
NBS
Publi

cations NBSIR 84-2814
NAT'L INST. OF STAND & TECH

AlllOb E b 1 7 fi

S

m

u

V Survey of Sensitivity

Analysis Methodology

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center For Applied Mathematics

Operations Research Division

Washington, DC 20234

February 1 984

-QC *

100

,U56

84-2314

1384

Sponsored by:

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Applied Mathematics

Washington, DC 20234





NBSIR 84-2814

A SURVEY OF SENSITIVITY

ANALYSIS METHODOLOGY

Robert G. Hendrickson

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Center for Applied Mathematics

Operations Research Division

Washington, DC 20234

February 1 984

Sponsored by:

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Applied Mathematics
Washington, DC 20234

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director





Table of Contents

Page

1.0 INTRODUCTION
1 . 1 Background 1

1.2 Motivation and Objectives 2

1.3 Organization 4

2.0 ERROR TYPES AND MODEL STRUCTURES
2.1 Introduction 5

2.2 Error Types 5

2.2.1 Accuracy of Numerical Values 5

2.2.2 Process Errors 6

2.2.3 System Errors 7

2.2.4 Computational Errors 8

2.2.5 Errors of Sensitivity Analysis 8

2.3 Function Types 8

2.4 Model Types 10

3.0 CLASSICAL METHODS OF SENSITIVITY ANALYSIS
3.1 Introduction 12

3.2 Precision In Computation 12

3.2.1 Numerical Significance 12

3.2.2 Rounding Errors 13

3.3 General Formulations of Error Analysis 14

3.3.1 Theory of Errors 14

3. 3. 1.1 Quotient and Product Analysis 14

3. 3. 1.2 Integration, Interpolation,
Differentiation Errors 16

3. 3. 1.3 Propagation of Errors 17

3. 3. 1.4 Differential Formulation of Error 19

3. 3. 1.5 Variational Formulation of Error 20

4.0 STATISTICAL METHODS OF SENSITIVITY ANALYSIS
4.1 Introduction 22

4.2 General Sampling Techniques 22

4.2.1 Random Sampling 23

4. 2. 1.1 Evaluation 23

4. 2. 1.2 Application 23

4.2.2 Stratified Sampling 24

4. 2. 2.1 Evaluation 25

4.2.3 Three Point Sampling 25

4. 2. 3.1 Evaluation '. 26

4. 2. 3. 2 Application 27

4.2.4 Latin Hypercube Sampling Method 27

4. 2. 4.1 Evaluation 29

4.3 Analysis of Range 29

4.4 Minimum Variance Sampling 30
4.5 Regression 31

4.6 Partial Rank Correlation Coefficient (PRCC) 32

i



Page

5.0 ANALYTICAL METHODS OF SENSITIVITY ANALYSIS
5.1 Introduction 35

5.2 Criterion Sensitivity Analysis 35

5.2.1 Description 35

5.2.2 Evaluation 36

5.3 Describing Function Sensitivity Analysis 36

5.3.1 Description 36

5.3.2 Evaluation 38

5.4 Adjoint Sensitivity Analysis 39

5.4.1 Description 39

5.4.2 Evaluation 43

5.4.3 Application 45

5.5 Linear Programming 46

5.5.1 Description 46

5. 5. 1.1 Postoptimality Evaluation 48

5. 5. 1.2 Parametric Sensitivity 48

5. 5. 1.3 Tolerance Sensitivity 49

5. 5. 1.4 Lagrangian Parametric Sensitivity 49

5.6 Sensitivity Functions 51

5.6.1 Description 51

5.7 Eigenvalue Functions 53

5.7.1 Description 53

5.8 Large Error Sensitivity Analysis 54

5.8.1 Description 54

6.0 SPECIAL ANALYTICAL METHODS OF SENSITIVITY ANALYSIS
6.1 Introduction 56

6.2 Fourier Coefficients 56

6.2.1 Description 56

6.3 Geometric Programming 58

6.3.1 Description ^ 58

6.4 Catastrophe Theory 59

6.4.1 Description 59

7.0 MODELING AND SENSITIVITY ANALYSIS
7.1 Introduction 62

7.2 Modeling Control Parameters 62

7.3 Modeling Sensitivity Methodology 63

Appendix A 67

Part I Summary of Principal Error Formulas 67

Part II Statistics of the Index W=x/y 71

Appendix B: Parametric Programming: Sensitivity Analysis 72

Appendix C: Catastrophe Flags and System Dynamics 75

References 79

ii



1 . 0 INTRODUCTION

1 . 1 Background

Sensitivity analysis is receiving a widening interest because of its role

in model validation and the need to evaluate model results in terms of

variations of input.

The complexity and sophistication of contemporary models and the

attendant justification of model results in matters of policy and planning

have created a demand for a wide range of sensitivity methodology.

Classical sensitivity analysis, which was formalized in the last century,

is no longer adequate to meet the requirements of most modelling tasks. It

was based either on an application of statistical methodology to observed data

or on the use of differentials of variables of interest. These approaches are

still used, particularly in experiments of an engineering nature or in the

context of a controlled laboratory protocol, but they do not meet the needs,

for various reasons which will be discussed, of contemporary model designs

intended to be run on high-speed computers. The technical literature is

reporting new analytical and statistical methods for validation and

sensitivity analysis. These methods employ techniques which were developed

specifically for the complex models of policy and allocation problems.

Sensitivity analysis is an important subject in model evaluation because

it (1) aids in validating a model by contributing to an understanding of the

correspondence between a model and its subject, (2) assists in the

identification of variables which contribute only marginally to functional
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relationships among variables or elements in the model, (3) measures the

quantitative impact of variations of input on model results, (4) tests the

sensitivity of the level of representation of activities in the model to

variations which effect actual perturbations or changes, and (5) contributes

to measuring the degree to which input data may be altered without

significantly exceeding a specified range-of-interest in the output.

A sensitivity analysis of a computational process or model may have to

deal with: (1) errors which are inherent; that is, they are assumed to exist

because of sampling or collection protocols (2) errors which vary

stochastically; and (3) errors which are imposed upon the process by external

circumstances or controls. The first kind of error, those which are embedded

in the data, contribute to errors in the output primarily as displacements or

scaling factors. The second kind of error, those which are random, project or

convolute their randomness on the output, thereby giving the output the

character of a statistical distribution. The third kind of error, that which

is imposed, creates a displacement error in the output. The imposed error is

evaluated by methods used to ascertain system biases. The advanced

methodology of sensitivity analysis for evaluating these error types are drawn

from specialized applications of mathematics, physics, and statistical

sampling.

1.2 Motivation and Objectives

Sensitivity, in the sense of responses to variations, is of two broad

kinds: qualitative and quantitative.

Qualitative sensitivity is used in this paper to denote the capability of

a model to respond to dynamic changes in the subject being modeled. A closely

related definition is the level of representation of the subject by its model.
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The sensitivity referred to here is the difference between the representation

and the subject, and the significance of that difference in terms of second

and third order effects.

An example of dynamic qualitative sensitivity would be a model of a

queueing problem in which the logic of the model permits a dynamic reponse to

queue sizes (demand) by opening or closing channels (service) according to the

circumstances. Another example, though not commonly used in typical model

design, is a heuristic model which alters its process based on a "learning"

ability or the use of artificial intelligence to select or alter its logic

according to accumulated information. The use of "dynamic" should not be

confused with an association of time as a model variable, although it is not

excluded from the discussion above - dynamic, as used here, refers to the

ability of the model to automatically modify its logic or computational

process according to critical perturbations in specified state variables which

may or may not be functions of time. Most models deal with a specified

scenario with almost no capability to simulate potential system dynamics. It

is, therefore, difficult to validate these models or to understand thoroughly

their range of application.

Quantitative sensitivity is defined as the numerical measure of changes

in output to variations of input. This is the traditional view of sensitivity

analysis

.

The motivation for preparing a survey of sensitivity methodology

addresses both the need to recognize and analyze qualitative and quantitative

sensitivity problems. The qualitative aspect addresses model design; the

quantitative aspect addresses responses to parametric variation.
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The motivation and objectives of this survey are interlinked in the need

and desire to provide sensitivity methodology and reference in a single

source; to advertise to the NBS staff, and others, the importance of the

subject; to improve the understanding of sensitivity analysis in the design of

models; and to enhance the ability to perform a more efficient model

validation through the use of qualitative and quantitative sensitivity

methodology.

This survey was written to provide a general overview of sensitivity

analysis to the model developer arid is not intended to provide a precise

theoretical and comprehensive treatment of the methods included in the survey.

1.3 Organization

The paper is organized into six sections which develop and evaluate the

classical and modern methods of sensitivity analysis. Section 2.0, Error

Types and Model Structures, defines the error types incurred in modeling, and

in statistical and physical experiments; Section 3.0, Classical Methods of

Sensitivity Analysis, presents the familiar theory of errors and numerical

significance; Section 4.0, Statistical Methods of Sensitivity Analysis,

describes the basic statistical approaches to measuring model performance and

other aspects of statistical interest; Section 5.0, Analytical Methods of

Sensitivity Analysis, presents an assortment of methods which constitute the

major advances in different lines of sensitivity methodology; Section 6.0,

Special Analytical Methods of Sensitivity Analysis presents some very

interesting techniques and concepts for certain kinds of sensitivity problems

with broad application; and Section 7.0, Modeling and Sensitivity Analysis, in

which methods of model assessment and design concepts are presented and

evaluated

.
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Although it may not be possible to discuss every method presented with

equal knowledge or to know the consequences of its application, an attempt to

evaluate some of the methods has been made. The evaluation, when given, is

based on information from cited references which includes comments on

efficiency, ease of use, cost, preparation, sample size, and output

description.

Equations cited within quoted material retain their source designations;

equations in the text are numbered according to the major section in which

they appear.
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2.0

ERROR TYPES AND MODEL STRUCTURES

2.1 Introduction

This section introduces the basic types of errors incurred in data and

model analysis. It presents the context of these error types by discussing

generic functional forms on which sensitivity analysis is carried out, and

rounds out the discussion of these subjects with a description of model types

and their relation to sensitivity analysis. Taken together these three

subjects define fundamental relationships among the model, the representation

of the subject, and the data. It is from these relationships that data and

model uncertainties have their origins.

2.2 Error Types

There are five major types of errors ranging from the accuracy of input

data to the implicit errors introduced by the selection of computational

methods, algorithms, and the formulas themselves which are used to evaluate

model sensitivity.

2.2.1 Accuracy of Numerical Values

Although there may be many ways in which uncertainties can be

incorporated into input data, the error which is emphasized here is that of

the number of significant digits in data of a cohort or homogeneous file.

Significance of numbers is a field of numerical analysis which has been

studied for a long time and most of the rules addressing numerical precision

are well known. Several of these rules will be summarized here to refresh our
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recognition of the subject and to refer to these rules when our examination

reaches the study of the propagation of errors in a computatonal process.

Following Reference [1], Kelly gives three general rules dealing with

numerical precision:

(1) If the first significant figure of a number is k, and the number is

correct to n significant figures, then the relative error in this number is

less than

1 ( 2 . 1 )

klOn_1

where the relative error is defined as the error divided by the number.

(2) If the relative error in a number is less than

1

(k+1 ) 10n“l (2.2)

the number is correct to n significant figures or is in error by less than a

unit in the nth significant figure.

