
18	52.5	C	.05	48	.309	NPA	.001
19	32.4	C	.07	49	1.970	MPA	.003
25	45 7	c i	0.4				

STEADY STATE TEST NO: A84703 DATE: 11/15/82 TEST CONBITIONS: AMBIENT---DRY RULB: 8.6 C DEW PT: 5.4 C COOLING WATER---TENP: 40.8 C TOT FLOW: .334 L/SEC CONU FLOW: .169 L/SEC .0 KG AMMONIA CHAROE: WEAK ABSOLDENT FLOW: 0.0182 &/sec ENERGY INPUTS: GAS: 13.54 KW ELECTRIC---- TOTAL: .549 KW FAN: .200 KW Conb Eff: .847 QGEN: 11.47 KW QEVAF: 6.63 KW ENEROY OUTPUTS: - QLOAD: 16.40 KW QCOND: 6.11 KW QABS: 10.28 KW ENERGY BALANCE: QGEN + QEVAP ? RLDAD L.O.C. = 1.70 KW = 10.4 % COP: 1.164 COP-OAS: 1.211 SAMPLE CONCENTRATIONS: STRONG ABS: .173 WEAK ABS: .369 .173 .368

СН	AVG	ទា	D DEV	СН	AVG	STI	D DEV
0	• 2	С	.00	26	40.6	С	.05
1	47.6	C	•06	27	8.85	CD	,02
2	60.2	С	.06	28	6.6	C	30.
3	73.8	С	.07	29	-4.20	CB	.07
4	35.3	С	.07	30	80.7	С	.06
5	20,7	С	.19	31	40.8	С	.06
6	8.8	С	.07	32	52.7	C	.06
7	34.5	С	.07	33	31.0	С	.04
8	46.8	С	.05	34	9.1	C:	.20
9	75.9	С	+05	35	5.4	С	.06
10	52.3	С	.07	36	11.96	C:D	.02
11	53.9	С	.04	37	72.2	С	.10
12	107.5	С	.10	38	3	C	.06
13		C	.06	39	8.6	С	.09
14	117.9	С	.08	40	4	C	.07
15	53.0	č	.07	41	.0	c	.10
16	53.7	C	.06	42	2.6	C	.04
17	54.8	ē	.07	46	21.0	C	.05
18	57.7	č	.10	47	10.118	Ū	.001
19	45.7	č	.04	48	. 381	MPA	.001
20	39.7	Č	.06	49	2.197	MPA	.003
25	47.4	č	.06				

STEADY STATE TES	Т	NO: A84704
		DATE: 11/17/82
TEST CONDITIONS!		
ANDIENT		
HARLENI CON	TENDI	
COULING WATER	n n i Emira	40.6 C 101 FLUW: +282 L/SEC
		COND FLOW: .188 L/SEC
AMMONIA	CHARDE:	•0 KG
ENERGY INPUTS:		
GAS: 13.60	KW	ELECTRICTOTAL: .547 KW
		FAN: .199 KW
DGEN: 11.49	кы	CONR FEEL
DEUAR: 4.49	KU	0000 2000 0040
ENERCY OUTPUTCI		
ENERGY DOTFORS.	KII.	
ULUAD: 10.37	NW	
QCOND: 6.27	KW	QABS: 10.10 KW
ENERGY BALANCE:		1
QGEN + QEVAP	7 QLOAD	L.O.C. = 1.82 KW = 11.1 %
COP: 1.157 -		COP-BAS: 1,203
SAMPLE CONCENTRA	TIONS:	
STRONG ARG!	.142	HEAK ARG!
01K0K0 H101		
	101	1.102

СН	AVG	S	TO DEV	СН	AVG	STI	DEV -	
0	.2	С	.03	26	40.5	С	.04	
1	51.6	С	.09	27	8.18	CD	.02	
2	62.7	С	.07	28	0.3	С	.07	
3	77.7	С	.03	29	-4.23	CD	.08	
4	32.6	С	.15	30	82.2	С	.05	
5	15.5	С	1.05	31	40.6	С	.04	
6	6.5	C	.39	32	54.7	С	.03	
7	32.0	С	.13	33	31.9	С	.03	
8	50.4	Ċ	.08	34	8.8	C	.12	
9	28.8	ē	.05	35	3.8	c	.03	
10	54.0	Ċ	.07	36	14.12	CD	.02	
11	58.9	c	.05	37	75.7	C	.04	
12	110.0	č	.04	38	1.8	c	.06	
13	1.7	Ċ	.07	39	1.8	Ċ	.07	
14	120.1	С	.06	40	1.7	C	.09	
15	52.4	Ē	.04	41	1.7	Ĉ	.0B	
16	53.2	С	.03	42	2.8	С	.20	
17	54.4	С	.05	46	20.8	С	.05	
18	57.7	С	.06	47	10.112	V	.004	
19	45.4	С	.07	48	.422	MPA	.001	
20	35.7	C	.11	49	2.169	MPA	.002	
25	48.5	ř	.05					

STEADY STATE TEST	ND: AB4705
	BATE: 11/17/82
	•
TEST CONDITIONS:	
AMBIENT DRY BULB	1 8.1 C DEW PT: 3.7 C
COOLING WATERTEMP	: 35.4 C TOT FLOW: .340 L/SEC
	COND FLOW: .169 L/SEC
AMMONIA CHARDE	: .O KG
ENERGY INPUTS:	
GAS: 13.02 NW	ELECTRICTUTAL: +532 KW
	FAN: J200 KW
QUEN: 11.55 KW	CUMB EFFT +848
QEVAF: 6.84 KW	
ENEROY OUTPUTS:	
QLOAD: 16.53 KW	
0COND: 6.16 KW	DARS: 10.37 KW
ENERGY BALANCE:	
QGEN + QEVAP ? QLO	AD L.O.C. = 1.86 KW = 11.2 %
COP: 1.138	COP-0AS: 1,214
SAMPLE CUNCENTRALIUNST	
STRUNG ABST 173	WEAK AUST +375
.172	

