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PREFACE

This report is one of a series documenting NBS research and analysis efforts to
support the Department of Energy/National Bureau of Standards' Measurements
Program. The work reported in this document was performed cooperatively and
supported by DoE/NBS Task Order A008 under Interagency Agreement No.

DE-AIO 1-7 6PR060 10.



ABSTRACT

An error analysis is given for the 1-meter Guarded Hot Plate at the National
Bureau of Standards. This apparatus is used to measure the thermal resistance
of insulation materials. The individual contributions to uncertainty in

thermal resistance are discussed in detail. The total uncertainty is estimated
to be less than 0.5 percent at sample thicknesses up to 150 mm (6 inches) and
less than 1 percent at a thickness of 300 mm (12 inches).

Keywords: apparent thermal conductivity; error analysis; guarded hot plate;
thermal insulation; thermal resistance.
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1 . INTRODUCTION

This report gives the error analysis of the National Bureau of Standards (NBS)

1016 mm Guarded Hot Plate (GHP) apparatus. It begins with a brief description
of the apparatus and of the measured quantities necessary to calculate the
thermal transmission properties of a sample material. A method to add the
individual uncertainty contributions is rationalized. There follows a detailed
discussion of upper-bound estimates of the random and/or systematic uncertain-
ties associated with each measured or modeled parameter. The propagation of

errors is accomplished by summing these estimates. There is a discussion of

the steady state condition and repeatability. Finally, there is a discussion
of how to compare results among different apparatuses, such as would pertain
in a round-robin test series. The uncertainties herein apply to the apparatus
only, and not to uncertainties associated with material variability of

insulation samples.
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2. PRINCIPLE OF MEASUREMENT

The guarded hot plate measures the heat flow through a sample for a particular
temperature boundary condition. Figure 1 shows the basic features of the

apparatus in a two-sided configuration with equivalent specimens on either
side of the hot plate and with both cold plates at the same temperature. There
is a resistance heater in the meter area. A, of the hot plate. The power, Q,
produced by this heater is measured. In order to ensure the most accurate and
repeatable characterization of a sample, it is necessary that this meter heat
flow straight across to the cold plates—that is, that its direction be in

one dimension. For this reason, the guard area of the hot plate is maintained
at the same temperature as the meter area. Assuming that the metered heat is

split evenly between the two sides, the average thermal resistance, R, of the
two sides of the sample pair is calculated by

r = ATA

(Qm/2)
( 1 )

That is, R is defined in terms of the basic quantities Qm and A, and of the

boundary conditions, namely the hot plate and the two cold plate temperatures.
The term AT is the average of the temperature differences between the hot
plate and the two cold plates. An additional parameter is the specimen thick-
ness, L, averaged over both sides. The apparent thermal conductivity, X, is

defined by

L » L_
R 2A AT

( 2 )

Note that each of the above parameters represents an average over the meter
area and over the two sides. The procedure is to place specimens in the

apparatus and to monitor the plate temperatures and the power, Qm ,
to establish

when these become constant—to within the limits of the instrumentation control.
The test is defined to be in steady state when subsequent values of R (or X)

vary randomly about the mean value. Typically, the R-value can be controlled
within a few hundreds of a percent, and when the R-value does not change by
more than this amount within ~5 hours there is good confidence that steady
state has been achieved. The time required to achieve steady state varies from
~2 hours for a 75 mm-thick, 10 kg/m^ sample to ~30 hours for a 300 mm-thick,
130 kg/m^ sample. Finally, the apparatus can test a sample on only one side of
the hot plate (referred to as a one-sided configuration) by maintaining the
temperature of the other cold plate approximately equal to the temperature of

the hot plate.
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3. ERROR ANALYSIS

3.1 SUMMING OF INDIVIDUAL UNCERTAINTIES

The apparent thermal conductivity and the thermal resistance of an insulation
sample are calculated quantities based on several measured parameters. Each of

these measured parameters has an uncertainty. In turn, this uncertainty has a

random and systematic (or constant) part. It is possible to estimate the

uncertainty of each parameter by an independent test. For example, the appar-
atus thickness readout can be compared with an independent thickness detector
placed between the plates. This independent detector offers the advantages

that it is more precise and more easily calibrated and it can be located in

the region of actual interest.

It is not straightforward to estimate the overall uncertainty of the calculated
quantity, because there is usually not sufficient information on the breakdown
between the random and systematic parts for each individual parameter. In

principle, it is possible to gather this information, but in practice it would
be too time consuming.

A simple and practical approach was used in this error analysis. The individual
parameters, such as the thickness or temperature distribution over the meter
area, were measured with an independent detector under test temperature condi-
tions. A comparison of the apparatus readout with these independent measured
values made possible the estimate of an upper bound on the total uncertainty
for each parameter. Since there is not sufficient information to assure that
the measured values are randomly distributed about a "true" mean value, the
upper bounds for each individual parameter are simply added to arrive at the
overall uncertainty. This is different from an alternative approach to treat
the uncertainties as standard deviations with the total uncertainty being
calculated as the square root of the sum of the squares of the individual
standard deviations. This "upper bound" approach results in a somewhat larger
estimate of the overall uncertainty (by as much as 30 percent), but it avoids
the need to make an inordinate number of check-up measurements to assure that
there are no outlier values. This more conservative approach is thought by
the author to be appropriate for a national insulation standards lab.

The following philosophy was used with regard to the estimate of upper bounds.
Even if an uncertainty might have been expected to be smaller, based on
theoretical considerations and manufacturer specifications, the uncertainty
value actually used was that of the detector making the independent check.
For example, the plate temperature might very well be known within 5 or 10 mK.
The uncertainty value actually used, of 22 mK, was associated with the thermo-
pile used to independently check the uniformity of the plate temperature. That
is, the claim did not go further than what could be empirically demonstrated.

3.2 SUMMARY LIST OF INDIVIDUAL UNCERTAINTIES

The following is a list of measured parameters that contribute to the major
individual uncertainties which will be discussed in detail in the next sections:
meter area, sample thickness, meter-area heat flow, heat flow across gap
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between the guard and meter areas, net heat flow to the sample edge, and plate
temperatures.

3.3 METER-AREA

The value of the circular meter area, A, in equation (2) corresponds to the
radius at the geometric center of the gap (refer to figure 2). Since the
measured values are 0.20282 m (7.985 inches) for the inner radius, rp , and
0.20371 m (8.020 inches) for the outer radius, rQ , then the geometric-center
radius, r c ,

is calculated as follows:

_2 _ 2 1/2

rc = (

r° + 1
) (3)

rc - 0.20326 m (8.0025 in)

The systematic error in rc was estimated to be not more than 0.012 mm
[0.0005 inches]. This was the machining uncertainty estimate.