(3) A number is correct to n significant figures if the relative error of

the number is not greater than

1

1 (2.3)

2 • 10n

The propagation of errors in significant digits depends entirely on the

distribution of the errors throughout the data set and the computational

process to which the data are subjected in the model.

2.2.2 Process Errors

Process errors are those errors introduced by rounding and by truncation.

These errors arise primarily from register lengths in computer hardware, and

are entirely dependent on the mechanical features of the equipment used for
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the model computation. They may or may not be important to sensitivity

analysis since most computers provide floating point calculations. It is not

unreasonable to make the point that, for most simulations, the input data are

far less accurate than the capacity for accuracy provided by most modern

computers. However, round-off error is an extremely important subject and has

been treated widely in the literature as it relates to and impacts on the

accuracy of repeated calculations, convergence criteria, and decisions based

on numerical differences.

2.2.3 System Errors

There are several categories of errors which can be thought of as

associated with system processes: those that come from system bias, those

that arise from system noise, those that originate from measurement, those

that occur in data generation protocols, and those that arise from data

sampling. These may be regrouped under three more convenient categories:

systematic errors
;

to cover system bias and noise; measurement errors , to

cover the errors of measurement, sampling, and generation; and structural

errors
,

to describe errors imposed by the computational process of the model.

It is necessary to examine the possibility that the structure of the model or

experimental design may directly affect the results of an experiment. This

point involves both qualitative sensitivity and quantitative sensitivity; it

is an important aspect of sensitivity analysis because model design may impose

an error of perception or bias on the structure of the model. The general

theory of system errors, as they occur in the context of physical experiments,

is nicely covered in References [3], [4], and [5].
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2.2.4 Computational Errors

In this class of errors there are three levels at which qualitative or

quantitative errors are likely to be incurred. A qualitative error is an

error imposed by selecting a particular method of computation or

representation; and a quantitative error is an error associated with numerical

calculations

.

The first level the source of error is the method of computation,

representation, or degree of aggregation of the subject. By choosing a

particular process for a computation, approximations to the subject are

automatically imposed which invest the process with attendant quantitative

errors. The choice of algorithm or model logic is a qualitative decision, but

when the choice is made, quantitative errors are imposed on the results

obtained from the method of computation.

The second level of error is that which originates from the equations

used by the selected method of computation. This level of error is

characterized by the calculation of quantitative errors in the form of

relative functional errors, sensitivity coefficients (discussed in detail in

3. 3. 1.4), and parametric variations.

The third level of error is the error of calculation, which results

from a sequence of arithmetic operations upon numbers in the equations of the

method of computation. This level addresses issues of significance of the

input data, significance of results of arithmetic operations, and the net

precision of the final result of the computational process. Each level

contributes to the propagation of errors in either the quantitative or

qualitative sense, or both.
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2.2.5 Errors of Sensitivity Analysis

The methods of sensitivity analysis, whether they be statistical or

variational formulations, or any of the many forms described in this report,

may themselves create errors because some are approximations or, by the

argument of Section 2.2.4 above, they may induce errors or biases because they

involve sequences of calculations.

The methods of quantitative sensitivity analysis are primarily either

statistical in nature, use local approximations (Taylor series), or employ a

closed functional solution to obtain the desired sensitivity coefficients.

There also may be assumptions which bear on numerical characteristics, such as

distribution or error magnitude, which contribute to the total

quantitative sensitivity of a model's computational process.

2.3 Function Types

Error analysis is ultimately contingent on the nucleus of arithmetic

operations embedded in a method, a model, or an experiment. These operations

collect and accumulate qualitative and quantitative errors which are the

pursued objects of sensitivity analysis. A model is often, but

simplistically
,
described as a function, as in

y = f( a ,x) (2.4)

where the "a" is a set of input control data and "x" is a set of input state

data. The model is represented by the operator ”f" which acts on "a" and "x”

to produce output "y”
. Equation (2.4) is the basic representation which

is used in sensitivity analysis for the development of absolute and relative

errors in the variable y.

An important extension of this concept is the system which involves

embedded functional relationships, as in

y = f( a ,x)

u = g(b,y,v) (2.5)
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in which "b" is a set of control input data, y is the output from the previous

equation, "v" is a set of control state variables which may include some

subset of "x", and "g" is an operator. This process of chaining is common to

most simulations and models of any degree of complexity.

The next step up in functional formulation is the system of simultaneous

equations, given as

y = Ax (2.6)

for a linear system, where A is a square matrix and x, y are vectors; or as

y’ = f(x,y)
,

(2.7)

the differential form, with x,y as vectors and y' as the derivative of y with

respect to x. Equation (2.7) could also be expressed as

y = f(x,y ,t)
, (2.8)

where y is the derivative of y with respect to time, "t”. Equation

(2.8) is the general form for the sensitivity function, discussed below in

Section 5.6. Equation (2.6) appears in many problem formulations and most

particularly as the basic form, with an objective function, of a linear

program. If in equation (2.6) y = Xx, then the familiar eigenvalue

formulation emerges.

2. A Model Types

It is customary to refer to model types as descriptive
,
prescriptive ,

or

predictive , and within these, the models as being static or dynamic . These

categories designate purpose and structure, but they are not particularly

useful distinctions for the purposes of sensitivity analysis.
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As this Section has attempted to indicate, there is a progression of

error analysis which spans the numerical significance of data at the lowest

level to the extensive variety and complexity of models and simulations at the

highest level. At each stage of this progression the complexity of the error

analysis increases in degree over the previous stage, which requires, in turn,

an increase in the sophistication of the sensitivity methodology as the

progression moves from simple to complex model processes.

Many of the methods of sensitivity analysis have been developed to

evaluate sophisticated models of complex subjects, and therefore are, in many

cases, designed for a particular treatment or mathematical formulation. There

are, then, at least seven general types of model processes that can be

identified; and each has its own particular method of sensitivity analysis:

(1) independent algebraic or differential equations, (2) chained dependent

algebraic equations, (3) system of algebraic equations (4) system of

differential equations, (5) system of stochastic differential equations, (6)

statistical distribution functions or variables, and (7) the stochastic or

deterministic iterated, closed program (algorithm). There are certainly many

other variations of these types that could be listed, but to dwell on

categories would obscure the principal point, namely, that sensitivity

methodology consists of general techniques for analyzing subject formulations

rather than analyzing specific model types . Even the model itself, because of

its organization of components, degree of complexity, and level of aggregation

may be considered as a process which is appropriate for sensitivity analysis

as a part of the larger process of validating subject-model correspondence.
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Model types, therefore, which relate to sensitivity analysis should be

categorized in terms of the representation of the subject. This concept is

essentially the reverse of the conventional approach, which is to identify the

model by the purpose of the model and the use of its output.

13



3.0

CLASSICAL METHODS OF SENSITIVITY ANALYSIS

3.1 Introduction

The principal subjects associated with classical sensitivity analysis are

computational precision (primarily rounding errors and numerical error

estimation)
,

the general theory of errors (addressing variations of functions

and products or quotients of random variables)
,

and differential formulations

and approximations (which provide closed, analytical expressions of error and

sensitivity). These subjects are examined in the following sections. The

material is not intended to be exhaustive but rather in the spirit of a survey

of issues of primary interest to model developers rather than to numerical

analysts

.

3.2 Precision In Computation

Computational precision is represented primarily by the net numerical

significance of arithmetic calculations and by the analysis of roundoff errors

in computational operations.

3.2.1 Numerical Significance

Section 2.2.1, Accuracy of Numerical Values, introduced several rules

about relative errors in numbers and measures of these errors. There are two

ways of defining a significant figure: (1) as any of the ten digits, except

zeros which are used only to locate the decimal point, and (2) any digit which

signifies the amount of quantity in the place in a number in which it stands.

We now state from Kelly, Reference [1], the relation of significance to simple

arithmetic operations.

(1) If two numbers are added or subtracted the maximum error is the sum

of the maximum errors of the two numbers,

(2) If two numbers are multiplied or divided, the result has a maximum

relative error equal to the sum of the relative errors of the two numbers.

14



In addition, experience has shown that errors of a sum or multiplication

compensate to a degree, especially in a long string of calculations. The loss

of significance by subtraction is the principal source of error.

Additional rules advise on accuracy where a variation is introduced:

(3) retain enough significant figures in a number to include the place in

which the least significant figure of the variation occurs; and

(4) in adding or subtracting several numbers deal with absolute error,

not the relative error,

(5) when several values are to be multiplied or divided use the largest

relative error in computing the number of significant digits of the result.

Stoer & Bulirsch, Reference [2]

,

have written a comprehensive and modern

treatment of computer arithmetic, error propagation and interval analysis,

which complements the older texts on numerical analysis.

3.2.2 Rounding Errors

This subject is usually included under discussions on computational

precision where the roundoff is made to a number in a particular digit of

the number, rounded up or down in that digit, and the rest of the number is

truncated. There is, however, a more sophisticated analysis of the errors

associated with rounding, which is given in Reference [2], Chapter 1, and is

there referred to as statistical roundoff estimates. This concept defines

the relative roundoff error which results from an elementary operation as a

random variable on a given interval of values. The roundoff errors are

assumed to be independent with a given distribution of values. Seen in this

way, the evaluation of roundoff errors proceeds along classical statistical

15



determinations of the means and variances of results of computations. The

assumption of independence is critical: if the roundoff errors are not

independent the error analysis requires a more complicated formulation.

3.3 General Formulations of Error Analysis

This section presents the subjects which comprise the bulk of classical

sensitivity analysis. The familiar results of numerical analysis, statistical

theory and error estimates are developed and evaluated. These methods, and

the statistical methods described in Section 3.3.2 below, are the most widely

used of all the techniques available to model assessors. A summary of the

principal formulas of the propagation of errors and classical sensitivity

analysis is provided in Appendix A.

3.3.1 Theory of Errors

Within this broad subject there are three subordinate subjects which are

discussed separately in order that their contributions to the general theory

of errors are clearly delineated. These three subjects are product and

quotient analysis; errors of integration, interpolation and differentiation;

and propagation of errors.

3. 3. 1.1 Quotient and Product Analysis

There are two basic relationships in the theory of errors which are

fundamental to sensitivity analysis. These relationships are the statistical

expression of the means and standard deviations of the product and quotient of

two random variables.
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Given that x and y are random and normally distributed with means y x and

Uy, and standard deviations o x and Oy, let

w = x/y , (3.1)

then the mean of w, w is:

w = yx/y y , yy * 0. (3.2)

The standard deviation of w was developed in a basic paper by Fieller

[6], and is as follows: If w = x/y, and x and y are independent and normally

distributed with means y x and Py and standard deviations ax and Oy, then w

will be approximately normally distributed with mean given in (3.2) above and

a standard deviation of:

aw y

Hx

y

’x + fz- - 2r

1/2
(3.3)

b x2 W y
2 y y

where r is the correlation coefficient and Py/cfy > 5. See Appendix A, Part

II, for more details on this theory.