AVG	SI	TB BEV	СН	AVG	91 1	D BEV
.2	С	.03	26	35.2	С	.06
42.7	С	.05	27	9.00	CD	.02
55.1	С	.04	28	8.1	С	.11
68.7	С	.03	29	-4.32	CD	.09
32.8	Ċ	.03	30	79.2	0	.10
14.8	С	.10	31	35.4	C	.04
8.4	č	.06	32	47.2	C.	.03
31.9	C	.03	33	27.4	C	.08
41.7	c	.05	34	8.8	C	.15
71.7	č	.04	35	3.7	č	.06
47.0	С	.06	36	11.98	CD	.02
48.3	Ċ	.06	37	66.5	С	.03
95.9	č	.06	38	-2.4	č	.03
-2.5	c	.06	39	9.3	C	.06
111.2	č	.06	40	-2.5	C	.06
48.6	č	.03	41	1.2	C	.36
45.3	č	.05	42	9.1	č	.07
50.1	č		44	20.0	6	05
50.1	č	.04	40	10 104		.05
32.7	č	.03	40	744	MDA	
38.7	L	.07	48	.310	ni'A	.001
34.5	C	.05	49	1.977	HPA	.001
	AUG .2 42.7 55.1 68.7 32.8 16.8 8.4 31.9 41.9 71.7 47.0 48.3 95.9 -2.5 111.2 48.6 45.3 50.1 52.7 38.7 34.5	AVG S1 .2 C 42.7 C 55.1 C 68.7 C 32.8 C 16.8 C 8.4 C 31.9 C 41.9 C 71.7 C 47.0 C 48.3 C 95.9 C -2.5 C 111.2 C 48.6 C 45.3 C 50.1 C 52.7 C 38.7 C 34.5 C	AVG STB DEV .2 C .03 42.7 C .05 55.1 C .04 6B.7 C .03 32.8 C .03 16.8 C .10 8.4 C .06 31.9 C .03 41.9 C .05 71.7 C .04 47.0 C .06 95.9 C .06 111.2 C .06 111.2 C .06 135.3 C .05 50.1 C .04 45.3 C .05 38.7 C .05 38.7 C .05	AVGSTB BEVCH $.2$ C $.03$ 26 42.7 C $.05$ 27 55.1 C $.04$ 28 68.7 C $.03$ 29 32.8 C $.03$ 30 16.8 C $.10$ 31 8.4 C $.06$ 32 31.9 C $.03$ 33 41.9 C $.05$ 34 71.7 C $.04$ 35 47.0 C $.06$ 32 99.9 C $.06$ 36 -2.5 C $.06$ 39 111.2 C $.06$ 39 111.2 C $.05$ 41 49.3 C $.05$ 42 50.1 C $.05$ 47 38.7 C $.07$ 48 34.5 C $.09$ 49	AVGSTB BEVCHAVG.2C.0326 35.2 42.7 C.0527 9.00 55.1 C.0420 6.1 $6B.7$ C.0329 -4.32 32.8 C.0330 79.2 16.8 C.10 31 35.4 8.4 C.06 32 47.2 31.9 C.05 34 8.8 71.7 C.04 35 3.7 47.0 C.06 32 47.2 48.3 C.06 37 66.5 99.9 C.06 30 -2.4 -2.5 C.06 39 9.3 111.2 C.06 40 -2.5 48.6 C.03 41 1.2 45.3 C.05 42 9.1 50.1 C.05 47 10.124 38.7 C.07 48 .346 34.5 C.09 47 1.977	AVGSTB DEVCHAVGSTR.2C.0326 35.2 C42.7C.0527 9.00 CD55.1C.0428 6.1 C68.7C.0329 -4.32 CD32.8C.0330 79.2 C16.8C.1031 35.4 C8.4C.0632 47.2 C31.9C.0333 27.4 C41.9C.05348.8C71.7C.0435 3.7 C47.0C.0639 -2.4 C-2.5C.0639 9.3 C111.2C.0640 -2.5 C48.6C.0341 1.2 C47.3C.05 42 9.1 C50.1C.044620.8C52.7C.05 47 10.124 V38.7C.07 48 .346MPA34.5C.09 47 1.977 MPA

STEADY STATE TES	т	ND: A84706
		DATE: 11/18/82
TEST CONDITIONS:		
AMBIENTDR	Y BULE:	8.0 C DEW PT: 5.0 C
COOLING WATER	TEMP:	40.7 C TOT FLOW: .341 L/SEC
		CUND FLUW: +172 L7SEC
AUUUUIA	CHARGET	•0 NU
ENERGY INPUTS:		
GAS: 13.62	KW	ELECTRICTOTAL: .551 KW
		FAN: .198 KW
QGEN: 11.54	KW	COMB EFF: .847
QEVAP: 7.00	KW	
ENEROY OUTPUTS:		
QLOAD: 16.54	ĸw	
QCOND: 6.23	KW	QABS: 10.31 KW
ENERGY BALANCE:		
QGEN + QEVAP	? QLOAD	L.O.C. = 1.99 KW = 12.0 X
COD: 1 1/7		COD-CARL 1 014
CUP: 1.167		CUP-UAS: 1+214
SAMPLE CONCENTRA	TIONS:	
STRONG ABS:	.184	WEAK ABS: .381
	.187	.380
	1	*

СН	AVG	31	TO DEV	СН	AVG	ם מרפ	EV
0	•2	с	.03	26	40.6	C .0	8
1	47.7	С	.09	27	8,87	CD .03	2
2	60.0	С	.10	28	8.0	C .01	B
3	73.5	С	.06	29	-4.41	CD .0	B
4	35.1	С	.11	30	80.6	C .0.	6
5	17.5	С	.67	31	40.7	C .0	B
6	8.0	С	.10	32	52.5	C .03	7
7	34.4	С	.10	33	35.3	C .0.	6
8	46.8	С	.07	34	8.6	C .23	2
9	75.6	С	.06	35	5.0	C .04	6
10	52.3	С	.09	36	11.85	CD .03	3
11	53.7	С	.06	37	71.5	C .01	в
12	105.1	С	.11	38	.9	C .01	в
13	• មិ	С	.09	39	1.0	C -1	3
14	115.6	С	.07	40	. 9	C .01	в
15	53.3	С	.07	41	• 8	C .01	В
16	54.0	С	.06	42	5.2	C 1.00	0
17	55.0	С	.07	46	21.1	C .0.	4
18	57.7	С	.07	47	10.124	V .00	00
19	45.6	С	.13	48	.406	HPA .00	22
20	39.8	С	.15	49	2.220	HPA .00	03
25	49.3	С	.07				
STEADY STAT	E TEST		NO: AR4707 Date: 11/23/82				
-------------	---------	---------	--				
TECT CONDIT							
TEST CONDIT	TUNSI						
AMBILN	11	ROLB:	B-BC DEW FIS 4-1 C				
COOLING	WATER-	-TEMP:	40.6 C TOT FLOW: .341 L/SEC COND FLOW: .167 L/SEC				
AMM	IONIA C	HARDE :	1.0 KG				
ENERGY INPU	TS:						
GAS:	13.51	кw	ELECTRICTOTAL: .549 KW				
			FAN: .194 KW				
QGEN:	11.44	KW	COMB EFF: .847				
QEVAP:	6.49	КW					
ENERGY OUTP	UTS:						
QLOAD:	16.98	КW					
QCOND:	6.23	ĸw	QABS: 10.75 KW				
ENERGY DALA	NCE :						
QGEN +	QEVAP	? QLOAD	L.O.C. = .95 KW = 5.6 2				
COP: 1.208	1		COPDAS: 1+257				
SAMPLE CONC	ENTRAT	TONS	F				
SHITLE CONC	ADCI	200	HEAK ADDI 200				
STRONG	HDST	+200	WEAK ABD: .388				
		+174	• 398				

AVERAGE AND STANDARD DEVIATION OF RECORDED CHANNELS

СН	AVG	SI	D DEV	CH	AVG	STO	D DEV
0	.2	С	.02	26	40.5	С	•07
1	47.7	С	•07	27	9.06	CD	.02
2	59.5	С	•07	28	8.8	C	.08
3	72.0	С	.06	29	-4.12	CD	.06
4	29.4	С	.31	30	79.9	C	.07
5	3.6	С	.14	31	40.6	С	.05
6	3.4	С	.23	32	52.7	С	.05
7	28.6	C	.29	33	39.2	С	.06
8	46.5	С	.05	34	8.8	С	.20
9	75.0	C	.04	35	4.0	C	.04
10	52.4	С	.05	36	12.17	CD	.02
11	53.8	С	.05	37	70.3	С	.03
12	102.3	С	.11	38	2.5	C	.06
13	2.4	С	.07	39	2.4	C	.08
14	112.7	С	.11	40	2.5	C	.04
15	53.4	С	.04	41	2.5	С	.05
16	54.0	С	.04	42	2.8	С	.06
17	54.9	С	.06	46	21.3	С	.06
18	57.5	Ĉ	.05	47	10.124	V	.000
19	46.3	C	.10	48	.441	MPA	.001
20	40.9	C	.12	49	2.222	MPA	.002
25	40 7	Č.	07				

STEADY STATE TEST	NO: A14700
	DATE: 11/30/82
TEST CONDITIONS:	
AMBIENT DRY BULB:	7.4 C DEW PT1 3.0 C
COOLING WATER TEMP:	40.7 C TOT FLOW: .330 L/SEC
	COND FLOW: 166 L/SEC
AMMONTA CHAROE:	4 KG
ENEROY INPUTS:	
GAS: 13.58 KW	ELECTRICTOTAL: .532 KW
	FAN: .196 KW
QGEN: 11.46 KW	COMB EFF1 .044
QEVAP: 7.07 KW	
ENERGY OUTPUTS:	
QLOAD: 15.86 KW	
QCOND: 5.87 KW	QABS: 9.99 KW
ENEROY BALANCE:	
QGEN + QEVAP 7 QLOAD	L.O.C. = 2.67 KW = 16.8 %
COP: 1.124	COP-0AS: 1,138
SAMPLE CONCENTRATIONS:	
STRONG ABS: .129	WEAK ARS: (321
.128	.312

