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SPECIFICATION AND INTERPRETATION OF DATA MODEL SEMANTICS :

AN INTEGRATION OF TWO APPROACHES

Winfried Lamersdorf

Two different approaches to database model semantics
description and evaluation are presented, compared, and
integrated: a formal semantic specification method as
originally developed for programming languages, and a

computer-based data model interpreter to be used as a rapid
prototyping system. Both ways to specify database model
semantics are applied to a common example.

Two alternatives to combine the advantages of both
methods are analyzed in detail: First, it is shown how the
semantics of the data model processor can be precisely
described in terms of the formal semantic specification
method. Then, it is demonstrated how the abstract meta-
language of the specification method can be mapped to the
executable commands of the data model processor. Thus,
database semantics can both be specified in an abstract and
high-level way and still be analyzed and evaluated
automatically.

Key words: databases; data models; data model processing;
data model prototyping; data model semantics; denotational
semantics; formal semantic specification; relational
database; relational data model; semantic model interpreter.
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To assist in the process of designing, specifying, and
evaluating the semantics of data models and software
components, new tools have been developed recently. Two
major directions can be separated: first, formal methods for
the precise specification of programming language semantics
have been successfully applied to the design and
specification of, e.g., a database query language [7], and a

major data model [9]. On the other hand, methods derived
from recent developments of 'rapid prototyping' systems can
be applied to design problems in the database area as well.
The design and evaluation of new systems (or models) can be
guided automatically at a very early stage of their
development

.

This paper, in essence, introduces, compares, and tries
to integrate two such methods for database software
development, analysis, and evaluation: The 'Vienna
Development Method' (VDM) [1] as a more theoretically
oriented semantic specification technique, and the
'Positional Set Notation' (PSN) [3] as the 'meta-language'
for an automatic data model specification interpreter, the
'Data Model Processor' (DMP) [4]. The paper is divided into
three major parts (chapters)

:

The second chapter introduces the basic semantic
specification tools of both methods. It compares both meta-
languages by applying them to a common object system, a

subset of the relational data model (RDM) as specified in

[9] and [5]. The basic result is that both methods have
different objectives, and, thus, different advantages:
PSN is oriented towards automatically interpretable
specifications, VDM, on the other hand, provides the more
complete and comprehensive specification meta-language.

The following chapters explore two approaches to
combining the advantages of both methods:

In chapter 3, VDM is applied to specify the semantics
of PSN in a completely formal way. The resulting formal
model provides PSN and the specification language of the DMP
with a concise and precise description of both their
structures and operations. Based on this specification, a
very detailed insight into the semantics of the meta-
language can be obtained, an essential pre-condition for the
use of the describing (meta-) language tools of any semantic
specification method.

Chapter 4 describes the alternative approach of using
the DMP directly as an interpreter for a subset of the
formal semantic specification tools of VDM. The intended
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goal is to combine the advantages of a high-level, abstract
semantic specification meta-language with the ease of
analyzing its specifications by automatic means. It is shown
in detail, to what extent PSN and the DMP commands can
provide a machine executable interpreter for a substantial
subset of VDM . Such an interpreter for high-level semantic
models is especially well suited for simulating semantic
specifications in the database area.

- 3 -



2 . TWO APPROACHES TO DATA MODEL SEMANTICS SPECIFICATION

2.1. CONCEPTS OF A SEMANTIC SPECIFICATION METHOD

A semantic specification method provides the tools
to describe the semantics of a given 'object system'. The
set of all tools is called the 'meta-' or 'specification'
language, the resulting description a 'semantic model' or a

'meta system'. Compared to the object system to be
described, the meta system is expected to be considerably
clearer, easier to understand, more concise, precise, and
less ambiguous. This leads to certain requirements for the
meta language. The appropriate choice of its tools and
language constructs is the most important prerequisite for
any specification technique. The set of tools provided
should be, on one hand, as formal, concise and theoretically
well based as necessary, and, on the other hand, as well
understood and understandable for the intended user as
possible. Experiences with natural language descriptions
seem to indicate that formal ways of expressing semantics
are more appropriate for that purpose than informal. (Formal
specifications of complex systems, however, tend to be
difficult to understand for untrained users.)

In any case, the meta-language tools should reflect the
most important parts of the object system in a suitable way.
Considering a data model as the system to be described, its
main components can be characterized as

- a set of obj ects which may have a complex inner
structure and different subcomponent relationships,

- a set of operations which are applicable to these
kinds of objects, and (possibly)

- a collection of restrictive ('consistency' or
'integrity') constraints and conditions which have to
be fulfilled by all 'well formed' objects and for all
operations 'well applied' to their respective
operands

.

So, an appropriate meta language has to provide at
1 east

:

- a mechanism to specify the structural aspects of an
object system with respect to both its subcomponents
as well as its subcomponent relationships.

- a mechanism to express the semantics of the
operational aspects of an object system with respect
to both their abstract syntax (operation name.
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parameter types) as well as their semantic meaning,
and

- ways to specify constraints which may apply to both
the structural and the operation aspects of the
object system.

well
In addition,
defined set

the meta language should be based on a

of primitives whose semantics can be
derived from well known (preferably
These primitives should be expressive
object system in an adequate way
should be 'comprehensible' enough
automatic use (or even both)

.

mathematical) objects,
enough to reflect the
and the semantic model
for either human or

2.2. THE VIENNA DEVELOPMENT METHOD

The 'Vienna Development Method' (VDM) [1] is a

specification method based on the denotational
Besides several applications to programming
semantics, it has been successfully applied to
specifications in various database areas, rangi
specific database language [7], to a complete
system [8], and a major data model [9].

semantic
approach

.

language
semantic

ng from a

database

VDM's corresponding meta-language, 'Meta IV', uses
high-level, abstract, mathematical objects to 'denote' the
semantic properties of an object system to be specified. An
important aspect of the abstract 'meta' objects of Meta IV
is that they express only a logical view of the structures,
operations, and constraints of the object system without any
impl ementational details. At the same time, they do not hide
important structural aspects of the described system as some
other semantic specification methods do. This makes a method
like VDM especially well suited for specifications in the
database area. Meta IV provides a very rich set of abstract
modeling tools both for the specification of structures and
operations as well as for constraints which may be imposed
on them. The syntax of the meta-language tools was designed
with special consideration to ease of understanding by users
who are familiar with the (concrete) syntax of a common
high-level programming language.
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2.2.1
STRUCTURAL TOOLS

2. 2. 1.1 Elementary Objects

Meta IV provides (in principle) an unlimited set of
elementary data types for the definition of semantic
objects. These data types are well known from the usual
programming languages: Boolean (value set BOOL), Integer and
Real (also comprised of Numeral, value set NUM) , and
Quotation (for indivisible character strings, value set
QUOT) . The set TOKEN contains all those elementary objects
whose inner structure is not considered any further in the
fo rmal model

.

2. 2. 1.2 Structuring Mechanism

Additionally, the meta language provides a standard set
of composite, higher-level abstract data types to describe
the structural aspects of an object system. These types
include

:

- simple sets of elementary or higher-order elements,

- ordered tupl es or lists of elementary or higher-order
elements

,

- labeled or unlabeled trees of elementary or higher-
order objects,

- finite maps between (finite) sets of abstract
objects, and

- total, partial, or bijectional functions between any
abstract sets within the model.

Using these data types in an abstract VDM model, more
complex meta-language structures are composed out of named,
simpler ones in an (in general recursive) BNF-like style.

2.2.2

OPERATIONAL TOOLS

As VDM is based on the ' denota t ional ' approach of
formal semantics, the meaning of each object system's
operation is defined in terms of a 'semantic meaning
function' which represents the abstract 'denotation' of that

particular operation. These so called 'elaboration
functions' describe the meaning of each operation by
specifying its effects on the semantic objects as given in

the structural part of the formal model. In pure
denotational semantics, the semantic meaning functions are
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represented by Lambda expressions. To improve the
readability of the specifications, however, Meta IV provides
alternative, but semantically equivalent means of writing
certain classes of Lambda expr<
notations are chosen to be similar to
of modern high-level programming
constant and variable declaratioi
conditional and iterative control s 1

In addition, the usual operal
abstract data structures may be

2.2.3 CONSTRAINT MECHANISMS

For abstract objects as well
operations, certain 'consistency
formulated by use of the ' is-well-f
functions) of the meta language Meta

- 'static' consistency constra
classes of abstract objects to
ones, and

- 'dynamic' consistency
abstract operations to
i.e. to those which
operands only.

only
are

lions

.

The al ternati ve
' well known construe ts
languages

:

they include
i, (meta) statements

,

ucture s, etc.

ons of the higher-level
used in the function
tive meanings are well
st-ord er predicates.

as for the abstract
constr aints ' may be
ormed

'

pred icates (i.e.
IV:

ints

,

to restrict the
only the well formed

aints

,

to restrict the
ie wel 1 applied ones,
ippl ied to well formed

2.3. THE POSITIONAL SET NOTATION

[3] provides a

objects. PSN
way to define

The 'Positional Set Notation' (PSN)
powerful notation for specifying data modeling
uses 'positional sets' (p-sets) as a unified
various aspects of data model structures formally.
Furthermore, there exist a software system, the 'Positional
Set Processor' (PSP) [4] which consists of about 40 powerful
commands to define and manipulate PSN structures (i.e. p-
sets) . Thus, the specification language of the 'data model
processor' (DMP) [5], i.e. PSN combined with the PSP
commands, can be used as a well defined method to express
data model semantics formally. The DMP provides an
executable ' meta ' -language which is based on p-sets, PSP
commands, and some additional C-code extensions to specify
behavioural properties which cannot be expressed completely
by PSP operations. The main advantage of the formal semantic
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specification tools is their ability to be executed
automatically on the DMP. Compared to VDM, however, the
specification meta-language is somewhat more restricted,
less abstract, and more difficult to understand and to use
for an inexperienced user.