Craig [7] developed a similar formula for the product of random

variables

w=xy. (3.4)

If x and y are independent and normally distributed with means y x and y yi

and standard deviations o x and Oy, then the mean of w is

w = yxp y ,
(3.5)

and the standard deviation is:

a w
= (M x^Oy^+y y^ax^+ox^oy

2)l/2 (3.6)

In the case that x and y are not independent, but normally distributed,

°w is (from [7], page 9):

®w [ P x^^y^i~y 2 ry xPyOxay-l-0 x
2 ay2 ( 1+r 2

) ]

1/2
(3.7)
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where r is the correlation coefficient. Reference [8] gives a procedure for

obtaining either one-sided or two-sided tolerance^ limits of the product and

quotient of independent normal variates. It is assumed in this procedure that

the distributions have positive means and small coefficients of variation

(ox/yx ). Huntington [9] derives frequency distributions for the product and

quotient of two independent random variables, and Curtiss [10] provides a

general and thorough development of the frequency and distribution functions

of the quotient of two random variables. (Curtiss concludes his paper with a

brief treatment of the distribution of the product of two random variables.)

His theorems are generalized and expressed as integral functions depending on

the positive and negative domains of the product.

3. 3. 1.2 Integration, Interpolation, Differentiation Errors

These mathematical methods are well known and thoroughly treated in texts

on numerical analysis. The advent of high-speed, sophisticated computers has

made it possible to build models of extreme complexity. This capacity has

required a new development of numerical procedures, and as a consequence the

classical numerical techniques have been revitalized or replaced by advanced,

innovative methods.

No attempt will be made here to restate the classical methodology nor

will any attempt be made to reproduce any of the many advanced numerical

techniques except to recognize their existence and their immense importance to

many diverse areas of application. Software packages abound which contain

^Not to be confused with confidence limits. Tolerance limits are defined as

the limits which include at least "p" percent of the observations at some

prescribed level of confidence.
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specific and generic numerical tools for virtually every computational need,

and the underlying theory of these developments have given numerical analysis

an enhanced and extensive revitalization.

3. 3. 1.3 Propagation of Errors

The theory of propagation of errors should be more properly called the

theory of small errors. It was developed about a century ago and most of the

early texts which appeared around the turn of the century dealt with analysis

of observations generated from physical experiments and calibration of

instruments. More recently Ku [12], Dietrich [5], and Deming [13] have

written more comprehensive treatises on experimental error and provided a

sound theoretical basis for their formulations. Of these modern treatments Ku

has written the most complete and thorough exposition of the propagation of

errors. In his paper, Ku states two forms the analysis of random functions

can take: (1) determining the statistical parameters of a given function of a

random variable, or (2) determining the statistical parameters in which the

function is assumed to tend, asymptotically with a large number of

observations, to the normal distribution. Ku's paper deals only with the

second formulation of the problem. The problem, where the function or its

expected variation does not, for whatever reason, conform to asymptotic

normality is of equal importance, however, and should be addressed. Section

5.9 will address the various methods which can be used where the assumption of

asymptotic normality is not essential.

The basis for the traditional approach to the study of errors is embodied

in a theorem, which is paraphrased from Ku, as follows:

If, in some neighborhood a function of random variables is continuous and

possesses continuous first and second derivatives (i.e. f(x) eC2 ), then the

statistical parameters of the function can be approximated by

19



f(x) = expectation of f(x) = f(x) (3.8)

and the variance is given by

1

var f(x) = n (3.9)

(where x is a vector of n elements) based on asymptotic normality. A Taylor

series expansion, from which second and higher order terms are dropped, of the

function over the continuous neighborhood serves a basis for the derivation of

the statistical approximations to the mean and variance, as given by equation

(3.8) and (3.9). There are, then, three conditions attendant on the

acceptance of this development (1) that the variations of the independent

variables are small enough to justify ignoring second and higher order terms

from the Taylor series expansion, (2) that the approximations of statistical

parameters tend to the normal as the number of observations becomes large, and

(3) that the function is necessarily well behaved in the domain of interest.

The case of large error or small sample size is not amenable to the above

conditions, and therefore requires its own methodology. The use of any of the

familiar approximations, which measures error or computes a statistical

parameter, introduces an error (induced qualitative error^) the size of which

depends on the formula employed, the number of observations, and the magnitude

of the uncertainties in the independent variables of the function. The main

references, [ 5 J , [12], [13], and the subsidiary references [14-20] provide a

complete statement of the theory of small errors. Of particular interest is

Ku's extension of the theory to accuracies of the various stages of

approximations

.

^See Section 2.2.4
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3. 3. 1.4 Differential Formulation of Error

An alternative formulation to the theory given, above is to require the

function to be only of function class Cl
, i.e., needing only a continuous

first derivative, and expand the function as a total differential, and use

this result as a measure of absolute sensitivity. Let f(x)
,
where x is a

vector, be
, then

n
df = l dXi (3.10)

i=l 3 xjl

where the x^ are independent or are functions of another variable. If the

function is defined as

w = f(u,v) (3.11)

where u is a vector of control variables and v a vector of state variables,

and u^ is one of the u(u^ e U) , the sensitivity! to u^ may be developed as

follows

:

n m
dw = £ du

j
+ £ dvfc (3.12)

j=l 3uj h=l 3vft

and forming dw/du-^, we obtain (3.13)

n m
dw = a_f + J

duj_ + £
3_f dvjj. (3.14)

du^ 3u^
j
= j

3uj du^ ^=1 3v^ du^

as the sensitivity of the function w to variation in u^. The first order

partial derivatives in equation (3.14) are called sensitivity coefficients in

the literature. The rates duj/du^ express the functional dependencies among

the control elements on u^. The rates dv^/du^ express the functional

relationships, if any, of the state variables with the u^ control variable.

lln some models it may be important to identify control and state variables
in order to refine the evaluation of a sensitivity analysis. In this example
u and v represent this distinction.
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If, in equation (3.14) we are interested in time dependent changes in w, the

equation becomes:

•
0 m

• •
w - dw - £ 3 f du-j + £ 3_f dvy

;
where “u i - u^ and °vk - v^ . (3.15)

dt i=l 3ujL dt k=l 3v^ dt dt dt

3. 3. 1.5 Variational Formulation of Errors

In analogy with the definition of the differential, we define 5 as the

variation in a function or variable. From Hildebrand [21], the differential

of a function is an approximation to the change in that function along a

particular curve, while the variation is a first order approximation to the

d_
change from curve to curve. The operators dx and 6 are commutative for

independent variables, and are therefore interchangeable, so that

— (<$y) =
<5 f

*

dx \ dx
J

We can write the variational form of equation (3.10) as

The variation is usually defined as

fix = e<J>(x) (3.22)

which changes a function, say y(x)
,

to a new function, z(x) by:

z(x) = y(x) + fix = y(x) + e<j>(x), (3.23)

where e is some appropriate value.

Hence the values which fix may take are not restricted. The statistical

approximation to the variance, as developed above in Section 3. 3. 1.3, equation

(3.10), can be derived from (3.21) by squaring 6f, taking the expected values
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of both sides of the equation and reducing the terms to their variance. Weld

[14] has derived the more usual expression for the standard deviation:

by this method. For this equation to be true, however, would require

independence of the variables, as was required in the derivation based on

Taylor series expansion. The Sx would be restricted to represent the error or

variation in the observations, and would, under the protocol of a large

sample, comply with the requirements of convergence to normality. This

condition is essential o all of the formulations of classical error

analysis

.

2 1/2
S (3.24)
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4.0

STATISTICAL METHODS OF SENSITIVITY ANALYSIS

4.1 Introduction

This Section presents certain specialized applications and developments

of statistical methodology which are used in the sensitivity analysis and

evaluation of large models.

The methods discussed are sampling techniques, which are motivated by

model evaluation problems; analysis of range! data, which is applicable to

parameter estimation and to the evaluation of large errors; the use of partial

rank correlation coefficients as measures of sensitivity; and three standard

statistical methods, range! analysis, minimum variance, and regression, which

are used for estimating and sizing sensitivity.

Of these subjects the sampling techniques and application of partial rank

correlation coefficients as measures of sensitivity are of particular value to

those interested in assessing a large, complex computerized model. The best

of the sampling schemes, latin hypercube sampling, is a procedure which

structures input trials in an optimum and comprehensive model-testing design.

4.2 General Sampling Techniques

Three principal methods of sampling are presented. Two of the three

methods are familiar and are the subjects of a wide and comprehensive

literature. The third method, however, is comparatively new, that of latin

hypercube sampling (LHS) , and is discussed and compared with standard sampling

procedures

.

1 -
range" is used here to refer to the extreme values of an interval around
value.

a
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4.2.1

Random Sampling

In random sampling, values for input variables are determined by a scheme

which assigns a value equally likely over all the values the input variable is

permitted to have. Further, the sample values so selected have the same

probability of selection as any other set of assignments of values to the

variables. The collection of values over all the variables is called the

sample space. The sample then is the set of assigned values to each input

variable under the condition that each assignment was as equally likely as any

other assignment and that each assignment is independent from all other

assignments

.

4. 2. 1.1 Evaluation There exists an immense literature on the analysis of

random sampling and its use in estimating the statistical parameters of the

population from which the sample was taken. Our intent in introducing random

sampling is to compare its efficiency against other methods of sampling,

particularly as it relates to generating data for senstivity analysis and

model evaluation. It will be shown below that a variance based on a random

sample will be greater than or equal to the variance based on a stratified

sampling scheme. See references [22] and [23] for technical exposition.

4. 2. 1.2 Application The use of random sampling is wide spread, and in the

specified requirements of some models it has the desired properties needed to

attain certain conditions, but as a technique for generating data for model

evaluation it is the most costly and inefficient of the three methods outlined

in this Section.
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4.2. 2 St ra t i ft ed Samp 1 i ng

In stratified sampling < lie sample space of input variables is partitioned

into n subspaces. Following (lie development by McKay, Beckman, and Conover

I 23), the sample space is partitioned into disjoint sets Sj of size Pj ,
and

if Xj
j

are a random sample (j) on Sj
,

and with y = h(x), an unknown but

observable mapping, then the strata means and variances of g(y) are:

Pi = F(tf(yn)) = / g(y) }_
f(x)dx (4.1)

Si p
t

«t
2 = V( g( y i

i ) ) = / (g(y)“Pi>
2 f ( x)dx (4.2)

Si Pi

and the estimator over the sample space

N

T = J_ l g( Ul ) , (4.3)
N i= 1

where g (uj.) is an arbitrary, known function. Then

(4.4)

and the variance of Ts is given by:

V (TS ) = l / £±1 1 °i
2

, (4.5)
i=l

| ni |

where the "s" on T as a subscript indicates "stratified sampling" and I is the

number of disjoint subsets S^. Invoking the development of Tocher [24],

equation (4.5) becomes:

I

V(T S ) = V(Tr ) - £ I Pi (Pi-T) 2 (4.6)

N i=l

where "R" on TR denotes the estimator based on random sampling and x is the

estimate of the mean under stratified sampling. It follows from equation

(4.6) that
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<
V(TS ) = V(Tr ) (4.7)

which is the desired demonstration that stratified sampling is a more

efficient method than is random sampling. A necessary condition attendant to

this conclusion is that the sample sizes, n^
, are chosen so that

n± = P-jN (4.8)

which provides for proportional allocation. The variance reduction shown in

equation (4.6) is a function of the differences between the strata means (y^)

and the overall mean (t).

4.2.2.