This radius corresponds to a temperature of 295. 2K [72°F]. When the hot plate
is at another temperature, the thermal expansion of the plates must be

considered. The radius corresponding to the meter area is calculated by

r£ = rc(l+ a(Th-295.2K)) . (4)

Typically, Th = 310.8 + 1 K ( 100 F ± 2 F).

a = the coefficient of thermal expansion for the Aluminum hot plate
(type 6061-T6).

a = (24.3 + l)xl0~6 m/m»K

The meter area is calculated by

A = ir r
c
2

. (5)

The set of independent variables for A is {r c , T^, a}. The values of the

uncertainties in these variables, A^, are as follows:

Ar = 0.012 mm

AT = 1 K

A
Q = 4 x 10 ^ m/m K

The contributions from the A-p and the Aa terms are negligible, so the present
uncertainty in A is

A » 2 A— » = .0001 = .01 percent . ( 6 )
A r_
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A(37K) = tt r^
2

(7)

= 0.12990 m2 ± 0.000016 m2

= 201.3397 in2

Note, this meter area corresponds to the sample area through which the heat
generated in the meter area heater would flow if the heat flow were one-

dimensional.

3.4 THICKNESS

The parameter L in equation (2) refers to the average specimen thickness over
the meter area. For low-density or compressible specimens this is best esti-
mated by the value of the average plate spacing over the meter area. Precau-
tion should be taken to compress such a sample slightly, so as to avoid voids
between the specimen and the plates. For rigid specimens, there are two possi-
ble ways to estimate the test thickness. First, if the specimen surfaces and
the plates are sufficiently flat and parallel, then the plate spacing is a

good estimate. Second, if any of these surfaces are irregular, then the speci-
men thickness itself should be measured—with a caliper, for example. There
should then be an estimate of the thermal resistance of the small air gaps at

the irregular surfaces. This should be negligible.

The measurement of the plate spacing is described below. The basic calibration
method is to measure the positions of the four outside "corners" of the cold
plates relative to a known meter-area plate separation. These outside cold-
plate positions are measured using four thickness transducers on each plate.
Then these thickness transducers measure any change in position relative to

the initial calibration point. This calibration must be done for each plate
orientation and for compressible and rigid samples.

The following is a more detailed discussion of the thickness calibration

—

referred to as the L-map. Please refer to figure 3. Here is shown the basic
plate support and measurement system. The hot plate is rigidly and permanently
mounted on the four support rods. The cold plates are supported in the center.
This point of support has a load cell to measure the force that the sample
exerts on the plate. It also has a ball joint so that the plate can tilt to

conform to a nonparallel rigid sample. The cold plates are constrained in the
radial direction by steel cables attached to four spring loaded bearings which
are mounted on stainless-steel rods with a diameter of 51 mm (2 inches).

At four points (at 90° intervals) at the edge of each cold plate the positions
(perpendicular to the plates) are measured with thickness transducers (referred
to as Ftt). The manufacturer's stated overall accuracy over a displacement of

150 mm (6 inches) is within 10 ym (0.0004 inches) for a single Ftt. The mean
displacement of the four Ftt's on a single cold plate would then be known
within a factor of 1//4 or 5 ym (0.0002 inches). The Ftt's are mounted on
Invar bars to minimize error due to temperature variation of the ambient. A
coefficient of thermal expansion value of 10

_
^m/m»K, a length of .25 m

(10 inches) and a temperature range of 50 K correspond to a length change (or
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error) of 13 pm (0.5 mil). This contribution to error is avoided by the
calibration procedure to be described later, since it is performed at the

ambient temperature appropriate to the test.

The calibration procedure is to correlate an absolute measurement of the
average meter area spacings with average displacements of the Ftt's. The Ftt's
will then provide any displacements from this original calibration point,

provided the plates remain in the same orientation—that is, that they are not
rotated. The absolute measurement of the average meter area spacing is made
with thickness transducers such as that shown in figure 4. This measurement is

made with the plates both horizontal and vertical, since the plate sag is

different in the two cases. These thickness transducers were calibrated with
an uncertainty of 5 micrometers (pm), (0.2 milli-inches or rails), using NBS
gauge blocks accurate within 0.3 pm (0.01 mils) at 293.15 K (20 C). The
uncertainty in the gauge block length, due to temperature difference from that
of calibration when the gauge block was calibrated, is estimated to be 3 pm

(0.1 mils). The measured flatness within the meter area is + 25 pm (1 mil).
In the L-map, the plate spacing is measured at 25 points in the meter area. The
repeatibility of the average of these 25 points was 5 pm (0.2 mils). Thus the

uncertainty is about 1/5 = 1//25 times the flatness.

The next step is to measure the difference between the spacing at the center
of the meter area and the average spacing over the meter area (the average of

the 25 points). The reason is that the calibration procedure can then rely on
the measurement at one point at the center, rather than require 25 points.
Another 2.5 pm (0.1 mil) value is added due to the transducer uncertainty for
the transducer center point measurement.

To understand the final contribution to thickness uncertainty we must look at

the problem of plate bowing deformation. The plates are 1 m (40 inches) in
diameter. The cold plates are 19 mm (0.75 inches) thick and weigh about 50 kg
(110 lb). The hot plate is 16.13 mm (0.635 inches) thick and weighs about 32 kg
(70 lb). Referring to figure 3, the various forces that act to deform the
plate are due to the load cell at the center, the weight of the plates and the
spring-loaded cables at the four corners. As the cold plates open and close,

they tilt, which causes a deformation change. The problem with the bowing
deformation is the following. The Ftt readings correspond to four thickness
points at the plate edges, and the average of these is not necessarily the
same as the value at the plate center, when there is a bowing deformation.
Repeatability studies compared the Ftt thickness values with those of a trans-
ducer at the plate center, after the cold plates have been opened and closed
back to the original thickness. These gave a repeatability of 5 pm (0.2 mils).
Note that it is important that the stainless steel plate support rods be

straight and parallel to have the best repeatability.

To review, the calibration procedure uses thickness transducers which are
calibrated with NBS gauge blocks and placed in the center of the meter area,

between the hot and cold plate, at the test thickness and temperature. The
transducer reading then is used to set the 8 Ftt's (4 on each side). The
plates are then opened, the samples are put in and the plates are closed to the

6



test condition. Below is a summary of the uncertainties, ,
that contribute

to the thickness uncertainty for compressible (low-density) specimens.

A-[ pm mil

auxiliary thickness transducer 5 0.2

thermal expansion of gauge block 2.5 0.1

A between average and center meter-area spacing 5 0.2

A of center position 2.5 0.1

Ftt (Farrand transducer) 5 0.2

repeatability after opening and closing cold plates 5 0.2

total = Ai 25 1.0

3.5 HEAT FLOW

There are a number of heat flows, designated by 0, involved in the guarded hot
plate apparatus (refer to figure 1). There is the heat generated by the meter
heater, Qm , and the heat generated by any resistive sensors in the meter area, Qr .