2.3.1 STRUCTURAL TOOLS

2. 3. 1.1 Elementary Objects

The basic elements of PSN are called 'atoms'. In this
context, an atom is either a number (real or integer), a

string, or 'null', as denoted by the special character '#'.

Some character strings (namely 'indexes' or 'position
identifiers') are constrained to begin with an alphabetic
character

.

2. 3. 1.2 Structuring Mechanism

In PSN, the basic mechanism to specify str uc tur es is
the 'pos i tional set

'

(p-set) . P-sets are ( indexed) set s of
o rdered pairs in wh ich the first element of each pair is an
atom or a po s i t ional set, the second, cal led the ' index ' or
' posit io n iden ti f ie r', a (restricted - see above) char ac ter
string , a numbe r , or the special charac ter '#'. So , the
essence of PSN i s th e recursive definitio n of a p- set

:

s = [ x_i @ p_ i . . . ] where the x i (e lements) are e i ther
atoms or p-sets , and the p i (posTtion identi

f

iers) are
e i ther atoms or the special characte r '#' - the null
position ident if ier which denotes the index for each
' classic al ' set e lement. A pair x i @p i is called a

'duplex', i.e. each p-set consists of a (unordered) set of
duplexes. It is demonstrated in [6] that p-sets are powerful
enough to describe all structural properties of the main
database models.

2.3.2 OPERATIONAL TOOLS

In PSN, the mechanism to specify operations is based on
a set of 'primitive' or standard operations. They can be
executed on a software system called the 'Positional Set
Processor' (PSP) [4]. These ' PSP-commands ' include the
classical set operations, special operations to create,
delete, and modify p-sets, so called 'sequence' operations,
and auxiliary 'utility' operations. (See [4] for details.)
Whenever there is no such (in general complex) application
of PSP-commands to express the semantics of a data model
operation completely, further semantic descriptions are

- 8 -



added by use of 'concrete', plain C code. So all the
semantics of an object systems operation is specified in

terms of PSP operations, usually imbedded in some additional
C code, i.e. all specifications are machine executable on
the DMP.

2.3.3 CONSTRAINT MECHANISMS

The two possible kinds of consistency constraints may
be specified in PSN as follows:

- structural constraints, i.e. restrictions to the
structural contents of the p-sets are expressed using
a special ' WHERE-clause ' of the p-set 'CREATE'
operation or the 'TEMPLATE' definition which define
the build-up of new p-sets (See details in [6] and an
example in 4.2.1.),

- operational constraints, i.e. restrictions to the
data model's operations and their 'legal' operands,
are expressed using predicates and/or Boolean
expressions as provided by the programming language
C

.

So, PSN provides a meta language which is based on
(indexed) p-sets, primitive PSP-operations , and C-code-
extensions. As all these tools are formal and even machine
executable, their semantics is well defined with respect to
any software system which 'understands' p-sets, PSP-
commands, and C-code. The Positional Set Processor was
developed for that purpose.

2.4. AN EXAMPLE

In order to compare the two specification methods, we
will now apply both of them to a common object system. As a

small example we choose a subset of the relational data
model as formally specified in two alternative ways in [9]
and [ 6 ]

.

2.4.1 THE VDM SPECIFICATION

2. 4. 1.1 Structures

The abstract structures are specified in VDM in the
'semantic domains' of the formal model. In this example, we

- 9 -



introduce the basic concepts of a relational database,
relations, tuples, elementary values, and relation- and
attribute-identifiers.

In the first line of the semantic domain definitions
(1), we 'denote' the set of all possible relational
databases (RDB) by an abstract VDM (meta) data structure
'map' which maps each relation identifier (from RELID) to
its corresponding relation variable (from REL) . Relation
variables, in turn, are denoted by the abstract set of all
tuples which they contain (2) . Each abstract model of such a

tuple (from TUPLE) maps its set of attribute identifiers
(from ATTRID) to their respective values (3). Values may be
taken from one of the three predefined VDM (meta) value
sets: numeral (NUM, i.e. integer or real). Boolean (BOOL),
or 'quotation' (QUOT) which represents the set o f

und iv isible character strings (4). Finally, both kinds o f

identifier sets are not considered any further in this
semantic model, therefore being regarded as j ust ' tokens

'

(from the predefined VDM set TOKEN, see lines 5 and 6) .

SEMANTIC DOMAINS

RDB = (RELID > REL) (1)
REL = TUPLE - Set (2)
TUPLE = (ATTRID > VAL ) (3)
VAL = NUM

|
BOOL

|
QUOT (4)

RELID = TOKEN (5)
ATTRID = TOKEN (6)

As the consistency or integrity constraints can be
classified as either structural (or 'static') or operational
(or 'dynamic'), we will now present each set together with
the corresponding (structural or operational) part of the
formal model.

STATIC CONSISTENCY CONSTRAINTS

In VDM, the semantic domains define sets of abstract
objects denoting the structural components of the system to
be described. The static consistency constraints restrict
the sets of all possible abstract objects to only their
'well formed' elements. All consistency constraints are
expressed as predicates (i.e. Boolean functions), mapping
the well formed objects to true , all others to false . As all
abstract VDM functions, the predicates have their respective
types listed in the last line of the corresponding formal
function specification.

- 10 -



So, in our example, it is stated as a static
consistency constraint in [9] that all tuples within each
database relation have the same set of attribute identifiers
(i.e. their denotations have the same domain, dom ) . For
instance, this constraint (and, maybe, further additional
constraints) is formally specified by the following
predicate. It maps any relational database (from RDB) to
true (from BOOL) if it is 'well formed', and to false
otherwise

:

is-wf-RDB (rdb) =

( V relid 6 dom rdb )

( V tuplel, tuple2 G rdb (relid) )

( dom tuplel = dom tuple2 )

and ... (further constraints) ...

type : RDB > BOOL

2. 4. 1.2 Operations

In VDM , the abstract structure
specified in the 'syntactic domain'
model. As an example, we describe
(from the abstract set 'Insert')
tuple into a relation. First,

of the oper
part of th

the 'insert'
which inserts
the operation's

syntactical structure is defined: The insert oper
based upon an identifier (from RELID) for the relat
altered, and on the new tuple (from Newtuple) which
inserted into the relation. This new tuple is, o
denoted by an element of the abstract set TUPLE as
in the semantic domains above.

ations is
e formal
operation
a single
abstract

ation is
ion to be
is to be

f course,
defined

SYNTACTIC DOMAINS

Insert :: RELID Newtuple
Newtuple = TUPLE

Similar to the static consistency constraints,
abstract denotations for the operations (described in
syntactic domains) are usually constrained too. Th
operational or dynamic restrictions are
'dynamic consistency constraints' which
operation is 'well applied' to well formed

defined in
state whether

operands or no

the
the
ese
the
an

t

.
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For instance,
relation whose decla
( 1 ) . Furthermore

,

relation variable m
identifiers as the n

a new tuple may only be inserted into a

ration already exist in the database
tuples in the content of such a selected
ust have the same set of attribute
ew tuple to be inserted (2).

These constraints.
Boolean function (is-wf
representation of the
together with a model of
Boolean value.

again, are expressed in VDM by a

-Insert) which maps an abstract
insert operation (from Insert)
the database (from RDB) to a

DYNAMIC CONSISTENCY CONSTRAINTS

is-wf-Insert (insert) (rdb) =

s-RELID ( insert) 6 dom rdb (1)
and ( V tuple 6 rdb (s-RELID (insert)) )

( dom tuple = dom s-Newtuple (insert) ) (2)

type : Insert > ( RDB > BOOL )

The semantic meaning of each operation is denoted by a

function in the 'elaboration functions' part of the formal
model. This function describes the transition from one
database state (from RDB) to a new, altered one. Its type is
given by an abstract map which relates a database state
change (from the abstract set of maps (RDB >RDB) ) to the
execution of each given insert operation (from Insert). So,
for each insert operation and an actual database state, the
elaboration functions yields a new database state.

ELABORATION FUNCTIONS

elab-In ser t ( inser t) (rdb) =

let mk-Insert ( rel id ,newt upl e) = insert in (1)
let set 1 be rdb (relid) , (2)

set2 be { newtuple } in (3)
let newset be setl u set2 in (4)

rdb + [ relid > newse t ] (5)

type : Inse rt —-> ( RDB > RDB )
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The specification of the elaboration function for the
insert operation ( eval-Inser t ( . . ) ) starts with making
available the two parts of its input parameter ('relid' and
'newtuple') for the scope of the function specification
(1). Then, two set-constants are defined to contain the old
relation value and the new tuple to be inserted into it

(2,3). A third set constant is declared to contain the union
of the first two sets (4). The result of this elaboration
function is the denotation of the altered database state,
denoted by a map, rdb, which is updated with respect to one
element, relid, of its domain (5).

2.4.2 THE PSN SPECIFICATION

The whole interactive software environment to define,
test, and evaluate data models specified in PSN is the 'data
model processor' (DMP) [5]. The DMP is divided into several
parts, describing the different human roles which a user may
play in the process of specifying, initializing, and
evaluating a data model and its applications. The most
important part he has to play is that of a 'data model
definer'. In this role, a user defines the semantics of an
intended data model by providing a complete specification of
its semantics using PSN.

