NBSIR 83-2804

Thermal Flanking Loss Calculations for the National Bureau of Standards Calibrated Hot Box

R. J. Onega

Department of Mechanical Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061
and
P. J. Burns

Department of Mechanical Engineering
Colorado State University
Fort Collins, CO 80523

February 1985

Prepared for
Department of Energy

- QC— Jak Ridge National Laboratory

QC \quad :nergy Division
100 Jak Ridge, TN 37830
. U 56
83-2804
1985

NATIONAL INSTITUTE OF STANDARDS \&
TECHNOLOGY
Research Information Center
Gaithersburg, MD 20899

THERMAL FLANKING LOSS CALCULATIONS FOR THE NATIONAL BUREAU OF STANDARDS CALIBRATED HOT BOX

R. J. Onega

Department of Mechanical Engineering
Virginia Polytechnic Institute and State University Blacksburg, VA 24061
and

> P. J. Burns

Department of Mechanical Engineering Colorado State University
Fort Collins, CO 80523

February 1985

Prepared for
Department of Energy
Oak Ridge National Laboratory
Energy Division
Oak Ridge, TN 37830

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director

FORWORD

This report is one of a series documenting NBS research and analysis efforts in support of the Department of Energy/Oak Ridge National Laboratory/National Bureau of Standards' Building Thermal Envelope Systems and Insulation Materials program. The work reported in this document was performed under the Calibrated Hot Box project (Task 4) supported by DOE/NBS Interagency Agreement No. DE-AIO5780R06113.

EXECUTIVE SUMMARY

Two frame coefficients are defined FCMCA and FCHXS which describe the fraction of the heat lost through the frame. FCMCA is related to the actual heat flux that goes through the wall specimen and FCHXS is related to the heat flux that goes through the specimen if it was one-dimensional.

The code FLANK (see Appendix) was written to obtain these coefficients, the temperature distribution and the heat fluxes across various surfaces in both a steady state or transient mode. The code is a two dimensional, finite difference code. The number of nodes that can be used is variable and is limited only by computer memory and the amount of time and money available for computer runs.

If one considers the steady-state conditions for the metering chamber, the heat input to the metering chamber QIN is related to the heat out by $Q_{I N}=Q_{\text {specimen }}+Q_{\text {frame }}+Q_{M C}$ walls where $Q_{\text {frame }}$ is the heat that goes out through the frame and $Q_{M C}$ walls is the heat lost through the metering chamber walls. It is easily seen that

$$
\begin{aligned}
Q_{\text {frame }} & =Q_{\text {IN }}\left(1-\frac{Q_{\text {specimen }}}{Q_{\text {IN }}}-Q_{M C \text { walls }}\right. \\
& =Q_{\text {IN }} \text { FCHXS }-Q_{M C} \text { walls }
\end{aligned}
$$

if the heat through the specimen is assumed to be $k_{S} A_{S}\left(T_{E C l}-T_{M C l}\right) \Delta Y_{S}$ where k_{S} and A_{S} are the thermal conductivity and area of the specimen, ΔY_{S} is the thickness of the specimen and $T_{E C l}$ and $T_{M C l}$ are the surface temperatures at the center of the climatic and metering chamber sides of the wall. FLANK provides FCHXS (and FCMCA) for a given set of conditions.

Typical applications for a polystyrene wall indicate that FCHXS will be between 5 and 15 percent in steady-state applications. If the temperature of the climatic chamber is equal to the temperature of the metering chamber, it can be seen that the frame coefficients will be very large ($\simeq 1$). In the transient case, the polyurethane will take about 40 or 50 hours to reach steady state. The frame coefficients likewise will achieve their steady state values in about 50 hrs or so. Also, the frame coefficients can be very large ($\simeq 50$ percent) in the transient situation due to the fact that the polyurethane frame itself is being heated.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY 111

1. INTRODUCTION 1
1.1 INTRODUCTION 1
1.2 BACKGROUND 1
1.3 THE NBS-CHB SPECIFICATIONS 2
1.4 SUMMARY OF TESTS TO BE RUN 2
1.5 CHB SENSORS 2
1.6 SUMMARY OF THERMOPHYSI CAL DATA 6
1.7 FLANKING LOSS DEFINITION (FRAME COEFFICIENTS) 6
2. FLANKING LOSS MODEL 9
2.1 THE MATHEMATICAL MODEL 9
2.1.1 Heat Transfer Coefficients 12
2.2 STEADY-STATE ANALYSIS 14
2.3 TRANSIENT ANALYSIS 14
3. RESULTS 20
3.1 CODE VERIFICATION AND DISCUSSION 20
3.2 STEADY-STATE RESULTS AND ANALYSIS 20
3.3 TRANSIENT ANALYSIS AND RESULTS 22
4. SUMMARY 34
5. REFERENCES 35

LIST OF TABLES

Page
Table 1.1 Specifications of the Walls of the CHB 3
Table 1.2 Test Specimen and Specimen Frame Specification 3
Table 1.3 Operating Conditions that may be Imposed on a Specimen in the NBS - CHB 4
Table 1.4 Climatic Conditions to be Simulated 5
Table 1.5 Sensors in the NBS-CHB 6
Table 1.6 Nominal Thermophysical Parameters for CHB Construction Materials and Some Specimen Materials 7

LIST OF FIGURES

Page
Figure 2.1 Geometry (Region A) of the CHB Frame, wall specimen, gaskets and portions of the MC and EC walls 16
Figure 2.2 The various regions and the number of nodes in each region for the CHB as coded in FLANK 17
Figure 2.3 Nodal structure of the frame, specimen, gaskets, and portions of the MC and EC walls 18
Figure 2.4 Heat transfer coefficient due to forced convection that applies to the metering and environmental chamber specimen and frame surfaces 19
Figure 3.1 The node structure used in the calculations presented 24
Figure 3.2 The influence of node structure on the accuracy of heat fluxes across various surfaces 25
Figure 3.3 Heat flux numbering system 26
Figure 3.4 Sensitivity of the temperature in the FRP to the time step 27
Figure 3.5 The influence of a variation of the climatic chamber temperatures on the frame coefficient 28
Figure 3.6 The variation of the frame coefficients with the thermal conductivity of the wall specimen 29
Figure 3.7 The frame coefficient as a function of position from the metering chamber face of the 0.3048 m wide frame 30
Figure 3.8 The variation of the frame coefficient with the wall thickness 31
Figure 3.9 The transient response of the polyurethane frame and the specimen to abrupt changes in boundary conditions 32
Figure 3.10 The transient response of the frame coefficients 33

1. INTRODUCTION

1.1 INTRODUCTION

A computer code called FLANK (see Appendix) was written to calculate the flanking loss for the NBS Calibrated Hot-Box (CHB). This code is a two-dimensional finite difference dynamic thermal simulation of the test frame and specimen when subjected to either steady-state or time-varying boundary conditions. The code is specifically designed to do the calculations for the NBS-CHB but the code is general enough to be used with any CHB.

This report presents some background information of the NBS-CHB since the code was written so that those quantities which are measurable or controllable are either inputs or outputs of the code. Following this is a description of the mathematical model, a description of the code and results. A users manual for FLANK is also available.

1.2 BACKGROUND

The purpose of the NBS Calibrated Hot-Box (CHB) is primarily to measure the heat flow through large components of a building envelope, such as a wall. A test specimen is constructed in a frame which is then placed between two chambers. One chamber is called the metering chamber (MC) and is designed to simulate inside conditions and the remaining chamber is called the environmental chamber (EC) which simulates outside conditions. Wider temperature variations are possible in the EC than the MC.

The following purposes can be enumerated for the NBS-CHB:

1. Measure the heat, air and moisture transport through large homogeneous or composite wall system under steady-state and dynamic conditions.
2. Provide the methodology in CHB measurements that can be used for accrediting various testing laboratories.
3. Generate thermal transport properties for full scale wall systems which may include windows, doors, etc.
4. Provide a mechanism for traceability to NBS in the measurement of thermal properties of wall specimens through a concept such as the Standard Reference Material (SRM) program.
5. Verify models of heat, moisture, air transport and flanking loss through walls by comparing model results to experimental data.

A flanking loss correction must be made to provide a comparison of theory and experiment. The flanking loss is a function of the wall thickness, material, placement of the wall in the frame, the test frame construction and the temperature in the MC, EC and the environment. Since air temperatures, heat transfer coefficients, etc., can be experimentally imposed, the model must be able to accommodate these variables as inputs.

1.3 THE NBS-CHB SPECIFICATIONS

The CHB is to test walls with a thermal resistance ranging from an R of $0.352 \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}$ to $8.81 \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\left(\mathrm{R}-2\right.$ to $\left.\mathrm{R}-50 \mathrm{hr} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F} / \mathrm{Btu}\right)$ under a variety of temperature, moisture and air infiltration conditions. The MC Walls are made of polyurethane board about 0.38 m (15 in) thick surrounded on all outside surfaces by a water jacket designed to minimize the temperature difference between the outside and inside of the walls. The interior and exterior surfaces of the polyurethane MC walls are covered with about $0.003175 \mathrm{~m}(\sim 1 / 8 \mathrm{in})$ fiberglass reinforced plastic (FRP) of type 45 fiberglass polyester 45 percent glass matt base with a fire-retardant filler. Specifics of the wall construction construction are presented in table l.l.

The EC walls consist of $0.454 \mathrm{~m}(17-3 / 4 \mathrm{in})$ polyurethane covered with FRP. The FRP is finished with two coats of epoxy-base paint. The R-value for the EC walls are about $19.02 \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\left(\mathrm{R}-108 \mathrm{~h} \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F} / \mathrm{Btu}\right)$.

The wall specimen is mounted in a polyurethane frame. Details of the frame and specimen are presented in table 1.2. The wall specimen itself is 3.048 m high (10 ft), 4.572 m wide (15 ft) and can vary in thickness up to a maximum of $0.6096 \mathrm{~m}(2 \mathrm{ft})$. Neoprene seals are used to sandwich the test frame between the MC and the EC.

Table 1.3 provides a list of operating conditions available in both the MC and the EC.

1.4 SUMMARY OF TESTS TO BE RUN

Various test specimens will be put into the CHB and subjected to various climatic conditions. These walls may be homogeneous or composites and may contain windows and doors. Table 1.4 is taken from reference [1]. Three different types of parameters can be varied: a) thermal quantities - air temperatures in both chambers; b) air infiltration parameters - static pressure difference across the wall; c) moisture parameters - relative humidity in both chambers. These parameters determine the heat flow through a wall with given thermal characteristics [2]. Both static and dynamic tests are to be run.

The control systems are to maintain constant dry-bulb temperatures to within $\pm 0.11 \mathrm{~K}$ of their setpoints in both chambers. A static pressure differential across the test specimen is to be maintained to within $\pm 2.5 \mathrm{~Pa}$ of its set point. The air flow rates can be maintained constant and will generally be directed in the direction that natural convection would take place.

1.5 CHB SENSORS

The results of computer models must be compared with experimental data to determine their accuracy and range of validity. It is, therefore, important to know what sensors are used, their accuracy and precisely what quantity is being measured. Table 1.5 provides a list of these sensors. The sensors in the specimen itself will depend upon the tests and the specimen.

Table 1.1 Specifications of the Walls of the CHB

QUANTITY	METERING CHAMBER	ENVIRONMENTAL CHAMBER
Outside height	4.3 m	4.3
Outside length	6.7 m	
Outside width	1.50 m	6.7 m
Inside width	1.117 m	1.57
Inside height	3.048 m	
Inside length	4.572 m	1.117 m
Wall thickness	0.38 m	3.048 m
Wall construction	polyurethane	4.572 m
Inside volume	$15.6 \mathrm{~m}^{3}$	0.4572 m
Thermal resistance	-	polyurethane
		15.6

Table 1.2 Test Specimen and Specimen Frame Specification

QUANTITY	VALUE
Construction	Rigid polyurethane foam covered with a layer 0.003175 m of fiberglass
R -Value	Reinforced plastic (FRP) 0.352 to $8.81 \mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{w}$
Inside height	3.048 m
Inside width	4.572 m
Frame width	2 frames (0.3048 m and 0.6096 m)
Frame thickness	0.4572 m
Specimen area	$13.935 \mathrm{~m}^{2}$
Specimen weight/area	$700 \mathrm{~kg} / \mathrm{m}^{2}$
Air leakage rate (max.)	$255 \mathrm{~m}^{3} / \mathrm{hr}$
Moisture transfer rate (max.)	$3.89 \mathrm{~kg} / \mathrm{s}$
Static pressure diff. (max.)	125 Pa

Table 1.3 Operating Conditions That May be Imposed on a Specimen in the NBS-CHB

PARAMETER	METERING CHAMBER	ENVIRONMENTAL CYAMBER
Dry bulb temperature range	283 to 338 K	233 to 338 K
Dew point temperature range	277.4 at 283 K D.B. to 293 at 297 K D.B. and above	$\begin{aligned} & 230 \text { at } 233 \mathrm{~K} \text { D.B } \\ & \text { to } 293 \mathrm{~K} \text { D.B. } \\ & \text { and above } \end{aligned}$
Heat input rate (max.)	7.3 kW	12.3 kW
Heat removal rate (max.)	6.4 kW	12.3 kW
Velocity of air curtain	0.25 to $0.75 \mathrm{~m} / \mathrm{s}$	0.41 to $4.1 \mathrm{~m} / \mathrm{s}$
Maximum diurnal temperature amplitude	$17^{\circ} \mathrm{C}$	$56^{\circ} \mathrm{C}$
Rate of temperature rise at $27^{\circ} \mathrm{C}$ (min.)	$3.06 \times 10^{-3}{ }^{\circ} \mathrm{C} / \mathrm{s}$	$3.06 \times 10^{-3}{ }^{\circ} \mathrm{C} / \mathrm{s}$
Rate of temperature decrease at $-7{ }^{\circ} \mathrm{C}$	$2.72 \times 10^{-3}{ }^{\circ} \mathrm{C} / \mathrm{s}$	$2.22 \times 10^{-3}{ }^{\circ} \mathrm{C} / \mathrm{s}$

Table 1.4 Climatic Conditions to be Simulated

Transmission Phenomena

SEASON
Thermal
Air
Direction ${ }^{\text {a }}$
S.S or Dyn ${ }^{\text {b }}$

Direction ${ }^{\text {a }}$
S.S or Dyn ${ }^{\text {b }}$

Winter
Winter
Out
Out
Summer In
Summer In
Winter
Summer
Winter
Winter
Summer
n
S.S
S.S

Dyn
S.S
S.S
S.S

Dyn
Dyn
Winter Out
S.S In

None ${ }^{c}$
None
None
None

Winter
Summer
Out
In
Summer In
$\begin{array}{ll}\text { Winter } \\ \text { Summer } & \text { In }\end{array}$
Winter
Summer
Out
In
Out
Out
In
S.S
S.S
S.S

Dyn In

Recirce	S.S
Recirc	S.S
Recirc	S.S
Recirc	Dyn
Recirc	Dyn

In S.S
Out S.S
In S.S
Out S.S
In S.S
Dyn In S.S
Dyn Out S.S
Dyn Out S.S
Winter Out S.S Out S.S
Winter Out
Out
Out
S.S
a. "In" and "Out" refer to the direction of heat, air, or moisture transfer as viewed from the Metering Chamber.
b. "S.S" stands for steady-state. "Dyn" means dynamic or variable.
c. "None" means no static pressure difference across the specimen.
d. "None" means that no vapor pressure difference will be maintained across the specimen.
e. "Recirc" means two-way flow of air can take place through some wall specimens due to stack effect.

Table 1.5 Sensors in the NBS-CHB

QUANTITY	METERING	ENVIRONMENTAL
	(ACCURACY)	CHAMBER (ACCURACY)
	CHAMBER	
1. Temperature a) specimen surface temperature	$\begin{aligned} & \text { 40, } 24 \text { gage Cu-Co } \\ & \text { thermocouples - type } T \\ & \text { (} \pm 0.5 \mathrm{~K} \text {) } \end{aligned}$	40, 24 gage type T thermocouple $(\pm 0.5 \mathrm{~K})$
b) air temperature i) dry bulb	RTD	RTD
ii) dew point temperature		
2. Heat flux	30 heat-flow meters flat, 2-1/4", installed between polyurethane and FRP in interior of chamber	same as M.C.

3. Pressure
4. Power input
a) heat to metering chamber
5. Air velocity

1.6 SLIMMARY OF THERMOPHYSICAL DATA

Steady-state and dynamic modeling require knowledge of thermophysical parameters. Table 1.6 is a list of the relevent parameters for some of the materials from which the CHB is constructed. In addition to thermophysical parameters, air infiltration and moisture parameters are also required.

1.7 FLANKING LOSS DEFINITION (Frame Coefficient)

The flanking loss is loosely defined as the amount of heat that leaves the MC which does not go through the wall and ends up in the EC. Lavine et al. [4] define the flanking loss as "heat flow also occurs between the metering chamber and the climatic chamber through the specimen frame. This heat flow is called the flanking loss."

According to the definition of Lavine, et al., the flanking loss is only that heat which flows from the MC, through the frame and then into the EC.

Table 1.6 Nominal Thermophysical Parameters for CHB Construction Materials and Some Specimen Materials

Material	-k (W/m• K)	$\mathrm{C}_{\mathrm{p}}\left(\frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\right)$	$\rho\left(\frac{\mathrm{kg}}{\mathrm{~m}^{3}}\right)$	$\alpha\left(\frac{m^{2}}{s}\right)\left(\frac{k}{\rho c}\right)$
1. Polyurethane foam	0.023	921.1	32.0-46.5	7.79×10^{-7}
2. Fiberglass reinforced plastic (FRP)	$\begin{gathered} 0.43 \\ \text { (anisotropic) } \end{gathered}$	935	1400-2000	3.28×10^{-7}
3. Neoprene	0.180	2000	~ 1100	$\sim 8 \times 10^{-8}$
4. Polystyrene	0.0288	1214	16.02	1.48×10^{-6}
b) expanded bead	0.0345	1214	24.03	1.18×10^{-6}
c) expanded bead	0.0332	1214	32.04	8.54×10^{-7}
5. Fiberglass (dry) a) light b) medium	$\begin{aligned} & 0.0389 \\ & 0.0332 \end{aligned}$	$\begin{aligned} & 778 \\ & 775.0 \end{aligned}$	12.0 48.0	4.17×10^{-6} 8.92×10^{-7}

This definition result in several questions which are listed below:
i) How is the heat that flows through the edge of the test wall accounted for in this definition?
ii) How is the heat that flows from the MC, through the frame and out into the surroundings accounted for in this definition?
iii) How does one uniquely calculate flanking loss as defined above?

Because of these difficulties, the following definitions of a quantity termed "frame coefficient" are preferred. Both of these definitions depend upon the deviation from one-dimensional heat flow for their basis.

The total heat flow out of the MC (for steady-state) is observed from the difference between the amount produced from the electrical heater and the amount removed by the MC cooling coils, i.e.,

$$
\begin{equation*}
Q_{i n}=Q_{E H}-Q_{c c} \tag{1.1}
\end{equation*}
$$

The heat going through the center point of the specimen is one-dimensional but that which goes through the specimen near the frame has a component in the z
direction as well as the y direction (see figure 2.1). The heat flux in the y direction is

$$
\begin{equation*}
Q_{s y}=-k_{s} A_{s} \frac{\partial T}{\partial y} \tag{1.2}
\end{equation*}
$$

where the subscript "s" refers to the specimen. This is the amount of heat that would flow through the wall if it were very large so that edge effects (frame coefficients) could be ignored.

The heat flux is the amount of heat that crosses a unit surface area per unit time. Using equation (1.2), if the expression is evaluated at the geometrical center of the wall in the z direction and the front surface $(y=0)$, a definition of the frame coefficient

$$
\begin{equation*}
F C H X S=\left[Q_{\text {in }}-Q_{\text {sy }}(y=0, z=H / 2)\right] / Q_{\text {in }} \tag{1.3}
\end{equation*}
$$

If the average heat flow through the front surface of the wall is used,

$$
\begin{equation*}
\text { FCMCA }=1-\frac{w^{*} \cdot \int_{0}^{H} h_{s}\left[T_{s}(z, y=0)-T_{M C}\right] d z}{Q_{i n}} \tag{1.4}
\end{equation*}
$$

where w is the width of the wall. Other definitions can also be given for the flanking loss or frame coefficients as well.

2. FLANKING LOSS MODEL

2.1 THE MATHEMATICAL MODEL

FLANK calculates the temperature distribution, the heat fluxes across various boundaries and the frame coefficients. The geometry is shown in figure 2.1. Since both transient and steady-state runs are to be made in the CHB, the code must be able to be run in either mode.

All the thermophysical properties such as thermal conductivity, specific heats, etc., are assumed to be independent of temperature. The heat balance equation for the region, " A ", shown in figure 2.1 is

$$
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}=\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k^{\partial T}\right), \tag{2.1}
\end{equation*}
$$

where T is the temperature at any point (y, z) at time, t, ρ is the density, C_{p} is the heat capacity and k is the thermal conductivity. The boundary conditions are of two types. Since the CHB has coils in the MC wall to maintain a constant temperature, the constant temperature boundary condition

$$
\begin{equation*}
T(t)=T_{0} \quad \text { on } \quad S_{2} \tag{2.2}
\end{equation*}
$$

where S_{2} is a line where the coils exist for heat rejection if needed.
The other type of boundary condition is a specification of the heat transfer coefficient and ambient temperature along the line S_{1}

$$
\begin{equation*}
\left.k \frac{\partial T}{\partial y}\right|_{s_{i y}}+h\left[T_{s_{i y}}(t)-T_{A M B}(t)\right]=0 \quad \text { on } S_{i y} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.k \frac{\partial T}{\partial z}\right|_{s_{i z}}+h\left[T_{s_{i z}}(t)-T_{A M B}(t)\right]=0 \quad \text { on } S_{i z} \tag{2.4}
\end{equation*}
$$

Here $S_{i y}$ and $S_{i z}$ are boundary lines along the y and z axis respectively and h is the heat transfer coeficient.

The region designated A consisting of the frame, specimens, and a portion of the MC and EC walls is shown in figure 2.2. This was broken into nodes as shown on figure 2.3. A finite difference formulation of the heat conduction equation was made in order to calculate the temperature at the node, heat fluxes across lines and the frame coefficient. Heat balances at the various nodes were put into a matrix equation formulation which resulted in the following set:

$$
\begin{equation*}
\left.\underline{C} \underline{T}^{(P+1)}-\underline{T}^{(P)}\right) / \Delta t+\alpha \underline{K}_{T^{(P+1)}}+(1-\alpha) K_{\underline{K}} \underline{T}^{(P)}=\alpha \underline{B}^{(P+1)}+(1-\alpha) \underline{B}^{(P)} \tag{2.5}
\end{equation*}
$$

where C and K are ($n \times n$) matrices, (n) is the number of nodes, and $T^{(P)}$ is the temperature at the various nodes at time step " P ". The $B^{(P)}$ vector \bar{a} rises because of boundary conditions and α is the time integration parameter such that $0 \leqslant \alpha \leqslant 1$. If $\alpha=1$, the solution is purely implicit (backward difference formulation), if $\alpha=0$, it is an explicit solution scheme and if $\alpha=1 / 2$, the solution method is a Crank-Nicholson scheme. If $\alpha=1$ is used, no numerical instability problems will arise due to time-step sizes. The \underline{C} matrix is the thermal capacity matrix and K is the thermal conductivity matrix.

Equation (2.5) can be rearranged to yield
where

$$
\begin{equation*}
\underline{D T}^{(P)}=\underline{T}^{P+1}-\underline{T}^{P} \tag{2.7}
\end{equation*}
$$

Equation (2.6) is the form that is actually used in FLANK. The C is a diagonal matrix where the $i^{\text {th }}$ diagonal element is given by $\rho_{i} C_{P i} \Delta y_{i} \Delta z_{i}$ and Δy_{i} and Δz_{i} must be evaluated for both center as well as corner nodes properly. The \underline{K} matrix consists of elements for the $1 j$ node as

$$
\begin{equation*}
K_{1 j}=k_{i} \frac{\Delta y_{i}}{\Delta z_{j}}+k_{j} \frac{\Delta z_{j}}{\Delta y_{i}} \tag{2.8}
\end{equation*}
$$

and, of course, $k, \Delta y$, and Δz must be properly evaluated for each of the different types of node.

The matrix equation (2.6) is solved using three IMSL subroutines [5], LUDATF which decomposes \underline{C} and \underline{K} using the Crout Algorithm, LUELMF which carries out the elimination part of the solution, and LUREFF which refines the solution to achieve more accuracy.

The Crout reduction [6] or decomposition of a matrix K works basically as follows. The matrix K is written as the product of two matrices, i.e.,

$$
\begin{equation*}
\underline{K}=\underline{L} \tag{2.9}
\end{equation*}
$$

where \underline{L} is lower triangular and \underline{U} is unit upper triangular, so the $1 j^{t h}$ element can be expressed as

$$
\begin{equation*}
\mathrm{k}_{1 j}=\sum_{\ell=1}^{\min (1, j)} \lambda_{i \ell} u_{\ell j} \quad(1, j=1,2,3 \ldots n) \tag{2.10}
\end{equation*}
$$

Since \underline{U} is a unit upper matrix, the diagonal elements are forced to unity so $u_{i 1}=1$. Therefore,

$$
\begin{equation*}
k_{i j}=\lambda_{11} u_{11}=\lambda_{i 1} \quad(i=1,2, \ldots n) \tag{2.11}
\end{equation*}
$$

Also,

$$
k_{i j}=\lambda_{11} u_{l j}
$$

or

$$
\begin{equation*}
u_{l j}=k_{l j} / \lambda_{l l} \quad \text { for } j=2,3,4, \ldots n \tag{2.12}
\end{equation*}
$$

The first column of L is determined by (2.11) and the first row of u is determined by (2.12).

After the first $m-1$ columns of $\underset{\sim}{L}$ and $m-1$ rows of \underline{U} are established, the relation

$$
k_{i m}=\lambda_{i m}+\sum_{\ell=1}^{m-1} \lambda_{i \ell} u_{\ell m} \quad i=m, m+1, \ldots, n
$$

is used, or solving for $\lambda_{i m}$,

$$
\begin{equation*}
\lambda_{i m}=k_{i m}-\sum_{\ell=1}^{u r} \lambda_{i \ell} u_{\ell m} \tag{2.13}
\end{equation*}
$$

The relationship which permits the computation of $u_{m j}$ is

$$
\begin{equation*}
u_{m j}=\frac{1}{\lambda_{m m}}\left[k_{m j}-\sum_{\ell=1}^{m-1} \lambda_{m \ell} u_{\ell j}\right. \tag{2.14}
\end{equation*}
$$

Notice that the $m^{\text {th }}$ row of \underline{U} and the m th column of L are determined by eqs. (2.14) and (2.13), respectively.

The Crout algorithm requires about $n^{3} / 3$ multiplications to accomplish this decomposition so that for a 246×246 matrix about 5 million multiplications are required. If an error message IER = 129 is printed by FLANK, this came from LUDATF indicating that the matrix is "algorithmically singular" indicating a small pivot element was encountered in the decomposition process. If the message $I E R=34$ is printed, the computed solution is in error by more than can be accounted for by the uncertainty of the data.

LUDATF, thus, triangularizes the matrix $\underset{\underline{K}}{ }$ into $\underset{\sim}{L}$ and $\underset{\sim}{U}$. The decomposition is always possible provided the leading principal minor determinants are all nonzero, i.e.

$$
\begin{gathered}
\operatorname{det} k_{11} \neq 0 \\
\left\lvert\, \begin{array}{cc}
k_{11} & k_{12} \\
\mid k_{21} & k_{22} \mid \neq 0 \\
\vdots \\
\operatorname{det} K \neq 0
\end{array}\right. \\
=
\end{gathered}
$$

This triangular decomposition is unique if the diagonal elements of either $\underset{L}{L}$ $\underline{\underline{U}}$ are specified.

To obtain a first estimate of the temperature vector \underline{T}_{1}, set

$$
\underline{\underline{L} \underline{U}} \underline{\mathrm{~T}}_{1}=\underline{\mathrm{B}}
$$

and then

$$
\underline{\mathrm{L}} \underline{\mathrm{X}}=\underline{B}
$$

\underline{X} can be solved directly by forward substitution by noting

$$
x_{i}=\left(b_{i}-\sum_{j-1}^{i-1} \lambda_{i j} x_{j}\right) / \lambda_{i i}
$$

The temperatures are then obtained by back substitution of the matrix equation

$$
\underline{\underline{U}} \underline{T}_{1}=\underline{X}
$$

Once the decomposition has been accomplished, LUELMF calculates the temperatures, so that a first estimate T_{1} is obtained as indicated. LUREFF is then called to refine the solution. This routine basically works by calculating a residual \underline{r}_{1} from

$$
\begin{equation*}
\underline{r}_{1}=\underline{b}-\underline{K} T_{1} \tag{2.15}
\end{equation*}
$$

The new solution y_{1} is obtained (using the same decomposition from LUDATF) from

$$
\begin{equation*}
\underline{\underline{K}} \underline{y}_{1}=\underline{r}_{1} \tag{2.16}
\end{equation*}
$$

which is then added to \underline{T}_{1} to obtain a better estimate T_{2}, i.e.,

$$
\begin{equation*}
\underline{T}_{2}=\underline{T}_{1}+\underline{y}_{1} \tag{2.17}
\end{equation*}
$$

This computation requires about $2 \mathrm{n}^{2}$ multiplications. This procedure is continued by now obtaining

$$
\begin{equation*}
\underline{\mathrm{r}}_{2}=\underline{\mathrm{b}}-\underline{\mathrm{K}} \mathrm{~T}_{2}, \tag{2.18}
\end{equation*}
$$

computing a \underline{y}_{2}, obtaining a \underline{T}_{3}, etc.

Basically, the procedure continues until the accuracy specified by IDGT is satisfied or an error is produced. Again IER $=129$ means the matrix is too illconditioned to achieve the desired accuracy. For example, if IDGT is set to three, an accuracy test is performed to be sure that when KT is calculated, the first three digits of each element is the same as the first three digits of b. If IDGT $=0$, this test is bypassed.

2.1.1 Heat Transfer Coefficients

The heat transfer coefficient must be read into the code. The CHB permit various air velocities and temperature conditions to be imposed on the specimen. The range of heat transfer coefficients is between 1.0 to $25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. The heat transfer correlation used for laminar flow is [7]

$$
\begin{equation*}
\bar{h}=0.664 \sqrt{\operatorname{Re}} \operatorname{Pr}^{1 / 3}(\mathrm{k} / \mathrm{L}), \tag{2.19}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{Re} & =\text { the Reynolds number, } \\
\mathrm{Pr} & =\text { the Prandtl number, } \\
\mathrm{k}= & \text { the thermal conductivity of air (W/m. } \mathrm{K} \text {) } \\
\mathrm{L}= & \text { the length of the wall in the direction that } \\
& \text { the air is moving, }
\end{aligned}
$$

and
\bar{h} is the average convective heat transfer coefficient (W / m^{2}. K).
This expression is used if $\operatorname{Re}<5 \times 10^{5}$.
If the Reynolds number is greater than 5×10^{5}, the flow becomes turbulent and there are mixed boundary layer conditions in that for some of the wall specimen the flow is laminar and turbulent flow dominates for the remainder of the wall. In this case

$$
\begin{equation*}
\bar{h}_{L}=\frac{1}{L}\left[\int_{0}^{X} c h_{\text {laminar }} d x+\int_{X_{c}}^{L} h_{\text {turbulent }} d x\right] \tag{2.20}
\end{equation*}
$$

and it is necessary to calculate the transition distance X_{c}. The result of the integration is

$$
\begin{equation*}
\bar{h}_{L}=\left(\frac{k}{L}\right)\left[0.037 \mathrm{Re}^{4 / 5}-836\right] \mathrm{Pr}^{1 / 3} \tag{2.21}
\end{equation*}
$$

Figure 2.4 is a plot of the forced convection heat transfer coefficients. These will apply to both the MC and EC.

If the air velocity is very low, then natural convection becomes important and even though there is slight forced air motion, both types of convection must be considered.

Air infiltration is not taken into account in the heat diffusion equation. The FRP is essentially impermeable to air and moisture but the wall specimen may not be. FLANK would require extensive modifications for the specimen region in order to take into account infiltration since convection may ie an important aspect of the heat transport mechanisms.

