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PREFACE

This report describes the fiscal year 1980 activities of the Center for

Applied Mathematics at the National Bureau of Standards (NBS) to develop,

extend, and refine procedures for assessing analysis systems (models) utilized

by the Energy Information Administration (EIA) of the Department of Energy

(DoE). These activities have as their goal the development of methods for

determining the degree of confidence in a system's results and the

circumstances under which such a system may be used to represent current

and/or anticipated energy market conditions and the consequences of

alternative policy scenarios.

The initial phase of these activities focused on the DoE Midterm Oil and Gas

Supply Model (MOGSM) as a test vehicle for idea development and

experimentation. That effort produced a series of reports which describe

assessment activities related to documentation, data, mathematical structure,

forecasting techniques, sensitivity, confidence, and portability. The second

phase aimed at further development and refinement of these assessment

procedures. The substitution of the Short Term Integrated Forecasting System

(STIFS) for MOGSM as a sample subject for continued development of an

assessment methodology was intended to increase the likelihood of the general

applicability of the resulting methods and guidelines, or alternatively, to

cast some light on the degree to which an assessment methodology is limited by

being model or model-type specific.

The authors would like to acknowledge the significant contributions made to

this study by Dr. Bert W. Rust of the Scientific Computing Division, Center

for Applied Mathematics. His review of the document and suggestions for

improving the treatment of certain topics in the paper were most useful.
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ABSTRACT

This report is one in a series focusing on the evaluation of complex

mathematical models. The basic approach pursued in this document is patterned

after an earlier analysis of the Department of Energy's Midterm Oil and Gas

Supply Model (MOGSM). Several extensions of the earlier methodology are

presented which assist the analyst in defining the degree to which certain

evaluation activities are model dependent. The Department of Energy's Short

Terra Integrated Forecasting System (STIFS) was used as a vehicle for

exercising the revised methodology. The technical content of the report is

divided into three parts, reflecting three basic issues of model form,

sensitivity and forecast performance. The first issue addressed relates to

the structure of STIFS. It includes not only the mathematical assumptions

implicit in the model but also data and software considerations. The approach

to the second issue focuses on the measurement of climatological uncertainties

and uses as its basis a Monte-Carlo experiment. The final issue deals with

several techniques for evaluating the predictive performance of a model.

Both classical statistical methods and an information theoretic approach are

used to illustrate how such an analysis would be carried out in practice.

Keywords: Assessment; documentation; energy; information theory; mathematical

models; senstivity analysis.
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1 . INTRODUCTION

1.1 The Short Tern Integrated Forecasting System (STIFS)*

STIFS is a historical data base and a system of computer programs which

simulates the network of national energy supplies, conversion processes, and

demands. Its purpose is to produce automated monthly forecasts of integrated

energy supply/demand balances, including stock changes over the short term

(e.g., 12-18 months). The forecast energy types correspond to those for which

historical data are published in EIA's Monthly Energy Review (MER). These

types include motor gasoline, distillate fuel oil, residual fuel oil, jet

fuel, natural gas, coal, and electricity. STIFS explicitly recognizes that

the demands for all fuels and the production patterns for them are governed by

a complex set of interrelations. These complex interrelations are generally

not recognized in a stand-alone, fuel-specific model.

STIFS monthly forecasts may be used to predict shortages of each energy type

before they develop. In addition to the need for a conceptual short terra

forecasting framework there also exists the need to be able to specify

alternative scenarios to such a model, and to evaluate both the comparative

impacts that these scenarios would have and the consequences of policy

decisions that could be made in response to the forecasts made by the system.

*This section draws heavily on the report by Collins, et al. (Collins,
Dwight E.

,
Mary L. Barcella and Michael L. Shaw, Short Term Integrated Fore-

casting System (STIFS): Methodology and Model Descriptions , Logistics
Management Institute, Washington, D.C., November 1979).
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The system' 8 integration function is carried out by an energy balancing model.

This model monitors primary energy production through energy conversion from

primary to usable form, and delivery to final consumption, balancing energy

flows in the process. Like most other national and regional energy modeling

systems, STIFS is based on the premise that the nation's energy system has the

characteristics of a network. In addition, STIFS has been designed to ensure

that all energy flows are properly identified and accounted for. It consists

primarily of two processes. First, a set of computations known as a "closing

routine" operates in conjunction with the historical data base to balance

historical energy supplies and demands, isolating data discrepancies in the

process. Second, more than 100 network flow variables are forecast by means

of certain statistical and econometric procedures, and another closing routine

balances forecast energy accounts, isolating Implied shortages or surpluses by

energy type.

In the first part of the system, the historical data base is used as an input

to the closing routine and as the basis for many of the STIFS forecasts. The

data base provides data on all significant elements within the nation's energy

network on a monthly basis back to June 1, 1977. In some cases where greater

volume of data is needed for purposes of providing a statistically valid data

base the data extends further back into time. The historical closing routine

is a computerized double-entry energy accounting system denominated in

quadrillion Btus which balances energy supplies and demands.
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The second part of the system consists of the means to forecast more than 100

different variables and a closing routine to balance the forecast energy

accounts. The forecasting system represents future energy flows under a

variety of scenarios, simulating energy supply/demand responses to such

circumstances as alternative availabilities of petroleum imports, a coal

strike, droughts, etc. While the present forecast closing routine is oriented

primarily to petroleum imports scenarios, future development of the system may

incorporate several versions of the forecast closing routine for a wider range

of scenario types to be modeled. The items to be ’'closed" will be those which

are generally used to manage perturbations in the nation’s energy supply such

as imports, changes in stock levels, and changes in refinery utilization.

1.2 Outline of the Evaluation Effort

The evaluation effort was shaped to a certain extent by the character of

information sources concerning STIFS that were available to the project staff.

These information sources centered on the following four areas:

(1) The nominal documentation of STIFS in draft form during the current

phase of the project. While no attempt was made at NBS to conduct a formal

assessment of these documents as was done for the Midterm Oil and Gas Supply

Model (MOGSM) documentation, the drafts did provide one important source of

information on STIFS.
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(2) Exchanges of information which occurred at a March 1980 meeting at DoE

of the Short-Term Forecasting Technical Consulting Panel. This meeting was

attended by model developers, users, and assessors from DoE, NBS, academe,

and private consulting firms.

(3) Consultation with DoE staff in the Short-Term Analysis Division. This

group answered questions regarding the current version of STIFS and provided a

"frozen” version of the integrating portion of the STIFS computer code

complete with input data and the job control language (JCL) needed to run the

code on the IBM computer at DoE.

(4) The computer code itself. Though computer code should never be

considered a substitute for good documentation, reading and understanding code

is in fact the only certain way to learn what a model does, as opposed to what

it is supposed to do. For this assessment effort the STIFS code was not read

in detail; the objective in reading the code was to verify our understanding

of the model and to be able to make minor changes to obtain relevant output

information pursuant to sensitivity experiments.

Unfortunately, much that was expected of STIFS as an assessment target proved

to be disappointing. At the March 1980 panel meeting we learned that many, if

not all, of the satellite models described in the documentation had been

discarded for several reasons, most notable of which was a lack of data needed

to support the models. This left the assessment effort in the position of

4



having documentation for a discarded analysis system and no documentation for

the more relevant, in-use system which was to be the assessment target. As a

result of this dilemma, it was necessary to rely on documentation in which

unspecified large portions were subject to replacement, on verbal information

provided by DoE staff in the Short-Term Analysis Division, and on reading the

computer code in a frozen version of STIFS provided for this effort. The

frozen version of the code was not retrieved from archive status. Rather, it

was created in response to an NBS request for access to the STIFS code. It is

not known if this version of the code and data remains available at DoE for

future use. Finally, it was learned that the STIFS code and data are subject

to frequent undocumented modification and revision and that earlier versions

are not archived. This makes it virtually impossible to obtain a copy of the

model and data which had been used in making a particular short-term forecast.

Furthermore, at the time of this study, the available track record of model

use was limited to the February 1980 Short-Term Energy Outlook
,
with too few

forecasts to permit meaningful applications of the procedures for comparing

real world outcomes with model forecasts. Although STIFS did not provide the

assessment opportunity that was expected, it was still possible to utilize the

available system (primarily the integrating portion of STIFS) for limited

assessment activities.
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1.3 Scope and Approach

The goal of this study was to increase the likelihood of developing an

evaluation methodology which was generally applicable. Consequently, the

approach taken in this study significantly extended the methodology used in

the evaluation of MOGSM. It is believed that although the evaluation of STIFS

was flawed in several areas, the information presented in this report will

highlight the degree to which various aspects of an assessment methodology are

limited by being model or model-type dependent. The bhsic format of the study

consists of a description of the structure of STIFS, an assessment of

climatological uncertainties via Monte-Carlo techniques, and an analysis of

several techniques which can be used to evaluate a model's predictive

performance.

Specifically, Chapter 2 deals with operation of the computer model. Because

STIFS is somewhat provisional and unformed relative to MOGSM, it serves as a

case study of the feasibility of effecting "third party" assessment of a

modeling system early in the development process, when model construction may

have outrun documentation. The specific motivation was a desire to perform a

set of sensitivity analyses (described below), but a wider significance of the

findings concerns the feasibility of "emergency" operation of a new and

possibly incomplete model, for decision making purposes. The section is

primarily an account of what the evaluators know about STIFS and how this

information was acquired. Chapter 2 also includes a brief investigation of
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the algebraic structure of STIFS. This investigation was undertaken to see if

the structure of the model could be exploited in procedures for assessing the

sensitivity of the model's outputs to perturbations of one or more of its

inputs. Preliminary documentation describes STIFS as a system for the

integration and reconciliation of energy flows among disparate sectors in the

economy and various energy production sources. This suggests that if the

system is linear, it is equivalent to a standard set of Input-Output

equations, and thus possibly amenable to the use of "canned" linear algebra

computing packages for streamlining senstivity calculations.

Chapter 3 describes sensitivity analysis experiments with STIFS using a

Monte-Carlo technique successfully employed last year for investigation of the

dependence of MOGSM supply forecasts on uncertainty in the resource base

(undiscovered reserves). In contrast to the cost/supply orientation of MOGSM,

STIFS bases forecasts on an explicit representation of the demand for energy

by sectors of the economy in terms of activities; e.g., industrial production,

home heating, commercial lighting, driven partially by "externalities" or

variables arising outside of the economy. One such externality is climatic

conditions measured by heating degree days and cooling degree days (cumulative

annual departures from a standard base temperature). These are intuitively

appealing candidates as predictor variables for energy demand. According to

the sensitivity experiments, however, these variables do not affect energy

consumption at the national level of aggregation of the model.
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Because STIFS time horizon is sufficiently small, its operation is amenable to

direct measurement of forecast error. Chapter 4 is devoted to the exploration

of methods for forecast evaluation with emphasis on recently developed methods

of error measurement based on Information Theory, a collection of ideas and

procedures that arose about 30 years ago from the study of communication net-

works. The section occupies a major portion of the report. It encompasses an

expository survey of the development of forecast evaluation methods and an

analytic comparison of the information theoretic techniques with conventional

measures of forecast accuracy. This comparison is accomplished in turn

through the application of the various methods Jto the estimation of forecast

error in two widely used model types: (1) single equation linear regression

of one variable on another, and (2) linear econometric models (vector

regression involving supply-demand relationships based on economic theory)

.

The data sets used in these investigations are all input or intermediate

series from STIFS. The model system itself is not invoked in the analysis.

(Thus, the work described in the section was not constrained by the absence of

valid model documentation)

.

The final section of the report contains findings, conclusions, and

recommendations concerning directions for subsequent research. Some of these

findings and conclusions are as follows:

8



(1) Third party assessment early in model development is of limited value.

Early assessment _is worthwhile if the assessors can be part of the development

team.

(2) Assessors at any stage must be prepared to read computer code.

(3) Weather variations apparently do not affect annual energy consumption at

the national level in the continental United States.

(4) STIFS is not yet sufficiently formalized to be operated independently to

furnish forecasts for policy analysis.

(5) A definitive forecast-quality measure continues to be elusive.

Information-theoretic methods yield results consistent with accepted

traditional tests , supplemented by other useful information, at a slightly

higher computational cost. Promising directions for continued research can be

identified.

9



2. SOME COMMENTS ON THE STRUCTURE OF STIFS

by

Javier Bernal, Robert E. Chapman and Lambert S. Joel

Center for Applied Mathematics
National Bureau of Standards

Washington, D.C. 20234

This section is concerned with the structure of STIFS and the effect it exerts

on the model evaluation process. In order to present the subject matter in a

more coherent manner as well as promote a smooth transition to the latter

parts of the report, this section begins with a brief discussion of the

"ideal" model evaluation process. Several of these issues, especially with

• respect to the implied linearity of STIFS, are addressed in more detail in

section 2.2 The structure of the data bases and the STIFS software are

discussed in section 2.3. Some comments relating to the STIFS documentation

and source code are also advanced.

2.1 An Overview of the Model Evaluation Process*

The evaluation of mathematical models is a complicated subject requiring both

resourcefulness and ingenuity on the part of the evaluator. To a certain

extent, the type of model and its intended use will govern how much time and

effort should be expended in carrying out an assessment. Although some

*This section draws heavily on the paper by Saul Gass, Evaluation of Complex
Models , University of Maryland, MS/S 76-002, May 1976.
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disagreement exists among researchers as to what constitutes a comprehensive

evaluation, most would agree that three topics occupy a central role in any

model evaluation activity. These topics are:

(1) appropriateness;
(2) validation; and

(3) documentation.

In the discussion which follows, each of the terms will be defined. A

description of how one would assess whether or not a particular model

adequately covered the issue under consideration will also be presented.

Appropriateness

Many modelers believe that the purpose of building models is either to gain

insight into how a particular process operates or to predict the future

behavior of the system. In either case, the logical first step is to

hypothesize a theoretical model of the process. In cases where the process

closely follows an accounting framework as for STIFS, the theoretical model

may be quite simple. Complexity is introduced when simplifying assumptions

must be made regarding what is important or unimportant or what is controlled

or uncontrolled. These decisions should be documented and carefully assessed

because they govern the functional relationships which form the basis of an

operational model. The appropriateness issue thus focuses on the structure of

the abstract model which establishes the foundation upon which the rest of the

modeling effort is based. If the abstract model is revealed to be seriously

flawed, then the entire exercise of constructing and validating an operational

model is likely to be of little use.
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Validation

The validation of a complex model aims at demonstrating that the model bears a

close resemblance to the system being modeled. The validation process is, in

reality, three separate tasks: (1) technical validity; (2) operational

validity; and, (3) dynamic validity.

Technical Validity

Technical validity requires the identification of all model assumptions,

including those dealing with data requirements and sources. It is especially

important to document any divergences from perceived reality. Sections 2.2

and 2.3 focus on several aspects of technical validity discussed below.

As a first step, all stated and implied assumptions, all decision variables,

and any hypothesized relationships between variables should be identified.

This step attempts to shed light on the correspondence between the model and

the real world phenomena it attempts to explain. Three types of assumptions

may be readily defined. First, the mathematical assumptions implicit in any

large model include its functional form (e.g., linearity) and the continuity

of its relationships. A second type, content assumptions, define all model

terms and variables. They should also define the scope and limitations of the

model. The final type, causal assumptions, are concerned with the assumed or

hypothesized relationships between terras and variables (e.g., the relationship

between STIFS and its satellite models). Since these assumptions define the

direction of flow in a model, they are capable of producing significant

divergences from the real world phenomena.

12



Ideally, one would like to buid a model which would produce true conclusions

(predictions) whenever all of the assumptions were true. This property is

known as modus ponens among logicians. Since most assumptions have their

roots in an empirical argument, however, statements enter In a probabilistic

rather than an absolute sense. Unfortunately, the strength of modus ponens

does not apply to probabilistic statements, so that some other criteria must

be used to reveal whether or not a model has a logical flaw. At one level,

the axioms of Aristotle can be used to critique a model (e.g., the model

contains one or more circular arguments). At a second level, logical

formalism can be used to assess the adequacy of the translation of the model

form into a numerical process that produces solutions. This involves:

(i) determining if the mathematical or numerical

calculations are correct and accurate,

(ii) analyzing if the logical flow of data and

intermediate results are correct and consistent

with our causal assumptions; and,

(iii) ensuring that variables and relationships have

not been omitted.

A concept which may be called the "principle of model economy" focuses on data

validity. For example, an elegant model based on poor quality data may be

somewhat less useful than a simple model with slightly better quality data.

13



In many cases, models use both raw data and transformed data in producing

solutions. Since raw data are the basis for transformed data, their validity

is essential. Basically, the problem is one of assessing if the raw data are

true in terms of accuracy, impartiality, and representativeness. If any of

these characteristics are violated and the nature of the violation can be

isolated and bounded, then a transformation may produce the desired data set.

