Density Effect for the Ionization Loss of Charged Particles in Various Substances

Department of Physics
Brookhaven National Laboratory Upton, New York 11973
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Center for Radiation Research
Washington, DC 20234

November 1983

Prepared icr:
U.S. DEPARTMENT OF COPMMERCE

National Bureau of Standards
Cffice of Standard Reference Data
Washingion, DC 20234
U.S. Department of Energy

Washington, DC 20545
Office of Naval Research
Ariington, Virginia 22217

DENSITY EFFECT FOR THE IONIZATION LOSS OF CHARGED PARTICLES IN VARIOUS SUBSTANCES

R. M. Sternheimer

Department of Physics
Brookhaven National Laboratory
Upton, New York 11973
M. J. Berger and S. M. Seltzer
U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards
Center for Radiation Research
Washington, DC 20234

November 1983

Prepared for:
U.S. DEPARTMENT OF COMMERCE National Bureau of Standards
Office of Standard Reference Data
Washington, DC 20234
U.S. Department of Energy

Washington, DC 20545
Office of Naval Research
Arlington, Virginia 22217

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

density effect for the ionization loss of Charged particles in various substances*

R. M. Sternheimer
Department of Physics Brookhaven National Laboratory
Upton, New York 11973
M. J. Berger and S. M. Seltzer
Center for Radiation Research
National Bureau of Standards
Washington, D.C. 20234

ABSTRACT

The density-effect correction $\delta(\beta)$ for the ionization energy loss of charged particles has been evaluated for a total of 278 substances including 98 cases of elements of the Periodic Table $(12$ gases and 86 condensed materials, including liquid hydrogen and graphite of three different densities) and including also 180 chemical compounds and substances of biological interest (13 gases and 167 liquid or solid substances). In the calculations, up-to-date values of the mean excitation potential I and of the atomic absorption edges $h \nu_{i}$ were employed as input data for the general equations for $\delta(B)$ previously derived by Sternheimer.

[^0]
1. Introduction

The density-effect correction δ for the ionization loss of charged particles $1-12$ has been evaluated previously for a 1 arge number of substances.5-12 The last previous extensive effort in this direction was made in the paper of Sternheimer, Seltzer, and Berger ${ }^{12}$ in which the density effect was evaluated for a total of 72 substances (34 metallic elements, 26 compounds, 11 gases and liquid hydrogen). In Ref. 12, the basic equations of Sternheimer (Refs. 3 and 5) were used in order to evaluate the density effect, employing up-to-date values of the mean excitation potential ${ }^{13-14} \mathrm{I}$, and of the atomic absorption edges ${ }^{15} h \nu_{j}$.

In the present work, the results of Ref. 12 have been extended to a total of 278 substances including 98 cases of elements of the Periodic Table (12 gases and 86 condensed materials including liquid hydrogen and graphite of three different densities) and including also 180 chemical compounds and substances of biological interest (13 gases and 167 liquid or solid compounds). The essential advance of the present calculations over those previously carried out in Refs. 5-12 consists in the development and implementation of a computer algorithm which carries out in a single operation the numerical evaluation of the density effect and the fitting of the numerical results by an approximation formula.

2. Numerical Evaluation of the Density Effect

The calculations of $\delta(\beta)$ are based on the following equations derived by Sternheimer ${ }^{3,5}$ in 1945 and 1952:

$$
\begin{equation*}
\delta(\beta)=\sum_{i=1}^{n} f_{i} \ell n\left[\left(\ell_{i}^{2}+\ell^{2}\right) / \ell_{i}^{2}\right]-\ell^{2}\left(1-\beta^{2}\right), \tag{1}
\end{equation*}
$$

where $\beta=v / c$ is the particle velocity divided by the velocity of light, and ℓ is the solution of the equation:

$$
\begin{equation*}
\frac{1}{\beta^{2}}-1=\sum_{i=1}^{n} \frac{f_{i}}{\bar{v}_{i}^{2}+\ell^{2}} . \tag{2}
\end{equation*}
$$

In Eq. (2), \bar{v}_{i} is defined by:

$$
\begin{equation*}
\bar{v}_{i}=v_{i} \rho / v_{p} \tag{3}
\end{equation*}
$$

where $h \nu_{i}$ is the absorption edge for the $i^{\text {th }}$ oscillator of the dispersion model. The quantity $h \nu_{p}$ is the plasma energy of the electrons of the substance considered as free electrons, and is given by 16

$$
\begin{equation*}
h v_{p}=28.816\left(\rho_{0} Z / A\right)^{1 / 2} \mathrm{eV} \tag{4}
\end{equation*}
$$

where ρ_{0} is the density of the medium (in $\mathrm{g} / \mathrm{cm}^{3}$), Z is the atomic number and A is the atomic weight. In the case of a compound or molecular gas, Z / A is to be replaced by the ratio of the total number of electrons to the effective molecular weight or the sum of atomic weights of the constituent atoms: $\Sigma Z_{i} / \Sigma A_{i}$. As in Ref. 12, a separate dispersion oscillator is used for each subshell of the atom considered, e.g., $K, L_{I}, L_{I I}$, and $L_{I I I}$ for neon. The quantity o in Eq. (3) is the adjustment factor which was introduced by Sternheimer ${ }^{5}$ in 1952 and which is designed to give agreement of the oscillator energies $h v_{j} \rho$ (or rather $h v_{p} l_{i}$) with the observed mean excitation potential I. Specifically, in Eq. (1), the constants ℓ_{i} are defined by:

$$
\begin{equation*}
\ell_{i} \equiv\left(\bar{v}_{i}^{2}+\frac{2}{3} f_{i}\right)^{1 / 2} \text { for } \quad \bar{v}_{i}>0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\ell_{n}=f_{n}^{1 / 2} \text { for } \bar{u}_{n}=0 \quad \text { (conduction electrons in a metal). } \tag{6}
\end{equation*}
$$

In Eq. (5), the factor $2 / 3$ takes into account the Lorentz-Lorenz correction [see Ref. 5, Eqs. (48)-(52)] in the expression for the polarizability $\alpha(\nu)$; note that this factor does not enter for the case of conduction electrons for which $\ell_{n}=f_{n}^{1 / 2}$, as given above.

The mean excitation potential I of the medium is given by

$$
\begin{equation*}
\ln I=\sum_{i} f_{i} \ln \left(h \nu_{p} \ell_{i}\right) \tag{7}
\end{equation*}
$$

By making use of Eq. (3) for \bar{v}_{j}, we obtain the following expression, which is used to determine the value of the Sternheimer adjustment factor ρ :

$$
\begin{equation*}
\ln I=\sum_{i=1}^{n-1} f_{i} \ln \left[\left(h \nu_{i} \rho\right)^{2}+\frac{2}{3} f_{i}\left(h \nu_{p}\right)^{2}\right]^{1 / 2}+f_{n} \ln \left(h \nu_{p} f_{n}^{1 / 2}\right) . \tag{8}
\end{equation*}
$$

For a conductor, f_{n} is taken as n_{c} / Z, where n_{c} is the effective number of conduction electrons per atom of the substance. Note that for a compound (insulator) or for a gas, $n_{c}=0$, the sum in Eq. (8) extends from $i=1$ to n, and the last term on the right-hand side of Eq. (8) is not present. The values of ρ thus determined from the experimental values of I and $h \nu_{i}$ lie generally in the range $1.5-2.5$. Physically the meaning of p is that it takes into account the fact that for the excitations of an inner shell with absorption edge $h v_{j}$, the contribution of the excitation (ionization) to continuum states involves energies which are larger than $h \nu_{i}$. A very approximate estimate of ρ was made in Ref. 12 [Eq. (11)], with the result that ρ is of the order of $e^{1 / 2}=1.649$.