1

Evaluation Although the advantage of a reduced variance is gained

through the use of stratified sampling it is not certain that this method of

sampling can be applied to large simulations. The sample size per cell,

equation (4.8), and the partitioning of the data set may be impossible to

impose or may not be a natural realization of the system or subject which has

been modeled. The amount of the reduction is also a factor to consider. In

both the random and stratified sampling methods N runs are made. If the cost

of partitioning is substantial it must be measured against the value attained

in the reduction of the variance. It follows, then, that a cost-benefit

analysis imposes on the decision to use stratified sampling.

4.2.3 Three Point Sampling

This plan uses three values to represent the range of values for inputs.

These values are assigned independently to each run based on a probability for

each value, the relationship being

P
1
= p2 = I (l-po> (4.9)

2
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where P0 is the probability of the median value which is assigned by the

analyst. Under proportionate allocations 3(l-p0 )_^ values are assigned at

2

random to n runs of the model. For example if x_
,

x+, and xQ are the lower,

higher and median values of variable x with probabilities Pj
,

P2 ,
and P0 ,

then

a random draw based on an interval in proportion to the values of
,

P2 ,
and

P Q will determine which of the three values will be selected for a given run.

This procedure has been used to evaluate the COAL 2 National Energy

Model, and to the author's knowledge, has not been used except in this one

instance. The source for this description is Ford, Moore, and McKay [25].

4.2.3.

1

Evaluation The three-point sampling plan is actually only a special

case of stochastic, factorial, stratified-sampling methodology. In this

technique each input variable is assigned a density function, say f^(x)

,

for

x-^L < x < x^H. Values of x in this range are defined such that the following

relation is obtained:

xi
L = aio < ail < < aik = XiH (4.10)

and the probability of the interval (a^ j_j ,
ai,j) is 1/k. These

intervals, one for each input variable, are sampled to produce different

values of input variables for each computer run.

There are two major objections to this sampling method. The first is the

practical difficulty of assigning a density function for each input variable,

particularly for a model with a large input data base. The second objection

arises in the possible re-selection or assignment of values which may have

been used in a prior run. This is the problem of sampling with replacement.

This problem, along with the realization that the sampling procedure may not
,
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based on probability selection, provide a proper spread of values which are

needed to evaluate the model performance, creates the possibility that some

degree of monitoring of values assigned is necessary and also that the number

of needed runs may actually be increased beyond initial expectations.

The next Section will discuss how these difficulties are precluded in the

Latin Hypercube Sampling method.

4. 2. 3. 2 Application This scheme of sampling is for statistically independent

input variables and models for which the preparation of the scheme is not

excessively costly in time and resources. The number of runs for this type of

statistical analysis is of the form

N * k1 (4.11)

where k is the number of intervals and I the number of input variables. For

some models, those of long running times, a large N may prohibit the use of

this approach.

4.2.4 Latin Hypercube Sampling Method

The principal references on this method are McKay, Conover, and Whitman

[22], and McKay, Beckman, and Conover [23].

When using the stratifed sampling methods there are many options on the

choice of the number of intervals (k) of each input variable and the fraction

of an experimental design wherein only some of the combinations of interest

are actually evaluated. The Latin Hypercube Sampling (LHS) method uses the

same number of intervals for each input variable as the number of computer

runs to be made. The intervals for each input are assigned by defining a

sequence of independent, uniform random variables, ranking them from lowest to

29



highest, and then use this ranking to determine the computer run in

which that input value will be used. As in the stratified sampling method the

intervals must be sampled to obtain specific values of the input variables.

The values, however, may be fixed by the model user instead of having the

assignment dependent on an interval density function. This choice is an

important option in terms of cost and preparation. This method can be

regarded as an extension of Latin Square sampling.

Reference [23] demonstrates that the variance of an estimator based on

LHS, in terms of the variance based on random sampling, is:

V(Tl ) = V(Tr ) + (N-l ) (N_k(N-l)"k ) l (Pi-T) (prT)
, (4.12)

N

where £ is over the restricted space of pairs (p^.pj) having no coordinates

<
in common, and V(Tl) = V(Tr ) if and only if

N-k(N-irkJ (ui-T) (p-j-T) = 0 (4.13)

No direct way of comparing the variance of an estimator based on the LHS to

that based on stratified sampling is available. However Reference [23]

states, and proves the assertion, that if a function Y = h(x^, ••*, xR ) is

monotonic in each of its arguments, and g (Y) (see equation (4.4)) is a

monotonic function of Y, then

<
V(Tl ) = V(Tr ) . (4.14)

4. 2. 4.1 Evaluation The principal advantage of LHS is to overcome the

difficulties of the stratified sampling method by insuring a representative

coverage of all input values within the set of prescribed runs. The output of
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the sampling design uses all of the intervals on the range of each input

variable. The proofs and mathematical developments given in References [22]

and [23] assume a random selection, without replacement, for an input value.

It appears, however, that a predetermined assignment of values from a

given partition on each input interval could be made which would allow a

direct study of particular effects associated with certain values of the input

data. This technique uses LHS as a probe for special-case examinations, by

avoiding the necessity to extract such information from a more general

statistical design. This application fixes the number of runs, however, and a

tradeoff between the number of runs (or model evaluations) and the interval

partition must be evaluated. To assign values might violate statistical

requirements, but it would provide limited but important information on model

performance

.

The advantage of the LHS is revealed when the model output is dominated

by only a few input variables. But the LHS ensures that each component is

fully stratified, no matter which variables may or may not dominate the

results

.

In Reference [22] McKay, et al
,
conclude that factorial stratified

sampling (FSS) and Latin hypercube sampling are clearly superior to estimates

based on random sampling. The amount of gain, however, depends on the model

under assessment, but in their experience the LHS resulted in a maximum

variance reduction of about 50 to 1 over random sampling. Early studies also

indicate LHS is "far superior" to FSS.

4.3 Analysis of Range

In a basic paper Tsukibayashi [26] has developed the moments of the range

for rectangular, triangular, exponential, gamma, and normal distributions
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His results include a calculation of certain coefficients to be used in

estimating the first four moments of the distribution.

Tsukibayashi states that the moments of the range are functions only of

the sample size N and the variance a; the following are derived. If Wjj is the

range, then:

Pj = E(Wn ) = djgO
,
and (4.15)

1*2
= E(Wjj2) = Cjj2a 2

; (4.16)

higher moments are not given here. The table below summarizes the results of

the analysis of range in terms of statistical parameters.

Distribution
<*N CN

Z

Rectangular, f(X)=l ,0<X<1 ,o^= 1/12 12 (

n-1
\ 12Pln-^ 1

\ trfl/ |^(n+l)(n+2)
J

Triangular
,
f (X)=2X ,0<X< 1 ,a 2=l / 1

8

1 *
|~2n - lB(l/2,n+l)| 1

tCM11
00

*—

H

(B is the beta function) 2n+l 2 J 2( rt+1 ) 1

B ( 1 / 2 , rH-1 ) I

n-1 n-1

Exponential
, f (X) = e-X ,0<x<°° ,a 2=l I

1 V+I i,
k=l k k=l k2

For the more complicated expressions for the gamma and normal distributions of

the range the reader should refer to [26], pages 66 and 67. The theory*

underlying the coefficients given above was developed by Tippett and Pearson.

4.4 Minimum Variance Sampling

For models which simulate the states of a system or activity, such as

Markov processes, queues, or stochastic processes, the sampling is usually

performed in proportion to their natural freauency of occurrence. A technique

has been developed by Bayes [27] which allows the sampling frequency of the

* The reference to Tippett is Biometrika, 17 (1925).
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states to be independent of their natural frequency. A sampling theory of

Markov chains is given by Bayes which allows some statistics of the state

frequencies to be estimated with minimum variance for a given sample size.

In models of this kind some states are experienced infrequently, which

requires a large number of runs to collect enough data on these states to

perform a proper evaluation. This situation has led to the development of

"importance sampling" in which the simulation is constrained to experience

rare states independently of the expected frequency of the number of times

these states are actually realized in a normal use of the simulation.

Bayes applies the theory by approximating the model, in this case a

queueing problem within a teleprocess simulation, by a Markov chain in which

states are assigned, transition probabilities are given, and means and

variances of intervals spent in each state are assigned. The statistical

properties of the Markov chain surrogate model so defined will be similar to

those of the original simulation.

4.5 Regression

The subjects of linear and nonlinear regression, and polynomial curve

fitting are so familiar that the structures of these techniques will not be

repeated here. This Section is included for the purpose of reviewing the

contributions of regression to the sensitivity analysis of models.

A proper regression is known to reduce the length of a confidence

interval and to influence the value of the model output, assuming a causal

relationship. The regression model itself contributes information on

sensitivity through the magnitudes of the coefficients and the numbers of
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variables taken into the regression formulation. Both curve-fitting and

regression provide functional relationships which can be used according to the

theory, given above, on error propagation and analysis.

We quote an important comment from Deming [13] on the matter of indirect

contributions to knowledge based on regression analysis: "There have been

many instances when deductions made from a fitted curve, or from a series of

curves, have made it unnecessary to perform certain other experiments. As an

instance ... where a quartic was fitted to compressibility data on carbon

dioxide ... this quartic gave data on the index of refraction, the

Joule-Thomson coefficient, entropy, and other physical properties that would

be difficult and time consuming if direct observations were required."

4.6 Partial Rank Correlation Coefficient (PRCC)

McKay, et al [22], have proposed and used the PRCC as an alternative to

the derivative approach. The partial correlation coefficient, originally

employed to measure linear relationships among variables, is adjusted to use

ranked data, and allows for nonparametric tests. Following [22] the

formulation is as follows:

Let (xj^, X2 i, ..., x^, y^) denote the values of k input variables

and the output variable for the ith computer run, i=l, ..., n. Let

(xr li, xr 2 i, ..., xrki, y
r
^) denote the associated rank variables.

For example, if n=3, and xn=12, x12=25, x13=10, then xr 11 =2, xr 12
=3, and

xr
i 3=l.

Let C be a (k+l)x(k+l) symmetric matrix of elements cjj
,
when
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I, <xrit-*
ri><xrjt-*

r
j>

: ij '
n _ n _ “1 1/2

I (Xrit-*
r
i>

2
l (X^s-x/) 2

t=l S=1

for i, j = 1 , 2, ...» k, and

(4.17)

c i >k+l
JE

(xrn-*r
i)(y

r
t-y

r
)

I ttr it-*
r
i >

2 l <yr s-y
r
>
2

t=l S=1

1/2

(4.18)

where c^^=l and Cj:j=Cji for i ,j=l , . . . ,k+l

.

The values xr ^ and y
r are:

_ n _ n

xri=£ l = n+1
, y

r = £ l y
r
t - fli • < 4 - 19 >

n t= 1 2 n t= 1 2

Let B=[b^j]=C
_

l then the PRCC between input variable i and output variable y

is given by:

rPiy = -bi>k+1 (

b

i;L
bk+1 , k+1 )

-1 / 2 (4.20)

The principal reference given in [22] is Steel [29] for the underlying

theory for this approach. References [28] and [30] provide detailed accounts

of the statistical theory of partial correlation coefficients. Reference [30]

describes the theory from the perspective of geometric constructions in which

all the relations are expressed in terms of lengths of vectors and
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subtended angles, thereby portraying the theory of partial correlation with

the trigonometry of an n-dimensional constellation of points.
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5.0

ANALYTICAL METHODS OF SENSITIVITY ANALYSIS

5.1 Introduction

This section describes methods of sensitivity analysis which are

analytical formulations rather than statistical designs, and are based on

special needs that traditional methodology could not meet. In some cases the

methods are experimental and of a singular nature, in others of a more solid

nature which advance the state of the art through the introduction of

innovative techniques or by the further development of established sensitivity

analysis.