2. 4. 2.1 Structures

In a data model specification in the DMP framework, the
data model definer first uses PSN to define the structures
that can be expressed and manipulated in the data model to
be described. All abstract data structures are defined in
the 'p-set definition' part of the formal model. In its
'concept definition section', the new concepts are
introduced together with the p-sets which represent them in
the model

.

We demonstrate
models by applying it

the PSN specification method for data
to the same example as above: In [6],

a relational database is viewed
different relation occurrences. So,

concept 'RELATIONS' is declared
structure' (using the DMP command
represented by the p-set 'REL-OCC'.
also be a 'definition-structure', declared by
type definitions. This concept, however,
mentioned in this example.)

(in part) as a set of
in this example, the new
as a PSP 'occurrence-
REP-OCC) and will be
(In addition there might

REP-DEF , for
will not be
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CONCEPT DEFINITION SECTION

> REP-OCC RELATIONS WITH REL-OCC

In the following 'p-set definition section' , the p-sets
declared in the previous section are defined in detail using
other DMP operations. First, in a command file (1-3), a

range declaration (RG) associates all later used range
variables with their respective p-sets (2). Then, the
'TEMPLATE' command provides a description for each p-set
without actually enumerating its elements explicitly (4-10):
a p-set skeleton lists the configuration of position
identifiers (4); the following 'WHERE' clause further
constrains the set of all possible duplexes which may
appear in such a p-set (5-10).

Again, we concentrate on the specification of relation
occurrences (REL-OCC) only:

P-SET DEFINITION SECTION

> BEGIN <range-def ini tion-command-f ile> (1)— > RG RO IS REL-OCC (2)— > END <range-def ini tion-command-f ile> (3)

> TEMPLATE REL-OCC = [[RNgName,
RR-TPL@Relat ion] # ...] (4)

WHERE (5)
ISA -C RN, (6)
CD REL-OCC = CD (CR WITH (RO.Name)), (7)
TEMPLATE RR-TPL = [ [V@P (J ) . . J] @# . . .

]

(8)
WHERE (9)

I SIN P(J) ATTF(RN) (10)
• • •

STRUCTURAL CONSTRAINTS

In PSN , the structural consistency constraints are part
of the p-set definition. In the example given above, for
instance, it is stated that all relation names (RN) have to
be of type 'character' (-C) (6), relation names have to be
unique within the set of all relation occurrences (7), and
the tuple attribute identifiers have to match those of the
relation's type definition (as derivable by an auxiliary
function ATTF) (8-10)

.
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2. 4. 2. 2 Operations

In the DMP framework, the semantic specification of the
operations is based on the set of executable PSP commands.
In the environment of a C program which emulates the
specified operations, the execution of a PSP command is
invoked by a procedure call to the PSP ( expsp(...) )

-

similar to a system call.

In this example, one temporary p-set is created (CR)
for the argument relation's value (3), another one for the
tuple to be inserted (EN) (9); then, the union (UN) of both
p-sets is established as the new relation value (10). Prior
to its use, each new range (RG) variable (declared in 2,5,7)
is released (RL) from any prior association with another p-
set (1,4,6)

.

insert-T (REL, NEWTUP)
char *REL, *NEWTUP;
{

• • •

expsp ( "RL XI") ; (1

)

expsp ("RG XI IS REL-OCC" ) ; (2)
expsp ( st ringf (buf f 1," CR TMP1 WITH \"(X1.ALL)\"

WHERE \" (xl. Name = ' %s ' )
\"

" , REL) ) ; (3)
expsp ("RL Q"); (4)
expsp ("RG Q IS TMP1 " ) ; (5)
expsp ("RL R"); (6

)

expsp ("RG R IS Q. Relation" ) ; (7)
expsp ("CR TMP2 WITH \" (R.ALL)\" n

) ; (8)
expsp ( st ringf (buf f 2 ("EN \"[[%s]@#]\" NEWTUP",

NEWTUP)); (9)
expsp ("UN TMP2 NEWTUP INTO TMP3" ) ; (10)

• • •

}

2.5 COMPARISON OF THE TWO SPECIFICATION METHODS

Most of the differences between VDM and PSN stem from
the d if ferent purposes for which each of them was originally
designed

.

VDM is a specification method which is intended to be a

tool for a more systematic approach to (in essence) manual
development of software. It uses a meta-language
incorporating the modeling power of first-order logic to
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ease the appropriate modeling of more complex object systems
(such as programming languages as well as database models) .

Its formal tools are very rich, high-level, and applicable
in a flexible way. VDM emphasizes comprehensiveness of its
abstract semantic models for a broader set of users. VDM '

s

semantic models, however, are not machine processable.

PSN is designed as a basic, but yet sufficiently
powerful formal notation to support data modeling. It is
based on a small set of well defined mathematical concepts.
Its meta-language does not emphasize comprehensiveness for
the (mathematically inclined) human reader. The notation is
simple, unambiguous, and straightforward for modeling the
structural aspects of a (data model) object system. Abstract
formal PSN models are machine processable for a computer
based interpreter, the DMP.

The specification of the operational/behavioural
aspects of an object system is based on denotational
semantics in VDM. That is, the specification is based on
sound mathematical concepts and the semantics of the meta-
language is well defined. Meta IV is powerful enough to
express completely all semantic aspects of any object system
(with the exception of concurrency).

In the PSP, the specification of the operational
aspects of an object system relies on an extensive (but not
totally comprehensive) set of PSP commands. All of them are
implemented to be machine executable. However, the semantic
meaning of this kind of meta-language is basically defined
by its implementation only. Some parts of the operational
aspects of a PSN-based model still have to be expressed in
terms of their implementation in C code. Whether the PSN
primitives could be extended to avoid the necessity of C-
code augmentations is still an open and debatable question.

In VDM however, the full and extensive use of the meta-
language may lead to many different, complex, or even
inconsistent abstract semantic models. All analyses, tests,
and interpretations have to be performed 'manually', because
aids to any kind of automatic interpretation of the model do
not exist - and may be subject to human error. (As mentioned
above, the sheer volume of a complex specification can make
it quite difficult to ensure its consistency.)

The two specification methods compared in this report
have different objectives and, thus, different properties.
An important objective of PSN is to provide automatically
treatable formalizations of data model semantics. But this,
on the other hand, leads to some lack of richness and
formally sound foundations of the meta-language (especially
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with respect to its ability to specify operations).
Contrarily, VDM emphasizes a rich, powerful and more easily
understood meta-language. But Meta IV has no automatic aids
to analyze and/or interpret the semantic models (although
they tend to be rather complex when specifying non-trivial
object systems)

.

In order to overcome some of the deficiencies of the
two methods in consideration, two major solutions arise:

The first one would be to provide the PSN meta-language
(i.e. the PSP commands) with a semantically sound formal
definition. This could be expressed using any formal
semantic specification technique, an appropriate one being,
e.g., VDM. This approach is further elaborated in chapter 3.

In addition, the meta-language should be extended in order
to avoid the use of C-code in its behavioural
specifications.

The other alternative would be to make VDM's abstract
models treatable by some kind of automatic analyzer and/or
interpreter. This seems to be more difficult to apply to the
whole extent of meta-language features in Meta IV. But a

semantic specification that uses the full set of 'Meta IV'
language constructs could be transformed into one that uses
only a certain subset. It should then be possible to
interpret the constructs of such a (slightly restricted)
specification automatically using an appropriate processor.
Choosing the PSP for this task would mean integrating the
advantages of both methods in a quite natural way. The
second approach is further addressed in chapter 4.
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3. FORMAL SEMANTICS OF THE DATA MODEL PROCESSOR

3.1. INTRODUCTION TO THE FORMAL MODEL

This chapter provides a completely formal semantic
specification of PSN and major parts of the corresponding
PSP operations as described in [5] and [6]. The 'object
system' to be modeled here consists of the structured
objects (p-sets) as defined in PSN, accompanied by a set of
(PSP) commmands to manipulate these structures.

As an appropriate semantic specification method, VDM is
choosen. According to VDM, the formal semantic model of PSN
is divided into the following major components:

- the ' semantic domain ' definitions (3.2.1) specify the
denotations for all structural aspects of PSN upon
which the operations of the PSP are based,

- the ' syntactic domain ' definitions (3.3.1) list the
abstract syntax of all operations (i.e. PSP commands)
and describe the structure of their respective
operands

,

- the ' elaboration functions ' (3.3.3) specify the
meaning of the operations; their semantics is denoted
by semantic functions on the abstract sets of
structure denotations as defined in 3.2.1 and 3.2.2,
and

- the ' consistency constraint ' definitions state
additional restr ic tions on both the structural (or
'static') (3.2.3) and the operational (or 'dynamic')
(3.3.2) aspects of the model.

In the following subsections, shor
introductions precede the formal specifications o
of the semantic model. These introductions are no
be part of the semantic model, but should rathe
explanatory hints for readers who are less famili
meta-language of VDM.

in fo rmal
eac h part
meant to

g iv e some
wi th the

In the informal
concepts are abbreviated
their denotations are
specifications.

introductions

,

(in brackets)
ident i f i ed

newly introduced
in the same way as

in the formal
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3.2. STRUCTURE SPECIFICATION

3.2.1 ABSTRACT SYNTAX

The PSP provides an interpreter for a set of high-level
operations which can be applied to p-sets. The meaning of
the 'PSP commands' is based upon two auxiliary structures
which have to be specified in a formal semantic model:

- A 'range variable table' (RVTABLE ) contains all
declared range variable identifiers (RVID) , together
with their corresponding ranges (RANGE). These ranges
may be defined either by a positional set identifier,
or by a 'term' (TERM), i.e. a selected element of
another range variable's range.