In Eqs. (1), (2), and (5)-(8), f_{i} is the oscillator strength for the $i^{\text {th }}$ oscillator, which was taken as n_{i} / Z for the inner (non-conduction) electrons; here n_{i} is the number of electrons for the subshell considered, e.g., $n_{j}=4$ for the $L_{\text {III }}$ subshell. In the case of a metal, n_{c} was taken to be the lowest chemical valence of the element considered. * The values of the absorption edges $h \nu_{j}$ for the various subshells of all elements were obtained from the compilation of Carlson. ${ }^{15}$ The values of I were obtained from two recent papers of Berger and Seltzer. 13, 14

In Fig. 1, we have plotted the values of the Sternheimer adjustment factor ρ as a function of Z. The solid curve has been drawn through the ρ values for metals as obtained by means of Eq. (8). The ρ values for the 12 gases are shown separately as crosses. It can be seen that except for the four gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{~F}$, and Ne , the crosses lie very close to the curve determined by the ρ values for condensed substances. The most striking feature of the curve of fig. 1 is the existence of successive maxima and minima as a function of Z. The maxima and minima reflect the existence of similar features in the curve of I / Z vs. Z, as presented in Fig. 1 of Ref. 12, but in the present case, i.e., for ρ, these fluctuations are much more pronounced. They can be related to the electronic shell structure of the atoms considered.

[^1]Thus the maxima at $Z=11, Z=30, Z=47$, and $Z=70$, correspond approximately to the filling of the $2 p^{6}, 3 d^{10}, 4 d^{10}$, and $4 f^{14}$ shells, respectively. In addition, the pronounced shoulder in the neighborhood of $Z=80$ can be correlated with the completion of the $5 \mathrm{~d}^{10}$ shell in this region of the Periodic Table.

On the other hand, the minima of ρ at $Z \cong 20, Z=39, Z=57$, and $Z=89$ correspond approximately to the filling of the $n s^{2}$ shell in the alkaline earths $\mathrm{Ca}(Z=20), \operatorname{Sr}(Z=38), \mathrm{Ba}(Z=56)$, and $\mathrm{Ra}(Z=88)$, respectively. We would like to note that these alkaline earths correspond to the closing of the successive supershells ${ }^{21}$ of the Periodic Table, where a supershell is defined as the set of all shells $n \ell$ with the same value of the quantum number $k=n+\ell$. Thus both the curves $I / Z \underline{\text { vs. } Z}$ and $\rho \underline{v s}$. Z give additional support to the k ordering of atomic structure. ${ }^{22}$

3. Fittina Formula

Using the procedures described above, numerical values of $\delta(\beta)$ were calculated for each material at many points on a logarithmically spaced energy grid. The energy variable used was $T / m_{0} c^{2}$, where T is the kinetic energy and $m_{0} c^{2}$ is the particle rest energy. The grid values were chosen to be $T_{(i)} / m_{0} c^{2}=100,000,80,000,60,000,50,000,40,000,30,000,20,000,15,000$, 10,000 , and so on, down to $T_{(i)} / m_{0} c^{2}=0.01$. The numerical values of δ were fitted to the formula proposed by Sternheimer ${ }^{5}$ in 1952, namely:

$$
\begin{array}{ll}
\delta(x)=4.6052 x+a\left(x_{1}-x\right)^{m}+c, & \left(x_{0}<x<x_{1}\right) \\
\delta(x)=4.6052 x+c, & \left(x>x_{1}\right) \tag{10}
\end{array}
$$

where $X \equiv \log _{10}\left(p / m_{0} c\right)=\log _{10}(B \gamma)=1 / 2 \log _{10}\left[\left(T / m_{0} c^{2}\right)\left(T / m_{0} c^{2}+2\right)\right]$, with p the momentum of the incident particle and $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$. X_{0} is the value of X below which $\delta(X)$ is zero for the case of an insulator or gas, and the value of X below which $\delta(X)$ for a metal (conductor) is small, i.e., $\delta(X) \leqslant 0.14$. X_{1} is the value of X above which $\delta(X)$ has essentially attained its asymptotic value (to within 0.015). In Eqs. (9) and (10), a and mare adjustable parameters which will be determined below, and C is given by:

$$
\begin{equation*}
C=-2 \ln \left(I / h \nu_{p}\right)-1, \tag{11}
\end{equation*}
$$

where I is the mean excitation potential of the substance for use in the Bethe-Bloch stopping-power formula. ${ }^{23,24}$ In the present paper, we will frequently use the notation \bar{C} for $-C=|C|$.

4. Determination of the Parameters in the Fitting Formula

The experience of Sternheimer ${ }^{5-10}$ in fitting $\delta(\beta)$ indicates that X_{1} of Eq. (9) can be taken as that value of X for which the deviation of $\delta(X)$ from its asymptotic value [Eq. (10)] is of the order of 0.01 , and in particular does not exceed 0.015 .

For each grid value $X_{(i)}$, the computer program calculates the values of δ and $\delta_{a s}$, the asymptotic value defined by Ea. (10). We define δ_{1} as follows:

$$
\begin{equation*}
\delta_{i} \equiv \delta-\delta_{a s} \tag{12}
\end{equation*}
$$

Furthermore we define X_{a} as follows [see Ref. 10, Eq. (8)]:

$$
\begin{equation*}
x_{a} \equiv \bar{c} / 4.6052 \tag{13}
\end{equation*}
$$

Incidentally, the physical significance of the difference δ_{1} is clearly shown (for the case of neon gas at normal temperature and pressure) in Fig. I of Ref. 10.

4.1 Non-Conductors

We first consider the case of non-conducting materials for which $\delta(\beta)=0$ at low velocities $\beta<\beta_{0}$, where β_{0} is the velocity for which $\ell^{2}=0$ according to Eq. (2). We then have $X_{0}=\log _{10}\left(\beta_{0} \gamma_{0}\right)$, where $\gamma_{0}=\left(1-\beta_{0}{ }^{2}\right)^{-1 / 2}$. After X_{0} has been thus determined it is necessary to determine X_{1} in Eqs. (9) and (10). Now the numerical values of δ_{1}, to be denoted by δ_{1}, num [see Eq. (12)] are approximated by the monomial expression $a\left(X_{1}-X\right)^{m}$, as shown by Eq. (9). We will denote the fitted values of $a\left(X_{1}-X\right)^{m}$ at the mesh points by δ_{1},fit. Thus we have

$$
\begin{equation*}
\delta_{1, f i t}(x)=a\left(x_{1}-X\right)^{m} \tag{14}
\end{equation*}
$$