5.2 Criterion Sensitivity Analysis

5.2.1 Descripton

This method has developed at the MIT Energy Laboratory, Model Assessment

Group. The single source is Schwippe and Grubl [31], and seems not to have

had much of a life after its genesis in the mid-^TO's. In [31] the authors

describe the methods as follow:

The model is be represented as y=f (x)
,
where x is a vector of

exogenous input parameters and y is a vector of model outputs. The perturbed

output is y(Ax) = f(x+Ax)
,
where Ax is the perturbation, y(Ax) is the

perturbed output, and 6y(Ax) = y(Ax)-y(x) is the output perturbation. Assume

that some particular scalar criterion function C of the output

perturbation

C(Ax) = C[ <5y( Ax) ] (5.1)

has been selected. Then the basic idea of the criterion sensitivity analysis

is to find that Ax which maximizes C(Ax). This can be viewed as a "worst

case" analysis which finds the maximum sensitivity as measured by C(Ax). The

MIT approach was to choose C(Ax) from one of the perturbed outputs 6y(Ax).
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The authors emphasize the usefulness of this method for models of a highly

nonlinear nature.

5.2.2 Evaluation

This method was developed because simple linearization is not appropriate

for many models. Criterion sensitivity analysis addresses in particular the

problem of nonlinearity in the function-model represented by equation (5.1).

An objection noticed by the authors is the difficulty in characterizing the

input uncertainties (i.e. defining the space of AX or its probability

density). The advantage of the method is that it provides explicit mechanics

for dealing with input uncertainties in a systematic fashion. No further

descriptions of this method were available beyond [31] at the time this survey

was prepared.

5.3 Describing Function Sensitivity Analysis

5.3.1 Description

Our source for the description of this technique is the same as for the

criterion method, Reference [31], which is the basis for the following

description:

With the describing function approach, the input perturbation vector, Ax,

is taken as a random vector characterized by its probabilitv density p(Ax).

Any density function is permitted and it is not assumed that the members of Ax

are independent.

The describing function is defined to be a vector polynomial function of

the vector Ax, as follows

M
D( Ax) = Aq+AjAx* J e

£n
Ax tA2mAx + ... (3.2)

m=l
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where M is the dimension and em i s a unit column vector (all zeros except 1 in

the mth row). Equation (5.2) is simplifed to

D(Ax) = A<J>(Ax) (5.3)

where <J>(Ax) is a vector of "l"s, Ax, and powers and cross products of Ax up to

the number of terms desired, of dimension K, and A is a matrix of Aq, Aj

,

etc.

The describing function problem is then defined as follows: Find values

of matrix A and the number of K terms such that

6y(Ax) « D(Ax) (5.4)

Without reproducing the remaining mathematical development the following

concluding paragraph is cited [31, page 506] to indicate the detail and intent

of this approach.

"In summary, the preceding process involves fitting a set of describing

functions to a set of model runs that represent a set of points on the model's

input-output response surface. The suggested manner of determining the best

fit has been a weighted least squares approach, where the importances of the

different points are weighted by the likelihood that the response is going to

be in the neighborhood of those points. With a large enough set of describing

functions, that is as K approaches N*
, the fitting of the different points can

be "perfect.” Such "perfect" fits are highly susceptible to capitalization on

chance effects, and the preceding discussions suggests that one way of

avoiding such spurious fits is to restrict the number of describing functions

In is the number of perturbations, taken larger than K.
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in the set being used. There are endless variations on this particular

suggested procedure for determining the "best" fit. A few of these variations

include

:

(1) minimizing the maximum residuals between the surface and the points,

(2) minimizing absolute differences or some other robust measure rather

than least squares, or

(3) using weighted maximum residuals or weighted robust techniques.

In addition it would be possible to exploit any intuitions one might have

about the true characteristics of the model's response surface. For example,

if a large number of points were available and one's intuition suggested that

the response surface should be a relatively smooth connection of those points,

then the fitting criterion might be to minimize the integral of the deviation

between the fitted surface and the piecewise linear connection of the

available points with their nearest neighbors (or the supporting hyperplane

n-gons connected over all convex sets of available points). The principal

drawback to these more elegant techniques is that they may not be nearly as

easily solved as is the least squares approach."

5.3.2 Evaluation

In addition to difficulties of establishing the character of the input

uncertainties and the final comment of the cited paragraph given above, the

authors assert that describing functions can be very useful in cases where the

direction and magnitude of the changes in outputs is of greater interest than

the relative effects of different types of hypothesized inputs.
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5.4 Adjoint Sensitivity Analysis

5.4.1 Description

A recent and important method of sensitivity analysis has emerged from

the collective work of scientists and model builders at the Oak Ridge National

Laboratory (ORNL). This method is called adjoint sensitivity analysis and had

its origin in some earlier papers by Oblow [33,34] and Cacuci [36] which dealt

with general sensitivity analysis of problems in nuclear cross-section,

shielding, and reactor physics.

The theoretical method was recognized for its potential as a practical

tool for evaluating the large economic - energy models which were also in use

at ORNL.

The basic paper from which our description is taken is Alsmiller, et al

,

[32]. It provides a clear statement of the essentials of the method. The

underlying theory and mathematics are given in [33-37], Reference [38]

describes the application of the method to an ORNL model called LEAP.

The following text, which describes adjoint sensitivity theory, is taken,

with minor editing for clarity, from Alsmiller [32], pages 3-7.

Let the system under consideration be represented by N nonlinear

algebraic equations in N unknowns which may be written symbolically as

F(p,x) = 0, (II. 1)

where F is an N-vector function of the unknown dependent variable N-vector p

and all data elements are represented by the vector x. It is to be understood

that the number of elements in x is not at all related to N and can be

substantially larger. In the following it is assumed that for a specific

choice of x a unique solution of Eq. (II. 1) exists and is represented by p.

The vector p is thus a function of x.
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Let R represent any result, hereinafter also called a response, of the

calculations that are of interest. In particular, let

R = R(p,x), (II. 2)

wehre R(p,x) is any given nonlinear function of p and x. The response R is a

scalar that may be calculated from Eq. (II. 2) when the solution p of Eq

.

( II . 1 ) has been obtained for a given specification of x.

If now x is defined to be a general element of x the sensitivity of R to

x is defined to be and the general problem of sensitivity theory is to

dx

determine for each and every one of the elements of x. To accomplish
dx

this, differentiate Eq. (II. 2) with respect to x, to obtain:

dR = 9E + 9R
# dp

„ Q . (II. 3)
dx 9x 9p dx

where is a row vector. The first term on the right-hand side of of Fq.

9p

(II. 3) is called the "direct effect" of x on R and the second term on the

right-hand side in Eq. (II. 3) is called the "indirect effect" of x on R, since

it reflects the implicit effect of x on R through p.

The evaluation of the second term on the right-hand side of Eq. (II. 3)

begins with the differentiation of Eq. (II. 1) with respect to x to give

Hi + = 0. (II. 4)

9x 9p dx

Now defining two new N-vectors
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(II. 5)
$ = dp

dx

s H _ 9F
,

(II. 6)

3x

and the N by N matrix

A E 3F
,

(II. 7)

3p

Eq. (II. 4) may be rewritten as

A$ = S . (II. 8)

Here $ is the differential change in the solution p with respect to a change

in x and it solves the linear inhomogeneous equation whose source is the

negative of the partial differential change in F with respect to x. The fact

that A is a linear operator is clear from Eq. (II. 4) since it cannot, in

principle, depend on ^_P . The matrix A does depend on both p and x.

dx

The expression for in Eq. (II. 3) can now be evaluated by solving Eq.

dx

(II. 8) for $. The difficuly here lies in the fact that S depends explicitly

on the particular dx being considered and thus, in general, very large systems

of linear equations represented by Eq . (II. 8) must be solved for each dx to

obtain dR
. For very large systems where x contains thousands of elements

dx

this is impractical. It should be noted that the explicit assumption is being

made here that it is not feasible to numerically construct the inverse of the

matrix A. If this inverse could be obtained then the need for solving the
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large systems of linear equations many times would be ameliorated and the

above objection would not be valid.

The adjoint formulation of sensitivity theory is of interest because it

avoids the necessity of solving a large set of linear equations for every x in

x. The set of equations adjoint to the Eq . (II. 8) will be written

where a superscript * is used to denote adjoint
,

a "t" over a symbol is

inner products of with Eq. (II. 9) and fl**1 with Eq. (II. 8) are made one

obtains, by using Eq . (II. 10):

*t • S*t = • S
,

(II. 9)

where the N by N matrix A* is defined^ to be:

A* = At, (II. 10)

used to indicate a transpose
,

and where S* is yet to be defined. If now the

and if S* is defined^ by:

3RC

S*
=

3 p ( 11 . 12 )

then using Eqs. (II. 11) and (II. 12), Eq . (II. 3) may be written

dR = 3

R

+ <j>*t • g, (11.13)
dx 3x

where is the solution of Eq . (II. 9), with S* given by Eq. (11.12).

^The proof of this definition is given in Cacuci
,

et al
, [36]. The matrix A*

is formed by transposing the adjoints of the components of A.

^The justification for this definition is given in Cacuci, et al, [36].
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Equation (II. 13) is the important result of adjoint sensitivity theory.

1

The quantity $ must be obtained by solving the, often large, set of linear

equations given in Eq. (II. 9), but this may be used in Eq. (11.13)

for x of the vector x. Thus, one calculation of $ enables the calculation

of for all x in x for a specific R. Each new response, R, that is

dx

considered requires a new calculation because of Eq. (11.12).

5. A. 2 Evaluation

The observations on the effectiveness and efficiency of adjoint

sensitivity analysis are taken from Alsmiller [38] ,
with some minor

emendations and omissions.

Several important observations should be made in regard to the results.

The first advantage of this approach is that the adjoint equation is

independent of any operation involving differentiation with respect to x.

This property means that, no matter how large the set of input

parameters is, only a single adjoint equation needs to be solved to compute

dR/dx for all x in x.

This is in contrast to any direct method of computing dR/dx by changing

each x by a finite amount (i.e.. Ax) and solving Eq. (II. 1) to approximately

get dR/dx = Ar/Ax or by using Eq. (II. 8) directly to solve exactly for dp/dx.

In both of these latter cases, the solution of a large system of equations

[i.e., either Eq. (II. 1) or II. 8)] is needed for each parameter x to be

studied. The adjoint approach is therefore extremely economical to use, and

^An alternative derivation of equation 11.13 is given in Alsmiller, Jr.,
et al.

, [53], This derivation is based on an algebraic representation rather
than on linear operator theory.
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with a very large set of input parameters, it may be the only approach to

obtaining all sensitivity coefficients.

The second advantage is that the adjoint equation is a linear equation in

<}> ,
which is generally much easier to solve than the repeated calculations

using Eq . (II. 1), which is nonlinear. The third advantage is that this

approach allows the exact sensitivity coefficient dR/dx to be evaluated by

using Eq. (11.13) (i.e., no perturbations in x and no approximations such as

AR/Ax = dR/dx are needed).