There is the heat flow between the meter area and the guard area, Q„, which
consists of a part flowing directly across the gap, Q0 ,

and a part flowing
through the specimen, cX. Here, X is the thermal conductivity of the specimen.
Also, there is some net heat flow between the meter area and the ambient through
the specimen. This will cause the actual heat flow leaving the meter area to

be different from the idealized one-dimensional heat flow. The difference is

the edge heat flow, Q e<j. Qe(j depends on the guard and meter widths, on the

thickness, on the ambient and plate temperatures and on the sample X-value.
The final, "apparatus-independent", meter-area heat flow must take into account
these correction terms.

Even then, it is not entirely apparatus-independent, even in principle,
because part of the heat flow is by radiation. This means that the heat flow
across the sample depends on the plate emittance, e. Intuitively this can be
understood since a smaller emission of thermal radiation from the plates will
result in a smaller sample heat flow. The easiest way to minimize this appara-
tus dependence is to standardize the values of the plate emittances. The
ASTM Test Method 177 for the guarded hot plate requires that this emittance
value be approximately 0.90. This standardization is intended to minimize
discrepancies among the various apparatuses. Then, if an apparatus has a

different emittance value or an uncertainty in emittance value, the adjust-
ment or uncertainty in the measured X could be calculated. This is discussed
in more detail under the section on plate emittance.
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3.5.1 Qmeter

Let us now look at each heat-flow terra in more detail. The first terra, Qm ,

is the power produced by the meter heater. Figure 5 shows the schematic for
for this measurement. A known standard shunt resister, Rg , of approximately
0.1 0, that is maintained in an oil bath, is used to determine the current.
Voltage taps across the meter heater lead wires in the center of the gap are
used to measure the voltage corresponding to the power that would be expected

to travel one-dimensionally to the cold plate.

Qm ~ heater
R

( 8 )

The value of Rs is calibrated at one year intervals.

_ 0.1000700 ft + 5 ppm at 25.0°C
s

An additional uncertainty of 20 ppm is included since the resistor is in a bath
at 28°C. The uncertainty of 25 ppm corresponds to a 0.0025 percent uncertainty,
which is negligible compared with other uncertainties.

If the heater voltage taps were not in the center of the gap, there would be an
error in the measurement of V^eater . The nichrome wire size is 28 gauge which
has a resistance value of 42 d/305 m (1000 ft). Assuming (conservatively) that
the taps might be misplaced by half the gap width of 6 mm (0.23 in), then the
error in R

^eater is calculated to be 8 x 10
-
^ ft. This is negligible when com-

pared with the value of Rheater approximately 56 ft. Next we need to consider
the accuracy of the voltage measurements. The heater voltage, Vyieater , varies
from about 8 volts to 27 volts for one- and two-sided operation at thicknesses
of 25 to 150 mm (1 to 6 inches). The shunt voltage V

g
varies from about 14 mV

to 48 mV for the same range of operation. The following equations are needed to
calculate the the uncertainties. First, in order to calculate the approximate

Qm for a particular specimen in the two-sided mode we use

Qm = 2 XATA
( 9 )

For low-density material, X « 0.046 W/m*K

A » 0.1299 m2
,
and AT = 27.8 K. For L « 150 mm, Qm « 2W.

Also Rheater “ 56 ft and Rg « 0.1 ft.

Thus V^ea£ er 560 V g

Once Qm is known, we can calculate Vg with equation (8).

vs = (

R
s <V /2

560 n
» 20 mV for the previous example

8



Thus Vhea£ er B 10 V.

These order-of-magnitude estimates are necessary to calculate the percentage
errors in V^eater and Vg . As an example, for the 10 V range and for a 90 day
period, the manufacturer's specifications give the following formula to

calculate the voltage uncertainty, Av.

3 Av = (
0 *0Q23 v + 2 counts x count value)
100

(ID

This is for a 6 digit readout and an average over 10 power line cycles. The
count value is somewhat larger than the minimum detectable signal and has a

value of 10 yV. If V = 8V, Av = .000008 = .0008 percent. This is obviously
negligible compared to other voltage errors. Another example is the reading
of Vs on the 0.1 V scale. Let V s = 14 mV, which is a worst-case value.

3 Av = ( 0»0034 x 20 mV + 24 counts x 0.1 yV)
100

= 3.1 yV

3 Av = 0.00015 = 0.015%
V 0

( 12 )

This Av uncertainty is the only contributor to the uncertainty in Qm that is not
negligible, and it is mostly due to the "24 counts". We will use a worst-case
value of 0.04 percent for AQm/Qm .

3.5.2 Qresistor

The resistive devices in the meter area generate a small amount of power, Qr ,

which must be added to Qm . These devices include a platinum resistance thermo-
meter, RTD for plate temperature readout and two thermistors, Rth» one f°r hQt
plate control and one for the control of heat across the gap.

^RTD “ 100 Q; I = 1 ma ; thus, Qr ^
= 0.1 mW

Rth - 1 K I = 1 ma ; Qr2 = 1 mW

Qr
= Qr i

+ 2Qr2
= 2.1 mW .

Assuming that Qr is known within 20 percent (a conservative estimate), AQr/Qm »

.02 percent when Qm = 2W.

3.5.3 Qgap

A crucial point in the design of a guarded hot plate (GHP) is to minimize the

uncertainty due to the heat flow across the gap between the meter and guard
areas in the hot plate. The most straightforward method to estimate this error
is an empirical one. This method for the NBS-GHP will be discussed first, and
a theoretical discussion will be given later.

9



Looking at the empirical method in more detail, remember that the gap
temperature difference is estimated by a thermopile across the gap. In the NBS
GHP this is an 18-stage thermopile. In principle, a zero gap voltage would
correspond to a zero average temperature difference across the gap, which would,
in turn, correspond to a zero net heat flow, across the gap.

The gap is unbalanced by making the average temperature on the meter side of the
gap different from the average "guard-side" temperature. This results in a

radial temperature gradient at the gap, which gives a non-zero thermopile volt-
age value for the gap voltage. Since the gap voltage is normally known or
maintained to within several yV of zero, then a reasonable unbalance range
might be 30 yV. The slope of the curve showing the change in Q versus the gap
voltage is a measure of the sensitivity of the gap thermopile (see figure 6).

Values at a larger unbalance provide a better knowledge of the slope, although
points should be taken over the whole range to confirm that the curve is indeed
linear at zero Vg.

The gap sensitivity will be different for various values of specimen thickness
and thermal conductivity. Therefore, sensitivity studies must be performed for
the entire ranges of these specimen parameters. The values with the 18-stage
thermopile of the gap sensitivity for the low-density mineral-fiber insulation
material used for the NBS calibration transfer specimens are 0.00056, 0.00057
and 0.00058 W/ yV for L = 25, 75, and 150 mm (1, 3, and 6 inches), respectively.
The thermocouples comprising the gap thermopile were Chrome1-Const ant an, Type
E, which have a sensitivity of 62.03 yV/K. Since there are 18 stages, the
actual sensitivity is 18 x 62.03 = 1116 yV/K. The gap sensitivity can be

expressed as 0.636 W/K. As an example, a Tg (temperature difference between
guard and meter side of gap) value of 0.01 K would result in a Qg value of

roughly 6 mW.