Data transformations can also have a significant impact on the validity of

data. For example, aggregating time series data can force a system which is,

in reality, recursive to become simultaneous. Similarly, the pooling of

cross-sectional data may be inappropriate if two or more distinct populations

are involved.

Assessing the predictive performance of complex models is the subject of a

rapidly growing literature. The techniques used range from graphical analysis

to the tabulation of sample statistics to the use of information theory. This

topic from both the viewpoint of technical validity and operational validity

is the subject of chapter 4. All techniques, whether highly qualitative or

quantitative, seek to analyze the relationship between actual outcomes and

predicted outcomes generated by the model. Predicted outcomes are of two

kinds

:

(i) the values of the parameters used in the internal

computational process of the model, and

(ii) the values of decision variables.

14



On the first level, one would review the statistical or related techniques

used to obtain estimates for the relevant parameters. The main thrust here

would be to demonstrate that the deviation of the estimated parameter value is

as small as possible. The second level of analysis is more complicated,

because it attempts to both document any divergences of actual and predicted

values and identify what portions of the model appear to have caused them.

These error decomposition techniques are especially difficult in models with a

large number of interrelated equations.

Operational Validity

Operational validity attempts to assess the importance of any errors or

divergences encountered when the model's technical validity was reviewed. It

is concerned with whether or not the model can produce bad answers for proper

ranges of parameter values; i.e., the model should be robust in that a user

would find it difficult to make the model yield (in terms of the decision

maker) an ostensibly wrong answer.

Sensitivity analysis is related to, but distinct from, robustness. This

technique seeks to vary systematically the values of the model parameters to

determine how much the solution changes. The literature on sensitivity

analysis has rapidly grown as more and more decision makers wish to know the

answers to "what-if" questions. The techniques for performing sensitivity

analyses range from Monte-Carlo experiments to highly structured parametric

15



programming. The mechanics of performiong a Monte-Carlo experiment are

discussed in detail in chapter 3; exploiting the structure of the model to

perform a systematic sensitivity analysis is the subject of section 2.2.

The last aspect of operational validity and the most difficult is

implementation validity. Implementation validity is concerned with the extent

to which the real world system being modeled will respond in a manner

indicated by the recommended solution. This task is difficult because if a

decision maker knew how the system would respond to a given change in a

parameter or decision variable, there would be considerably less need for a

model. Consequently, even after the model is built and shown to predict

historical occurrences well, it may not produce a good or even useful

prediction of some future event. One possiblity is that under some conditions

the system does not appear to respond as the model predicts, whereas under

others, it does. If one could determine under what conditions the system does

not respond as predicted by the model, then some of the techniques used in

assessing the accuracy of predictions could be used to attempt to isolate the

cause. Several additional comments relating forecast performance to a "policy

decomposition" are explored in chapter 4.
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Dynamic Validity

Dynamic validity is concerned with determining how the model will be

maintained during its life cycle so it will continue to be an acceptable

representation of the real system. The two aspects associated with dynamic

validity are updating and review. Considering the inchoative condition of

STIFS it was not possible to address this issue. The basic concepts are

defined to illustrate how one would perform such an analysis on a completed

modeling system.

In updating, the evaluator needs to be satisfied that the model developers

have established a procedure by which information is collected and analyzed to

determine if and when model parameters or model structure need to be changed.

It is also important that a process exists by which such changes can be

incorporated into the model and disseminated to users.

A regular schedule for reviewing the success or failure of the model during

its life cycle is also necessary. These reviews should be carried out

regularly and should focus on documenting any systematic divergences between

the solution predicted and the actual outcomes. The implications and means of

accomplishing any proposed model changes should also be described.

Periodically an extensive review should be conducted which produces a new

evaluation of model validity that yields either a formal pronouncement that

the model is still valid or that it should be substantially reworked or

scrapped.

17



Documentation

From a model user’s point of view, documentation (the written description of

the model) is essential if the model is to be usable, useful, and used. Since

the abstract model is a mathematical representation (whereas the operational

model appears as a tableau format, a numerical representation, or a computer

code) , it is necessary to verify that there exists a unique relationship

between the abstract (mathematical) model and the operational model. It is

important to point out that a third party assessment should be sufficient to

verify this relationship. This would spare each user from carrying out the

in-depth analysis that this task requires. An issue which each model builder

should address is whether or not the computer code which describes a complex

model is machine independent. Portability requires not only that the program

can be run on a variety of machines, but that it produces the intended

results. This step again should be a part of a third party assessment,

although the provision of test cases which could be run and compared to a

known solution would facilitate a move from one system to another. The final

point in the evaluation of documentation is user friendliness. Complex models

often involve subtle techniques, which in the absence of a buffer between the

user and the model could cause frustration and lead to a highly inefficient

use of the model. Documentation and an executive code should serve to shield

the user from unnecessary detail without withholding any information which is

essential for confident use of the model. One way in which the model

developers can test the user friendliness of their model is, again, through

the use of a third party assessment.

18



A second, and for this case perhaps more useful exercise, is to rely on a

group of "casual users." These people might be expected to have some

familiarity with the problem under study but would be less likely to analyze

the model as deeply as its developers or a third party assessment team.

Casual users are thus likely to represent better the intended user than a team

of model builders or assessors. Time and funding constraints did not permit

an evaluation of STIFS by a "casual" user.

2.2 Mathematical Concepts in STIFS

If STIFs is essentially linear and can easily be configured (e.g., in the form

Ax * b, where A is a matrix of conversion coefficients, b is a vector of

energy sector demands or requirements, and x is a vector whose components are

fuel quantities distinguished additionally by provenience), then its linearity

could be exploited in procedures for assessing the effect on the model's

outputs of perturbations of one or more of its inputs. In particular, if

STIFS is equivalent to a standard set of input-output equations, it may be

amenable to the use of "canned" linear algebra packages for streamlining

sensitivity calculations. (These packages may also be useful in assessing

robustness.

)

STIFS is essentially a collection of "procedures" for projecting regional

supply and consumption of energy, and an integrating process which derives

import requirements and stock changes from the outputs of the procedures.
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There is a preponderance of evidence which suggests that significant portions

of STIFS may in fact be nonlinear. The source of the nonlinearities stem from

many of the forecast procedures which involve nonlinear functions of

(basically exogenous) variables that are believed to determine the quantities

of interest (supply and consumption). The likelihood of nonlinearities is

also increased because some of the procedures are not specified in any system

documentation, while others have been modified frequently over the course of

operation of the system (in what follows this point will be discussed

further)

.

Finally it is doubtful that the benefits of linearity could be realized at

least from a practical point of view in any event. The logistics of

configuring the sheaf of computer estimation procedures in a uniform matricial

structure would be formidable even if all the functional relations were

linear.

The integrating process itself is linear since it consists merely of

"accounting" relations in the form of a balance sheet. From the point of view

of facilitating sensitivity analysis, however, its mathematical structure is

unfortunately too well behaved, because it decomposes into independent

sub-blocks. Thus, it affords little opportunity to examine the behavior of

large collections of endogenous variables through feedback from variations in

small subsets of singleton exogenous (or endogenous) variables.
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From the previous discussion it can be asserted that most of STIFS is a simple

accounting framework. There are several statistical techniques which are

rather complex, however. These for the most part are located in subroutines

that contribute to the internal forecasting procedures.

Descriptions of the internal forecasting procedures employed in the model were

provided in the STIFS documentation. By reading the computer code of the

modules involved in these procedures, however, we were able to learn some

additional details about these procedures. These details seem to be otherwise

undocumented and are as follows:

1. Internal forecasts in STIFS are generated primarily through a multiple

linear regression that follows the computational design for least square

estimation.

2. A STIFS variable is internally forecasted only if its historic data series

contains data for at least 12 consecutive months. Otherwise, the variable is

either forecasted externally and fed into STIFS through the scenario data

base, or receives its value through calculations in subroutines FUTURE,

URISHR, STKMOD, STKERR, and REFYLD. The nature of these calculations will

depend on the function of the given subroutine.

*

*See Table 2.1 for a brief description of the subroutines referenced in this

chapter. More detailed descriptions are found in the STIFS documentation.
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3. Most internal regressions utilize variables representing specified months

as independent variables. The names of those variables are EJAN, EFEB, EMAR,

EAPR, EMAY, EJUN, EJUL, EAUG, ESEP , EOCT, and ENOV. As their names indicate,

they represent the months from January to November, respectively. A variable

named EDEC, representating December, also exists, but it is never used in any

of the internal regressions. EJAN, identified with January, is defined for a

given one-month period as follows:

1 if period is in January

EJAN (period) =

0 if period is not in January

The other "month" variables are defined in a similar fashion.

Subroutines PAST and FUTURE perform the historical and forecast closures as

described in the STIFS documentation. The available documentation does not

provide any apparent reason for the selection of the tolerances used in the

cross-checks of either closure. Also, through an analysis of the computer

code of subroutines PAST and FUTURE we concluded that STIFS does not

discriminate between opposite results of the cross-checks. It always executes

the same instruction immediately after a given cross-check, even when the

corresponding tolerance has been violated.
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2.3 Data Bases and Software Description

The STIFS model version, as of May 1980, was "certified" to run properly by

the DoE staff, and thus designated frozen to be utilized in our assessment

effort. Since the execution of this version can be achieved at any time by

following an existing fixed procedure, the programmer is not required to be

familiar with the STIFS software. However, more information about the

software is necessary to determine its range of application.

The STIFS Methodology and Model Description report provides a satisfactory

discussion of the model. The evidence presented in the previously mentioned

document was reinforced by reading much of the computer code. However, as the

structure and functions of STIFS became clear, it became evident that the

model did not perform the expected regressions involving the historic data

series for heating degree days and cooling degree days. Besides being

employed by subroutine URISHR to calculate the share factors used in

determining the contribution to electricity generation by residual fuel oil,

distillate fuel oil, crude oil, and natural gas, these data series are used in

regressions that create forecasted data corresponding to the domestic demand

for distillate oil and residual oil, and the total generation of electricity.

These regressions are performed in satellite models (models not in STIFS) and

the forecasted data are placed in the scenario data base to be read by STIFS.

Thus, any variation in the historic data for heating degree days and cooling
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degree days requires the availability of these models. This discovery

provided a rationale for sensitivity analysis described in chapter 3 of the

report. As part of this sensitivity analysis, we sought to determine which

variables in STIFS are affected by variations in the historic data series for

heating degree days and cooling degree days (e.g., variables representing

electricity generation by residual oil, net U.S. imports of crude oil, and

share factors are of this type). Petroleum products are related to heating

degree days and cooling degree days by equations appearing in subroutines

FUTURE and URISHR. In order to determine the names of these variables, we

analyzed the sequential data set created by execution of the STIFS model; this

data set is made up of two-dimensional FORTRAN arrays containing all

alphanumeric and numeric data of energy and econometric variables obtained

from data bases and internal computations. Accordingly, the "data packet"

structure of a given energy or econometric variable is defined as the

corresponding array in this data set. Through the WYLBUR editing system we

compared data sets created by separate runs of the frozen version of STIFS

under different sets of historic data for heating degree days and cooling

degree days. By identifying "data packet" structures in whch discrepancies

occur, we were able to identify variables affected by modifications in the

historical data series for heating degree days and cooling degree days. As

the names of these variables became available, we could then proceed to

analyze their data series as they appear in the "data packet" structures.
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A sample data file member for motor gasoline production is Illustrated In the

STIFS documentation. Through a close examination of the computer code of

subroutine RDFILE, additional information on the structure and format of the

data bases came to light. This information, apparently omitted from the

supplied documentation, was considered essential for carrying out the

sensitivity analysis in which modifications were to be made to the historical

data series of variables EHDD (heating degree days), ECDD (cooling degree

days), and to the scenario data series of variables XDDS (domestic demand for

distillate oil excluding electric utilities), XDRS (domestic demand for

residual oil excluding electric utilities), and XGEL (total generation of

electricity)

.

As a first step, all of the READ statements and the corresponding FORMAT

statements for subroutine RDFILE were located and analyzed. This

facilitated the definition of the type of input data which STIFS expects, and

the format (byte make up of a record) for these data. This, together with

samples of data series appearing in the available DoE computer listings,

revealed the structure (organization of records) in which the input data must

exist.

The mechanics of the sensitivity analysis were carried out through the use of

a FORTRAN program that generates the desired data series for heating degree

days, total generation of electricity, etc., and places these values in

sequential data sets with the proper structure and format for STIFs to read.
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The DoE staff in the Short-Term Analysis Division provided the necessary job

control language to execute the frozen version of the STIFS model on the DoE

IBM computer. This includes giving the computer sufficient information about

the input/output requirements of STIFS.

Under normal circumstances, during the execution of STIFS, the historical and

scenario data bases are read from data sets that exist on disk. However, as

part of the sensitivity analysis, the STIFS model was to be executed a large

number of times and each time variations would be made to the data series of

variables EHDD, ECDD, XDDS, XDRS, and XGEL. Thus it seemed appropriate to

modify the above job control language and STIFS, so that when executed, the

model would not read these data from data sets on disk but through input

stream data sets. To accomplish this two READ statements were added to the

STIFS software; the required control statements to the job control language

were also added. This gave STIFS the capability to read the above data in-

stream.

Apparently, it is not documented that the STIFS model must read the historic

data series of all of the econometric variables (EHDD, ECDD, EJAN, ETIME,

etc.) before it reads those of STIFS variables (energy variables). This is

because a STIFS variable can be forecasted internally in terms of econometric

variables immediately after its historic data series is read. Since

subroutine RDFILE does not automatically read all of the historic data series

27



in the required order (it will read them in any order), they must be arranged

properly before they are read. This is taken care of through the job control

language.

After considerable effort we were able to execute STIFS in accordance with our

objectives. Since we were unfamiliar with the model, we relied on the

available documentation and computer code of STIFS as our principal sources of

information. Because of difficulties in recognizing the relevance of our

search for certain pieces of information, the DoE staff's role as a source of

information was limited. On a number of points, crucial to the sensitivity

analysis, the documentation seemed insufficient. These points included the

execution of the program, the format and structue of the data bases, and the

mathematical concepts In endogeneous and exogenous subroutines of STIFS. In

most cases the necessary information was obtained bg reading every line of

computer code in specific sections of the software. Otherwise, the DoE staff

was the only other source of information.

Our scrutiny of the computer programs uncovered two errors. In one of the

subroutines (URISHR), the key punching transposition of a comma and a

neighboring character resulted in the mislabeling of a variable. This

typographical error apparently did not affect the model results materially, at

least for the sample scenarios; outputs before and after correction did not

differ at the level of precision defined by the computer output formats. In
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the subroutine FUTURE, direct imports of electrical power (XMEL) are counted

twice in calculating total demand for electricity (XGEL). Ths discrepancy was

not discovered prior to execution of the sensitivity experiments. Because the

magnitude of this component is never as large as one percent (typically 3/4

of 1 percent) of the total demand, we judged that the effect of the error

would not have been perceptible* The experiments were therefore not repeated.
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3. AN ASSESSMENT OF CLIMATOLOGICAL UNCERTAINTIES USING MONTE-CARLO
ANALYSIS

By

Carl M. Harris
Carl M. Harris and Associates

1625 I. Street, N.W.

Washington, D.C. 20006

The backbone of the effort described in this section was a Monte-Carlo

analysis of the effects of climatological uncertainty on STIFS demand

forecasts. (This should be distinguished from seasonal changes which come

about with near certainty such as automobile usage.) In particular, it was

aimed at establishing a more meaningful way than currently used by EIA of

assessing the impact, if any, on annual (as opposed to seasonal) weather

variations on energy supply and demand.

3.1 Design Considerations

Broadly, the overall range of uncertainty in STIFS' s results is generated from

the joint probability law governing the endogenous parameters (call them 3)

and exogenous input data elements (say X), together represented by the vector

(3, X). This experiment explores the effect of the underlying stochastic

character of part of the X set, namely, the weather as represented by heating

and cooling degree days.* More precisely, we worked with the subset of input

1Degree days are a well-accepted measure of space heating and cooling
requirements, with one degree day representing one degree of difference
from a base temperature of (below) 65° F for heating and (above) 68°F for

cooling.
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data corresponding to the (in fact, random) heating and cooling degree days

data input into the model and processed by STIFS through its forecast horizon.

We have specified the number of heating degree days per month during the first

and fourth quarters of each forecast year to be independent, normally

distributed, random variables; we do likewise for the cooling degree days in

the second and third quarters (see Kaczmarek, 1970, for example). Motivated

by STIFS' s own specialized scenarios, the means of these _12. normal

distributions are set at the most recent 30-year empirical estimates. Note,

for example, that the current EIA approach to model sensitivity forms a "harsh

winter" scenario by setting each month at a heating-degree-day level equal to

its mean plus one standard deviation.