- A 'freeze table' (FRTABLE) contains at all times the
actual bindings for each range variable to one
particular duplex out of its respective range.

All identifiers used in this model are regarded as
being just 'tokens' which have no further semantic content.

SEMANTIC DOMAINS

PSN • •
• • PSETS RVTABLE FRTABLE

PSETS = (PSID -— > PSET)

PSET = DUPLEX:
- Set

DUPLEX • •
• • ELEM POSID

ELEM - ATOM
|

PSET
POSID = £ I

NUM
|

CHAR

ATOM sz NUM
|

CHAR
CHAR = QUOT+

RVTABLE = (RVID -— > RANGE)

RANGE ss PSID
|

TERM
TERM • •

• • RVID POSID

FRTABLE = (RVID -•— > DUPLEX)

PSID — TOKEN
POSID = TOKEN
RVID = TOKEN

- 19-



3.2.2 THE GLOBAL STATE

Later on, we specify the constraints and some PSP
operations for the PSN structures defined above. Formally,
all their semantics is 'denoted' by semantic functions based
on these structures. Thus, nearly all semantic functions
would have to contain the PSN structure definitions as part
of their parameters. To make these function definitions more
readable, VDM provides a way to declare the main structural
parts of a semantic model as 'global' (meta-) variables,
i.e. to make them globally 'accessible' for each semantic
function. In our case, for example, the 'global state' for a

PSN model consists of three components which are declared
and initialized in the following way:

GLOBA L S T ATE

del PS : = [...] type PSETS

del RV : = [...] type RVTABLE

del FR :
= [...] type FRTABLE

All global variables are initialized with the component
values of the corresponding semantic domain objects. Thus,
for any given psn € PSN, the global variables refer to the
contents, c, of its respective subcomponents at any time:

c P£ = s-PSETS (psn) ,

c RV = s-RVTABLE (psn)
c FR = s-FRTABLE (psn)

and

The whole state is referred to as in the 'type'
declarations of the following semantic functions.

3.2.3 STRUCTURAL CONSTRAINTS

In addition to the structural properties defined above,
each 'well formed' PSN model is constrained (at least) by
the following requirements:

1. p-sets and range variables have to have different
identifiers,

2. all 'frozen' range variables from the freeze table
have to be declared in the range variable table,
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3. all p-sets have to be 'well formed' , i.e. all their
position identifiers have to begin with a letter,

4. the range variable table has to be 'well formed',
i.e. it may contain only well defined p-sets as the
range of each range variable, and

5. the freeze table has to be 'well defined' too, i.e.
each range variable can only be frozen to a duplex
from its correct respective range.

These constraints are specified by a Boolean function
(predicate), is-wf-PSN, with auxiliary functions used
whenever the readability can be improved. (The numbers in
brackets refer to the list above.)

STATIC CONSISTENCY CONSTRAINTS

is-wf-PSN () =

dom c PS n dom c RV = {

}

(1)

and dom c FR < dom c RV (2)

and ( V pset 6

( is-wf-
rng

PSET
c PS )

(pset) )

(3)

and is-wf-RVTABLE 0 (4)

and is-wf-FRTABLE 0 (5)

type : S > BOOL

3.2.4 AUXILIARY FUNCTIONS

Auxiliary functions are used either to specify common
parts of different functions of the formal model, or to
express certain properties in more detail at a separate
place to improve the readability of the specifications.

Here, the auxiliary functions for the specification of
the static consistency constraints first define in detail
which p-sets, range-variable-, and freeze-tables are well
formed :
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A p-set is well formed, iff it is structured as
described in the semantic domains, and, in addition, the
position identifiers of all duplexes in the p-set begin with
a letter, if they are character strings:

is-wf-PSET (pset) =

( V duplex G pset )

( let posid b£ s-POSID (duplex) iji

is-CHAR (posid) ===>
posid [1] G {A, ... , Z } )

type : PSET > BOOL

A range-variable-table is well formed, iff for all
declared range variable identifiers their corresponding
ranges are well formed. (Note: As the parameter, RV, to
this function is part of the global state, S, the function
specified here has no explicit parameters.)

is-wf-RVTABLE () =

( V rvid G dom £ RV )

( is-wf-range (£ RV (rvid) ) )

type : S > BOOL

What is meant by a well formed 'range' is then
specified formally by another auxiliary function which
states the well-formedness conditions for both possible
kinds of ranges (PSID or TERM)

:

- either the position identifier is an actually
declared p-set which is part of the content of the
global state variable PS, or,

- if the range
variable identif
an actually ex
range variable'
another auxiliar

is defined in terms
ier, the position id
isting duplex out o
s range (which is

y function, get-rang

of another range
entifier selects
f that particular
determined by

e) .
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is-wf-range (range)

cases range of :

(mk-PSID (psid) > psid G dom c PS

mk-TERM (rvid, posid) > rvid G dom c RV
and ( V duplex G get-range (rvid) )

( is-PSET (s-ELEM (duplex))
and ( duplex' G s-ELEM (duplex) )

( s-POSID (duplex') = posid ) ) )

type : RANGE > BOOL

The freeze-table is well formed, iff each range
variable identifier in its domain is 'frozen' to a duplex
from the corresponding range.

i S-wf-FRTABLE () =

( V rvid G dom c FR )

( c FR (rvid) G get-range (rvid) )

type : S > BOOL

The next two auxiliary functions formally define the
range of a range variable identifier and specify how to
select a set of duplexes from a p-set identified by a given
position identifier.

The corresponding range for a range variable identifier
is a set of duplexes which is determined by the auxiliary
function 'get-range':

get-range (rvid) =

cases £ RV (rvid) £f :

(mk-PSID (psid) > £ PS (psid) ,

mk-TERM ( rvid ', posid) > { duplex |

duplex G dot ( dupl ex ', posid

)

and duplex' G get-range (rvid 1

) } )

pre : rvid G dom c RV and is-wf-range (c RV (rvid)

)

type : RVID > PSET
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Given a position identifer, the aux
'dot' selects the corresponding duplex f

Because, in general, position identifiers in
necessarily distinct, the result is a se
duplexes, i.e. a p-set.

il iary
rom a

a p-se
t of

function
p-set

.

t are not
selected

dot (pset,posid) =

let duplex € pset be £.t,.

s-POSID (duplex) = posid _in

s-ELEM (duplex)

pre : ( duplex € pset )

( s-POSID (duplex) = posid )

type : PSET POSID > PSET

Both of
only if some
parameters are
stated in the
specifications,
functions has
satisfied prior

the last two functions a

additional (pre-) condi
satisfied. These pre-cond

1 pre 1 predicates at the
Each environment which
to make sure that al
to a function applicatio

re applied correctly
tions on their input
itions are formally
end of the function

uses any of these
1 pre-conditions are
n

.

3.3. OPERATION SPECIFICATION

3.3.1 ABSTRACT SYNTAX

The PSP is a software tool for interpreting and
manipulating p-sets. With the PSP commands, it provides a

set of powerful operations which can be applied to the PSN
structures as defined above.

In this subsection, the abstract syntax of the PSP
operations is analyzed, i.e. their names are declared, and
the structure of their respective operands is described in
an abstract way wi thout considering any details o f the
syntactic notion •

Not all PSP commands will be considered in the
semantic model . As an example, only some of the more
important operations are defined formally. Those PSP
commands (Psp-cmd) specified here include: the 'range-
variable' declaration (Range_dcl) , the 'release' command for
range variables (Release), the command to 'enter' a p-set
expression into a p-set (Enter), the 'delete' (Delete),
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'freeze' (Freeze) and 'thaw' (Thaw) commands for p-sets, and
the more complex 'create' (Create) command to build up and
store new p-sets.

P-set expressions (Ps-expr) describe all possible ways
of creating new sets of duplexes (i.e. p-sets) from existing
structures: from a p-set-identif ier (PSID) , a whole p-set
(PSET) , a classical set (C-set) , a union of two other p-set
expressions (Un-expr) , or a p-set 'create' expression (Ps-
cr-expr )

,

etc.

SYNTACTIC DOMAINS

Psp-cmd Range-del |
Release |

Enter 1

Delete I
Freeze |

Thaw
| Create |

Range-del RVID RANGE

Release RVID

Enter PSID Ps-expr

Delete PSID

Freeze RVID Cond

Cond = (DUPLEX > BOOL)

Thaw • •
• • RVID

Create • •
• • PSID Ps-cr-expr

Ps-cr-expr • •
• • A-list Cond

A-list = Attribute - Set
Attribute = TERM

|
Attr-asgn

Attr-asgn • •
• • POSID Phrase

Phrase = ATOM | Ar th-expr |
TERM

Ar th-expr =s • • •

Ps-expr = PSID |
PSET |

DUPLEX |
C-set

|
Un-expr I

Ps-cr-expr 1 . .

C-set = ELEM - Set

Un-expr • •
• • Ps-expr Ps-expr
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3.3.2 OPERATIONAL CONSTRAINTS

The operations are basically constrained by the kinds
of arguments they can take. In the previous subsection, some
of those constraints are expressed through the structural
definition of the operations's operands. But there are
further 'operational constraints', e.g.: not only must the
first argument of the 'Range' command be a range variable
identifier (rvid), but also must all mentioned range
variable identifiers be declared previously, i.e. be part of
the domain of the range variable table referred to by RV.
Similarly, the second argument (range) of this command is
restricted with respect to the structure definitions given
in the 'semantic domains', etc.