AVERAGE AND STANDARD DEVIATION OF RECORDED CHANNELS

СН	AVG	8	TD DEV	СН	AVG	STI	D DEV
0	.1	С	.03	26	40.7	С	.19
1	49.7	С	.16	27	0.67	CD	.03
2	63.8	С	.17	28	7.4	C	.28
3	81.9	С	.18	29	-4.43	CD	.07
4	33.1	С	.07	30	83.2	C:	.10
5	21.3	С	.22	31	40.7	С	.19
6	6.8	С	.07	32	52.4	C	.17
7	32.4	С	.09	33	39.1	С	.17
8	48.9	С	.15	34	7.5	C	.17
9	79.8	С	.15	35	3.8	С	.08
10	51.9	С	.17	36	11.73	CD	.04
11	53.3	С	.16	37	79.9	С	.19
12	119.7	С	.23	38	2.4	C	.18
13	7.5	С	.08	39	8.0	С	.08
14	127.7	С	.24	40	7.1	C	.08
15	52.2	C	.16	41	6.0	C	.08
16	52.9	С	.16	42	7.7	C	.08
17	54.7	С	.16	46	21.1	С	.08
18	58.9	Ċ	.21	47	10.123	v	.000
19	47.9	С	.23	48	.270	MPA	.001
20	39.9	C	.35	45	2.146	MPA	.008
25	47.2	Ĉ	.17				

÷

STEANY STATE TEST	ND: AB4709
	DATE: 1/ 4/83
TEST CONDITIONS:	
AMBIENTDRY BULB:	8.7 C DEW PT: -1.1 C
COOLING WATERTENP:	40.4 C TUT FLOW: .333 L/SEC
	COND FLOW: .164 L/SEC
AMMONIA CHARGE:	2 KG
ENERGY INPUTS:	
GAS: 13.81 KW	ELECTRICTOTAL: .540 KW
	FAN: .200 KW
QGEN: 11.68 KW	COHB EFF: .846
0EVAP: 6.65 KW	
ENERGY OUTPUTS:	
QLOAD: 16.77 KW	
QCOND: 5.85 KW	QABS: 10.92 KW
ENERGY BALANCE:	
QGEN + QEVAP ? QLOAD	L.D.C. = 1.60 KW = 9.6 %
COP: 1.139	COP-GAS: 1.214
SAMPLE CONCENTRATIONS!	
STRONG ARS! 154	HEAK ARS! . 741
.152	. 359
+152	1330

•

AVERAGE AND STANDARD DEVIATION OF RECORDED CHANNELS

СН	AVG	S	TO DEV	СН	AVG	ST	D DEV
0	21.4	С	.03	26	40.4	C	.16
1	48,9	С	.14	27	8.76	CD	.04
2	62.7	С	.18	28	8.7	С	.72
3	79.2	С	.18	29	-4.30	CD	.37
4	34.4	С	.19	30	84.0	С	.15
5	21.9	C	.31	31	40.4	С	.15
6	9.1	С	. 60	32	52.7	C :	.17
7	33.7	С	.17	33	27.9	С	.03
8	45.1	C	.15	34	8.7	C	.74
9	78.4	Ċ	.13	35	2.1	С	. 64
10	52.1	Ē	.15	36	12.27	c :n	.05
11	53.7	č	.15	37	80.1	C	.19
12	117.0	č	.21	3.0		ř.	1.5%
17		ř	21	70	10.0	Č,	E4
1.0	107.0	č	• 2 1	37	10.0		+ 30
14	127.0		+27	40	~~~		+21
12	52.4	C	+12	41	8.0	C	•/5
16	53.2	С	.12	42	2.8	C	• 68
17	54.9	С	.13	46	21.1	С	.04
18	58.5	С	.19	47	10.111	V	.001
19	47.2	С	.23	48	.314	HPA	.003
20	39.1	č	.24	49	2.166	NPA	.007
25	49.0	r r	. 1 4				

NO.: C17-1

DATE: 8-18-82

CYCLE TIMES: 12 / 48 ON/OFF

AMBIENT DRY BULB: -8.5 C 16.7 °F

> WET BULB: <u>-11.7</u> C -or-DEW POINT: <u>11.0</u> °F

WATER TEMP: <u>40.8</u> C <u>105.5</u>°F WATER FLOW: <u>0.377</u> kg/sec <u>6.03</u> gal/min

INTEGRATED CAPACITY 6.111 MJ 5792 BTU

GAS INPUT: 10.30MJ 9759 BTU ELECTRIC INPUT: 0.587 MJ 557 BTU

COP: 0.561

PLF = 0.582 HLF = 0.123

(Date are average of last 2 cycles)

C17-1 Test No.

∞

Temperature Rise of Water Flowing Through Unit As A Function of Time For the Last Cycle