The values of X_{1}, a and m must be so chosen as to minimize the maximum deviations:

$$
\begin{equation*}
\Delta \delta_{1} \equiv \delta_{1}, \text { fit }-\delta_{1}, \text { num } . \tag{15}
\end{equation*}
$$

We have one condition relating a, m, X_{0}, and X_{1}, namely that $\delta\left(X_{0}\right)=0$. From Eq. (9) we obtain directly:

$$
\begin{equation*}
4.6052 x_{0}+a\left(x_{1}-x_{0}\right)^{m}-\bar{c}=0, \tag{16}
\end{equation*}
$$

where $\bar{C} \equiv-C$. Upon solving for a, and using Eq. (13), one finds that

$$
\begin{equation*}
a=\frac{4.6052\left(x_{a}-x_{0}\right)}{\left(x_{1}-x_{0}\right)^{m}} . \tag{17}
\end{equation*}
$$

The remaining task is to determine the best values of x_{1} and m. For each insulator or gas, nine separate calculations were run with X_{1} determined by the condition that $\delta_{1}\left(X_{1}\right)$ [see Eq. (12)] has the values $0.0015,0.002,0.003$, $0.004,0.005,0.006,0.008,0.010$, and 0.015 , respectively. This procedure directly limits the maximum inaccuracy introduced by neglecting the numerical value of $\delta_{1}=\delta-\delta_{a s}$ for $x \geqslant x_{1}$. The resulting errors are certainly tolerable because when the stopping number is ~ 20, an error of 0.015 in $\delta(x)$ introduces a relative error of only $0.015 / 20=0.00075=0.075 \%$.

The equation for a and the above procedure for determining a reasonable range of values of X_{1} leave only the exponent m undetermined. In the previous fits in Refs. $5,7-10$, and 12 , it was found that it is best to require an exact fit of Eq. (9) to the numerical value of δ_{1}, num at one additional point in the range $X_{0}<x<x_{1}$, preferably for an X value near the value of X_{a} defined by Eq. (13). This intermediate X value for which the additional fit was made will be denoted by X_{2}. Trial values of X_{2} were chosen to be the ten grid points $X_{(i)}$ immediately below, and the ten grid points $X_{(i)}$ immediately above X_{a} defined by Eq. (13), subject to the condition that $X_{0}<x_{2}<x_{1}$. We can now solve for m as follows. For a given value of x_{2}, we have:

$$
\begin{equation*}
a\left(x_{1}-x_{2}\right)^{m}=\delta_{1}\left(x_{2}\right) \tag{18}
\end{equation*}
$$

In view of the definition of $\delta_{1}\left(X_{0}\right)$ and the requirement of an exact fit at $x=x_{0}$, we have also:

$$
\begin{equation*}
a\left(x_{1}-x_{0}\right)^{m}=s_{1}\left(x_{0}\right) \tag{19}
\end{equation*}
$$

Dividing Eq. (19) by Eq. (18),

$$
\begin{equation*}
\frac{\delta_{1}\left(x_{0}\right)}{\delta_{1}\left(x_{2}\right)}=\left(\frac{x_{1}-x_{0}}{x_{1}-x_{2}}\right)^{m} \tag{20}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
m=\frac{\log _{10}\left[\delta_{1}\left(x_{0}\right) / \delta_{1}\left(x_{2}\right)\right]}{\log _{10}\left[\left(x_{1}-x_{0}\right) /\left(x_{1}-x_{2}\right)\right]} \tag{21}
\end{equation*}
$$

With m thus determined ${ }^{* *}$ and for the given values of X_{1} and X_{0}, a can now be obtained from Eq. (17).

The following computer algorithm was used for selecting the parameters a and m :

1. For each trial combination X_{1} and X_{2}, a and m were calculated according to Eqs. (17) and (21).
2. These trial values of a and m were used to evaluate δ_{1}, fit according to Eq. (9) at each grid-point $X_{(i)}$ between X_{0} and X_{1}, and the maximum difference $\Delta_{\max }=\left|\delta_{1, f i t}-\delta_{1, \text { num }}\right|$ for the trial was noted.
** It should be noted that δ is a monotonically increasing function of X. This condition is satisfied only when the fitting parameter m is smaller than a maximum value $m_{\max }$ which -- for insulators and gases -- is given byll $m_{\max }=\frac{x_{1}-x_{0}}{x_{a}-x_{0}}$. In 26 of the 278 cases considered, the fitting procedure resulted in a value of m somewhat larger than $m_{\text {max }}$, with the result that (for compounds) the value of δ from Eq. (9) was slightly negative in a narrow energy region near threshold. These values of m were nevertheless accepted because the resulting error was negligible, the absolute value of δ in this region being smaller thari ~ 0.02.
3. This procedure was repeated in 180 trials, i.e., using the 9 choices of X_{1} and 20 choices of X_{2} discussed earlier. The values of X_{0}, X_{1}, a and m finally selected were those from the trial giving the smallest value of $\Delta_{\max }$. Values of these parameters will be given in Tables I and II.

4.2 Conductors

We now proceed to a discussion of the density effect for metallic conductors. In this case, $\delta(\beta)$ does not vanish for arbitrarily small velocities, as already discussed by Sternheimer in Ref. 7. The basic reason is that for substances with conduction electrons, Eq. (2) contains a term with $\bar{\nu}_{n}=0$, and this leads to the result that $\ell^{2}>0$ for any nonvanishing β^{2}. Therefore a suitable value of X_{0} must be chosen for which $\delta\left(X_{0}\right)$ is small, but not zero. X_{0} cannot be made too small algebraically (e.q., very negative), since this would spoil the overall fit to Eq. (9) at larger values of X. It has been our general experience in obtaining the fits published in Ref. 12 that X_{0} must generally be chosen such that $\delta\left(X_{0}\right)$ is close to 0.1 in all cases (see Table I of Ref. 12). In view of this observation, and in order to widen the choice of parameters so as to obtain the smallest values of $\Delta_{\max }$, the computer program was run for each of the 180 aforementioned choices with an additional choice of five values of X_{0}, such that the calculated values of $\delta\left(X_{0}\right)$ were $0.06,0.08,0.10,0.12$, and 0.14 , respectively. Thus a total of $180 \times 5=900$ possible fits were run for each metallic substance, and again that fit was chosen which gives the smallest value of $\Delta_{\max }$.

For the case of metals, the equations for a and $m_{\max }$ are slightly changed because $\delta\left(X_{0}\right)$ is not zero. The appropriate equations have been derived in Ref. 11 and are as follows: We define $X_{a, \delta}$ by

$$
\begin{equation*}
x_{a, \delta} \equiv \frac{\bar{c}+\delta\left(x_{0}\right)}{4.6052} \tag{22}
\end{equation*}
$$

In terms of $X_{a, \delta}$ the modified equations for a and $m_{\max }$ are given by:

$$
\begin{gather*}
a=\frac{4.6052\left(x_{a, \delta}-x_{0}\right)}{\left(x_{1}-x_{0}\right)^{m}}, \tag{23}\\
m_{\max }=\frac{x_{1}-x_{0}}{x_{a, \delta}-x_{0}} . \tag{24}
\end{gather*}
$$

Obviously, for insulators $\left[\delta\left(X_{0}\right)=0\right], X_{a, \delta}$ reduces to X_{a} as defined above [Eq. (13)].