The contributions to the uncertainty resulting from the various estimates
of the gap voltage are as follows. The first question is how well does a zero
gap voltage correspond to a zero heat flow across the gap. The question arises
because there is expected to be some angular temperature difference at the gap
due to heater and sensor lead wires and the support pins. (These pins bridge
the gap to support the meter-area part of the hot plate.) The next question
is how accurately can this Tg (or the corresponding gap voltage, Vg) be
measured. This depends on the accuracy of the readout device and on the extent
to which thermals in the lead wires can be eliminated.

Addressing the first question, a calculation of the angular gap temperature
distribution due to heat generated by the heater leads as they come in from the

side was performed in reference [3]

.

Figure 7 shows the results of this calcu-
lation for the NBS GHP. For a worst case of a two-sided, low-density mineral
fiber sample at one inch thickness, Qm would be roughly 12 W, so Q0 would be

about 90 W/m^ (A = 0.1299 m^). In this case, the maximum temperature difference
on the meter side is about 2 mK. (Note that this calculation assumes a zero

gap temperature difference, and that there is no insulation around the incoming
heater leads. In fact, there is wire insulation, and the plates will be more
isothermal than what the calculation shows.)
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In fact, the temperature difference is much larger than 2 mK for the following
interesting reason. The gap has a thermal conductivity roughly equal to that

of air. The thermal conductivity of the aluminum plate is roughly 6000 times
greater than that of air. The heat flow is proportional to the product of the

thermal conductivity and the temperature gradient. Assuming steady state,
then the radial heat flow at the gap (thru the plate and then thru the gap) is

constant. This means that the temperature gradient in the gap is 6000 times

greater than that in the plate. This means that a radial temperature gradient
of 0.2 mK/cm in the plate would give a temperature difference of roughly 100 mK
across the gap (the gap width is ~0.9 mm). In effect, the gap acts as an

amplifier of the temperature gradient. As far as the heat flow across the gap
is concerned, however, this effect is very small.

An experimental study was made to measure the temperature difference across the
gap. It used a 16-stage thermopile which was firmly pressed against the plate

by a rigid specimen. Temperature differences of the order of 100 mK were
measured at positions around the gap, even when the gap voltage indicated an
average temperature difference of <1 mK. This study showed that heat flowed
into and out of the meter area at various positions around the gap perimeter.
Thus, the net gap heat flow should be zero, even when temperature differences
~ 100 mK are measured at points on the gap perimeter.

It would be Impossible to make a realistic calculation of the angular
distribution of the temperature difference across the gap, because of the afore-
mentioned amplification of temperature difference across the gap and because
the plate gradients that are being amplified are so small. Fortunately, it

is possible to ascertain empirically that the net gap heat flow is zero.

If one could calculate the gap heat flow as a function of angular position, it
would resemble a sinusoidal curve with positive peaks and negative valleys.
The danger, as far as error goes, would be that the thermocouple stages of the
gap thermopile might all lie on peaks. This would result in a systematic error
in the monitored heat flow. Certainly, this unfortunate possibility is less
likely if there is a larger number of evenly spaced thermocouple junctions.
(Note that the adjacent junctions need not be opposite each other, so the
leads can be longer than the gap width.)

A series of calculations was performed on curves of the kind shown in figure 7

,

to estimate the uncertainty in the knowledge of the mean as function of the
number N of thermocouple stages around the gap. (Let us assume, for the moment,
that the temperature difference, AT^, is measured exactly.) This study showed
that the uncertainty of the mean due to the finiteness of the sampling becomes
negligible after N equals 10. The conclusion, then, is that the angular dis-
tribution of gap temperature difference is not constant, but this does not
result in any measurable gap error as long as more than 10 thermocouple stages
are used.

Another reason to have a large number N is that the gap voltage increases
proportional to N. Thus the percent uncertainty due to the gap voltage readout
resolution decreases proportional to 1/N. This is true as long as the amount
of heat transferred across the gap through the thermopile wires is small
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compared to the heat flow through the air. For the NBS GHP, this ratio is less
than 1/1000 for a single wire. As a note to the experimentalist, it is impor-
tant to thermally anchor the thermocouple wire (for ~5 mm) before it leaves the
plate surface. Also the adjacent thermocouples are staggered to permit the wire
crossing the gap to be long (~10 cm) (see figure 8). This is done since the
heat flow through the wire is inversely proportional to its length. Next we
shall consider the readout error of the gap thermopile. Figure 9 shows a

graphical representation of the gap measurement situation. As long as it is a

null measurement with the meter, gap and guard temperatures at the same value,
there is no readout error in the thermopile signal up to point A.

At point A the 0.25 mm (10 mil) Chromel wire is soldered to the 0.25 mm (10 mil)
copper wire, which is very pure and, hence, should have a very small thermal
signal 00.1 pV) coming out through the guard. The order of magnitude of the
spurious thermal signal due to a temperature difference between the last
Chromel-Constantan junction and the Chromel-Copper junction can be estimated as
follows. The two Cr-Cu junctions are located in the same location on the guard
side of the gap, so an overestimate of the temperature difference between their
locations would be 1 mK. The Cr-Cu sensitivity is ~20pV/K. Thus the
spurious signal would be about 0.01 pV, and this is negligible.

The next error source is the thermals generated in the pure copper wire between
points A and B in figure 9. If the wire is handled with care and low-thermal
solder is used, these thermals should be less than 0.1 pV, and is referred to as

AVab. We use a value of 0.2 pV for AV^g. (If the Cu wires are connected at

A, the actual thermal signal can be measured within the accuracy of the readout
device.

)

The next error results from any thermal emf’s in the reversing switch B or
between B and C. The latter error can be eliminated by reversing the signal at

B. Any residual thermal signal in the reversing switch can be measured by
shorting a copper wire across the switch. This quantity, AVgw^ tc^, is esti-
mated at 0.2 pV. Finally, there is the readout error of the Digital Linear
Amplifier, AV^la* This is estimated to be about 0.1 pV. The sum of AV^la*
AVswitch anc* A^AB is 0.5 pV and this is referred to as AV„. Remember that the
other contributions to error were estimated to be negligible.

The resulting heat flow uncertainty, AQg is calculated by AQg = Sg AV
g , where

Sg is the gap sensitivity previously discussed. The term Sg is equal to the
slope of the curve of the change in heat flow, Qg, as the gap thermopile volt-
age is unbalanced by an amount equal to Vg. Sg = Qg/Vg. Strictly speaking,
this could be a function of Vg.

The quantity Sg has a value of 0.57 mW/pV, so AQg is estimated to be 0.3 mW.

The percent uncertainty due to the gap is calculated as the ratio, AQg/Qm . In
the two-sided configuration, Qm ~ 1W at 300 mm (12 in), for low-density insula-
tion samples. The corresponding percentage uncertainty value is ~0.03 percent.