2.2 STEADY-STATE ANALYSIS

FLANK can be used either for steady-state calculations or dynamic calculations. From equation (2.5) it is seen that if α is set to l and Δt is very large (10^{30}), then the static equations for heat transfer result. In FlANK, if ITRAN $=0$, these steps are automatically performed.

The boundary conditions are of the convective type or else the temperature may be specified at various boundary points.

The equation that is solved in the steady-state case is

$$
\begin{equation*}
\underline{K} \underline{T}=\underline{B} \tag{2.22}
\end{equation*}
$$

where \underline{B} arises because of the boundary conditions imposed.
The output from the static calculations consists of:
a) echo of the input data;
b) the temperature at each of the nodes;
c) the heat transfer across various surfaces; and
d) the frame coefficients.

2.3 TRANSIENT ANALYSIS

If the control parameter ITRAN is set to unity, a dynamic calculation will be made. The initial temperatures and the boundary conditions imposed must be part of the input file. In this case equation (2.6) is rewritten as

$$
\begin{equation*}
\left[\frac{1}{\Delta t} \underline{\underline{C}}+\alpha \underline{\underline{K}}\right](\underline{D} \underline{\underline{T}}) P=\alpha \underline{\underline{B}}(P+1)+(1-\alpha) \underline{B}(P)-\underset{\sim}{K} \underline{T}^{P} \tag{2.23}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{A}\left(D \underline{D}^{P}=\underline{C}^{\underline{p}}\right. \tag{2.24}
\end{equation*}
$$

The boundary conditions may be changing in time so that B may be a time-dependent quantity. Equation (2.24) is solved for $\overline{(D T})^{P}$ and then the actual temperatures are obtained at time $(P+1)$ by using the relation

$$
\begin{equation*}
\underline{T}^{(P+1)}=\underline{T}^{(P)}+(D \underline{T})^{P} \tag{2.25}
\end{equation*}
$$

The output of FLANK is as follows: a) echo of input data; b) the temperature at each of the nodes at each time step; c) the heat transfer across various surfaces at each time step; and d) the frame coefficients at each time step.

ио†8ә,

S_{1}

3. RESULTS

3.1 CODE VERIFICATION AND DISCUSSION

FLANK was run for various situations to obtain an indication that it is working properly. For example, if all the temperatures imposed on all boundaries are equal, then the frame and specimen must go from the initial temperature to the temperature specified by the boundary conditions. This test was done and the program provided the correct answers.

Various other tests were done such as varying the node structure to deteraine the "minimum acceptable" number, looking at the time steps and the accuracy of the calculation, etc. Additionally, heat balances for given regions are performed to determine whether the heat entering a region is equal to that leaving in a steady-state calculation.

The node structure used in calculating all the results in this report is shown in figure 3.1. The accuracy of the calculation as a function of the node size is shown in figure 3.2. Figure 3.3 gives the surfaces for which the heat fluxes are calculated. It is found that 240 nodes or greater (if they are chosen reasonably) will provide good results. Of course, the more nodes chosen the greater the memory requirements. The time step used provides different accuracy for different nodes. Generally, if the temperature of a node does not change rapidly (as in the center of the polyurethane frame), longer time steps can be used. Figure 3.4 shows the effect of the time step for node 121 wilch is one of the most sensitive nodes since the FRP changes temperature rapidly. These results are essentially the same for $\alpha=1 / 2$ and $\alpha=1.0$. This means that for highly accurate results in the FRP, time steps of the order of 5 minutes or so are required. However, the accuracy in the polyurethane region is good even for time steps of the order of an hour or so.

3.2 STEADY-STATE RESULTS AND ANALYSIS

The frame coefficient correction to the total energy balance of the CHB will generally be less than about ten percent of the total heat entering or leaving the MC side of the CHB. However, this is not necessarily the case since as TMC approaches $T_{E C}$ with $T_{A M B}$ different, then essentially no heat flows through the wall specimen and the frame coefficient can approach unity as shown in figure 3.5 .

An overall heat balance on the MC is given by the relation (assuming $\mathrm{T}_{\mathrm{MC}}>\mathrm{T}_{\mathrm{EC}}>$ $\mathrm{T}_{\text {AMB }}$

$$
\begin{equation*}
Q_{\text {in }}=Q_{\text {out }}=Q_{\text {specimen }}+Q_{\text {frame }} \tag{3.1}
\end{equation*}
$$

where
$Q_{i n}=$ The watts supplied by the heater and the blower minus the watts taken by the chiller,
$Q_{\text {out }}=$ The heat that leaves the metering chamber.

It is assumed that the heat lost through the rest of the metering chamber walls is negligible since they are maintained at a constant temperature by coils on the outside. If this is not the case, another term $Q_{\text {MCwalls must be added to }}$ equation (3.1). The heat loss through the MC walls is given by the relation

$$
\begin{equation*}
Q_{M C w a l l s}=k_{M C} A_{e f f} \frac{T_{i}-T_{A M B}}{L_{M C}} \tag{3.2}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } k_{M C} & =\text { the effective thermal conductivity of the } M C \text { walls }(\mathrm{W} / \mathrm{m}-\mathrm{K}) \\
L_{M C} & =\text { the thickness of the MC walls, } m \\
T_{A M B} & =\text { the temperature on the outside of the walls } \\
A_{\text {eff }} & =\text { the effective area normal to the heat flow }\left(\mathrm{m}^{2}\right) .
\end{aligned}
$$

It is assumed that the surface resistances are negligible compared to the resistance of the walls in equation (3.2). Using conduction shape factors to determine Aeff [8], the shape factors for the edge of two adjoining walls is 0.54 x (length of the edge) and for a corner, the shape factor is 0.15 x (the thickness of the wall). Therefore,

$$
\begin{equation*}
A_{e f f}=\sum_{i=1}^{5} A_{i n, i}+0.54 L_{M C} \cdot \sum_{i=1}^{8} e_{i}+4 \cdot(0.15) L_{M C} \tag{3.3}
\end{equation*}
$$

where $e_{i}=$ length of edge $i(m)$ and the 4 in equation (3.3) is because there are four corners in the MC. The inside dimensions of the NBS-CHB MC are 1.111 $\mathrm{m} \times 4.572 \mathrm{~m}$. Therefore,

$$
\begin{aligned}
A_{\mathrm{eff}}=13.94 & +2(5.079)+2(3.386)+0.54(0.4572) \cdot[2 \times 4.572 \\
& +2 \times 3.048+4 \times 1.11]+0.60(0.4572)=36.00 \mathrm{~m}^{2}
\end{aligned}
$$

Assuming that there is a $1{ }^{\circ} \mathrm{C}$ difference between the inside and the outside of the MC box,

$$
\begin{aligned}
\mathrm{Q}_{\text {MCwalls }} & =0.022 \frac{\mathrm{~W}}{\mathrm{~m} \cdot{ }^{\circ} \mathrm{C}}\left(36 \mathrm{~m}^{2}\right) \times \frac{1\left({ }^{\circ} \mathrm{C}\right)}{0.457(\mathrm{~m})} \\
& =1.73 \text { watts }
\end{aligned}
$$

Going back to equation (3.1), assuming temperatures $T_{M C 1}$ and $T_{E C 1}$ on the specimen surfaces (for a uniforin temperature),

$$
\begin{align*}
Q_{\text {frame }} & =Q_{i n}-Q_{\text {specimen }} \\
& =Q_{i n}\left[1-\frac{Q_{\text {specimen }}}{Q_{i n}}\right] \tag{3.4}\\
& =Q_{i n} \cdot F C H X S
\end{align*}
$$

if

$$
\begin{equation*}
Q_{\text {specimen }}=k_{s} A_{s}\left(T_{E C 1}-T_{M C 1}\right) / \Delta Y_{s}, \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{\text {frame }}=Q_{i n} \cdot F C M C A \text {, } \tag{3.6}
\end{equation*}
$$

if

$$
\begin{equation*}
Q_{\text {specimen }}=4.572 \int_{z_{\text {FRP }}}^{z_{\text {wall }}}\left[T(z)-T_{M C}\right] h(z) d z \text {, } \tag{3.7}
\end{equation*}
$$

where the 4.572 is the width of the wall specimen in meters. $T(z)$ is the surface temperature of the wall as a function of height on the MC side of the specimen.

If QMCwalls is not much smaller than $Q_{\text {frame, }}$ then eqs. (3.4) and (3.6) must be modified to take that into account, i.e.,

$$
\begin{align*}
Q_{\text {frame }} & =Q_{i n}-Q_{\text {specimen }}-Q_{\text {MCwalls }} \\
& =Q_{i n}\left(1-\frac{Q_{\text {specimen }}}{Q_{i n}}-Q_{\text {MCwalls }} \cdot\right. \tag{3.8}
\end{align*}
$$

The program FLANK computes the frame coefficients FCHXS and FCMCA. Various steady-state runs were made to obtain the temperature distribution, heat fluxes, and frame coefficients. All runs were made using 246 nodes. Figure 3.6 illustrates the variation of the frame coefficients with the thermal conductivity of the wall specimen. In this case, the specimen was placed 0.127 m (5 in) from the MC side of the frame.

Figure 3.7 shows the influence of the position of the specimen on the wall frame. The thermal conductivity of the wall specimen was taken to be 0.036 $\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{K}$ for this series of runs. The frame was 0.3048 m (12 in) wide. The frame coefficients increase with position from the frame edge as expected. The thickness of the specimen is 0.1016 m (4 in).

The thickness of the wall specimen also will influence the frame coefficient. Figure 3.8 shows FCHXS and FCMCA both increase with wall thickness as expected. The 0.3048 m wide (12 in) frame was used. It appears that FCMCA is starting to bend toward a less than linear increase with thickness.

The frame coefficient as defined in this report is, strictly speaking, a steady-state concept even though it will be examined in time as well. If the boundary conditions vary in time or if the system is not initially in equilibrium, the transient or a dynamic analysis must be performed.

3.3 TRANSIENT ANALYSIS AND RESULTS

A transient analysis differs from a dynamic analysis in that the latter has driven or time-dependent boundary conditions. A transient analysis examines the temperature response due to the fact that the system does not start out in an equilibrium temperature distribution. The system approaches the steady-state
asymptotically so that "time constants" of the system can be obtained. A series of runs with this objective were made.

Figure 3.1 shows the node numbering system used for all the transient calculations shown. Figure 3.9 shows the temperature at nodes 68 and 226 as a function of time. The initial temperatures were all assumed to be $20^{\circ} \mathrm{C}$ and at time zero, an MC temperature of 38° and a room temperature of $25^{\circ} \mathrm{C}$ was impressed on the system. The climatic chamber was taken to be $20^{\circ} \mathrm{C}$ also. These boundary conditions were held constant in time and the equilibrium temperature approached as shown. Note that in the specimen (made of polystyrene) the temperature reaches equilibrium in about two or three hours whereas deep in the polyurethane, it takes about 50 hours to reach equilibrium.

If one examines the thermal diffusivities, α, one can see the reason for these times. The thermal diffusivity of the polyurethane is $k / p c$ (see table 1.6) which is $(0.022 \mathrm{w} / \mathrm{m} \cdot \mathrm{K}) /\left(32 \mathrm{~kg} / \mathrm{m}^{3}\right)(921 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})$ or $7.5 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}$ and $0.036 /(27.64)(1214)$ or $1.08 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ is the thermal diffusivity for the beaded polystyrene. The Fourier number is a dimensionless time and is defined as

$$
\begin{equation*}
F o \equiv \alpha t / L_{C}{ }^{2} \tag{3.9}
\end{equation*}
$$

where L_{C} is the characteristic length of the system. The time dependence can roughly be related to $e^{-B i F O}$ where $B i$ is the Biot number ($=h_{L_{C}} / k$). For the frame $\mathrm{Bi} \simeq 2.33(0.04) / 0.022=4.2$ using the thermal conductivity of the polyurethane instead of the FRP. The time constant (" $1 / \mathrm{e}$ " value) is thus

$$
\begin{equation*}
\text { Fo } \cdot \mathrm{Bi}=1 \tag{3.10}
\end{equation*}
$$

or for $\mathrm{L}_{\mathrm{C}}=0.229 \mathrm{~m}$, the time to reach about $60-70$ percent of the steady-state value is 5 hours. This is a very crude estimate but even without using FLANK, it can be seen that time lags of the order of tens of hours will be required for the polyurethane to reach equilibrium.

The approach of the frame coefficients to their equilibrium value is shown in figure 3.10. In this case, the frame and specimen were initially at $20^{\circ} \mathrm{C}$ and suddenly the metering chamber temperature was switched to $38^{\circ} \mathrm{C}$ and the ambient (room) temperature was at $25^{\circ} \mathrm{C}$. The time behavior of the frame coefficients is shown to decrease to their equilibrium (steady-state) values in about 40 hours. Initially a large amount of heat is required to heat the frame material itself and then, after steady-state temperatures are achieved, the frame coefficient approaches the steady-state value.
 190
163
136
109
©
55
~
Figure 3.1 The node structure used in the calculations presented
Ratio of Heat Fluxes to the 344 Node Case

Figure 3.2 The influence of node structure on the accuracy of heat
fluxes across various surfaces

(\%) วuอfofigooう aurexa

（\％）孔uafつFjfooう amex』

An initial analysis of the NBS-CHB has been done using the code FLANK (see Appendix). The temperature distribution, heat fluxes across various boundaries, and frame coefficients have been calculated for steady-state and transient situations.

The time constants for the frame coefficients are of the order of 40 hours. The heat transfer coefficients are held constant during all transient analysis but it is believed that this caused little error in the results. The frame coefficient will "normally" be less than 20 percent unless the temperatures on both sides of the specimen are within about $5^{\circ} \mathrm{C}$ of each other.

The code can be used to calculate the coefficient for any specimen but the more deviation from uniformity the specimen the greater the error will be. Currently, it is necessary to assume or calculate an effective thermal conductivity for the specimen. One area of improvement for the calculations is to incorporate into FLANK a more general model for the specimen.

The code is currently general enough to calculate the various thermal quantities of interest for any homogeneous specimen subjected to constant or time varying temperature boundary conditions. The specimen can be located anywhere on the frame and be of any thickness less than the size of the frame itself.

5. REFERENCES

1. Achenbach, P. R., "Design of a Calibrated Hot-Box for Measuring the Heat, Air, and Moisture Transfer of Composite Building Walls," in Proceedings of the ASHRAE/DOE - OENL Conference on Thermal Performance of the Exterior Envelope of Buildings, December 3-5, 1979, Kissimmee, Florida, p. 308.
2. American Society for Testing and Materials, 1984 Annual Book of ASTM Standards, C976, (American Society for Testing and Materials 1916 Race Street, Philadelphia, PA, 19103, 1984), Part 18.
3. Incropera, F. P. and DeWitt, D. P., "Fundamentals of Heat Transfer," John Wiley and Sons, 1981, pp. 327-329.
4. Lavine, A. G., Rucker, J. L., and Wilkes, K. E., "Flanking Loss Calibration for a Calibrated Hot Box," Research and Development Division, Owens-Corning Fiberglas, Technical Center, Granville, Ohio, 1982, Private Communications.
5. IMSL Subroutine Set, "International Mathematical and Statistical Library." June, 1982 , a proprietary package from IMSL, Inc., Houston, Texas.
6. Stewart, G. W., "Introduction to Matrix Computations," Academic Press, New York, 1973, pp 135, 206.
7. Holınan, J. P., "Heat Transfer," McGraw-Hill Book Company, 4th Edition, 1976 p. 171 .
8. Incropera, F. P. and DeWitt, D. P., "Fundamentals of Heat Transfer," published by John Wiley and Sons, 1981, pp. 140-145.

APPENDIX

USER'S MANUAL FOR COMPUTER PROGRAM - "FLANK"

```
P. J. Burns
Department of Mechanical Engineering
Colorado State University
Fort Collins, Colorado 80523
R. J. Onega
Department of Mechanical Engineering
Virginia Polytechnic Institute and
    State University
Blacksburg, Virginia 24061
```


Preface

This appendix presents a computer program FLANK which was written in ANSI Standard FORTRAN to calculate the temperature distribution and various heat fluxes through the specimen support frame for the National Bureau of Standards Calibrated Hot Box (CHB). The code is a 2-D transient, finite-difference formulation of the heat conduction equation. The mesh spacing is determined by the user. Either steady-state or dynamic calculations are possible by changing an input parameter into the code. Constant temperature or heat-flux boundary conditions can be imposed on various boundaries of the CHB frame and/or specimen. The transient calculations can be done purely implicitly, explicitly or anywhere between these two methods. Running the code in an implicit mode will eliminate any instability problems.

TABLE OF CONTENTS

Page

1. DESCRIPTION OF THE PROGRAM FLANK A-1
1.1 INTRODUCTION A-1
1.2 SYSTEMS OF UNITS A-1
1.3 COMPUTER USAGE A-2
1.4 FILES A-2
2. THEORETICAL FORMULATION A-3
2.1 THE HEAT DIFFUSION EQUATION A-3
2.2 TEMPERATURE BOUNDARY CONDITIONS A-4
2.3 CONVECTION BOUNDARY CONDITIONS A-4
2.4 TRANSIENT SOLUTION SCHEME A-5
2.5 STEADY-STATE SOLUTION SCHEME A-6
2.6 ACCURACY A-6
2.7 STABILITY A-7
2.8 NUMERICAL LIMITATIONS A-7
2.9 ORGANIZATION OF THE PROGRAM A-8
2.10 RESTART CAPABILITIES A-8
2.11 DATA CHECK ONLY A-9
2.12 COORDINATE SYSTEM AND GEOMETRY A-9
2.13 NODAL DATA A-9
2.14 MATERIAL REGIONS A-9
2.15 HEAT TRANSFER COEFFICIENT REGIONS A-13
2.16 HEAT FLOW LINES A-13
2.17 ENERGY BALANCE REGIONS A-13
2.18 MATERIAL SUBREGIONS A-13
3. INPUT DATA STRUCTURE A-16
3.1 PROBLEM HEADING A-16
3.2 CONTROL DATA CARD A-16
3.3 DEBUG INFORMATION A-18
3.4 HEAT BALANCE CHECKS A-18
3.5 HORIZONTAL NODE NUMBER SPECIFICATION A-19
3.6 VERTICAL COORDINATE SPECIFICATION A-19
3.7 HORIZONTAL NODE NUMBER SPECIFICATION A-20
3.8 VERTICAL COORDINATE SYSTEM A-20
3.9 HEAT TRANSFER COEFFICIENT INPUT A-20
3.10 MATERIAL INPUT A-21
3.11 TEMPERATURES BOUNDARY CONDITION INPUT A-21
3.12 TIMING INPUT A-22
3.13 INITIAL TEMPERATURE INPUT A-22
3.14 BASE PLOT DATA A-23
3.15 CONTOUR PLOT DATA A-24
3.16 TIME HISTORY PLOT INPUT DATA A-25
3.17 TRANSIENT DATA INPUT A-26

TABLE OF CONTENTS (Continued)

Page
4. RUNNING THE PROGRAM A-27
4.1 INTERACTIVE EXEQUTION A-27
4.2 ERROR TERMINATION A-27
4.3 USEFUL UTILITY ROUTINES A-28
4.3.1 The Rename Routine A-28
4.3.2 The Delete Routine A-28
4.3.3 The Print Routine A-29
4.3.4 The Compile Routine FORTR7C A-29
4.3.5 The Compile/Library Load Routine FORT7 CR A-29
4.3.6 The Linker LINK33.CSS A-29
4.3.7 The DELELIB Utility Routine A-30
4.4 CRT MESSAGES A-30
4.4.1 Input Data Incorrect A-30
4.4.2 Underflow Errors A-31
4.4.3 Overflow Error A-31
4.4.4 Program Operating Messages A-31
4.4.5 Time Step Indication A-32
5. EXAMPLE PROBLEMS A-33
5.1 A STATIC PROBLEM A-33
5.2 A DYNAMIC PROBLEM A-33
6. REFERENCES A-34
7. CODE LISTING A-35
Page
Figure 2.1 Coordinate system showing the input dimensions required for FLANK and the various material regions A-10
Figure 2.2 The node structure for the NBS calibrated hot box A-11
Figure 2.3 The various node designations for each of the geometrical regions of the wall specimen and frame A-12
Figure 2.4 Heat transfer coefficients and associated temperature designations A-14
Figure 2.5 The heat flow lines and heat balance region designations A-15

1.1 INTRODUCTION

The program FLANK is a FORTRAN computer program devloped at the National Bureau of Standards (NBS) in Gaithersburg, Maryland, during the summer of 1982. The program was written to calculate temperature and heat transfer quantities associated with the flanking loss for the Calibrated Hot Box (CHB) at the NBS. Researchers at the Owens-Corning Fiberglas Corporation [1] coined the term "flanking loss" for the heat that short circuits around the specimen in the CHB, therefore the name of the program became FLANK.

The program is written to calculate the 2-dimensional conductive heat transfer in the CHB geometry. Thus, the geometry is tied to that of the CHB, but the node structure is general in each of the rectangular elements comprising the CHB geometry. All of the material properties are taken as constant, i.e., independent of time or temperature. Boundary conditions include specification of temperature, or specification of heat transfer coefficients and environmental (ambient) temperatures. The boundary conditions may be constant or functions of time, but not functions of temperature. Either transient or steady-state problems may be simulated.

The program has the capability to calculate a variety of specific heat transfer quantities of interest to the experimentalist such as the heat transferred through the specimen, frame coefficient*, etc. Note that the above assumptions render the problem "linear", although if the heat transfer coefficients are functions of time, it is necessary to reformulate the \mathbb{C} and $\underline{\underline{K}}$ matrices** (to be defined later) at each time step.

This manual is organized to present the theoretical formulation of the problem, to detail the input quantities necessary to run the program and to present example problems. Chapter 1 is an overview of the code. Chapter 2 presents the theoretical formulation of the problem. Chapter 3 details the specific input necessary to run the problem, chapter 4 presents some interactive commands and, finally, chapter 5 presents two example problems.

1.2 SYSTEMS OF UNITS

Where units are specified herein, the SI conventions are used. This is merely for purposes of illustration as any consistent set of units may be used. Also, the user is asked to note that the calculations are done in dimensional form in the program (i.e., no nondimensionalization of the geometry equations is done).

[^0]
1.3 COMPUTER USAGE

The program was written and tested on the Perkin-Elmer 3230 computer of the Center for Applied Mathematics (CAM) at the National Bureau of Standards. The various subroutines were written in ANSI Standard FORTRAN, and thus, should be transportable to other machines. For implementation on another machine, the main program, and the various FORTRAN subroutines must be compiled and loaded together with the IMSL LIbrary (3 IMSL linear equation solving routines are used in FLANK as well as an IMSL plot routine) to generate an executable task controller. Alternatively, the task code already existing on the 3230 may be executed interactively by typing "FLANK" on the user's CRT provided that the card image file "FLANK.INP" (the input file) resides on disk. More details concerning these points are presented below.

1.4 FILES

The following files are necessary to run the computer code on the Perkin-Elmer 3230: (1) FLANK.CSS - the command file, (2) FLANK.TSK - the executable task code, (3) FLANK.INP - the input file, and (4) FTEMP.INP - the restart tempratures*. Upon execution, the following files are generated: (1) FLANK.OUT - the output file, (2) IMSLS.OUT - the IMSL error message file, and (3) FTEMP.OUT - the ending temperatures (see section 3.16). The logical unit association is as follows:

File Logical Unit No.
IMSLS.OUT 2
FLANK.INP 5
FLANK.OUT 6
FTEMP.INP 1
FTEMP.OUT 3

[^1]
2. THEORETICAL FORMULATION

2.1 THE HEAT DIFFUSION EQUATION

The diffusion of heat in the $C H B$ is completely specified as follows:

$$
\begin{align*}
& \rho c_{p} \frac{\partial^{2}}{\partial t}=k\left[\frac{\partial T}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \frac{T}{2}\right] \tag{2.1}\\
& -k \frac{\partial T}{\partial n}=h\left(T-T_{\infty}\right) \text { on } S_{1} \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
& T=T(t) \text { on } S_{2} \tag{2.3}\\
& \text { subject to } T=T_{0}(y, z) \text { at } t=0 \tag{2.4}
\end{align*}
$$

where y and z denote coordinate directions and t denotes time. Equation (2.1) is the heat balance equation (T is the temperature at position (y, z) at time t) for an isotropic material with constant properties. Equations (2.2) and (2.3) are the convective and temperature specification boundary conditions on surfaces S_{1} and S_{2}, respectively. The entire boundary is composed of the lines S_{1} and S_{2}. Equations (2.1) to (2.3) are the equations that are solved numerically to yield temperatures at the nodal points versus time, viz:

$$
\begin{equation*}
\underline{T}=T(y, z, t) \tag{2.5}
\end{equation*}
$$

The equations (2.1) to (2.3) are assembled element by element into a finite difference format and are solved either implicitly ($0<\alpha \leq 1$) or explicitly if $\alpha=0$. In matrix notation, the capacitance matrix $\underline{\underline{C}}$ and the conductance matrix K may be formulated as follows:

$$
\begin{equation*}
\underline{\underline{C}}=\rho_{i} C p_{i} \Delta z_{i} / \Delta t=C_{i i} \tag{2.6}
\end{equation*}
$$

where the ii denotes that $\underline{\underline{C}}$ is a diagonal matrix, and no sum is intended on the i's, and, denoting either $\overline{\Delta y}$ or Δz by ΔX_{i}, the conductance matrix is

$$
\begin{equation*}
\underline{\underline{K}}=k_{j}\left\{\frac{\Delta X_{i}}{\Delta X_{j}}+\frac{\Delta X_{j}}{\Delta X_{i}}\right\}=K_{i j} . \tag{2.7}
\end{equation*}
$$

The finite difference (both in space and time) form of equation (2.1) may thus be written for all the nodes as:

$$
\begin{equation*}
\underline{\underline{C}}\left(\underline{T} t+\Delta t-T_{t}\right)-\underline{\underline{K}} \underline{T}=B . \tag{2.8}
\end{equation*}
$$

The right-hand side is the thermal load vector $1 \underline{B}$. No mention is made here of the time at which the T for the conductive term is to be taken, as this issue
will be addressed in section 2.3. The boundary conditions must also be implemented in the solution scheme. These points will be addressed in the ensuing sections of this manual.

2.2 TEMPERATURE BOUNDARY CONDITIONS

Temperature boundary conditions are handled via a penalty function formulation for generality and ease of implementation. This approach also saves the expense (in coding time) of reformulating the equations by taking the known temperatures to the right-hand side (to the load vector). Thus, if N total node points are specified and M temperature boundary conditions are specified, this approach still requires that N equations always be solved and not $N-M$. Thus, an increase in formulation and solution time is accepted for ease of implementation.

A brief explanation of the penalty function follows. Suppose that node L is to have its temperature set to $\mathrm{T}_{\mathrm{L}}^{\mathrm{B}}$. In the present scheme, the capacitance matrix has the following term added to the diagonal of row L :

$$
\begin{equation*}
\underline{C}(L, L)=\underline{C}(L, L)+B I G \tag{2.9}
\end{equation*}
$$

where BIG is the penalty function (for the present program BIG $=10^{30}$). Since the precision of the present machine is about 10^{7}, BIG completely overwhelms the original values on that diagonal such that in memory,

$$
\begin{equation*}
C(L, L)=B I G \tag{2.10}
\end{equation*}
$$

The same strategy is adopted for the load vector \underline{B}, i.e.:

$$
\begin{equation*}
B(L)=B(L)+B I G T_{L}^{B} \tag{2.11}
\end{equation*}
$$

B then is overwhelmed also so that the equation for node L now appears in memory as follows:

$$
\begin{equation*}
\text { BIG } T(L)=B I G T_{L}^{B} \tag{2.12}
\end{equation*}
$$

which has the solution that $T(L)=T_{L}^{B}$ as desired.
The user is simply required to input (1) the vector of node numbers that have temperature boundary conditions and, (2) the vector of the values of the temperatures at the boundary condition nodes. This specific input is described in section 3.10.

2.3 CONVECTION BOUNDARY CONDITIONS

The convection boundary conditions contribute a term to the diagonal of the conductivity matrix, and a term to the load vector. The contribution to the conductivity matrix is:

$$
\begin{equation*}
\underline{K}(I, I)=\underline{K}(I, I)+h_{I} \Delta X_{I}, \tag{2.13}
\end{equation*}
$$

and the contribution to the load vector \underline{B} is

$$
\begin{equation*}
B(I)=B(I)+h_{I} T^{*} \Delta X_{i} \tag{2.14}
\end{equation*}
$$

where T^{*} is the ambient temperature and ΔX_{I} is the length of the surface element exposed to the heat transfer coefficient, h_{I}. The user is required to input the six values of the heat transfer coefficients and ambient temperatures as defined in section 2.15. The specific input for heat transfer coefficients is described in section 3.9 .

2.4 TRANSIENT SOLUTION SCHEME

Letting the solution matrix, C^{*}, be defined as

$$
\begin{equation*}
\underline{C}^{*}=\underline{\underline{C}}+\underline{\underline{K}}+B I G_{i i}+\left(h \Delta X_{i}\right)_{i i} \tag{2.15}
\end{equation*}
$$

where the (*) indicates a formuation as appropriate for the solution phase, and equations (2.1) to (2.3) are to be resolved consistent with equations (2.6) to (2.13). This is accomplished as follows.

Define the temperature multiplying the conductivity matrix at the α-point in time, viz:

$$
\begin{equation*}
\underline{\underline{K}} \underline{T}=\underline{K}\left\{\alpha \underline{T}_{t}+\Delta t+(1-\alpha) \underline{T}_{t}\right\} \tag{2.16}
\end{equation*}
$$

Defining:

$$
\begin{equation*}
\Delta \underline{T}=\underline{T} t+\Delta t-\underline{T} t \tag{2.17}
\end{equation*}
$$

The conduction equation becomes

$$
\begin{equation*}
\underset{=}{C} \underline{T}+\alpha \underline{\underline{K}} \underline{\Delta T}=-\underline{\underline{K}} \underline{T}_{t}+\underline{B}, \tag{2.18}
\end{equation*}
$$

were the term on the right-hand side is known. Incorporating the solution matrix which includes the convective and the temperature boundary conditions leads to the expression

$$
\begin{equation*}
\underline{\underline{C}} \Delta \underline{T}=-\underline{\underline{K}} \underline{T}_{t}+\sum h_{j} \Delta X_{j} T_{j}^{*}+\sum \operatorname{BIG}\left(\Delta T^{B}\right)_{j} \tag{2.19}
\end{equation*}
$$

where the summations indicate assembly into the proper row, j, of the load vector. Note that the penalty function now is multiplied by the incremental temeprature, ΔT_{j}^{B}. It is convenient to define the load vector which includes the convection and temperature boundary conditions, and the previous time step conduction contribution, viz:

$$
\begin{equation*}
\underline{B}^{*}=-\underline{\underline{K} T_{t}^{*}+\sum_{j} h_{j} \Delta X_{j} T_{j}^{*}+\sum \operatorname{BIG}\left(\Delta T_{j}^{B}\right), ~\left({ }^{B}\right)} \tag{2.20}
\end{equation*}
$$

Thus Eq (2.19) can be written in the shorthand notation as

$$
\begin{equation*}
\underline{C}^{*} \Delta \underline{T}=\underline{B}^{*} \tag{2.21}
\end{equation*}
$$

At the end of each time step, the temperatures are updated via equation (2.17).
There are two solution modes that the transient algorithm can adopt. The first mode to be discussed is the one where the ambient temperatures and temperature boundary condition temperatures are constants, i.e., they are independent of time. In this case, \underline{B}^{*} is constant with time except for the $K \mathrm{~T}_{\mathrm{t}}$ term ${ }_{2}$ and this constant part is formulated (assembled) at the beginning of the solution phase of the program and never reformulated. This assembly is done only once but K Tt is subtracted at every time step. This solution mode is invoked by settiling ITRAN $=1$ on control card 1 .

The second mode to be discussed is the one wherein the ambient temperatures and temperature specifications change with time. In this instance, the solution matrix \underline{B}^{*} is completely reformulated every time step. If this solution mode is desired, it can be invoked by setting ITRAN $=-1$ on control card 1 . During this mode of operation, new values for heat transfer coefficient boundary temperatures and surface temperatures must be provided in the input file for each time step. The input necessary to run a transient problem is presented in section 3.12. No provision has been allowed for the heat transfer coefficients to change with time as this requires reformulation of the C^{*} matrix at each time step. This can consume considerable computer time so this solution technique becomes prohibitively expensive.