-		~	5	9	1	•	12	13	14	28	59	31	36	48	44
	-	-		-	-	-	-	-	-	-	-	-	AM	AM	AH
:00	102.30	159.80	51.20	55.90	05.88	151.60	187.50	02.15	142.70	16.70	01-22	98-30	-6.71	48.2	12.5
00	97.50	159.00	00.04	54.20	85.30	151.70	180.50	20.70	155.60	16.70	23.30	00.99	1.43	2.98	3.26
00	62.10	09-06	47.80	22.30	27.20	159.10	160.00	15.60	168.50	16.90	01-61	101.401	-06	08.2	18.3
00	10.70	72.20	43.20	26.50	38 .90	152.30	127.20	14.80	150.80	16.40	17-80	105.30	4.43	2.31	5.13
00	85.40	19.70	38.00	20.00	30.90	129.10	127.40	05.11	154.10	17-80	02.11	105.60		80.5	1.96
00	94 .70	92.70	21.10	14.70	26.30	119.80	133.90	6.50	167.50	16.40	16.30	105.70	1.36	1.78	11.26
00:	100.80	104-101	21.10	04.11	38.80	125.20	147.20	08.4	188.90	17.70	16.20	105.70	1.59	89.1	14.59
00	103.70	115.10	34.90	14.90	36.10	134.10	106.60	.70	208.50	17.30	17.00	105.80	2.25	1.38	16.32
00	106.00	122.10	42.70	18.30	51.10	142.50	100.001	02.1	225.70	16.00	06.31	105 - 70	2.96	1.56	16.84
00	108.80	127.20	40.00	10.20	65.90	149.10	209.20	7.10	239.00	16.10	13.60	105.70	3.61	1.87	16.91
60	108.60	131.80	35.30	04.02	50.30	154.20	220.50	06.01	245.60	17.80	15.30	105.60	60.3	20.2	
00:	107.50	135.40	31.70	18.70	60.30	157.90	228.10	11.20	247.60	15.80	14.30	105.50	4.45	2.07	17.46
00	107.60	01.761	37.70	16.20	65.30	162.00	01.585	02.11	248.30	16.00	13.40	105.50	81.1	60.2	17.66
00:	108.50	137.60	24.70	12.50	65.80	164.20	234.10	12.60	249.80	17.80	14.90	105.40	5.17	2.13	17.44
:00	100-001	134.70	15-60	01-21.	51.30	160.50	231.80	02.51	265.50	16.30	14.40	105.30	6428	01.5	13.61
:00	108.90	129.50	12.10	10.40	28.00	153.20	225.50	10.10	239.50	16.30	13.30	105.30	4.05	2.05	14.32
0.0	02:00L	128.00	12.20	02.11	01.52	145.60 ⁻	218-80	10.63	736.70	17.60	05.51	08.501	3.15	80.2	12.21
:00	107.90	134.10	08-95	12.70	27.70	139.80	218.30	8.80	232.60	16.90	14.20	105.20	2.55	1.99	13.29
3	CW I SHAR	AM												-	61
			1 1 1 1 1	-	-	8					-		-		
	,	-	-	•	-	-		,	,		•	•			
:00	39.06	71.00	10.01	13.26	1 28.61	66.44	83.06	-6.00	61.50	-8.50	-5.50	36.83	-6.71	2.89	2.59
00	96.95	70.36	14.0	12.35	10.95	66.50	82.50	-6.28	68.67	-8.50	-4.83	57.22	1.43	HA 2	32.6
:00	16.72	37.56	R.78	-5.39	-2.67	70.61	11.17	-9.11	75.83	-8.39	-7.17	40.22	06	2.80	4.87
-DO.	21.50	22.33	52.3	-3.06	1.85	66.83	68.25	-9.56	00-99	19-8-	42.1-	21.02		15.3	Fin
:00	29.67	26.50	3.33	-0.61	61	53.94	\$3.00	-11.50	67.83	-7.89	-8.22	40.89	.88	2.08	7.96
00:	34.83	33.72	-0.06	19.0-	-1.1-	48.76	56.61	-11.17	82.51	-9-9-	21.8-	30.02	1.36	81.1	12.11
:00	38.22	40.33	-6.06	-11.28	1.00	51.78	64.00	-15.11	87.97	-7.94	-8.78	40.94	1.59	1.48	14.51
00:	19.81	46.17	3.63	-02.9-	2.28		81.31	-17.39	90.89	11.8-	-8-33	00-11	52.2	1.38	
:00	41.11	\$0°08	\$ 6.64	-7.61	10.61	61.39	87.78	-17.11	107.61	-8-89	-9.50	40.94	2.96	1.56	16.84
00:	42.67	52.89	22.0	-1	24.81	65.06	98.64	-13.83	00.211	-8-83	22.01-	20.02	10.5	1.8.1	10.1
:00	42.56	55.44	1.83	-6.28	15.17	67.89	104.72	-11.72	118.67	-7.89	-9.28	40.89	4.09	2.06	17.10
00:	44.04	57.44	17	-1-39	15.72	\$6.69	108.94	-11-56	81.911	00.4-	-0-63	10-03	6 5	10.2	11.11
00:	42.00	58.39	3.17	-8.75	18.50	72.22	11.17	-11.56	120.17	-8.89	-10.33	40.83	4.78	5.09	17.66
00:	45.39	58.67	90.9-	-10.63	18.78	73.44	82.211	81.01-	121.00	-7.89	-9.50	81.04	2.1.5	2013	11.11
00:	42.78	57.06	1.9	-11.06	10.72	71.39	111.00	-11.00	118.61	-8.72	81.4-	40.72	4.93	2.10	15.47
:00	21.52	54.17	-11-06	00-21-	22.2-	67.33	107.50	11.51-	115.28	-8-12	AC.UL-	21-03	\$10.5	50.7	16.36
:00	42.33	52.22	410.89	-11.28	-5.50	63.11	103.78	-11.89	112.61	-8.00	-9.72	40.72	3.15	2.08	13-51
					The second se										

DATA FOR LAST CYCLE - Test No. Cl7-1

68

Unit On: 13:29:59 Burner Off: 13:41:59 Unit Off: 13:45:43

NO.:	
DATE: 8-5-82	
CYCLE TIMES: 6 / 24 ON/ON	FF
AMBIENT DRY BULB: 7.9 C	WATER TEMP: 46.6 C
46.2 • F	105.1 °F
WET BULB: 6.3 C	WATER FLOW: 0.367 kg/sec
DEW POINT: 43.3 •F	5.88 gal/min
INTEGRATED CAPACITY 3.178 MJ	
. <u>3012</u> btu	
GAS INPUT: 4.972 MJ	ELECTRIC INPUT: 0.316 MJ
4712 b tu	300 btu
COP: 0.601	
PLF = 0.529	HLF = 0.104

(Data are average of last two cycles)

C47-1
No.
Test
1
CY CLE
LAST
FOR
DATA

49		9.82		9.57		15+24	10.43	15.76		13.90		9	•			28.9		9.57		15.24		15.76		13-90	
84		11.1	00-6	2.27		1.49	28.1	2.48		2.00	-	97.	. 48	A		4 - 4 4	00.5	2.27		1.49		84.5		2.00	1941
36		12.5	24	1.24	34.0	1.66	5	3.47	1.1	2.83			36	R -	12.20	4.67	24.1	1.24		1.66		3.47		2.83	04.24
31		105.30	103-40	105 .40	0.0.01	105.30	02 . 201	105 . 30	02.201	105.10	01.01		31	-	81.02	40.72	81° 18	40 .78	21.01	40.72	10.01	40.72	10.01	40.61	10.01
62		53.50	08-44	47.10	40.00	46.80	46.30	44.10	04.22	44.00	06.61		62	-	20.51	11.94	49°A	8.39	90.9	8 • 22	L.	6.72	0.00	6.67	1.30
28		09.84	01-11	46.20	00.04	46.10	06.64	45.50	10.5	45.10	-3-30		82	-	9.5.6	52.9	0 . 0	7.89	81.1	7.83		7.50		7.28	000
14		187.50	179.80	173.70	188.50	204.50	02.012	234.80	06-262	226.10	06.125		14		10.58	86.39	11.20	78.72	20.95	95.83	00.00	112.67	10.11	107.83	102-11
13		14.00	01.12	27.70	20.50	13.10	04.9	15.40	18.30	11.00	2.40		13	-	13.00	P.78		-2.39	- 83	-10.50	22.91-	-7.56	10.1	-11.67	
12		01.241	160.90	147.70	159.10	169.80	187.20	205.80	212.30	209.20	05-502		12	-	89.95	87.67	10.11	64.28	10.01	76.56	22.08	96.56	11.001	98.44	82 54
•	-	175.70	163.00	147.70	135.30	133.50	137.50	148.20	149.10	144.10	130:70		•	-	76.72	80.00	72.78	64.28	-22-39	56.39	28.61	64.56	65.06	62.28	24. 83
4	-	102.80	58.90	69.10	73.60	72.90	00.09	79.10	- 77.10 -	77.10	78.50		2		12.00	39.33	14.95	20.61	-11-52	22.72	21.06	26.17	23.06	25.06	25.83
•0		91.70	02.20	45.70	01-23	43.00	45.40	50.10	01.37	44.60	04.35		9		33.17	20.06	10.78	7.61	5.78	6+11	1.41	10.06	7.83	2.00	1.12
5	-	88.10	76.70	65.70	- 20 . 50	59.10	- 02.12	68 • 20	04: 12	76.50	78.20	1135	~	-	71.12	30.11	12:32	18 .72	82.01	15.06	- 22 .06	20.11	22.22	24.72	20.00
	-	782.60 169.80	"04° 511.	107.70	112:70	115.50	T22.70 ⁻	130.00	128.10	125.60	123.10	AND UN	~	2	19-11-	76.56	48.56	42.06	- S.H. 313	46.39	- 66-05	54.44	-23-39	52.00	10.02
ANNEL NO	-	02-011	104.60	106.20	_04 . YOL	106.30	01:001	110.30	06:30	108.70	01-801	KNNEL ND	-	2	-21-25	43.61	40.33	41.22	10.01	41.28	100.61	43.50	-36-21	42.61	82.24
TIME		11:39:00	11-11-00	11:42:00	2500	11:44:00	_11:45:00	11:46:00	11:17:00	11:48:00	11:4:00	(#2	TIME		11:39:00	00: 04: 11	11:41:00	11:42:00	11:43:00	11:44:00	11:45:00	11:46:00	11:47:00	11:48:00	11:49:00