On the other hand, certain limitations and disadvantages of this method

are also apparent. The first and foremost disadvantage is that, to construct

the adjoint equations [i.e., Eq . (II. 9)] and evaluate dR/dx with Eq. (11.13),

various derivatives of f and R must be evaluated analytically. This

evaluation requires an in-depth knowledge of the functional form of the

complete set of equations described by f. Second, the structure of the A*

matrix, although independent of <j> * , is not independent of p. This means that

the solution of Eq . (II. 1) must be available to construct A*, thus tying the

adjoint equations to the solution of the forward equations. Therefore, to

evaluate Eq . (11.13) for dR/dx, both solution vectors p and <{>* must be

available in addition to all analytic derivatives of f and R with respect to

both p and x in x. A tradeoff study between analytic work in the adjoint

approach and computational time in the alternative forward approaches may be

necessary; the usefulness of either method will depend on the circumstances of

the sensitivity study being contemplated.
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One additional disadvantage of the adjoint approach is that an adjoint

solution is required for each new response whose sensitivity is being studied.

This is apparent from the source terra in Eq, (II. 9), which depends on the

definition of the response R. This highlights the complementary nature of

forward and adjoint methods. The forward approach gives the sensitivity of

all responses to one parameter in one run, whereas the adjoint method gives

the sensitivities of one response to all parameters in one run. From a

sensitivity point of view, the adjoint method is thus clearly more applicable

to problems with large numbers of input parameters and few responses-

of-interest.

5.4.3 Application

A particularly striking example of the power of adjoint theory in the

measurement of model sensitivity is given by Oblow [34] . In this paper Oblow

applies adjoint theory to a linear program problem and to other nonlinear

problems with and without given constraints. Oblow concludes that "the

developments presented make it clear that [adjoint] sensitivity theory can be

extended successfully to cover a wide class of algebraic nonlinear equations

with and without constraints." He continues, "the sensitivity coefficients

made available by the methods developed here can be put to a number of uses.

For example, Taylor series expansions using sensitivity coefficients can be

used as the basis for a second-order accurate perturbation theory for the

nonlinear systems under investigation. In addition, a statistical uncertainty

analysis of system responses can also be made if perturbation results are

combined with assumptions about the nature of the uncertainties in the system

input parameters".
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5.5 Linear Programming

5.5.1 Description

5. 5. 1.1 Postoptimality Evaluation The method of linear programming is so

well known that this section will discuss its contribution to sensitivity

analysis methodology with only a reminder that linear programming entails the

optimal solution of an algebraic formulation of a problem expressed as a

linear objective function subject to linear constraints. Its connection to

sensitivity analysis is the postoptimality evaluation of a solved linear

program.

Following Taha [39], the changes in the problem include variations of:

(1) the right-hand side of the constraints (resource vector), (2) the

coefficients of the objective function (cost or profit values), (3) the

coefficients of decision variables (matrix of technological coefficients); or

the addition of: (5) new variables, and (6) new or secondary constraints.

The sensitivity associated with these changes is determined by the affect they

have on the basic variables of the optimal solution: the basic variables may

remain essentially unchanged; the basic variables remain but their values

change; or the basic solution changes completely. The extent to which these

variations can be made without changing the basic variables of the solution,

or essentially changing the value of the objective function, constitutes a

sensitivity analysis of the coefficients and constraints of a linear program

model. A statement of the primal and dual formulations of a linear program

are given in Appendix B.

5. 5. 1.2 Parametric Sensitivity A related form of sensitivity analysis is

called parametric linear programming. It investigates the response of the

solution to predetermined linear variations in the coefficients and resource

vector based on the primal-dual relationships used in the postoptimality
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formulation [see [39], chapter 9]. Further details on parametric programming

are given in Appendix B. There the various forms an analysis may take are

presented and a general review of the analytic procedure is provided.

Parametric linear programming is a well known technique of sensitivity

analysis and has been incorporated into linear programming software packages

as a standard operating procedure for linear program problems.

5. 5. 1.3 Tolerance Sensitivity Of considerable interest and as a innovative

contribution to linear programming sensitivity analysis is the recent work of

Wendell [40] on the subject of tolerance evaluation in a linear program

problem. His abstract summarizes his contribution: "In contrast to

'ordinary' sensitivity analysis in linear programming, the tolerance approach

considers simultaneous and independent changes in the objective function

coefficients and in the right-hand-side terms. This approach calculates a

maximum tolerance percentage such that as long as selected coefficients or

terms are accurate to within that percentage of their estimated values, the

same basis is optimal. In particular, if the objective function coefficients

are accurate to within the maximum tolerance percentage of their specified

values, then the same solution is optimal." Wendell states in his

introduction that his tolerance approach is a new perspective that permits a

sensitivity analysis which deals with more than one coefficient term at a time

and yields the largest percentage in which terms may vary simultaneously and

independently from their numerical values while retaining the same optimal

basis. His method also yields an analogous result for the coefficients of

the objective function.

5. 5. 1.4 Lagrangian Parametric Sensitivity A method of considerable

importance for the study of parametric sensitivity has been developed from the
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classical Lagrangian optimization technique. In the economic literature the

method is referred to as the envelope theorem
,
but its derivation and use in

general analytic form makes it universally applicable to any constrained or

unconstrained objective function. The theorem provides an equation for the

computation of the rate of variation of an objective function with respect to

variation in a specified parameter of interest. The following derivation

follows Silberberg [54].

Maximize an unconstrained function U, defined as:

U - f ( xj ,
• • . (

Xjjj
j
a ) .

From the Lagrangian technique for the optimum value of U, U*
,
we write

U* =
<J>

(cx ) = f(xj*(a), ..., xn*(a)), where xj*(a) are the optimal values

of X£ as functions of the parameter a. The sensitivity coefficient is,

therefore:

8U* = = 8_f •

8a 8a 8a

If now the same problem is solved using the Lagrangian technique under the

constraint functions gj ,
i.e.:

gj ( xj , ..., xn ;a) = 0, for j=l
, ..., m, then

The sensitivity coefficient becomes:

Differentiating each constraint function with respect to the parameter a, we

obtain:

n

8U* = 8^ =
J

_8_ff 9xi* + 8 f

8 a 8a
i=l

n

8x^* 8a 8a

i=l

£

8
gj

^ xi* + ^ Sj = 0, for each j=l m;
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3 <j>

then multiplying by Xj and adding the equations to 3a .

The equation of the envelope theorem follows, and is given by:

m
3 u* = 3L = 3_f +V“ Xj _^gj_ , (5.5)
3a 3a 3a £_ 3a

j = l

m
where L is the Lagrangian function, f + \ Xjgj

.

j

This method for computing the sensitivity coefficients for objective

functions suffers from the same computational difficulties associated with the

Lagrangian optimization technique, primarily because the optima] values and

the multipliers may be tedious to obtain for complex or large problem

formulations

.

However, the method is attractive because it computes the sensitivity of

objective functions with respect to any parameter in the formulation; that is

the parameter may be a resource level, a cost or profit coefficient, or a

technical coefficient. Since the objective function and constraint functions

may be nonlinear the envelope theorem permits the concept of linear parametric

sensitivity analysis to be carried over into the the domain of the parametric

sensitivity of nonlinear, optimization problems.

5.6 Sensitivity Functions

5.6.1 Description

The sensitivity function is derived from a differential equation

F(x,x,x,t ,q)=0 (5.6)

in which q is a parameter to be perturbed. If we assume a solution to

equation (5.6), x=x(t,q), we next determine the effect on x of a

perturbation, Aq, in q. This gives

F ( x , x , x , t ,
q+A q

) =0 (5.7)
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as the new system differential equation. We now define a variable, termed the

sensitivity coefficient, as u(t,q) which is the derivative of x with respect

to q

:

u(t,q) = lira x(t ,q+Aq)—x(t ,q) _ dx(t,q) (5.8)
Aq+0 Aq dq

The sensitivity coefficient measures the change in x due to a

pertrubation in q. Differentiating equation (5.6) with respect to q gives:

3 F 9x + 3F 3 x + 3F 3 x + 3 F =
Tx 3q 31 3q 3x 3 q 3 q

with 3x = 3 9x = u
rs
C*

and ii2S = 32 3x =

3q 3

1

3q 3q Tt2 3 q

then equation (5.8) takes the form

(5.9)

l£ff + iF5 + 3F u + 3F = 0 • (5.10)
3x 3x 3x 3q

Equation (5.11) is the sensitivity equation which is to be solved for u(t,q).

The sensitivity equation is a linear equation, and provided the initial

conditions for equations (5.6) and (5.7) are the same, all initial conditions

of equation (5.11) are equal to zero. See References [41] and [42] for more

detail on the theory and scope of the sensitivity function. Reference [43]

demonstrates an application to a world dynamics model based on a system of

nonlinear equations of the first order.
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5.7 Eigenvalue Functions

5.7.1 Description

In a system of linear first-order differential equations

y = Ay (5.12)

where y is an n-component state vector and A an n by n matrix of coefficients,

the solution is of the form

y = cxe^t (5.13)

where x is an n-component vector and c is an arbitrary scalar. When equation

(5.13) is substituted into equation (5.12) the problem is reduced to finding

the eigenvalues of the system of equations.

Ax = A x (5.14)

If it is necessary to study the parametric effects of variations in the

eigenvalues then equation (5.14) is partially differentiated with respect to a

parameter q and the variational equation is obtained

3A x± +A^fi = Ai^i+ 9x i Xj (5.15)

3 q 3 q 3 q 3 q

for each i, the index over the vector x. After some mathematical manipulation

the sensitivity coefficient is expressed by

(*± xi> vi^
^_i / (5.16)

3 q (xi} Vi)

where the notation (*,*) indicates a scalar product, and Vi is the ith

eigenvector of the system when the matrix A is transposed. For a given
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eigenvalue, X^, the eigenvectors and v-^ are calculated, then equation

(5.15) is used to compute the sensitivity coefficient. This description is

based on material contained in Reference [42].

5.8 Large Error Sensitivity Analysis

5.8.1 Description

By large error we mean those errors of sufficient magnitude which

render the classical linear error equations invalid as measures of

sensitivity. Classical error analysis assumes that variations behave

with necessary properties, (1) that they are small, i.e., neighborhood

variations, and (2) that on average there are as many negative variations as

there are positive variations. This second assumption is critical to the

classical formulation of variance.

The evaluation of sensitivity coefficients for large errors rests on

using more complicated formulae where second order terms are not dropped, on

using the variational form of the differential method described in Section

3.3, or on the use of interval analysis in which extreme values of a function

serve to delineate the range of a function under perturbation.

Rahman [44] gives several examples of simple operations such as x/y where

both variables are subject to variation. Letting z = x/y, the largest change

in x/y, excluding y=0, will be when x is at its largest value and y at its

smallest. Similarly the smallest value of Z will occur when x is minimized

and y takes its greatest variational value. This gives Zu and Z

l

where

Zu = min max [Z=x/y]
y x

and Z^ = max ®in [Z=x/y]
y x
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or Zl < Z < Zu . If anything is known about the distribution of x and y

in the intervals of their variation then the theory described in Section 4.3

can be used to obtain estimates of statistical parameters for Z.