2.5 STEADY-STATE SOLUTION SCHEME

Setting ITRAN $=0$ on control card 1 will yield a steady-state solution. During this mode of operation, the transient solution scheme is applied for one time step, the previous time step nodal temperatures are all set equal to zero (0), and the integration parameter, α, is set to one (1) so that the incremental temperatures become the steady-state temperatures. The capacitance matrix C is effectively removed from the calculation by dividing through by 10^{30}, and the time step is set to one (1) so that the heat transfer output becomes a rate instead of a difference.

2.6 ACCURACY

Accuracy is a function of degree of the time discretization and the spatial discretization of the problem. For the fixed geometry, the spatial discretization is determined solely by the number of node points in the various regions. The user is encouraged to successively increase the number of node points until the quantities in which he is most interested (e.g., heat fluxes or temperatures) change between successive mesh refinements by much less than what the user considers an acceptable amount. This always involves playing off computer time and memory versus accuracy. The user should be aware that smaller mesh spaces result in a quadratic decrease in the stable time step if the time integrated parameter, $\alpha<1$. In general, the increase in accuracy in a region will vary between linearly and quadratically with the number of mesh points in that region.

Time integration errors are dependent upon both the time step and the time integration parameter. The time step should be reduced just as the mesh must
be refined, and the comments in the previous paragraph apply to this point also. The time integration parameter also influences the accuracy. At $\alpha=0$ and $\alpha=1$, the time integration scheme is accurate to order Δt. The accuracy gradually shifts from Δt to Δt^{2} as α is moved from either $\alpha=0$ or from $\alpha=1$ to $\alpha=1 / 2$. The scheme for $\alpha=1 / 2$ is generally referred to as the Crank-Nicholson scheme [2], and is recommended provided the time step is already small enough to be stable.

2.7 STABILITY

To avoid a geometric increase in the magnitude of the temperatures (and to conform to the second law of thermodynamics), the time step is limited to

$$
\begin{equation*}
\Delta t \leq \min \left\{\frac{\rho C}{(1-\alpha)} \frac{(\Delta X)^{2}}{k}\right\} \tag{2.22}
\end{equation*}
$$

where the "min" denotes the minimum value overall the grid points and thermal conductivities.

Actually, equation (2.22) only applies at the interior mesh points. At the external mesh points, the convective coefficients exert a debilitating influence on stability. However, the following blanket statement applies: there are no stability problems whatsoever at $\alpha=1$. So, if stability is critical, the user is encouraged to set $\alpha=1$ and to accept the slightly lessened time integration accuracy.

2.8 NUMERICAL LIMITATIONS

The calculations are being performed on a 32 -bit machine in the single precision mode. The structure of a floating point number limits the accuracy to about 7 decimal places and the limit of the magnitude is about 10^{75}. In some instances, 7 places of accuracy will be lost during the IMSL solution of the linear set of equations even though full pivoting is allowed. If this occurs, the IMSL routine will return a nonzero value of the IER parameter, and the program will automatically terminate after writing a brief explanation of the error condition into the output file FLANK.OUT. A more complete description of the problem can usually be found in the file IMSLS.OUT wherein the IMSL routine writes its own internally defined comments.

If this situation occurs, the user has two options: (1) decrease the number of node points and rerun the problem or (2) reload the program in double precision mode.

During the course of decomposing the solution matrix, the IMSL routine LUDATF computes the determinant to test for singularity (when the determinant $=0$). It is very likely that the determinant will exceed 10^{75} in value and generate an overflow of the exponent register (this does not affect the solution as this value is never used). When this happens, an interactive message is sent to the user at his CRT. It is likely that this is the place where the overflow occurs, but it might not be the only place. Consequently, the user is encouraged to check his answers very carefully whenever this happens.

It is also likely that an underflow will be generated during the decomposition and/or refinement phase of the IMSL solution. A message to this effect is displayed upon the user's CRT and may be ignored.

2.9 ORGANIZATION OF THE PROGRAM

The program is logically organized into 3 basic elements. These elements are capable of being overlayed, but were not as very little can be gained from this. The 3 elements are as follows:
(1) Main routine
(2) Input routine
(3) Solution routine

The main routine sets the storage for the common arrays, vectors and constants, and then controls the program flow by calling the input and solution routines sequentially.

The input routines consist of a variety of subroutines to read and echo all of the input parameters. The reader may consult the code listing for more specific information.

The solution routines perform a variety of functions, including the following basic ones:
(1) assembly of the solution matrix, C^{*}
(2) assembly of the load vector, B^{*}
(3) performance of the energy balances and tallies
(4) updating and printing the solution vector, $T(t+\Delta t)$
and
(5) solving the linear algebraic equations including:
(a) decomposition of the solution matrix, C^{*}
(b) back substitution to obtain $T(t+\Delta t)$
and
(c) refinemenet to obtain a more accurate $T(t+\Delta t)$.

For the finer details, the user is referred to the code listing.

2.10 RESTART CAPABILITIES

Occasionally, the user may wish to run the program in the transient mode for a short period of time, stop, examine the answers and start the program from where the last calculation stopped (restart). In order to facilitate this process, FLANK has the option to write a file of nodal temperatures upon termination (file name $=$ FTEMP.OUT). This file may later be renamed and read as the initial temperatures for the subsequent run (file name = FTEMP.INP). This capability eliminates the laborious manual editing necessary to feed these
temperatures into the input file so that the user need only change the starting and ending times (and some control parameters) in the input file. The specific input required to exercise this option is detailed in sections 3.1 and 3.12 .

2.11 DATA CHECK ONLY

One of the common errors encountered when using the computer occurs when the data are placed incorrectly in the input file. This is particularly critical when the input data control the memory location of subsequent input datums (e.g., supposing that a temperature boundary condition is to be supplied to node 5 in an $I 5$ format, suppose further that the input is not right-justified and that 50000 is read in lieu of 5 , the value of the boundary temperature read subsequently will then be stored in the location of the start of its array + 50000 and this will certainly exceed the length of the array with the result that something, either a storage value or even executable code, will get overwritten). To aid the user in debugging such errors, FLANK has the capability to read in and echo the input data, and to then stop so that the user may print out the output file and check it for such errors. This capability is invoked by setting IDATA $=1$ on control card 1 as is described in section 3.2.

2.12 COORDINATE SYSTEM AND GEOMETRY

The coordinate system for the problem is shown in figure 2.1 with $X_{1}=y$ and $X_{2}=z$. The origin exists as the bottom left-hand corner of the base of the CHB. The geometry is 2 -dimensional with a horizontal y-axis and a vertical z axis. All of the dimensions shown in the figure are adjustable and must be input by the user as described in sections 3.6 and 3.8 .

2.13 NODAL DATA

The associated nodes are shown in figure 2.2. Note that the total number of nodes must be specified in the first horizontal and the first vertical sections (NZPOLY and NY5, respectively) so that nodes are specified at the starting boundary line and the ending boundary line in these sections. In all other sections, one line of boundary nodes already exists, from the specification of the previous section. Stated another way, in the first horizontal section and first vertical section:

Entering N nodes $=\mathrm{N}-1$ grid spaces
In all other sections
Entering N nodes $=N$ grid spaces.
Input of this type is detailed in sections 3.5 and 3.7 .

2.14 MATERIAL REGIONS

The material regions are also shown in figure 2.1. Normally, the following materials will be specified by number:

Figure 2.1 Coordinate system showing the input dimensions required for FLANK and the various material regions

$$
A-10
$$

Figure 2.2 The node structure for the NBS calibrated hot box

Figure 2.3 The various node designations for each of the geometrical regions of the wall specimen and frame

$$
A-12
$$

Materials No.
1
2
3
4
5
6

Type

It is required to input values for the thermal conductivity, the density and the specific heat. Only the first five (5) materials may be input; the sixth is internally set. This is detailed in section 3.10.

2.15 HEAT TRANSFER COEFFICIENT REGIONS

The heat transfer coefficients are shown in figure 2.4 by region. Note that a counterclockwise sequencing has been adopted. Normally, the heat transfer coefficents for regions 2,5 , and 8 will be set to zero to represent an insulated (zero heat flow) condition. The heat transfer coefficient input data are described in section 3.9 .

2.16 HEAT FLOW LINES

There are 13 lines along which heat flows have been defined. These lines are shown in figure 2.5 where the heat flow has been defined as positive in the positive direction of the coordinate axis (except for convective heat transfer). The input to invoke the energy balance routines is described in section 3.2 and 3.4 .

2.17 ENERGY BALANCE REGIONS

There are 5 regions wherein steady-state energy balances may be performed. These are also shown in figure 2.5 as enumerated areas. The user is cautioned that specifying a temperature boundary condition on or in a region adds or subtracts energy, and that this is not explicitly accounted for in the energy balance routine resulting in a large net flow for that region (i.e., the energies seem not to balance for this reason).

2.18 MATERIAL SUBREGIONS

The subregions are the result of the grid application in that everywhere an area is bounded by coordinate lines, the grid inside the coordinate lines is regular. These regions are smaller than the material regions detailed in section 2.14, and, hence, have been termed subregions. The B, U, L, R and C specification has been adopted for bottom, upper, left, right, and center wherever possible. These subregions will ordinarily be transparent to the user, but have been included here for completeness.

Figure 2.4 Heat transfer coefficients and associated temperature designations

Figure 2.5 The heat flow lines and heat balance region designations

$$
A-15
$$

3. INPUT DATA STRUCTURE

The following sections detall the specific input required to run the program. The input is organized into the following sequential areas:
(1) Problem Heading - 1 Card
(2) Control Information - 1 Card
(3) Constant Data - \{(12 + NUMTBC) cards, steady-state; $(13+$ NUMTBC $)$ cards + initial temperature data (variable number of cards), transient
(4) Transient input required if the heat transfer coefficients and ambient temperatures change with time -2 (number of time steps) cards.

The control information is so termed because these data control both the number of data items read and the execution of the program. The input follows in the sequential fashion that is necessary for input into the program.

3.1 PROBLEM HEADING

Conditions - None
Number of Cards to be read - 1 .

Cols.	Format	Item(s)	Note(s)
$1-64$	$16 A 4$	Problem heading to appear on each page	1

Note(s): 1. The user may wish to include the time and date in the heading for each problem.

3.2 CONTROL DATA CARD

Conditions - None

Number of cards to be read - 1.

Cols.	Format	Item(s)	Note(s)
1-5	I5	NUMTBC - number of temperature boundary conditions, NUMTBC ≥ 0.	
$6-10$	I5	NUMIT - number of initial temperatures NUMIT $<0-$ uniform initial temperature $=$ TEMPD NUMIT $\geq 2-$ NUMNP Initial temperature read from file FTEMP.INP	1,2

Cols.	Format	Item(s)	Note(s)
11-15	I5	IDATA - data check only code IDATA $=0$ - normal execution IDATA $\neq 0$ - data check only	
16-20	I5	IPR - print interval, temperature output is printed every IPR time steps	
21-25	I5	IRFINE - refinement control parameter IRFINE $=0$ - no refinement is done IRFINE $\neq 0$ - refinement is done	3
26-30	I5	IDGT - IMSL accuracy test parameter IDGT $=0-$ no accuracy test is done IDGT > 0 - accuracy test is performed	4
31-35	I5	IEB - heat flow parameter $I E B=0$ heat flows or energy balances are not computed IEB $\neq 0$ energy balances and heat flows are computed	
36-40	I5	IQPR - energy tally print interval, energy tallies are printed every IQPR time steps.	
41-45	I5	ITRAN - transient solution code IRAN = 1 - transient problem, constant parameters ITRAN $=0$ steady state problem ITRAN = - 1 - tansient problem, variable parameters	5
46-50	I5	IPLT - plotting parameter IPLT $=0$ no plots done IPLT $=1$ plots done	

Note(s): 1. If ITRAN $=0$, no initial temperatures are read as the initial temperatures are automatically set equal to 0 .
2. If NUMIT ≤ 2, the file FTEMP.OUT which includes the nodal point temperatures is written. The name of this file can be changed to FTEMP.INP (provided any existing FTEMP.INP is first deleted) which can be read on a subsequent problem if NUMIT ≥ 2.
3. During refinement, the output vector obtained from back substitution is iterated upon with the original solution matrix (the decomposed
solution matrix is used to obtain the output vector by back substitution) to achieve greater accuracy. This endeavor is usually worthwhile as the cost is not great.
4. Upon decomposition, a check is made to determine if IDGT's of accuracy were retained in the decomposed mode. If IDGT's of accuracy were not retained, an error termination results. This is not a crucial test, as refinement tends to improve the answers apart from the decomposition mode. Therefore, IDGT $=0$ is recommended.
5. For ITRAN $=-1$, new values are required for all temperatures at the temperature boundary condition nodes and for all ambient temperatures in the enclosure. The capability does not presently exist to have variable heat transfer coefficients although this can be handled as a restart option (it is rather awkward, though).

3.3 DEBUG INFORMATION

Conditions - None

Number of cards to be read - 1 .

Cols.	Format	Item(s)	Note(s)
1-50	1015	IDBUG(10) - debug control array. If	1
		IDBUG(I) is different from zero, the following information is printed.	
		$I=1 \underline{K}$ and C^{*} matrices, \underline{B}^{*} vector	
		$I=2-$ decomposed C^{*} matrix	
		$I=3-$ nodal association data	
		I = 4 - element assembly matrices	
		$I=5-$ interior data written	
		$\begin{gathered} I=6-C^{*} \text { matrix written from equation } \\ \text { solver subroutine } \end{gathered}$	
		$\begin{aligned} & I=7-\underline{B}^{*} \text { vector written from equation } \\ & \text { solver subroutine } \end{aligned}$	
		$\mathrm{I}=8$ -	
		$I=9-$	
		$I=10-$	

Note(s): 1. Normally, all values should be set to zero (\varnothing), as this information was required during the debug phase which is presently complete.

3.4 HEAT BALANCE CHECKS

Conditions - IEB $\neq 0$

Number of cards to be read - 1 .

Cols.	Format	Item(s)
1-25	515	ICHECK(5) - energy balance control
		array. If ICHECK (I) $\neq 0$, the follow-
		ing steady-state energy balance checks are performed and printed, (see figure
		2.5 for these heat balance regions).
		$\mathrm{I}=1-\mathrm{region} 5-6-4 \mathrm{U}-4 \mathrm{~L}-1 \mathrm{~L}-2 \mathrm{~L}$
		$\mathrm{I}=2$ - region IC
		$\mathrm{I}=3-$ region $1 \mathrm{R}-2 \mathrm{R}-7 \mathrm{~L}-7 \mathrm{U}-8-9$
		$\mathrm{I}=4$ - region 2 C
		I = 5-region 3

3.5 HORIZONTAL NODE NUMBER SPECIFICATION

Conditions - None
Number of cards to be read -1 .

Cols.		Format		Item(s)
				Note(s)
$1-10$	E10.0		NY5	
$11-20$	E10.0		NY4	
$21-30$	E10.0		NY1L	3
$31-40$	E10.0		NYWALL	3
$41-50$	E10.0		NY1R	3
$51-60$	E10.0	NY7	3	
$61-70$	E10.0	NY8		3

Note(s): 1. See section 2.13 for definitions of the nodal specifications.
2. This number represents the (number of grid spaces - 1) in the region.
3. This number represents the number of grid spaces in the region.
3.6 HORIZONTAL COORDINATE SPECIFICATION

Conditions - None
Number of cards to be read - 1 .

Cols.	Format	Item(s)	Note(s)
1-10	E10.0	Y5 (m)	1
11-20	E10.0	Y4(m)	
21-30	E10.0	Y1L(m)	
31-40	E10.0	YWALL(m)	
41-50	E10.0	Y1R(m)	

Cols.	Format	Item(s)		Note (s)
(cont.)				
$51-60$	E10.0			
$61-70$	E10.0 (m)	Y8(m)		

Note(s): 1. The reader is referred to section 2.12 for definitions of these coordinates (see figure 2.1).
3.7 HOKIZONTAL NODE NUMBER SPECIFICATION

Condition - None
Number of cards to be read - 1 .

Cols.	Format	Item(s)	Note(s)
1-10	E10.0	NZPOLY	1,2
11-20	E10.0	NZFRP	3
21-30	ELO. 0	NZWALL	3

Note(s): 1. The reader is referred to section 2.12 for definitions of the node numbers.
2. This number represents the (number of grid spaces -1) in the region.
3. This number represents the number of grid spaces in the region.
3.8 VERTICAL COORDINATE SYSTEM

Conditions - None
Number of cards to be read - 1 .

Cols.	Format		Item(s)	Note(s)
$1-10$	E10.0		ZPOLY(m)	1
$11-20$	E10.0		2FRP(m)	
$21-30$	E10.0		ZWALL(m)	

Note(s): 1. The reader is referred to section 2.12 for definitions of the coordinates (see figure 2.1).
3.9 HEAT TRANSFER COEFFICIENT INPUT

Conditions - none
Number of cards to be read - 2 .

Cols.	Format	Item(s)	Note(s)
		(First Card)	
1-80	8E10.0	HTC(I), heat transfer coefficients, input sequentially by regions, $\mathrm{I}\left(\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{~K}^{-1}\right)$.	1
		(Second Card)	
1-80	8E10.0	TAMB(I), ambient temperatures, input sequentially by region, I (K).	1

Note(s): 1. The reader is referred to section 2.14 for definitions of the heat transfer coefficient regions (see figure 2.4).
3.10 MATERIAL INPUT

Conditions - none

Number of cards to be read - 3 .

Cols.	Format	Item(s)	Note (s)
		(First Card)	
1-50	5E10.0	RKAY(I), thermal conductivity, input by material region, $I\left(W \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}\right)$	1
		(Second Card)	
I-50	5E10.0	RHO(I), densities, input by material region, $\mathrm{I}\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right)$	1
		(Third Card)	
1-50	5E10.0	$\mathrm{CP}(\mathrm{I})$, specific heats, input by material region, $I\left(J \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}\right)$	1,2

Note(s): 1. The reader is referred to section 2.14 for definitions of material regions.
2. Note that the units must be input as Joules and not kilojoules.
3.11 TEMPERATURES BOUNDARY CONDITION INPUT

Conditions - NUMTBC $\neq 0$
Numbers of cards to be read - NUMTBC/5.

Cols.	Format	Item(s)	Note(s)
$1-75$	5(I5, El0.0)	(NODEST(I), TBC(I), I=1, NUMTBC) (the node number at which the temperature is applied, and the applied temperature (K))	$1,2,3$

Note(s): 1. Temperatures may be applied at any nodes whether they are on the boundary or not.
2. Node numbers vary sequentially along rows (by column) starting with 1 at the origin. The node numbers are incremented by one in all cases. The sequence varies by row through the entire base. The next sequence starts at the lower left-hand of the wall specimen and is incremented by one along the rows (again by column) through the wall.
3. An example of nodal numbering is given in chapter 4.

3.12 TIMING INPUT

Conditions - ITRAN $\neq 0$
Number of cards to be read - 1 .

Cols.	Format	Item(s)	Note(s)
1-10	E10.0	TIM ${ }^{\text {- }}$ initial time(s)	
11-20	E10.0	TIMF - final time(s)	
21-30	E10.0	DELTA - time step(s)	1
31-40	E10.0	ALFA - time integration parameter, $\emptyset<\mathrm{ALFA} \leq 1$	2

Note(s): 1. The number of time steps to be taken will be = (TIMF - TIM \varnothing)/DELTA.
2. The reader is referred to sections 2.6 and 2.7 for recommended values of ALFA.
3.13 INITIAL TEMPRATURE INPUT

Conditions - NUMIT $\neq 0$
Number of cards to be read - 1 or NUMNP/5.

Cols. Format		Item(s)	Note(s)
		(Case 1, NUMIT = -1)	
$1-10$	E10.0	TEMPD - uniform initial temperature $(K),(1$ card only read)	1,2

Cols.	Format	Item(s)	Note(
(cont.)			
		(Case 2, NUMIT = 1)	
1-75	$\begin{aligned} & 5(\mathrm{I} 5, \\ & \text { E10.0) } \end{aligned}$	(NODE, T(NODE), I = 1, NUMNP), node number and initial temperature of that node (K), (NUMNP/5 cards read)	2

Note(s): 1. Every node point temperature is initially set ot TEMPØ.
2. For reading initial temperatures from the disk file FTEMP.INP, NUMIT should be set to 2. For writing final temperatures into the disk file FTEMP. OUT, NUMIT should be set to -2. This file may be renamed to FTEMP.INP and subsequently read. (See sections 2.10 and 3.2.)
3.14 BASE PLOT DATA

Conditions - IPLT $=1$

Numbers of cards to be read - 2 .

Cols.	Format	Item(s)	Note(s)
		Card 1 - Plot Control	
1-5	I5	NUMCON - number of contour plots to be plotted $0 \leq$ NUMCON ≤ 5	1
6-10	I5	NUMHIS - number of time history plots to be plotted $0 \leq$ NUMHIS ≤ 5	1
11-15	I5	```IOPT - plot column option IOPT = 0 - narrow plots (80 columns) IOPT = 1 - wide plots (126 columns)```	2
16-20	I5	NOUT - plot output file specifier NOUT $=2$ - plots written to file IMSLS.OUT NOUT $=5$ - plots written to output file FLANK.OUT	3
21-25	I5	NSTEPC - time step interval for contour plots (5 time curves are accumulated before the plot is written, this is 5 * NSTEPC time steps)	4

Note(s): 1. A maximum of 5 curves is permitted.
2. The IOPT $=0$ plots are especially convenient for tracing on 8 1/2" x 11" paper.
3. Reading an NOUT different from 2 or 5 will result in an error termination.
4. The contour plots are written every 5 time stpes or at the end of the problem, whichever comes first.

Cols. Format	Item(s)	Note(s)	
Card 2 - Range Data	(10	E10.0	TMIN - the minimum temperature value for the vertical plot axis
$11-20$	E10.0	TMAX - the maximum temperature value for the vertical plot axis	2,2

Note(s): 1. All plotted values should be above TMIN.
2. It is a good idea to allow some leeway in picking the range for the plots as it is convenient to have some space between the plotted values and the axes.
3. All plotted values should be less than TMAX.

3.15 CONTOUR PLOT DATA

Conditions - NUMCON $\neq 0$
Number of cards to be read - $5 \times$ (NUMCON).
Contour plots are "snapshots" of the temperature profile along specified node points at an instant in time. Five curves of temperature versus node point number are plotted at 5 specified times (unless the last time step is taken, in which case the plots are done before termination), on any one curve. A maximum of 5 plots are allowed.

The following block of input items is required for each plot to be drawn. The blocks should be input sequentially, until NUMCON of them have been input.

Cols.	Format	Card No.	Item(s)	Note(s)
1-72	72A1	1	ITITC(I) - plot title	
1-36	36A1	2	ITITXC(I) - x-axis title	
1-36	36 Al	3	ITITYC(I) - y-axis title	
1-5	I5	4	NC(I) - number of nodes against which temperatures are to be plotted, $2 \leq \mathrm{NC}(\mathrm{I})$ < 20	1
1-80	16 I 5	5	NODESC(I), the node numbers of the temperatures to be plotted	2,3

Note(s): 1. A maximum of 20 nodes is permitted.
2. Actually, 2 cards may be required for this input in which case $6 \times$ NUMCON cards must be input.
3. The nodes may be input in any order, i.e., the nodes need not be adjacent.

3.16 TIME HISTORY PLOT INPUT DATA

Conditions - NUMHIS $\neq 0$

Number of cards to be read - $5 \times$ (NUMHIS)

Time history plots are plots of the node temperature versus time. The abcissa is fixed as a linear variation of time from the initial time to the final time. Up to 5 node numbers may be included on each plot. A maximum of 5 plots is allowed. Unlike the contour plots, only 5 plots are written to the plot file (the contour plots allow up to 5 plots to be written every 5 x (NSTEPC) time steps).

The following block of input items is required for each plot to be drawn. The blocks should be input sequentially until NUMHIS of them have been input.

Cols.	Format	Card No.	Item(s)	Note(s)
1-72	72A1	1	ITITH(I) - plot title	
1-36	36Al	2	ITITXH(I) - x-axis title	
1-36	36A1	3	ITITYH(I) - y-axis title	
1-5	I5	4	MH(I) - number of node points to be included on this plot $1 \leq M H(I) \leq 5$	1
1-80	16 I 5	5	NODESH(I) - the node numbers of the temperature to be plotted	2,3,4,5

```
te(s): 1. A maximum of 5 nodes is allowed.
```

2. The nodes may be input in any order.
3. Only 1 plot for each block of nodes is allowed for the entire time interval.
4. The number of stored values is internaly limited to 80 , maximum. If the total number of time steps divided by 80 is not an integer number, less data are stored (e.g., for 100 time steps, 50 data points are stored).
5. The starting time temperatures and the ending time temperatures are automatically included in the plots.
3.17 TRANSIENT DATA INPUT

Conditions - ITRAN $=-1$
2 sets of data to be read for each time step.

Cols.	Format	Item(s)	Note (8)
		First Data Set - NUMTBC/8 cards to be read	
1-80	8E10.0	(TBC(I), $I=1$, NUMTBC) - temperature boundary condition temperatures, input sequentially (K).	1,2
		Second Data Set - 1 card	
1-80	8E10.0	(TAMBP(I), $I=1,8$) - ambient temperatures at the end of the time step (K).	2,3

Note(s): 1. The nodes at which the boundary temperatures were set (NODEST(I)) remain unchanged.
2. Complete sets of these data must be input at each time step, regardless of whether or not the values change.
3. The heat transfer coefficients (HTC(I)) remain unchanged (at their initially input values).

4. RUNNING THE PROGRAM

4.1 INTERACTIVE EXECUTION

A Command Substitution System (CSS) file, FLANK.CSS, is available to run the program interactively on the Perkin-Elmer 3230. The file loads the executable task code, FLANK.TSK, into memory, allocates disk space for output files, assigns local unit numbers, and prints the timing log at the user's terminal screen at the end of execution. Interactive execution is accomplished by typing

FLANK
followed by a (carriage) return.
The following files must be available for the program to read from:
(1) FLANK.INP - the input file as described in chapter 3.
(2) FTEMP.INP - the file of initial temperatures in a 5 E14. \emptyset format (this file may contain only 1 blank line if no reads are required, i.e., NUMIT $\neq 2$.

The following output files are generated:
(1) FLANK.OUT - the output file with the echo of the input data, the temperature states, the energy balance information, and the debug information.
(2) FTEMP.OUT - the output file of the final temperatures written in a 5E14.6 format.
(3) IMSLS.OUT - the output file containing any IMSL debug information.

Should difficulty be encountered in running the computer code, the user should locate and inspect the files FLANK.CSS, FLANK.INP, FTEMP.INP, and FLANK.TSK. Usually, the problem will be that one of these files is missing, or the data are input incorrectly in FLANK.INP. If problems are still encountered, the user should try a data check only (see section 3.2).

4.2 ERROR TERMINATION

The program internally checks for a variety of input errors. If any input errors are detected that are of such a nature as to prohibit the execution of the program, an error termination is invoked. Then, a descriptive message is printed in the file FLANK.OUT, together with a line denoting:

[^2]One of the most common mistakes is easy to decipher. This mistake occurs when the user has input more node points than the allowed storage locations. The following message is then printed:

```
"NO. OF NODE POINTS = " N1
"EXCEEDS DIMED VALUE = " N2
"STOP"
```

where N 1 is the number of node points that the user has specified, N 2 is the maximum number allowable, and DIMED is an abbreviation for "dimensioned". Should this occur, the user has only 2 choices: (1) reduce N1 to be $\leq \mathrm{N} 2$, or (2) edit the FORTRAN source code FLANK. FTN to increase N2 (NNODES in FlANK.FTN) and reload the program using the LINK33.CSS routine on disk.

4.3 USEFUL UTILITY ROUTINES

Some useful system utility routines that exist on the NBS Perkin-Elmer 3230 computer will be described in this section. All lines must be input exactly as shown, followed by a carriage return. All lines contain parameters that will also be described. Optional parameters will be included in parenthesis. The parameter PR: is the system definition for the line printer, and when included, will automatically send the output to the line printer. The utility routines are enumerated, and the purpose of each routine is given.
4.3.1 The Rename Routine

Command Line: REN fnl.exl,fn2.ex2
Parameters: fnl.exl - file name fnl with extension . exl
fn2.ex2 - file name fn2 with extension. ex2 (fn2.ex2 must not exist on disk).

Purpose: REN renames a file. This may be useful when a file is to be printed (e.g., FLANK.OUT) for when a file is in the print queue, it cannot be deleted or rewritten. Also, the file of output temperatures may be renamed to be the input temperatures for a subsequent run.

Examples: REN FTEMP.OUT, FTEMP.INP
REN FLANK.OUT, Fl.OUT

4.3.2 The Delete Routine

Command Line: DE fnl.exl
Parameters: fnl.exl - the file fnl.exl is deleted from disk
Examples: DE FTEMP.INP
4.3.3 The Print Routine
Command Line: PRINTfnl.exl
Usage: PRINTF1.0UT
4.3.4 The Compile Routine FORT7C
Command Line: FORT7C fn1, (PR:), (XREF), 10, (lib.exl)
Parameters: fnl - the file of FORTRAN source code fnl.FTN (note the extensionis not given on the command line, and it must be FTN) is compiled,file fnl.OBJ (the object code) is generated and written to disk.
PR: - the compiler listing is sent to the printer
XREF - the cross reference map is sent to the printer
lib.exl - the library file lib with extension, exl=. LIB, is loaded
also. (For compiling FLANK.FTN, this space should be left blank.)
Examples: FORT7C FLANK, , 10
FORT7C FLANK, , XREF, 10 ,
4.3.5 The Compile/Library Load Routine FORT7CR
Command Line: FORT7CR fn1, (PR:), 10
Parameters: fn1 - the FORTRAN source code file fn1.FTN is complieted
PR: - the compiler listing is sent to the printer.
Purpose: The object code (compiler output)
fnl.OBJ is generated from the compiler. If this routine exists inthe library FLANK.LIB, it is deleted. The routine fnl.OBJ is thenwritten into the object code library FLANK.LIB. This object codelibrary is loaded together with FLANK.OBJ, the IMSLS library, andthe system FORTRAN library by the utility routine LINK33.CSS.
Example: FORT7CR EQSOL2, , 10
FORT7CR EQSOL2, PR:,10
4.3.6 The Linker LINK33.CSS
Command Line: LINK33 FLANK, (PR:), FLANK.LIB

Parameters: FLANK - the main routine object code file FLANK.OBJ is loaded PR: - a cross reference map of the load is sent to the printer FLANK.LIB - the object code files of all of the subroutines are loaded from the object code library FLANK.LIB.

Purpose: This routine loads all of the object code, together with the IMSLS library and the system FORTRAN library to generate the executable task code FLANK.CSS.

Usage: LINK33 FLANK, , FLANK.LIB
LINK33 FLANK,PR:, FLANK.LIB
4.3.7 The DELELIB Utility Routine

Command Line: DELELIB fnl, fn2.LIB
Parameters: fnl - the object code file fnl.OBJ is deleted from the object library fn2.LIB fn2 - the object code library fn2.LIB

Usage: DELELIB FLANK, FLANK.LIB - this removes the routine FLANK.OBJ from FLANK.LIB. Note that this file should not be in the library as it gets loaded together with the library at link time via LINK33.

4.4 CRT MESSAGES

When executing the program, various error messages and other messages wili appear on the CRT terminal. If an error does occur, the user must then cancel the job using the command

CA

The following examples are listed, together with an explanation.
4.4.1 Input Data Incorrect

If the input data are not in the correct format or if data are missing, the following sequence is likely to be seen on the screen.

* FLANK - program initiation step
- IN SOLVE2 - AT BEGINNING
- IN SOLVE2 - CALLING ASEMB2
- IN SOLVE2 - ASEMB2 DONE, CALLING FORMB
- NON-EXISTENT SEGMENT ERROR (PST) AT B4C80
- MEMORY FAULT ADDRESS = FFFD30

TASK PAUSED
*

This error message resulted because the number of temperature boundary conditions NUMTBC was 3 but only two temperatures were actually supplied to the input file. The only corrective action necessary is to edit FLANK.INP and change NUMTBC to 2 or else supply a third node specification and temperature for a boundary point.