Unit On: 11:39:39 Burner Off: 11:45:39 Unit Off: 11:49:15

NO.: $\underline{C47-2}$ DATE: $\underline{8-5-82}$ CYCLE TIMES: $\underline{12}$ / $\underline{48}$ ON/OFF AMBIENT DRY BULE: $\underline{7.6}$ C $\underline{45.6}$ •F WET BULE: $\underline{6.0}$ C $\underline{-or}$ DEW POINT: $\underline{42.8}$ •F INTEGRATED CAPACITY $\underline{7.342}$ MJ $\underline{6959}$ BTU

GAS INPUT: 10.02 MJ 9495 BTU ELECTRIC INPUT: 0.535 MJ 507 BTU

WATER TEMP: 40.8 C

WATER FLOW: 0.369 kg/sec

105.4 °F

5.90 gal/min

COP: 0.696

PLF = 0.619

(Data are average of last two cycles)

HLF = 0.122

Test No. C47-2

Temperature Rise of Water Flowing Through

Unit as a Function of Time For the Last Cycle

TIME

48 49	AN AN	5.82 5.76	3.20 4.41	2.56 6.51	2.06 6.80	1.63 V.61	1.43 12.78	20.21 02.1	1.67 16.16	2.32 16.5	2.68 17.05	15-11 38-2	2.94 17.92	2.96 18.2	2.94 18.04	2.94 16.1	2.51 14.95	LAPT UV.T	1.96 14.12		44	AR AR	3.82 3.76	3.20 4.6	2.54 6.51	2.00 8.81	1.03 7.0			2.32 16.65	2.66 17.03	2.84 17.51	14.11 34.5	2.96 18.23	10.81 30.5	2.94 16.11	
36	A	-5.56	3.40	1.15		54.	-97	1.35	2.16	10.5	4.20	94.4	5.61	0.13	6.55	12.0	5.20	2.11	2.58		20	À	-5.56	3.40	1.15	-30				107	02.1	86.4	10.5	6.13	6.55	4.21	
31	-	05.501	105.10	105.30	105.30	105-301	105.30	105.30	105.40	105.40	105.40	105-201	105.40	03. 201	105.40	10.501	105.40	04° COL	105 . 30		15	J	40.89	10.01	40.72	2/* 0.*	40.72	21.04	21000	40.78	50-75	40.78	81.02	40-78	81.01	40.78	
29	-	55.50	54.70	49.80	47.00	46.50	46.30	46.50	46.40	10.51	42.90		39.60	39.00	38.40	37.90	38.90	04.14	43.10		47	J	13.06	12.01	9.89	6.33	1.94	***	90.0	22.7	0.00	5.06	22.0	3 - 89	3.56	3.28	
28	-	46.90	47.10	47.20	66.40	46.00	46.00	08-22	45.70	45.50	45.10	11.12	44.40	45.70	44.40	11-11	44.00	09.44	45.90		87	U	8.28	8-39	8.44	00.9	7.78	0/-1		10.0	1.78	7.06	0.89	7.28	69.9	6.67	
14	-	148.90	161.30	168.10	160.70	169.50	187.60	208.10	224.00	236.70	241-10	237.70	236.00	01.025	235-90	DS*622	224.10	01.022	220.60		-	U	44.94	28-11	75-61	1.50	76.28	80.44	V . 63	10.001	116-17	114.28	113.33	113.17	82.211	109.61	
;	-	13.70	42.00	33.10	30.60	34.00	30.10	16.10	7.70	15.50	22.00	24.80	26:70	27.80	28.10	06-75	23.00	02.11	7.80		2	J	6.50	5.56	.61	9/° -	11.1	-1-00	6999		-5-56	-4.00	-2-96	-2.33	-2.17	-2.28	
12	-	175.50	174.90	155.40	129.90	134.10	147.60	164.70	182.90	203 -80	214.10	00-512	215.20	215.60	216.10	06.615	209.10	03-502	206-90		21	J	21.91	79.59	68.56	54.39	56.72	12.40	27.67	44.20	11.101	101.67	101.78	102.00	102.28	100.72	
•		156.30	157.40	165.40	141.10	124.80	127.10	129.60	134.80		153.10	154.70	157.60	159.90	161.50	157.80	151.50	145.60	137.00			J	90° 69	_ £9°.62_	74.11	60.61	51.56	52.85		86.84	67.78	68.17	69.76	71.06	71.94	69.89	OL IN
~		101.00	103.40	56.60	63.80	70.70	75.00	06.34	71.80	75.70	66.10	04-69	06.27	82.20	87.10	87.70	83.40	81.50	81.60			U	138.33	39.67	13.67	17.67	21.50	23.89	22.02	86.96	30-81	20.94	26.39	27.89	30.61	30 .94	
v		70.10	06.90	31.10	50.80	14.80	43.40	13.90	46.50	51-50	48.30	46.30	45.50	45.10	45.10	09.12	43.70	43.40	44.10		0	U	21.12	65:61	10.61	10-44	7.11	55.0			0.16	7.94	1.50	7.28	1.26	7.00	
\$		72.60	71.50	67.20	61.90	56.60	52.50	62.20	72.80	67.60	52.90	31.70	54.80	04-09	63.90	67.30	79.40	79.50	81.70	TS:	5	J	22.56	-20:12	19.56	16.61	13.67	11.39	0.00	10.73	19-11-	10.61	12.67	15.94	17.72	19.72	
2		160.40	159.10	04.99	80.70	96.40	105.00	112.90	119.50	126.40	127.50	130.20	132.30	133.70	134.70	132.80	129.90	127.70	138.80	AND UNI	~	J	71.33	-10.01	37.61	27-06	35.78	40.50		10 04 77 - 25		54.56	-35.72	56.50	57.06	56.00	
-		116-00	108 .70	82.80	88 .80	98.20	102 . 70	105.30	107.90	107.60	106.40	108-20L	110.20	111.60	113.00	114.10	113.50	01-11	110.20	NNEL NO.		U	46.67	18.52	28 • 22	31.56	36.78	59.28		10.24	1.13	42.33	13.44	44.22	45.00	45.61	
TINE		15:03:00	15:06:00	13:07:00	15:08:00	15:09:00	15:10:00	15:11:00	15:12:00	13:13:00	15:14:00	13:13:00	15:16:00	13:17:00	15:18:00	15:19:00	15:20:00	15:21:00	15:22:00	CHA	TIME		15:05:00	13:00:00	15:07:00	15:08:00	15:09:00	00:01:01		11.11.00	15-11-00	15:15:00	15:16:00	15:17:00	15:18:00	15:19:00	00-06-21

15:05:57 15:17:57 15:21:37

Unit On: Burner Off: Unit Off:

DATA FOR LAST CYCLE - Test No. C47-2

NO.: <u>C47-3</u>	
DATE: 8-6-82	
CYCLE TIMES: 20 / 20 ON/0	FF
AMBIENT DRY BULB: 7.7 C	WATER TEMP: 40.7 C
45.9 •F	105.3 °F
WET BULB: 6.4 C	WATER FLOW: 0.367 kg/sec
DEW POINT: 43.5 °F	5.88 gal/mir
INTEGRATED CAPACITY 16.64 MJ	
15739 BTU	
GAS INPUT: 16.52 MJ	ELECTRIC INPUT: 0.798 MJ
15653 BTU	756 BT
COP: 0.961	
PLF = 0.854	HLF = 0.413

(Data are average of last two cycles)