The properties of the resulting probability distribution on STIFS output (call

it F(y)) cannot be obtained by any closed-form analytic operations because of

STIFS' s complexity. To obtain such a distribution—one measure of uncertainty

in results—we turned to Monte-Carlo methods.

In our experiment then: (1) values of the weather components of the vector X

are drawn randomly according to their distribution (here equal to the product

of the marginals, in light of independence) according to a specific sampling

plan; and (2) values of the (vector) dependent variable Y are obtained by

running STIFS tests with X in the input set. When this procedure is carried
(V

out n times, it generates a sample of size n for Y. This sample permits a
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detailed analysis of measures of central tendency, dispersion, and the

distribution function itself. The generation of a complex Monte-Carlo sample

i s rather expensive because of the size of the subject model. Therefore, this

study employs a modified sampling procedure (as in Harris and Hirshfeld, 1980)

which reduces the cost and time required for the experiment, without

sacrificing any statistical precision. This approach uses a multidimensional

version of the classical Latin Square—called the Latin Hypercube—as

described by McKay et al (1979). Results presented by those authors indicate

an approximate reduction in sampling of 75 percent versus conventional

methods, at constant precision.

The Monte-Carlo experiment thus comprised two main steps:

1) Generating _50 vectors of estimates of heating and cooling degree

days, where every vector is made up of elements, each of which is an estimate

of a month's weather for each of the forecast horizon's _24 months. ( We call

such vectors weather realization vectors. ) The vectors are randomly

constructed according to a Latin Hypercube design described in the following

section. To generate the weather vectors, we begin from the assumption of

normal distributions for the degree days data series. With the means and

variances of these normal cumulative distribution functions (CDFs), we can

easily derive random normal deviates for the degree days. The actual

parameters used are indicated in Table 3.1.
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TABLE 3.1

PARAMETERS OF NORMAL
DEGREE-DAY DISTRIBUTIONS

Month Heating Cooling Mean
Standard
Deviation

Jan X 947.0500 47.3525

Feb X 786.9100 39.3455

Mar X 665.4200 33.2710

Apr X 27.6644 1.9365

May X 92.4340 6.4704

Jun X 207.3000 14.5110

Jul X 311.2600 21.7882

Aug X 282.3200 19.7624

Sep X 150.5600 10.5392

Oct X 258.5200 12.9260

Nov X 555.0000 27.7500

Dec X 860.9300 43.0465

NOTE: A letter X has been placed next to each month in position to indicate
whether heating or cooling degree days are randomly varied for that

month in our experiment.
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2) Running one STIFS test for each of the 50 weather realization

vectors, with all other model Inputs unchanged, to obtain the corresponding

complete energy forecasts. The end result of this effort is a short-term

prediction revised (from the base case) for each of the weather realization

vectors.

The results of the total set of runs can be summarized via a number of

empirical statistical measures. The major ones we offer are the means and

some key percentage points. The experiment was run as of January 1980 for the

usual eight quarters of forecast period (though we display only six quarters

of results for purposes of comparison).

3.2 Implementation Considerations

In accordance with the foregoing reasoning, the procedure for Step 1 of our

experiment, generating the set of (random) weather realization vectors, is as

follows:

(i) Divide the range of W^, the random weather variable

for each month k, into ^50 intervals, j, of equal

probability (0.02) (j - 1, 2,.. .,50; k = 1, 2,.. .,24).
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(ii) Let the probabilistic midpoint of each interval be W^j

,

corresponding to the j
1-*1 odd percentage point rj of the

standard unit normal.

(iii) Generate the order in which the 50 percentage points are to

be used in each of 50 STIFS runs by creating a sequence of

24 (for each month) unique random permutations of the

integers 1 to 50.

(iv) Form the required {W^} vector for the first run by taking the

leading percentage point from each of the 24 random

permutations. Continue to do this by similarly matching the

i^ elements of each permutation to the i fc^ weather

realization vector , until all 50 are formed.

Each of these vectors, then, is a probabilistic estimate of the weather as

represented by heating and cooling degree days. The experimental procedure

described here is, of course, not restricted to 50 or any other arbitrary

number of STIFS tests. We specified 50 runs for our experiment, because it

appeared to offer a reasonable trade-off between statistical precision and

resource expenditures.
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Step 2 in the experiment Is the conversion of heating and cooling degree days

into residual and distillate fuel demands, and the determination of the effect

of such weather patterns on electricity generation. Heating and cooling

degree days relate to these three via (so-called) satellite linear models

month-by-month.

Model Flow

Ordinarily, heating and cooling degree days enter the overall STIFS framework

in the so-called base case at monthly levels equal to the mean number computed

for each month from the most recent 30 years (the standard period for defining

weather "normals" in the U.S. Weather Service). These heating and cooling

degree figures impact the forecasts in basically four places (though many

other variables are ultimately affected through the usual material balance

relationships)

:

o Residual fuel demand (excluding utilities);

o Distillate fuel demand (excluding utilities);

o Total electricity generated; and

o Primary source distribution of electricity.

For non-utility residual fuel demand, a satellite model was created for

estimating such demand (in Millions of Barrels/day) . At the time of this

study, this model was a trigonometric function of month, and linear in

national income, an industrial production index for the subject month, heating

degree days (HDD) for the months of the first and fourth quarter, and
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a monthly real price estimate of the fuel. Such equations have typically been

recalibrated for each quarterly forecast using approximately five years of

data.

In the form of the equation used for the current study, the coefficient of the

heating degree days is .421235 x 10“ ^ million barrels per day, per heating

degree day. Thus, for example, a 100 degree-day increase from a month’s

normal total leads to a predicted increase in demand of .0421235 MMBbl/day, or

42,000 Bbl/day.

For non-utility distillate fuel demand, another exogenous model was formed.

It is a trigonometric function of month; and linear in monthly heating degree

days for first and fourth quarter months, the retail price of distillate for

first and fourth quarter months, and real disposable personal income. The

parameters of this equation are also reestimated at each quarterly forecast

point. The coefficient of the heating degree days was .00162219 million

barrels per day, per heating degree day, approximately four percent of the HDD

coefficient in the equation for non-utility residual fuel demand.

The total electricity generation forecast for a given month is now a totally

linear model, but its form was quite different at the time of our study. At

that point, the demand for electricity generation, XGEL, was modeled on a per

capita basis. The average (XGEL/N) was then specified to be a semi-

37



logarithmic function of cooling degree days (CDD) and heating degree days

(HDD), but linear in the real price of electricity (PEL), real disposable

income per capita (YD72/N), and previous levels of electricity generation,

expressed as electricity generation per capita 12 months earlier (see August

1980 OUTLOOK). Detailed data analysis of an earlier EIA procedure (see

February 1980 OUTLOOK) indicated that the null hypothesis of no serial

correlation could not be accepted and thus that the model's error term may

well be serially correlated. Thus a first-order serially-correlated error

term was specified, and the model written as

In (XGEL/N) - CONSTANT + B1 CDD + B2 HDD + B3 In (PEL)
+ B4 ln(YD72/N) + B5 ln(XGEL(-12)/N(-12))
+ ERROR,

where ERROR is the first-order serially-correlated disturbance term.

The model's parameters were estimated using the Cochrane-Orcutt first-order

serial-correlation regression technique, on monthly data from January 1975 to

December 1979, representing 60 observations. The lag term used a data series

that began 12 months earlier. The data used are more completely defined in

Table 3.2.

It is interesting to note how the problem is presently perceived (see the May

1982 Outlook). Now total demand is forecast by a model fully linear in HDD

and CDD, PEL, YD72, and the demand one-month lagged. The estimation uses data

going back to January 1977. Observe that the partial semi-log structure has

been dropped, that calculations are no longer per capita, and that the lag has
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Table 3.2 DATA DEFINITIONS AND SOURCES FOR ELECTRICITY DEMAND MODEL

Variable Definition Source

CDD Cooling degree days.
National-1976 population
weighted.

National Oceanic and Atmospheric
Administration (NOAA)

,
U.S. Dept,

of Commerce.

HDD Heating degree days.
National-1976 population
weighted.

NOAA

PEL Real price of electricity
to industrial consumer.

1979; U.S. Dept, of Energy FERC

Form 5, "Monthly Statement of

Electric Operating Revenue and

Income." 1975-1978: Edison
Electric Institute Statistical
Yearbook 1978. PGNP deflater from

Bureau of Economic Analysis.

YD72 Real personal disposable
income in millions of

1972 dollars.

1979; Bureau of Economic Analysis,
U.S. Dept, of Commerce.

XCEL(-12) Generation of Electricity
in billions of kilowatt
hours, lagged 12 months.

U.S. Dept, of Energy FERC Form 4,

"Monthly Power Plant Report.”

Table 3.3 ELECTRICITY DEMAND MODEL ESTIMATES

Variable
Parameter
Symbol

Parameter
Estimate

Standard
Error

Constant BO -12,768. 14,247.9
Cooling Degree Days B1 29.9 2.0

Heating Degree Days B2 126.2 6.2

Price B3 -10,347. 6,951.5
Income B4 920. 13.9
Log

Summary Statistics

Adjusted R-Square 0.94
Durbin-Watson Statistic = 2.20

B5 0.51 0.04

#
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been reduced to one month from twelve. Table 3.3 presents the current

coefficient estimates and standard errors as offered in the May 1982 Outlook,

as well as some summary fit statistics.

The final of the four models provides an estimate for the percentage

contribution to total electricity by all major ( fossil-fuel ) primary sources.

This model is endogenous to STIFS and allows the final estimation of total

residual and distillate fuel when taken together with the other three models.

Electrical generation by coal-fired and nuclear generating plants is estimated

using current and planned capacity additions and historical data on operating

rates and heat content. Hydropower, geothermal, and other generation

possibilities are estimated using data on historical seasonal patterns and

trends.

Since the fractional share for each of four—residual fuel oil, distillate

fuel oil, crude oil, and natural gas—must be between zero and one, an

ordinary linear model is unacceptable since the forecasts might violate the

constraint. As is not unusual in these situations (see Pindyck and Rubenfeld,

1976), a multinomial logit model was selected.

The binary-choice logit model presupposes the form

S [1 + exp(a + £

j-l

b
j
x
j
)]“!

( 1 )
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for the share S of the first (of two) fossil fuels where the {xj} ate the

exogenous factors affecting the share of fuel 1 . A linear form can be

established easily from Equation ( 1 ) by a little bit of algebra:

n

( 1-S)/S = exp(a + £ b-jx-t)

j-1

Thus,

n
In [( 1-S)/S] = a + £ b-ix-j

j-1
( 2 )

where we recognize that the left-hand side of the above is the logarithm of

the ratio of the share of the second fuel to the first.

Instead of the binary-choice approach, STIFS uses a four-choice model, which

is written in a form similar to that of Equation ( 2 ) for each share

(i * 2 , 3
,

4 ) with Sj set as the norming variable (here residual fuel oil):

n
ln(S2/Sj) s a2 + [ b2jXj (distillate)

n
ln(S3/Sx) - a3 J b3j Xj (crude)

j-1

n
ln(S4/Sj) ® a4 + £ b4jXj (natural gas)

Sj * 1 — S2 — S3 - S4 •
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All the parameters can be estimated by means of either nonlinear least

squares or, after appropriate transformations, by ordinary least squares.

However, neither of these would use all of the information effectively. There

are two problems: (1) the errors need not be consistent as required in the

ordinary linear model context; and (2) the cross-equation correlation ought to

be acccounted for directly in the estimation. The first problem is generally

handled by estimating the variances of each of the independent variables and

then weighing the least square errors accordingly. The second issue is

approached by the application of a form of generalized least-squares

regression due to Zellner (1962) to account for the correlation among the

error terms associated with each equation. By this procedure, we are thus

able to make use of a limited number of data points.

Monthly data on oil (steam and non-steam), natural gas (steam and non-steam),

and combined cycle generation were obtained from the Federal Energy Regulatory

Commission (FERC) Form 4 currently collected by EIA. Since data are not

specificially collected for residual fuel oil, distillate fuel oil and crude

oil generation, the approach used by EIA was to apportion the oil steam and

oil non-steam into these components using the percentages derived from a

detailed analysis of the literature.

The Independent variables used In the estimation consisted of the following:
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o Two variables traversing a sine and cosine curve, respectively,

to capture the regular seasonal pattern of shifting proportions

between months. Thus, for example, residual-fired generation on

average is most prominent in December (0.57) when natural gas-fired

generation is smallest (0.36).

o Heating degree days and cooling degree days.

o Coal strike indicator variables accounting for strikes which may

occur (as in December 1974 and December 1977 through March 1978). To

incorporate the potential imnact of a coal strike on shifting the

relative proportions of fossil fuel generation (i.e., an increase of

distillate consumption relative to residual), a variable was defined

to equal one for the strike period and zero otherwise.

o Qualitative hydroelectric generation shortage variable. A variable

was inserted in each of the estimated relationships to account for

hydroelectric generation reduction as in 1977 arising from the

deficiency in the rainfall in the Pacific Northwest. It was defined

to equal one for January 1977 through October 1977 and zero for the

remainder of the sample period. Its statistical significance reflects

the changing relative share during the drought period of, say, natural

ga« consumption to residual consumption.
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o Fuel prices. The possibility of interfuel substitution in the fossil

fuel generation of electrical energy exists. To capture this

potential effectively, the ratio of each fuel price to the price of

coal was introduced (i.e., the price reflecting the average delivered

price of each fuel to electric utilities in a given month). Prices

of distillate and crude were not available.

The results of the estimation procedure as of the February 1980 Outlook are

presented in Table 3.4. All of the estimated coefficients were found to be

significantly different from zero at the 5 percent level with the exception

of three: hydro shortages on distillate, coal strike on natural gas, and

gas/coal price ratio on gas.

One major result of the model is that variations in weather provide for

significant alterations in relative shares. An increase in winter severity,

measured by an increase in the number of beating degree days, results in a

large relative reduction (compared to the base ca«e) in the natural gas share

as that fuel is diverted to high priority consumers. The differential between

the actual and the desired level of generation is made by residual fuel oil

and distillate fuel oil fired generation. During the cooling season,

however, the results lead to a relative increase in distillate fired

generation.
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TABLE 3.4

FUEL SHARE FORECASTING EQUATIONS

Equation/
Variable

log
(Distillate/Resid.

)

log
(Crude/Resid.

)

log
(Natural Gas/Resid.)

Tl -0.207 0.000448 -0.0959

T2 -0.347 0.000746 -0.0783

C -3.02 -5.26 -0.462

HDD 0.000966 -0.00000205 -0.000630

CDD 0.000754 -0.0000014 -0.000537

PRESID/PCOAL 0.204 -0.000443 0.329

PGAS/PCOAL -0.221 0.000439 -0-

COALSTK 0.149 -0.000318 -0-

HYDSHO -0- -0.0000210 -0.143

R2 0.738 .999 0.945

Tl, T2 denote sine and cosine, respectively; C denotes a constant term; HDD,

and CDD denote heating and cooling degree days, respectively; PRESID, PCOAL,

PGAS denote the prices of residual, coal, and natural gas; COALSTK denotes the

coal strike variable; and HYDSHO denotes the hydrogeneration shortage.

SOURCE: Short-Term Energy Outlook , February 1980.
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3.3 Summary of Findings

The results of our work are set forth in the following:

o Tables 3.5 and 3.6 show experimental 25th, 32nd, 50th (median), 68th,

and 75th percentiles, plus the mean of non-distillate demand (total distillate

in 3.6) for each of the six quarters beginning January 1, 1980 (in

Quads/quarter). The numbers are contrasted in each case to the base case

result.

o Tables 3.7 and 3.8 show the simulation 25th, 32nd, 50th, (median),

68th, and 75th percentiles, plus the mean of non-utility residual fuel oil

demand and utility demand, respectively, for each of the six quarters

beginning January 1, 1980.

o Table 3.9 shows the experimental interquartile ranges and medians for

total electricity generation induced by weather and the relative contributions

made by the three liquid fossil fuels.

o Table 3.10 shows the effect of weather on net imports of crude.

The most important aspects of these results can be summarized as follows.

When Tables 3.5 through 3.10 are combined, we find that the simulated

interquartile ranges provide much tighter estimates for the range of
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variability resulting from the adverse and favorable weather scenarios than

that indicated by DoE in the February 1980 OUTLOOK . The comparisons are

presented in Table 3.11.