For metals we have found that the density effect δ for X below X_{0} can be approximated satisfactorily by the formula

$$
\begin{equation*}
\delta(x)=\delta\left(X_{0}\right) \times 10^{2\left(X-X_{0}\right)}, \quad x \leqslant X_{0} \tag{25}
\end{equation*}
$$

The error in δ incurred by the use of Eq. (25) is always smaller than the uncertainty $\Delta_{\max }$ for the fit above X_{0}.

Before we proceed to a detailed explanation of Tables I and II, we note that in some cases, for the 72 substances considered by us in Ref. 12 , although the same values of the mean excitation potential I were used, the new values of a and m are nevertheless appreciably different. For example, for
borosilicate glass (Pyrex) we have $a_{1}=0.2988$ and $m_{1}=2.805$ in the fit of Ref. 12 (with $x_{0}=0.1479, x_{1}=2.5$) and we have $a_{2}=0.08270$ and $m_{2}=3.5224$ (with $X_{0}=0.1479, X_{1}=2.9933$) in the present fit. For gold, we found $a_{1}=0.1533$ and $m_{1}=2.881$ (with $X_{0}=0.0966, \delta\left(X_{0}\right)=0.0912 ; X_{1}=3.5$) in Ref. 12 , and $a_{2}=0.09756$ and $m_{2}=3.1101$ (with $X_{0}=0.2021, \delta\left(X_{0}\right)=0.14$; $\left.x_{1}=3.6979\right)$ in the present work. Even though the parameters a and m are individually quite sensitive to the choices of $X_{0}, X_{1}, X_{2}, \delta_{1}\left(X_{1}\right)$ (and $\delta_{0}\left(X_{0}\right)$ in the case of metals), the variations of a and m are correlated so that the fitted values $\delta_{f i t}$ are quite similar.

We note that the compositions for the various substances, in particular for the organic compounds and the biological substances, are not listed in Table II. For those compositions, the reader is referred to the recent paper of Seltzer and Berger. ${ }^{13}$

5. Example of the Use of Tables I and II

The density-effect correction δ is to be used in the Bethe stopping-power formula

$$
\begin{equation*}
-\frac{1}{\rho_{0}} \frac{d E}{d X}=\frac{0.153536}{\beta^{2}} \frac{Z}{A}\left\{F(\beta)-2 \ell n I-2 \frac{C}{Z}-\delta\right\} . \tag{26}
\end{equation*}
$$

In this expression, $-\frac{1}{\rho_{0}} \frac{d E}{d X}$ is the mean energy loss per unit pathlength, in $\mathrm{MeV} /\left(\mathrm{g} \mathrm{cm}^{-2}\right)$. The term $2 \mathrm{C} / \mathrm{Z}$ is the shell correction, which is generally negligible at energies at which the density-effect correction δ is significant. For heavy charged particles (muons, pions, protons, ...)
*** Examination of our data indicates that the correlation is such that
$\frac{a_{1}}{a_{2}}=\eta^{\left(m_{2}-m_{1}\right)}$, where n has a value in the range 4 to 8 .

$$
\begin{equation*}
F(\beta)=2 \ln \frac{2 m_{0} c^{2} \beta^{2}}{1-\beta^{2}}, \tag{27}
\end{equation*}
$$

and for electrons
$F(\beta)=\ln \left|\frac{m_{0} c^{2} T \beta^{2}}{2\left(1-\beta^{2}\right)}\right|-\left(2 \sqrt{1-\beta^{2}}-1+\beta^{2}\right) \ln 2+1-\beta^{2}+\frac{1}{8}\left(1-\sqrt{1-\beta^{2}}\right)$.

As an example we consider the case of aluminum. We find $x_{0}=0.1708$, $x_{1}=3.0127, \delta\left(x_{0}\right)=0.12, \delta_{1}\left(x_{1}\right)=0.0015, a=0.08024, m=3.6345$, $\overline{\mathrm{C}}=4.2395$. As a result, from Eas. (9) and $(10), \delta(X)$ is given by:

$$
\begin{equation*}
\delta(x)=0.12\left[10^{2(x-0.1708)}\right] \tag{x<0.1708}
\end{equation*}
$$

$\delta(x)=4.6052 x+0.08024(3.0127-x)^{3.6345}-4.2395 \quad(0.1708<x<3.0127)$
$\delta(x)=4.6052 x-4.2395$

We note that $X_{0}=0.1708$ corresponds to a momentum $p / m_{0} c=10^{0.1708}=1.482$, or a kinetic energy (in units $m_{0} c^{2}$) $T / m_{0} c^{2}=0.788$.

6. Acknowledaments

The work carried out at Brookhaven National Laboratory (RMS) was supported by the U.S. Department of Energy under Contract No. DE-ACO2-76CHONO16. The work carried out at the National Bureau of Standards (MJB and SMS) was supported by the NBS Office of Standard Reference Data, by the Department of Energy (Office of Health and Environmental Research), and by the Office of Naval Research.

REFERENCES

1. E. Fermi, Phys. Rev. 57, 485 (1940).
2. G. C. Wick, Nuovo Cimento 1, 302 (1943).
3. R. M. Sternheimer, Thesis, Univ. of Chicago (1946).
4. O. Halpern and H. Hall, Phys. Rev. 73, 477 (1948).
5. R. M. Sternheimer, Phys. Rev. 88, 851 (1952).
6. R. M. Sternheimer, Phys Rev. 91, 256 (1953); 93, 351 (1954); 93, 1434 (1954).
7. R. M. Sternheimer, Phys. Rev. 103, 511 (1956).
8. R. M. Sternheimer, Phys. Rev. 145, 247 (1966).
9. R. M. Sternheimer, Phys. Rev. 164, 349 (1967).
10. R. M. Sternheimer and R. F. Peierls, Phys. Rev. B3, 3681 (1971).
11. R. M. Sternheimer, Phys. Rev. B24, 6288 (1981).
12. R. M. Sternheimer, S. M. Seltzer, and M. J. Berqer, Phys. Rev. B26, 6067 (1982) ; B27, 6971 (1983) (E).
13. S. M. Seltzer and M. J. Berger, Int. J. Appl. Radiat. Isot. 33, 1189 (1982).
14. M. J. Berger and S. M. Seltzer, "Stopping Powers and Ranges of Electrons and Positrons" (2nd Ed.), National Bureau of Standards Report No. NBSIR 82-2550A (1983).
15. T. A. Carlson, Photoelectron and Auger Spectroscopy (Plenum Press, New York, 1975), Appendix 1.
16. U. Fano, Ann. Rev. Nuc 1. Sci. 13, 1 (1963).
17. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, Berlin, Heldelberg, New York, 1980).
18. D. J. Isaacson. "Positron Trappings of Defects in Solids," Pho. Disertation, New York University (1981).
19. A. Mann and W. Brandt, Phys. Rev. B 24, 4999 (1981).
20. J. F. Ziegler, J. P. Biersack, and U. Littmark, Proc. of U.S.-Japan Seminar on Charged Particle Penetration Phenomena, Oak Ridge National Laboratory Report CONF-820131 (1982), p. 88.
21. R. M. Sternheimer, Phys. Rev. A15, 1817 (1977).
22. R. M. Sternheimer, Trans. New York Acad. Sci., Series II, 40, 190 (1980).
23. H. A. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930).
24. F. Bloch, Z. Phys. 81, 363 (1933).
25. ICRU Report 10b, "Physical aspects of irradiation. Recommendations of the International Commission on Radiological Units and Measurements," published as National Bureau of Standards Handbook 85 (1964).
26. "Report of the task group on reference man," International Commission on Radiological Protection, Pergamon Press, New York (19/5).