•

\$	AM	5.47	09.6	11.21	15.05	50-11	17-40	11.81	18-54	19-91	18.64	18.69	12.81	11-81	16.20	15.00	11.11	17-30		5.47	8.86	09.9	11.11	15.95	17.05	17.78	18.34	18.81	18.60	18.69	18.71	197.91	18.55	16.28	14.27	11-11
84		5.44	11.5	1.56	91.1	2002	20.5	2.96	2002	56-2	2.96	2.97	86-2	10.2		2.68	1.97		RY	5.44	2.99	1.2	1 56	1.70	2.68	2.95	2.96	54.2	2.95	2.97	79.5		00.0	3.01	1.99	14.1
36	AL	-1.97	66.	1.72	2.09	4.36	5.08	6.11	6.50	6.99	7.08	7.19	12.7	12.1	02.7	5.58	2.69		9 N 9	-1-97	6.45 2.17	66	24.1	2.09	4.32	5.08	0.50	0.90	6.99 7.08	7.15	61.1	12.1	47.7	6.70	80°4	2.69
5	-	108-40	105.10	104.90	104 - 90	04 101	104.90	104.90	104 - 90	00-501	105.00	104 .90	104 - 90	06-201	104.90	104.90	104.90		5	42.94	47.44 40.78	19-01	10.50	40.50	40.50	40.50	40.50	05-03	40-56	40.50	40.50	40-50	U. 5U	40.50	40.50	10.50
29	-	58.30	40.10	45.50	12.00	00.22	40.70	39.60	59.50	04-85	38 . 90	38.90	38.90	39.40	39.10	39.80	12.00		2.4	14-50	14.61	20.7	7.50	7.28	5.56	4 - 6 3 4 4 - 4	22.7	3.94	1.63	3.83	5.83	68.5	1	3.63	6.11	1.11
82	-	48.80	08.64	46.00	45.80	10.53	44.80	44.90	01-51	02-21	45.20	45.50	45.50	46.10	45.80	45.40	47.30		2	9.11	9.55	22.8	1.78	7-67	7.22	7.11	41.4	82.1	~~~	7.39	7.50	7.50	19.1	7.50	7.94	05.8
14	•	202.50	190.60	205.80	05.915	238.70	239.80	236.70	236.40	237.80	238.70	239.80	240.20	540-50	240.50	226.00	220.50		2	94.22	94.72 88.22	17.28	98.22	104.06	114.83	115.44	115.72	113.83	114.33	115.17	115.44	115-78	58-511	111.44	21.401	22-201
61		00-55	35.70 26.00	33-30	01.7	21-60	26.20	27.70	28-10	28-30	28.50	28-80	29.10	29.60	29.50	25.40	8.20			11.67	9°-6	-3.33	-11:11-	-13.83	-5.78	-3.22	-2.39	-2.06	-2.06	- 1 - B 3	-1-78	-1.67	-1.33	-1.50	-10.39	-13.22
21	-	200.50	151.30	173.70	181-10	214-00-	217.50	217.10	217.20	218.30	219.10	220.60	221-20	221 00	221-80	212.60	207.70		~ ~	93.61	10-26	66.28	78.72	82.83	101.11	103.06	102.63	00. 601	103.50	104.33	11.4.78	105.44	105-61	103.44	97.72	10.79
•		184.10	145.50	132.50	135.20	153.00	156.40	160.50	761.90	163.70	164.30	164.00	165.40	166.10	166.30	154.40	141.40			84.50	84.11	63.06	55.83	57.33	67.22	69.11	71.39	32.72	73.17	73.67	74.06	74.53	19.94	72.00	04 . 6 1	60.78
~		136.00	67.80	74.10	- 73.30 -	- 09:64	77.90	83.60	87.60	04.16	91.90	92.70	02.20	. 93.00	93.10	85.80	82 • 40 :81 • 90		~	57.78	58.61	19-96	23.39	22.94	\$9.92	25.50	28.67	22.35	32.89	33.44	33.72	33.65	35.64	33.11	28.00	27.75
0		124.10	\$9.10	47.50	12.00	00.9	46.90	45.60	12.20	15.60	45.70	45.90	06-54	46.20	46.50	45.40	45.50	u.	0.	51.12	46.22	05.4	9.4.8	8.33	8.89	8.28	7.56	19.4	7.56	7.67	7.72	7.78	8.06	7.89	44.4	7.50
75: 5		103.70	93.70	64.30	76.20	00.04	61.90	65.00	04-99	67.50	04.70	67.00	67.60	01.10	67.10	80.30	81.30			40.22	39.83	24.89	19.00	24.50	21.11	10-61	18.33	19-56	19.72	20.00	19.44	19-61	10.30	19-83	26.78	27.39
TANG UNI	- A	187.00	116.20	110.60	116.60	129.90	131.50	134.30	135.10	135-80	136.60	137.40	137.90	138.40	138.40	131.00	129.20		2	86.11	84.78	38 .72	47.22	47.00	54.39	55.28	56.83	-37-67-	58.00	58.56	58 .72	59.17	50.41	57.56	54.00	55.17
NNHELTKUT	-	113.50	99.30	07 70	108.00	108.80	109.90	111.80	112.80	113.50	115.00	115.50	115.70	115-80	115.90	115.00	110.20			45.28	19.11	39.67	22.04	42.22	42.67	43.28	44.33	45.28	45.72	40.28	46.33	46.39	12.27	46.50	46.11	43.44
TIME CHJ		11:29:00	11:31:00	11:33:00	11:35:00	11:36:00	11:28:00	11:59:00	00:13:11	11:42:00	11:44:00	11:45:00 11:46:00	11:47:00	11:49:00	11:50:00	11:52:00	11:53:00		TIME	11:29:00	11:30:00	11:32:00	11-34:00	11:35:00	11:37:00	11:38:00	11:40:00	11:42:00	11:43:00	11:45:00	11:46:00	11 46:00	11:50:00	11:51:00	11:52:00	11:54:00

•

· *•.

DATA FOR LAST CYCLE - Test No. C47-3

NO.: C47-4

DATE: 8-6-82

CYCLE TIM	ES: 10 /	10 ON/OFF		
AMBIENT	DRY BULE:	<u>7.9</u> c	WATER TEMP: 40.4	с
		<u>46.2</u> • F	104.8	۴F
	WET BULB:	<u>6.6</u> C	WATER FLOW: 0.366	kg/sec
	DEW POINT:	<u>43.8</u> • F	5.85	gal/min

INTEGRATED CAPACITY 8.291MJ 7858 BTU

GAS INPUT: 8.280_{MJ} 7848 btu ELECTRIC INPUT:^{0.445} MJ 422 BTU

COP: 0.950

PLF =0.845

HLF = 0.412

(Data are average of last two cycles)

.

Test No. C47-4

Temperature Rise of Water Flowing Through Unit as a Function of Time For the Last Cycle

(Outlet - Inlet Water Temp. Thermopile)

Channel 36 (mV)