From Table 3.9, we see that the net effect of the weather variability on total

electricity generation is really quite small compared to the base—a maximum

interquartile range of less than 0.5 percent. For the imports. Table 3.10,

the maximum interquartile range is also fairly small, reaching 1.3 percent.
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TABLE 3.5

DISTILLATE FUEL OIL DEMAND
(EXCLUDING ELECTRIC UTILITIES)

BASE CASE VS. EXPERIMENTAL OUTPUT
(Quad8 per Quarter)

1980 1981

Quarters 1
st 2nd 3rd 4th 1

st 2nd

Demand in 50 States
(Base Case)

1.936 1.441 1.310 1.673 1.897 1.474

Monte-Carlo Results:

25 th Percentile 1.923
(-. 6%) a

X X 1.662
(-. 6%)

1.883
(-.7%)

X

32nd Percentile 1.927
(-.5%)

X X 1.664
(-. 6%)

1.887
(-.5%)

X

Median 1.936
(-.5%)

X X 1.674 1.895 X

Mean 1.936 X X 1.673 1.897 X

68 t ^1 Percentile 1.942

(.3%)

X X 1.682
(.5%)

1.902

(.3%)

X

75^ Percentile 1.947

(.5%)

X X 1.683

(. 6%)

1.907

(.5%)

X

NOTE: The X columns
only changes

are those in which there was
in heating degree days affect

no random
distillate

variation
use.

since

aValues within parentheses are the percentage deviations of the results of the

Monte-Carlo experiment from those of the base case.
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TABLE 3.6

TOTAL DISTILLATE FUEL OIL DEMAND
BASE CASE VS. EXPERIMENTAL OUTPUT

(Quads per Quarter)

1980 1981

Quarters 1
st 2nd 3rd 4 th 1

st 2nd

Base Case 2.050 1.537 1.440 1.769 1.999 1.569

Monte-Carlo Results:

25th percentile 2.034
(-. 8%)

1.537 1.439
(-.07%)

1.754
(-. 8%)

1.983
(-. 8%)

1.568
(-.06%)

32nd Percentile 2.038
(-. 6%)

1.537 1.440 1.757
(-.7%)

1.988
(-. 6%)

1.568
(-.06%)

Median 2.049
(-.05%)

1.537 1.440 1.777
(-. 2%)

1.998
(-.05%)

1.569

Mean 2.050 1.537 1.440 1.700 1.999 1.569

68 t *1 Percentile 2.057

(.3%)

1.538

(.07%)

1.441

(.07%)

1.779

(.7%)

2.006

(.4%)

1.569

75th Percentile 2.062

(. 6%)

1.538
(.07%)

1.441

(.07%)

1.781

(.7%)

2.011

(. 6%)

1.569
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TABLE 3.7

RESIDUAL FUEL OIL DEMAND
(EXCLUDING ELECTRIC UTILITIES)

BASE CASE VS. EXPERIMENTAL OUTPUT
(Quads per Quarter)

1980 1981

Quarters 1
st 2nd 3rd 4th ist 2nd

Demand in 50 States
(Base Case)

0.906 0.670 0.562 0.689 0.867 0.676

Monte-Carlo Results:

25^ Percentile 0.902
(-.4%)

X X 0.685 0.863 X

32nd Percentile 0.903
(-.3%)

X X 0.686
(-.4%)

0.864
(-.3%)

X

Median 0.905 X X 0.689 0.866 X

Mean 0.906 X X 0.689 0.867 X

68 tl1 Percentile X X X

75 th Percentile 0.909
(.330

X X 0.691
(1.0%)

0.870
(.4%)

X

NOTE: The X columns are those in which there was zero random variation since
only changes In heating degree days affect distillate use.
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TABLE 3.8

<

TOTAL RESIDUAL FUEL OIL DEMAND
BASE CASE VS. EXPERIMENTAL OUTPUT

(Quads per Quarter)

1980 1981

Quarters 1
st 2nd 3rd 4th ist 2nd

Base Case 1.708 1.361 1.402 1.371 1.554 1.255

Monte-Carlo Results:

25th Percentile 1.694 1.360 1.402 1.358 1.540 1.254
(-. 8%) (-.07%) (-.9%) (-.9%) (-.08%

32nd Percentile 1.698 1.360 1.402 1.360 1.545 1.255
(-. 6%) (-.07%) (-. 8%) (-. 6%)

Median 1.707 1.360 1.402 1.374 1.553 1.255
(-.06%) (-.07%) (. 2%) (.06%)

Mean 1.708 1.361 1.402 1.371 1.554 1.255

68 t ^1 Percentile 1.714 1.361 1.403 1.380 1.560 1.256

(.4%) (.07%) (.7%) (.4%) (.08%)

75 c^ Percentile 1.718 1.361 1.403 1.385 1.563 1.256

(. 6%) (.07%) ( 1 %) (. 6%) (.08%)
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TABLE 3.9

TOTAL ELECTRICITY GENERATION: WEATHER SENSITIVITY ANALYSIS
(Billions of Kilowatt Hours per Quarter)

1980 1981

Quarters ist 2nd 3rd 4th ist 2nd

Base Case Total for 566.90 555.73 628.78 568.92 582.70 571.22
50 States

Primary Source

Favorable 7.62 5.68 7.52 5.92 6.94 5.58
Distillate Median 7.79 5.71 7.59 6.17 7.11 5.61

Adverse 7.98 5.73 7.66 6.26 7.29 5.63

Favorable 75.85 57.30 74.70 66.44 67.20 49.02
Residual Median 76.77 57.33 74.76 67.61 68.15 49.09

Adverse 77.56 57.37 74.81 68.45 68.78 49.13

Favorable 0.38 0.29 0.34 0.32 0.34 0.25
Crude Oil Median 0.39 0.29 0.35 0.32 0.34 0.26

Adverse 0.39 0.29 0.35 0.33 0.36 0.26

Favorable 565.61 555.72 628.77 567.76 581.41 571.21
Total

Adverse 567.81 555.73 628.80 569.93 583.61 571.22

NOTE: The favorable and adverse scenarios correspond to the 25th and 75th
percentiles, respectively, of the Monte-Carlo experiment.
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TABLE 3.10

NET U.S. IMPORTS OF CRUDE OIL

(MBbl per day)

1980 1981

Quarters 2nd 3rd 4th 1
st 2nd

Base Case
5,193 5,764 4,497 5,095 5,502

Monte Carlo Results:

25 t ^1 Percentile 5,191 5,762 5,559
(-.7%)

5,054
(-.8%)

5,499

32nd Percentile 5,192 5,763 5,565
(-. 6%)

5,067
(-.5%)

5,501

Median 5,193 5,764 5,606 5,093 5,502

Mean 5,193 5,764 5,597 5,095 5,502

68c^ Percentile 5,193 5,765 5,622
(.4%)

5,111
(.3%)

5,504

75th Percentile 5,193 5,765 5,631
(. 6%)

5,123
(.5%)

5,505
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TABLE 3.11

COMPARISON OF EXPERIMENTAL RANGES
WITH

DOE RANGES

(MBbl/day)

1980 1981

Quarters 1st 2nd 3rd 4th 1st

Distillate:

Experimental Range

Nonutility 0.044 -0- -0- 0.038 0.044

Utility 0.011 0.002 0.004 0.010 0.011

TOTAL 0.055 0.002 0.004 0.048 0.055

DOE Range
TOTAL 0.64 0.07 0.08 0.47 0.69

Residual:

Experimental Range

Nonutility 0.000 -0- -0- 0.000 0.000

Utility 0.035 0.001 0.002 0.041 0.032

TOTAL 0.035 0.001 0.002 0.041 0.032

DOE Range
TOTAL 0.85 0.36 0.68 0.58 0.81
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4. ASSESSING THE FORECAST ACCURACY OF SHORT-TERM ENERGY MODELS:

BASIC PRINCIPLES AND EXTENSIONS3

by

Robert E. Chapman
Center for Applied Mathematics
National Bureau of Standards

Washington, D.C. 20234

and

Anthony E. Bopp
James Madison University

Harrisonburg, Virginia 22807

Generating forecasts, quantitative estimates about the likelihood of future

events taking place based on past and current information, is one of the major

reasons for constructing models. Although there are numerous types of models

which could be applied in any given situation, the techniques outlined in this

chapter can be illustrated through reference to two alternative model

specifications designed to forecast the real price of motor gasoline. They

are: (1) an econometric model which is a reduced-form equation from an

inventory-price adjustment model used to capture the effects of supply and

demand factors; and (2) a simple regression model which links the price of

crude oil to motor gasoline prices.

aThe authors wish to acknowledge the influence that P.A.V.B. Swamy of the

Division of Research and Statistics at the Federal Reserve Board has exerted
on the treatment of several theoretical issues discussed in this section.
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In its purest sense, the forecasting process involves an extropolation beyond

the period over which a model was estimated. Consequently, as the time

horizon (i.e., the length) of the forecast is extended, one would expect the

quality of the information provided by the forecast to deteriorate. The

purpose of this chapter is to present a set of methods for measuring the

performance of a model's forecast. A discussion of techniques for measuring

how rapidly the model's performance deteriorates over time and to what extent

this undesirable attribute can be mitigated through the formulation of a

composite forecast will also be included. This chapter in its focus on

forecast performance or accuracy assessment will not address issues such as

the quality of the data underlying the model, the mathematical structure of

the model, or its dynamic stability, all of which could, in principle, affect

the accuracy of a model's forecasts. Readers interested in these and other

evaluation topics are referred to the article by Dhrymes et al.*

In most applications two types of forecasts are found to be useful. Point

forecasts predict a single number in each forecast period, while interval

forecasts indicate in each forecast period an interval in which the realized

value will hopefully lie. The focus of this chapter will be on point

forecasts. It is also useful to distinguish between two classes of forecasts.

These two classes are known as ex post and ex ante and are illustrated with

respect to time in Figure 4.1. Three dates are shown on Figure 4.1. These

^Dhrymes, Phoebus J. , E. Phillip Howrey, Saul H. Hymans, Jan Kmenta, Edward
E. Learner, Richard E. Quandt, James B. Ramsey, Harold T. Shapiro, and

Victor Zarnowitz, "Criteria for Evaluation of Econometric Models," Annals of

Economic and Social Measurement , Vol. 1, No. 3 (1972), pp. 291-324.
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dates refer to the estimation period (between Tj and T2, where Tj is the

earliest date for which the complete set of data required to make an estimate

is used), the ex post forecast period (between T2 and T3, where T3 is the

present time period), and the ex ante forecast period (beyond T3). In an

ex post forecast, the forecast period is such that observations on both

endogenous * variables and exogenous^ explanatory variables are known with

certainty. Thus, ex post forecasts can be checked against existing data and

provide a means of evaluating a forecasting model. An ex ante forecast

predicts values of the dependent (endogenous) variables beyond the present

using explanatory variables which (depending on the nature of the data and the

length of the lags associated with the explanatory variables) may or may not

be known with certainty. The emphasis of this chapter is on a modified

version of an ex post forecast* This approach was taken since it permits the

accuracy measures to be computed in a straightforward and unambiguous manner.

The term modified ex* post is used because in generating our forecasts, every

effort was made to simulate the steps that an analyst located at time period

T2 in Figure 4.1 would have undergone in making an ex ante forecast of motor

gasoline prices for the periods between T2 and T3. Thus the values of the

exogenous variables used in the modified ex post forecast correspond to

values which would have been based on predictions (i.e.,they are made as if

the analyst were located at time period T2). This point serves to highlight a

difference between conditional and unconditional forecasts. In an

^Endogeneous variables are variables whose values are determined within the

model's framework.
^Exogeneous variables are variables whose values are determined outside the

model's framework.
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FIGURE 4.1 THREE PHASES IN THE EVALUATION OF AN ECONOMIC FORECAST

Ti T 2 T 3

Time t

ESTIMATION EX POST EX ANTE
^ nrniAn — «— FORECAST-*

PERIOD

riMUiViiv i

PERIOD

PRESENT

aSource: Pindyck, Robert S. and Daniel L. Rubinfeld. Econo-

metric Models and Economic Forecasts , (New York: McGraw-Hill
Book Company, 1976), p. 157,
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unconditional forecast the values of all the explanatory variables in the

forecasting equation are known with certainty. Therefore, any pure ex post

forecast is an unconditional forecast. However, depending on the lag

structure of the explanatory variables, ex ante forecasts may also be uncon-

ditional. Since the values of the exogenous variables used in making the

modified ex post forecast between time periods T2 and T3 were based on

predictions we have a means for comparing the quality of the conditional

forecast to the unconditional forecast. This approach is particularly

desirable because in a real forecasting situation the analyst does not know

the values of all explanatory variables with certainty. In addition, a

measure of conditional forecast performance is potentially more useful in

formulating a composite forecast because it is a better indication of how well

the models would have done in a real forecasting situation.

4.1 The Classical Approach

The classical approach discussed in this section seeks to identify the "best"

forecast. The mechanics of this approach may be carried out in a variety of

ways. In all cases, the criteria used in determining the best forecast is to

select the model, or combination of models, which produces the forecast error

having the minimum variance. As is shown in Pindyck and Rubinfeld,^ the error

associated with a forecasting procedure can come from a combination of four

distinct sources. First, the random nature of the additive error process

guarantees that forecasts will deviate from true values, even if the model is

specified correctly and its parameter values are known with certainty.

^Pindyck, Robert S. and Daniel L. Rubinfeld, Econometric Models and Economic
Forecasts (New York: McGraw-Hill Book Company, 1976).

59



Second, the process of estimating the regression parameters introduces error

because estimated parameter values are random variables which may deviate from

the true parameter values. For any given sample, the estimated parameters are

unlikely to equal the true values of the underlying parameters, even though

they will (if they are unbiased) equal those parameters on the average.

Third, in the case of a conditional forecast, errors are introduced when

calculated guesses are made for the values of the explanatory variables during

the forecast period. Finally, errors may be introduced because the model

specification may not be an accurate representation of the true underlying

process.

4.1.1 Qualitative Methods

As the title of this subsection suggests, the methods which will be discussed

will stress the qualitative aspects of the forecast evaluation process. The

term qualitative should not be taken in a pejorative sense because although

the measures are somewhat subjective, they may be extremely useful to an

experienced analyst (as is pointed out in the article by Dhrymes, et al. 1
).

The concept of qualitative methods of forecast evaluation is quite broad, so

that some selectivity was necessary to focus on a particular subset of these

methods which also provides a transition into the classical quantitative and

information theoretic measures of the next sections. More precisely, the

1Phoebus J. Dhrymes, ^t al . , op cit .
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emphasis of this subsection is on three graphical approaches for measuring

goodness-of-f it. Each approach makes use of eight years of data for the

econometric model* during a subset of its estimation period (January 1972

through December 1975) and a modified ex post forecast covering January 1976

through December 1979.

The first graphical approach is the simplest; it consists of a plot of the

realized and predicted values for the real price of motor gasoline versus time

in months. The second approach, a plot of residuals, ^ introduces the key

concept of error decomposition by permitting one to check the model for

O
systematic biases. The third approach, the Theil prediction-realization

diagram, further extends the concept of error decomposition by permitting one

to develop measures of the bias of the forecast and, loosely speaking, its

efficiency.^

The first graphical approach is illustrated in Figures 4.2 and 4.3. Both

figures provide comparisons of the predicted and realized values for a

*A complete description of the econometric model is given in section 4.3.1.

residual is the difference between the realized value and the predicted
value. Residuals thus represent errors in the forecast.
^A forecast is unbiased if the expected (average) value of the predictor is

equal to the realized value. All forecasts for which this statement is not

true are referred to as biased.
^The term efficiency as it is used here refers to a case where a forecaster
does not systematically underestimate (overestimate) high values and over-
estimate (underestimate) low values.
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computed index^ of the real price of motor gasoline during a four year period.

Figure 4.2 treats the period January 1972 through December 1975 which is a

subset of the period over which the model was estimated. Figure 4.3 treats

the period January 1976 through December 1979 which is a modified ex post

forecast. In both figures, the computed index is displayed along the vertical

axis and the month and year along the horizontal axis.

Turning first to Figure 4.2, we see, as one would expect during the estimation

period, that the model "tracks" the process quite well. During the periods of

fairly stable prices (January 1972 through September 1973), the two series

show close agreement, although the model "appears" to miss turning points by

one month (compare the realizations of the price series in the neighborhood of

March 1973 to the predicted series). It is reassuring to note that the model

tracks the explosive growth in motor gasoline prices during the embargo

period, although it still tends to miss turning points by one month. The

model also captures well the upward trend in gasoline prices in 1975.