Definition of Parameters in Tables I and II

$Z \quad$ Atomic number

Z/A Ratio of atomic number to atomic weight
I Mean excitation energy (in aV)
$\rho_{0} \quad$ Density (in $\mathrm{g} / \mathrm{cm}^{3}$)
$h \nu_{p} \quad$ Plasma energy (in units $\in V$) [Eq. (4)]

- Sternheimer adjustment factor for the atomic excitation energies [Eqs. (3) and (8)].
-C [Eq. (11)].

Parameters in fitting formulas [Eqs. (9) and (10)].

Density-effect value used as fitting parameter in Eq. (25).

Upper bound for the error inherent in fitting procedure. The absolute value of the difference between the fitted and the numerical value of δ is at all energies smaller than $\Delta_{\text {max }}$.

The composition of the compounds and mixtures in Table II, in terms of fractions by weight of the atomic constituents, can be found in Seltzer and Berger. ${ }^{13}$ The designation (ICRU) indicates tissue compositions adopted by the International Commission on Radiation Units and Measurements, 25 and the designation (ICRP) indicates tissue compositions adopted by the International Commission on Radiological Protection. ${ }^{26}$

NMMがNさN
 ールー 0∞ N －000000
 かのバが

 －0N0000
 がNMNが のジーMnN～

NoOMOO
 －ーローNN

MーM゙心㇒⿱幺小心 NONかO－O ONOMVOO －NMm

にNJた880
$\infty \infty \infty-2 \infty$
$10 \infty 0$
000
000000
으융ㅇㅇ 0000000

 añincoin NMooo二in

ヘOはホONか MいのMい保か nN－nNNN

NNOOOOO
Mーのヘのート Norininjm $00^{\circ 0} 00^{\circ}$

がいさざ゚ロ 0000000

 mmminvi

MざNーNのさ ○NNーズが かんざNMが 000000
 かへにレのばロ かNーがのにか $0-\infty \times N$ NN minNNvか

 のローのかinm
 $00000^{\circ}{ }^{\circ}$

ぶのにすのーが NMMNOいは กกッピก゚ローの ばすばこ
－M M ーが MーロローロッMー NヘNNN：－ molnmana
 NM－Nin－o NMMNN

 －ioso
－nNNNN－
0000000
かかNにつべか
0000000
－いmiovi
ューヘペーシー

MMNNNNN 0000000

ํ゚ーNさささ
0000000

MヒNヘMッロ゚

NMmimiñ

 0000000

－${ }^{\infty}$ on－on inNuinaty
 0000000
 ずMのG゚゚へN

응ำに m＠ －－～NNN

ㅇNㅇNーかN
 かincivim －NM心Gが

－－nvont

0000000 のーローMnべN

－－NNNNN

にONのON゚ N゚ローデNに゚
 0000000 のOーNMNN゚N
$-90 \pi a l n$
0000000 $00^{\circ} 00^{\circ} 00^{\circ}$

NNOかがい OOOOOOO

－00000

NNotano －－inningonm OOONONM OOOOOOO 1111
－ onvonooms なざなざい

サoonNNー
 NNNNMNN

Non O Nom－ NのかNMが

0800090

 OOOOOOO かoORMON

0000000 －N二NNONO NNMMMMN

$010 \infty 00$ はM几－ OOOOOOO

MNNLN NNN
MNNNN
000000 000000°

NMMGHGN NMMざいい 0000000
 0000000

0000000

monmomo MMजMOMM ronncinon mmmNNNN

óoonNri Nmónonv

00000000000000

$\infty \sim \infty$ Nロ	
	1200
NNN－NL6	annor
	N－NO
－．．．	
－0－6000	0000000
OONRON	
－NM－Nかo	
LNM－$-\infty+\infty$	へーNへ心
Mrパのホ	－ 0∞ NN
パーNoレn	

のばOMNO －O～Nが心灾
ペーシー・••
が心Noは－ onconNo

がいないない
 LIOーNOO NMG

OOMmOOO 0000000的い以的的 OONMOOO
OONMNOG
MONMMG Nonotintiv
にはハMーNさ

0000000
へmmNMó がいいMmが
－OMの－an 500～のにか omarumm
 0000000 munmmmon
－$-0 \rightarrow \infty=0$ NMONTNN

0005050 $+\underset{4}{+}++++++$ 0000000 ○○N゚ニーN ？ino－nnn
－ 0 －－－－

0000000
のN～が心の

OONGMatn MNーMNN ったMの円Nか ぞいまずい 0000000

$65)$ GRAPHITE，DENS 2.0 ） HYDROGEH
HYDROGEH，LIQUID
HELIUH
LYTIIUN
BERYLLIUM
BORON
CAKBON GRAPHITE， HYDROGEN
HYDROGEN，LIQUID
HELLUH
LYTIIUUM
BERYLLUM
BORON
CAKBON（GRAPHITE，

（3LIHdYy9）N0g：yva	
Oinor 7	NOYOg
	Wnxtixy a
	WnIIILT 7
	111173H
	139080人H

CARBON（GR NITROGEN
OXYGEN FIUORINE SODIUM

ZIRCONIUM
NIURIUH
MOLYBIENUM
TEGHNETIUM
RUTHEHIUM
RHODIUM
FALLADIUM

Table II．Density－Effect Parameters for Compounds and Mixtures 0.048 $90 N$
$0 \infty N$
000
000 NヘNーN GON
GVO
 と－00にn NのONO
I Density，ρ_{0}
$(\mathrm{ev}) \quad\left(\mathrm{g} / \mathrm{cm}^{3}\right)^{2}$ $1.1270 \mathrm{E}+00$
$7.8990 \mathrm{E}-01$ －NNU べすがが

－ r a
0.10783
0.11100
0.12167
0.20908
0.10278

さかさのが NaON NNGN aNNNN
NOGON
MNN
OO－O
 mmamm \cdots
 $06 m m$
0001
0000
0000
 NNMNG にはすに N 00000

 MMMMN
MMMMm 0.10914
0.11484
0.08500
0.11934
0.08315

 nno
ontin
in 06∞ NNMNM

$\infty 0 N=\infty$
$-N N N$
$-N O$
0000

 .814 mumに年 －ロNN－

NEDOM

 응NN －in ONO
－すかの mingm
 －MinMー

1． $2048 \mathrm{E}-03$
 0 0 1 0 0 0 4 1 - -
 00 00 41 04 00 06 -6

08
+
1
10
N
N
0
-1

4． $5000 \mathrm{E}+00$

 $-$

00000

 incinco

M5000
$\begin{array}{ll}\text { M5000 } & 00000 \\ 00000 & 00000 \\ \omega H \omega+4 & +4+4+ \\ \omega \omega H \omega\end{array}$
M0000
Mo 080
000
$1+4+$
$\omega 山 W 4$ No000
N 2000
0000 vonNo Noー心灾