1	D		1		1		1		ł		1		í.				ł	1	1		1		1.			h	6			1		3		1			l
		AK	21-11	11.49	12.05	13-25	04.51	16.38	10.41	17.36	17.66	17.99	12.81	17.86	10.21	14.84	14.41				44	2	21-11	11.49	50.51	13.25	01.61	16.38	10-21	17-36	17.66	17.99	12.81	17.56	14.61	14-84	
	48	AN	00.2	3.57	12.5	1.89	1.56	2.19	2.45	2.74	2.87	2.97	00.2	2.99	20.2	2.54	51.2		2-0-2	•	9.9	2	2.00	3.57	11.5	1.89	1.56	2.19	54.5	2.74	18.2	2.97	44.2	2.99	14.2	2.54	
	36	AN	2.74	7.59	3.76	1.94	20.1	2.44	08.2	4.75	3.61	5.90	6.32	6.63	02.0	5.15	59.2				20	ž	1.1	7.59	3.76	1.94	26.1	2.44	3-80	4.75	5.61	2.90	0.32	6.63	0.5-0	5.15	
	31	-	01-201	103.90	04-101	04 . 90	104 - 90	105.00	104.90	104 . 90	105-00	104 . 90	04-201	104.90	06-201	104-90	06.901			•,	10	U	39-83	39.94	40.39	40.50	40.50	40.56	10-50	40.50	40.56	40.50	40.50	40.50	40.50	40.50	11.511
	29	-	08-82	51.80	07-97	46.50	46.50	45.90	02.12	42.20	10.80	40.10	30.00	39.40	39.20	40.60	11.10				42	J	9.33	11.00	0.0- 0	8.06	8.06	7.72	0.10	5.67	69.4	4.50	4.39	4.11	00. *	4.78	
	28	-	48.20	48.60	11.10	46.80	16.60	46.20	15-80	45.30	44.90	44.90	45.50	45.10	06.44	45.30	11.10				22	U	00*6	9.22	8.39	8.22	11.9	7.89	1.61	7.39	1	71-2	1.50	7.28	1.1	7.39	
	14	4	225-30	220.50	211.50	203.40	214.10	222.40	232.30	238.20	239.20	231.80	236.20	237.30	229.40	223.60	222.80			ì	14	J	107.39	104.72	24.90	95.22	101-17	105 . 78	82.111	114.56	113-11	114.89	114.56	114.06	109-67	106.44	IN ANY
	13	-	47.20	43.50	24.40	24.20	30.10	13.60	17.30	22.70	25.80	27.20	26.20	28.40	26.30	23.10	10.60			ļ	13	U	9.4.6	6.39	-4.22	-4.33	90.1-	-10.22	-1-89	-5.17	-3.44	-2.67	11.5-	-2.00	90.2-	-4-94	
	12	1	02-112	215.20	188.20	171.90	187.30	191.20	207.50	215.50	218.50	219.20	05-012	218.90	215.00	209.80	211.90				12	J	102.94	101.78	86.78	77.72	86.28	88.44	05.70	101.94	19.501	104.00	104.06	103.83	101.67	98.78	10 00
	•	L	175.10	175.30	138.70	134.20	133.70	143.30	148.60	155.10	158.20	160.60	162.30	163.00	158.70	151.80	141.90			I		U	79:50	79.61	59.28	56.78	56.50	61.83	84.78	68.39	11.04	71.44	72.39	72.78	70.39	66.56	A1 AX
	2	b	120.60	115.90	77.10	77.00	75.50	78.90	84.30	86.70	88.40	88.30	86.70	90.20	89.00	84.20	82.80			•		U	22.93	46.61	25.06	25.00	24.17	26.06	29.06	30.39	31.35	31.28	37.50	32.33	31.67	29.00	- CC - C -
	ø	*	114.60	92.60	52.60	51.10	50.00	00.02	48.40	47.40	46.50	46.00	15.70	45.80	45.60	44.80	45.40				0	U	45.89	33.67	11.46	10.61	10.00	10.00	11.0	8.56	8.06	. 7.78	7.61	7.67	7.56	7.11	
15:	s	6	101.60	103.90	73.50	71.20	1.20	79.30	80.00	76.90	76.60	72.00	10.40	69.50	72.00	80.70	83.60				•	J	38.87	39.94	-25.J6	21.78	21.78	26.28	26.67	24.94	24.78	22.22	21.33	20.63	22.22	27.06	24 27
AND UNI	~		212.00	207.40	124.60	116.50	123.70	119.80	129.50	131.40	133.60	135.00	135.80	136.30	133.40	130.20	159.30			TWD GMY	2	U	00.001	97.44	51.44	46.94	50.94	48.78	54.17	55.44	56.44	57.22	57.67	57 .94	56.33	54.56	C6 44
INNEL NO.	-	-	111.40	114.60	114.90	109.70	108.20	109.00	110.00	110.50	111.60	112.50	113.00	113.60	114.20	113.00	110.50			INNEL NU.	-	J	11.12	45.89	46.06	43.17	42.33	42.78	43.33	43.61	44.22	44.72	45.00	45.33	45.67	45.00	LY XI
CHA	TIME		1:04:00	13:05:00	3:06:00	13:07:00	13:08:00	3:09:00	3:10:00	13:11:00	3:12:00	3:13:00	11:100	3:15:00	13:16:00	13:17:00	13:19:00			CHA	THE		13:04:00	3:05:00	1:00:00	3:07:00	J:08:00	3:09:00	3:10:00	3:11:00	3:12:00	3:13:00	3:14:00	13:15:00	3:16:00	3:17:00	10.00
			-		1	-	T	-	1		-	-	T	-	Γ	-							Γ	-		-		-			-	-		-			

DATA FOR LAST CYCLE - Test No. C47-4

80

Unit On: 13:14:51 Burner Off: 13:14:51 Unit Off: 13:18:19 NO.: C47-5DATE: 8-16-82CYCLE TIMES: 10 / 90 ON/OFF AMBIENT DRY BULE: 8.3 C $46.9 \circ F$ WET BULB: 6.6 C -or-DEW POINT: $43.9 \circ F$ INTEGRATED CAPACITY 5.043 MJ 4780 BTU

GAS INPUT: 8.506 MJ 8062 BTU WATER TEMP: $\frac{40.2}{104.4}$ C WATER FLOW: $\frac{0.362}{5.79}$ gal/min

ELECTRIC INPUT: 0.466 MJ 442 BTU

COP: 0.562

PLF = 0.500

HLF = 0.050

(Data are average of last two cycles)