An examination of Figure 4.3 reveals some significant differences. First, the

seasonal effects tend to be more pronounced now than before in the

realizations of the price series, peaking in July and August and bottoming out

in February and March. Second, during the last three quarters of 1979

*The real price index for motor gasoline in period t is computed by dividing
the wholesale price index for motor gasoline (not seasonally adjusted) in

period t by the wholesale price index (not seasonally adjusted) for that
period.
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FIGURE 4.2 COMPARISON OF PREDICTED AND REALIZED VALUES OF THE COMPUTED INDEX

FOR THE REAL PRICE OF MOTOR GASOLINE DURING THE LAST FOUR YEARS

OF THE ESTIMATION PERIOD.

a
Wholesale price index of motor gasoline (not seasonally adjusted) divided
by the wholesale price index (not seasonally adjusted).
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FIGURE 4.3 COMPARISON OF PREDICTED AND REALIZED VALUES OF THE COMPUTED INDEX
FOR THE REAL PRICE OF MOTOR GASOLINE DURING THE FOUR YEAR FORECAST
PERIOD: JANUARY 1976 THROUGH DECEMBER 1979.
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gasoline prices increased explosively mirroring the explosive growth in crude

oil prices. Since the likeihood of the events producing this surge in crude

oil prices being foreseen in December 1975 is nil, one would not expect the

model to perform well during that period.*

When both time series are examined together, it can be seen that the predicted

series tends to lag the realized price series. Although this same phenomenon

was observed in Figure 4.2 its consequences are more pronounced here. As a

result of these lags, if the model overestimated (underestimated) in the

previous period it will tend to overestimate (underestimate) in the subsequent

period. Thus one would expect to see a pattern in the residuals if they were

plotted as a function of time which serves to motivate the second graphical

approach.

The second approach, residual plots, is illustrated in Figures 4.4 and 4.5.

As in the previous figures, the month and year associated with each

observation is plotted along the horizontal axis. Along the vertical axis of

each figure is measured the difference between the realized value and the

predicted value (i.e., the forecast error).

*Note that the real price of crude oil is an exogenous variable in this
model. However, the realized value was not used because we are attempting to

simulate the forecasting process jaa jL£ the analyst were situated at December
1975 on the time line (see Figure 4.1) and wished to perform an ex ante

forecast.
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REALIZED

MINUS

PREDICTED

FIGURE 4.4 RESIDUAL PLOT OF THE COMPUTED INDEX FOR THE REAL PRICE OF MOTOR

GASOLINE DURING THE LAST FOUR YEARS OF THE ESTIMATION PERIOD.
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REALIZED

MINUS

PREDICTED

FIGURE 4.5 RESIDUAL PLOT OF THE COMPUTED INDEX FOR THE REAL PRICE OF MOTOR

GASOLINE DURING THE FOUR YEAR FORECAST PERIOD: JANUARY 1976

THROUGH DECEMBER 1979.

1976 1977 1978 1979
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Turning now to each figure, a careful examination of Figure 4.4 reveals a

rather jagged pattern in the residuals. From a statistical viewpoint, this

pattern is desirable because it appears to be random. That is, the residuals

are likely to be generated by a "white noise" process, which is a necessary

requirement for the validity of several tests performed in the model

estimation and diagnostic checking phases. A closer examination of the

residual plot would lead one to believe that the model overestimates slightly

(0.02 on the average) and that heteroscedastricity may be present.*

When Figure 4.4 is contrasted with Figure 4.5, an interesting observation

results. First, the pattern of the residuals is not at all jagged, in fact

the changes are quite smooth. Second, as was observed earlier (Figure 4.2),

if the model overpredicted (underpredicted) in the previous period it tends to

overpredict (underpredict) in the subsequent period. Both of these

observations can be explained in part by noting that Figure 4.4 is a plot of

residuals from the estimation period, whereas Figure 4.5 is a plot of the

residuals during the forecast period. Since the estimation process minimizes

the sum of the squared deviations (residuals), one seeks to construct a model

which does not have a pattern in its residuals. (If it did, this information

could be incorporated into the model to reduce the variance of the estimation

*Heteroscedasticity implies that the variance of the residuals changes over
time. From the plot, one might hypothesize that the variance of the

residuals is smaller during the pre-embargo period than for periods after and

including the embargo.
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error.) On the other hand, during the forecasting process it is not possible

to place constraints on the residuals because, a priori , one does not know

what the realized value will be. Thus, unless there is a clear cyclical

pattern in the residuals (e.g., the model systematically underpredicts in the

driving season and overpredicts in the heating system), one can say very

little about the model's forecast performance except through resort to a more

rigorous test.

One qualitative measure which attempts to fill the void just mentioned is the

Theil prediction-realization diagram. This procedure is developed in detail

in one of Theil' s books * and is discussed as an analytical tool in the studies

by Mincer and Zarnowitz^ and Zarnowitz.-* The basic concept behind the

prediction-realization diagram is to construct a scatter diagram relating

predictions and realizations. In a probabilistic sense, this scatter diagram

can provide a rough measure of both the likelihood of a particular

prediction-realization pair occurring jointly as well as a particular value of

a realization occurring conditional upon some specified predicted value (e.g.,

the average predicted value, P).

*Henri Theil, Applied Economic Forecasting (New York: Rand McNally and Co.,
1966.

^Jacob Mincer and Victor Zarnowitz, "The Evaluation of Economic Forecasts,"
in Economic Forecasts and Expectations , Jacob Mincer (ed.). National Bureau
of Economic Research, New York 1969.

^Victor Zarnowitz, An Appraisal of Short-Term Economic Forecasts , National
Bureau of Economic Research, New York 1967.
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Figure 4.6 provides an example of how a prediction-realization diagram can be

used to decompose forecast errors into two systematic components. In the

figure, the realized values are measured along the vertical axis whereas the

predicted values are measured along the horizontal axis. The 45 degree line

which divides the diagram is referred to as the line of perfect forecast,

since along this line the predicted value is equal to the realized value.

Once all of the predictions and realizations have been tabulated, it is

possible to calculate the average realized value, R, and the average predicted

value, P. The difference between the two, R - P, is the model's bias and is

so labeled on Figure 4.6. Thus, based on this computation, it is possible to

correct for bias by moving P rightward along the horizontal axis to the point

Pc
,

the corrected average. Unfortunately, this correction ignores another

source of forecast error. This error, which is also systematic, involves an

overprediction (underprediction) of the realized value when that value is

high. This problem may be addressed by fitting the following regression line

R(t) = a + 3P( t) + v(t)

where R(t) is the realized value in period t, P(t) the predicted value and

v(t) is a "white noise" process error term. It is important to point out that

P(t) should be used as the explanatory variable in the regression because it

is available before R(t). In the case of a perfect forecast, all observations

lie on the line of perfect forecast which implies that a is equal to zero

and 3 is equal to one. The difference between the estimate of 6, 3, and
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REALIZED

VALUES

FIGURE 4.6 EVALUATING A FORECAST WITH THE THEIL PREDICTION-REALIZATION
DIAGRAM .

PREDICTED VALUES

aSource: Mincer, Jacob and Victor Zarnowltz. Op Cit.
, p. 7.
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one can be used to compute the slope error 9 shown on Figure 4.6. ^

The Theil prediction-realization diagram thus permits the analyst to "correct"

the forecasts by first translating the fitted regression line from the point

(R, P) to the point (R, Pc ) and then rotating the line by 0 degrees. An

example of this approach is illustrated in Figure 4.7 where data from the four

year forecast period are plotted on a scatter diagram. In this case, the

average realized value, R, and the average predicted value, P, are almost

equal (R = 1.44 and P = 1.43) but the fitted regression line is much steeper

than the line of perfect forecast. Note the eight observations on the extreme

right of the diagram and which form a nearly vertical line; these observations

correspond to the last eight months of 1979. It is important to recognize

that the slope of the fitted regression line may be very sensitive to a small

number of observations.

The previous discussion should also serve to highlight the danger that merely

correcting the model's forecasts without recognizing the importance of events,

such as those of the last three quarters of 1979, may be an inappropriate

solution, since it may not be the forecasts which should be changed but the

model. Since the model purports to explain the underlying process, if that

process changes, one should first determine if the model is still appropriate

and if not take steps to make it so. These problems which adversely affect

^Through a property of ordinary least squares the fitted regression line will
pass through the point (R, P)

.
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REALIZED

VALUE

FIGURE 4.7 THEIL PREDICTION-REALIZATION DIAGRAM FOR THE FOUR YEAR FORECAST
PERIOD: JANUARY 1976 THROUGH DECEMBER 1979.

PREDICTED VALUE

j

:

1
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the value of qualitative methods are, to some extent, mitigated through the

use of the classical quantitative and information theoretic methods discussed

in the next sections.

4.1.2 Quantitative Methods

The focus of this section is on four sets of statistics which provide a

quantitative measure of forecast performance. The statistics are: (1) the a,

3 estimates from the fitted regression line in the Theil prediction-

realization diagram; (2) the mean squared error; (3) the ratio of the residual

sum of squares to the total sum of squares referred to as R^, and (4) the

Theil U-inequality coefficient. As in the previous subsection, the

development of topics will highlight the advantages of techniques which

facilitate error decomposition.

The first set of statistics, estimates of the slope parameter 3 and the

intercept parameter a, were touched upon in the previous subsection where

elements of the Mincer-Zarnowitz argument were introduced. To be more

precise. Mincer and Zarnowitz contend that a measure of forecast efficiency

was for a to equal zero and 3 to equal one. In this case the fitted

regression line coincides with the line of perfect forecast; some residual

variation about the fitted line is still anticipated, however. In the event

that the a equal zero and 3 equal one hypothesis is not true, all of the
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variation can not be attributed to the additive nature of the error term and

it becomes possible to decompose the forecast variance into three components.

These components are: (1) a bias component measuring the difference between R

and P; (2) a slope component measuring the difference between the slope of the

line of perfect forecast and the slope of the fitted regression line; and (3)

a residual component measuring the effects of the random error.

In order to perform this decomposition, another statistic known as the mean

squared error must be introduced. (The root mean squared error is the

positive square root of the mean squared error.) The mean squared error can

be calculated in either of two ways depending on whether one wishes to

forecast the level of a variable or the changes in the level of a variable.

Using the notation of the previous subsection, let R(t) be the realized value

of the variable under consideration in period t and P(t) the predicted value.

The actual relative change, r(t), and predicted relative change, p(t) are

therefore

r(t) = (R(t) - R(t-1))/R(t-1)

and

p(t) = (P(t) - R(t-1))/R(t-1)

The mean squared error for levels, MSE(L), is thus
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1 n

MSE(L) = - l (P(t) - R(t)) 2

n t=l

and for changes, MSE(C),

y ((p(t) - R(t))/R(t-o) 2

t=2

MSE(C) = -

n-1

n

l

t=2

(p(t) - r(t)) 2 = -

n-1

where n is the number of prediction realization pairs.

Both mean squared error measures may be broken into two major components, bias

and variance of the prediction errors. The first of these components,

referred to as the bias component, measures the extent to which the size of

the mean squared error is due to a tendency to overestimate or underestimate a

value of the forecast variable. The variance of the prediction errors, may be

further decomposed into a regression component and a residual component. ^ It

is this decomposition which is consistent with the Mincer-Zarnowitz argument. 2

^Henri Theil, 1966, op. cit .

2An alternative decomposition consists of a variance component (i.e., the
difference in the variance of the predictor series P(t) and the realized
series R(t) and a covariance component due to imperfect covariance between
the P(t) and R(t) series). The covariance component is the most dangerous
source of forecast error because a predictor series is unlikely ever to be

perfectly correlated with the realized series. Both the bias and variance
components, however, could be reduced if additional information were incor-
porated into the forecasting process.
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A measure which is commonly used during the estimation phase of model

development is the R2 statistic. This statistic measures the proportion of

the variation of the dependent variable, Y, which is explained by the model.

R2 has sometimes been used as an informal measure of goodness of fit. As

such, it is used in a limited sense to compare the validity of alternative

model specifications. The R2 measure varies from 1, a perfect fit, to 0, no

variation is explained by the model. Consequently, if one used R2 as an

objective criterion, the model which produced the highest R2 would be revealed

as "best."

Unfortunately, there are several problems associated with the use of the R2

statistic. In the first place, the basis for all statistical results proceed

on the assumption that the model has been correctly specified. Consequently,

the R2 statistic does not provide the needed flexibility to differentiate

among alternative specifications which include different sets of explanatory

variables. Second, the R2 statistic is designed to be used in the model

estimation phase (between time period Tj and T2 in Fig. 4.1). It is important

to note that during this time period the model builder constrains the

estimates of the parameter values in the model so as to minimize the residual

sum of squares. However, during the ex ante or modified ex post forecast,

the model builder does not have the ability to minimize the sum of squares of

the forecast residuals. The previous statement can be justified based on the

observation that minimizing the residual sum of squares implies that the

realized values are known, which is clearly not the case in the usual

forecasting environment. As a result, the formula usually used to compute
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the R2 statistic is based on the following formula which ignores

product term:

l

i=l
(Yi-Y )

2
l

i=l
(Yi-Yi )

2 + l (Yi-Y )
2

i=l

where

Yi = the realized value in period i;

Yi = the predicted value in period i;

Y = the average of all realized values;

n _
1 (Yi~Y) 2 = variation in Y;

i=l

n

'l (Yi~Y) 2 = residual sum of squares; and

i=l

n * _
J (Yi~Y) 2 = regression sum of squares.

i=l

The cross product term not included in the above equation.

2

n

l
i=l

(Yi-Yi )(Yi-Y),

cross
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is indeterminate in sign in the ex ante or modified ex post forecast because,

in the absence of the constraints imposed during the model estimation process

either.

£ * 0 where = Y^-Y^
i=l

or

l * 0

i-1

for j = 1, . . . , k, where the x'S

f c
are explanatory variables and the 3

°

j

are the estimated coefficients.

Since the R*
1 statistic ignores a component of forecast variation, one would

expect the rankings to differ from those produced by the root mean squared

error in some cases.

The fourth quantitative measure of the accuracy of a model's forecasts is the

Theil inequality coefficient. * This statistic is designed to measure the

performance of a model in predicting changes for the variable under

consideration. The U inequality is defined by the expression

n n 1/2

U * + {[ l (p(t) - r(t)) 2
]/ l r(t) 2

}

t=2 t=2

^Henri Theil, 1966, op. cit .
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where p(t) and r(t) are the predicted relative change and realized relative

change^ for period t.

A brief examination of the U-inequality reveals that it assumes values between

zero and infinity. The smaller the value of the inequality coefficient, how-

ever, the better is the forecasting performance of the model. In the case

where p(t) is equal to r(t) for all t, then U is equal to zero and we obtain

perfect forecasts with our model. If p(t) is equal to zero for all t, then we

are using what is referred to as the "naive" or zero change prediction. This

forecasting strategy produces a value of one for the inequality coefficient

and serves as a baseline against which a model's performance can be measured.

Therefore, if U is greater than one, the predictive power of the model is

worse than the zero-change prediction strategy.

Since the inequality coefficient is just a monotone (non-decreasing)

transformation of the mean squared error, it may be decomposed into either

bias, regression and residual proportions or bias, variance and covariance

proportions. Each of these proportions gives a measure of the proportion of

the total inequality which can be attributed to a particular component.

^Theil uses percentage change rather than relative change in his development
of the inequality coefficient. Due to cancellations, however, both methods
of computation produce the same value of U.
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4.1.3 A Critique of the Classical Approach

The purpose of this section is to present some recent criticisms of the

classical methods discussed in section 4.1.1 and 4.1.2. The approach taken

follows closely the presentation in a recent article by Granger and Newbold.*

The basic tenet of their criticism is that "the standards which a set of

economic forecasts have been required to meet are not sufficiently stringent,

since the object of any evaluation exercise ought to be self-critical rather

than self-laudatory."

This argument can best be introduced by returning to Figure 4.3. In this

figure the level of both realized and predicted series is plotted. The word

level in the previous sentence is underlined because Granger and Newbold

believe short-term forecasts of levels present the problem in an overly

flattering light. A more meaningful representation would be a plot of

changes . This point may be underscored by noting that many typical time

series of economic levels are nearly a random walk.^ Hence, one may be easily

convinced, based on graphical appearances, that the model is an excellent

predictor of the level of the series. In particular, Theil's naive zero

change prediction strategy usually appears quite impressive. On a more

*C. W. J. Granger and P. Newbold, "Some Comments on the Evaluation of

Economic Forecasts," Applied Economics , Vol. 5 (1975), pp. 35-47.

^Random walk as used in the above context refers to the process governing
the time path of an economic variable, where the time path moves in steps,
each step being determined by chance in regard to magnitude.
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fundamental level. Granger and Newbold indicate that the use of graphical

plots of levels can lead one to accept one random walk as a predictor of

another independent random walk. Granger and Newbold claim that graphical

representations of changes would not suffer as seriously from such

limitations

.

Another issue brought up by Granger and Newbold concerns the analysis of

errors. This issue can be clarified through reference to Figures 4.4 and 4.5.

Granger and Newbold argue that greater emphasis should be placed on an

analysis of one-step ahead errors. This is because statistical decomposition

can be performed more meaningfully on one-step ahead forecast errors than for

arbitrary n-step ahead forecasts. Their assertion is based on the claim that

the errors of an n-step ahead forecast should have autocorrelations of order n

or greater equal to zero. This claim helps to explain the "smoothness" of the

forecast errors in figure 4.5 as compared to those in Figure 4.4.