80000 00000
$山+4+4$
山以 山 H NMMNo manmm

TO－MO
 monNin ーーーーM

OM600隹しNさか ∞ かんN

NNーーO
anoat

NMoint
 $\begin{array}{ll}a & 0 \\ 5 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
 がのにN

olnmin
－ $00101 N$
$000^{\circ} 0^{\circ}$
MはNNN
OONNN av60Mm
．O．OOOOO
00000°

00000
000°

NONN
oninan
ononc
トniomo
MNNmm

onNab
000°

かumN－
oninn かmmNin nmmNN

Mボざい Nom＝n NOO：－

NON－M Nomon
 Micimi

がいNの心 Nかが心 ヘーーーー

MNINN HGばNO
－Naー
NMMNN
 さに

がNonin

A－ 150 TISSUE－EQUIVALENT PLASTIC
ACETONE
ACETYLENE
ADENINE
A－ 150 TISSUE－EQUIVALENT PLASTIC
ACETONE
ACETYLENE
ADENINE

ADENINE
 ADIPOSE TISSUE（ICRP）

AIR，DRY（NEAR SEA LEVEL）

ALANINE
ALUMINUM OXIDE AMBER
AMMONIA
ANILINE
AHTIRACENE
B－ 100 BONE－EQUIVALENT PLASTIC
BAKELITE
BARIUI FLUORIDE

BARIUI FLUORIDE

BARIUM SULFATE
BEIZENE
BERYLLIUH OXIDE
BISIUTH GERMANIUM OXIDE BLDOD（ICRP）
ROHE，COMPACT（ICRU）
BONE，CORTICAL（ICRP） BONE，CORTICAL
BORON CARBIDE BORON OXIDE
BRAIN（ICRP）
N－BUTYL ALCOHOL
C－552 AIR－EQUIVALENT PLASTIC
CADFIUM TELLURIDE
CADHIUM TUNGSTATE
CALCIUM CARBOYATE CALCIUM CARBORAT
CALCIUM FLUORIDE
$\begin{array}{ll}\text { CALCIUM } & \text { SULFATE } \\ \text { CALCIUM TUHGSTATE }\end{array}$
CARBON DIOXIDE
CERIC SULFATE DOSIMETER SOLUTION
CESIUM FLUORIDE
CESIUM IODIDE
CHLOROBEHZENE
CHLOROFORM

NNaNO
NNNM
0000
00000
 0

ro

Table II．（Continued）
$N=N m \infty$

ingung
aOOO
－NN－N
 N－NNN onvo
onn
anmon
MamNN
M－NNN mmman
NoNmN
mindin
mon atomino
Nominn
noninn

Nonno
NaNNM
00000
OOOOO
 Nintin
NNNOL
00000
0000
0000

Nomun NTMaN nonmm MMMmm

Nomaー 00000 000° 00 na
ho 6 m
0000
0000 Nが心m 0000

－

 nnNGm
NNAN
Nonn
-000
NNENN
$N=6 N O$
$M A N N O$
$0 O N O-$
$0 O O O O$ $0 \pm \infty m=$
NuNom
NonNo
onon－
000.

mmNGに MaがM anOMo
$00{ }^{2} N o$ 100°
moa0－
avobor
anobo
Nmmin

かのルnv
 NN－MN

 00000°
のOGNo onmina
nmam品 00000
int $-\infty N=$ $17-\infty 015$
00000
0000

NーNか

No N N
かo
to
 Nomin mmNoN NO－NN
NGNN
N－
NNO
$0000=$
 NベーNへ
mホNNo Na－ホー
anatis monNA NNNNN

いいMのか

ommún Na， Nom

nnonm 保思志志

ㅇㅇㅇㅇ

00000

Nornma ninomに 5095co NOMNL 는ำルㄴำ 00000

\section*{
 OovNa MNMMO $\begin{array}{lll}0 & 0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}$

CONCRETE，PORTLAND CYCLOHEXANE

1，2－DICHLOROBENZENE DICHLORODIETHYL ETHER
$1,2-D I C H L O R O E T H A N E ~$

FERROUS OXIDE
FERROUS SULFATE DOSIMETER SOLK． FERRON－12 FREON－12B2
FREON－13
DIETIYL ETHER DIMETHYL SULFOXIDE ETIIYL ALCOHOL － ETHYL CELLULOSE EYE LEMS（ICRP）

FERRIC OXIDE
FERROBORIDE

FREON－13B1
FREON－I3II
GADOLINIUM OXYSULFIDE
GALLIUN ARSENIDE
GEL IN PHOTOGRAPHIC EMULSION

GLASS，BOROSILICATE（PYREX）
GLASS，LEAD GLASS，LEAD GLUTAMINE

GLYCEROL
GUANIME
GYPSUH，PLASTER OF PARIS
N－IIEPTANE
N－HEXAHE N－HEXAME
＂KAPTON＂POLYIMIDE FILM LANTHANUM OXYBROMIDE
LANTIANUM OXYSULFIDE LEAD OXIDE
LITHIUM AMIDE

ONATE LITHIUM CARBONATE LITHIUN FLUORIDE
LITHIUN HYDRIDE
LITHIUM IODIDE
LITHIUM OXIDE

E | 0 |
| :---: |
| |
| m |

0
∞
0
0
0
0
∞
m
\vdots
m $\infty a v i n t$
$0 \infty \pm \pm \infty$
00000
00000

 mimmm

にかさのす
nf
17
00
00 N N
00 00000

 $00^{\circ} 0^{\circ}$

 $000-0$

 mmmmm NMano
心N $0 \infty 0$
0000 00000 Nooma
mommo
0 minn
mminm
 にONNN
NOUN $000^{\circ} 0^{\circ}$ NNーか NーNNか mativN からmm心

 00000

Imano
vManin
－ 0 an －oかon ヘNへべ

onons mNingo ovino

NNNNN
0
－NNam
manNo
－NNNN
－NOOO

ウウMm心

に゚ールい oromin －NiNNN NM－に゚O MMv－NNNNN -0000
00000
14444
08000
00000
0045
0000 ローーー－

a－mrm

NONNLT

 かNoo

 ev）（ev） 94.675.3
67.9
18.0
34.3

ค

2／A

203

Density，ρ_{0}
\rightarrow（2
a
M
○ポーの monnm
NN－NM M－oのは $\begin{array}{ll}408 \\ m 00 & 0\end{array}$ MNNMm ㅇ․ㅇㅇ
为min $\pm 0 \infty$
 OOOOO

NomoN 0. 0. 0. 0.

n＝ona Mon
Mo
~ 0 MM O N N 00000°
 mmNmN

Mninan
$\boldsymbol{n} 060$ －－N－

のanN－ ㅇN心N N NNNON
NNN N
 NNペーが
 －NNO，
$\infty 60 \mathrm{mN}$ のばざす。 にMNNN

08 00 44 00 010 10 0.