3.5.4 Gap Theory

It is possible to model the gap unbalance results with an equation derived by
Woodside [ 2 ]

.
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Qg (qQ (13)

Here Qg is the heat flow between the meter and the guard sections of the hot
plate as a result of an unbalance in the corresponding temperatures of Tg.

The term qQ represents the heat flow per unit temperature that flows directly
across the gap, and the term "cX" represents the heat flow/unit temperature
in the specimen across the boundary between the part of the specimen next to
the meter area and the part next to the guard area. Here, X is the specimen
apparent thermal conductivity. Just as Sg is the heat flow sensitivity per unit
voltage, Sg is defined as the heat flow sensitivity per unit of temperature
difference.

S
g
V
g

s
g
stcTg

Stc = the thermopile sensitivity
= number of stages x 62 yV/K
= 18 x 62 yV/K
=1116 yV/K

(14)

Note that SgS^c = qQ + cX.

The quantity c is a constant which depends on the apparatus dimensions and the
specimen thickness [2],

c «

where 2d = gap width
= (0.89 mm)
= (35 mils)

P = gap perimeter = 2irr

L = specimen thickness
Z = 2TTd/L

r = meter area radius
= 0.2033 ra

= 8.002 in

72ir
£n(4a)

,

a =
> Z - 1

(15)

For L = 25 mm (1 in), c = 0.021 m (2.93 in). For L = 150 mm (6 in), c = 0.030 m
(4.39 in). The measured value of

0.00057 x 1116 yV

yV K
(16)

» 0.64 W/K

For X = 0.045 W/m-K, cX = 0.0013 W/°K at L = 152 mm (6 in) and cX = 0.0009
at L = 25 mm (1 in).

Thus cX is expected to be smaller than qQ . Also the change in cX, due to
changes in L or X is much smaller than qQ .

Looking again at the equation for the gap unbalance.
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ij# ** SgStc - qo + cX (17)

g

Thus, Sg « qQ / s tc . Since q Q and S tc are constants, independent of the sample,

Sg is expected to be approximately constant for different sample material and

thickness. This conclusion is confirmed by experimental results. The gap
sensitivity, Sg, did not change by more than 5 percent between sample

thicknesses of 25 mm (1 in) to 150 mm (6 in).

Another way to look at this result is that most of the heat flow across the

gap (qQ ) flows directly across the gap, rather than through the sample (cX).

The measured gap sensitivity is slightly larger than what would be expected,
assuming that the heat flows entirely via the conduction mode only through the

air in the gap. This is, of course, what would be expected, since there are
support pins and temperature sensors in the gap.

Thus the order of magnitude values predicted by Woodside's [1] equations are
roughly confirmed by experiment. It is important to note that the aforemen-
tioned method to determine the uncertainty of gap heat flow is strictly
empirical. It is recommended that, for uncertainty analysis, this empirical
method be generally used in place of a theoretical procedure.

3.5.5 Qedge

Looking at the heat flow from the hot-plate, meter area, the difference between
the ideal case with one-dimensional heat flow and the real case is due to the
edge heat flow, Qe(jge » Referring to figure 1, the ambient temperature, T^^,
is different from that of either the hot or cold plate. Usually, Tam^ is equal
to the average of the hot and cold plate temperatures, TmPan . At first glance,
one would expect the net Q e(jge to be zero when T am^ is equal to Tmean . This
would be true if the heat flow were measured midway between the hot and cold

plates. In fact, the heat flow is monitored at the surface of the hot plate.

Some of the heat from the hot surface is going to the ambient, so the measured
heat flow is greater than what would be the case for one-dimensional heat
flow. Therefore, the ambient must be at a temperature higher than Tmean ,

for

Qedge to zero.

This leads to the essential difficulty in estimating the edge effect, which
is the issue of determining the value of T^^ at which Q e(jge is zero. Figure
10 shows the plot of a theoretically calculated plot [3] or the percentage
change in X as the ambient temperature varies. Since X is proportional to Q,
the edge effect can be characterized by X as well as Q. A value of zero for

the ordinate corresponds to the case where X-edge (or Q edge) equals zero. Note
that this occurs when Tam ^, is greater than Tmean . It is possible to calculate
the value of Tam^ at which Q e(jge

is zero, and one such calculation is given in

reference [3]. The next step is to consider how to check these calculations
with experiment.

It is a simple matter to measure the slope of the curve in figure 10. It is

more difficult to determine the zero crossing of the ordinate—at which

(1) Qedge equals zero or, equivalently, at which (2) the Q monitored at the hot
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plate is equal to what it would be if the heat flow were one-dimensional or,

equivalently, at which (3) one is measuring the "true" apparent thermal conduc-

tivity of the material, AQ . The only way to determine this zero intercept is

to put in a sample with a previously known A-value. Two 150 mm (6-inch)

specimens were measured on the NBS GHP. The edge effect is expected to be

negligibly small at this 150 mm (6-inch) thickness, based on theory and experi-

mental measurements of the slope of the curve in figure 10 (The value of this

slope was less than 0.06 percent/°K). Therefore, the A-value of each 150-mm

(6-inch) sample is known within the experimental uncertainty at this thickness.

The next step in the experiment was to stack the two 150 mm (6-inch) specimens
to make a 12-inch sample. The mean temperature was 23.9 C (75 F), and the

plate temperature difference (T^ot - T co^^) was 27.8 C (50 F). At this

thickness, for the NBS GHP, the edge effect was expected to be significant
(~0.4 percent change in A-value for a 1°C change). A zero value of the

abscissa in figure 10 corresponds to the ambient temperature being equal to

the mean temperature. A theoretical calculation [3] indicated that the corre-
sponding value of the ordinate [3] would be ~0.07 percent. Preliminary
experimental values were +0.5 percent, about the expected value. The slope
of the experimental curve was about 25 percent greater than that of the

calculated curve.