This concept can be generalized by estimating the absolute maximum and

minimum values of a function over the permitted hypercube of variations of the

independent variables. If the range of variation is large but the relative

error (ie. 6x/x) is less than one then some simplifying substitutions may be

possible in the determination of the maximum and minimum. If the function

does not possess a workable probability distribution over the hypercube of

permitted variation then the sensitivity can be expressed as an absolute error

(± e), or as a percent error of this expected value of the function over the

range of the dependent variable.
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6.0

SPECIAL ANALYTICAL METHODS OF SENSITIVITY ANALYSIS

6.1 Introduction

In this section three very specialized methods of sensitivity analysis

are described. They are included for various reasons - the Fourier

coefficients method has some interesting properties, geometric programming is

a useful tool for studying engineering costs prior to project commitment, and

Catastrophe Theory, much like Game Theory, provides a conceptual structure in

which many problems of a diverse nature can be analyzed with greater insight.

6.2 Fourier Coefficients

6.2.1 Description

The principal source is Cukier, Levine, and Shuler [45] from which we

abstract, with minor editing, a portion for the description of the method.

"Separate in definition from the independent variables and parameters are

the fixed constants of a model, which do not vary within the context of the

class of problems of interest to the model user, and whose values can be

precisely specified. It should be noted, of course, that what is a fixed

constant in the context of one situation might be a parameter in the context

of another situation; the distinction depends on the particular case on hand.

The fact that the parameters can take on a range of values suggests that a

statistical approach to sensitivity analysis is appropriate. Instead of

considering the effect on the output functions of one-at-a-time variations in

each of the parameters, as in a "brute force" method, we will construct

outputs averaged in one operation over probability distributions of all the
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parameters. The distribution of the parameters can arise because of

experimental uncertainties or theoretical approximations, because of

"ignorance" of the value within certain reasonable bounds, or might represent

upper and lower limits due to "stops" on the physical controls of the systems

being modeled.

"Our method of sensitivity analysis proceeds by relating the probability

distribution of each parameter to a frequency and one new parameter s which,

as s varies, carries all the parameters through their range of variation. The

parameter s is varied, and the frequencies are chosen in such a way that the

output variables at any fixed time become periodic in s.

"The output variables can then be evaluated using Fourier Analysis. As

we shall show below, the Fourier coefficients represent an average of the

output variables over the uncertainties of all the parameters. A unique

correspondence between the Fourier coefficients for the frequency w^ and all

its harmonics and the sensitivity of the output variables to the kth parameter

is established. We compress all this information into partial variances Sw^

which are the normalized sums of the squares of the Fourier coefficients of

the fundamental frequency w^ and all its harmonics. If Sw^ < Sw£ for a given

output variable, then this output variable is less sensitive to the kth

parameter than to the jth parameter. Thus, the partial variances measure the

average sensitivity of an output function to the variation (or uncertainty) of

a particular parameter. This average is over the range of uncertainties of

all the parameters, with their appropriate probability distributions, with the

exception of the parameter being considered. For this parameter, the

statistical property calculated is the variance.
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"The sensitivity analysis is nonlinear so that it permits us to examine

large deviations from the nominal parameter values. In addition, since all

parameters are varied simultaneously, one explores regions of parameter space

where more than one parameter is far from its nominal value. Because of this

thorough and systematic exploration of the parameter space, it often turns out

that sensitivities of an unexpected nature are revealed. A careful study of

the model will then reveal some complex coupling between variables, unexpected

prior to the analysis, which leads to the observed sensitivity. In this

fashion, one obtains deeper insights into the structure of the complex system

being studied. Another frequent and important finding is that a number of

senstivity coefficients corresponding to a large set of parameters turn out to

be negligible. This permits one to reduce the complexity of the set of model

equations and focus one's attention on a greatly reduced set of equations."

6.3 Geometric Programming

6.3.1 Description

Geometric programming, a well known method of optimization of nonlinear

problems, gives the optimal cost or profit before a corresponding design or

plan is implemented. The method is described in detail in Duff in, Peterson

and Zener [46] ,
and is given as excellent exposition in Wilde and Beightler

[47].

Instead of obtaining an optimal solution of the decision variables

initially, geometric programming finds the optimal distribution of the total

cost among the terms of the objective function, and when these optimal

assignments are obtained the optimal cost follows directly from a

computation. Once the optimized cost and weights are determined, they can be
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used to determine the optimal policy. Geometric programming can be used to

study the policy consequences of variations in cost and in engineering design

variables.

6.4 Catastrophe Theory

6.4.1 Description

Catastrophe theory describes the phenomena associated with sudden changes

of state in a system caused by smooth alterations in the control parameters of

the system. The theory is not easy to master. It is derived from topology

which is needed to describe forces as smooth surfaces of equilibrium, but it

also is not, according to Poston and Steward [48], a single thread of ideas,

but embraces geometry, algebra, singularity theory, physical intuition and

experiment. The sources on this subject are References [48-52],

The underlying concept of catastrophe theory is the recognition of the

various kinds (in a mathematical sense) of catastrophes and the relationship

between the catastrophe manifold and the control parameter space.

The catastrophe manifold or equilibrium surface is a set of points

(x,{ai)^), where x is a state variable and {a^j^ is a set of N control

variables, a^. The map of (X,{a-£}ig) will have one or more folds in its

surface which are a function of the potential of the energy of the system.

The projection of the equilibrium surface, {a^}j^ or

(x,{ai } N ) > {a-^ (5.17)

defines the control parameter space. The folds of the equilibrium surface map

into cusps in the control parameter space. As long as the values of { a-^ > are

outside the enclosed region of the cusps the state variable will experience
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smooth, stable transitions. When, however, the values of {a^} cross into the

cusp region the state variable is immediately unstable and will jump to a

higher or lower value when the {a^} path or trajectory exits from the cusp

region. Throughout this process the path of the control parameters values is

smooth and continuous.

This subject bears on both the qualitative and quantitative nature of

sensitivity analysis. The qualitative aspect lies in the insistence the

theory makes on the model builder to study his subject closely for unstable

or jump conditions in the state variables of his system, and to include these

possibilities in his model. Far too often models fail because the underlying

process was assumed to be a steady-state system when in fact it was subject to

"catastrophic” changes of state.

The quantitative aspect of catastrophe theory lies in its broad

application to many diverse types of problems. It has been used in physics,

biology, social behavior, species population analysis, medical problems and

models of ecological phenomena. It is not necessary in all cases to use

catastrophe theory to assess systemic instability. However, even in these

cases the knowledge of its elements should be very helpful in understanding

the phenomena of state transitions. There are several catastrophe "flags"

which signal certain conditions. Some aspects of system dynamics and

associated flags are discussed in Appendix C. An understanding of systemic

flags enhances the quality of a model if the model builder anticipates the

impact of these situations and incorporates their consequences in the model

structure and dynamics.

Catastrophe theory can contribute to a quantitative sensitivity analysis

by using its basic ideas to compare model results with historical results.
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This application is particularly relevant to forecast models, economic models

and time-series analysis. A plot of the values of the control variables over

time versus system state data will show the effects of the model performance

in comparison to the system performance over the period of interest. This

comparison should provide a revelation of detail that will indicate how and in

what manner control parameters relate to the system state variables and

to the simulation of the system.
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7.0

MODELING AND SENSITIVITY ANALYSIS

7.1 Introduction

In this final section various ideas will be detailed which bear on the

need to bring sensitivity analysis into a closer and more substantive

relationship with model development. Since most of the methods covered in

this survey are external to the model they result in a large investment in

time, in data preparation, in input selection, and in runs of the model. Some

of these separately, and undoubtedly all of them together, either defeat or

discourage sensitivity studies because of the burden of having to impose the

sensitivity methodology on the model in an external and inefficient

procedure.

Attempts will be made to suggest ways to alleviate some of these burdens

of testing a model's sensitivity to input data uncertainty and control

parameter variation.

7.2 Modeling Control Parameters

A parameter is a value of a constant that determines the character of

behavior of something which is a function of that parameter. The value of the

control parameter is determined at the discretion of the user of the model.

Most models have many control parameters embedded in their logic which

are usually constants whose values are set initially as input data to the

model. The parameter is then fixed at its given initial value for the

entirety of the model run. Static models, for the most part, are adequate

which use this procedure, but models that simulate systems that are dynamic or

predictive are severely restricted by this approach.
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To address this problem, and as appropriate for the model in question,

each important control parameter should be constructed as a time or index-

dependent variable, with each value per time-period or index number given as

input. This allows the decision maker to vary the control parameter according

to the conditions to be examined and permits a more realistic simulation of

exogenous events which impact on or influence system behavior.

Another version of this idea is to assign values to a control parameter

vector and have the model access the appropriate value of the control

parameter successively, according to an index or a prescribed, sequential

assignment.

Making the control parameter a variable by one of the above techniques

provides the user with a program procedure for studying dynamic changes in the

model scenario. It also provides a method for perturbing the values of

control variables, in a variational sense, that will generate data which can

be used in a sensitivity analysis of the model's performance.

7.3 Modeling Sensitivity Methodology

In almost every scheme of current methodology for analyzing the

sensitivity of a model the emphasis is either on appropriate generation of

input data, defining response functions, or performing a postpartum

statistical analysis in which the model serves as the experiment. Other

methods analogize the model as an operator performing on input data to produce

output which is then tested on the basis of linear sensitivity formulations.

The model is, in these experiments, perceived and treated as a black box. The

sensitivity analyses of this approach provides an overall measure but it does
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not describe the relational dependencies and sensitivities experienced within

the components of the model, of which there may be many and of a complex

nature.

In order to reduce some of these objections, and at only a reasonable

increase in the initial investment, it is suggested that sensitivity analysis

should be an integral part of a model, incorporated into its logic, and

structured to provide information on validation. The general concept of this

integration would be as follows.

A model, in its initial stages of development, would normally be divided

into its major components, as most models are; but this partitioning would be

extended, within the components, to groupings of self-contained computations,

which we will call mathematical modules. Assuming, for simplicity, that the

flow chart of a portion of the model is shown as in Figure 1.

Figure 1

It is not important from this point on to retain the identity of the

components since the design is based only on the modules. The scheme is now

enhanced by providing each module with a program which provides a sensitivity

subroutine appropriate for the computations performed by the module. This

enhances the structure, as shown in Figure 2.
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Figure 2

Next it is necessary to provide two operational paths through the flow chart

of Figure 2. The path shown in Figure 3 is the normal operational use

of the model without invoking the sensitivity subroutines (SS).

To obtain the second path it is necessary to construct a control vector, "x"

,

composed of a sequence of logical control switches, one for each SS, which

which will be "opened" or "closed" according to whether all or some of the

sensitivity subroutines will be activated. If they are all used then the

operational flow will be as in Figure 4.

Figure 4 presents a basis for a number of variations on the essential

concept. For example, if each senitivity subroutine can be optioned to output
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its calculations, then a running profile of the modular sensitivities can be

obtained. The sensitivity subroutines could be written to pass their

computations forward to the next SS operation, and so accumulate their results

for some appropriate output option point. The information needed by each SS,

primarily the variations, could be stored directly in an SS program, or some

scheme could be programmed to have each activated SS compute its own

variational values based on statistical parameters, relative errors, or

functions

.

The control variable X would be a vector of "on" or "off" signals which

would be processed as the initial operation of the model. This vector would

determine the process path of the model for that run. Another control vector

could be used to signal to each SS how it is to compute the values of

the variations it is to use in computing the sensitivity response of its

associated mathematical module.