 $. .0800 E+00$

$500=0$ 00000
$1+4+4$
山上山上I
 Nomv： がーロー

Nサmam anona

ONNさM
○OがN
 －mNさに
NーNNN
ーNNO志
－
NNNー・ ONOL
－Nin
－No Nó－ $\min ^{\circ}$
 AnN゙M NNNMNがN

80000
0050080000
06000
00090
$414+4$

00000	00000
00000	10000
00000	$N 0000$
$N M W H$	0.

－a゙ーN
＠ONに！ Mー心が，

NMーMN

 NoNo
 00000°

士＋＋＋＋
00000
00000
ㅇㅇㅇㅇ
－ 0 응

NNNN：
Mannom

NONーM
ざいがい が心にば心 000°
 NMNMN

ゅがった
$0 N 10=1$
000
－0000

いはMNN barn
Nomina
NoNuに
mimnm

ののールに
omoon

000°
$09-N 0$
$0 N 010$
00000 00000°

MルーMn 00000
00000°
ninnt
No inco
$00^{\circ} 0^{\circ}$
Nに゙ざいだ －nivio vNN心細

NMMGO cano － $\operatorname{con}^{\infty}=0$ MMMNー

ホのさがo OMONM ONUNON
 かOU6N 00000°
0000°

NGNNE mNESN mNMO
 NへNNm

Nincino ज以ー心二 があが名 NNNNN

－mons ominow மNMに －ーーーー 00000

いば心のば がいいが にーローに
a．inar かもに゚に ーーールー

さのNのa
 NM－aN Mレimim

士Naース
inamin NNN＝in mimmm
atninvo 은ำ $\cdots=\infty$ に MMmささ

oomom

00000

NN二トが
6oinno
NNNN

mmmmm
gaIdOn7』 WกISヨNDVW
GปVNOG

IAGNESIUM OXIDE IAGNESIUM TETRABORATE IERCURIC IODIDE

 METHANEMETHANOL

NYLON，TYPE 6 AND TYPE $6 / 6$
WYLON，TYPE II（NRILSAN＂） OCTARE，LIQUID
PARAFFIN WAX

> VITROBENZENE
IITROUS OXIDE

NYLON，DU PONT ELVAMIDE 8062

MIX D WAX
MS20 TISSUE SUBSTITUTE
MS20 TISSUE SUBSTITUTE

PHOTOGRAPHIC EMULSION PLUTONIUM DIOXIDE POLYACRYLONITRILE

[^2]OLYSTYRENE
OLYTETRAFLUOROETHYLENE（TEFLON）
OLYTRIFLUOROCHLOROETHYLENE．
POLYVINYLIDENE CHLORIDE，SARAN
POLYVINYL ACETATE
POLYVINYL ALCOHOL
POLYVINYL BUTYRAL
POLYVINYL CHLORID
POLYVINYLIDENE CHL OLYOXYMETHYLENE
ロロロロロ

Material	Z/A	$\begin{aligned} & I \\ & (e v) \end{aligned}$	$\begin{gathered} \text { Density, } \rho_{0} \\ \left(\mathrm{q} / \mathrm{cm}^{3}\right) \end{gathered}$	$\begin{aligned} & h v_{p} \\ & (\mathrm{eV}) \end{aligned}$	ρ	-C	X_{0}	X_{1}	a	m	$\Delta_{\text {max }}$
POLYVINYLIDENE FLUORIDE	0.49973	88.8	$1.7600 E+00$	27.024	2.160	3.3793	0.1717	2.7375	0.10316	3.4200	0.067
POLYVINYL PYRROLIDONE	0.53984	67.7	$1.2500 E+00$	23.671	1.989	3.1017	0.1324	2.5867	0.12504	3.3326	0.051
POTASSIUM IODIDE	0.43373	431.9	$3.1300 \mathrm{E}+00$	33.575	1.784	6.1088	0.1044	3.3442	0.22053	2.7558	0.042
POTASSIUM OXIDE	0.48834	189.9	$2.3200 \mathrm{E}+00$	30.672	2.065	4.6463	0.0480	3.0110	0.16789	3.0121	0.027
PROPANE	0.58962	47.1	$1.8794 \mathrm{E}-03$	0.959	1.708	8.7878	1.4326	3.7998	0.09916	3.5920	0.093
PROPAHE, LIQUID	0.58962	52.0	$4.3000 \mathrm{E}-01$	14.509	1.844	3.5529	0.2861	2.6568	0.10329	3.5620	0.068
N-PROPYL ALCOHOL	0.56577	61.1	$8.0350 \mathrm{E}-01$	19.429	1.972	3.2915	0.2046	2.6681	0.09644	3.5415	0.070
PYRIDINE	0.53096	66.2	$9.8190 \mathrm{E}-01$	20.807	1.895	3.3148	0.1670	2.5245	0.16399	3.1977	0.051
RUBBER, BUTYL	0.57034	56.5	$9.2000 \mathrm{E}-01$	20.873	1.852	2.9915	0.1347	2.5154	0.12108	3.4296	0.051
RUBBER, NATURAL	0.55785	59.8	$9.2000 \mathrm{E}-01$	20.644	1.889	3.1272	0.1512	2.4815	0.15058	3.2879	0.053
RUBBER, NEOPRENE	0.51956	93.0	$1.2300 \mathrm{E}+00$	23.036	1.874	3.7911	0.1501	2.9461	0.09763	3.3632	0.026
SILICON DIOXIDE	0.49930	139.2	$2.3200 \mathrm{E}+00$	31.014	2.335	4.0029	0.1385	3.0025	0.08408	3.5064	0.018
SILVER BROMIDE	0.43670	486.6	$6.4730 \mathrm{E}+00$	48.448	2.271	5.6139	0.0352	3.2109	0.24582	2.6820	0.043
SILVER CHLORIDE	0.44655	398.4	$5.5600 \mathrm{E}+00$	45.405	2.096	5.3437	-0.0139	3.2022	0.22968	2.7041	0.062
SILVER HALIDES IN PHOTO EMULSION	0.43663	437.1	$6.4700 \mathrm{E}+00$	48.433	2.270	5.6166	0.0353	3.2117	0.24593	2.6814	0.043
SILVER IODIDE	0.42594	543.5	$6.0100 E+00$	46.105	1.945	5.9342	0.0148	3.2908	0.25059	2.6572	0.071
SKIN (ICRP)	0.54932	72.7	$1.1000 E+00$	22.400	2.140	3.3546	0.2019	2.7526	0.09459	3.4643	0.076
SODIUI CARBONATE	0.49062	125.0	$2.5320 \mathrm{E}+00$	32.117	2.557	3.7178	0.1287	2.8591	0.08715	3.5638	0.074
SODIUH IODIDE	0.42697	452.0	$3.6670 \mathrm{E}+00$	36.057	1.857	6.0572	0.1203	3.5920	0.12516	3.0398	0.031
SODIUM MONOXIDE	0.48404	148.8	$2.2700 \mathrm{E}+00$	30.205	2.689	4.1892	0.1652	2.9793	0.07501	3.6943	0.097
SODIUM NITRATE	0.49415	114.6	$2.2610 E+00$	30.459	2.456	3.6502	0.1534	2.8221	0.09391	3.5097	0.081
STILBENE	0.53260	67.7	$9.7070 \mathrm{E}-01$	20.719	1.963	3.3680	0.1734	2.5142	0.16659	3.2168	0.052
SUCROSE	0.53170	77.5	$1.5805 E+00$	26.416	2.167	3.1526	0.1341	2.6558	0.11301	3.3630	0.057
TERPHENYL	0.52148	71.7	$1.2340 \mathrm{E}+00$	23.116	1.976	3.2639	0.1322	2.5429	0.14964	3.2685	0.043
TESTES (ICRP)	0.55108	75.0	$1.0400 \mathrm{E}+00$	21.815	2.185	3.4698	0.2274	2.7988	0.08533	3.5428	0.091
TETRACHLOROETIYYLENE	0.48241	159.2	$1.6250 E+00$	25.513	1.790	4.6619	0.1713	2.9083	0.18595	3.0156	0.038
THALLIUN CHLORIDE	0.40861	690.3	$7.0040 \mathrm{E}+00$	48.749	1.997	6.3009	0.0705	3.5716	0.18599	2.7690	0.040
TISSUE, SOFT (ICRP)	0.55121	72.3	$1.0000 \mathrm{E}+00$	21.394	2.144	3.4354	0.2211	2.7799	0.08926	3.5110	0.077
TISSUE, SOFT (ICRU FOUR-COMP.)	0.54975	74.9	$1.0000 \mathrm{E}+00$	21.366	2.192	3.5087	0.2377	2.7908	0.09629	3.4371	0.092
TISSUE-EQUIV. GAS (METHANE BASE)	0.54993	61.2	$1.0641 \mathrm{E}-03$	0.697	1.890	9.9500	1.6442	4.1399	0.09946	3.4708	0.098
TISSUE-EQUIV. GAS (PROPANE BASE)	0.55027	59.5	$1.8263 \mathrm{E}-03$	0.913	1.856	9.3529	1.5139	3.9916	0.09802	3.5159	0.092
TITANIUM DIOXIDE	0.47572	179.5	$4.2600 \mathrm{E}+00$	41.022	2.307	3.9522	-0.0119	3.1647	0.08569	3.3267	0.027
TOLUENE	0.54265	62.5	$8.6690 \mathrm{E}-01$	19.764	1.880	3.3026	0.1722	2.5728	0.13284	3.3558	0.052
TRICHLOROETIIYLENE	0.48710	148.1	$1.4600 \mathrm{E}+00$	24.301	1.789	4.6148	0.1803	2.9140	0.18272	3.0137	0.036
TRIETHYL PHOSPHATE	0.53800	81.2	$1.0700 \mathrm{E}+00$	21.863	2.100	3.6242	0.2054	2.9428	0.06922	3.6302	0.049
TUNGSTEN HEXAFLUORIDE	0.42976	354.4	$2.4000 \mathrm{E}+00$	29.265	2.325	5.9881	0.3020	4.2602	0.03658	3.5134	0.055
URAHIUM DICARBIDE	0.39687	752.0	$1.1280 \mathrm{E}+01$	60.969	1.703	6.0247	-0.2191	3.5208	0.21120	2.6577	0.120
URAMIUM MONOCARBIDE	0.39194	862.0	$1.3630 \mathrm{E}+01$	66.602	1.680	6.1210	-0.2524	3.4941	0.22972	2.6169	0.132
URANIUM OXIDE	0.39996	720.6	$1.0960 \mathrm{E}+01$	60.332	1.760	5.9605	-0.1938	3.5292	0.20463	2.6711	0.098
UREA	0.53284	72.8	$1.3230 \mathrm{E}+00$	24.194	2.022	3.2032	0.1603	2.6525	0.11609	3.3461	0.060
VALINE	0.54632	67.7	$1.2300 E+00$	23.622	2.024	3.1059	0.1441			3.3774	0.056
"VITOH" FLUOROELASTOMER	0.48585	98.6	$1.8000 \mathrm{E}+00$	26.948	2.227	3.5943	0.2106	2.7874	0.09965	3.4556	0.070
WATER, LIQUID	0.55509	75.0	$1.0000 \mathrm{E}+00$	21.469	2.203	3.5017	0.2400	2.8004	0.09116	3.4773	0.097
WATER VAPOR	0.55509	71.6	$7.5618 \mathrm{E}-04$	0.590	2.175	10.5962	1.7952	4.3437	0.08101	3.5901	0.121
XYLENE	0.54631	61.8	$8.7000 \mathrm{E}-01$	19.866	1.882	3.2698	0.1695	2.5675	0.13216	3.3564	0.051