It should be possible to use an experimental curve similar to that in figure
10 to estimate the value of the abscissa (which is proportional to

f-^mean “ ^ambient^ at which the measured A is equal to A0 . According to

theory, the ambient temperature should be less than the mean temperature to
measure the true A-value (A - A0 = 0). The uncertainty, as far as the

edge effect is concerned, with which A0 is known might be estimated as

follows. The uncertainty in the measured value of A0 is estimated simply
as the sum of the uncertainty of the measured value of the abscissa and that
of the ordinate. The uncertainty of the ordinate is based on the uncertainties
of the two measured A-values at 150 mm (6 inches). The part of these uncer-
tainties that is systematic will cancel since the ordinate is a ratio. The
remaining part is the repeatability of the measured A-value at 150 mm (6

inches), when the sample is removed from and replaced in the apparatus. This
repeatability was measured to be within 0.2 percent. The uncertainty in the

abscissa is essentially equal to that of the measured ambient temperature,
since the mean temperature is known much more accurately. The ambient temper-
ature was measured with a differential thermocouple in conjunction with a

good absolute sensor. Since the ambient temperature was not constant around
the plates, the thermocouple stages were uniformly distributed to measure the
average ambient temperature. A comparison of an average based on 4 points
agreed within 0.3 K (0.6 F) with an average based on 24 points. The uncer-
tainty in the ambient temperature was estimated at 0.3 K (0.6 F). Using the
value of the slope in figure 10, this corresponds to about a 0.2 percent uncer-
tainty in the ordinate. The sum of the two parts was 0.4 percent. A slightly
larger value of 0.5 percent was used in table 2 as the estimate of the upper-
bound uncertainty of a measured A-value at 300 mm (12 inches), due to edge
effects. Further experimental work must be performed in this area.
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3 . 6 TEMPERATURE MEASUREMENT

3.6.1 Overview

In order to calculate the apparent thermal conductivity, X, via equation (2),
one must measure the plate temperatures. Platinum resistance thermometers
(PRT's) and thermocouples are used in this measurement. The PRT is used to
determine the absolute temperature at a particular plate location, and differ-
ential thermocouples are used to measure the relative temperatures between the
PRT and other locations. The discussion of the uncertainties of the average,
meter-area, plate-temperature values follows the discussion of the uncertainties
of the PRT and thermocouples values.

3.6.2 PRT Circuit Rationale

Platinum resistance thermometers are used to measure the absolute temperature
in the meter area of the hot and cold plates. These PRT's were 3 mm in diameter
and 6 mm in length. The circuit in figure 11 is used to measure the PRT resis-
tance values. The standard resistor, Rst(j, is manufactured by the Leeds and
Northrup Company of North Wales, Pennsylvania, Catalog //4030-B, Serial #1875050.
It was calibrated in March, 1980 to have a value of 99.9992 SI at the average
oil bath temperature of 24 C. Assuming that the oil bath, which surrounds
Rgt(j, is maintained within + 2 K, the resistance is constant within + 15 ppm or
+ 0.001 percent.

The value of the PRT resistance, Rx ,
is Rx = (Vx/Vstcj) Rst(j. Note that the DVM

voltage uncertainty due to the zero uncertainty is effectively eliminated by
taking the ratio. Also the DVM uncertainty due to linearity is effectively
eliminated by matching the values of R^ and Rgt(j. Thus, the readout percentage
uncertainty of Rx , ARX , is approximately equal to that of R s td> which is

+ 0.001 percent. Since a change of 1 corresponds to a change of about 2 K
for these "100 S3" PRT's, the value of 0.001 percent corresponds to 1 milli-ohm
or 2 milli-Kelvin (mK)

.

3.6.3 PRT Calibration

The PRT's were calibrated by the National Bureau of Standards at six temperatures
between 0°C and 50°C. The calibration points were fitted to the equation

T = a + bR + cR2 (18)

where T is the temperature corresponding to the IPTS-68 temperature and R is the
PRT electrical resistance. The equation coefficients were evaluated by a least-
squares fit. The residual standard deviation multiplied by 3 corresponded to a

range of 3 to 5 mK, which agreed with the quoted calibration uncertainty of

5 mK. Any systematic error in the NBS bath calibration set-up would be expected
to fall within the above range. The calibration uncertainty is then estimated
at A cai - 5 mK. Any calculational uncertainty using equation (18) is expected
to be negligible.
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The model number of the PRT’s is S-1059-2. They were produced by the MINCO
Corporation. There is a quoted uncertainty value of 1 mK for 20 temperature
cycles between plus and minus 200°C. This must, of course, be checked by a

calibration history. The agreement between calibration values of September

1980 and December 1981 was within 3 mK, which was within the above-mentioned
calibration uncertainty. Since the PRT's are cycled only between -14°C and
+51 °C and since the calibration history does not indicate any detectable
change, the contribution to uncertainty due to re-cycling will be considered
negligible.

3.6.4 PRT Self-Heating Uncertainty

The PRT’s have a current of 1 mA, which heats the medium around them (external
self-heating) and the sensor itself (internal self-heating). The external
self-heating is negligible. That is, the conductivity and the heat capacity
of the aluminum plate surrounding the PRT is large enough to carry away the

PRT-generated heat without raising the nearby plate temperature a measurable
amount. The order of magnitude of the internal self-heating can be estimated
by the "rule of thumb" formula—AT(in mK) = 0.4/1 (in mA) . Thus, for the

PRT, AT would be about 0.5 mK. However, the self-heating in the calibration
would be expected to be about the same as in the measurement, since the current
is 1 mA in each case. Thus, the external self-heating is already taken into
account in the temperature determination, and its contribution to the
temperature uncertainty is considered to be negligible.

3.6.5 Temperature Distribution Over Meter Area

The temperatures are measured at a point near the center of the meter area of
the hot plate and the two cold plates. This measurement is accomplished with
the PRT’s described in the previous section. This next section considers the
question of the difference between this temperature at the center point and

the average temperature over the whole meter area.

The theoretical temperature distribution, T(r, 9), for the hot-plate meter
area is given in reference [3]. The design and construction of the hot and cold
plates are also discussed. The salient features are that the cold plate has
imbedded within it milled channels of a double spiral shape. Ethylene-glycol
fluid is circulated through these channels to maintain the plates at a partic-
ular temperature. The double spiral shape of the tubing was chosen to have a

more constant (than a single spiral) temperature (T) over the meter area. A
thermopile was used to check the temperature differences between various
points on the surface of the cold plate. This difference was measured to be
less than 10 mK, and this is the T-distribution uncertainty for the cold plates.

The hot plate is heated by a ribbon-shaped heater located at a distance from
the center of about 0.71 times the gap radius. This heater goes around the

center in a circular shape. Thus, the hot plate is relatively hotter at the
heater position than at either the center or gap position (see figure 12). The
location of the heater was chosen so that the gap temperature would be equal
to the average temperature over the whole meter area [3]. The circular geometry
was chosen to have azimuthal symmetry for the temperature distribution in the
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meter area. This will not be exactly true due to heat sources or leaks which
do not preserve this symmetry—such as the incoming heater leads or the support
pins in the gaps. Thus, there is expected to be some angular distribution
(~5 mK for a worst case of a 1-inch insulation sample).

In order to check the calculations of the temperature distribution it is

desirable to have a measurement precision better than the expected T differences
(~5-30 mK) . Chromel-Constantan thermopiles with 16 stages were chosen. These
had a sensitivity of about 1 raK/pV. Since the voltage measurement accuracy is
~ lpV, there should have been about a 1 mK read-out resolution. There were two

such thermopiles—one with a 2-inch span and another with a 6-inch span. These
were constructed so that the thermocouple beads would rest on the hot-plate
surface. It is important to use rigid samples to press the thermopile against
the plate surface. Also, since there is a significant temperature gradient
perpendicular to the plates (i.e., in the z direction), there are two components
to the thermopile voltage. One is due to the plate temperature, and the other
to the bead position. The former changes with the thermopile orientation on
the plate, and the latter does not. This is probably due partly to a difference
in the average z-position of the beads on the two sides of the thermopile and
partly to a difference in the contact, and hence, contact thermal resistance
between the thermopile junctions and the plates. To eliminate this constant
bias (it varied between 10-80yV), thermopile readings were taken in the normal
orientation and then with the thermopile rotated 180°. This technique gave a

repeatability of + 10 mK. Based on this data the estimate of the upper bound
for the difference between the temperature at these locations and that over
the cold-plate, meter-area is 15 mK. The PRT's in the cold plate are located
2 inches from the center of the plates.