Test No. C47-5

1
4
õ
:
20
_
Ļ
ŝ
Ľ
Ľ.,
1
띡
E -
М
C
_
5
A.
Ľ,
\sim
H
E
P.
T.
ñ

ŝ

	46			4.31	1.0.	5.75		11.39	06-21	16.08	00.01	17.05		17.51	-68.61	14.80		14.17	201	2			M	12.4		5.04		8.24		14.50		10.00	60.41	17 . 44	Licent	15.85	09-84	14.11
	89	2	86.1	4.47	3.30	2.90	22.2	1.66	04.1	1.53	C 2.2	2.59	18.2	2.96		2.41	68.4	1.96	t t			8.4	RV	4.58		3.50	04.2	2.22	0.0.1	1.40	56.1	5.55		2.81	-	2.94	19.2	1.85
	36	ł	-0.33	.71	240	05+0	- 0	1.02		1.94	2.04	4.21		5.55		4.65	06.6	2.39	-			95	AV	-6.35		.72	-30			1.10		3.04		4.95		5.46	60.0	3.30
	31		04-26	94.50	103.60	105.00	02.20	105.30	02.50	105 . 30	103 - 30	105.30	06-60	105.30	02.00	05.30	02.00	105.30				F	J	33.83	24.92	39.78	10.30	40.67	24.04	40.72	24-01	22.04	21-01	40.72	24.04	40.72	24.04	40.72
	59	-	09.45	50.10	01.82	48.40	05.14	46.90	00-14	46.80	02.64	45.50 1	00.61	42.70	00-14	43.90 1	0	45.50	1.14			R	J	81.9	10.06	9.28		8.61	82.0	8.33	22.0	7.33	0	6.44		5.33	10.0	7.28
	28		02-10	47.10	11.40	47.00	10.00	46.50	04.04	46.20	40.00	48.20	01.05	47.00	101.01	47.90	105.95	46.70				82	ت	8.44	0.50	8.56	8.33	8.22	000	8.00	-	1.78	00.4	8.17	8.33	8.17	8.03	7.94
	14		05-051	132.90	01.521	149.50	164.30	179.20	196.10	212.20	02.755	237.10	06-86	238.00	05-923	223.10	02.01	20.5U				4	J	54.72	50.06	67.28	03.28	73.50	01.76	91.17	100-11	108.44	50°61	114.72	114.54	22.600	100.17	104.11
	13		09.44	43.90	35.50	26.50	26.60	31.00 1	51.80	0.40	13.20	20.70	20.00	27.20	00.15	20.70	00.4	7.70 2				f	J	7.00	10.0	1.94	-3.00	-3.00	20		-12.50	-10.17	-0.20	-4.44	19.2-	-2.78	82.0-	-12.78
	12	-	154.50	154.00	138.80	24.00	06.021	139.60	153-10	120.90	02-161	00.00	13.40	U15.7U	13.30	02.805	02.10	207.00				24	J	68.06	67.78	59.33	11.12	54.39	81.92	67.28	11.11	88.72	97.56	00.78	102-06	100.72	68.10	95.67
1	•	-	147.90	141.50	00-271	143.50	136.40	123.30	128-70	135.40	142.70	150.00	154:00	157.40	155.30	149.50	143.40	156.90					J	61.06	-60.83	63.89	61.94	58.00	22.05	53.72	57.84	61.50	05.56	67.78	19:69	68.50	.65.28	61-89
	1	-	72.00	71.30	- 24 .40	65.80	01.12	67.70	11:40	66.10	73.50	. 07* 72	-10.30	81 .70	-83.20	81.30	-80.70	82.00					J	22.22	21.83	12.44	81.81	18.00	19:83	21.89	10:81	23.06	23.56	26.28	-19:12	28.44	- 27:39 -	27.06
	•		50.50	50.40	49.60	57.20	46.60	41.10	41.50	43.80	51.00	49.30	106-13-	48.40	46.70	46.60	16.20	46.70				•	J	10.28	22.01	9.78	00.11	8.11	90.6	5.28	0.50	10.56	9.61	8.83	11.0	8.17	11.8	7.89
15:	5	-	0.9 . 9 2	44.40	43.10	44.30	16.70	46.80	04:05.	66.80	63.70	64.00	02:59.	66.30	02:02.	78.30	10.50	82.40			TS :		J	7.00	6.89	6.17	6.83	7.83	22.8	10.39	19.33	17.28	17.78	18.72	19.06	21.50	22.22	26.39
THE OWY	2		00-111	136.90	106.50	82.90	82.60	97.60	107.60	116.40	122.30	126.80	06.° 62L	132.20	00.111	127.70	126.00	142.50			AND UNL		U	58.33	58.28	41.39	28:28	28.11	36.44	42.00	26.89	50.17	52.67	54.39	-55-67	55.00	53.77	\$2.22
The Frank		-	105.20	101.40	93.60	06.42	-95.30-	99.50	102.501	105.70	107.10	107.30	00.001	110.70	DE-111	110.90	109-50	108 . 90			NNEL NO.		J	41.00	38.56	34 . 22	23.83	34.72	37:50	39 .22	10.94	41.72	41.83	42.78	45.72	44.06	43.83	43.06
X BA	TIRE		11:24:00	14:25:00	00:22:31	14:27:00	14:28:00	14:29:00	14:30:00	14:31:00	14:32:00	14:33:00	00136111	14:35:00	T4:56:00	14:37:00	14:38:00	14:39:00			CHAI	TIME		14124:00	14:25:00	14:26:00	14:27:00	14:28:00	14:29:00	14:30:00	14:31:00	14:32:00	14:33:00	14:34:00	14:35:00	14:36:00	14:37:00	14 = 38 = 00

Unit On: 14:25:00 Burner Off: 14:35:00 Unit Off: 14:38:32

FROST ACCUMULATION TEST

NO.:	F35-5		
DATE:	8-30-82		
AMBIENT	C: DRY BULB:	<u> 1.7</u> C	WATER TEMP.: <u>40.6</u> C
		<u>35.1</u> °F	<u>105.0</u> °F
	WET BULB:	<u>0.4</u> C	WATER FLOW: 0.365 kg/sec
		<u>32.8</u> °F	<u>5.84</u> gal/min
ELAPSED	TIME: <u>8.42</u>	9 HRS.	
	(END OF DEFI	ROST TO END C	DF DEFROST)*
ENERGY	TO LOAD: 47	2.8 MJ	AVERAGE CAPACITY: 15569 W
		8.1 MBTU	<u>53157</u> BTU/HR
GAS INF	UT: 411.2	MJ	ELECTRIC INPUT: 16.98 MJ
	389.8	MBTU	<u>16.09</u> MBTU
COP: _	1.104 (AVG.	OVER 8.43 HC	OURS) COP _{gas} : <u>1.150</u>

AVERAGE COP AND CAPACITY ARE APPROXIMATELY 96.1% OF STEADY-STATE WITH DRY COIL (AS DETERMINED DURING FIRST PORTION OF TEST WHEN COIL WAS ONLY SLIGHTLY FROSTED).

*Defrost was initiated when (ambient - evaporator outlet) temperature exceeded 25.5°F.

NBS-114A (REV. 2-80)			
U.S. DEPT. OF COMM.	1. PUBLICATION OR	2. Performing Organ. Report No. 3. Publica	tion Date
BIBLIOGRAPHIC DATA	REFORT NO.		
SHEET (See instructions)	NBSIR 84-2816	Marc	h 1984
4. TITLE AND SUBTITLE			
IABODATORY FUAL	IATTON OF THE STEADY-S	ሞለጥፑ ለእጡ ወለወጥ ፤ ጋለክ	
	ARCODUTION TYPE HEATIN		
I FERFORMANCE OF F	ADSORFIION TITE MEATIN	G AND COULING EQUIPMENT	
5. AUTHOR(S)			
Detal and Delaws		Carly Made Devid Dillar	
Keinnard Raderma	icher, Mark McLinden,	Sanford Klein, David Didion	
6. PERFORMING ORGANIZA	TION (If joint or other than NBS,	, see instructions) 7. Contract/	Grant No.
NATIONAL BUREAU OF	STANDARDS		
DEPARTMENT OF COMM	ERCE	8. Type of P	eport & Period Covered
WASHINGTON, D.C. 2023	4		
		- · · · · · · · · · · · · · · · · · · ·	
9. SPONSORING ORGANIZAT	FION NAME AND COMPLETE A	DDRESS (Street, City, State, ZIP)	
Oak Ridge Nation	nal Laboratory		
U.S. Department	of Energy		
Washington, D.C.	. 20585		
10. SUPPLEMENTARY NOTE	S		-
Document describes a	a computer program: SF-185. FIP	S Software Summary, is attached.	
11. ABSTRACT (A 200-word o	or less factual summary of most s	significant information. If document includes	a significant
bibliography or literature :	survey, mention it here)		
			1 .
In this investig	gation, an absorption	water chiller and an absorptio	n heat pump
were extensively	y tested under steady-	state and cyclic operating con	ditions. Since
the tests were p	performed on two diffe	rent units, one for a cooling	only and one
for a heating or	nly application, the r	eport is set up in two parts d	iscussing the
results of the t	cesting of each unit s	eparately.	
		C .1 .1 .1	
In addition to t	the black box tests	of the units, the causes for t	he degradation
during part load	1 operation were inves	tigated in more detail using t	ne absorption
chiller and dete	ermining that migratio	n of the fluids during the off	periods are a
major contributi	lon to the degradation	•	
		1	1 (1
Furthermore, the	influence of various	neating water temperatures an	d flow rates
and the sensitiv	vity to the charge was	more closely investigated emp	Loying the
absorption neat	pump.		
1.			
12 KEY WORDS (Six to twelv	e entries: albhabetical order: ca	pitalize only proper names; and separate key	words by semicolons)
Charge consistivit	itur investigation of	part load dogradation: laborat	orrest of
charge sensitiv.	nume laboratory toat	of charaction water chiller	nort load
absorption heat	pump; laboratory test	of absorption water chiller;	part road
13. AVAILABILITY	asonai periormance, sc	eady-state periormance.	14 NO OF
			PRINTED PAGES
X Unlimited			
For Official Distribut	ion. Do Not Release to NTIS		92
Order From Superinter	ndent of Documents, U.S. Govern	ment Printing Office, Washington, D.C.	15. Price
20402.			
X Order From National	Technical Information Service (N	TIS), Springfield, VA. 22161	
			\$11.50