Fig. 1. Values of the Sternheimer adjustment factor ρ [see Eqs. (3) and (8)] as a function of the atomic number 2. The smooth curve is drawn through the values of ρ for the case of metals. The crosses pertain to the values of ρ for the 12 gases. The successive maxima and minima of ρ are correlated with the atomic shell structure [see the discussion in the text following Eq. (8)].
U.S. DEFT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)
4. TITLE AND SUBTITLE

1. PUBL!CATION OR REPORT NO.

DENSITY EFFECT FOR THE IONIZATION LOSS OF CHARGED PARTICLES IN VARIOUS SUBSTANCES
5. AUTHOR(S)
R. M. Sternheimer, M. J. Berger and S. M. Seltzer
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)
7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234
8. Type of Report \& Period Covered
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City. State, ZIP)
10. SUPPLEMENTARY NOTES
\square Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes c significant bibliography or literature survey, mention it here)

The density-effect correction $\delta(\beta)$ for the ionization energy loss of charged particles has beeil evaluated for a total of 278 substances including 98 cases of elements of the Periodic Table (12 gases and 86 condensed materials, including liquid hydrogen and graphite of three different densities) and including also 180 chemical compounds and substances of biological interest (13 gases and 167 liquid or solid substances). In the calculations, up-to-date values of the mean excitation potential I and of the atomic absorption edges $h v_{j}$ were employed as input data for the general equations for $\delta(\beta)$ previously derived by Sternheimer.
12. KEY WORDS (Six :o twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)
charged particles; compounds; density effect; elements; mean excitation energies; stopping power.
13. AVAILABILITY

\square Unlimited

For Official Distibution. Do Not Release to NTISOrder From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.\square Order From National Technical Information Service (NTIS), Soringfield, VA. 22161
14. NO. OF

PRINTED PAGES
15. Price

[^0]: *A version of this report with a shortened text but the same tables will appear in Atomic Data and Nuclear Data Tables.

[^1]: *An alternative prescription would be to use as the effective number of conduction electrons the number of electrons participating in plasma excitations in metals. The latter number can be deduced from optical data and from measured electron energy-loss spectra. Effective numbers of plasina electrons have been deduced from the experimental literature by Raether 17 for 27 metals and by Isaacson ${ }^{18}$ for 47 metals; see also Mann and Brandt, 19 and Ziegler, Biersack and Littmark. 20 We have made some numerical tests, and have found, for example, that the use of resuits of Raether or Isaacson would change the density-effect correction such that the electron stopping power in gold would differ by less than 0.3% and that in copper by less than 0.25%, compared to the values obtained when the number of conduction electrons is deduced from the lowest valence state.

[^2]: POLYCARBONATE（MAKROLON，LEXAN）
 POLYETHYLENE TEREPHTHALATE，MYLAR
 POLYMETHYL METHACRYLATE（LUCITE）