Next, a check was made to ascertain that the temperature of the hot plate at

the gap is equal to the average over the meter area. Referring to figure 13,
the calculation in reference [3] indicated that the ratio of the temperature
difference between the center and the heater location, Ay, and the temperature
difference between the gap and the heater location. Ax, should be 1.6. The
measured value of this ratio was 1.6 + 0.3. Thus, the temperature at the gap
is at the point, between the highest and lowest points, where it should be

according to theory. A value of + 15 mK is ascribed to the uncertainty due to
the average meter-area temperature being approximated by the temperature of

the PRT at the gap. This is essentially the uncertainty of the thermopile
measurement technique described in the previous paragraph. The model may
very well predict the average temperature much better, but it is difficult to
confirm by experiment.

The order of magnitude of the maximum temperature difference in the hot plate,
Ay (between the center and heater positions), was calculated to be ~250 mK
for a value of heat flow per unit area, 0/A, of 90 W/m^ [3]

.

This Q/A corre-
sponds to a low-density, 25 mm (1 inch) insulation specimen measured in the
two-sided configuration. The measured value in this case was ~60 mK. Thus,
the temperature in the meter area was about A times more uniform than expected.
It may be that the models do not give a good prediction for temperature
differences less than ~100 mk.
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An additional point relates to the high gradient in the gap, which was
discussed in the section on the gap. It is important to locate the PRT used
for the hot plate, meter-area temperature measurement on the meter-side of the
gap, before the temperature gradient makes the sharp increase. Remember that

the temperature differences measured above are for the worst case of Q/R = 90
W/m^. These differences decrease inversely with Q/A. The worst case value is

used as an upper-bound estimate of the uncertainty in the following summary.

Another possible source of error is due to the fact that the hot plate PRT is
located in the center of the gap, midway between the plate surfaces upon which
the samples rest. Refer to figure 14. If there is any thermal gradient in

the z-direction, then the temperature at the PRT location would be slightly
different from the average surface temperature over the meter-area surface.
In reference [3] a calculation is performed that indicates that this difference
is negligible (< .01 percent) for the sample conductivities typically measured
(< 0.4 W/m*K).

3.6.6 Summary of Temperature Uncertainties

Let us sum the various contributions, AT, to the uncertainty in the
measurement of the average T over the meter-area.

AT due to PRT resistance _2 mK
AT due to bath calibration _5 mK
AT due to temperature distribution not constant

hot plate JJ> mK
(cold plate) mK

TOTAL-hot plate 22
_
mK

-(cold plate) 22 mK

3.7 PLATE EHITTANCE

The amount of heat flow that goes across the sample depends on the emittance
of the hot and cold plates. For the NBS GHP plates a value of normal plate
emittance at room temperature in the visible was measured to be 0.89 + .02.
Admittedly, this could be different from the value of the hemispherical emit-
tance in the infrared (3p-30y) which is appropriate to the following equa-
tion. This equation calculates the apparent thermal conductivity, X, as a

function of density, D, thickness, L, and plate hemispherical emittance, e,

and it is derived in reference [4].

_3
X = a + bD + (19)

3/4 8 + 1
(
2 - 1)

L e

Here, 8 is the extinction coefficient, "a" is approximately equal to the
thermal conductivity of air, ”b" is due to conduction thru the solid fibers, T
is the mean temperature in the sample and a Is the Stefan-Boltzmann constant.
In SI units.
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a ® .026 W/m«K

T = 297.0 K

b = 0.009 W»m2/K»kg

3 = 328 m" 1

In English units,

a = .18 Btu*in/hr»f

t

2 »°F

T = 75°F

b = 0.004 Btu»in»f t/lb»hr»°F

8 = 100 ft
-1

The fitted values of "a" and "b" will vary with product. The purpose here is

to evaluate the change in A-value for a change in e. Hence, it is sufficient
that the values have the correct order of magnitude. For a sample with D « 9

kg/m^ (0.6 lb/ft 2
), if L ® 25 mm (1 inch) the percentage change in A, when e

changes from 0.89 to 0.87, is 0.25 percent. For L ® 150 mm (6 inch), the same
change is 0.05 percent. For a sample with D » 130 kg/m^ (8 lb/ft^), the per-
centage change in A is 0.003 percent at L = 1 in. The point of this exercise
is to show that an uncertainty in A-value due to an uncertainty in e is signi-
ficant for low-density material at L = 25 mm (1 inch). It is not significant
for L = 150 mm (6 in), and it is not at all significant for high density
material.

This point is sufficiently important and subtle to warrant a more detailed
discussion. In the case where there is a significant radiation heat transfer
through a sample, the measured R-value and apparent A-value depend on the
emittance of the plates. For a higher value of e, there is more heat con-
ducted thru the sample. Thus, the measured R-value is dependent on an
apparatus parameter.

This has a bearing on the matter of comparison among different apparatuses.
Ideally, one measures a quantity that does not depend on the apparatus. Then,
a similar measurement on an identical sample should give an identical result.

Using the previously described model, for the case of a low-density, 1-inch
sample, a difference in e from 0.9 to 0.8 results in a percentage difference
in A-value of 1.2 percent. Clearly, one could have significant errors in a

round-robin, apparatus comparison, if the values of e were not considered.

One way to circumvent this problem is to standardize the values of e for the
apparatuses. This is encouraged in the ASTM test methods for the guarded-hot-
plate and heat-flow-meter apparatus, which require that the value of e be
equal to 0.9. The estimate of e must be based on an actual measurement. Care
must be taken to specify whether the normal or the hemispherical emittance is
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measured, as these might differ by about 10 percent. It is recommended that
the hemispherical emittance (3-30p) be measured, since it is the quantity
appropriate to equation (19).

Even if the e-values of two apparatuses have been measured to be the same,
there is an uncertainty in their X-value comparison due to the uncertainty in
the measured e. In the case where the e-values for two apparatuses are
different, one can use a model like the one presented earlier to estimate the
corresponding adjustments in X-value. A final solution is to use samples of
greater thickness or density, where the uncertainty of X due to that of e is

negligible.
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4 . TOTAL UNCERTAINTY

In this section, the various uncertainties will be combined to give an overall
uncertainty. Table 1 contains the individual and total uncertainties for a

range of test conditions, and this section will explain these values. Each
individual uncertainty is treated as an upper bound on the random plus syste-
matic uncertainties. A value of 3s is used for the random part, where s is

estimate of the standard deviation. The upper bound estimates are simply
added to estimate the upper bound of the total uncertainty. The individual
percent uncertainties in X are the ratio of the uncertainty over the variable,
e.g.