In the same way as the structural constraints,
operational constraints are defined as Boolean functions,
i.e. predicates, over the set of abstract operations as
listed in the syntactic domains. Here again, only some
operational, or 'dynamic' constraints will be defined
exemplar ily.

DYNAMIC CONSISTENCY CONSTRAINTS

The dynamic consistency constraints check whether the
operations are applied to well formed operands. Here, the
whole (Boolean) function to check the well-formedness of the
PSP commands is divided into different cases according to
all listed alternatives for the operations. An (is-well-
formed) predicate is specified for each PSP command which is
described in the syntactic domains:

i s-wf-Psp-cmd (psp-cmd) =

cases psp-cmd of :

(mk-Range (rvid, range) > is-wf-range (range)
and rvid € dom c RV ,

mk-Release (rvid) •> rvid G dom c RV

mk-Enter
( psid ,ps-expr )

> is-wf-Ps-expr (ps-expr)
and psid € dom c PS ,

mk-Delete (rvid) -> rvid G dom c RV ,

mk-Fr ee ze (rvid,cond) -> rvid G dom c RV
and ( V duplex G get- range (rvid) )

( dupl e'x G dom cond ) ,
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mk-Thaw (rvid) > rvid 6 dom c RV f

mk-Create ( psid ,ps-cr-expr )
---—

>

let mk-Ps-cr-expr (a-list ,cond)
be ps-cr-expr jji

psid G dom c PS
and is-wf-Ps-expr (ps-cr-expr)
and ( ¥ duplex 0 max-pset (a-list) )

( duplex 0 dom cond ) ,

... )

type : Psp-cmd > BOOL

The next auxiliary function defines which p-set
expressions are well formed. It is mainly used in the
previous specification of the well formed operations
(operands). Note that no additional restrictions are imposed
on p-set expressions from the abstract sets PSET, DUPLEX, or
C-set. Note also, that the predicate for the p-set 'create'
expression, ps-cr-expr, makes sure that the condition, cond,
in this expression is defined for all possible duplexes
which may conform to its attribute list. This 'maximum' p-
set conforming to the specified attribute list can be
derived by the auxiliary function 'max-pset' which is
formally defined in 3.3.4.

is-wf-Ps-expr (ps-expr) =

cases ps-expr <Df :

(mk-PSID (psid) > psid 0 dom c j?S ,

mk-PSET () > true ,

mk-DUPLEX () > true ,

mk-C-set () > true ,

mk-Un-expr (psel,pse2) > is-wf-Ps-expr (psel)
and is-wf-Ps-expr (pse2)

mk-Ps-cr-expr (ps-cr-expr) >

let mk-Ps-cr-expr ( a-1 i st ,cond ) b£ ps-cr-expr
( ¥ duplex 0 max-pset (a-list) )

( duplex 0 dom cond ) ,

... )

type : Ps-expr > BOOL

in
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3 . 3 . 3 OPERATION SEMANTICS

In the last part of the semantic
finally define the semantics of the operat
syntactic domains. The semantic meaning of
denoted by an 'interpretation function' wh
mapping of one instance of the global
operation's execution) to a new one (after
execution)

.

model for PSN, we
ions listed in the
each operation is
ich describes the
state (before the
the operation '

s

Thus, the interpretation function for PSP-commands
specifies a state change for each different PSP operation.
In case the operation is a range variable
declaration/release, the global state component RV is
updated with respect to that particular range variable” The
meaning of entering/deleting a p-set in the model is denoted
by a change of the global state component PS.

The semantic description of the 'freeze' command is
divided into two different alternatives. In the first
case, the range variable to dp frozen (according to a given
condition, cond) is not defined in terms of another
range variable identifier. Then, a duplex satisfying the
condition is chosen out of its respective range, and the
global £R state component is updated with respect to that
range vaTiable identifier. The other alternative is that the
range of the argument range variable identifier is defined
by (in general) a list of 'ancestor' range variable
identifiers (via 'dot' selection). In this case, the list is
derived (ancestorl) , all corresponding duplexes are chosen
(duplexl) , and then the FR-table is updated with respect to
all ancestor range variable identifiers.

The 'thaw' command releases a given range variable
identifier together with the elements of its list of
'descendent' range variable identifiers (derived by the
auxiliary function ' descendents

' ) from the FR-table in the
global state. In the denotation of the 'create' command,
the p-set expression, cr-ps-expr (as specified later) is
evaluated first, and then the result is entered into the set
of all defined p-sets referred to by PS.

The interpretation
global state change.

of each PSP command results in a
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ELABORATION FUNCTIONS

int-Psp-cmd (psp-cmd) =

cases psp-cmd £f :

(mk-Range (rvid, range) > RV : =

£ RV + [rvid — > range] ,

mk-Release (rvid) > RV := c RV \ {rvid} ,

mk-Enter (psid ,ps-expr) >

let pset b£ eval-Ps-expr (pset) rn
PS := c PS + [psid — > pset] ,

mk-Delete (psid) > P£ := c _PS \ {psid} ,

mk-Freeze (rvid,cond) >

if parent (rvid) = undefined

then let duplex € get-range (rvid)
be £.t_. cond (duplex) rn

FR := £ FR + [rvid — > duplex] ,

else let ancestorl be ancestors (rvid) in
let duplexl be < dx[i]

I

dx[i] G get-range (ancestorl [i])
and s-ELEM (dx[i]) G dot (s-ELEM (dx[i-l]),

s-POSID (£ RV (ancestor [i])))
and cond (s-ELEM (dx[n]))
and 2 < i < n=len ancestorl > in

FR := £ FR + [rvid [i] — > duplexl [i]
|

1 < i < n and
rvTd [T] = ancestorl [i] ] ,

mk-Thaw (rvid) >

let descendentl be descendents (rvid) rn
FR := £ FR \ elems descendentl ,

mk-Create (psid , ps-cr-expr) >

let p-set be eval-Ps-expr (ps-cr-expr) in_

FR := £ FR + [ psid — > p-set ] ,

. . )

type : Psp-cmd > ( S > S )
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Th e eval uation of al 1 different kinds of
1 isted in the syntactic doma ins is denoted by
f unc t io ns 11 whi ch map an expr ession and an actual
the sta te into a particular ( in general compl
Here f we cone entrate on the evaluation of p-set
only •

If > P" set expression is given by a p-set

expressions
' evaluation
instance of
ex) value,
expressions

it is evaluated by deriving its corresponding p-set from the
global state component P£. If a p-set is given, that p-set
is simply returned. A duplex is evaluated as a singleton p-
set that contains the duplex, and a classical set is mapped
into a p-set of duplexes with null position identifiers. A
'union' command creates a p-set from the union of its
evaluated argument p-set expressions. A p-set 'create'
expression first creates the set of all possible duplexes
conforming to the given attribute list (using the auxiliary
function 'max-pset'), and then selects only those duplexes
which satisfy the specified condition.

The evaluation of each p-set expression returns a p-
set

.

eval-Ps-expr (ps-expr) =

cases ps-expr of :

(mk-PSID (psid) >

mk-PSET (pset) >

mk-DUPLEX (duplex) >

mk-C-set (c-set) >

£ PS (psid) ,

pset ,

{ duplex } ,

{ mk-DUPLEX (elem,_#)
elem G c-set f

mk-Un-expr ( pset 1 , pset 2 )
>

let p-setl be eval-Ps-expr (psetl) ,

let p-set2 be eval-Ps-expr (pset2) j_n

psetl u pset2 ,

mk-Ps-cr-expr ( a-1 i st ,cond )
>

let m-pset be max-pset (a-list) rn
select ( m-pset ,cond ) ,

. • )

type : Ps-expr > PSET
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3.3.4 AUXILIARY FUNCTIONS

The first
specification of
what is meant by
a range variable

three auxiliary functions for the
the operations' semantics formally describe
'parent', 'ancestors', and 'descendents' of
identifier

.

parent (rvid) —

if_ is-PSID (c RV (rvid))
then undefined
else s-RVID (RV (rvid))

pre : rvid
type : RVID

€ dom c RV
RVTABLE > RVID

ancestors (rvid) =

< rvid [i]
|I

parent (rvid [1]) = undefined
and rvid [i] = parent (rvid [i+1])
and rvid [n] = rvid and 1 < i < n >

pre : rvid
type : RVID

€ dom c RV
> RVID+

descendents (rvid) =

< rvid [i]
|I
rvid [1] = rvid
and rvid [i] = parent (rvid [i+1])
and is-PSID (c RV (rvid [n] )

)

and 1 < i < n >

pre : rvid
type : RVID

€ dom c RV
> RVID+

The auxiliary function 'max-pset' derives for any given
attribute list (from A-list) the (maximum) set of all
possible duplexes which conform to that particular attribute
list. It does this by first determining the ancestor
'chains' for all dependent and independent range variable
identifiers. (A range variable identifier is regarded to be
'independent' if it is not defined in terms of any other
range variable identifier.) Then a ' produc t ' -set (similar to
a relational 'join') is built up for all independent range
variable identifiers. This set is finally 'projected'
(and/or augmented) according to the given attribute list.
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max-pset (a-list)

let rvid-chains be
get-rvid-cKains (a-list) in

let independent-rvids Ise { rvidl fl] I

rvidl G elems rvid-chains } in
let product-pset be

product (independent-rvids) _in

project (product-pset, a-list)

type : A-list > PSET

The following auxiliary functions specify in detail the
semantics of the mentioned steps in the previous semantic
f unc ion

.