By whatever means it is accomplished, by the above concept or by

inventions of new techniques, it appears that with the growing interest in

model validation and sensitivity, it is essential to incorporate sensitivity

methodology directly into the model structure.

The current practices of performing sensitivity analyses are not wholly

satisfactory because of the assumptions which must be made and the often high

cost of using a model as a black box in an experimental design from which the

sensitivity analysis is carried out as a postpartum exercise. Incorporating

the sensitivity analysis into the model logic provides more detail to

validation and sensitivities studies, and offers the user a procedure for

assessing the structural details and dynamics of the system and its

simulation.
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Appendix A

Part I: Summary of Principal Error Formulas.

The principal formulas associated with the propagation of errors are

presented for convenience and for the purposes of handy reference. These

formulas are given in functional form in order to show their character and

structure, and to generalize the formulas to multi-dimensional

representations

.

In the formulas the following definitions, symbols, and

notations will be used:

6x is used to indicate a variation in a prescribed variable, here

designated as x;

F is used to indicate a function; F(x^) is used to indicate a function of

a set of variables {x^}, with the index i running from 1 to k;

rx^x s is the correlation coefficient of variables x^ and xs ;

n is used to designate the size of the sample;

c?x2 is the variance of variable x^;
i

x
A is the average of the variable x^;

°x^xs is the covariance between x^ and xs ;

i, j, s are dummy indices used in summation terms

Absolute Error

The absolute error of a function W=F(x^) is defined as

( A— 1

)

where 8F are evaluated from some given point
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Relative Error

The relative error of a function W=F(xi) is defined as

6w = I
[

3 FV x i ,

w i=i
\ a x±;

w

Probable Error

The probable error of a function, given an error e„ in
i

each x^, is defined as:

(A-2)

the measurement of

Mean of a Function

The mean of a function W=F(xi) is given as:

W = F(x
t ) + R

(A-3)

(A-4)

Where R is equal to:

R

k-1

+ l

j-i

a
x ix s .

n

(A-5)

When n becomes large R tends to zero, leaving

W = F( Xi ) (A-6)

as the general, approximating expression for the function mean where the

variations are assumed small and normally distributed. No assumption of

independence is made in (A-5); if independence pertains then (A-5) simplifies

to
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(A-7 )R = 1 I
a 2 F

2 i=l l 3x|
JiL
n

Variance of a Function

The variance of a function w=F(x^) is defined by the equation

k

l
i=1

\

a

x .

°F
2 =

l °xi
2 + 2 l l 1

rXj x s
axj° !

j = l s=j+l
\ 3 X . 3 X

J s

(A-8)

where ax^ and °xs are standard deviations.

Covariance of Functions

Given that U=F(x£) and V=G(x-j[) are two functions their covariance is

defined as:

°uv = l

i=l

au 3v

3x. 3x.
i i

k-1

,xi + I l I1. + 1L —Yx
j
x s0xj 0xs ( a-9)

j = l s=j+l
\ 9x> 9 X

J s
3x 3x.

s J

Systematic Error

A systematic error is defined as a fixed deviation which is in each

measurement of a variable in a particular sequence of measurements. Given

W=F(x£), the systematic error is:

6W| = I |

9F SxJ
i=l 9xi

(A-10)

The user of these formulas should keep in mind that they are

approximations, and in strict mathematical terras the equality sign is not

literally true. Further, the underlying assumptions on which these formulas
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are based should be reviewed for compliance to statistical requirements in any

problem of sensitivity analysis in which they are used.

The in the above equations are not restricted to variables; they can

be thought of as parameters, coefficients, or input data for which a

sensitivity response is to be measured.
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Part II: Statistics of the Index w=x/y.

The theory underlying the statistics of w=x/y is presented in a thorough

and exhaustive analysis by Fieller [6] which is far too difficult and lengthy

to reproduce here. The general idea, based on [6]

,

will be reviewed for those

interested in the background of these approximations.

Following Fieller, the ratio x/y is expanded by their variations, fix and

fiy

:

Let x = x + fix and y = y + fiy, x is the expected value of x; y is the

expected value of y; expand as follows:

U - x+6x _ x (i+sA i- Ax + Azi - Axi + ...
y4-5y

“ -) y y J

Then compute the n-th moment about zero of the distribution of w, from the
!

equation for W1
. To obtain this value (based on a derivation by Merrill, see

reference [6]

,

page 436) retain the products of (fix) r (6y) s as far as the

eighth order, and take for their mean values the product-moments of the normal

surface. This holds only for |6y| < y, but it is valid when applied to the

interior of the probability contour. Merrill's values of the moments may be

taken as the moments of the distribution of w in a curtailed normal

population. This provides, then, the basis for the formulas given in Section

3. 3. 1.1, eauaitons (3.2) and (3.3).

;

i
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Appendix B

Parametric Programming: Sensitivity Analysis

Parametric linear programming can involve the evaluation of six types of

modifications. Given a typical linear program as:

x > 0 y > 0

Ax < d A’y > c

max c'x = z min d'y = z

(Primal) (Dual)

In these formulations A is the matrix of technical coefficients, d is the

vector of resources, c is the vector of costs or profits, x is the vector of

allocations, and z is the objective function, which is a scalar product. The

symbol indicates the transpose of the matrix A or the vectors c and d.

Two properties which link the primal-dual solutions together are important to

parametric sensitivity analysis. The first property states that the solution

of the dual problem acts as an upper bound on the solution of the primal

problem. The second property states that if B is the basic matrix of the

solution to the primal problem then the optimum solution of the dual is

Y = cB“l
,
where c is the cost vector associated with the primal solution.

The impact of a parametric sensitivity analysis on the integrity of these

two properties should be assessed with regard to the consistency the

modifications have with the primal-dual relationship. A parametric

sensitivity analysis of a linear program may take any of the following

modifications

.
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The six possible modifications are:

(1) c changes by a discrete amount,

(2) d changes by a discrete amount,

(3) a single column of matrix A changes by some amount,

(4) a single row of A changes by some amount,

(5) a constant is added to the system, and

(6) a variable is added to the system.

These six cases are treated thoroughly by Simonnard^ and the reader is

referred to this text for an excellent exposition and analysis of these

subjects

.

Only the first modification, changes in the cost vector c, will be

studied in this Appendix. The analysis entails calculating the bounds in

which c may vary without altering the optimal solution. If the values of c,

say c^, are varied by a constant value t then the objective function in the

primal becomes (c'+t)x. The parameter t will appear in the tableau in the

^Simonnard, M.
,
Linear Programming, Prentice-Hall, Inc., 1966, translated by

William S. Jewell, Chapter 7.

I
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last row and the simplex method will yield several inequalities on t.

These inequalities define the interval on t for which the optimal solution

will not be altered. The objective function is then defined as

(c'+ tj^) x* < z < (c'+t u )x*, where x* is the optimal solution. If t is

outside the interval [t^, tu ] then the optimal solution is changed.

If the problem is to study variations in the requirements vector d, the

linear program may be recast in the dual form and variations in d may be

examined in the same manner as was done for c in the explanation above.

Kreko* develops a general theory for variations in c or d. He defines t^

and tu as characteristic points of the parameter t and elaborates the

conditions for which optimal solutions change as a function t. His analysis

describes the solutions associated with the characteristic points of the t

domain, and develops a procedure for establishing upper and lower bounds on t

and the associated optimal solutions associated with a monotonic sequence of

characteristic points.

^Kreko, B.
,
Linear Programming, American Elsevier Co., Inc., 1968, Sections

4 . 6 and 12.3.
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Appendix C

Catastrophe Flags and System Dynamics

The text of Section 6.4, Catastrophe Theory, is augmented here with

greater detail on the dynamics of system stability as a function of changes in

control parameters, and with a discussion of the catastrophe flags, which have

a bearing on model dynamics, design and validation.

Figure C-l depicts the geometry of the cusp catastrophe associated with a

parabolic force potential manifold. The response surface, M, is the folded

sheet in three dimensions. Its projection, C, is the control parameter space,

which is shown in Figure C-l with two parameters (a,b) and a cusp emanating

from the point P. Four regions in the control space are marked as
,
R2 ,

R3 ,

and R^. Similarly in the manifold space are regions designated as Q0 ,
Oj

,
and

Q2 . The points u and v in M are "jump" points at which the state variable

jumps to only stable minimum values. Regions and O2 have minimum potential

values. The region of the fold has maximum potential value and is

unstable

.

The discussion which follows on the catastrophe flags includes the

general phenomena of system dynamics presented in Section 6.4.

1 . Modality Flag

Modality refers to the condition that the system has, in the case

depicted in Figure C-l, two or more distinct physical states when the control

parameters have values lying within the cusp-shaped regions. The projection

of any point lying within the cusp-line boundary will pierce the manifold in

three places. All such points are, therefore, states of instability for the

system.
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2.

Sudden Jump Flag

A sudden change in the state of the system occurs when the state variable

jumps from one sheet of the manifold to the other. In Figure 0-1
,

this occurs

when the control parameters describe a path from regions Rj or R2 to R3 or R4

where the path enters the cusp region and exits by crossing a cusp line. A

sudden jump can occur when the control parameters move the state variable from

Q2 and Qi by traversing through the point v or the cusp-line (0o ,v). Moving

the state variable from region to O2 by crossing the cusp-line (Q0 , u)

causes a similar sudden jump to equilibrium in the Q2 region. A catastrophic

jump occurs when a smooth and continuous variation of control parameters

causes a discontinuous change of state.

3. Divergence Flag

A divergence is said to occur when a smooth and continuous change in

control parameters leads to a smooth and continuous change in the system state

variable. This can be seen in Figure C-l. If the system state variable is in

the region near Qq it can be moved into region O2 when the parameters follow a

smooth path from Rj to R2. A similar movement can lead the state variable

from Q0 to Qj as the control parameters move along a path from Rj to R3 (or

R4) which does not traverse the cusp region. So by smooth transitions the

state variable can be brought to divergent values, one in the region of Q2

,

the other in the region Qj

.

4 . Hysteresis Flag

This condition is included because it may have some bearing on the

evaluation and behavior of modeling design. Hysteresis describes the

situation in which if the path of the control parameters is reversed the path

76



of the state variable is not necessarily reversed. Reversibility is possible

if the parameter path does not exit from the cusp region. The system may be

rendered unstable but jumps will not occur unless the parameter path exits

from the cusp boundary.

Maxwell and Delay Rules

An interesting application of catastrophe theory is presented in Figure

C-2. Two rules of behavior, or choices, are indicated, which assume that

behavior may in some fashion perform as a system which seeks a condition of

stable or minimum potential. If a policy is at point PQ on an issue which is

polarized around policies Pj and the Delay rule invokes a smooth jump to

policy Pj and the Maxwell rule invokes a discontinuous jump transition to

policy P£. Under the Delay rule the jump is attended by a smooth, non-

dif ferentiable change in the state variable which changes the policy in the

direction which locally maximizes support. Under the Maxwell rule the jump is

accompanied by a discontinuous change in the state variable which changes the

policy to where the support is globally maximized.

The application of this idea lies in identifying regions of instability

in system state variables, and being able to anticipate changes in the state

variables by designing appropriate system response functions to signal system

instability, or to detect that a change in policy is required to maximize

effectness

.
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Figure C-l : Catastrophe Cusp Geometry
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