,
AA/A

.

_c o
The uncertainty in the area determination, AA, is 1.3 x 10 J m

,
which

corresponds to a 0.01 percent uncertainty in X.

For compressible samples the thickness uncertainty, AL, is 25 pm (1.0 mil).
Thus the percent uncertainty is 0.1 percent for L = 25 mm (1 in) and ~0.01

percent for L = 300 mm (12 in).

The uncertainty in the power generated by the hot-plate, meter-area heater,
AQm ,

is 0.04 percent. Remember, it is primarily due to the measurement of the
voltage across the 0.1 Q shunt resistor, on the 100 mV range of the digital
voltmeter, and it does not change significantly over the range of power values.

The uncertainty due to the heat generated by resistive devices, AQ r ,
in the hot

plate meter area is 0.4 mW. This corresponds to 0.04 percent to 0.004 percent
for power values of 1 W to 10 W.

The uncertainty in the heat flow across the gap, AQg, is 0.3 mW. This
corresponds to 0.5 pV for the gap voltage uncertainty. The percent uncertainty
varies from 0.03 to 0.003 as the gap power varies from 1 W to 12 W. The uncer-
tainty due to the edge heat flow, AQ ecjge ,

is negligible up to thicknesses
150 mm (6 in). At a thickness of 300 mm (12 in), AQ ecjge is estimated to
correspond to 0.5 percent.

The uncertainty of both the hot and cold plate temperature is 22 mK. The
difference between hot and cold plate temperatures is used to caculate the

thermal resistance, so the value of 22 mK for the hot plate is added to the

22 mK for the cold plate to arrive at a value of 44 mK for the temperature
difference uncertainty, A(T^ -T c ). A typical value for (T^ - T c ) is 27.8 K
(50 F), in which case the percent uncertainty is 0.16 percent.

For the purpose of comparison among different apparatuses, the uncertainty in
measured plate emittance of 2 percent corresponds to an uncertainty in thermal
resistance, AR, of 0.25 percent at L = 25 mm (1 in), 0.05 percent at L = 150 mm
(6 in) and 0.02 percent at L = 300 mm (12 in). (Remember that the uncertainty
would be negligible for high-density material.)

The values given in table 1 are for low-densitv samples with an apparent thermal
conductivity of 0.046 W/m»K (0.32 Btu-in/hr»ft^»F) at thicknesses of 25, 75,

150 and 300 mm (1, 3, 6 and 12 in) which correspond to meter power (Qm ) values
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of 12, 4, 2 and 1 W, for two-sided operation. For one-sided operation, Qm is

6,2, 1 and 0.5 W, respectively.

The values of total uncertainty are 0.31 percent for L = 25 mm (1 inch), 0.26
percent for L = 75 mm (3 inches), 0.27 percent for L = 150 mm (6 inches) and
0.79 percent for L = 300 mm (12 inches).
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5. VERIFICATION OF UNCERTAINTY ESTIMATE

It is appropriate here to discuss the philosophical aspects of the accuracy
issue. The assumption is made that a sample has a particular "true" value for

its thermal resistance, or equivalently for its apparent thermal conductivity.
The question is, "How closely does a data point measured on an apparatus
approximate the "true" value?"

Before addressing this question, let us define two basic kinds of uncertainty

—

random and systematic. Suppose a large number of X-value data points are

measured, and that these points are distributed about an average value in some
Gaussian-like distribution. The uncertainty of the knowledge of the average
value is characterized by a standard deviation. Even if the average of this

distribution were known exactly, it would still not necessarily be equal to

the "true" value. This is due to systematic errors in the measured values.
Systematic errors are not known, and one can not reduce them by repeating many
tests. The only way to learn about them is to make an independent measurement
on an identical sample with another apparatus of better or comparable accuracy.
If there is agreement among a number of apparatuses within the calculated
uncertainties, then the uncertainty estimates, and the corresponding model,
can be considered to be verified, in so much as is possible.

We at NBS look forward to participating in comparisons between our apparatus
and other apparatuses, and this will certainly be done in a definitive manner
in the near future. A major difficulty is to ensure that the samples are
identical. Important sample requirements are durability and uniformity. The
moisture content should also be the same.

It is, on the other hand, possible to determine the random uncertainty with
many measurements on a single apparatus. Repeated measurements on the same
sample give an indication of the overall random uncertainty. These can be

done for a short-term (e.g., 1 week) or a long term (e.g., several years). The
long-term variation might reveal a long-term drift in a systematic error. The
short-term repeatability was measured with 100 mm (4 in) samples of low-density
insulation to be 0.1 percent. Again, this repeatability serves as an estimate
of the random part (or the precision) of the overall uncertainty. The estimates
of uncertainty in the previous sections have been upper bounds on the possible
errors. For the most part they have been systematic in nature although they
include random parts.

Generally speaking, the data on a single test has two parts. The transient
part at the beginning of the test shows a monotonically increasing or decreasing
curve. When there is no monotonic trend, the steady state condition has been
achieved. There is still a scatter of data points due mostly to the cycling of

the bath temperatures. The scatter band is about 1 mK for the hot plate temper-

ature, 6 mK for the cold plate temperatures and 1 mW for the power. The scatter
in the calculated X-value is about 0.01 percent for a two-sided, 1-inch sample
and 0.03 percent for a two-sided, 6-inch sample. The mean value is, of course,
known even better. Clearly, the scatter in the data points, after the steady
state condition is attained, is negligible compared to the estimated systematic
errors in the X-value.
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Table 1. Percentage Estimate of Uncertainties in the Measured Apparent
Thermal Conductivity for the NBS Guarded Hot Plate

Quantitative
Thickness

Value 25 mm
(1 inch)

75 mm
(3 inches)

150 mm
(6 inches)

300 mm
(12 inches)

Percent Uncertainty

Area
(12 ym or 0.5 mil
in radius

0.01 0.01 0.01 0.01

Thickness
(25 ymor 1.0 mil)

0.1 0.03 0.02 0.01

Meter Power 0.04 0.04 0.04 0.04

Meter Resistive
Device (0.4 mW)

0.00 0.01 0.02 0.04

Gap Heat Flow
(0.3 mW, or 0.5 yV

in gap voltage)

0.00 0.01 0.02 0.03

Edge Heat Flow 0.00 0.00 0.00 0.50

Hot, cold-plate
Temperature
Difference (44 mk)

0.16 0.16 0.16 0.16

TOTAL 0.31 0.26 0.27 0.79

* These values are for compressible, low-density, glass-fiber insulation
measured in the two-sided mode with a plate temperature difference of

28 K. Uncertainty values of less than 0.01 percent are reported as zero.
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