get-rvid-chains (a-list) =

let rvids be { rvid
|

attr G a-list and
( ( is-TERM (attr) ==> rvid = s-RVID (attr) )

or ( is-Attr-asgn (attr) ==>

( is-TERM (s-Phrase (attr)) and
rvid = s-RVID (s-Phrase (attr) ) ) ) ) } in

let independent-rvids be^ { rvid | rvid G rvids and
not (

] rvid' G rvids )

( rvid' G elems ancestors (rvid) ) } in

{ rvidl | rvidl [1] G independent-rvids
and rvidl [i+1] G elems ancestors (rvidl [i])
and ( V rvid G rvids ) (5- rvidl, j)

( rvidl [ j] = rvid )

and 1 < i,j < len rvidl }

type A-list >
( RVID+ )

- Set

product (rvids) =

{ mk-DUPLEX (elem,#.)
I
elem = mk-PSET (pset)

and pset = { mk-DUPLEX (elem', rvid)
|

elem' G get-range (rvid)
and rvid G rvids } }

type : RVID - Set > PSET



project (pset ,a-list) =

{ mk-DUPLEX (elem, posid)
|
duplex € pset and
attr € a-list and

cases attr c^f :

(mk-TERM ( rvid , posid ' ) >

posid = posid' and
elem € dot (dot (s-ELEM (duplex) , rvid) , posid) ,

mk-Attr-asgn
( posid phrase) >

posid = posid' and

cases phrase of :

type

(mk-ATOM (a) >

mk-Ar i th-expr (ae) >

mk-TERM ( rvid , posid" )
—

>

s-ELEM (duplex)

PSET A-list > PSET

elem = a ,

elem =

eval-Ar i th-expr

elem € dot (dot

,rvid)

,

posid”

)

(ae)

(

) )

9

}

select (p-set,cond) =

{ duplex
|
duplex € p-set
and cond (duplex) }

type : PSET Cond > PSET

The evaluation of arithmetic expressions will not be
specified in this context. For all possible kinds of
arithmetic expressions it yields an atom.

eval-Ar i th-expr (arith-expr) =

type : Arith-expr > ATOM
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4. INTERPRETING DATA MODEL SPECIFICATIONS

4.1. OVERVIEW

The main goal of this chapter is to combine the
advantages of both VDM and PSN in a different way as
proposed above

.

This can either be looked at as making VDM's
abstract model

s

treatable by some kind of automatic
interpreter, or, from the other side, as providing PSN with
a more abstract, flexible, and more readable meta-language
on top of PSN and its already implemented PSP commands.
Then, the database model specifications can be expressed in
an abstract, high-level, and convenient way, and, on the
other hand, the specified systems can be automatically
emulated for machine supported testing and analysis at a

very early stage of the design process.

The chapter proceeds
mapping a slightly restri
corresponding representat
PSP operations. Then, for
their respective operati
terms of PSN and the PSP c

Finally, it is outlined
model can be constructed
analyzing and testing the

with an outline of
cted, formal VDM
ion in terms of PSN
all VDM (meta) data

the process of
model into a

structures and
structures and

ons, executable interpretations in
ommands are defined in detail,
how an interpr etable VDM semantic

, and some automatic means of
specifications are suggested.

4.2. INTERPRETING A VDM MODEL ON THE DMP

The process of 'translating' a formal VDM semantic
model into its executable PSN/PSP representation can be
divided into several steps according to the main components
of the VDM specification.

4.2.1 STRUCTURE SPECIFICATION

4. 2. 1.1 Semantic Domains

In VDM, the object
'semantic domains' part of
each structure is repre
structures are specified
command. (The upper case
to their respective abbrev
structure definition i

corresponding template d

str uc tur e

the fo rmal
se nted by
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s are defined in the
model. In the PSP,

a p-set, and the p-set
by a PSP 'TeMPl ate

'

the PSP commands refer
the DMP.) So, for each

semantic domains, a

with the same name is
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specified in the PSP interpreter. This template def
describes all possible p-sets which can represe
elements of that respective domain. How the right ha
of a semantic domain definition translates into the
(template) representation, depends on its abstract structure
and will be explained in detail in the following section.

If the VDM semantic domain definition makes use
BNF-like (bar) to specify different alternativ
possible structures of its elements, this defini
translated into as many alternative p-set t

definitions. Thus, each actual p-set representation
such domain element has to 'conform' to one
corresponding templates at all times.
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el ement/dupl ex
an abstract VDM

instance
domain.

in an actual p-set which represents

4. 2. 1.2 Static Consistency Constraints

The restrictions to valid ('well formed') semantic
domain objects are expressed in VDM by Boolean 'is-well-
formed' functions in the static consistency constraint part
of the formal model. If these ' is-well-formed ' functions are
expressed in a way such that each of them can be related to
the specification of exactly one semantic domain object, the
respective predicate is included in the 'WHERE' clause of
the corresponding template definition in the PSN/PSP
representation. Other static consistency predicates or
auxiliary functions should not be used in this part of the
VDM semantic model. (This does not restrict the
expressiveness of the formal model.)

4. 2. 1.3 Global State

To ease the interpretation of its semantic functions,
the VDM semantic model should be based on an explicit global
state. Then, for each database variable which is part of the
global state in the VDM semantic model, a corresponding p-
set variable is declared in the PSN/PSP representation. The
initial p-set value is either created by a p-set 'CReate'
command, or the PSP 'POPulate' operation may initiate a
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dialog session to provide the initial duplex instances to
the system. In either case, the interpreting system has to
make sure that all values of the global variables conform at
all times to the template definitions which represent their
respective semantic domain object definitions.

4.2.2 OPERATION SPECIFICATIONS

4. 2. 2.1 VDM Model of the Operation Semantics

The abstract syntactic structure of the operations and
their operands is specified (in a similar way as the object
structures) in the 'syntactic domains' of the VDM semantic
model. Restrictions to the operands are defined by is-well-
formed predicates in the 'dynamic consistency constraints'.
Each operation's semantics is then denoted by a semantic
'interpretation' function in the 'elaboration functions'
specification of the formal semantic model. If necessary,
there are also semantic 'evaluation' functions defined which
denote the meaning of any expression evaluation.

In the PSN/PSP interpretation of the operation
semantics model, the semantic functions are represented by
equivalent procedures and functions. How to derive these
procedures and function from the corresponding VDM semantic
functions will be explained in the next two paragraphs.

4. 2. 2. 2 Interpretation Functions

For each (operation) interpretation function of the
'elaboration functions' part of the VDM model, a procedure
is defined for the PSP according to the following
description

:

- the name of the procedure is given by the name of the
left-hand side of the corresponding rule in the
syntactic domains of the VDM model;

- the argument types for the procedure are given by the
p-set representations of the right-hand side of the
corresponding rule in the syntactic domains of the
VDM model; either these object types are already
defined in the semantic domains, or they (and their
p-set representations) are derived from such object
types in the same way as described for the semantic
domains objects in 2.1.1.

- the procedure bodies start with checking the
restrictions to the arguments as specified in the
dynamic consistency constraints of the VDM model. For
each operation, the corresponding ' is-well-formed

'
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predicate is applied to check the validity of the
actual arguments of the procedure representing the
operation. If this check yields false, the operations
will not be interpreted, and some form of exception
handling takes place instead.

- Otherwise, the procedure body is built up by the PSP
representation ol the corresponding interpretation
function of the VDM model. How this representation is
derived from the VDM interpretation function will be
described later.

The executions of the 'semantic' procedures defined so
far, can (and usually do) access components of the global
state. All these procedure executions result in side-
effects, i.e. changes to variables of the global state.
'Auxiliary' functions may be used, whenever it is
convenient, in the same way as in the VDM semantic model.

4. 2. 2. 3 Evaluation Functions

For each evaluation function which in VDM models the
semantics of evaluating expressions, a corresponding
function is defined in the following way:

- its name is
correspond ing

given by the left hand side of the
rule in the syntactic domains;

- its argument (type)s are given by the right-hand side
of the corresponding rule in the syntactic domains;

- restrictions to the arguments as possibly specified
in VDM ' is-well-formed ' functions (in the dynamic
consistency constraints) are checked at the very
beginning of each function evaluation;

- the resul

t

of a function call is (in general) a
complex value as specified by the VDM evaluation
function definition, or, in case an

- error occurs during the
result is undefined , and
handling procedures may be

function eval
some special

triggered

;

uation, the
exception

- the function body is made out of the
restr ic ted ) VDM function specification. It
result value from the • function input
and/or additional components of the global

( si ightly
derives a

parameters
state

.

No function evaluation does at any time change the
global state; i.e. functions do not have side effects. All
function definitions may be based on additional auxiliary
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functions; but note that all necessary pre-conditions for
the application of these auxiliary functions have to be
checked as (possibly) specified in the respective 'pre-
predicates' at the end of each corresponding VDM function
specification.

4. 2. 2. 4 Interpreting the Semantic Functions

The specification meta-language of VDM uses a set of
abstract (meta) data structures to denote object structures,
and semantic function specifications to express the
semantics of the object systems' operations. Basically, the
VDM representations for semantic functions are expressed in
terms of a set of (meta) operations which are predefined for
all VDM meta data structures. Some (meta) control structures
may be used in a way known from usual high-level programming

addition, first-order predicates add to the
of the semantic functions' specifications,
alternative (and easier to use) means of

expressing certain parts of the function specifications are
provided. This (meta) syntactic 'sugar', however, does not
add to the specification power of the meta-language.

languages. In
expressiveness
Finally, some

In order to interpret the VDM semantic function
specifications on the PSP, we first have to provide
interpretations for (meta) data structures and their
respective operations. This will be shown in detail in the
next section. The VDM (meta) control structures can be
interpreted directly by the corresponding control structures
of the programming language environment of the PSP (as given
in the DMP and augmented by the programming language C)

.