Turning now to the quantitative measures, Mincer and Zarnowitz suggested

regressing realized values on predicted values. According to Mincer and

Zarnowotiz the predictor P(t) is called efficient if a and 3 do not differ

significantly from zero and one, respectively. Granger and Newbold argue that

the Mincer-Zarnowitz definition "hardly constitutes a definition of

'efficiency' according to any acceptable interpretation of the word." They

argue that any measure that looks at only the relationship
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between the predictor and realized series and not the magnitude and behavior

of the prediction errors will give a misleading impression about the accuracy

of forecasts.

Granger and Newbold also discuss the two methods for decomposing the mean

squared error. In many software packages it is common practice to report the

decomposition of mean squared error into the bias, variance and covariance

components. However, as Granger and Newbold argue, it is hard to give any

meaningful interpretation to the variance and covariance components. They

consider the case where the realized series is generated by the following

first order autoregressive process

R(t) = yR(t-l) + e(t) 0 < y < 1

where e(t) is a zero mean white noise process. Consider the predictor P(t) =

yR(t-l). Then in the limit in large samples the bias component is zero, the

variance component is (l_y)/(l+y) and the covariance component is 2y/(l+y).

If one varies y from zero to one, the variance and covariance components can

take on any values subject to the constraints that they are bounded above by

one and below by zero and that they sum to one. Thus interpretation of these

quantities is impossible. The second decomposition into bias, regression and

residual components is more meaningful. If we consider the previous example,

for this decomposition both the bias and the regression components go to zero

for the optimal predictor.
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When Theil first defined the inequality coefficient * it was found to produce

misleading results. The original definition was

In In
U° =

(
MSE(C) / ( - l r(t) 2 + - l p(t) 2

)}
1/2

n-1 t=2 n-1 t=2

This statistic lies between zero and one. Granger and Newbold provide the

following example as an illustration of how this statistic can produce

misleading results:

r(t) = Yr(t-l) + e (t) 0 < Y < 1

with a predictor series of

p(t) = <5r(t-l) 0 < 6 < 1 .

Granger and Newbold proceed to show that in large samples (U°) 2 tends to 1 -

[2<5(1+y)/(1+<$) 2
] which is minimized for 6 equal to one (which maximizes the

variances of the predictor series) rather than for the optimal value of 6 = y.

(The corrected inequality coefficient does not suffer from the previous

criticism and is minimized for the optimal value, Y.) Another problem with

1Henri Theil, Economic Forecasts and Policy , North-Holland Publishing Company,
Amsterdam, 1961.
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Theil's inequality coefficient focuses on its misuse. Although any statistic

is open to abuse, the inequality coefficient is often misinterpreted because

it is frequently output with software packages within which the analyst is

forecasting levels and not changes . Since the level of an economic variable

is often an order of magnitude larger than its changes, the calculated

inequality coefficient may be low. Consider the following deterministic

model

R(t) = 6 + .16 cos (irt/2).

If we trace the model through one complete cycle, at time zero R(o) is equal

to 1.16; at time one, R (1) is equal to 6; at time two, R(2) is equal to .96;

and at time three, R(3) is equal to 6 . Now if the analyst were charged with

forecasting the level of the series and decided to use the observed value at

the beginning of each cycle as the predictor, P(t), throughout the cycle, we

would have

A

P(t) = 1.16 t - 1, 2, 3, 4,. . .

If we assume the process goes through n complete cycles, then the calculated

value of the inequality would be approximately 0.214, which is much closer to
A

zero than one. If on the other hand, the changes , p(t), were computed and

used to calculate the inequality coefficient, a value of approximately 1.225

would result. Thus, in this case, the naive zero-change forecast strategy

would have clearly been superior.
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The previous discussion has aimed at highlighting some of the complexities

involved in forecast evaluation. Although the criticism of the classical

approach for failing to address these complexities poses formidable

difficulties, the approach outlined in the next section addresses most of

them. This occurs because the use of information theory preserves much of

what is desirable in the classical approach but does not suffer from the more

serious criticisms of Granger and Newbold with regard to the adequacy and

efficacy of a particular model in a given forecasting situation. In addition,

an information theoretic approach provides further support for the strategy of

combining forecasts discussed by Granger and Newbold.

4.2 An Information Theoretic Approach to Accuracy Assessment

The purpose of this section is to demonstrate how concepts from the discipline

of information theory can be applied to the problem of accuracy assessment.

More precisely, the concept of entropy will be used to measure the information

content of a model's forecast as well as how rapidly that content changes as a

function of the length of the forecast period and the model specification

chosen. Entropy is a term used widely in statistical mechanics and

communication theory. The definition chosen here comes from communication

theory^ and refers to the variability—and thus degree of uncertainty—of the

outcome of a particular process (or, in the vernacular of communication

theory, signals which contain information).

•^S. Goldman, Information Theory (New York: Prentice-Hall, Inc., 1953).
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4.2.1 Some Basic Concepts

In order to promote a more complete understanding of the topics in information

theory presented in the subsequent sections, some of the basic concepts will

be developed on an intuitive level. * As a basic premise, we require that in-

formation be defined as a function of one argument— the probability that an

event will take place before we have received a reliable message (market

signal) that it did in fact take place (i.e., was realized). A second premise

is that the information content of the message is a decreasing function of the

probability of its occurrence. In principle, one could choose any decreasing

function; however, it is customary to take the logarithm of the reciprocal of

the probability of an event taking place. The rationale behind the selection

of the logarithmic function focuses upon its additivity in the case of in-

dependent events.

Consider the case where we have a set of n events, x^ , . • ., xn , (e.g., n

candidate motor gasoline prices for the next period) and that they define a

complete system since one and only one of them will occur. Thus, if the

probabilities are P(x^), ...» P(xn ), they should be non-negative and sum to

one. Now if we receive a reliable message stating that a particular event,

xi , has occurred, the information content of the message, is a function of

^The presentation given here parallels that given in Henri Theil, Economics
and Information Theory (Amsterdam: North-Holland Publishing Company, 1967).
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the probability of occurrence, h(P(xi)), which is equal to -log (P(x^)).

However, before the message is received we do not know with certainty how

large the information content will be since x^ is just one of the n events.

Thus the information content of a message could be h(P(xj)) if the first

event is realized or h(P(x2 )), ...» h(P(x
T1 )) for each of the second through

nth event s , in order to get around .this problem, we are forced to rely on an

expected measure of information content. Since event x^ has a probability

P(x£), the message that x^ has occurred will be received with the same

probability. The information content is therefore h(P(xi))) with probability

P(xi). When one considers all events, the expected information content, now

called entropy and denoted H(X), is thus

n n
H(X) = l P(xi )h(P(xi ))

=
-J P(x1 )log(P(xi ))

i=l i=l

In forecasting the price level of a key energy commodity, such as motor

gasoline, it is useful to generate a scatter diagram (see Figure 4.2 in

Section 4.1.1) as an aid in computing the variability of motor gasoline prices

from a time series of realized values. Thus, entropy characterizes the

unexpectedness or noise inherent in the stochastic process which governs the

time series. Entropy can also indicate how difficult, in relative terms, it

would be to forecast one variable (e.g., motor gasoline prices) in comparison

to some other variable (e.g., residual fuel oil prices). Furthermore, the

quantitative nature of the entropy measure regarding the variability of the

88



process being modeled establishes a more realistic approach to the evaluation

of a particular model's forecasts. For example, one would expect, ceteris

paribus , that a commodity having a time series which was fairly stable (low

entropy) would be easier to forecast than one which was highly variable (high

entropy). Although one could assert the same observation from a visual

examination of the data, such a measure would only be subjective. Through the

use of information theory, however, a quantitative measure can be attached to

the variability of different processes. This measure, if based on forecast

evaluations, could also provide an indication of the information gain of a

particular model over some alternative formulation.

Marginal entropy is the first of the three information theoretic terms which

will be used in assessing forecast acccuracy. Marginal entropy is concerned

with a time series of realized values. It shows the inherent variability of

the stochastic process which underlies that time series. In practice it would

be computed from a set of historical realizations of the time series under

consideration. In order to compute the marginal entropy of a given time

series, however, one must first select a probability distribution which

characterizes the stochastic process which underlies that time series. The

probability distribution chosen may be either discrete or continuous depending

on the process being modeled. If the process is discrete, the marginal

entropy, H^(X), is defined with respect to the probabilities associated with

the occurrence of that event:
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where

N

HD (X) = -K l P(xn ) log p(xn )

n=l

K = a constant associated with the base* adopted (since all

measures will be computed with respect to the same base,

without loss of generality K can be taken equal to 1);

xn = individual events (e.g., corresponding to the potential
price levels within the N-period long time series); and

P(xn ) = the probability of the event xn taking place.

If the process is continuous, the analogue of the probability of a particular

event occurring is given by the density function f(x), and the information

content of a message by -log (f(x)). The marginal entropy, H^(X), is thus

defined as

CO

HC (X) = -K/ f ( x) log (f ( x) ) dx
—oo

where f(x) = the probability density function;

K = a constant associated with the base adopted (as in the previous
case K can be taken equal to 1).

*Bases and their respective units commonly used in communication theory and
information theory are: base 2 referred to as bits; base e (the base of the

natural logarithms) referred to as nits; and base 10 referred to as

decibels

.
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For purposes of illustration, should the probability distribution which

characterizes the process be revealed as normal with a mean of zero and a

O
variance of a

, it can be shown that marginal entropy is equal to

1

HC (X) = - log (2irea 2 )

2

where log (2irea 2 ) = the logarithm to base e of (2-rrea
2
); and

e = 2.7183 (the base of the natural algorithms).

Marginal entropy can also be used to construct a measure of the relative

difficulty of forecasting one time series vis-a-vis another. For example,

suppose two time series, say prices for motor gasoline and residual fuel oil,

were to be forecast. If the processes were normally distributed and the

variances associated with the motor gasoline price series, Xj(t), and residual

fuel oil price series, X2 (t), were 0^2 an<j Q ^2. respectively ,
* then a

quantitative measure of the relative difficulty of forecasting residual fuel

oil prices, X2 (t), with respect to (WRT) motor gasoline prices, Xj(t), for the

same time period would be

RD^WRTXi) = H C(X2 ) ~ H c (X
x )

*In the discussion which follows it is assumed that the two series under
consideration have been normalized. This step can be accomplished by
either deflating (dividing) each realized value X-^(t), i = 1, 2, by the

mean of the respective process X^, i = 1, 2, or more appropriately,
deflating each value prevailing at a common point in time such as

January 1980.
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From the properties of natural logarithms it can be shown that for the

normally distributed case the measure reduces to

RD^WRTX!) = log (02/0^

which is an increasing function of 02, the standard deviation of the second

series. It is important to point out that this measure is quantitative and as

such can be used as a benchmark for comparing the impact of the relative

difficulty of forecasting on the accuracy assessment of a model or set of

model forecasts. If, for example, the relative difficulty measure were equal

to five, then one would not expect the logarithm of the ratio of the standard

deviations of the forecast errors to be less than five. If the logarithm of

the ratio were less than five, it would be an indication that the model used

to forecast residual fuel oil prices was relatively more accurate than the

one used to forecast motor gasoline prices. This analysis of forecast errors

provides a motivation for introducing another entropy calculation.

The formal process of forecasting implies the existence of a mathematical

representation of the time series under study. This representation or "model"

may take on many alternative forms depending upon the needs, capabilities,

and objectives of the person(s) making the forecast(s). Given the existence

of a model of the process
,

the concept of conditional entropy can be

introduced fairly easily. The models presented in the next section produce a

set of values, a time series, which contains estimates of the future values
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j

.

of the real price of motor gasoline.* The historical series of forecasts ( ex

ante values) y(t), or "modified ex post " values if a forecast history is not

available to the evaluator, may then be compared to the historical series of

realized (ex post ) values, x(t), to determine the probability distribution of

I

the prediction error. Similarly, one could compute a joint distribution^

[P(x,y) if the processes are discrete or f(x,y) if the processes are

continuous] and a conditional distribution^ [P(x|y) or f(x|y)] to measure how

much of the uncertainty of the original time series still remains after

one has made use of the forecasts produced by the model. For a given

set of realizations and predictions, the remaining uncertainty or conditional

entropy is defined as

Hd (X | Y) = -H P(x,y) log P(x
| y)

if the process is discrete and

*The forecasts presented in the next section are "modified ex post " forecasts.
They are designed to simulate the forecasting strategy of an analyst making
an ex ante forecast.
^A joint distribution establishes a relationship between two or more sets of

events. This concept can be better understood by referring to the

prediction-realization diagram in Figure 4.7 where both predictions and

realizations are plotted on a scatter diagram. Now suppose one were

interested in the event and the event Pj from, the set of all possible R-P

combinations. The joint distribution would then tell you the probability of

both R^ and Pj taking place.

conditional distribution tells you the probability of a particular event,
say R^, taking place given that another specified event, say Pj

, has taken

place. Referring once again to Figure 4.7, the probability of a particular
realization taking place, say R = 1.80, is given by examining a vertical
slice of the figure above some specified prediction, say P = 1.50.
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HC (X|Y) = -/ / f (x,y) log (f (x
| y) ) dydx

—00 —oo

if the process is continuous.

Since conditional entropy provides a measure (based on the historical

simulated performance of the model) for the remaining or residual uncertainty

once a set of forecasts have been made, it provides a natural means through

which forecasts can be ranked. For example, if one were interested in fore-

casting the price of motor gasoline at various times in the future (say 1, 3,

6, 12, and 24 months ahead), it is possible that several model specifications

would be considered as appropriate. Such an approach is consistent with both

Bayesian econometric theory* and previous empirical studies.-* One set of

specifications which is illustrated in the next section is an econometric

model which captures key policy variables and a regression model driven

1

2

3

4

In Bayesian estimation the parameter is looked upon as a random variable
which has a prior distribution reflecting either the strength of one's belief

about the possible values it can assume, or collateral information. The
posterior distribution obtained by combining this prior with the likelihood
function via Bayes theorem then shows how the prior beliefs are modified by

observation, or more specifically, by information provided by actual data.

P. J. Harrison and C. F. Stevens, "Bayesian Forecasting," Journal of the

Royal Statistical Society , No. 3 (1976), pp. 205-228.
Anthony E. Bopp and John A. Neri, "The Price of Gasoline: Forecasting
Comparisons," The Quarterly Review of Economics and Business

,
Vol. 18, No. 4

(Winter 1978), pp. 23-33.

C. W. J. Granger and P. Newbold, Forecasting Economic Time Series (New York:
Academic Press, 1977).
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by the exogeneously determined price of crude oil. (For a detailed discussion

of these models the reader is referred to Section 4.3.) Associated with each

model specification is a measure of residual uncertainty referred to as

conditional entropy which may be calculated directly from the respective

models' error terms* If the error terras are normally distributed and the

models produce unbiased forecasts, then the conditional entropy of each model,

i , is given as

1

Hc(X|Yi> = - log (2trea^)
2

where i = 1, econometric; and 2, regression.

Consider the case where the models are used to make forecasts of the real

price of motor gasoline in the next period. Now if for these one-step ahead

forecasts we find a
, it would be reasonable to ask if the

econometric model (i*l) produces significantly better forecasts (in terms of

residual uncertainty) than the regression model. For this case, as

well as for the general n-step ahead forecast, one would wish to test the null

hypothesis

Hc2 (X|Y2 ) - H c (X | Yj ) > 0
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versus the alternative hypothesis

Hc 2 (X|Y2 ) - H^ c ( X | Y ! ) < 0.

Making use of the properties of logarithms once more, it can be seen that the

test on the null hypothesis reduces to

1

- log (a 2
2
/ 0 }

2
) > 0

2

versus the alternative hypothesis

1

- log (o 2
2 /a

1
2

) < 0

2

Guidelines for carrying out this "variance ratio" test for a set of one-step

ahead forecasts are given in the text by Granger and Newbold. Unfortunately,

due to the correlation structure of the errors for n-step ahead forecasts (n >

2) it is not possible to test the null hypothesis directly, although a

simulation approach might offer a satisfactory solution. Under the assumption

that one could satisfactorily perform the "variance ratio" test, it is

possible that the ranking produced for a one-step ahead forecast may not hold

for an n-step ahead forecast. Thus although a regression model may be

revealed as best for a one-step ahead forecast, it may be revealed as worst on

the average for a 24-step ahead forecast.
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Transinformation, the third entropy calculation, is a measure of the

information content of the model. On an intuitive level, it can be viewed as

the information transferred by knowledge gained from the forecasts, y(t), to

make the realizations, x(t), better defined. Transinformation, denoted as

T(X,Y), may be defined as the ”information" contained in the forecast. It

results from a reduction in the uncertainty of the process due to the model.