4.4.2 Underflow Errors

Often with specified temperature boundary conditions, the message

- FLOATING POINT - UNDERFLOW ERROR AT D70D2
- NEXT INSTRUCTION AT D70D8
will occur. The D70D2 are the hexadecimal memory locations for the particular subroutine in which the underflow occurred. These errors can be ignored on the P-E since penalty functions are being used and division by a very large number occurs. The PE simply sets the result to zero.

4.4.3 Overflow Error

The determinant of the \underline{C} or K matrix will often be greater than 10^{76} if a large number of nodes is used. The typical value of a diagonal element is about 2 so that if there are 246 nodes, $2246=10^{74}$. This determinant value is computed but never used so the error may be ignored. The CRT screen will display the following message

ERR 517 (OC 94A6):
RXXR: EXPONENTIAL OVERFLOW
IN SOLVE 2 - DONE DECOMPOSITION, BEGIN TIME LOOP
This message can be ignored.

4.4.4 Program Operating Messages

When the program is initiated, the progress through the code is indicated on the screen. The following sequence will occur on the CRT indicating the program is progressing in a satisfactory manner.

* FLANK
- IN SOLVE 2 - AT BEGINNING
- IN SOLVE 2 - CALLING ASEMB2
- IN SOLVE 2 - ASEMB2 DONE, CALLING FORM B
- IN SOLVE 2 - DONE FORM B, CALLING APPTBC
- DONE APPTBC, CALLING ESQSOL2(0)
- FLOATING POINT - UNDERFLOW ERROR AT D70D2
- NEXT INSTRUCTION AT D70D8

This indicates that EQSOL2 is being executed which begins the matrix decomposition. The underflows in this section can be disregarded.
4.4.5 Time Step Indication

After the matrix has been decomposed and the temperature distributions at the various nodes are golng to be calculated, the message

- begin time step no. 4 at time 0.27000e + 04
occurs.

5. EXAMPLE PROBLEMS

The sample problems that follow are provided so that the user can see the input data as well as the output. In both cases, the input file is displayed but the complete output is displayed only for the static case since the output for the dynamic problem consists of about 200 computer pages. The output is obtained by typing PRINT FLANK.OUT on the PE. The output file - name is FLANK.OUT.

5.1 A STATIC PROBLEM

The input for this is shown as indicated on page $A-90$. Note that in the second line of FLANK.INP, the next to the last element is 0 (which sets ITRAN to 0). The output indicates that the net metering chamber energy is -114.7186 watts. The minus sign indicates that heat is flowing into the chamber which is reasonable since the MC temperature is $38^{\circ} \mathrm{C}$ whereas the EC temperature is $65^{\circ} \mathrm{C}$. The heat transferred through the $1-\mathrm{D}$ wall is 110.7266 watts. The two different frame coefficients are 2.62 percent and 3.48 percent.

5.2 A DYNAMIC PROBLEM

The input for the dynamic problem is also shown on page $A-100$. Notice that NUMIT.is - 1 indicating that a uniform initial temperature distribution given by TEMP \emptyset is used. Line 16 provides this initial temperature $\left(25^{\circ} \mathrm{C}\right)$. IPR is set equal to 4 so that the temperatures are printed out every 4 th time step or in this case each hour. IQPR is the energy tally printout which is provided every two hours in this example since the time step is 15 minutes. After 24 hours, the frame coefficients were 0.48 percent and 0.95 percent.

6. REFERENCES

1. Lavine, A.G., Rucker, J.L., and Wilkes, K.E., "Flanking Loss Calibration for a Calibrated Hot Box," Owens-Corning Fiberglass, Technical Center, Granville, Ohio, (1981 or 1982).
2. Nakamura, S., "Computational Methods in Engineering and Science," Published by John Wiley \& Sons, 1977, p. 143.

7. CODE LISTING

A listing of the code is provided so that definitions of various terms etc., may be obtained directly from the FORTRAN statements if desired. The code consists of a main section which controls the sequence of steps through the code which is determined by the input data.

The line numbers, right arrows and the message "! RANGE 2 NOT FOUND" are output from the editor and may be ignored.

```
    C FLANK. FTN
    C FLANKING LOSS CALCULATION FOR CALIBRATED HOT BOX
    C IMPLICIT TIME INTEGRATION SCHEME,ALFA IS GREATER THAN ZERO
        AND LESS THAN OR EQUAL TO ONE
    C LINEAR NODAL EQUATIONS,ALL COEFFICIENTS ARE CONSTANT
    C CODED BY ONEGA AND BURNS ON 7/6/82
    C
    C MATERIAL PROPERTIES:
        MATERIAL NUMBER
        MATERIAL TIPE
        POLYORETHANE FOAM
        FRP
        NEOPRENE RUBER GASKET
        INFLATABLE RUBBER GASKET
        HALL MATERIAL
        NOLL MATERIAL
        COMMON /HEADG/ HEAD(16),TIMEM,DATEM
        COMMON/CONTRL/NOMNP, NOMIT, NUMNPL, NUMTBC, IPR, IDATA, TEMPO
        COMMON /NUMZ/ NZPOLY,NZFRP,NZWALL
        COMMON /NUMY/ NY5,NY4,NY1L,NYWALL,NY 1R,NY7,NY8
        COMMON /GRIDBY/ NTY4,NTY 1L,NTYWAL,NTY 1R, NTY7, NCOL
        COMMON /GRIDBZ/ NTZFRP,NTZWAL
        COMMON /ZCOOR/ ZPOLY,ZFRP,ZWALL
        COMMON /YCOOR/ Y5,Y4,Y1L,YWALL,Y1R,Y7,Y8
        COMMON /MATS/ RKAY(6),RHO(6),CP(6)
        COMMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
        COMMON /TEMPBC/ NODEST(100),TBC(100)
        COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
        COMMON /DBUG/ IDBUG(10)
        COMMON /HEAT/ Q(21),IEB,IQPR,ICHECK(5)
        COMMON /FIXT/ ITRAN
        COMMON /PLOTS/ IPLT.NUMCON, NUMHIS,IOPT,NOUT, RANGE (4),NSTEPH,
                ICHAR(10),NSTEPC
            COMMON /PCONT/ ITITC (5,72),\operatorname{ITITXC}(5,36),\operatorname{ITITYC}(5,36),NC(5),
                NODESC}(5,20
            COMMON /PHIST/ ITITH(5,72),ITITXH(5,36),ITITYH(5,36),MH(5),
                NODESH(5,5), N, XMIN, XMAX
C
        DIMENSION C(246,246),A(246,246),OL(246,246)
        DIMENSION B(246),T(246),DT(246),EQUIL(246),IPVT(246),
        - DX(246),RES(246), BTEMP(246)
C
    MNODES=246
c
c
C
    IF (IDATA.NE.0) CALL ADIOS (1)
C
C SOLUTION PHASE
C
        CALL SOLVE2 (C,A,UL,B,BTEMP,T.DT, EQUIL,IPVT.DX,RES,NNODES,
        - IDGT)
C
C HRITE TEMPERATURE FILE
C
    IF (NUMIT.LE.-2) WRITE (3,1001) (T (J).J=1, MUMNP)
C
    CALL ADIOS (1)
C
    1001 FORMAT (5E14.6)
C
    END
```

```
C
```



```
C
        SOBROUTINE ADIOS (N)
C
```



```
C* SUBROOTINE TO PERFORM EIIT FONCTIOUS FOR PROGRAM
```



```
c
        CALL READER1
        IF (N.NE. 2) GO TO 100
        URITE (6,3000)
        GO TO 200
    100 WRITE (6,3001)
    200 CONTINUE
C
        STOP
C
3000 FORMAT (///20X, "-m ERROR TERMIN& TI ON-m*//)
3001 FORMAT (///20X,"-- NORMAL TERMINATIOK---*
        / //l)
C
                END
    C
        SUBROOTIINE GEADER1
C
```



```
C* SUBROUTINE TO PERFORM PAGING AND WRITE HEADER
```



```
C
        COHMON /GEADG/ READ(16),TIMEM,DATEM
        DATA STAR/4HCECE/
    C
        URITE (6,2000) (STAR,I=1,20)
        URITE (6,2001) (HEAD(I),I=1,16)
        URITE (6,2002) (STAR,I=1,20)
C
        RETURN
C
2000 FORMAT (1H1//20A4/)
2001 FORMAT (16A4)
2002 FORMAT (/20A4//)
C
    END
```

 C

c
SUBROUTINE INPUT2 (C,A,UL,B,T,DT, EQUIL,IPVT,DX,RES,N,IDGT)
C

C* SUBROUTINE TO PREFORM DATA INPUT, INITIALIZATION AND ECHO

C
COMMON/CONTRL/NUMNP, NUMIT, NUMNPL, NUMTBC, IPR, IDATA, TEMPO
COMMON /HEADG/ HEAD (16),TIMEM,DATEM
COMMON /NUMZ/ NZPOLY, NZFRP, NZWALL
COMMON /NUMY/ NY5, NY4, NY 1L, NYWALL, NY 1R, NY7, NY8
COMMON /GRIDBY/ NTY4, NTY 1L, NTYWAL, NTY 1R, NTY7, NCOL
COMMON /GRIDBZ/ NTZFRP,NTZWAL
COMMON /ZCOOR/ ZPOLY,ZFRP, ZWALL
COMMON /YCOOR/ Y5,Y4, Y1L, YWALL, Y1R, Y7, Y8
COMMON /MATS/ RKAY(6),RHO(6),CP(6)
COMMON /HTCOEF/ HTC (8), TAMB(8), TAMBP (8)
COMMON /TEMPBC/ NODEST(100),TBC(100)
COMMON /TIM/ TIMO,TIMF,DELTA, ALFA, IRFINE
COMMON /DBUG/ IDBUG(10)
COMMON /HEAT/ Q (21),IEB,IQPR,ICHECK (5)
COMMON /FIXT/ ITRAN
COMMON /PLOTS/ IPLT, NUMCON, NUMHIS, IOPT, NOUT, RANGE (4), NSTEPH,
ICHAR (10), NSTEPC
C
DIMENSION C $(\mathrm{N}, \mathrm{N}), \mathrm{A}(\mathrm{N}, \mathrm{N}), \mathrm{UL}(\mathrm{N}, \mathrm{N})$
DIMENSION B(N),T(N),DT(N),EQUIL(N),IPVT(N),DX(N),RES(N)
C
C
C
c
c
$\operatorname{READ}(5,1000)(\operatorname{HEAD}(\mathrm{I}), \mathrm{I}=1,16)$
CALL GEOM2 (IDGT)
CALL GRIDBY
CALL GRIDBZ
CALL COEF
DO $10 \mathrm{~K}=1,8$
$10 \operatorname{TAMBP}(K)=\operatorname{TAMB}(K)$
C
c
CALL MAT
IF (NUMTBC. NE. O) CALL TEMPB
c
C TRANSIENT INPOT
C
DELTA=1.
ALFA $=1$.
TIMO $=0$.
TIMF=DELTA
IF (ITRAN. NE. 0) CALL TIMES
C
IF (NUMIT. NE. O) CALL INIT (T,N,ITRAN)
C
IF (IPLT. NE. O) CALL PLOTIN (ITRAN)
C
IF (NUMNP. GT. N) GO TO 100
CALL HEADER 1
WRITE $(6,2000)$
RETURN
100 WRITE $(6,3000)$ NUMNP, N
CALL ADIOS (2)
C
1000 FORMAT (16A4)
2000 FORMAT (//20X,"-- INPUT PHASE COMPLETE ---"//)
3000 FORMAT (////20X, "NO. OF NODES POINTS = = , I10//
- / 20X, "EXCEEDS DIMED VALUE =", I10//

C
END


```
C
SOBROUTINE GEOMZ (IDGT)
C
```



```
C* SNBROUTINE TO INPUT GRID
```



```
C
        COHMON/CONTRL/NUMNP, NUMIT, NUMNPL, NUNTBC, I PR, IDATA, TEPPO
        COMHON /NUMR/ NZPOLI,NZFRP,NZYALL
    COHMON /NUMY/ NY5,NY4,NI1L,NMNALL,NI1R,NY7,NY8
    COMMON /GRIDBY/ MTY4,NTY IL,NTYMAL,MTY 1R,MTY7,NCOL
    CONPMON /GRIDBZ/ NTZFRP,NTZYAL
    COHMON /ZCOOR/ 2POLI,2FRP.2WALL
    COHMON /ICOOR/ I5,I4,I1L, TWALL,IIR,I7,I8
    COHMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
    COMMON /DBUG/ IDBUG(10)
    COHMON /HEAT/ Q(21),IEB,IQPR,ICHECR (5)
    COHPON /FIXI/ ITRAN
    COHMON /PLOTS/ IPLT,NUMCON,NOMHIS,IOPT, NOUT, RAMGE(4),MSTEPH,
    ICHAR(10),NSTEPC
C
    READ (5,1000) NUHIBC,NUMIT,IDATA,IPR,IRFIME,IDGT, IEB,IQPR,
    ITRAN,IPLT
        READ (5,1000) (IDBUG(I),Ix1,10)
        IF (IEB.NE.0) READ (5.1000) (ICHECK (I),I#1,5)
        READ (5,1000) MY5, NY4, NY1L, MYYALL,NY 1R, NY7, MY8
        READ(5,1001) Y5,I4,I1L, TWALL, I1R,I7, I8
        READ(5,1000) NZPOLI,NZFRP,NZWALL
        READ(5,1001) ZPOLY,2FAP,ZWALL
C
    CALL HEADER1
    URITE (6,2000) NUHTBC, NOHIT,IDATA, IPR, IRFINE, IDCT, IEB, IQPR,
    - ITRAN,IPLT
        URITE (6,3000) (IDBUG(I),I=1,10)
        IP (IEB.NE.0) WRITE (6,3001) (ICHECK(I),I=1,5)
        CALL HEADER1
        HRITE (6,4000)
        HRITE (6, 2001) NY5,MY4, NI 1L, MMHALL, MI 1R, NY7, MY8
        URITE (6, 2002) I5,I4,Y1L, KNALL,IIR,I7,I8
        URITE (6,2003) EZPOLY,MZPRP, MZWALL
        URITE (6, 2004) 2POLY, 2PRP, 2WALL
C
    1000 PORMAT (16I5)
    1001 PORMAT (8E10.0)
2000 FORMAT (//
    * / 20x, "CONTROL DATA`//
    | 20x,"NUFTBC =*.I5/
    -/ 20X, WUMIT =",I5/
    - 20X,"IDATA =.I5/
    | 20x,"IPR =*,I5/
    / 20X,"IRPINE =",I5/
    | 20X,"IDGT E",I5/
    / 20X,"IEB =#,I5/
    -/ 20x, IQPR =",I5/
    / 20X, ITRAN =",I5/
    | 20X, IPLT =*,I5///)
3000 FORMAT (//
    / 20X, DDEBUG PARAMETERS*//
    / 15X, 1 (HRITE A,C MATRICES, B VECTOR) =*,I5/
    / 15X,* 2 (URITE DECOMPOSED C MATRIX ) =",I5/
    | 15X,* 3 (URITE NODAL ASSOC. ) =",I5/
    | 15X, # (URITE ELEMENT MATRICES ) g#,I5/
    * 15X, 5 (HRITE INTERIOR DATA ) ",I5/
    / 15X, 6 (HRITE C BEFORE DECOHP. ) EN.I5/
    | / 15X, 7 (URITE B VECTOR ) =*,I5/
    | 15z, 8( ) =0.I5/
    - 15X,=9( ) =#,I5/
    - 15X, 10( ) =#,I5//)
3001 PORMAT (//20X, DE EERGY BALAAMCESN*/
    / 15X,*ICHECK(1) E",I5/
    / 15Z, "ICHECK(2) =`,I5/
    | 15X,"ICHECZ(3) =",I5/
    / 15x, ICHECX(4) =",I5/
    / 15X, #ICHECK(5) =*,I5
4000 FORMAT (//20X, 'G RI D S PECIFICCATI ON*//)
2001 PORMAT (//20X, EY NUNBERS POLLON"
    */ 20又,"NY5
    2#,15!
    / 20x,"MY4
    E*,15/
    - 20X,"NY1L
    ! 20又,"NY1L ( 20又, NHYALL =",15/
    | 20X,MIY1R =`.I5/
    / 20x, "MY7 =",I5l
    | / 20X, "MY8 =",I5//)
2002 PORMAT (/20X, "Y'S POLLOW"/
    - / 20x, Y5
    =*,E11.4/
    / 20x,My
    / 20又,M1L (1)
    - 20x,myMall
    =m,E11.4/
    / 20Z, Y1L
    =",E11.4/
    #",811.4/
    - / 20x, IIR
    =*,B11.4/
    - 20x,=17 ==,E11.4/
    - / 20x,7%8 E=, E11.4//)
2003 PORMAT (/20X,"Z NOHBERS FOLLOW*/
    - 20X, NZPOLY
    #"15/
    | / 20X, "N2FRP
    *",151
    - / 20x,*N2HALL
    =#,15/1)
2004 PORMAT (/20x,"Z'S POLLOW"/
        :/ 20x,=2POLY
        * / 200,"2FRP
        - 20x,=2HALL
        =n,811.4\prime
        z=, E11.4/
        ##, 811.4/\
c
```



```
C
    SUBROUTINE GRIDBY
C
```



```
C* SUBROUTINE TO SPECIFY ALL THE Y BOURDARY NODE NUMBERS
```



```
C
    COMMON /NUMZ/ NZPOLY,NZFRP,NZWALL
    COMMON /NUMY/ NY5,NY4,NY1L,NYWALL,NY1R,NY7,NY8
    COMMON /GRIDBY/ NTY4,NTY1L,NTYWAL,NTY1R,NTY7,NCOL
    COMMON /GRIDBZ/ NTZFRP,NTZWAL
    COMMON /ZCOOR/ ZPOLY,ZFRP,ZWALL
    COMMON /YCOOR/ Y5,Y4,Y IL,YWALL,Y1R,Y7,Y8
C
    NTY4}=NY5+NY
    NTY 1L=NTY4+NY1L
    NTYWAL =NTY 1L+NYWALL
    MTY 1R=NTYWAL+NY 1R
    NTY 7 =NTY 1R+NY7
    NCOL=NTY7+NY8
C
C
    END
```



```
C
C
```



```
C* SUBROUTINE TO SPECIFY BOUNDARY NODES IN THE Z DIRECTION
```



```
C
    COMMON/CONTRL/NUMNP, NUMIT, NUMNPL, NUMTBC, IPR, IDATA, TEMPO
    COMMON /NUMZ/ NZPOLY,NZFRP,NZWALL
    COMMON /NUMY/ NY5,NY4,NY1L,NYWALL,NY1R,NY7,NY8
    COMMON /GRIDBY/ NTY4,NTY 1L, NTYWAL,NTY 1R,NTY7,NCOL
    COMMON /GRIDBZ/ NTZFRP,NTZWAL
    COMMON /ZCOOR/ ZPOLY,ZFRP,ZWALL
    COMMON /YCOOR/ Y5,Y4,Y1L,YWALL,Y1R,Y7,Y8
C
    NTZFRP=NZPOLY+NZFRP
    NTZWAL=NTZFRP+NZWALL
        NUMNP=NCOL NTZFRP+(NYWALL+1)*NZWALL
        NUMNPL=NTZFRP复NCOL
C
    CALL HEADER1
        WRITE (6,2000)
        WRITE (6, 2001) NTY4,NTY 1L,NTYWAL,NTI1R,NTY7,NCOL
        WRITE (6,2002) NTZFRP,NTZWAL
        WRITE (6,2003) NUMNP, NUMNPL
C
        RETURN
C
    2000 FORMAT
    / / 25X, "C UNOLATIVE NODE NUNBERS"//)
    2001 FORMAT (/20X,"Y - DIRECTION NODE NUMBERS"/
    / 20X, "NTY4 =",I5/
    / 20X,"NTY1L =",I5/
    * 20X,"NTYWAL =",I5/
    / 20X,"NTY1R =",I5/
    / 20X,"NTY7 =",I5/
    / 20X,"NCOL =",I5)
    2002 FORMAT (/20X,"Z - DIRECTION NODE NUMBERS"/
    * / 20X,"NTZFRP =",I5/
    / 20X, NTZWAL =`,I5/)
    2003 FORMAT (/20X, "TOTAL NUMBER OF NODES (EQUATIONS) =`,I10/
    * / 20X, "LOWER NUMBER OF NODE POINTS =`,I10///)
C
        END
```



```
C
        SUBROUTINE INIT (T,N,ITRAN)
C
```



```
C* SUBROUTINE TO READ IN AND ECHO INITIAL TEMPERATURES 
```



```
C
C
C
        IF (ITRAN.EQ. O) GO TO 50
        IF (NUMIT.GT.0) GO TO }20
        READ (5,1001) TEMPO
C
C CORRECT FOR STEADY CALCS.
    50 IF (ITRAN. EQ. O) TEMPO=0.
C
        DO }100\textrm{I}=1,
    100 T(I)=TEMPO
C
        CALL HEADER1
        WRITE (6, 2000) TEMPO
C
        RETURN
C
    200 CONTINUE
        IF (NUMIT.GE.2) GO TO 300
        READ (5,1003) (NODE,T(NODE), I= 1, NUMNP)
        GO TO 400
    300 READ (1,1002) (T(I),I I 1, MUMNP)
C
    400 CALL HEADER1
        WRITE (6,2000)
        HRITE (6,2001) (T (NODE),NODE=1,NUMNP)
C
        RETURN
C
    1001 FORMAT (8E10.0)
    1002 FORMAT (5E14.0)
    1003 FORMAT (5(I5,E10.0))
    2000 FORMAT (///20X, IN NTIAL TEMPERATURES*//
        / 15X,"INITIAL TEMPERATURE E*,E14.5)
    2001 FORMAT (8(E10.0,4X))
C
        END
```



```
C
        SUBROOTINE MAT
C
```



```
C* SUBROOTINE TO INPUT AND ECHO MATERIAL PROPERTIES
```



```
C
        COMMON /MATS/ RKAY(6),RHO(6),CP(6)
C
        READ (5,1001) (RKAY(I),I=1,5)
        READ (5,1001) (RHO(I),I=1,5)
        READ (5,1001) (CP(I),I=1,5)
        RKAY (6)=0.
        RHO(6)=0.
        CP(6)=0.
C
        CALL BEADER1
        YRITE (6,2000)
        DO 100 J=1,6
    100 URITE (6,2001) J, RKAY(J), RHO(J),CP(J)
C
        DO 200 J=1.5
    200 RHO(J)=RHO(J)`CP(J)
C
        RETURN
C
    1001 FORMAT (8E10.0)
    2000 FORMAT ( //25X, *M A T E RI AL P R O P ERTIE S*
    */// 17X,"I*,10X, "RKAY",13X, "RHO",14X, "CP*//)
    2001 PORMAT (15X,I5,3(5X,E11.4))
C
```

 END
 A-41


```
C
    SUBROUTINE TEMPB
C
```



```
C* SUBROUTINE TO READ TEMPERATURE BCS
```



```
C
    COMMON/CONTRL/NUMNP, NUMIT, NUMNPL, NUMTBC, IPR, IDATA, TEMPO
    COMMON /TEMPBC/ NODEST(100),TBC(100)
C
    READ (5,1003) (NODEST(I),TBC(I), I= 1,NUMTBC)
c
    CALL HEADER1
    URITE (6,2000) NUMTBC
    WRITE (6,2001) (NODEST(I),TBC(I),I=1,NUMTBC)
C
    RETURN
C
    1003 PORMAT (5(I5, E10.0))
    2000 FORMAT (1H1
        */ 25X,"T EMPERATORE BOONDARY COND"
        * / 40X,"NUMBER OF TEMPERATURE BCS =`,I5//)
    2001 PORMAT (5(3X,I5, 2X,E10.3))
c
        END
```

 c

c
SUBROUTINE TIKES
C

C SUBROUTINE TO INPUT AND ECHO TIMING INFORMATION

c
C
c
READ $(5,1001)$ TIMO,TIMF,DELTA, ALFA
CALL HEADER 1
WRITE $(6,2000)$
WRITE $(6,2001)$ TIMO,TIMF,DELTA, ALFA
C
RETURN
c
1001 FORMAT (8E10.0)
2000 PORMAT (//25x,"T I MI H G PARAME TERS"//)
2001 FORMAT (/20X, "TIMES, ETC."
" / 20X, "TIMO
- / 20X, ${ }^{\text {nTIMO }}$
- / 20x,"DELTA
- / 20x, "ALPA
= ", E11.4/
= = , E11.4/
C
COMMON /TIM/ TIMO, TIMF,DELTA, ALPA, IRFINE
END

```
C
```



```
C
    SOBROUTINE SOLVE2 ( }O,A,UL,B,BTEMP,T,DT, EQUIL,IPYT,DX,RES, M,
c
CB&*)
```



```
C
    COMQON/CONTRL/NUMNP, MUMIT, NUMRPL, NUMTBC, IPR, IDATA, TENPO
    COMMON /HEADG/ HEAD(16),TIMEM,DATEM
    COHMON /NUMZ/ NZPOLY,NZFRP,NZWALL
    COMMON /NUMY/ MY5, NI , NI 1L, WYWALL, MI 1R, WI 7, WY8
    COHEYON /GRIDBY/ NTY4,NTY 1L,NTYWAL, MTI 1R,NTI7,NCOL
    COHPMON /GRIDBZ/ WTZFRP,NTZWAL
    COMMON /ZCOOR/ ZPOLY, ZFRP,ZWALL
    COMMON /YCOOR/ Y5,Y4, Y1L,YWALL,Y1R,Y7,Y8
    COHMON /MATS/ RXAY(6),RHO(6),CP(6)
    COHOMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
    COMMON /TEMPBC/ NODEST(100),TBC(100)
    COHPYON /TIM/ TIMO,TIMP,DELTA,ALFA,IRFINE
    COMMON /DBUG/ IDBUG(10)
    COMMON /HEAT/ Q(21),IE8,IQPR,ICHECX(5)
    COMMON /PIET/ ITRAN
    COHYON /PLOTS/ IPLT,NUMCON,NUYHIS,IOPT,NOUT, RANGE(4),NSTEPH,
                ICHAR(10),NSTEPC
    COMON /PCONT/ ITITC(5,72),ITITXC(5,36),ITITYC(5,36),MC(5),
                        NODESC}(5,20
    COMHON /PHIST/ ITITH(5,72),ITITXH(5,36),ITITYH(5,36),HH(5),
    M HODESH(5,5),NH, DIN, DHI
C
    DIMENSION C(H,N),A(N,N),OL(N,H)
    DIMENSION B(N),BTEMP(N),T(N),DT(N),EQOIL(N),IPVI(N),DX(N),
    - RES(N)
C
    DATA BIG /1.E30/
    URITE (7,7000)
7000 FORMAT(" IN SOLVE2 - AT BEGINEING")
C
C
        ASSEMBLE & AND C MATRICES ARD THE B VECTOR
    DO 100 J=1,N
    BTEMP(J)=0.0
    B(J)=0.
    DT(J)=0.
    DO 100 I =1,N
    C(I,J)=0.
    100 A(I,J)=0.
    URITE (7,7001)
7001 FORMAT (" IN SOLVE2 - CALLIMG ASEMB2")
    CALL ASEMB2 (C,A,N)
    URITE (7.7002)
7002 FORMAT ("IN SOLVE2 - ASEMB2 DONE, CALLIHG FORMB")
    CALL FORMB ( O,B,BTEMP,N)
C
C
    CDIV =1.
    IF (ITRAN.EQ.0) CDIV =1.E30
    DO 200 Je1,NUMNP
    DO 200 I=1,NUMNP
    200C(I,J)=C(I,J)/CDIV + A(I,J)
C
C
        ADD TEMP bCS FOR STEADY STATE PROBLEm
    IF (NUMTBC.EQ. O) GO TO 220
    DO 210 I= 1, NUMTBC
    JeNODEST(I)
    210 C(J,J)=BIG
    URITE (7,7003)
7003 PORMAT ("IN SOLVE2 - DONE PORMB, CALLING APPTBC")
    IF (ITRAN.EQ.0) CALL APPTBC (NUMTBC,ITRAN,BIG,B,T,W)
c
C
        URITE OUT DBOG MATRICES
    IF (IDBUG(1).EQ.0) OO TO 260
    WRITE (6,3000)
    DO 251 I=1,NOMNP
    URITE (6,4001) I
251 URITE (6,4000) (A(I,J), J=1, WU1NIP)
    WRITE (6,3001)
    DO 255 I=1,NUMNP
    WRITE (6,4001) I
255 URITE (6,4000) (C(I,J),J }1\mathrm{ 1, NUMNP)
    URITE (6,3002)
    WRITE (6,4000) (B(J),J=1,NUMNP)
    IF (IDBUG(1).LT.0) CALL ADIOS (1)
260 CONTINUE
C
```

```
        HRITE (7,7004)
7004 FORMAT (" IN SOLVE2 - DONE APTBC, CALLING EQSOL2(0)*)
    CALL EQSOL2 ( O,C,A,OL,B,T,DT,EQUIL,IPVT,DX,RES,N,IDGT,
    - TIME)
C
    IF (IDBUG(2).LT.0) CALL ADIOS (1)
C
C WRITE INITIAL STATE INTO PLOT FILE
    IF (IPLT. EQ.O) GO TO 270
    IF (NUMCON.NE.O) CALL PLOTC (O,TINE,T,N)
    IF (NUMHIS. NE.0) CALL PLOTH (O,TIME,T,N)
C
ICOUNT - COUNTER FOR PRINTING
    YOUNT - COUNTER FOR ENERGY BALANCE WRITES
    KOUNTC - COUNTER FOR CONTOUR PLOTS
    KOUNTH - COUNTER FOR IINE GISTORY PLOTS
270 ISTEP =0
    ICOUNT=0
    KOUNT=0
    KOUNTC=0
    KOUNTH=0
    TIME=TIMO
C
C
    PRINT INITIAL TEMPERATURES
    CALL PRINT2 (TIME,T,N,NOMNP)
C
    TIME STEP BEGINS
    WRITE (7,7005)
7005 FORMAT (" IN SOLVE2 - DONE DECOMPOSITION , BEGIN TIME LOOP*)
300 ISTEP=ISTEP }+
    WRITE (7,7006) ISTEP,TIME
7006 FORMAT(" BEGIN TIME STEP NO. ",I5," AT TIME ",E12.5)
    ICOUNT=ICOUNT+1
    KOUNT=ROUNT+1
    ALTIM=TIME+ALFA}\mp@subsup{|}{}{DELTA
    TIME=TIME+DELTA
C
C
    FORM RHS - B VECTOR
    IF (ITRAN.GE, 0) GO TO }35
    READ (5,1001) (TBC(I),I=1,NUMTBC)
    READ (5,1001) (TAMBP(I),I=1,8)
350 IF (ITRAN.NE, 0) CALL FORMB (ITRAN, B, BTEMP,N)
    IF (ITRAN, NE, 0) CALL LODE2 (B,T,A,N,ALFA)
    IF (ITRAN.NE.O) CALL APPTBC (NUMTBC,ITRAN,BIG,B,T,N)
C
    SOLUTION PHASE
    CALL EQSOL2 (1,C,A,OL,B,T,DT,EQUIL,IPVT,DX,RES,N,IDGT,
    * TIME)
C
    UPDATE TEMPERATURES
    CALL UPDATE (T,DT,N)
C
C
    IF (ICOUNT.LT.IPR) GO TO 400
    CALL PRINT2 (TIME,T,N, NUMNP)
    ICOUNT=0
C
400 IF (IEB.EQ.0) GO TO 500
    CALL QSEMB2 (T,N)
    CALL QSOLV2 (ISTEP,KOUNT,T,N,TIME)
C
500 IF (IPLT.EQ. O) GO TO }60
c
C
    CONTOURS
    IF (ZODNTC.LT.NSTEPC) GO TO 550
    IF (NOMCON.NE.O) CALL PLOTC (O,TIME,T,N)
    \OUHTC=0
C
550 IF (ZOUNTH. LT. ESTEPH) GO TO 600
    IF (NUMHIS.NE.O) CALL PLOTH (O,TIME,T,N)
    LOUNTH=O
C
    TEST FOR END OF TIME LOOP
        A-44
```