The use of first-order predicates has to be restricted to
only those which can be represented in the 'WHERE' clauses
of the PSP 'CReate' commands. The 'syntactically sugared'
notations in the semantic functions' specifications can
either be interpreted after transformation into their
'unsugared', basic VDM equivalents, or, as they are in most
cases similar to usual programming language constructs,
directly by the PSP programming language environment.

4.3. INTERPRETATIONS FOR THE META DATA STRUCTURES

4.3.1 ELEMENTARY DATA TYPES

Meta IV,
three different
definition of
predefined sets

the meta-language of VDM basically provides
'elementary' (meta) data types for the

semantic objects. They are interpreted by
of atomic values in PSN as follows:
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- the abstract VDM data type Boolean with its
corresponding value set BOOL and the set of Boolean
operations will be interpreted by usual Boolean data
type as available on the interpreting machine;

- the VDM data type Numeral (whose value set, NUM,
comprises INTEGER and REAL values) is interpreted by
the usual data types INTEGER and REAL combined;

- the VDM data type Quotation (value set QUOT) is
interpreted by the ( indivisible) character strings
CHARACTER in PSN/PSP.

All operations (i.e. all ways of deriving expressions)
in the elementary data types are interpreted by the
respective usual operations of the programming language
environment of the PSP.

4.3.2 COMPOSITE DATA TYPES

4. 3. 2.1 Sets

Any VDM abstract set, s, of elements, e_i , is
interpreted by the following p-set:

- in case the set was explicitly defined by the VDM
set specification, {e_l , . . . ,e_n} , it is interpreted
by the (classical) p-set { e_l@# , . . . ,e_n@# }

,

- in case the set was implicitly defined by the VDM
set specification, { e |

e € E and P(e)}, it is
interpreted by the p-set-create expression

CR WITH e .all WHERE p(e) ,

provided a range variable, e, is declared to range
over the (p-set) interpretation of the set E.

The common set operators, union, intersection,
difference, cardinality, complement, membership, and subset
predicate are interpreted in a straightforward way by the
corresponding classical (p-) set operations, UN, IN, SY, CD,
ISIN , RC, and SB. However, application of the PSP commands
should be restricted to operands representing classical sets
only. Whether a p-set represents a classical set can be
checked by the PSP predicate CS.

All set operations are interpreted in terms of their
respective PSP commands, and, in addition, possibly some
high-level programming language constructs from the
programming language environment of the PSP. In this
section, the operation interpretations will be expressed in
a way similar to usual programming language function
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definitions, stating first each function's name, its
parameters, possibly the type of its result (only if other
than p-set) , and then, as the function's body, the PSP
interpretation for the respective ( VDM) operation. As nearly
all parameters are p-sets, parameter types will be given
explicitly only if other than p-set.

So, the abstract VDM set operations can be interpreted
in the PSP in following way:

f unction
If

set union (pset l,pset 2) =

CS (pset 1) and CS (pset 2)
then UN pset 1 pset 2

else undefined

function
if_

set intersection (pset l,pset 2) =

CS (pset 1) and CS (pset 2)
then IN pset 1 pset 2

else undefined

function
i_f

set difference (pset l,pset 2) =

CS Tpset 1) and CS (pset 2)

then SY pset 1 pset 2

else undefined

function
TF

set cardinality (pset) : INTEGER =

CS (pset)
then CD pset
else undefined

function

n
set element (elem,pset) : BOOL =

CS (elem) and CS (pset)
and CD elem = 1

then ISIN elem pset
else undefined

function
TF

set complement (pset l,pset 2) =

CS (pset 1) and CS (pset 2)
then RC pset 1 pset 2

else undefined

function
TF

set subset (pset l,pset 2) : BOOL =

CS (pset 1) and CS (pset 2)
then SB pset 1 pset 2

else undefined
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4. 3. 2. 2 Tuples

Abstract tuples of the VDM meta-language consisting of
a list of components, c_i , are interpreted by the following
p-sets:

- an explicit tuple specification <c_l , . . . ,c_n> is
represented by the p-set [ [c_l@component , l@index] @#

,

. . . ]

,

and

- for an implicit tuple specification < f(i)
I

1 < i < n >, where f is a function mapping integers
to components f: INTEGER > COMPONENTS, the
corresponding p-set representation is created by the
PSP-commands

RG c IS <p-set representation of COMPONENTS>;
RG i IS <p-set representation of INTEGERS l...n>;
CR WITH (component : =c , index:=i) WHERE (f(i)=c).

To assure the correctness of the operands for tuple
operations, we have to provide ways to test whether a given
p-set represents a tuple or not. Therefore, a 'tuple-
template', Tpl_tdef, has to be predefined in the PSP:

TMP Tpl_tdef = [ [c@component , i@index]@# ...
WHERE (i € {1, . . . ,n} )

]

Based on this template definition, we can test whether a

given p-set 'conforms' (CNF) to it or not.

Now, the selection of a single tuple component, indexed
by an integer value, i, can be interpreted by

function tpl select (tpl, i : INTEGER) =

if CNF tpl TO Tpl_tdef and i < CD tpl
then { RG d IS tpl;

CR WITH (d .component) WHERE (d.index=i) }

else undefined

The other VDM tuple operations, len (number of
components), hd (first component), tl (tuple without first
component) , elems (set of components) , ind (index set)

,

update (change of a component as given by its index), and
concatenate (concatenates two tuples), are interpreted as
follows

:

function tpl len (tpl) =

Tf CNF tpl TO Tpl_tdef
then CD tpl
else undefined
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function
TI

function
IT

function
Tf

function
if

function
Tf

function
Tf

tpl_hd (tpl) =

CNF tpl TO Tpl_tdef
then tpl_select (tpl,l)
else undefined

tpl_tl (tpl) =

CNF tpl TO Tpl_tdef
then { RG d IS tpl;

CR WITH (d .component , index : =d . i ndex-1

)

WHERE (d. index * 1) }

else undefined

tpl_elems (tpl) =

CNF tpl TO Tpl_tdef
then { RG d IS tpl;

RG c IS d. component;
CR WITH (c .all) }

else undefined

tpl_ind (tpl) =

CNF tpl TO Tpl_tdef
then { RG d IS tpl;

RG i IS d. index;
CR WITH (i .all) }

else undefined

tpl_update ( tpl , i : integer , new) =

CNF tpl TO Tpl_tdef and CNF new TO Tpl_tdef
and i £ CD tpl_elems (tpl)
and tpl_ind (new) = [i@#]
then { RG e IS tpl;

CR temp WITH (e .component)
WHERE (e. index 4 i)

;

UN temp new }

else undefined

tpl_concatenate ( tpl_l , tpl_2 )
=

CNF tpl_l TO Tpl tdef and
CNF tpl_2 TO Tpl_tdef
then { RG e IS tpl_2;

CR temp WITH (e .component , i ndex :

=

e. index + tpl_len ( tpl 1 ) )

;

UN tpl_l temp }

else undefined
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4 . 3. 2. 3 Maps

A VDM map, m, mapping domain elements, a_i € A, to
corresponding range elements, b_i € B, is represented in the
PSP by one of these methods:

- in case it is specified explicitly as m = [ a_l— > b_l, ..., a_n --> b_n] by the p-set
[ [a_l@argument , b_l@resul t] @# . . . ], or

- in case it is specified implicitly in terms of a

predicate, p: (A,B) >BOOL, m=[a— >b
|
p(a,b)], its

p-set representation, m' , is created by the following
PSP commands:

RG a IS A; RG b IS B;
CR m' WITH (argument : =a , resul t : =b)

WHERE ( p ( a ,b) )

For type checking purposes, again, a ' map_templ ate ' is
defined in the PSP as

TMP Map_tdef = [ [a@argument ,b@resul t] @#. . .

]

WHERE CD Map_tdef = CD ( CR WITH (mtd .argument) )

provided 'RG mtd IS Map_tdef'.

The VDM operations defined for maps, rng (range), dom
(domain), apply (application of a map to an argument),
restrict (restriction of the domain of a map to a subset),
exclude (exclusion of a subset of a map's domain), alter
(extension and updating of a map by another map) , compose
(functional composition of two maps), and union (union of
two maps with disjunct domains) are interpreted by the
following functions:

function map dom (map) =

l

f

CNF map TO Map_tdef
then { RG p IS map;

CR WITH (p. argument) }

else undefined

function map rng (map) =

i

f

CNF map TO Map_tdef
then { RG p IS map;

CR WITH (p. result) }

else undefined
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1

function
If

function
Tf

function
nr

function
Tf

function
IT

function
IT

map_apply (map,arg)
CNF map TO Map_tdef and
CS (arg) and CD (arg) =

then { RG p IS map;
CR WITH (p. result)

WHERE (p.argumen =arg) }

else undefined

map_restrict (map, set) =

CNF map TO Map_tdef and CS (set)
then { RG p IS map;

CR WITH (p.all) WHERE
( I S IN p. argument map_dom (map) ) }

else undefined

map_exclude (map, set) =

CNF
-
map TO Map_tdef and CS (set)

then { RG p IS
-
map;

CR WITH (p.all) WHERE NOT
( ISIN p. argument map_dom (map) ) }

else undefined

map_alter ( map_l ,map_2 )
=

CNF map_l TO Map_tdef and
CNF map_2 TO Map_tdef
then { RG p IS map 1;“ CR temp WITH (p.all) WHERE NOT

( ISIN p. argument map_dom (map_2) );
UN temp map_2 }

else undefined

map_compose ( map_l ,map_2 )
=

CNF map_l TO Map_tdef and
CNF map_2 TO Map_tdef and
SB map-rng (map_l) map_dom (map_2)
then { RG p_l IS map_l ; RG p_2 IS map_2;

CR WITH ( p_l . a rgument , p_2. result )

WHERE ( p_l. result = p_2. argument ) }

else undefined

map_union ( map_l ,map_2 )
=

CNF map_l TO Map_tdef and
CNF map_2 TO Map_tdef and
NN ( IN map_dom

—
(map_l") map_dom (map_2) )

then UN map 1 map_2
else undefTned
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4 . 3. 2. 4 Trees

An abstract VDM tree, t= (d_l , . . . ,d_n) , from the domain
D :: D_l...D_n is represented by the p-set
[ [d_l@branch, D_l@doma in] @# . . . ].