More succinctly, transinformation is equal to marginal entropy minus

conditional entropy or

T(X,Y) = H(X) -H(X|Y)

Depending on how well the model "tracks” the commodity under consideration,

transinformation can be positive, zero, or negative. An infinitely large

positive value of T(X,Y) indicates a perfect fit; a positive value means that

some information is being conveyed. A value of T(X,Y) less than or equal to

zero would imply that the model's forecasts may be spurious; at best the model

adds no information and in fact it may even be misleading.

As discussed earlier, conditional entropy can be used to rank models based on

their forecasts. The application of the third measure, transinformation,

provides a technical base for two additional refinements. These refinements

relate to: (1) the maximum number of steps ahead which a model can forecast

before its results may become spurious; and (2) the way in which the forecasts

of a set of alternative model specifications can be optimally pooled.
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The first issue is of crucial importance in all forecasting activities because

as the forecast period is extended, the variance of the model's error term

increases. At an intuitive level, the point in relative time at which

transinformation becomes negative is attractive since it can be easily

calculated and compared against the forecast horizon. Consequently, if the

modeler wished to forecast 24 months ahead and transinformation turned

negative six months ahead, then some real consideration should be given to

the adequacy of the model. On a more subtle level, it is possible for a model

to look "reasonable" as the forecast horizon is extended based on other

accuracy measures, e.g., root mean square error, but still have a negative

value of transinformation. This is quite serious because the model user has

no _a priori test for determining how large the root mean square error can grow

before use of model forecasts becomes dangerous. Transinformation fills that

void while still preserving many of the desirable attributes of the root mean

square error statistic.

The issue of optimally pooling the forecasts of several models has been

addressed in a growing number of papers. * >^,3 The usual approach is based on

pooling forecasts to minimize the variance of the aggregated forecast. An

optimal pooling based on the information theoretic approach can be defined as

*D. J. Reid, A Comparative Stuidy of Time Series Prediction Techniques on
Economic Data , Ph.D. Thesis, Nottingham University, 1969.

^J. M. Bates and C. W. J. Granger, "The Combination of Forecasts," Operational
Research Quarterly , Vol. 20, No. 4 (1969), pp. 451-468.

-^C. W. J. Granger and P. Newbold, 1977, ££. cit .
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that pooling which maximizes the information content of the aggregated

forecast. Now if the models are unbiased and their errors are distributed as

a white noise process, it can be shown that a sufficient condition for

maximizing the information content of the aggregated forecast is to pool the

models so as to minimize their variance. Thus the technique for pooling

developed by Reid, Bates and Granger, and Granger and Newbold, can be applied

directly without loss of generality. Another desirable attribute of the

information theoretic approach is that the information content of the model

lends itself to a decomposition into a variety of components which are

sensitive to changes in the forecast horizon.

4.2.2 Calculation Techniques

The physical task of calculating the three entropy measures requires more than

a direct application of the definitions given in the previous section. In

particular, certain decisions must be made regarding the structure of the

forecasting process as well as the appropriateness of a particular probability

distribution. Given a satisfactory resolution of these issues and presuming a

continuous probability density function is chosen, one is also faced with the

issue of choosing a discretized version of the continuous distribution which,

although approximate, offers several conceptual advantages versus the

"theoretically exact" continuous solution.
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The actual forecasts of key energy commodities are not made in a vacuum. In

practice there would not be a single forecast for a particular future date,

but rather a sequence of forecasts for which the time between the future date

(the forecast horizon) and the date at which the forecast is made is

decreasing. For example, the initial forecast may attempt to predict the

monthly change in the price of motor gasoline for a time 24 months in the

future. Consider the following scenario which defines a 24-step ahead fore-

cast: the analyst is located at December 1978, has estimated the model, and

wishes to forecast the monthly change in the price of motor gasoline for

December 1980. Periodically, and as additional information become available,

new forecasts are made which include the December 1980 motor gasoline price

figure. (In these cases the end points of the forecast would be later than

December 1980.) If we denote each of these "stages" as s^, h = 1 . . . ,
f,

where Sf is the final stage where the value is realized, it then becomes

possible to see how the uncertainty of the outcome changes with each stage.

To do this, one would first obtain a forecast estimate for each stage, for a

given month-year or quarter combination, and for a given variable. Thus if i

were the index of the variable (e.g., motor gasoline, distillate, residual

fuel oil, etc.), t were the index of the month-year combination, and h were

the index of the stage, a given forecast estimate, could be thought of

as the estimated change from the previous month in the price level for the

month-year combination denoted by t. From a policy viewpoint we are therefore

concerned with the difference between the predicted and realized values of

O
the changes in the price level, and the variance of that error, a 4 .

ith
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Under certain plausible circumstance shown by Theil, * it is possible to

decompose the above mentioned variance into a commodity component, A^; a

month-year component, B^; and a stage component, C^. That is,
t h ith i t h

Estimates for the A^'s, Bt 's, and C^'s can be obtained by following an

iterative process outlined by Theil. With regard to the variance

decomposition presented above, it becomes possible to estimate the information

gain (reduction in uncertainty) of going from a particular stage, h, to the

next stage, hfl. (Similarly one could define the information gain of going

from a particular stage, h, to some higher stage, h+j < f.) Recalling the

formula for the conditonal entropy of the normal distribution presented in the

previous section, it can be shown that the information gain of going to the

next stage is

H<HXlt£ |Xith ) - H=(Xlcf |Xlth+I ) = log (CfcH/Cj,) .

Through an analysis of the stage effect it is possible to compare alternative

model specifications to see how rapidly each stage resolves the uncertainty

inherent in the underlying process.

It was mentioned earlier that one of the advantages of transinformation was a

capacity for decomposition into a variety of components. More precisely, the

*Henri Theil, 1966, op cit .
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information gain associated with a stage transition of k steps, log (C^+^jC^)

k > 1, can be decomposed into three components. These components are due to:

(1) refinements in the values of the variables used in the model, (2) more

precise estimates of the true parameters of the model, and (3) the basic

structure of the model. Prior to the computation of the information

decomposition, however, one should first perform a structural change test.

This approach is advisable because, as pointed out earlier, the model purports

to explain the underlying process and should that process change it will be

necessary to determine if the model is still appropriate. The structural

change test is one way through which changes in the underlying process can be

detected. In the presence of structural change, assessing whether or not the

model is still appropriate is a complicated issue which goes beyond accuracy

assessment

.

The first component of the information content of the model relates to

refinements in the values of the model's variables. These refinements are

important even for simple regression models because as the forecast horizon is

extended, the estimated values of the variable may diverge from those

realized. An econometric model, on the other hand, may contain lagged

endogenous variables whose values are determined exogenously (outside the

model framework). Consequently, each exogenous variable must be used in

making a forecast of the future value of the variable under consideration.
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These forecasts, such as future values of gross natural product, national

personal income, or the urban consumer price index, may be based on outputs

from a large macroeconomic model, on extrapolations based on a time-series

model of that variable, or some "naive" model. The value of the lagged

endogenous variables are determined within the framework of the model. These

forecasts thus represent a potential scenario regarding the future values of

the endogenous and exogenous variables. Consequently, as more of the process

unfolds, the scenario must be refined to reflect differences between

expectations and realizations. In some cases the refinement may be

insignificant and in others it may reflect a major change in policy, balance

of payments, or other factor(s). The effects that these refinements have can

be measured, on the average, by replacing the forecast values (or simulated

forecasts of these values) for each variable with its realized values. As a

result, the information content of the model should increase somewhat because

it now reflects a more precise characterization of the process being modeled.

The mechanics of this process would involve all stage transitions of k steps,

k > 1 . From the earlier discussion of the stage effect, it can be shown that
A

the average information gain in going from stage one to stage h, IG(h), is

defined by:
a

IG(h) = logCCh/C!)

a

Of the total average information gain, IG(h), the amount which can be

attributed to refinements in the values of the variables in the model is
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denoted IG^(h), where the subscript refers to the first of the three

components mentioned earlier.

The second component of the information gain in going from the first to the

h c^ stage focuses on more precise estimates of a model's parameters. As more

data become available, it is often advisable to reestimate the values of a

model's parameters. This step is advisable because it may result in a

reduction in the variance of the parameter estimate which in turn should

produce a reduction in the variance of the predicted value. Since any

reduction in the variance of the predicted value will reduce conditional

entropy, some gain in information will result. As in the first decomposition,

the mechanics would involve the use of the realized values of the endogenous

and exogenous variables to reestimate the model(s) under consideration. Note

that this step uses all the data used in computing the first decomposition

measure so that it is a net addition to the information content of the model.

The amount of the total average information gain accounted for by this

component is denoted IG2(h).

The third component of information gain is attributable to the basic structure

of the model. It enters the calculation in the form of a residual. The

inclusion of this component is required because refinements not covered under

the first two components may be introduced into the model, the data base(s)

used for a particular set of calculations may change, or the definition of a

variable may change.
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From the previous discussion we can thus assert that

logCCh/q) = IG(h) = IGjCh) + IG2 (h) + IG3 (h)

which can be plotted as a function of h to obtain a "dynamic decomposition” of

the information gain associated with a stage transition. Similarly, it is
A A

possible to form ratios (IGj (h)/lG(h) , j = 1, 2, or 3) which show the relative

sensitivity of the gain in information of moving from a lower to higher step

due to an endogenous/exogenous variable component or a parameter value

component. The ratios formed could thus provide a measure of model

sensitivity as well as indicate conditions under which emphasis should be

placed on models which offer greater policy flexibility.

For example, suppose one were to break the forecast period into two parts, one

with an exogenous/policy variable (or weighted average of exogenous/policy

variables) changing by at least ten percent versus one in which they changed

by less than ten percent. Then, based on this policy decomposition, one would

expect that a model with a low value of the first component of average in-

formation gain for the rapid change case (> 10 percent) would not be very

useful if that policy scenario were pursued. Thus, if a policy maker has a

particular scenario in mind, say a tax surcharge of 15 percent, then a model

with a high value of the first component of average information gain for the

rapid change case should be weighted more heavily than one with a low value

for the desired n-step ahead forecast.
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An issue which might be revealed through an analysis of the IG2 (h)/IG(h)

ratio would be the potential importance of a varying-parameter model. As

Maddala* shows, if the estimated relationships are based on an optimization

problem which involves some of the policy variables, then the economic agents,

in determining their optimal activity level, would be taking these policy

variables into account in their decisions. The variables would thus be

entering the model not in an additive fashion but as determinants of the

parameters in the model, which would imply that a varying-parameter model
A Ak

would be appropriate. Ratios of IG2 (h)/IG(h) close to one would be a strong

indication that variations in the parameter values were the source of the

stage effect. In this case, a model whose parameters varied about some

average value might be the best choice.

^

A crucial step which must be taken prior to the application of any entropy

measure is to determine which probability distribution is appropriate for the

case at hand. This step is particularly important because the entropy measure

is sensitive to the probability distribution chosen. For example, when the

probability density function is continuous on (-°°, 00
) with a given variance,

O
a

,
it can be shown that the normal distribution has the greatest entropy.

For a finite range and a given variance, the uniform distribution has the

greatest entropy.

*G. S. Maddala, Econometrics (New York: McGraw-Hill Book Company, 1977).
^P. A. V. B. Swamy and P. A. Tinsley, "Linear Prediction and Estimation
Methods for Regression Models with Stationary Stochastic Coefficients,"
^Journal of Econometrics , 12 (1980), pp. 103-142.

^S. Goldman, op cit .
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The first step in selecting a distribution is to collect data on actual values

and forecast values by stage for each variable. These data should then be

grouped into intervals and plotted to construct a histogram. The histogram

may then be compared to sample standard histograms. Based on these

comparisons, a class of distributions which might fit the data can be

hypothesized. The next step is to develop estimates (preferably maximum

likelihood) for the parameters of the distribution under the assumption that

the hypothesized distribution is correct. The final step is to perform a

goodness-of-fit test on the data. If the fit is unacceptable, it will be

necessary to hypothesize a new class of distributions and reestimate the

parameters of the distribution. Several points along these lines are worth

noting. First, there are at least two goodness-of-f it tests 1 which should be

considered unless the analyst has strong _a priori beliefs about the

distribution governing the data. These tests are referred to as omnibus tests

because they are appropriate for any distribution; they are: (1) the

Chi-square Test; and (2) the Kolmogorov-Smirnov Test. Second, it is

possible to have either goodness-of-fit test accept more than one distribution

as appropriate. This situation is rather common with the Chi-square Test.

However, since the Chi-square Test is by far the easiest to apply, such a

potential problem may not be deemed serious. Finally, it is important to

recognize that the Kolmogorov-Smirnov Test is somewhat more robust (less

1L. Breiman, Statistics: With a View Toward Applications , Houghton Mifflin,
Boston, 1973.
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sensitive to the relaxation of the assumptions underlying the test) so if

sample size is small the emphasis should be on the result of the Kolmogorov-

Smirnov Test rather than the Chi-square Test.

In an information theoretic setting discrete distributions are often used to

reflect qualitative characteristics whereas continuous distributions are used

to refer to counts and levels which are of a more quantitative nature. Thus,

given the nature of most economic variables, it is quite likely that a

continuous distribution will be revealed as the one most appropriate for a

given application. In using continuous distributions, however, one must

recognize that not only the distribution but also the scale chosen affects the

entropy calculation. In particular, both the marginal and conditional

entropies would be affected. (This is why in computing the relative

difficulty measure both series had first to be normalized.) The

transinformation measure would not be affected, however, since it is a

difference and the "scale” factor would be netted out. The same cancellation

effect would occur for the calculation of the gain in information in going to

the next stage.

The present discussion parallels that of several authors in the field of

information theory who have advocated the use of discrete approximations to

continuous distributions .
* The arguments presented in the literature are

^J. Amorocho and B. Espildora, "Entropy in the Assessment of Uncertainty in

Hydrologic Systems Behavior and in Mathematical Model Performance," Inter-

national Symposium on Uncertainties in Hydrologic and Water Resource Systems
,

pp. 977-1008.
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based on the assumption that the variables under study are bounded and that

unbounded frequency distributions are fitted to the data primarily as a matter

of convenience. If one accepts this assumption, interval widths. Ax, and the

number of intervals, N, can then be defined such that the weighted summation

over all intervals is bounded between some fraction, say 0.99 and 1.00. More

succinctly, the probability that X is within the n*-*
1 interval, n = 1, . . . ,

N, is

xn+(Ax/2)
Pn » P[xn - (ax/2) < X < xn + (Ax/2)] = / f (x)dx

xn-(Ax/2)

that is,

Pn f(xn)Ax

such that

N
0.99 * V f(xn)Ax « 1.00

n=l

The interval width chosen. Ax, could even be the same one used in building the

histogram(s) to test the goodness-of-fit for the alternative probability

distributions discussed earlier. Using this approach, the estimates for

marginal and conditional entropy would now differ from the H(X) and H(X|Y)

calculations presented earlier in section A. 2 by -log(Ax). (The

transinformation measure, since it is a difference, is unaffected by the

choice of interval width.) Suppose the increment Ax is initially chosen to
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reflect a variation of ±a thousand barrels of motor gasoline, where a might

reflect a very "tight" band about the consumption value. Now if, for all

practical purposes, a forecast which was ±10a of the consumption value was

satisfactory (possibly due to abnormally high stocks), the conditional entropy

measure could be adjusted downward by log (10a). After this adjustment has

been made some values of the conditional entropy function may be less than

zero. In these cases it is possible to assert that the model can predict the

true consumption level with ±10a. For cases where the conditional entropy

measure lies above zero the model still contains residual uncertainty.

However, through reference to transinformation it is still possible to define

the values of the coefficients of correlation between historical forecasts and

realizations for certain months, quarters, or other time periods, required to

bring the predictions within ±10a. Thus the discretized version of the con-

tinuous probability distribution gives both the analyst and the decisionmaker

a handle on where a particular model might need refinement.

4.3 Applying the Entropy Measure to the Forecasts of a Short-Term Energy
Model

The primary focus of this section is to illustrate the process of formulating

and evaluating two alternative model configurations useful in forecasting

the real price of motor gasoline.
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4.3.1 Alternative Model Specification

In order to demonstrate the mechanics of a forecast evaluation program, the

various measures discussed in Sections 4.1 and 4.2 were applied to two

different model specifications. These specifications were: (1) an

econometric model; and (2) a regression model. Each model specification was

estimated and assessed based on monthly data on each explanatory variable

compiled from January 1967 through December 1979. This period was selected

both for data availability and because it highlights the basic difficulty in

forecasting motor gasoline prices. This may be seen by noting that gasoline

prices were relatively stable between 1960 and 1970, gradually increased

between 1970 and early 1973, increased explosively between 1973 and the middle

of 197A
f gradually increased from the middle of 1974 through the middle of

1979, and then increased explosively.