600 IF (TIME.LT.TINF) 00 TO 300

```
c FINAL PLOTS
    IF (MUMCON. NE.0) CALL PLOTC (1,TIME,T,N)
    IF (NUMHIS.NE.0) CALL PLOTH (O,TDE,T,N)
    IF (NUMHS.NE.0) CALL PLOTH (1,TINB,T,N)
c
    RETURN
1001 format (8E10.0)
3000 PORMAT (////
    - / 15x, "a matrix pollows"//)
3001 pORMAT (////)
    / 15x,"C mathix follows"//)
3002 PORMIT (/I//)
    - / 15X, "B vector folLOHS=//)
4000 PORMAT (10(1X,E11.4))
4001 FORMAT (// 25X,"RON NOHBER -"I5//)
c
    END
```

```
C
```



```
C
SUBROUTINB ACONV (N,M,DY, DZ, NM, AO,A1,A2,A3,A4,CO)
C
```



```
C` SUBROUTINE TO DETERMINE A(IJ) FOR CONVECTION BOUNDARY
C
C
            COHMON /MATS/ RKAY(6), RHO(6),CP(6)
            COMMON /HTCOEF/ HTC(8),TAMB(8),TANBP(8)
            COMMON /IIM/ TIMO,TIMF,DELTA,ALPA,IRFINE
C
            CO=(RHO(HM)悉DYDZ / (2. DELTA))
            A01=HTC(M)量DY
            A1=-RRAY(MM)
            42=A1
            A3=-RKAY(MM)DDY/DZ
            A4=A3
C
            GO TO (1,2,3,4),N
            1 A3=A2
            A2=A4
            44=A1
            A1=0.
            GO TO 10
C
            2 A1=A3
            A3=A2
            A 4=A3
            42=0.
            GO TO 10
C
    3 A3=0.
            GO TO 10
C
    4 4=0.
    10A0=-(A1+A2+A3+A4)+A01
C
            RETURN
C
            END
```



```
C
    SUBROUTINE AIC1 (MA,MB,MC,MD,DX1,DI2,DI3,DI4,
    * AO,A1,A2,A3,A4,CO)
C
```



```
C
SUBROUTINE TO CALCULATE A(I,J) FOR INTERIOR CORNERS
```



```
C
    COHAON /MATS/ RKAY(6),RHO(6),CP(6)
    COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRPINE
C
```



```
    - RHO(MD).DY3`DY2) / (4. ©DELTA)
    AO=(RKAY(MA)"(DX2/DX4+DX4/DX2) + RKAY(MB)=(DI1/DI4+DI4/DI1) +
    - RKAY(HC)(DI3/DI 1+DX1/DY3) + RKAY(MD)(DY2/DY3+DI3/DI2))
    - / 2.
        A1=-(RKAY(MB)DDI4/DII + RXAY(MC)DDI3/DI1) / 2.
        A2=-(RRAY(MD)'DI3/DY2 + RKAY(MA)DDY4/DI2) / 2.
        A3=-(RRAY(MC)DDY1/DI3 + RRAY(MD)DDY2/DY3) / 2.
        A4=-(RKAY(MA)DI2/DI4 + RKAY(MB)DDI1/DI4) / 2.
C
    RETURN
C
    END
```

```
c
C
c
        SOBROOTIME AIC2 (N1,M2,MH1,MH2,MA,MB,MC,MD,
                DI1,D\2,DI3,DI4, A0, 11,A2,A3,A4,C0)
C
```



```
C* SUBROUTINE TO CALCULATE A(IJ) FOR REENTRANT CORNERS
```



```
c
    COMMON /MATS/ RKAY(6), RHO(6),CP(6)
    COMPON /ETCOEP/ HTC(8), TAMB(8),TAMBP(8)
    COHEON /TIM/ TIMO,TINF,DELTA,ALFA,IRFINE
C
```



```
            8HO(ND)'DI3`DI2) / (4.ODELTA)
        DDI1=DI1
    DDI2=DI4
    IF (M1.EO.2) DDI1=DI2
    10=0.5* BTC(MH1)"DDI1
    401=0.5*HTC(MH2)
    A1=-(RIAY(MB )PDIH/DY1 + RKAY(NC)DDI3/DY1) / 2.
    A2=-(RKAY(ND)ODI3/DI2 + RKAY(MA)PDIH/DI2) / 2.
    A3=-(RKAY(MC)'DI1/DI3 + RIAY(MD)PDI2/DI3) / 2.
    A4z=(RKAY(MA)DDI2/DIA + RKAY(MB)PDII/DI4) / 2.
C
c
c
    *
    ETD
C
```



```
c
    SHBROOTINE AIC3 (M,MH,MA,MB,DI,DYA,DIB,AO,A1,A2,A3,A4,CO)
C
```



```
C* SUBROUTINE TO COMPUTE A(IJ)FOR CORNER HODE WITH CONTECTION
Co ON ONE SIDE
```



```
C
    COHYOL /MATS/ RKAY(6), RHO(6),CP(6)
    COHYON /BTCOEF/ GTC(8),TAMB(8),TAMBP(8)
    COHMOY/TIM/ IIMO,TIMF,DELTA, LLFA, IRFIME
C
    CO=(RHO(MA)'DMA + RHO(NB)CDXB)'DY/(4. DELTA )
    101xHTC(MH)}0.\mp@subsup{5}{}{\circ}(DXA+DXB
    A1=-(BKAY(MA)DDIA + RKAY(NB)PDPB) / (2.ODI)
    12=A1
    A3z-RKAY(MA)PDY/(2.CDIA)
    AH=-RKAI(NB)CDE/(2.0DEB)
    GO TO (1, 2,3,4),M
    141=0.
        GO TO 10
c
    2 12=43
        13=14
        A4=12
        12=0.
        60 }701
C
    341=14
        A4=12
        12=13
        13=0.
C
            0070 10
    4 11=13
        43=12
        12=14
        44=0.
c
    10 A0=-(A1+A2+A3+A4)+101
c
        RETORM
C
    EID
```

```
C
```



```
C
        SNBROOTINE AICA (M1, W2, WH1,MH2,M,DX1,DX2,
        - 10,11,12,13,14,CO)
    C
    C* SOBROUTINE TO CALCOLATE A(I,J) FOR EXTERIOR CORMER
    C* WITH HEAT TRANSFER ON TWO SIDES 
```



```
C
        COMNON /MATS/ RXAY(6), RHO (6),CP(6)
        COHMON /GTCOEF/ BTC(8),TAMB(B),TAMBP(8)
        COHMON /TIM/ TIMO,TIMP,DELTA,ALPA,IRFIGE
    C
        CO=RHO(M)*DY1*DI2/(4. DELTA)
        A1=-RKAI(M)"DY2/(2."DX1)
        42=A1
        A3=-RKAY (M)*DI1 / (2.DDY2)
        \Delta4=A3
        40=0.5*DX2*HTC(MH1)
        A01=0.5*DX1*日TC (NH2)
        IF (N1.NE.1) GO TO 2
        IF (N2.NE.3) GO TO 1
    C
        41=0.
        43=0.
        GO TO 10
    C
        1 41=0.
            A4=0.
            GO TO 10
C
        2 IF (M2.NE.3) GO TO 3
            12=0.
            43=0.
            GO TO 10
    C
        3 42=0.
            A4=0.
        10 AO=AO+A01-(A1+A2+A 3+A4)
            RETORN
C
            EMD
C
```



```
C
    SUBROOTIIE AINF (MM,MA,MB,DY,DYA,DTB, AO, 11, A2, A3,A4,CO)
C
```



```
C SUBROUTINE TO CALCULATE A(IJ) IT THE INTERPACES
```



```
C
    COMMON /MATS/ RXAY(6),RHO(6),CP(6)
    CONMON /TIM/ IIMO,TIMF,DELTA,ALFA,IRFINE
C
    CO=(RHO(MA)DDXA + RHO(MB)DDEB)CDI / (2.DDELTA)
    A1=-(RKAY(MA)}D\DA/(2.*DY) + RKAY(MB)*DIB/(2.*DI))
    12=11
    43=-RKAY(MB)*DY/DIB
    AA=-RKAY(MA)*DY/DIA
    \Delta0=-(A1+\Delta2+\Delta3+\Delta4)
C
    IF (HM, BQ.1) RETURN
    41=A4
    44=12
    12=13
    43=14
c
    RETURN
C
    END
```



```
c
    SOBROOTIME AIMT (DY,D2,M,10,A1,12,13,A4,CO)
c
```



```
C* ROOTINE TO CALCULATE A(IJ) FOR GENERAL IMTERIOR MODE *
C**&")
C
C
C
CONAON /TIM/ TIMO,TINF,
    CO=(RHO(M)*DY*DZ/DELTA)
    AI=-RTAY(M)*DZ/DY
    12=11
    A3=-RRAY(H)*DY/DZ
    A4=13
C
    IF (IDBOG(5).EQ.O) RETORN
    YRITE (6,3000) M, RKAY(M),C0,10,11,12,13,14
c
C
    3000 PORMAT (5X, "M,X,CO,A(5) =`,I5,7(2X,E12.5))
    EMD
c
```



```
c
c
```



```
C* SUBROUTINE TO PERPORM ALGEBRAIC ASSEABLY OF THE & MATRII
```



```
C
C
    COMAON /DBUG/ IDBUG(10)
            DIMENSION MN(5),AN(5)
            DIMEMSION A(N,H)
C
    DO 100 K=1.5
    100 A(MNN(1),NN(K))=A(MN(1),MN(K))+AR(K)
C
            IF (IDBOG(4).EQ.0) RETURN
            YRITE (6,3000) (NN(L),L=1,5),(AN(L),L=1,5)
C
C
3000 FORMAT (5X, IN AMATRX - MN(5),AM(5) =",2X,515,5(2X,812.5))
c
            END
C
```



```
C
            SOBROUTINE APPTBC (NOMTBC,ITRAN,BIG,B,T,NK)
C
```



```
C* SOBROUITNE TO APPLY TEMPERATURE BCS VIA PENALTY FUNCTION
```



```
c
CONSON /TEMPBC/ HODEST(100),TBC(100)
c
DIMEHSION B(MN),T(NH)
```



```
c
    DO 100 I=1, WOHTBC
        J=MODEST(I)
    100 B(J)=BIG*(TBC(I)-T(J))
C
    RETORN
c
    END
```

C
C
C
C
SUBROUTINE EQSOL2 ($K, C, A, U L, B, T, D T, B Q U I L, I P V T, D X, R E S, N, I D G T$,
- THE)
C

C
SUBROUTINE TO PERFORM MATRIX CALCULATIONS

C
COMMON /CONTRL/ NOMNP, NOMIT, NOMNPL,NOMTBC,IPR,IDATA, TEMPO
COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
COMMON /DBUG/ IDBUG(10)
C
DIMENSION C $(\mathrm{N}, \mathrm{N}), \mathrm{A}(\mathrm{N}, \mathrm{N}), \mathrm{UL}(\mathrm{N}, \mathrm{N})$
DIMENSION $B(N), T(N), \operatorname{DT}(N), \operatorname{BQUIL}(N), I P V T(N), D Y(N), \operatorname{RES}(N)$
C
C
C
100 CONTINOE
$I_{A}=\mathrm{N}$
NN= NUHNP
IF (IDBUG (6). EQ, O) GO TO 120
WRITE $(6,3500)$
DO $110 I=1$, NOMAS
WRITE $(6,3501)$ I
110 WRITE $(6,3502)$ (C ($I, J), J=1$, NUMNP)
IF (IDBUG (6). LT. O) CALL ADIOS (1)
120 CONTINUE
CALL LUDATF (C, UL, NN, IA, IDGT,D1,D2,IPVT, BQUIL, WA, IER)
D=D1•2. ${ }^{\text {© }}$ D2
CALL HEADER 1
URITE $(6,2000)$ D, WA,NN, IA, IER
IF (IER.EQ.0) GO TO 150
WRITE $(6,3000)$ IRR
IF (IER. GE. 128) CALL ADIOS (2)
150 IF (IDBUG (2).EQ. O) RETURN
CALL HEADER1
WRITE $(6,4000)$
C
DO $170 I=1$, NOMNS
WRITE $(6,3501)$ I
170 WRITE $(6,3502)(C(I, J), J=1$, NOMNP $)$
IF (IDBUG(2).LT.0) CALL ADIOS (1)
C
C
C
200 CONTINOE
CALL LUELNF (UL, B, IPVT,NN, IA,DT)
C
C
C
C
C
C
C
C
C
CALL LUREFF (C, B, UL, IPVT, NN, IA, DT, IDGT, RES, DX, IER)
IF (IER.EQ. O) RETURN
WRITE $(6,3001)$ IER
CALL ADIOS (2)
C
2000 PORMAT (//
- /15X, "EQUATION DATA"//
- 15I, DETERMINANT $=$, E14.7/
- 15X, waccuracy test parameter $==, E 14.7 /$
- 15x, minurber or bQuations $=$ =I10/
- 15X, "ROW SIZE IN CALLING ROUTINE ='I10/
- / 15X, "ERROR PARAMETER (129-SIN.,34-ACC.) $\pm, I 10 / / /)$
3000 FORMAT (//
* / $15 X^{\prime \prime}$ "- ERROR FROM EQUATIOM SOLVER --"/
- / 20X, DECOMPOSITION PHASE"/
- 20x, "IER En, I10//)
3001 FORMAT (//
- / 15X, "- ERROR FROM EQUATION SOLVER - - "/
- / 20X, "REFINEMENT PHASE*/
- 20X, "IER $={ }^{-}, I 10 / /$)
3500 FORMAT (//
- 15X, "IN EQSOL2 - C MATRIX BEPORE DECOMPOSITION POLLOWS"//
- ${ }^{15}$

3502 FORMAT ($10(2 x$, E11.4))

- $/ 15 \mathrm{X}$, "DECOMPOSED CAPACITANCE MATRIX POLLOWS" ///)
5000 FORMAT (//
- /25X, m- IN EQSOL2 - $2 T$ TIME $=\oplus$, B1れ.7//
- / 30x, "R ES VECTOR"//)
A-50
END


```
c
        SUBROUTINE GETNOD (I,J,N)
C
```



```
C* SUBROUTINE TO MAP FROM I,J TO HODE NUMBER N(5)
```



```
C
        COMMON/CONTRL/NUMNP, NUMIT, NUMNPL, NUHTBC, IPR. IDATA, TEMPO
        COMMON /NUNZ/ NZPOLY,NZFRP,NZWALL
        COMMON /NOMY/ NY5,NY4,NY1L,MYYALL,NY 1R,NY7,NY8
        COMMON /GRIDBY/ NTY4,NTY 1L,NTYWAL,NTY 1R,NTY 7,NCOL
        COMMON /GRIDBZ/ NTZFRP,NTZWAL
        COMMON /ZCOOR/ ZPOLY,ZFRP,ZWALL
        COMMON /YCOOR/ Y5, Y4,Y1L, TNALL,YIR,Y7,Y8
        COMMON /DBOG/ IDBUG(10)
        DIMENSIOR N(5)
C
        IF (I.GT.NTZFRP+1) GO TO 300
        IF (I.GE.NTZFRP) GO TO 200
C
C LONER REGION
C
        N(1)=(I-1)*NCOL+J
        N(2)=N(1)-1
        N(3) =N(1)+1
        H(4)=N(1)-NCOL
        N(5)=N(1)+NCOL
        N(2)=MAXO(N(2),1)
        N(4)=MAXO(N(4),1)
        N(3)=MINO(N(3),NUMNPL)
        N(5)=MINO(N(5),NUMNPL)
C
        GO TO 400
c
C MIDDLE REGION
    200 IF (I.GT.NTZPRP) GO TO 250
C
c ON TOP OF BASE
        N(1)=(I-1)*NCOL +J
        N(2)=N(1)-1
        N(3) =N(1)+1
        N(4)=N(1)-NCOL
        N(5)=NUMNPL + (J-NTY IL +i)
        N(5)=MINO(N(5),NUMNP)
        GO TO 400
    C
c IN OPPER WALL
c
    250 N(1)=NUMNPL+(J-ATY 1L +1)
    N(2)=N(1)-1
    N(3)=N(1)+1
    N(4)=NOMNPL-(NCOL-J)
    H(5)=N(1)+(NTYWAL-NTY 1L+1)
    GO TO 400
C
C OPPER REGION
300 N(1)=NUMNPL+(I-NTZPRP-1)*(NTYNAL-NTY 1L +1) +(J-NTTY 1L +1)
    N(2)=N(1)-1
    N(3)=N(1)+1
    N(4)=N(1)-(NTMWAL-NTTI 1L+1)
    N(5)=N(1)+(NTYWAL-NTY 1L+1)
    N(3)=MINO(N(3), NUMNP)
    H(5)=MINO(H(5), NUMAP)
C
    400 IF (IDBUG(3).EQ.0) RETURN
    URITE (6,3000) I, J,N(1),N(2),N(3),N(4),N(5)
C
    3000 FORMAT (15X,"IN GETHOD - I,J,H(5) =",8I5)
C
    END

```

C
SUBROUTINE PRINT2 (TIME,T,N,NUMNP)
C

```

```

C SUBROUTINE TO PRINT TEMPERATURE STATES

```

```

c
DIMENSION T(N),L(5),O(5)
C
N5=NOMNP/5
NLEFT =NOMNP-5*N5
ND05=N5
IF (NLEFT.NE.0) NDO5=N5+NLEFT-4
NSTART=NDO5+1
NSTOP=NSTART+4-NLEFT
C
CALL HEADER1
WRITE (6,2000) TIME
C
DO 200 I=1,NDO5
DO }100\textrm{J}=1,
L(J)=(J-1)NNSTOP+I
100U(J)=T(L(J))
200 WRITE(6,2001)L(1),O(1),L(2),O(2),L(3),O(3),L(4),U(4),L(5),O(5)
C
IF (NLEFT.EQ.0) RETURN
C
DO 300 I=NSTART,NSTOP
DO 350 J=1,4
L(J)=(J-1)*NSTOP+I
350 U(J)=T(L(J))
300 WRITE(6,2001)L(1),U(1),L(2),U(2),L(3),O(3),L(4),O(4)
C
2000 FORMAT (///
* / 15x,"T EMPERATURE STATEN/
/ 15X,n AT TIME = ',E12.5/////)
2001 FORMAT (5(2X,I5,3X,E15.7))
C
RETURN
C
END

```


```

C

```
C
    SUBROUTINE LODE2 (B,T,A,N,ALFA)
    SUBROUTINE LODE2 (B,T,A,N,ALFA)
C
```

C

```


```

C* SUBROUTINE TO FORN RBS DURING TRANSIENT RON

```
```

C* SUBROUTINE TO FORN RBS DURING TRANSIENT RON

```


```

C

```
C
    DIMENSION B(N),T(N),A(N,N)
    DIMENSION B(N),T(N),A(N,N)
C
C
    DO 200 I=1,N
    DO 200 I=1,N
    SUM=0.
    SUM=0.
    DO 100 J=1,N
    DO 100 J=1,N
    100 SUM=SUM +A(I,J)T(J)
    100 SUM=SUM +A(I,J)T(J)
    200 B(I)=B(I)-SUM
    200 B(I)=B(I)-SUM
C
C
    RETORN
    RETORN
-C
-C
    END
```

 END
    ```
```

C

```

```

C
SOBROUTINE UPDATE (T,DT,N)
C

```

```

C* SUBROUTINE TO DPDATE TEMPERATURES

```

```

C
C
C
DIHENSION T(N),DT(N)
DO }100I=1,
100 T(I) =T(I)+DT(I)
C
200 TAMB(I)=TANBP(I)
C
C
RETURN
END
C

```

```

C
SUBROUTINE WPT (}1,C,M,I,J,10, 11,A2, А3, 14,CO)
C

```

```

C. SUBROUTINE TO WRITE A POINT TO THE A MATRIX

```

```

C
C
DIMENSION KN(5),AN(5)
DIMEHSION A(N,H),C(N,N)
C
AN(1)=AO
AN(2)=A1
AN(3)=12
AN(4)=A3
AN(5)=A4
C
CALL GETNOD (I,J.NN)
CALL AMATRX (A,N,NN,AN)
C(\operatorname{RN}(1),\operatorname{INN}(1))=C(\operatorname{RN}(1),\operatorname{NN}(1))+CO
C
C
RETORN
END

```

SUBROUTINE MMT1 ( \(A, C, H, I\), HC1, NC2 \(, A 0, A 1,12, A 3, A 4, C 0)\)

DINENSION \(1 \mathrm{~N}(5)\), RN(5)
DINENSION \(\triangle(N, N), C(N, H)\)
\(\Delta N(1)=10\)
\(\Delta N(2)=A 1\)
\(A H(3)=A 2\)
\(\Delta x(4)=13\)
\(A(5)=14\)
DO \(100 \mathrm{JENC1}\), NC2
CALL OETNOD (I,J.MR)
CALL AMATRI ( \(1, \mathrm{M}, \mathrm{NN}, \mathrm{AL}\) )
\(C(\operatorname{NN}(1), \mathrm{FN}(1))=C(\mathrm{MH}(1), \mathrm{MH}(1))+\mathrm{CO}\)
100 CONTINDE
netugn
ERD
```

C

```

```

c
SUBROUTINE WMAT2 (A,C,N,NR1,NR2,J,AO,A1,A2,A3,A4,
- CO)
C

```

```

C* SUBROUTINE TO LOGICALLX ASSEMBLE A ROW OF THE A MATRIX *

```

```

C
C
DIMENSION AN(5),NN(5)
DIMENSION A(N,N),C(N,N)
C
AN(1)=AO
AN(2)=A1
AN(3)=A2
AN(4)=A3
AN(5)=A4
C
DO }100\mathrm{ I=NR1,NR2
CALL GETNOD (I,J,NN)
CALL AMATRX (A,N,NN,AN)
C(NN(1),NN(1))=C(NN(1),NN(1))+CO
100 CONTINUE
C
C
RETURN
END
C

```

```

C
SOBROUTINE WRTMAT (A,C,N,NR1,NR2,NC1,NC2,AO,A1,A2,
|
A3,A4,C0)
C

```

```

C* SUBROUTINE TO WRITE ROWS AND COLUMNS OF GEOMETRY TO
C* THE A MATRIX

```

```

C
C
DIMENSION NN(5),AN(5)
DIMENSION A(N,N),C(N,N)
C
AN(1)=AO
AN(2)=A1
AN(3)=A2
AN(4)=A3
AN(5)=A4
C
DO 100 I=NR1,NR2
DO 100 J=NC1,NC2
CALL GETNOD (I,J,NN)
CALL AMATRX (A,N,NN,AN)
100 CONTINUE
C
RETURN
C
END

```
```

\$BATCH
C

```

```

C
SUBROUTINE ASEMB2 (C,A,NN)
C

```

```

C* SUBROUTINE TO FORM ELEMENTS OF THE A MATRIX

```

```

C
COMMON /NOMZ/ NZPOLY,NZFRP,NZHALL
COHMON /NUMY/ NY5,NY4,NY1L,NYWALL,NY1R, NY7,NY8
COMMON /GRIDBY/ NTY 4,NTY IL,NTYWAL, NTY 1R, NTY7,NCOL
COMMON /GRIDBZ/ NTZFRP,NTZWAL
COMMON /ZCOOR/ ZPOLY,ZFRP,ZWALL
COMMON /YCOOR/ Y5,Y4,YIL,YWALL,Y1R,Y7,Y8
COMMON /DBDG/ IDBDG(10)
C
DIMENSION A(NN,NN),C(NN,NH)
C
C 1. INTERIOR NODE POINTS
C
C
- REGION }5
C
DY=Y5/PLOAT(NY5-1)
DZ=ZPOLY/FLOAT(NZPOLY-1)
NC1=2
NC2=NY5-1
NR1=2
NR2=NZPOLY-1
CALL AINT (DY,D2,1,A0,A1,A2,A3,A4,CO)
CALL WRTMAT (}A,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO
C
C - REGION 4L
C
DY=(Y4-Y5)/FLOAT(NY4)
DZ=ZPOLY/(NZPOLY-1)
NC1=NY5+1
NC2=NTY4-1
CALL AINT (DY,DZ,3,A0,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NH,NR1,NR2,NC1,NC2,A0,A1,A2,A3,A4,CO)
C
C - REGION 40
C
DZ=(2FRP-ZPOLY)/NZFRP
NR1=NZPOLY+1
NR2=NTZFRP-1
CALL AINT (DY,DZ,3,AO,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO)
C
C - REGION IL
C
DY=(Y1L-Y4)/FLOAT(NY1L)
DZ=ZPOLY/PLOAT(NZPOLY-1)
NR2=NZPOLY-1
NC1=NTY4+1
NC2=NTY 1L-1
NR1=2
CALL AINT (DY,DZ,1,A0,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,10,A1,12,A3,14,CO)
C
C - REGION IC
C

```
```

DY=(YWALL-Y1L)/FLOAT(NYWALL)
DZ=2POLY/FLOAT(NZPOLY-1)
NC1=NTY 1L+1
NC2=NTXWAL-1
NR1=2
NR2=NZPOLY-1
CALL AINT (DY,DZ,1,AO,A1,A2,A3,A4,C0)
CALL WRTMAT (A,C,NN,NR1,NR2,NC 1,NC2,AO,A1,A2,A3,A4,CO)
- REGION 1R
DY=(Y1R-YWALL)/FLOAT(NY 1R)
NC1=NTYWAL+1
NC2=NTY1R-1
CALL AINT (DY,DZ,1,A0,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,A0,A1,A2,A3,A4,CO)
- REGION 7L
DY=(Y7-Y1R)/FLOAT(NY7)
NC1=NTY 1R+1
NC2=NTY7-1
NR2=N2POLY-1
CALL AINT (DY,D2,4,A0,A1,A2,A3,A4,C0)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,A0,A1,A2,A3,A4,CO)
- REGION 70
DZ=(2FRP-2POLY)/NZFRP
NR1=N2POLY+1
NR2=NT2FRP-1
CALL AINT (DY,D2,4,A0,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,A0,A1,A2,A3,A4,CO)
- REGION }
DY=(Y8-Y7)/FLOAT(NY8)
DZ=ZPOLY/FLOAT(NZPOLY-1)
NC1=NTY7+1
NC2=NCOL-1
NR1=2
NR2=N2POLY-1
CALL AINT (DY,DZ,1,A0,A1,A2,A3,A4,C0)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO)
- REGION }
DY=Y5/FLOAT(NY5-1)
DZ=(ZFRP-2POLY)/FLOAT(NZFRP)
NC1=2
NC2=NY5-1
NR1=NZPOLY+1
NR2=NT2FRP-1
CALL AINT (DY,D2,2,A0,A1,A2,A3,A4,CO)
CALL URTMAT (A,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO)
- REGION 2L
DY=(Y1L-Y4)/FLOAT(NY1L)
NC1=NTY4+1
NC2=NTY 1L-1
CALL AINT (DY,DZ,2,A0,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO)
C

```
```

C - REGION 2C
C
DY=(YWALL-Y1L)/FLOAT(NYWALL)
NC 1=NTY 1L+ !
NC2=NTYWAL-1
CALL AINT (DY,DZ,2,AO,A1,A2,A3,A4,CO)
CALL WRTMAT (A,C,NN,NR1,NR2,NC1,NC2,A0,11,A2,A3,14,CO)
- REGION 2R
DY=(Y1R-MWALL)/FLOAT(NXIR)
NC1=NTYWAL+1
NC2=NTY 1R-1
CALL AINT (DY,D2,2,A0,A1,A2,A3,14,CO)
CALL URTMAT (A,C,NN,NR1,NR2,NC1,NC2,A0,A1,A2,A3,A4,CO)
- REGION }
DY=(Y8-Y7)/FLOAT(NY8)
NC1=NTY7+1
NC2=NCOL-1
CALL AINT (DY,D2,2,A0,A1,A2,A3,A4,CO)
CALL HRTMAT (A,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO)
- REGION 3
DY=(YWALL-Y1L)/FLOAT(NYWALL)
DZ=(2WALL-ZFRP)/FLOAT (NZWALL)
NC 1 =NTY 1L+1
NC2=NTYWAL-1
NR1=NT2FRP+1
NR2=NT2WAL-1
CALL AINT (DY,D2,5,A0,A1,A2,A3,A4,C0)
CALL URTMAT (}1,C,NN,NR1,NR2,NC1,NC2,AO,A1,A2,A3,A4,CO
C
c
c
DY=Y5/FLOAT(NY5-1)
DZ=2POLY/FLOAT(NZPOLY-1)
I=1
NC1=2
NC2=NY5-1
CALL ACONV (3,1,DY,D2,1,AO,A1,A2,A3,A4,CO)
CALL HMAT1 (A,C,NN,I,NC1,NC2,AO,A1, A2,A3,A4,CO)
C
C- LINE 4B
DY=(Y4-Y5)/FLOAT(NY4)
NC 1=NY5+1
NC2=NTY4-1
CALL ACONV (3,1,DY,DZ,3,AO,A1,A2,A3,A4,CO)
CALL HHAT1 (A,C,NN,I,NC1,NC2,AO,A1,A2,A3,A4,CO)
- LINE 1LB
DY=(Y1L-Y4)/FLOAT (NY1L)
NC1=NTY4+1
NC2=NTY 1L-1
CALL ACONV (3,1,DY,D2,1,AO,A1,A2,A3,A4,CO)
CALL HMAT1 (A,C,NN,I,NC1,NC2,AO,11,A2,A3,A4,CO)
C
- LINE ICB
DY=(YWALL-Y1L)/FLOAT(NYWALL)
NC1=NTY 1L+1
NC2=NTYWAL-1
CALL ACONV (3,1,DY,DZ,1,A0,A1, A2,A3,14,CO)
CALL WHAT1 (A,C,NN,I,NC1,NC2,AO,A1,A2,A3,14,CO)