Again, for type checking purposes, a tree template is
defined as

TMP Tr ee_tdef = [ [d@branch ,D@domain] @#. . .WHERE ISIN d D]

.

There are only two different operations to be described
for trees: the construction of a new tree from the domain D,
mk-D ( d 1 , . . . ,d_n) , and the selection of a component, s-D i.

function
if

tree_select ion ( tree , domain) =

CNF tree TO Tree_tdef and
CS (domain) and CD (domain) = 1

then { RG b IS tree; RG d IS domain
CR WITH ( b. branch )

WHERE ( b. domain = d ) }

else undefined

t

function tree_make ( d_l i st , D_1 i st) =

if CNF d list TO Tpl tdef and
CNF D_list TO Tpl_tdef and
tpl-len (d_list) = tpl_len (D_list)
then { RG d IS d_list; RG D IS D_list;

CR WITH (branch : =d .component , domain:=
D. component) WHERE (d. index = D. index) }

else undefined

4. 3. 2.

5

Functions

The VDM sets which can be represented on any limited,
real-world computer always have to be finite. In the same
way, all specified domains have to be limited as well, even
if they are defined recursively (i.e. an upper bound can be
placed on the depth of any recursion). This, however, means
that all function domains are also finite. Therefore we can
represent all abstract VDM functions by abstract maps. There
is, thus, no explicit need for an extra function
interpretation besides the presented interpretation for maps
in the VDM interpreter. In order to make the interpretations
simpler, we will, however, represent all semantic functions
by procedures and (PSP) functions as described in subsection
4.2.2. The only function operation, the application to its
arguments, is represented by the function or procedure
execution in the VDM interpreter.
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4. 4 USE OF THE INTERPRETABLE SPECIFICATIONS

4.4.1 SPECIFYING AN OBJECT SYSTEM'S SEMANTICS

The interpr etable specifications as described in the
preceding sections can be used in a similar way as the data
model specifications in the data model processor [4,5] to
define an object system's semantics formally. The meta-
language to be used, however, will be VDM's Meta IV rather
than PSN and the original PSP commands.

First, all semantic object types are defined in the
semantic domains specifications of the formal model. Then,
each semantic domain definition may be refined by an
additional is-well-formed predicate in the static
consistency constraints section of the semantic model.
Auxiliary functions may be defined for and applied in any of
the predicate definitions.

Next, the global state has to be defined,
of the formal semantic model, a global state var
be declared for each object which might be aff
the interpretation of any of the operations to b
In addition, global state constants might be def
objects which are accessible from at least one
but which will not be altered by any of them,
all global variables and constants have, in any
defined in, or to be derived from the semantic d

In this part
iable has to
ected during
e specified,
ined for all
operation

,

The types of
case, to be
oma ins

.

Initializing the global state variables and constants
is a task comparable to the 'data model populator' role in
the DMP. An initial value has to be assigned to all
variables and constants. All the values have to conform to
both the corresponding structure descriptions in the
semantic domains, and, possibly, to their static consistency
constraints

.

In the second major part of the formal semantic model,
first the operations' names and operand types have to be
declared in the syntactic domains part of the model. All
operand types are either defined in the semantic domains, or
their definitions have to be given here. (The most important
example for such operand type definitions are the expression
derivation rules to be specified in the syntactic domains.)

Then, for each operation a dynamic consistency
predicate may be defined. It restricts the set of all
possible operands (as specified in the syntactic domains) to
the only well formed ones for, possibly, each single
operation.
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Finally, the semantic functions are defined which
describe the semantics for all operations. For each
operation to be specified the corresponding semantic
interpretation function takes this operation's arguments,
and defines its semantics in terms of 'manipulating' side
effects to some global state variables. The semantic
functions which denote expression evaluations do not
manipulate any global state variables. They describe (in an
abstract way) the derivation of a result value from the
global variables and/or constants. Auxiliary functions may
be used in any semantic function definition.

4.4.2 ANALYZING THE INTERPRETABLE SPECIFICATIONS

Once a given object system is defined formally in terms
of the (slightly restricted) VDM meta-language, we are now
able to transform the semantic model into a semantically
equivalent PSN/PSP representation as described in sections
4.2 and 4.3. Then, the formal model can be analyzed
automatically on the DMP.

First, some consistency and completeness checks could
be applied:

- In the semantic domains, all object names (left-hand
sides of the defining equations) have to be defined
uniquely. For all object names used in the defining
expressions (right-hand sides of the defining
equations), a defining rule has to exist in the
semantic domains.

- Similarly, in the syntactic domains all operation
names have to be defined uniquely. Also, each
defining expression may be based on already defined
semantic domain objects only or on other abstract
syntactic objects specified in the syntactic domains.

- There may be one Boolean ' is-well-formed ' function
specified for each semantic or syntactic domain
object (i.e. for each semantic object or operation).
All these predicates can possibly be checked for
consistency, i.e. not to be so 'restrictive' that no
single semantic or syntactic domain object can make
them true .

- Most important, it should be checked that each actual
variable or constant in the global state conforms to
all structural restrictions as imposed by the
corresponding semantic domain definitions. In

addition, the corresponding static consistency
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predicate should yield true if applied to each of
them. The consistency checks should be repeated for
each global variable after any manipulation during a

semantic function interpretation. In case a global
value is 'incorrect' by that means, appropriate
exception handling procedures should be triggered (at
least a message to the user of the interpreting
system)

.

- For each
domains, th
function i

formal mode
take pa ram
the syntac
should hav
effects on
possible k

one semanti
the correc
state vari
appropriate

operation specified in the syntactic
ere should be exactly one interpretation
n the elaboration functions' part of the
1. Each of these functions should only
eters of the correct types as specified in
tic domains. Interpretation functions
e no result values but rather have side-
some global state variables. For each
ind of expression there should be exactly
c evaluation function which, again, takes
t arguments, does not change any global
able, and results in a value of the
type.

All mentioned restrictions could be checked
automatically by the formal semantics interpreting system.

Finally, a formal specification of an object system's
semantics could be verified against its intended, and
usually informal initial semantic description (even if this
is not much more than some rather 'vague' ideas about the
system). Any specified operation can be simulated based on
its respective VDM semantic function specification. First,
the correctness of its parameters is assured, and then the
function is interpreted on the PSP. The semantic meaning of
the operation is defined by the global state changes
resulting from the interpretation of the corresponding
semantic function. If these changes do not reflect the
initial understanding of the operation's semantics, the
specification has to be changed and interpreted again in an
iterative process.
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5. CONCLUSIONS

This paper introduces two different approaches to
database model semantics specification. In chapter 2, both
of them are applied to a subset of the Relational Data
Model. A comparison of their main advantages and
disadvantages leads to two alternative approaches to
integration of both methods.

In chapter 3, the Vienna Development Method is applied
to specify the semantics of the Positional Set Notation and
the corresponding Positional Set Processor commands of the
Data Model Processor. It is shown that Meta IV, the meta-
language of VDM is powerful enough to express all semantic
properties of the most important constructs of the data
model interpreter's specification language in a completely
formal way.

VDM is demonstrated to be an appropriate tool to model
all three semantic aspects of PSN and the PSP commands:
structures, operations, and both kinds of possible
constraints. The result is a formal model which is fairly
simple and straightforward for both the structure and
constraint descriptions. The functional model for the
operations is slightly more complex, especially for some of
the PSP commands. (See, for instance, the abstract syntax
and elaboration function for the 'create' command.) This may
be interpreted as a measure for complexity of the operations
which may, thus, not be so easily understood by novice users
of the DMP. However, breaking the complex semantic functions
down into several simpler (auxiliary) ones should help to
guide the user's understanding.

For any semantic specification method, th
definition of its meta-language tools is its cruc
In the DMP framework, the meta-language tools are
PSN and the PSP commands. So, the precise and
semantic model provides the semantic basis for
model specification language of the DMP
theoretically sound and widely accepted approach
semantic specification.

e semantic
ial basis,
given by
formal VDM
the data
using a

to formal

In chapte
specification c

meta-language

,

immediately on
major advantag
understandable

r 4, it is shown how a formal semantic
an be written in an abstract and high-level

and still be analyzed and evaluated
a software system. This approach combines the
es of both VDM and the PSP into a fairly
and powerful prototyping system.
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The scope of the abstract semantic specification
interpreter is centered around but not limited to database
models. Data model semantics can be defined in an abstract
and representation-free meta-language, and then be emulated
on the data model processor. By using the integrated
methods, single database management systems' user
interfaces, or particular database applications with
corresponding transaction specifications can also be defined
at a high level of abstraction, and then be tested and
analyzed automatically at a rather early stage of their
design.
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