```
        \(D Y=(Y 1 R-Y W A L L) / F L O A T(N X 1 R)\)
        NC1 = NTYWAL+1
    NC2 \(=\) NTY 1 R-1
    CALL ACONV ( \(3,1, \mathrm{DY}, \mathrm{DZ}, 1, \mathrm{AO}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{CO}\) )
    CALL WMAT1 ( \(A, C, N N, I, N C 1, N C 2, A O, A 1, A 2, A 3, A 4, C 0)\)
        - LINE 7B
        \(D Y=(Y 7-Y 1 R) / F L O A T(N Y 7)\)
        DZ=ZPOLY/(NZPOLY-1)
        NC \(1=\) NTY 1 R +1
    NC2 \(=\) NTY7-1
    CALL ACONV ( \(3,1, \mathrm{DY}, \mathrm{DZ}, 4, \mathrm{AO}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{CO})\)
    CALL WMAT1 ( \(A, C, N N, I, N C 1, N C 2, A O, A 1, A 2, A 3, A 4, C 0)\)
        - LINE 8B
    DY \(=(\mathrm{Y} 8-\mathrm{Y} 7\) )/FLOAT (NY8)
    DZ \(=2\) POLY/FLOAT (NZPOLY-1)
    NC \(1=\) NTY \(7+1\)
    NC2 \(=\) NCOL- 1
    CALL ACONV ( \(3,1, D Y, D Z, 1, A 0, A 1, A 2, A 3, A 4, C 0\) )
    CALL WMAT1 ( \(A, C, N N, I, N C 1, N C 2, A O, A 1, A 2, A 3, A 4, C 0)\)
        - LINE 5L
    DY \(=\) Y5/FLOAT (NY5-1)
    DZ=ZPOLY/FLOAT(NZPOLY-1)
    \(J=1\)
    NR1 \(=2\)
    NR2 \(=\) NZ POLY -1
    CALL ACONV ( \(1,8, D Z, D Y, 1, A 0, A 1, A 2, A 3, A 4, C 0)\)
    CALL WMAT2 (A,C,NN,NR1,NR2,J,AO,A1,A2,A3,A4,CO)
        - LINE 6L
        DZ \(=(\) ZFRP-ZPOLY)/FLOAT (NZFRP)
        NR1 \(=\mathrm{NZPOLY}+1\)
    NR2=NTZFRP-1
    CALL ACONV ( \(1,8, D Z, D Y, 2, A 0, A 1, A 2, A 3, A 4, C 0)\)
    CALL WMAT2 ( \(A, C, N N, N R 1, N R 2, J, A O, A 1, A 2, A 3, A 4, C O)\)
            - LINE 6T
            DY=Y5/FLOAT (NY5-1)
            DZ \(=(\) ZFRP-ZPOLY \() /\) FLOAT (NZFRP)
            I=NTZFRP
            NC1 \(=2\)
            NC2=NY5-1
            CALL ACONV ( \(4,7, D Y, D Z, 2, A O, A 1, A 2, A 3, A 4, C O)\)
            CALL WMAT1 (A,C,NN, I,NC1, NC2,AO,A1, A2, A3,A4,CO)
            - LINE 4T
            \(D Y=(Y 4-Y 5) / F L O A T(N Y 4)\)
            NC \(1=\) NY \(5+1\)
            NC2 \(=\) NTY4 -1
            CALL ACONV ( \(4,7, D Y, D Z, 3, A 0, A 1, A 2, A 3, A 4, C 0\) )
    CALL WMAT1 ( \(A, C, N N, I, N C 1, N C 2, A 0, A 1, A 2, A 3, A 4, C 0)\)
    DY=(Y1L-Y4)/FLOAT(NY LL)
    NC \(1=\) NTY \(4+1\)
    NC2 \(=\) NTY 1L-1
    CALL ACONV ( \(4,7, D Y, D 2,2,10, A 1,12,13,14, C 0\) )
    CALL HMAT1 ( \(\left.1, C, \mathrm{NN}, \mathrm{I}, \mathrm{NC} 1, \mathrm{NC} 2, \Lambda 0, \Lambda 1, \Lambda 2, \Lambda 3, \Lambda_{4}, \mathrm{CO}\right)\)
    - LINE 3L
    DY = (TWALL-Y IL)/FLOAT (NYWALL)
    DZ=(2WALL-2FRP)/FLOAT (HZHALL)
    NR \(1=\) NTZ 2 RP +1
    NR2 \(=\) NTZWAL- 1
    \(J=\) NTY \(1 L\)
    CALL ACONV ( \(1,6, \mathrm{DZ}, \mathrm{DY}, 5, \mathrm{~A}, \mathrm{~A} 1, \mathrm{~A}, \mathrm{~A}, \mathrm{~A} 4, \mathrm{CO})\)
    CALL TMAT2 ( \(A, C, N N\), NR1, NR2 \(, J, A O, A 1, A 2, A 3, A 4, C O)\)
    - LINE 3 T
    \(I=\) NTZ WAL
    HC 1=NTY 1 \(1+1\)
    HC2 2 NTMAAL- 1
    CALL ACONV ( \(4,5, \mathrm{DY}, \mathrm{DZ}, 5,10,11,12,13,14, \mathrm{CO}\) )
    CALL MMIT ( \(1, C, \mathrm{NH}, \mathrm{I}, \mathrm{NC} 1, \mathrm{NC} 2,10,11,12,13,14, \mathrm{CO})\)
    - LINE 3R
    NR1 \(=\) NTZFRP +1
    WR2=NTZWAL-1
    \(J=\) NTM AL
    CALL ACONV ( \(2,4, D 2, D Y, 5, A 0, A 1, A 2, A 3, A 4, C O\) )

    - LINE 2RT
    \(D Y=(\mathrm{Y} 1 \mathrm{R}-\mathrm{THALL}) /\) FLOAT (NY1R)
    \(D Z=(2 F R P-Z P O L Y) / F L O A T(\) NZFRP \()\)
    I = NTZFRP
    HC \(1=\) NTMWAL +1
    NC2=NTY 1R-1
    CALL \(\triangle\) CONV ( \(4,3, D Y, D Z, 2, A 0, A 1, A 2,13, A 4, C O)\)
    CALL HMAT1 ( \(A, C, N N, I, N C 1, N C 2,10,11,12,13,14, C 0)\)
    - LINE 71
    \(D Y=(Y 7-Y 1 R) / F L O A T(\) HY 7\()\)
    NC \(1=\) NTY \(1 R+1\)
    NC2 \(=\) NTY \(7-1\)
    CALL \(\triangle\) CONV ( \(4,3, D 1, D 2,4, A 0, A 1,12, A 3,14, C 0)\)
    CALL LHAT1 ( \(A, C, N N, I, N C 1, N C 2, A O, A 1, A 2, A 3, A 4, C O)\)
    - LINE 9 T
    \(D \mathrm{~F}=(\mathrm{YB}-\mathrm{Y} 7) / \mathrm{FLOAT}\) (MY8)
    NC \(1=\) NTY7 +1
    \(\mathrm{nC2}=\mathrm{NCOL}-1\)
    CALL ACONV ( \(4,3, D Y, D 2,2,10, A 1,12,13,14, C 0\) )
    CALL WMAT1 ( \(A, C, N N, I, N C 1, N C 2, A O, A 1, A 2, A 3,14, C O)\)
    - LINE 9R
    \(\mathrm{J}=\mathrm{NCOL}\)
    NR \(1=\) NZ POL \(Y+1\)
    NR2=NTZFRP-1
    CALL ACONV \((2,2, D Z, D Y, 2,10, A 1,12,13,14, C 0)\)
    CALL WHAT2 ( \(A, C\), NN, HR 1, NR \(2, J, A 0, A 1,12, A 3,14, C O)\)
    ...... no
```

C
- LINE OH
DZ=2POLY/FLOAT(NZPOLY-1)
NR1=2
NR2=NZPOLY-1
CALL ACONV (2,2,DZ,DY,1,A0,A1,A2,A3,A4,C0)
CALL WMAT2 (A,C,NN,NR1,NR2,J,AO,A1,A2,A3,A4,CO)
C
C
C
C
- INTERFACE 12C
NC1=NTY1L+1
NC2=NTYWAL-1
DZ = (YWALL-Y1L)/FLOAT (NYWALL)
CALL AIMF (1,MA,MB,DX,DXA,DXB,A0,A1,A2,A3,A4,CO)
CALL MMAT1 (A,C,NN,I,NC1,NC2,AO,A1,A2,A3,A4,CO)
- INTERFACE 12R
NC1=NTYWAL+1
NC2=NTY1R-1
DX=(Y1R-IWALL)/FLOAT(NY1R)
CALL AINF (1,MA,MB,DX,DXA,DXB,A0, A1, A2,A3,A4,CO)
CALL WMATI (A,C,NN,I,NC1,NC2,AO,A1, A2,A3,A4,CO)
- IMTERFACE 7L7U
DX=(Y7-F1R)/MY7
NC = NTY1R+1
NC2=NTY7-1
MA=4
MB=4
CALL AINF (1,MA,MB,DI,DXA,DXB,AO,A1,A2,A3,A4,CO)
CALL WMAT1 (A,C,NN,I,NC1,NC2,A0,A1,A2,A3,A4,CO)

```
- INTERFACE 89

NC \(1=\) NTY \(7+1\)
NC2 \(=\mathrm{NCOL}-1\)
DX \(=(\mathbf{Y 8}-\mathrm{Y} 7\) )/FLOAT (NY8)
\(M A=2\)
\(\mathrm{MB}=1\)
CALL AINF ( \(1, M A, M B, D X, D X A, D E B, A 0, A 1, A 2, A 3, A 4, C O)\)
CALL WMAT1 ( \(A, C, N N, I, N C 1, N C 2, A 0,11, A 2, A 3,14, C O)\)
- 23

I =NTZFRP
NC1 \(=\) NTY \(1 \mathrm{~L}+1\)
NC2=NTYWAL-1
\(M A=5\)
\(\mathrm{MB}=2\)
DX = (TWALL-Y1L)/FLOAT (NYWALL)
DXA \(=(\) ZWALL-ZFRP)/FLOAT (NZWALL)
DEB= (ZFRP-ZPOLY)/FLOAT (NZFRP)
CALL AINF ( \(1, M A, M B, D I, D X A, D X B, A 0, A 1, A 2, A 3, A 4, C 0)\)
CALL HMAT1 ( \(A, C, N N, I, N C 1, N C 2, A 0, A 1, A 2, A 3, A 4, C O)\)
- IETERPACE 54

JeNY5
NR1=2
HR2 = NZ POLY-1
DX=ZPOLY/FLOAT (NZPOLY-1)
DKA \(=15 /\) FLOAT (NY5-1)
\(D X B=(Y 4-\bar{Y}) / F L O A T(N Y 4)\)
\(M A=1\)
\(M B=3\)
CALL \(A I N F(3, M A, M B, D X, D X A, D X B, A O, A 1, A 2, A 3, A 4, C O)\)
CALL MMAT2 ( \(A, C\), W, NR1, NR2, J, AO, A1, A2, A3, A4, CO)
- INTERFACE 64

NR1=NZPOLY +1
NR2=NTZFRP-1
\(D Z=(Z F R P-Z P O L Y) / F L O A T\) (NZFRP)
\(M A=2\)
CALL \(\triangle I N F(3, M A, M B, D X, D X A, D X B, A 0, A 1, A 2, A 3, A 4, C O)\)
CALL KMAT2 (A, C,NN, NR \(1, N R 2, J, A 0, A 1, A 2, A 3, A 4, C O)\)
- INTERFACE 41L

NR1=2
NR2=NZPOLY-1
\(J=\) NTY4
\(D Z=2\) POLY \(/(\) NZPOLY -1\()\)
\(D X A=(Y 4-Y 5) / N Y 4\)
\(D E B=(Y 1 L-Y 4) / F L O A T(N Y 1 L)\)
\(\mathrm{MA}=3\)
\(\mathrm{MB}=1\)
CALL AINF \((3, M A, M B, D X, D X A, D E B, 10,11,12,13,14, C 0)\)
CALL KHAT2 ( \(A, C, N N, N R 1, N R 2, J, A 0, A 1, A 2, A 3, A 4, C O)\)
- IATERFACE 42L

KR1=NZPOLY +1
KR2=NTZPRP-1
DI \(=(\) ZFRP-ZPOLI \() / F L O L T(N Z F R P)\)
\(M A=3\)
\(\mathrm{KB}=2\)
CALL AINF ( \(3, M A, M B, D Z, D X A, D K 8, A 0, A 1, A 2, A 3,14, C O)\)
CALL WMAT2 ( \(A, C, N N\), HR1,NR2,J. \(10,11, A 2, A 3, A 4, C O)\)
```

C
- INTERFACE 1LIC
NR1=2
NR2=NZPOLY-1
J=NTY 1L
DX=(ZPOLY)/FLOAT(NZPOLY-1)
DXA = (Y1L-Y4)/NY 1L
DXB=(YWALL-Y1L)/NYMALL
MA=1
MB=1
CALL AINF (3,MA,MB,DX,DXA,DXB,AO,A1,A2,A3,A4,CO)
CALL HMAT2 (A, C,NN,NR1,NR2,J,AO,A1,A2,A3,A4,CO)
- INTERFACE 2L2C
NR1=NZPOLY+1
NR2=NTZPRP-1
DX=(2FRP-2POLY)/NZFRP
MA=2
MB=2
CALL AINF (3,MA,MB,DX,DXA,DXB,AO,A1,A2,A3,A4,CO)
CALL WMAT2 (A,C,NN,NR1,NR2,J.AO,A1,A2,A3,A4,CO)
- ImTERFACE 1C1R
NR1=2
HR2=NZPOLY-1
J=NTYWAL
DX=(2POLY)/(NZPOLY-1)
DXA=(YWALL-Y1L)/NYWALL
DXB=(Y1R-THALL)/NY 1R
MA=1
MB=1
CALL AINF (}3,MA,MB,DX,DXA,DXB,AO,A1,A2,A3,A4,CO

```

```

 - INTERFACE 2C2R
 HR1=NZPOLY+1
 NR2=NTZFRP-1
 J=NTYWAL
 DX=(2FRP-ZPOLY)/NZFRP
 MA=2
 MB=2
    ```

```

 CALL WMAT2 (A,C,NN,NR1,NR2,J, AO,A1,A2,A3,A4,CO)
 - INTERFACE 9R7
 HR1=2
 NR2=NZPOLY-1
 J=NTY 1R
 DZ=2POLY/(NZPOLY-1)
 DXA=(Y1R-YHALL)/NY1R
 DXB=(IT-Y1R)/NY7
 MA=1
 MB=4
    ```

```

 CALL HMAT2 (A,C,NN,NR1,NR2,J,AO,A1,A2,A3,A4,CO)
 - INTERFACE 2R7
 NR1=NZPOLY+1
 NR2=NTZPRP-1
 DZ=(2FRP-ZPOLY)/NZFRP
 MA=2
 MB=4
 CALL AINF (3,MA,MB,DX,DIA,DEB,AO,A1,A2,A3,A4,C0)
    ```

```

C

```
        NR1=2
        NR2=NZPOLI-1
        J=NTY7
        DX=2POLY/(NZPOLY-1)
        DYA=(Y7-Y1R)/NY7
        DXB=(Y8-Y7)/NY8
        MA=4
        MB=1
        CALL AINF ( 3,MA,MB,DX,DXA,DXB, AO, A1, A2, A3,A4,CO)
        CALL MMAT2 (A,C,NN,NR1,NR2,J,AO,A1, A2,A3,A4,CO)
            - INTERFACE 79
        NRI=NZPOLI+1
        MR2=NTZFRP-1
        DX=(ZFRP-2POLI)/NZFRP
        NB=2
        CALL AINF (3,MA,MB,DX,DXA,DIB, AO,A1,A2,A3,A4,CO)
        CALL MHAT2 (A,C,NN,NR1,NR2,J,AO,A1,A2,A3,A4,CO)
    4. CORNERS
        - IFIERIOR CORNERS, LLL CONDUCTION
    -654L40
        I=NZPOLI
        J=NY5
        DX1=Y5/(NY5-1)
        DX2=(Y4-I5)/NY4
        D\3=2POLY/(NZPOLY-1)
        DX4=(2FRP-2POLY)/NZPRP
        MA=3
        MB=2
        MC=1
        MD=3
        CALL AIC1 (MA,MB,MC,MD,DX1,DX2,DX3,DX4, 10, 11, 12, 13, 14,C0)
        CALL WPT (A,C,NN,I,J,AO,A1, A2, A3,A4,CO)
        -4L401L2L
        I=NZPOLI
        J=NII4
        DII=(Y4-Y5)/NY4
        DX2=(11L-Y4)/NY1L
        MA=2
        MB=3
        MC=3
        MD=1
        CALL AIC1 (MA,MB,MC,MD,DX1,DX2,DX3,DX4,AO,A1,A2,A3,A4,CO)
        CALL WPT (A,C,NN,I,J, AO,A1, A2, A3,A4,CO)
        - 2C2L1LIC
        J=NTIIL
        DZ1=(I1L-I4)/NY 1L
        DX2=(YNALL-Y1L)/NINALL
        MA=2
        MB=2
        MC=1
        MD=1
        CALL AIC1 (MA,MB,MC,MD,DX1,DI2,DX3,DI4,AO,A1, 12, A3, 14,CO)
        CALL MPT (A,C,MN,I,J,AO,A1,A2,A3,A4,CO)
```

```
C
    - 2R2C1C1R
C
        J=NTIMAL
        DX1=(YWALL-Y1L)/NYWALL
        DX2=(Y1R-YWALL)/NY1R
        CALL AIC1 (MA, MB,MC,MD,DX1,DX2,DX3,DX4,AO,A1,A2,A3,A4,CO)
        CALL HPT (A,C,NK,I,J,AO,A1, A2,A3,A4,CO)
    - 72R1R
        J=NTI 1R
        DI1=(I1R-TNALL)/NY1R
        DI2=(Y7-Y1R)/NY7
        MA=4
        AB=2
        MC=1
        MD=4
        CALL \triangleIC1 (MA, HB,MC,MD,DX1,DX2,DX3,DX4, AO,A1, A2, A3, A4,CO)
        CALL HPT ( }A,C,NH,I,J,AO,A1,A2,A3,A4,CO
    -978
        J=NIT7
        DI1=(Y7-I1R)/NY7
        DI2=(I8-I7)/HY8
        MA=2
        MB=4
        MC=4
        MD=1
        CALL AIC1 (MA,MB,MC,MD,DX1,DX2,DI3,DX4,A0, A1, A2, A3, A4,CO)
        CALL UPT (A,C,NN,I,J,AO,A1,A2,A3,A4,CO)
    - REENTRANT CORNERS
        I=NTZFRP
        J=NTY 1L
        N1=1
        N2=4
        NH1=7
        NH2=6
        DI1=(Y1L-Y4)/NY1L
        DX2=(YWALL-I1L)/NYWALL
        DY3=(2FRP-2POLY)/NZFRP
        DX4=(ZWALL-ZFRP)/AZWALL
        MA=5
        1B=6
        MC=2
        MD=2
        CALL AIC2 (M1,N2,NH1,NB2,MA,MB,MC,MD,
        - DI1,DX2,DI3,DX4,A0,A1,A2,A3,A4,C0)
```



```
        J=NTINAL
        N1=2
        N2=4
        *N1=3
        NH2=4
        DX1=(YWALL-I1L)/MYWALL
        DI2=(Y1R-INALL)/NI1R
        MA=6
        MB=5
        MC=2
        MD=2
        CALL AIC2 (N1, H2, NH1,NH2,MA,MB,MC,MD,
        DI1,DI2,DI3,DI4,A0,A1, A2,A3,A4,C0)
        CLLL YPT (A,C,NM,I,J, AO,A1, A2, A3, A4,CO)
C
```

c

$$
J=1
$$

$$
I=\mathbb{K P P O L Y}
$$

$\mathrm{N}=1$
$\mathrm{MH}=8$
$D X=Y 5 /(1$ YY $5-1)$
$D Z A=$ ZPOLY / (NZPOLY-1)
DXE= (2 PRP-ZPOLY)/KZFRP
$\mathrm{MA}=1$
$\mathrm{HB}=2$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX,DXA, DXB, AO, A1, A2, A3, A4,CO)

CALL WPT $(A, C, M H, I, J, 10,11,12,13,14, C O)$
$I=1$
$\mathrm{J}=\mathrm{ITY} 5$
日 $=3$
NH= 1
$D X=2$ POLY $/($ RZPOLI -1$)$
$D X B=Y 5 /(1855-1)$
$D K=(Y 4-15) /$ IT 4
$A B=1$
$M=3$
CALL IIC3 ($\mathrm{H}, \mathrm{BH}, \mathrm{MA}, \mathrm{MB}$,

- DX,DXA,DXB, AO, A1, A2, 13, 14,CO)

CALL YPT ($1, C$, MT, $I, J, 10,11,12,13,14, C O)$
IsITRFPR
Hz4
THET
$D X=($ ZFRP-ZPOLY $) /$ KZFRP
$D Z A=D I B$
$D X B=(14-75) / X I 4$
$M A=2$
$\mathrm{KB}=3$
CALL AIC3 ($\mathrm{H}, \mathrm{HR}, \mathrm{MA}, \mathrm{MB}$,

- DI, DIA, DIB, 10, 11, 12, 13, 14, C0)

CALL WPT ($1, C$, MT, $I, J, 10,11,12,13,14, C 0)$
$I=1$
$\mathrm{J}=\mathrm{BTY} 4$
$\mathrm{H}=3$
MH=1
$D Z=2 P O L Y /(K Z P O L Y-1)$
DIEB $=(\mathbf{Y} 4-\mathbf{Y} 5) /$ RY4
DYA=(Y1L-Y4)/KY1L
$\mathrm{HB}=3$
$M A=1$
CALL AIC3 ($\mathrm{H}, \mathrm{HH}, \mathrm{MA}, \mathrm{MB}$,

- $D Z, D I A, D I B, 10,11,12,13,14, C 0)$

CALL HPT ($1, C$, HTN, $I, J, 10,11,12,13,14, C O)$
$I=1$
$J=$ NTY 1L
$\mathrm{N}=3$
$\mathrm{NH}=1$
$D X=2 P O L Y /($ NZPOLY -1$)$
DXB=(Y1L-Y4)/NY1L.
DXA $=($ YWALL $-Y$ 1L) $/$ NYWALL
$M A=1$
$M B=1$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX, DXA, DXB, AO, A1, A2, A3, A4, CO)

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C 0)$
J=NTYNAL
DXB= (YWALL-Y IL)/NYWALL
$D X A=(Y 1 R-Y W A L L) / N Y 1 R$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX, DXA, DXB, AO, A1, A2, A3, A4,CO)

CALL WPT ($A, C, N N, I, J, A O, A 1, A 2, A 3, A 4, C O)$
$J=$ NTY 1R
$D X B=(Y \mid R-T W A L L) / N Y 1 R$
$D K A=(Y 7-Y 1 R) / N Y 7$
$\mathrm{MB}=1$
$M A=4$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX, DXA, DXB, AO, A1, A2, A3, A4,CO)

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
$I=$ NTZFRP
$N=4$
NH $=3$
$D X=($ ZFRP-2POLY $) /$ NZFRP
$D X A=D X B$
$D X B=(Y 7-Y 1 R) / N Y 7$
$M A=2$
$M B=4$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX, DXA, DXB, AO, A $1, A 2, A 3, A 4, C 0)$

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
$I=1$
$\mathrm{J}=\mathrm{NTY} 7$
$\mathrm{N}=3$
NH=1
DX $=2$ POLY $/($ NZPOLY -1$)$
$D X B=(Y 7-Y 1 R) / N Y 7$
$D Z A=(Y 8-Y 7) / N Y 8$
$M B=4$
$M A=1$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX,DXA, DXB, AO, A1, A2, A3, A4,C0)

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
I=NTZFRP
$\mathrm{N}=4$
$\mathrm{NH}=3$
DX $=(2$ FRP-ZPOLY $) /$ NZFRP
DYA $=$ DIB
DXB=(Y8-Y7)/NY8
$M A=4$
$M B=2$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX,DXA, DXB, $\triangle 0, A 1, \Delta 2, \triangle 3, A 4, C 0)$

CALL HPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
$I=$ NZPOLY
$\mathrm{J}=\mathrm{NCOL}$
$\mathrm{N}=2$
$\mathrm{NH}=2$
DX $=(Y 8-Y 7) / N Y 8$
DKB=ZPOLY/(NZPOLY-1)
DXA $=($ ZFRP-ZPOLY $) /$ NZFRP
$\mathrm{MB}=1$
$M A=2$
CALL AIC3 ($\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}$,

- DX,DXA,DXB, $10, A 1, A 2, A 3,14, C 0)$

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2,13, A 4, C 0)$
$J=1$
$\mathrm{N}=1$
$\mathrm{N} 2=3$
NH $1=8$
NH2 $=1$
DX1=Y5/(NY5-1)
DX2=ZPOLY/(NZPOLY-1)
M=1
CALL AIC4 ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{NH} 1, \mathrm{NH} 2, \mathrm{M}$,

- DX1,DX2,A0,A1, A2, A3, A4, CO)

CALL WPT (A,C,NN,I,J,A0,A1,A2,A3,A4,CO)
$I=1$
$\mathrm{J}=\mathrm{NCOL}$
N1=2
N2=3
NH $1=2$
NH2 $=1$
DX1 $=(\mathrm{Y} 8-\mathrm{Y} 7) / \mathrm{NY} 8$
CALL AIC4 ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{NH} 1, \mathrm{NH} 2, \mathrm{M}$,

- DX1,DX2, AO, A1, A2, A3, A4, CO)

CALL WPT (A,C,NN,I,J,AO,A1, A2,A3,A4,CO)
I=NTZFRP
$\mathrm{N} 1=2$
$\mathrm{N} 2=4$
NH1=2
4H2=3
DX2=(2FRP-2POLY)/NZFRP
$\mathrm{M}=2$
CALL AIC4 ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{NH} 1, \mathrm{NH} 2, \mathrm{M}$,

- DX1,DX2, AO, A1, A2, A3, A4, CO

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
$I=N T Z W A L$
J=NTYWAL
N1=2
$\mathrm{N} 2=4$
$\mathrm{NH} 1=4$
NH2 $=5$
DX1=(YWALL-Y1L)/NYWALL
DX2=(2WALL-ZFRP)/NZWALL
$\mathrm{M}=5$
CALL AIC4 (N1,N2,NH1,NH2,M,

- DX1, DX2, AO, A1, A2, A3, $14, C 0)$

CALL HPT ($A, C, N N, I, J, A O, A 1, A 2, A 3, A 4, C O)$
$J=$ NTY 1 L
N $1=1$
$\mathrm{N} 2=4$
NH $1=6$
NH2 $=5$
CALL AIC4 ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{NH} 1, \mathrm{NH} 2, \mathrm{M}$,

- DX1,DX2,AO,A1, A2, A3, A4,CO)

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
$I=N T Z F R P$
$J=1$
स1=1
$\mathrm{N} 2=4$
NH $1=8$
स $\mathrm{HE} 2=7$
DX1=15/(NY5-1)
DX2 $=($ ZFRP-ZPOLY $) /$ NZFRP
$\mathrm{M}=2$
CALL AIC4 ($\mathrm{N} 1, \mathrm{~N} 2, \mathrm{NH} 1, \mathrm{NH} 2, \mathrm{M}$,

- DX1,DX2, AO, A1, A2, A3, A4,CO)

CALL WPT ($A, C, N N, I, J, A 0, A 1, A 2, A 3, A 4, C O)$
RETURN
END

```
C
    SUBROUTINE BCONV (N,M,DY,DZ,MM,BO)
C
```



```
C SUBROUTINE TO FORM B VECTOR - LINES 
C
C
    COMMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
        COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
C
C
C
C
```



```
c
        SUBROUTINE B2 (N1,N2,NH1,NH2,MA,MB,MC,MD,DX1,DX2,DX3,DX4,B0)
C
```



```
C SUBROUTINE TO FORM B VECTOR - REENTRANT CORNERS
```



```
C
        COMMON /ETCOEF/ HTC(8),TAMB(8),TAMBP(8)
        COMHON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
C
        DDX1=DX1
        DDX2=DX4
        IF (N1.EQ.2) DDZ1=DX2
        A0=0.5*HTC(NH1)*DDX1
        A01=0.5畋TC (NH2) =DDX2
        B0=AO}(ALFA=TAMBP(NH1)+(1.-ALFA)悉AMB(NH1)) +
        * A01*(ALFA TAMBP(NH2) +(1.-ALFA) TAMB(NH2))
C
        RETORN
    C
        END
C
```



```
C
        SUBROUTINE B3 (N,NH,MA,MB,DX,DXA,DXB,BO)
C
```



```
C* SUBROUTINE TO FORM B VECTOR - CORNER NODE, CONVECTION 1 SIDE
```



```
C
        COMMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
        COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
C
C
C
C
```



```
C
C
```



```
C* EXTERIOR CORNERS WITH HEAT TRANSFER - B VECTOR 
```



```
C
        COMMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
        COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
C
```



```
        A01=0.5*DX1*HTC(NH2)
        B0=AO*}(\operatorname{ALFA}TAMBP(NH1)+(1.-ALFA)*TAMB(NH1)) +
        * A01*(ALFA.TAMBP(NH2)+(1.-ALFA) TAMB(NH2))
C
C
        RETORN
        END
```

```
C
```



```
C
        SUEROOTINE HB2 (B, MK, NR1, MR2,J, B0)
C
```



```
C^ SUEROUZINE TO HRITE A RON OF NODES INTO TRE B VECTOR
```



```
c
        DINENSION B(AN),H(5)
C
            DO 100 I=NR1, KR2
        CALL GETHOD (I,J,N)
    100 B(K(1))=S(N(1))+30
    &STUPN
C
    END
C
```



```
C
    SUBROOTINE LB1 (B,EIM,I,HC1,MC2,BO)
C
```



```
C* SUEROUIINE TO HRITE A COLUNG OF NODES IN THE B VECTOR
```



```
C
    DINEKSION B(MT),N(5)
C
    DO 100 J=NCY,NC2
    CALL GETHOD (I,J,N)
    100 B(N(1))=B(N(1))+B0
            RETORS
C
    END
C
```



```
C
        SUBROUIINE MB (B,MN,I.J.BO)
C
```



```
CE SESROUIINE TO HRITE A POINT IN THE B VECTOR
```



```
C
    DIMEKSION B(NG),H(5)
C
    CALL GETHOD(I.J.R)
    E(h(1))=3(H(1))+BO
    RETORS
C
    END
```

```
C
C
C
        SUBROUTINE FORMB (ICON, B, BTEMP,NN)
C
```



```
C* SUBRODTINE TO FORM CONVECTION PART OF RES VECTOR
```



```
C
        COMHON /NUKZ/ HZPOLY, NZFRP,NZWALL
        COMMON /NOMY/ WY5,NY4,NY1L, HYWALL,NY 1R, GY7,NY8
        COMMON /GRIDEY/ HTY4,NTY 1L,NTYWAL,NTY 1R,NTY 7,NCOL
        COMMON /GRIDBZ/ UTZFRP,NTZWAL
        COMMON /ZCOOR/ 2POLY,ZFRP,ZHALL
        COHMON /TCOOR/ Y5,Y4,Y1L,YWALL,Y1R, Y7, Y8
C
        DIMENSION B(NN),BTEMP(NN)
c
C ICON=-1 - SET B=O, REFORM RHS INTO BTEMP, RENRITE BTEMP INTO B
C ICON = O - FORM FES INTO BTEMP, WRITE BTEMP IBTO B
C ICON= 1 - SET B=O, WRITE BTEMP INTO B
IF (ICON.EQ.O) GO TO 100
C
c ZERO B VECTOR
C
        DO 10 I= 1,NK
    10 B(I)=0.
        IF (ICON.EQ. 1) GO TO }20
C
C FORM CONVECTION LOAD VECTOR BTENTP
C 2. CONVECTION BOUNDARIES
C - REGION 5B
100 DY=Y5/FLOAT(NY5-1)
        DZ=ZPOLY/FLOAT(NZPOLY-1)
        I=1
        NC 1=2
        NC2=NY5-1
        CALL BCONV (3,1,DY,DZ,1,B0)
        CALL WB1 (BTEMP,NN,I,NC1,NC2,BO)
C
C- LINE 4B
C
        DY=(Y4-Y5)/FLOAT(NY4)
        NC1=NY5+1
        NC2=NTY4-1
        CALL BCONV (3,1,DY,DZ,3,B0)
        CALL WB1 (BTEMP,NN,I,NC1,HC2,BO)
C
C - LINE 1LB
        DY=(Y1L-Y4)/FLOAT(NY{L)
        NC1=NTY4+1
        NC2=NTY1L-1
        CALL BCONV (3,1,DY,D2,1,BO)
        CALL WB1 (BTEMP,NN,I,NC1,NC2,BO)
    C
    C - LINE ICB
    c
        DY=(YWALL-Y1L)/FLOAT(NYWALL)
        NC1=NTY1L+1
        NC2=NTMNAL-1
```

CALL BCONV ($3,1, D Y, D 2,1, B 0$)
CALL WB1 (BTEMP, NH, I, YC1, HC2,BO)
DY=Y5/FLOAT (NY5-1)
$\mathrm{DZ}=(2 \mathrm{FRP}$
I=NTZF
HC1=2
HC2 $=$ NY5-1
CALL BCONY ($4,7, D Y, D Z, 2, B 0$)
CALL WB1 (BTEMP, HN, I, HC 1, NC2, BO)
- LIEE 4 T
$D I=(Y 4-Y 5) /$ PLOAT (MY4)
NC $1=$ NY $5+1$
HC2 =NTI4-1
CALL BCONY ($4,7, D Y, D 2,3, B 0$)
CALL WBI (BTEMP, NH, I, HC 1, HC2, BO)
- LINE 2LT
$D Y=(Y 1 L-Y 4) / F L O A T(N X I L)$

```
NC1=NTY4+1
NC2=NTY1L-1
CALL BCONV (4,7,DY,DZ,2,BO)
CALL. WB1 (BTEMP,NN,I,NC1,NC2,BO)
NR \(1=\) NTZ \(F R P+1\) NR2=NTZWAL-1
\(\mathrm{J}=\mathrm{NTYWAL}\)
CALL BCONV ( \(2,4, \mathrm{DZ}, \mathrm{DY}, 5, \mathrm{BO}\) )
CALL WB2 (BTEMP,NN,NR1,NR2,J,BO)
- LINE 2RT
DY = (Y1R-YWALL) /FLOAT (NY 1R)
DZ \(=(2 F R P-2 P O L Y) / F L O A T(N Z F R P)\)
I=NTZFRP
NC1 \(=\) NTYWAL +1
NC2=NTY 1R-1
CALL BCONV (4,3,DY,DZ,2,B0)
CALL WB1 (BTEMP,NN,I,NC1,NC2,B0)
- LINE 7T
\(\mathrm{DY}=(\mathrm{Y} 7-\mathrm{Y} 1 \mathrm{R}) / \mathrm{FLOAT}(\mathrm{NY} 7)\)
NC \(1=\) NTY \(1 \mathrm{R}+1\)
NC2=NTY7-1
CALL BCONV (4,3,DY,DZ,4,BO)
CALL WB1 (BTEMP,NN,I,NC1,NC2,BO)
- LINE 9T
\(\mathrm{DY}=(\mathrm{Y} 8-\mathrm{Y} 7\) )/FLOAT(NY8)
NC \(1=\) NTY \(7+1\)
NC2 \(=\) NCOL- 1
CALL BCONV (4,3,DY,DZ,2,BO)
CALL WB1 (BTEMP,NN, I,NC1,NC2,BO)
- LINE 9R
\(J=\) NCOL
NR \(1=\) NZ POLY +1
NR2=NTZFRP-1
CALL BCONV \((2,2, D Z, D Y, 2, B O)\)
CALL WB2 (BTEMP, NN,NR1,NR2,J, BO)
- LINE 8R
```

c
DZ $=2$ POLY/FLOAI (KRPOLY-1)
KR1=2
HR2 $=12$ POLI-1
CILL BCOTT ($2,2, D Z, D I, 1, B 0$)
CALL KB2 (BTEAPP, N2, KR1, KR2,J, BO)
C
C
C
I=KTZFRP
J=1712
$\mathrm{V} 1=1$
स2 $=4$
1781 $=7$
$\mathrm{MER} 2=6$
DII=(YIL-T4)/KYIL
DY2=(THALL-Y1L)/KNALL
DY $3=($ ZFRP-ZPOLY $) /$ RZFRP
DY $4=(2$ WALL-2FRP $) /$ KZVALL
$M \Delta=5$
$\mathrm{HB}=6$
MC=2
$1-2$
CALL B2 ($11, \mathrm{H2}, \mathrm{MH} 1, \mathrm{MB2}, \mathrm{M}, \mathrm{MB}, \mathrm{MC}, \mathrm{MD}$, - DX1,DX2,DY3,DX4,B0)

CALL TB (ETEMP, KT, I, J, BO)
J=ITTHAL
11: $=2$
42=4
KET $=3$
HER2 4
DII (TNALL-YIL)/TINALL
DI2 $=($ Y 1 R-T゙NLL $) /$ III 18
$M A=6$
$M B=5$
MC=2
H $=2$

- DX1,DY2,DI3,DI4,B0)

CALL IB (BTEAP, NTH, I, J, BO)
C
c
c

- convection on ore side
$J=1$
$I=1 Z P O L Y$
$\mathrm{E}=1$
HE=8
$D Y=Y 5 /($ ITY5-1)
DKA $=2$ POLI $/($ RZPOLT-1)
DIB=(2FRP-2POLY)/EZFRP
$M=1$
$\mathrm{MB}=2$
CALL B3 (A, NH, MA $_{1}, \mathrm{HB}$,
- DY,DKA,DIB,BO)

CALL VB (BTENT, MNT, I, J, BO)
c
I $=1$
$J=1 T Y 5$
$\mathrm{E}=3$
4R=1
DI $=2$ POLY $/($ KZPOLI -1$)$
DIE $=$ Y5 ((IY5-1)
DIA $=(14-15) /$ ITI 4
$M B=1$

```
        MA=3
        CALL ES (B, KE, MA,NB,
```

- DI,DIA,DEE,EC)
CALL HE (ETENP, MT, I, J, BO)
I=M12FRP
压=4
ER=7
DI=(ZPRP-ZPOL:)/KZPEP
$D Z A=0 工$
DIE $=(\overline{1} 4-15) / X K 4$
$M \Delta=2$
$1 B=3$
CALL 83 ($\mathrm{M}, \mathrm{ME}, \mathrm{MA}, \mathrm{MB}$,
- DI, DIA, DCD, BO)
CALL M3 (ETENP, TT, I, J, 80)
$I=1$
$J=\sqrt{124}$
li＝3
殿＝：
EX＝2FOLY／（BZPOLZ－1）
DKE＝（E4－V5）／5Y4
DKA＝（I1L－Y4）／IIL
$\sqrt{5}=3$
$M A=1$
CALL B3（ $M, Y E, M A, M B$ ，
－DZ，DXA，DKE，BO）
CAL UE（ETENS，NT，I，J．BO）
$I=$ IIZFRP
F $=4$
昭＝7
DI＝（2PEP－ZPOLY）／AZPEP
DKA＝3LE
DIE＝（71L－I4）／ME1L
$\mu \Delta=3$
$1 \times=2$
CAL1 E3（ $4,5 E, M A, N B$ ，
－DI，DIA，2［5，30）
CALL ME（ETENT，ITI，I，J，EO）
$I=1$
J＝N1T12
「こう
TE＝1
EI＝2POLI／（IRFOLZ－1）
DKE＝（シ1Lーシ4）／3T1L
DKA $=($ IVALL－I $1 L) /$ NTMAL
M＝ 1
$1 B=1$
CALL E3（ $\mathrm{M}, \mathrm{HE}, \mathrm{MA}, \mathrm{NE}$ ，
－DX，DXA，DIE，BO）
CALL TE（ETEM，3Y，I，J，80）
J＝MTTML
DIE＝（FiALI－ITL）／MTILLL

CAKL $E 3$（ $\mathrm{B}, \mathrm{NE}, \mathrm{MA}, \mathrm{NB}$ ，
－DI，DU，DIE，50）
CALL UE（ETENT，Min，I，J，SO）
$J=1212$

$D Z A=(\bar{I}-\bar{I} 1 E) / K E 7$
，$B=1$

```
\(M A=4\)
CALL B3 ( \(\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}\),
- DX, DXA,DXB,BO)
CALL WB (BTEAP,NN, I, J, BO)
I \(=\) NTZFRP
\(\mathrm{N}=4\)
\(\mathrm{NH}=3\)
DX=(2FRP-2POLI)/NZFRP
\(D X A=D X B\)
\(D X B=(Y 7-Y 1 R) / N Y 7\)
\(M A=2\)
\(\mathrm{MB}=4\)
CALL B3 ( \(N, N H, M A, M B\),
- DX, DXA,DIB,BO)
CALL WB (BTEMP, NN, I, J. BO)
\(I=1\)
J=NTI7
\(N=3\)
\(\mathrm{NH}=1\)
\(D X=2\) POLY \(/(\) NZPOLY-1)
DXB=(I7-I1R)/NY7
\(D Y A=(Y B-Y 7) / N Y 8\)
\(H B=4\)
\(M A=1\)
CALL B3 ( \(\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}\),
- DX,DXA,DXB,BO)
CALL WB (BTEMP, NN, I, J, BO)
I = NTZ FRP
\(\mathrm{N}=4\)
\(\mathrm{NH}=3\)
DX = (2FRP-2POLI)/NZFRP
\(D K A=D X B\)
\(D X B=(Y 8-Y 7) / N Y 8\)
\(M A=4\)
\(\mathrm{MB}=2\)
CALL B3 ( \(N, N H, M A, M B\),
- DX, DXA, DXB,BO)
CALL WB (BTEMP, NN, I, J, BO)
I=NZPOLY
\(J=\) NCOL
\(\mathrm{N}=2\)
\(\mathrm{NH}=2\)
\(D X=(Y 8-Y 7) / N Y 8\)
\(D K B=2\) POLY/(NZPOLY-1)
\(D X A=(2 F R P-2 P O L I) / N Z F A P\)
\(A B=1\)
\(M A=2\)
CALL B3 ( \(\mathrm{N}, \mathrm{NH}, \mathrm{MA}, \mathrm{MB}\),
- DX,DXA,DIB,BO)
CALL WB (BTEMP, NN, I, J, BO)
C - EXTERIOR CORNERS
\(I=1\)
\(J=1\)
\(N 1=1\)
N2=3
NH \(1=8\)
NH2 \(=1\)
DX1=Y5/(NY5-1)
\(D Z 2=2\) POLY/(AZPOLY-1)
\(\mathrm{ME}=1\)
```

C

C

C

CALL B4 (N1,N2,NH1,NH2,M,

- DX1,DX2,B0)

CALL WB (BTEMP,NN,I,J,BO)

C
$I=1$
$\mathrm{J}=\mathrm{NCOL}$
N1 $=2$
N2=3
NH1=2
NH2=1
DX1=(Y8-Y7)/NY8
CALL B4 (N1,N2,NH1,NH2,M, - DX1,DX2,B0)

CALL WB (BTEMP, NN, I, J, BO)
I=NTZFRP
स1=2
N2=4
NH1=2
NH2 $=3$
DX2=(ZFRP-ZPOLY)/NZFRP
$\mathrm{M}=2$
CALL B4 (N1,N2, NH1,NH2,M,

- DX1,DX2,B0)

CALL WB (BTEMP,NN,I,J.BO)
I = NTZWAL
$J=$ NTYWAL
N1=2
N2=4
NH $1=4$
NH2 $=5$
DX1=(YWALL-Y1L)/NYWALL
DX2=(ZWALL-ZFRP)/NZWALL
M=5
CALL B4 (N1,N2,NH1,NH2,M, - DX1,DX2,B0) CALL WB (BTEMP, NN, I, J, BO)
$\mathrm{J}=\mathrm{NTY} 1 \mathrm{~L}$
N1=1
$\mathrm{N} 2=4$
NH1 $=6$
NH2 $=5$
CALL B4 (N1, N2,NH1,NH2,M, - DX1,DX2,B0)

CALL WB (BTEMP, NN, I, J, BO)
C
I=NIZFRP
$\mathrm{J}=1$
N1=1
$N 2=4$
NH1 $=8$
HH2=7
DX1=Y5/(NY5-1)
DX2=(ZFRP-ZPOLY)/NZFRP $\mathrm{M}=2$
CALL B4 (N1,N2,NH1,NH2,M,

- DI1,DX2,B0)

CALL WB (BTEMP, NN, I, J,BO)
c
200 CONTINUE
C
C WRITE BTEMP INTO B VECTOR
DO $300 I=1$,NN
$300 \mathrm{~B}(\mathrm{I})=\mathrm{BTEMP}(\mathrm{I})$
RETURN
C

SUBROUTINE QSOLV2 (ISTEP. IOONT.T.NN.TINE)
C

C SUBROUTINE TO EFFECT ENERGY BALANCES

C
COMMON /NUMZ/ NZPOLY,NZFRP.NZWALL
COMMON /NUMY/ NY5.NY4.NYIL.NYWALL.NY IR.NY7.NI8
COMMON /GRIDBY/ NTY4.NTY IL.NTYWAL.NTI1R.NTY7.NCOL
COMMON /GRIDBZ/ NTZFRP.NTZWAL
COMMON /ZCOOR/ ZPOLY. ZFRP.ZWALL
COMMON /YCOOR/ Y5.Y4.Y1L.YWALL.Y1R.Y7.Y8
COMMON /MATS/ RKAY(6).RHO(6).CP(6)
COMMON /HTCOEF/ HTC (8), TAMB (8), TAMBP (8)
COMMON /HEAT/ Q(21),IEB.IQPR.ICHECK (5)
DIMENSION T(NN), HT(13).N(5)
C

C
WRITE (6.3001) TIME
$H T(1)=Q(1)+Q(2)+Q(3)$
$H T(2)=Q(4)$
$\mathrm{HT}(3)=Q(5)+Q(6)+Q(7)$
$H T(4)=Q(8)+Q(9)+Q(10)$
$\mathrm{HT}(5)=0(11)$
$\mathrm{HT}(6)=\mathrm{Q}(12)$
$H T(7)=Q(13)+Q(14)+Q(15)$
$H T(8)=Q(16)$
$\mathrm{HT}(9)=0(17)$
$H T(10)=Q(18)$
$H T(11)=Q(19)$
$\mathrm{HT}(12)=\mathrm{Q}(20)$
$\mathrm{HT}(13)=\mathrm{Q}(21)$
IF (ICHECR (1).EQ.0) GO TO 100
WRITE (6.2003) (HT(I), $I=1.13$)
HEAT BALANCES FOR VARIOUS REGIONS

REGION 5-6-4L-4U-1L-2L
$\mathrm{H} 1=\mathrm{HT}(7)-\mathrm{HT}(8)+\mathrm{HT}(1)-\mathrm{HT}(12)$
100 IF (ICHECK (2).EQ. 0) GO TO 200
$\mathrm{H} 2=\mathrm{HT}(8)-\mathrm{HT}(11)+\mathrm{HT}(2)-\mathrm{HT}(9)$
C
C REGION 1R-2R-7L-7U-8-9
200 IF (ICHECR (3).EQ. O) GO TO 300
$\mathrm{H} 3=\mathrm{HT}(9)+\mathrm{HT}(10)+\mathrm{HT}(4)+\mathrm{HT}(3)$
C
C REGION 2C
C
300 IF (ICHECK (4). EQ. O) GO TO 400
H4 $=-\mathrm{HT}(13)+\mathrm{HT}(12)+\mathrm{HT}(11)-\mathrm{HT}(10)$
C
C
400 IF (ICHECK (5).EQ. 0) GO TO 500
$\mathrm{H} 5=\mathrm{HT}(6)+\mathrm{HT}(5)+\mathrm{HT}(13)$
TEST FOR PRINTING
500 IF (ROUNT. LT. IQPR) RETURN
KOUNT $=0$
C
C PRINT ENERGY BALANCES
C
IF (ICHECX (1).GE.0) 00 TO 600
CALL HEADER1
WRITE $(6,2000)$ \&1.H2. H3. H4. H5
C
C

C
C
C
C

COMPUTE FRAME COEFFICIENT

- average mc spectmen surface temp

DELTAZ=ZWALL-ZFRP

PER=15. 236
$\mathrm{AW}=13.93$
$600 \mathrm{QT}=\mathrm{PER}$ *HT(7)+AW*HT(6)/DELTAZ
C
C PRINT NET ENERGY INTO OR OUT OF MC
WRITE (6.2001) QT
C
AHTMC $=$ AW ${ }^{*}$ HT (6) $/$ DELTAZ
FCMCA $=1$. $-\mathrm{ABS}($ AHTMC $) / \mathrm{ABS}$ (QT)
C
C FRAME COEFFICIENT USING 1 - D HEAT FLOW THROUGH WALL
$\mathrm{J}=$ NTYWAL
$\mathrm{I}=$ NTZWAL
CALL GETNOD (I.J.N)
TR=T ($N(1)$)
J=NTY 1 L
CALL GETNOD (I,J.N)
$\mathrm{TL}=\mathrm{T}(\mathrm{N}(1))$
HTW=AW (TR-TL) RRAY(5)/(YWALL-Y1L)
PCHXS=1.-ABS(HTW)/ ABS(QT)
C
C
C
PRINT RELATIVE PRAME COEFICIENTS
WRITE (6.2002) HTW.FCMCA.PCHXS
CALL HEADER1
C
RETURN
c
2000 FORMAT (//

- / 20X."ENERGY BALANCES*//
- / 15X."H1 (REGION 5-6-40-4L-1L-2L) =", E14.7/

- / 15X. nH3 (REGION 1R-2R-7L-7U-8-9) =", E14.7/
- 15X." ${ }^{\circ} 4$ (REGION 2C) $=$).E14.7/
- 15X."H5 (REGION 3) =".E14.7///)

2001 PORMAT (//

- / 20X. "NET MC ENERGY =「.E14.7///)

2002 FORMAT (//
"/ 20X."FRAME COEFFICIENTS-REL"/

- / 15X."HTW
= ".E14.7/
- 15X."FCMCA =`.E14.7/
- / 15X., ${ }^{\text {FFCHXS }}$ =".E14.7///)

2003 FORMAT (//
" / 20x,"T OTAL LINE Q'S"//

- / 15X."HT (1)
- / 15x."hT (2)
- / 15X."HT (3)
- / 15X."HT (4)
- / 15x." HT (5)
- / 15X. "HT (6)
- / 15X. "HT (7)
- / 15X."HT (8)
- / 15X."HT (9)
- / 15X."HT (10)
- / 15X."HT (11)
- / 15X."HT (12)
- / 15X." HT (13)
$={ }^{\text {T. }}$ E14.7/
$=$ = $.814 .7 /$
$=$ =. E14.7/
=".E14.7/
$=$ =. E14.7/
= $=$. E14.7/
$=$ =. E14.7/
$=$ = ${ }^{-E 14.7 /}$
$=$ = .814 .71
=". E14.7/
$=$ =. E14.7/
$=$ = . $814.7 /$
$=$ = $.814 .7 / / 1)$
3001 FORMAT (//
* / 20X. "ENERGY BALANCES \triangle T"/
- /20X." TIME = ".E14.7///)

C
END


```
C
    SUBROUTINE QCONVH (NH,I,NC1,NC2,DX,T,MN,F)
C
```



```
C* SUBROUTINE TO COMPUTE HORIZONTAL CONVECTIVE Q'S
```



```
C
    COMMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
    COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
C
    DIMENSION T(NN),N(5)
C
    TI=ALFA*TAMBP(NH)+(1. -ALPA)*TAMB(NH)
    NDIV =NC2-NC1
    IF (NDIV.GE.1) GO TO 100
    CALL HEADER1
    URITE (6,3000) I,NC1,NC2,NDIV
    CALL ADIOS (2)
C
    100 J1=NC1+1
    J2=NC2-1
    SUM=0.
C
C FIRST NODE
C
    JxNC1
    CALL GETNOD (I,J,N)
    SUM=SUM+0.5*(TI-T(N(1)))
C
C LAST NODE
C
    J=NC2
    CALL GETNOD (I,J,N)
    SUM=SUM+0.5*(TI-T(N(1)))
C
C INTERIOR NODES
C
    DO 200 J=J1,J2
    CALL GETNOD (I,J,N)
    200 SUM=SUM+(TI-T(N(1)))
C
        F=HTC(NH)&DI*SUM
C
    RETORN
C
    3000 FORMAT (//15X, "--- ERROR TERMINATION ---"/
        * / 20X, FROM OCONVH - HDIV=0"/
        * / 20X,"I,NC1,NC2,HDIV = ",5I5)
C
    END
```

```
C
```



```
C
    SUBROUTINE QCONVV (NH,NR1,NR2,J,DX,T,NN,F)
C
```



```
C* SUBROUTINE TO COMPUTE HORIZONTAL CONVECTIVE Q'S
```



```
C
        COMMON /HTCOEF/ HTC(8),TAMB(8),TAMBP(8)
        COMMON /TIM/ TIMO,TIMF,DELTA,ALFA,IRFINE
C
        DIMENSION T(NN),N(5)
C
    TI=ALFA=TAMBP(NH)+(1.-ALFA)*TAMB(NH)
    NDIV=NR2-NR1
    IF (NDIV.GE.1) GO TO 100
        CALL HEADER1
        URITE (6,3000) NR1,NR2,J,NDIV
        CALL ADIOS (2)
C
    100 I1=NR 1+1
        I2=NR2-1
        SUM=0.
C
C PIRST NODE
c
        I=NR1
        CALL GETNOD (I,J,N)
        SUM=SUM+O.5"(TI-T(N(1)))
C
C LAST NODE
c
        I=NR2
        CALL GETNOD (I,J,N)
        SUM=SUM+0.5"(TI-T(N(1)))
C
C INTERIOR NODES
C
        DO 200 I=I1,I2
        CALL GETNOD (I,J,N)
    200 SUM=SUM+(TI-T(N(1)))
C
        F=HTC(NH)*DX=SUM
C
    RETURN
C
3000 FORMAT (//15X,"--- ERROR TERMINATION ---"/
        * / 20X,"FROM QCONVV - NDIV=0"/
        * / 20X,"NR1,NR2,J,NDIV = ",5I5)
C
        END
```

```
C
```



```
C
    SOBROUTINE QCONDV (H,NR1,NR2,J,ND,DX,DY,C,T,MH,F)
C
```



```
C* SUBROUTINE TO COMPUTE VERTICAL CONDUCTION FLUX
```



```
C
            COMMON /MATS/ RXAY(6),RHO(6),CP(6)
            COMMON /DBUG/ IDBUG(10)
C
c
            NDIV=NR2-NR1
            IF (NDIV.GE. 1) GO TO 100
            CALL HEADER1
            URITE (6,3000) NR1,NR2,J,NDIV
            CALL ADIOS (2)
    100 I 1=NR 1+1
            I2=NR2-1
            SUM=0.
C
C FIRST POINT
C
    I=NR1
    CALL GETNOD (I,J,N)
    SOM=SUM+0.5'(T(N(1))-T(N(1)+ND))
C
C LAST NODE
C
    I=NR2
    CALL GETNOD (I,J,N)
    SUM=SUM+0.5'(T(N(1))-T(N(1)+ND))
C
C INTERIOR NODES
DO 200 I=I1,I2
    CALL GETNOD (I,J.N)
    200 SUM=SUM+T(N(1))-T(N(1)+ND)
C
    F=C*RKAY(M)*DY*SUM/(DX)
C
C
C HRITE DEBUG INFO
C
C
    IF (IDBUG(8).EQ.0) RETURN
    WRITE (6,2000) M,NR1,NR2,J,F
    RETURN
C
    2000 FORMAT (//
    * / 20X, IN QCONDV - DEBUG INFON/
    / / 15X,MM,NR1,NR2,J,F = ',4I5,5I,E14.7//)
    3000 FORMAT (//15X, m... ERROR TERMINATION ---*//
        * / 20X,"IN QCONDV - NDIV=0"/
        * / 20X,"NR1,NR2,J,NDIV = ",5I5)
C
            END
```

```
C
```



```
C
        SUBROUTINE QCONDH (M,I,NC1,NC2,ND,DX,DY,C,T,NN, F)
C
```



```
C* SUBROUTINE TO COMPUTE HORIZONTAL CONDUCTION FLUX
```



```
C
        COMMON /MATS/ RKAY(6),RHO(6),CP(6)
        COMMON /DBUG/ IDBOG(10)
C
C
    DIMENSION T(NN),N(5)
    NDIV=NC2-NC1
    IF (NDIV.GE.1) GO TO 100
    CALL HEADER1
    WRITE (6,3000) I,NC1,NC2,NDIV
    CALL ADIOS (2)
    100 J1=NC1+1
        J2=NC2-1
        SUM=0.
C
C FIRST POINT
    J=NC1
    CALL GETNOD (I,J.N)
    SUM=SUM+0.5"(T(N(1))-T(N(1)+ND))
C
C LAST NODE
J=NC2
    CALL GETNOD (I,J,N)
    SUM=SUM+0.5"(T(N(1))-T(N(1)+ND))
c
C INTERIOR NODES
C
            DO 200 J=J1,J2
            CALL GETNOD (I,J,N)
        200 SUM=SUM+T(N(1))-T(N(1)+ND)
    C
        F=C*RKAY(M)"DY*SUM/(DX)
    c
C WRITE DEBOG INFO
C
            IF (IDBUG(8).EQ.0) RETURN
            WRITE (6,2000) M,I,NC 1,NC2,F
    2000 FORMAT (//
        * / 20X, IIN QCONDH - DEBUG INFO"/
        / 15X, "M,I,NC1,NC2,F = ",4I5,5X,E14.7//)
    C
        RETURN
    C
    3000 FORMAT (//15X,"--- ERROR TERMINATION ---*/
        * / 20X,"IN QCONDH - NDIV=0"/
        - / 20X, "I,NC1,NC2,NDIV = ",5I5)
C
            END
```



```
    SUBROUTINE PLOTH (IND,TIME,T,NN)
```



```
- SUBROUTINE TO PERFORM CONTOUR PLOTS INPUI
```



```
    COMMON /PLOTS/ IPLT,NUMCON, NUMHIS,IOPT,NOOT,RANGE(4),MSTEPH,
    ICHAR(10),NSTEPC
        COMMON /PHIST/ ITITH(5,72),ITITXH(5,36),ITITYH(5,36),MH(5),
        - NODESH(5,5),H,DOIN, MMAX
        DIMENSION T(NN)
        DIMENSION ITITLE(144),YH(81,5,5),Y(81,5),X(81),IMAG4(5151)
        DATA IMC,IY /1,81/
        KH}=\textrm{KH}+
        I(XH)=TIME
        FILL PLOT ARRAY
        DO 100 I=1,NOMCON
        M=MH(I)
        DO 100 J=1,M
        NODE =NODESH(I,J)
100 YH(EH,J,I)=T(NODE)
    IF (IND.EQ.0) RETORN
    PERFORM PLOTTING
    CALL HEADERI
    WRITE (6,4000) TIME
    DO 400 I= 1, NUMHIS
    M=MH(I)
    FILL TITLE
    L=0
    DO 210 J=1,72
    L=L+1
210 ITITLE(L)=ITITH(I,J)
    DO 220 J=1,36
    L=L+1
220 ITITLE(L)=ITITXH(I,J)
    DO 230 J=1,36
    L=L+1
230 ITITLE(L)=ITITYH(I,J)
    FILL THIS PLOT ARRAY
    DO 300 L=1,N
    DO 300 J=1,M
300 Y(J,L)=YH(L,J,I)
```

```
    SET RANGE
    RANGE(1)= 2MIN
    RANGE(2)=XMAZ
    PERFORM PLOT
    IF (I.NE. 1) CALL HEADERI
    WRITE (6,2000) I
    DO 395 J=1,M
3 9 5 \text { WRITE (6,2001) J.NODESH(I,J)}
400 CALL USPLT (X,Y,IY,N, KH, INC,ITITLE,RANGE,ICHAR,IOPT,
    IMAG4,IER)
    RETURN
2000 FORMAT (//25X, "C URVE O UT P OTM/
    / 15X, "CURVE NO. ",I5//
    / / 10X,"LABEL",5X, "NODE"/)
2001 FORMAT
    - 5(/7X,I5,10X,I5))
4000 FORMAT (/////15X,"T I ME HISSTORT PLOTS AT"/
    * /30X,"T I ME =",E12.5/////)
    END
```


C
SUBROOTINE PLOTIN (ITRAN)
C

C* SUBROUTINE TO PERFORM BASE PLOT INPOT

C
COMMON /PLOTS/ IPLT, NUMCON, NUMHIS, IOPT, NOUT, RANGE (4), NSTEPH,
- ICHAR(10), NSTEPC
C
C READ PLOT PARAMETERS
C
READ $(5,1000)$ NUMCON, NUMHIS, IOPT, NOUT, MSTEPC
READ $(5,1001)$ TMIN, TMAX
CALL EEADER 1
WRITE $(6,2000)$ NUMCON, WUHHIS, IOPT, ROOT, WSTEPC, THIN, TMAX
IF (NODT. EQ.2. OR. NOOT. BQ.6) GO TO 100
WRITE $(6,3000)$
WRITE $(6,3001)$ NOUT
CALL ADIOS (2)
C
100 CALL UGETIO (3,NIN,NOUT)
C
IF (HUMCON.LE.5) GO TO 200
WRITE $(6,3000)$
WRITE $(6,3002)$ EUMCON
C
200 IF (NOMHIS. LE.5) GO TO 300
URITE $(6,3000)$
WRITE $(6,3003)$ NOMHIS
C
C
300 IF (NOMCON. NE. O) CALL PLTCIN (NOMCON)
c
C
C
C
c
C
c
C
C
SET RANGE
RANGE (3) $=$ TMIN
RANGE (4) $=$ TMAX
C

```
            gETURN
C
    1000 FORMAT (16I5)
    1001 FORMAT (8E10.0)
    2000 FORMAT (//
        */ 20X,"PLOT BASE INFORMATION"//
        | 15X,"NuMCON =`,I5/
        * / 15X,"NUMHIS =",I5/
        | / 15X,"IOPT
        =",15/
        / 25X," 80 CHARACTERS - IOPT = O"/
        - / 25X,"126 CHARACTERS - IOPT = 1"/
        - / 15X,"NOUT
        =",I5/
        * / 25X, wFILE IMSLS.OJT - NOUT = 2"/
        * / 25X,"FILE FLANK.OUT - NOUT = 5"/
        * / 15x,"STEP INTERVAL FOR CONTOUR PLOTS
        " / 15X, "range for PLOTS"/
        * / 25X,"TMIN
    / 25x "TMAX
    3000 FORMAT (//"---ERROR TERMINATION--- FROM PLOTIN"//)
    3001 FORMAT (15x, "NOUT = ",15," SHOULD BE 2 OR 6")
    3002 FORMAT (15X,"NUMCON = ",I5," SHOULD BE < OR = 5")
    3003 FORMAT (15X, "NUMHIS = ",15," SHOULD BE < OR = 5")
C
END
```



```
C
    SUBROUTINE PLOTC (IND,TINE,T,NN)
C
```



```
C^ SUBROUTINE TO PERFORM CONTOUR PLOTS INPUT
```



```
C
        COHMON /DBOG/ IDBOG(10)
        COMMON /PLOTS/ IPLT,NUMCON,NUMHIS,IOPT,NOUT, RANOE(4),NSTEPH,
        - ICHAR(10),NSTEPC
        COMMON /PCONT/ ITITC(5,72),ITITXC(5,36),ITITYC(5,36),NC(5),
        - NODESC}(5,20
C
    DIMENSION T(NN)
        DIMENSION ITITLE(144),YC(20,5,5),Y(20,5),X(20),
        -
                        IMAG4(5151),TIMSAV(5)
C
    DATA INC,IYC /1.5/
C
    100 KCxKC+1
        IF (IND.EQ.1.OR.XC.EQ.6) GO TO 300
        TIMSAV (KC)=TIME
C
C FILL PLOT ARRAY
C
        DO 200 I=1,NUMCON
        N=NC(I)
        DO 200 J=1,N
        NODE=NODESC(I,J)
    200 YC(J,KC,I) =T(NODE)
C
    RETORN
C
C
    300 KC=KC-1
    CALL HEADER1
C
    WRITE (6,4000) KC,TIME
    DO 600 I=1,NUMCON
    IF (I.NE.1) CALL HEADER1
    WRITE (6,2000) I
    DO 305 J=1,KC
    305 WRITE (6,2001) J,TIMSAV(J)
C
C FILL TITLE
C
        L=0
        DO 310 J=1,72
        L=L+1
    310 ITITLE(L)=ITITC(I,J)
        DO 320 J=1,36
        L=L+1
    320 ITITLE (L)=ITITXC(I,J)
        DO 330 J=1,36
        L=L+1
    330 ITITLEE(L)=ITITYC(I,J)
C
```

```
C
                    FILL THIS PLOT ARRAY
    N=NC(I)
    DO 400 J=1,N
    X(J)=NODESC(I,J)
    DO 40'O L=1,KC
    400 Y(J,XC)=YC(J,XC,I)
C
C PICK OUT MAX,MIN
c
    ZMIN=1.E50
    DO 500 J=1,N
    500 XMIN=AMIN1(XMIN,X(J))
C
    XMAX=-1. E50
    DO 510 J=1,N
    510 XMAX=AMAX 1(XMAX,X(J))
C
    RANGE(1)=XMIN
    RANGE(2)=XMAX
    IF (IDBOG(10).EQ.0) GO TO 520
    WRITE (6,5000) I,TIME
    WRITE (6,5001) X
    WRITE (6,5002) Y
    WRITE (6,5003) IYC,N, KC, INC
    WRITE (6,5004) RANGE
    WRITE (6,5005) IOPT
    5 2 0 ~ C O N T I N U E ~
c
C PERFORM PLOT
C
    600 CALL OSPLT (X,Y,IYC,N,XC,INC,ITITLE, RANGE,ICHAR,IOPT,
        * IMAG4,IER)
C
        KC=0
        IF (IND.NE.1) GO TO 100
C
    RETURN
C
2000 FORMAT (//25X,"C D R VE O U T P UT"/
    / / 15x,"CURVE NO. ",I5//
    / / 10X,"LABEL",5X,"TIME"/)
2001 FORMAT (
    * 5(/7X,I5,6X,E12.5))
4000 FORMAT (15X,I5," NO. OF CONTOUR PLOTS ATM/
    / / 30X,"T IME =', E12.5/////)
5000 FORMAT (5X,"DEBUG(10) OUTPOT, PLOT NO.",I5," TIME =",E12.5//)
5001 FORMAT (5X,"X - MATRIX ",/10(/10(1X,E11.4)))
5002 FORMAT (5X,"Y - MATRIX ",/10(/10(1X,E11.4)))
5003 FORMAT (5X, "IYC,N,KC,INC = ",16I5)
5004 FORMAT (5X,"RANGE ",5(2X,E12.4))
5005 FORMAT (5X,"IOPT = ",I5)
    END
```

```
C
C4*)
C
    SOBROUTINE PLTCIN (NOMCON)
C
```



```
C* SOBROUTINE TO PERFORM CONTOUR PLOTS INPOT
```



```
C
    COHMON /PCONT/ ITITC(5,72),IIITXC (5,36), ITITYC (5,36),NC(5),
        - NODESC}(5,20
C
    CALL HEADER1
    WRITE (6,4000)
C
    DO 100 I=1,NUMCON
    WRITE (6,2000) I
C
C READ TITLES
C
    READ (5,1002) (ITITC(I,J),J=1,72)
    READ (5,1002) (ITITXC (I,J),J=1,36)
    READ (5,1002) (ITITYC(I,J),J=1,36)
    WRITE (6,2001) (ITITC(I,J),J=1,72)
    HRITE (6,2002) (ITITXC(I,J),J=1,36)
    WRITE (6,2003) (ITITYC(I,J),J=1,36)
C
C READ NUMBER OF NODE POINTS
    READ (5,1000) NC(I)
    NCI=NC(I)
    IF (NCI.GT.O.AND.NCI.LE. 20) GO TO 10
    WRITE (6,3000)
    URITE (6,3001) I,NCI
    CALL ADIOS (2)
C
    10 READ (5,1000) (NODESC(I,J),J=1,NCI)
        URITE (6,2004) I,NCI,(NODESC(I,J),J=1,MCI)
C
    100 CONTINOE
C
    RETORN
C
    1000 FORMAT (16I5)
    1002 PORMAT (72A1)
    2000 FORMAT (/////25X, CONTOOR GRAPH NO. ".I5/
    * / 15X,"T I T L E S"/)
    2001 FORMAT (/ 15X,"GRAPH TITLE*
    / / 5x,72A1)
    2002 FORMAT (/20X,"X-AIIS TITLE"/10X,72A1)
    2003 PORMAT (/20X,"Y-AIIS TITLE*/10X,72A1)
    2004 PORMAT (/
        * 15X, "GRAPH NO. ",I5,5X,"NO. OF POINTS ".I5
        - / 15X, "POINTS =",20I5)
    3000 FORMAT (15x,"--- ERROR TERMINATION FROM PLTCIN---")
    3001 FORMAT (/15X, "NO. OF POINTS IS WRONG, GRAPH NO. =",I5/
        * / 30X,"NO OF POINTS = ",I5,5X"SHOULD BE > O ARD < OR = 20")
    4000 PORMAT(/20X, "C ONTOOR PLOT INPUT ECBON//)
C
        RETORN
C
            END
```

```
FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE
\begin{tabular}{rrrrrrrrrr}
2 & -1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
-1 & -1 & -1 & -1 & -1 & & & & & \\
4 & 3 & 4 & 5 & 4 & 3 & 4 & & &
\end{tabular}
\begin{tabular}{lllllll}
.254 & .273 & \(.400^{3}\) & 4 & & & .502
\end{tabular}
        \(.456 \quad .457 \quad .957\)
            \(\begin{array}{llllllll}2.0 & 0.0 & 7.45 & 7.45 & 0.0 & 2.33 & 2.33 & 0.0\end{array}\)
            \(\begin{array}{llllllll}25.0 & 100 & 65.0 & 65.0 & 100 & 38 . & 38 . & 100 .\end{array}\)
            \(\begin{array}{llll}0.022 & 0.430 & 0.180 & 0.180\end{array}\)
            32.00 1920. 1100. 1100. 15.10
            \(921.1 \quad 963.0\) 2000. \(2000 . \quad 1214\).
        \(1 \quad 38.0 \quad 2 \quad 38.2\)
                            \(900 . \quad 1.0\)
            \(\begin{array}{rrrr}25.0 & 0 & 1\end{array}\)
                20. 80.
TEST PLOT FOR CONTOURS - RJO 09/01/82
I - AXIS NODES
I - AXIS TEMPERATURE (C)
            \(\begin{array}{llllllllllllllll}20 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 10 & 16\end{array}\)
    \(\begin{array}{llll}17 & 18 & 19 & 20\end{array}\)
TEST PLOT - TIME HISTORIES 08/27/82 BY PJB
\(X\) - AXIS TIME (SEC)
\(Y\) - AXIS TEMPERATURE (C)
    12345
```

FLamR loss polystraeme b-B 9-01-82 teapb-static Cass

```
COMIROLDATA
```

 HUMTBC \(=2\)
 FOMIT \(=-1\)
 IDATA \(=0\)
 IPR \(=1\)
 IRPINE \(=1\)
 IDGT \(=1\)
 IEB \(\quad\). 1
 IQPR \(=1\)
 ITRAR \(=0\)
 IPLI \(=0\)
 DEBUG PARAMETERS

1 (WRITE A.C MATRICES. B VECTOR) $=0$	
2 (WRITE DECOMPOSED C MATRII $)=0$	
3 (WRITE MODAL ASSOC.	$=0$
4 (WRITE ELEMENT MATRICES) $=0$
5 (WRITE INTERIOR DATA) $=0$
6 (WRITE C BEFORE DECOMP.) $=0$
7 (WRITE B VECTOR) $=0$
$8($	$)=0$
$9($	$)=0$
$10($	$)=-1$

```
        ENERGI BALANCES
        ICHECZ(1) = -1
        ICHECX (2) = -1
        ICHECE (3)
        = -1
ICHECE (4)
    = -1
ICHECE(5)
    = -1

FLANK LOSS POLYSTYRENE B-B 9-01-82 TEAPB-STATIC CASE

GRID SPECIFICATIOB
\begin{tabular}{ll} 
Y NUMBERS POLLOH & \(=4\) \\
NY5 & \(=3\) \\
WY4 & \(=4\) \\
NY1L & \(=5\) \\
NYWALL & \(=4\) \\
WI 1R & \(=3\) \\
NY7 & \(=4\)
\end{tabular}

Y'S FOLLOW
\begin{tabular}{ll} 
Y5 & \(=0.2540 \mathrm{E}+00\) \\
Y4 & \(=0.2730 \mathrm{E}+00\) \\
YIL & \(=0.4000 \mathrm{E}+00\) \\
MALL & \(=0.5020 \mathrm{E}+00\) \\
Y1R & \(=0.5780 \mathrm{E}+00\) \\
Y7 & \(=0.6100 \mathrm{E}+00\) \\
Y8 & \(=0.8640 \mathrm{E}+00\)
\end{tabular}

2 NUMBERS FOLLOU
NZPOLI
\(=5\)
W2FRP
\(=3\)
NZWALL
\(=5\)

2'S FOLLOH
2POLI \(=0.4560000 \mathrm{E}+00\)
2FRP \(\quad=0.4570000 \mathrm{E}+00\)
2WALL \(=0.9570000 \mathrm{E}+00\)

FLANX LOSS POLYSTYREME B-B 9-01-82 TEAPB-STATIC CASE


COMULATIVENODENEMBERS
\(Y\) - DIRECTION NODE NUHBERS

NII4
WIIIL
WITWAL

NTI 18

NTI7
NCOL
Z - DIRECTION NODE NOMBERS
NTZPRP
NIZWAL

TOTAL NUMBER OF NODES (EQUATIONS) : 246
LOWER NOMBER OF NODE POINTS \(\quad 216\)

\section*{}

FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE

```

CONVECTIVECOEFFICIENTS

```

HEAT TRANSFER COEFFICIENTS FOLLON


FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE



FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE


1
\(\begin{array}{rlrl}\text { TEMPERATURE BOUNDARY COND } \\ \text { NUMBER OF TEMPERATURE BCS } & = & 2\end{array}\)
\(10.380 \mathrm{E}+0220.382 \mathrm{E}+02\)
1


FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE

```

 INITIALTEMPERATORES
 IMITIAL TEMPERATURE
 = 0.00000E +00
 I

```

```

FLANX LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE

```

```

 --- INPOT PHASE COMPLETE ---
 1

```

```

 FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE
    ```

\begin{tabular}{|c|c|}
\hline DETERMINANT & \(=0.1374913 \mathrm{E}+76\) \\
\hline ACCURACY TEST PARAMETER & \(=0.19246618+06\) \\
\hline NUMBER OF EQUATIONS & 246 \\
\hline ROW SI2E IN CALLING ROUTINE & 246 \\
\hline ERROR PARAMETER (129-SIN., 34-ACC.) & \(=0\) \\
\hline
\end{tabular}

\section*{TEMPERATORE STATE}

AT TIME \(=0.00000 E+00\)

\begin{tabular}{|c|c|c|}
\hline \(0.0000000 \mathrm{E}+00\) & 51 & 0. \(0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 52 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 53 & 0.0000000E+00 \\
\hline 0.0000000E+00 & 54 & 0.0000000E+00 \\
\hline \(0.0000000 \mathrm{E}+00\) & 55 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 56 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 57 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 58 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 59 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 60 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 61 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 62 & 0.0000000E+00 \\
\hline 0.0000000E+00 & 63 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 64 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 65 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 66 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 67 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 68 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 69 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 70 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 71 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 72 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 73 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 74 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 75 & 0. \(0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 76 & \(0.00000008+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 77 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 78 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 79 & 0.0000000E+00 \\
\hline \(0.0000000 \mathrm{E}+00\) & 80 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 81 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 82 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 83 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 84 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 85 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 86 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 87 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 88 & \(0.0000000 E+00\) \\
\hline 0.0000000E+00 & 89 & 0.0000000E+00 \\
\hline 0.0000000E+00 & 90 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 91 & 0.0000000E+00 \\
\hline \(0.0000000 \mathrm{E}+00\) & 92 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 93 & 0.0000000E+00 \\
\hline \(0.0000000 \mathrm{E}+00\) & 94 & 0.0000000E+00 \\
\hline \(0.0000000 \mathrm{E}+00\) & 95 & \(0.0000000 \mathrm{E}+00\) \\
\hline 0.0000000E+00 & 96 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 97 & \(0.0000000 \mathrm{E}+00\) \\
\hline \(0.0000000 \mathrm{E}+00\) & 98 & 0. \(0000000 \mathrm{E}+00\) \\
\hline 0.0000000E+00 & 99 & 0.0000000E+00 \\
\hline \(0.0000000 \mathrm{E}+00\) & 100 & 0. \(0000000 \mathrm{E}+00\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
101 & \(0.0000000 \mathrm{E}+00\) & 151 \\
102 & \(0.0000000 \mathrm{E}+00\) & 152 \\
103 & \(0.000000 \mathrm{E}+00\) & 153 \\
104 & \(0.000000 \mathrm{E}+00\) & 154 \\
105 & \(0.000000 \mathrm{E}+00\) & 155 \\
106 & \(0.0000000 \mathrm{E}+00\) & 156 \\
107 & \(0.0000000 \mathrm{E}+00\) & 157 \\
108 & \(0.0000000 \mathrm{E}+00\) & 158 \\
109 & \(0.000000 \mathrm{E}+00\) & 159 \\
110 & \(0.0000000 \mathrm{E}+00\) & 160 \\
111 & \(0.0000000 \mathrm{E}+00\) & 161 \\
112 & \(0.0000000 \mathrm{E}+00\) & 162 \\
113 & \(0.0000000 \mathrm{E}+00\) & 163 \\
114 & \(0.0000000 \mathrm{E}+00\) & 164 \\
115 & \(0.0000000 \mathrm{E}+00\) & 165 \\
116 & \(0.0000000 \mathrm{E}+00\) & 166 \\
117 & \(0.0000000 \mathrm{E}+00\) & 167 \\
118 & \(0.0000000 \mathrm{E}+00\) & 168 \\
119 & \(0.0000000 \mathrm{E}+00\) & 169 \\
120 & \(0.0000000 \mathrm{E}+00\) & 170 \\
121 & \(0.0000000 \mathrm{E}+00\) & 171 \\
122 & \(0.0000000 \mathrm{E}+00\) & 172 \\
123 & \(0.0000000 \mathrm{E}+00\) & 173 \\
124 & \(0.0000000 \mathrm{E}+00\) & 174 \\
125 & \(0.0000000 \mathrm{E}+00\) & 175 \\
126 & \(0.0000000 \mathrm{E}+00\) & 176 \\
127 & \(0.0000000 \mathrm{E}+00\) & 177 \\
128 & \(0.0000000 \mathrm{E}+00\) & 178 \\
129 & \(0.0000000 \mathrm{E}+00\) & 179 \\
130 & \(0.0000000 \mathrm{E}+00\) & 180 \\
131 & \(0.0000000 \mathrm{E}+00\) & 181 \\
132 & \(0.0000000 \mathrm{E}+00\) & 182 \\
133 & \(0.000000 \mathrm{E}+00\) & 183 \\
134 & \(0.0000000 \mathrm{E}+00\) & 184 \\
135 & \(0.0000000 \mathrm{E}+00\) & 185 \\
145 & \(0.0000000 \mathrm{E}+00\) & 186 \\
146 & \(0.0000000 \mathrm{E}+00\) & 195 \\
147 & \(0.0000000 \mathrm{E}+00\) & 196 \\
148 & \(0.0000000 \mathrm{E}+00\) & 197 \\
149 & \(0.0000000 \mathrm{E}+00\) & 199 \\
150 & \(0.0000000 \mathrm{E}+00\) & 200 \\
137 & \(0.0000000 \mathrm{E}+00\) & 187 \\
143 & \(0.0000000 \mathrm{E}+00\) & 188 \\
138 & \(0.0000000 \mathrm{E}+00\) & 189 \\
139 & \(0.0000000 \mathrm{E}+00\) & 190 \\
140 & \(0.0000000 \mathrm{E}+00\) & 191 \\
141 & \(0.0000000 \mathrm{E}+00\) & 192 \\
142 & \(0.000000 \mathrm{E}+00\) & 193 \\
143
\end{tabular}
\(0.0000000 \mathrm{E}+00\) \(0.0000000 \mathrm{E}+00\) 0. \(0000000 \mathrm{E}+00\) 0. \(0000000 \mathrm{E}+00\) \(0.0000000 \mathrm{E}+00\)

TEMPERATORESTATE

\author{
AT TIME \(=0.10000 \mathrm{E}+01\)
}
\begin{tabular}{|c|c|c|}
\hline \(0.3800000 \mathrm{E}+02\) & 51 & \(0.3522160 \mathrm{E}+02\) \\
\hline \(0.3820001 \mathrm{E}+02\) & 52 & \(0.3524992 \mathrm{E}+02\) \\
\hline \(0.2653259 \mathrm{E}+02\) & 53 & \(0.3528310 \mathrm{E}+02\) \\
\hline \(0.2618610 \mathrm{E}+02\) & 54 & \(0.3529651 \mathrm{E}+02\) \\
\hline \(0.2621045 E+02\) & 55 & \(0.3572284 \mathrm{E}+02\) \\
\hline \(0.2621477 \mathrm{E}+02\) & 56 & \(0.3547023 \mathrm{E}+02\) \\
\hline \(0.2619913 \mathrm{E}+02\) & 57 & \(0.3483316 \mathrm{E}+02\) \\
\hline \(0.2573653 \mathrm{E}+02\) & 58 & \(0.3465353 \mathrm{E}+02\) \\
\hline \(0.2562080 \mathrm{E}+02\) & 59 & \(0.3465717 \mathrm{E}+02\) \\
\hline \(0.2561020 \mathrm{E}+02\) & 60 & \(0.3466478 \mathrm{E}+02\) \\
\hline \(0.2563477 \mathrm{E}+02\) & 61 & \(0.3467639 \mathrm{E}+02\) \\
\hline \(0.2565886 \mathrm{E}+02\) & 62 & \(0.3528627 \mathrm{E}+02\) \\
\hline \(0.2568828 \mathrm{E}+02\) & 63 & 0.3600941E+02 \\
\hline \(0.2572438 \mathrm{E}+02\) & 64 & \(0.3685211 \mathrm{E}+02\) \\
\hline \(0.2577219 \mathrm{E}+02\) & 65 & \(0.3780980 \mathrm{E}+02\) \\
\hline \(0.2584421 E+02\) & 66 & \(0.3847417 \mathrm{E}+02\) \\
\hline \(0.2595937 \mathrm{E}+02\) & 67 & \(0.3916658 \mathrm{E}+02\) \\
\hline \(0.2617430 \mathrm{E}+02\) & 68 & \(0.3987474 \mathrm{E}+02\) \\
\hline \(0.2660481 \mathrm{E}+02\) & 69 & \(0.4058566 \mathrm{E}+02\) \\
\hline \(0.2750252 \mathrm{E}+02\) & 70 & \(0.4128700 \mathrm{E}+02\) \\
\hline \(0.2755939 \mathrm{E}+02\) & 71 & \(0.4192239 \mathrm{E}+02\) \\
\hline \(0.2753908 \mathrm{E}+02\) & 72 & \(0.4253560 E+02\) \\
\hline \(0.2744057 E+02\) & 73 & \(0.4312404 E+02\) \\
\hline \(0.2607216 \mathrm{E}+02\) & 74 & \(0.4368668 \mathrm{E}+02\) \\
\hline \(0.2592133 E+02\) & 75 & \(0.4372028 \mathrm{E}+02\) \\
\hline \(0.2590688 \mathrm{E}+02\) & 76 & \(0.4374571 \mathrm{E}+02\) \\
\hline \(0.2590627 E+02\) & 77 & \(0.4376297 \mathrm{E}+02\) \\
\hline \(0.3561974 \mathrm{E}+02\) & 78 & \(0.4426237 E+02\) \\
\hline \(0.3493483 \mathrm{E}+02\) & 79 & \(0.4456305 \mathrm{E}+02\) \\
\hline \(0.3215359 \mathrm{E}+02\) & 80 & \(0.44723108+02\) \\
\hline \(0.3099481 \mathrm{E}+02\) & 81 & \(0.4477321 E+02\) \\
\hline 0.3098889E+02 & 82 & \(0.3674188 \mathrm{E}+02\) \\
\hline \(0.3098637 E+02\) & 83 & \(0.3670261 E+02\) \\
\hline \(0.3098721 \mathrm{E}+02\) & 84 & \(0.3668343 \mathrm{E}+02\) \\
\hline \(0.3113385 E+02\) & 85 & \(0.3701643 \mathrm{E}+02\) \\
\hline \(0.3137706 \mathrm{E}+02\) & 86 & \(0.3702560 \mathrm{E}+02\) \\
\hline \(0.3170750 \mathrm{E}+02\) & 87 & \(0.3703944 \mathrm{E}+02\) \\
\hline \(0.3211189 \mathrm{E}+02\) & 88 & \(0.3705801 \mathrm{E}+02\) \\
\hline \(0.3240359 \mathrm{E}+02\) & 89 & \(0.3797911 \mathrm{E}+02\) \\
\hline \(0.3271690 \mathrm{E}+02\) & 90 & \(0.3910089 \mathrm{E}+02\) \\
\hline \(0.3304875 \mathrm{E}+02\) & 91 & \(0.4051501 \mathrm{E}+02\) \\
\hline \(0.3339658 \mathrm{E}+02\) & 92 & \(0.4230946 \mathrm{E}+02\) \\
\hline \(0.3375835 \mathrm{E}+02\) & 93 & \(0.4366922 E+02\) \\
\hline \(0.3410638 \mathrm{E}+02\) & 94 & \(0.4512498 \mathrm{E}+02\) \\
\hline \(0.3446364 \mathrm{E}+02\) & 95 & \(0.4661453 \mathrm{E}+02\) \\
\hline \(0.3482692 \mathrm{E}+02\) & 96 & \(0.4807436 E+02\) \\
\hline \(0.3518811 \mathrm{E}+02\) & 97 & \(0.4943433 \mathrm{E}+02\) \\
\hline \(0.3520857 \mathrm{E}+02\) & 98 & \(0.5053716 \mathrm{E}+02\) \\
\hline \(0.3522148 \mathrm{E}+02\) & 99 & \(0.5149931 \mathrm{E}+02\) \\
\hline \(0.3522702 \mathrm{E}+02\) & 100 & \(0.5235011 \mathrm{E}+02\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 101 & \(0.5312222 E+02\) & 151 & \(0.6328056 \mathrm{E}+02\) \\
\hline 102 & \(0.5316809 \mathrm{E}+02\) & 152 & \(0.6422050 \mathrm{E}+02\) \\
\hline 103 & \(0.5320329 \mathrm{E}+02\) & 153 & \(0.6447458 \mathrm{E}+02\) \\
\hline 104 & \(0.5322792 \mathrm{E}+02\) & 154 & \(0.6441223 E+02\) \\
\hline 105 & \(0.5394386 \mathrm{E}+02\) & 155 & \(0.6389954 \mathrm{E}+02\) \\
\hline 106 & \(0.5432954 \mathrm{E}+02\) & 156 & \(0.6385086 \mathrm{E}+02\) \\
\hline 107 & \(0.5451755 \mathrm{E}+02\) & 157 & \(0.6388768 \mathrm{E}+02\) \\
\hline 108 & \(0.5457301 E+02\) & 158 & \(0.6401218 \mathrm{E}+02\) \\
\hline 109 & \(0.3790329 \mathrm{E}+02\) & 159 & \(0.6469182 \mathrm{E}+02\) \\
\hline 110 & \(0.3789857 E+02\) & 160 & \(0.6473489 \mathrm{E}+02\) \\
\hline 111 & \(0.3789522 \mathrm{E}+02\) & 161 & \(0.6474092 \mathrm{E}+02\) \\
\hline 112 & \(0.3787305 \mathrm{E}+02\) & 162 & \(0.6473187 \mathrm{E}+02\) \\
\hline 113 & \(0.3787134 \mathrm{E}+02\) & 163 & \(0.3790366 \mathrm{E}+02\) \\
\hline 114 & \(0.3787346 \mathrm{E}+02\) & 164 & \(0.3789894 \mathrm{E}+02\) \\
\hline 115 & \(0.3787935 \mathrm{E}+02\) & 165 & 0.3789558E+02 \\
\hline 116 & \(0.3808525 \mathrm{E}+02\) & 166 & 0.3787350E+02 \\
\hline 117 & \(0.3842395 \mathrm{E}+02\) & 167 & \(0.3787259 \mathrm{E}+02\) \\
\hline 118 & \(0.3927539 \mathrm{E}+02\) & 168 & \(0.3787469 \mathrm{E}+02\) \\
\hline 119 & \(0.4175702 \mathrm{E}+02\) & 169 & \(0.3787997 \mathrm{E}+02\) \\
\hline 120 & \(0.4586623 E+02\) & 170 & 0.3808499E +02 \\
\hline 121 & \(0.5002855 \mathrm{E}+02\) & 171 & \(0.3842264 \mathrm{E}+02\) \\
\hline 122 & \(0.5428287 \mathrm{E}+02\) & 172 & \(0.3927151 \mathrm{E}+02\) \\
\hline 123 & \(0.5868193 \mathrm{E}+02\) & 173 & \(0.4174657 \mathrm{E}+02\) \\
\hline 124 & \(0.6326938 \mathrm{E}+02\) & 174 & \(0.4586659 \mathrm{E}+02\) \\
\hline 125 & \(0.6421651 \mathrm{E}+02\) & 175 & \(0.5002953 \mathrm{E}+02\) \\
\hline 126 & \(0.6447176 \mathrm{E}+02\) & 176 & \(0.5428441 \mathrm{E}+02\) \\
\hline 127 & \(0.6440915 \mathrm{E}+02\) & 177 & \(0.5868411 \mathrm{E}+02\) \\
\hline 128 & \(0.6389107 \mathrm{E}+02\) & 178 & \(0.6329269 E+02\) \\
\hline 129 & \(0.6383527 \mathrm{E}+02\) & 179 & \(0.6422467 \mathrm{E}+02\) \\
\hline 130 & \(0.6387257 \mathrm{E}+02\) & 180 & \(0.6447746 \mathrm{E}+02\) \\
\hline 131 & \(0.6400600 \mathrm{E}+02\) & 181 & \(0.64415428+02\) \\
\hline 132 & \(0.6469005 \mathrm{E}+02\) & 182 & \(0.6390779 \mathrm{E}+02\) \\
\hline 133 & \(0.6473334 E+02\) & 183 & \(0.6386638 \mathrm{E}+02\) \\
\hline 134 & \(0.6473940 \mathrm{E}+02\) & 184 & \(0.6390271 \mathrm{E}+02\) \\
\hline 135 & \(0.6473035 \mathrm{E}+02\) & 185 & \(0.6401834 \mathrm{E}+02\) \\
\hline 136 & \(0.3790347 \mathrm{E}+02\) & 186 & \(0.6469357 \mathrm{E}+02\) \\
\hline 137 & \(0.3789876 \mathrm{E}+02\) & 187 & \(0.6473643 E+02\) \\
\hline 138 & \(0.3789540 \mathrm{E}+02\) & 188 & \(0.6474242 \mathrm{E}+02\) \\
\hline 139 & \(0.3787328 \mathrm{E}+02\) & 189 & \(0.6473340 \mathrm{E}+02\) \\
\hline 140 & \(0.3787199 \mathrm{E}+02\) & 190 & \(0.3790384 \mathrm{E}+02\) \\
\hline 141 & \(0.3787410 \mathrm{E}+02\) & 191 & \(0.3789912 \mathrm{E}+02\) \\
\hline 142 & \(0.3787968 \mathrm{E}+02\) & 192 & \(0.3789578 \mathrm{E}+02\) \\
\hline 143 & \(0.38085138+02\) & 193 & \(0.3787375 \mathrm{E}+02\) \\
\hline 144 & \(0.3842332 \mathrm{E}+02\) & 194 & \(0.3787315 \mathrm{E}+02\) \\
\hline 145 & \(0.3927354 \mathrm{E}+02\) & 195 & \(0.3787524 \mathrm{E}+02\) \\
\hline 146 & \(0.4175206 \mathrm{E}+02\) & 196 & \(0.3788023 E+02\) \\
\hline 147 & \(0.4586642 \mathrm{E}+02\) & 197 & \(0.3808484 \mathrm{E}+02\) \\
\hline 148 & \(0.5002907 \mathrm{E}+02\) & 198 & \(0.3842191 \mathrm{E}+02\) \\
\hline 149 & \(0.5428368 \mathrm{E}+02\) & 199 & \(0.3926932 \mathrm{E}+02\) \\
\hline 150 & \(0.5868307 \mathrm{E}+02\) & 200 & \(0.4174054 \mathrm{E}+02\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
201 & \(0.4586673 \mathrm{E}+02\) \\
202 & \(0.500294 \mathrm{E}+02\) \\
203 & \(0.5428506 \mathrm{E}+02\) \\
204 & \(0.5868507 \mathrm{E}+02\) \\
205 & \(0.6330580 \mathrm{E}+02\) \\
206 & \(0.6422902 \mathrm{E}+02\) \\
207 & \(0.6448042 \mathrm{E}+02\) \\
208 & \(0.6441872 \mathrm{E}+02\) \\
209 & \(0.6391583 \mathrm{E}+02\) \\
210 & \(0.6388184 \mathrm{E}+02\) \\
211 & \(0.6391768 \mathrm{E}+02\) \\
212 & \(0.6402451 \mathrm{E}+02\) \\
213 & \(0.6469533 \mathrm{E}+02\) \\
214 & \(0.647395 \mathrm{E}+02\) \\
215 & \(0.6474391 \mathrm{E}+02\) \\
216 & \(0.6473492 \mathrm{E}+02\) \\
217 & \(0.4140094 \mathrm{E}+02\) \\
218 & \(0.4588406 \mathrm{E}+02\) \\
219 & \(0.5036676 \mathrm{E}+02\) \\
220 & \(0.548614 \mathrm{E}+02\) \\
221 & \(0.593775 \mathrm{E}+02\) \\
222 & \(0.6392088 \mathrm{E}+02\) \\
223 & \(0.4140939 \mathrm{E}+02\) \\
224 & \(0.4591107 \mathrm{E}+02\) \\
225 & \(0.504164 \mathrm{E}+02\) \\
266 & \(0.5491788 \mathrm{E}+02\) \\
227 & \(0.5942415 \mathrm{E}+02\) \\
228 & \(0.6393213 \mathrm{E}+02\) \\
229 & \(0.4141129 \mathrm{E}+02\) \\
230 & \(0.4591534 \mathrm{E}+02\) \\
231 & \(0.5041951 \mathrm{E}+02\) \\
232 & \(0.5492386 \mathrm{E}+02\) \\
233 & \(0.5942836 \mathrm{E}+02\) \\
234 & \(0.6393298 \mathrm{E}+02\) \\
235 & \(0.4141151 \mathrm{E}+02\) \\
236 & \(0.4591586 \mathrm{E}+02\) \\
237 & \(0.5042020 \mathrm{E}+02\) \\
238 & \(0.5492451 \mathrm{E}+02\) \\
239 & \(0.5942880 \mathrm{E}+02\) \\
240 & \(0.6393307 \mathrm{E}+02\) \\
241 & \(0.4141150 \mathrm{E}+02\) \\
242 & \(0.4591582 \mathrm{E}+02\) \\
243 & \(0.5042014 \mathrm{E}+02\) \\
244 & \(0.5492444 \mathrm{E}+02\) \\
245 & \(0.5942876 \mathrm{E}+02\) \\
246 & \(0.6393306 \mathrm{E}+02\) \\
&
\end{tabular}

FLANE LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE
```

ENERGI BALANCES AT
TIME = 0.1000000E+01

```
\begin{tabular}{ll} 
TOTAL LINE Q & \(=\mathrm{S}\) \\
HT (1) & \(=-0.3924801 \mathrm{E}+01\) \\
HT (2) & \(=-0.1461942 \mathrm{E}+00\) \\
HT (3) & \(=-0.9480131 \mathrm{E}+00\) \\
HT (4) & \(=0.1400995 \mathrm{E}+01\) \\
HT (5) & \(=0.4217818 \mathrm{E}+01\) \\
HT (6) & \(=-0.4009733 \mathrm{E}+01\) \\
HT (7) & \(=-0.1973910 \mathrm{E}+00\) \\
HT (8) & \(=-0.5843179 \mathrm{E}+00\) \\
HT (9) & \(=-0.9703678 \mathrm{E}-01\) \\
HT (10) & \(=-0.1521804 \mathrm{E}+00\) \\
HT (19) & \(=-0.8679169 \mathrm{E}-01\) \\
HT (12) & \(=-0.1501728 \mathrm{E}+00\)
\end{tabular}

\section*{1 \\ }

FLANK LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE


ENERGY BALANCES
\begin{tabular}{ll} 
H1 (REGION 5-6-4U-4L-1L-2L) & \(=-0.3496613 \mathrm{E}+01\) \\
H2 (REGION 1C & \(=0.5151719 \mathrm{E}-01\) \\
H3 (REGION 1R-2R-7L-70-8-9) & \(=-0.2283725 E+00\) \\
H4 (REGION 2C & \(=0.8237422 E-02\) \\
H5 (REGION 3 & )
\end{tabular}
```

 NET MC ENERGI =-0.1147186E+03
 FRAME COEFPICIENTS-REL
 | HTW | $=0.1107266 \mathrm{E}+03$ |
| :--- | :--- |
| FCMCA | $=0.2621585 \mathrm{E}-01$ |
| FCHXS | $=0.3479850 \mathrm{E}-01$ |

1

```

```

 FLANX LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE
    ```

```

1

```

```

 FLANX LOSS POLYSTYRENE B-B 9-01-82 TEMPB-STATIC CASE
    ```

```

-NOORMALTERMINATION---
01/16/85 13:53:17
USER CPU TIME 7:01.843 99.5 %
SVC CPO TIME
ROLL CPO TIME
PROCESSOR TIME
WAIT TIME
ROLL TIME
ELAPSED TIME
ROLLS
I/O

```
2.082 0.000

7:03.925 6:04.075 0.000

13:08
0
1/0
99.58
.48
0.08
100.0853 .78
46.28
0.08
100.08

\section*{EXAMPLE PROBLEM 2: FLANKING LOSS - DYNAMIC CASE}

NBS.l I4A (REV. 9.78 )
```


[^0]: * The Frame Coefficient is defined as the fraction of the metering chamber (MC) heat flow that does not go through the specimen.
 ** Nomenclature: Two bares under a denote that it is a 2-dimensional matrix; one bar denotes a 1 -dimensional vector and the remaining quantities are sealars.

[^1]: * The file FTEMP.INP is only necessary to run the code if the restart option is in effect (see section 3.16).

[^2]: " - - - ERROR TERMINATION - - . "