Recalling the three phases in the evaluation of an economic forecast presented

in Figure 4.1, each specification was first estimated in the period January

1967 through December 1975. A sequence of modified ex post forecasts*

spanning the period January 1976 to December 1979 was then made for each

^Recall that a modified ex post forecast operates under the assumption that
the analyst was situated at December 1975 on the time line (i.e., T2 = T3 =

December 1975 c.f. Figure 4.1) and was therefore forced to use forecasts for

any future values of the explanatory variables. Consequently, the evalu-
ation may be referred to as "conditional.”
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model. The difference between the realized values and predicted values were

then computed for a one-year forecast horizon (i.e., January 1976 through

December 1976), a two-year forecast horizon (January 1976 through December

1977), a three-year forecast horizon (January 1976 through December 1978), and

a four-year forecast horizon (January 1976 through December 1979). Each

specification was then reestimated using data from the period January 1967

through December 1976. * This approach was taken because forecasting models

are constantly being upgraded and any critical evaluation of the forecasting

process which ignored this issue was felt to be deficient. Furthermore, by

augmenting the data base it is anticipated, based on theoretical con-

siderations, that the variance of the parameter estimates will be reduced.

This should translate into better forecast performance. Each model was then

used to make a sequence of modified ex post forecasts covering the period

January 1977 through December 1979. As in the previous case, the difference

between the realized and the predicted values for one-, two-, and three-year

forecast horizons were computed. A four-year forecast horizon was not

attempted due to incomplete data for 1980. As a final step, each

specification was reestimated using data from January 1967 through December

1977; three sequences of modified ex post forecasts for motor gasoline

prices were then made for 1978 and 1979. In all, 18 ex post forecasts were

made: two with a four-year horizon, four with a three-year horizon, six

with a two-year horizon, and six with a one-year horizon. In order to avoid

a great deal of repetition in the discussion which follows, the emphasis will

*In the context of Figure 4.1, T3 is now December 1976.
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be placed on the model specifications and coefficient estimates based on the

estimation period January 1967 through December 1975. The description of the

models follows closely that presented in the article by Bopp and Neri.*

An Econometric Model

The price of gasoline in this model is determined by factors that affect both

the supply of and the demand for gasoline. The econometric specification

presented here is a reduced-form equation from an inventory-price adjustment

model used to capture the effects of supply and demand factors. Since

gasoline stocks play an important role in the gasoline market, an inventory

adjustment model seems appropriate. Following McCallum,^ supply, demand,

price adjustment, and inventory adjustment equations are first specified and

then used to obtain the final reduced-form equation for estimation.

Dynamic demand and production equations and the market clearing equation are

given in equations 1, 2, and 3, respectively. All terms used in these

equations are defined in Table 4.1.

*Bopp, Anthony E. and John A. Neri, ’’The Price of Gasoline: Forecasting
Comparisons," The Quarterly Review of Economics and Business , Vol. 18, No. 4

(Winter 1978), pp. 23-33.

^McCallum, B. T. ,
"Competitive Price Adjustments: An Empirical Study,”

American Economic Review, Vol. 64 (March 1974), pp. 56-65.
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Dynamic Demand Equation

CMG(t) = ao + 3l
\
*RPG( t) + a2 *RY(t) + a3 *CMG(t-l) ( 1 )

Production Equation

PMG(t) = b0 + b^RPGCt) + b2 *RPC(t) + b3 ‘RPD(t) + b4*PMG(t-l) (2)

Market Clearing Equation

CMG(t) = PMG(t) + SMG(t) - SMG(t-l) (3)

TABLE 4.1 VARIABLES USED IN SPECIFYING THE ECONOMETRIC MODEL

Variable Definition

RPG Real Price of Motor Gasoline

RPC Real Price of Crude Oil

PMG Production of Motor Gasoline

RY Real Personal Income

SMG Stocks of Motor Gasoline

CMG Consumption of: Motor Gasoline

RPD Real Price of Distillate
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Thus the quantity of gasoline consumed is assumed to depend upon its own

price, income, and a consumption adjustment factor to reflect noninstantaneous

stock and behavior adjustments. Production depends upon own-price, crude oil

prices, distillate prices (a close substitute in production but not in

consumption), and a production adjustment factor. Making use of McCallum'

s

supply of storage model permits equations 1, 2, and 3 to be solved for the

real price of motor gasoline in period t, RPG(t). The solution is given by

equation 4.

Real Price of Motor Gasoline Equation

RPG(t) = A + B*RPC( t) + C*PMG(t-l) + D*RY( t) + E*RPG(t-l) +

F-SMG(t-l) + G*CMG( t— 1 ) + H*RPD( t) (4)

A preliminary estimate of equation 4 using ordinary least squares indicated

the presence of autocorrelated disturbances. A quasi first-difference form of

equation 4 was therefore estimated by nonlinear least-squares to obtain

asymptotically efficient estimates. The estimated parameters and supporting

statistics are presented in Table 4.2.

The specification of equation 4 is rich in policy analysis capability. Not

only can the impact of higher crude oil prices and changes in national income

be assessed relative to their impact on gasoline prices, but even such

seemingly unrelated events as natural gas curtailments can be evaluated
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relative to the gasoline market. Natural gas curtailments can be expected to

push up distillate (heating fuel oil) prices which affect refiners’ decisions

about relative distillate/gasoline yield levels. It is this policy richness

which makes econometric forecasts attractive and difficult—forecast values of

exogenous variables are needed.

In order to be consistent, a larger model that would also forecast distillate

prices should be constructed._ One variable in the distillate price equation

would be gasoline prices. The solution of the complete model wqu1<P then

simultaneously determine distillate and gasoline prices. In such a model the

exogenous effect of cold weather or natural gas curtailments on gasoline

prices could be traced. By looking at only one part of such a model— the

gasoline price equation—such effects are ^captured only through exogenous

distillate price changes.

TABLE 4.2 SUPPORTING STATISTICS EOR THE ECONOMETRIC MODEL
—-— m

Term Coefficient Estimate t-statistic

Constant A 0. 157E-02 1.75

RPC(t) B 0.144 2.06
PMG(t-l) C -0.142E-D6

—

-1.29

RY(t) D_ — 0.58
RPG(t-l) ;

E 1.070 11.06
SMG(t-l) . F -0.396E-08 -1.96

CMG(t-l)
I i

0 0.217E-06 0.10
RPD(t) H 0.116 2.28
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A Regression Model

A simple regression approach was also used to link gasoline prices to crude

oil prices. This approach is presented here for two reasons. One is that

other comparisons have used it as a naive version against which comparisons

can be made.* It is used here to benchmark the forecasting power of the

econometric technique. A second reason is that, especially in petroleum

economics, it is tempting to link product prices directly to crude oil prices.

A common linkage is to assume straight cost pass-throughs from crude oil to

product prices. The straight cost pass-through assumption in conjunction with

a response to own price in the previous period is used here. The

specification estimated is given by equation 5 which is linear in logarithms.

log(RPG(t>) « a + b*log(RPC(t)) + c*HD(t) + d*log(RPG( t-1 ) ) (5)

where

log(RPG(t)) = the logarithm of the real price of motor gasoline in

period t;

log(RPC(t)) = the logarithm of the real price of crude oil in period
t ; and

HD(t) = a dummy variable for the heating season (October,

November, December, January, February, March, and

April)

.

*Moore, G. H.
,

"Forecasting Short-Term Economic Change," Journal of the

American Statistical Association, Vol. 64 (March 1974), pp. 1-22.
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Refiners adjust product yields and establish inventory priorities for the

heating season (HD(t) = 1) and for the gasoline season (HD(t) = 0). The dummy

variable thus captures the effects of changing the product mix and inventory

policy on the gasoline price-crude oil relationship. Due to autocorrelated

disturbances, a quasi-first differenced equation was estimated. The parameter

estimates for equation 5 are given in Table 4.3.

TABLE 4.3 SUPPORTING STATISTICS FOR THE REGRESSION MODEL

Term Coefficient Estimate t-statistic

Constant a 12.797 0.38E-02

log(RPC(T)

)

b 0.408 5.25

HD(t) c -0.013 -2.53

log(RPG(t-l)) d 1.000 44.06
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4.3.2 Comparison of Forecast Performance

The comparison of the forecasts produced by the two sets of models just

described is aimed at illustrating the usefulness and the limitations of the

various accuracy assessment measures discussed in Sections 4.1 and 4.2. It is

important to point out that any conclusions regarding the superiority of a

particular class of models based on the case studies presented in this section

would be unwarranted. The purpose here is to illustrate an evaluation

technique and not to critique each class of models. The models which are used

in this section were deliberately kept simple. As a result of this

simplicity, some desirable attributes had to be sacrificed. In particular, it

was noted in Section 4.3.1 that a simultaneous equation formulation might be

preferable to the single equation reduced-form model, since one could then

explicitly model price interactions between motor gasoline, distillate, and

other petroleum products.

The presentation in this section will proceed along the same lines as that in

Sections 4.1 and 4.2. The first topic addressed will include a graphical

analysis of 12 selected forecasts, six for levels and six for monthly charges.

Four quantitative methods will then be discussed and checked for consistency

in ranking the accuracy of these and other forecasts.



Three graphical methods—plots of predicted and realized values, plots of

residuals, and the Theil prediction-realization diagram—were described in

Section 4.1 as an aid to assessing the accuracy of a model's forecast. The

presentation in this section will focus on the most common method, a

simultaneous plot of both the predicted and realized values for the real price

of motor gasoline series. In all of the figures which follow, the horizontal

axis measures the time elapsed since the beginning of the forecast. Each

forecast shown is either for a two-year period (24 months) or for a three-year

period (36 months). The 24-month forecast begins January 1977 and runs

through December 1978; the 36-month forecast begins in January 1976 and runs

through December

1978.*

* Part A of each figure presents the 24-month forecast

and Part B of each figure presents the 36-month forecast. The vertical axis

of Figures 4.8 and 4.10 shows the real price index for motor gasoline. The

vertical axis of plots appearing as Figures 4.9 and 4.11 are referred to as

"changes" because they represent predicted and realized changes in the level

of the series. In all figures the realized values (both levels and changes)

are denoted by a set of shaded circles connected with a solid line and the

*The forecasts of monthly changes begin in February 1977 and 1976,
respectively, and run through December 1978.
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predicted values (both levels and changes) are denoted by a set of open

circles connected by a solid line.

Figure 4.8 shows the values predicted using an econometric model and the

realized values for the real price of motor gasoline index. Part A of the

figure shows the 24-month forecast and reveals an interesting pattern— the

predicted series peaks at month two bottoms out at approximately month eight,

remains high for months 14 through 21 and then rises. An analysis of the

realized series shows a dip in month two, a peak at approximately month seven

and then a depressed period for months 14 through 18. Although a visual

examination of the series would indicate that the fit is poor, the two series

are correlated (in this case the two series are negatively correlated).

Turning now to Part B, it can be seen that the forecast tracks better but is

still somewhat out of phase with the realized values. The first decline in

real prices is captured fairly well although the subsequent price rise is

underestimated and the peak is missed by two to three months. As the forecast

horizon increases, the phase relationship becomes more drawn out. The trough

in month 14 is not predicted until month 16 and the peak in month 19 not until

month 24. From month 24 onward the two series seem more in phase, however the

predictions are biased (they persistently exceed the realized values).

An examination of Figure 4.9, Part A reveals the same lack of synchronization

as seen in Figure 4.8, Part A. One again, although the fit is poor, we would
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Figure 4.8 FORECAST VALUES OF MOTOR GAS PRICES USING AN

ECONOMETRIC MODEL

TIME IN MONTHS FROM FORECAST ORIGIN
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expect the two series to be highly (negatively) correlated. A careful study

of Part B, however, presents the model in a more flattering light. With the

exception of the two segments centered around month 10 and month 22 , the

predicted monthly changes track the actual monthly changes very well.

The predictions based on the simple regression model are presented in Figures

4.10 and 4.11. Since the price of crude oil represents such an important

component of the price of motor gasoline, one would expect that the regression

model should forecast fairly well, at least over the short run. An

examination of Part A of Figure 4.10 reveals this to be the case for the first

ten months of the forecast period. Beyond month 10, however, the prediction

produced by the model shows a fairly strong upward trend. In Part B of the

figure it can readily be seen that the model does not perform well until the

end of the third quarter of the forecast period. The model then tracks the

process fairly well through the seventh quarter of the forecast period.

An analysis of the predicted and realized monthly changes in the real price of

motor gasoline index reveals a much more choppy appearance than was seen for

the econometric model over the same period. The fit for the first three

quarters of the 24-month forecast period (Part A) appears reasonable as was

the case for the levels forecast. The predicted changes over the 36-month

forecast period do not appear to give an adequate representation of the

process under study even in the short run. Part of the apparent inadequacy of
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Figure 4.9 FORECAST MONTHLY CHANGES OF MOTOR GAS PRICES

USING AN ECONOMETRIC MODEL
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Figure 4.10 FORECAST VALUES OF MOTOR GAS PRICES USING A

REGRESSION MODEL
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this model is undoubtedly due to the way in which the real price of crude oil

was forecast. However, since these are modified ex post forecasts we must

operate _as _if_ we did not know what the actual real price of crude oil was

going to be. Thus the forecasts presented in Figures 4.10 and 4.11 are

probably fairly similar to ones which would have been produced by an analyst

in December 1976 and December 1977.

As discussed earlier, the graphical approach helps to reveal the strengths and

weaknesses of a particular model; however it is not an end in itself. In

order to gain a better indication of a model's predictive performance, we

should also subject it to a battery of quantitative tests. Although each test

described in Sections 4.1 and 4.2 was applied to each model for each forecast

period, an attempt has been made to limit the discussion which follows to the

salient parts of the quantitative analysis. ^ In order to simplify the

identification of a particular forecast, or set of forecasts, it was necessary

to adopt a numbering scheme. In the tables which follow, the first digit of

the forecast number denotes the number of years in the original forecast

period. The second and third digits of the forecast number denote the number

of months in the subset of the original forecast period for which data were

^The following statistics were computed for each model and each forecast:

(1) R^; (2) root mean squared error; (3) Theil U inequality; (4) decompo-
sitions into bias, variance, and covariance and bias, regression, and

residual variance; (5) standard deviation of the realized series during the

forecast period; (6) marginal entropy; (7) conditional entropy,; and (8)

transinformation.
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analyzed. For example, the forecasts denoted as 312 contain the first 12

months of the 3-year forecast beginning in January 1977 and ending in

December 1979. Each model specification is also coded; for example, all

models preceded by an R are regression models. The coding for each model and

each forecast are summarized in Table 4.4 for ready reference.

The rankings of the forecast performance for each model and each time period

are presented in Table 4.5. Part A of the table presents the rankings for the

models designed to forecast the levels of the real price of motor gasoline

index. Part B of the table presents the rankings for the models designed to

forecast monthly changes in the motor gasoline price index. Four basic

statistical measures are presented and for three of these the models are

ranked in order of performance measured against an objective criterion. The

first column contains the ranking based on maximizing R^. The second column

contains the ranking based on minimizing the Theil U inequality. The title of

the third column contains both the root mean squared error (RMSE) and

transinformation (TI) because (for unbiased forecasts) both sets of statistics

produce the same ranking (in this case, TI is a monotone transinformation of

the RMSE). The fourth column indicates whether or not the model conveys

useful information, i.e., whether transinformation is positive, + ,
or

negative, -.

Even a cursory review of the data presented in Table 4.5 would reveal that the

three major types of statistical measures of accuracy do not produce the same

O
rankings. Statisticians have often pointed this out with regard to the R^
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TABLE 4.4 ABBREVIATIONS USED IN SUBSEQUENT TABLES

ABBREVIATION DEFINITION

RMSE Root Mean Squared Error

TI Transinformation

E Econometric Model

R Regression Model

212 First 12 months of the 2-year forecast: 1/78 - 12/78

312 First 12 months of the 3-year forecast

:

1/77 - 12/77

412 First 12 months of the 4-year forecast

:

1/76 - 12/76

224 Entire 2-year forecast: 1/78 - 12/79

324 First 24 months of the 3-year forecast

:

1/77 - 12/78

424 First 24 months of the 4-year forecast: 1/76 - 12/77

336 Entire 3-year forecast: 1/77 - 12/79

436 First 36 months of the 4-year forecast

:

1/76 - 12/78

448 Entire 4-year forecast: 1/76 — 12/79
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TABLE 4.5
RANKINGS OF FORECAST PERFORMANCE FOR SELECTED STATISTICAL MEASURES

PART A

LEVELS STATISTIC
R2 THEIL U RMSE&TI POS. INFO

FORECAST E R E R E R E R

212 1 2 2 1 2 1 +

312 1 2 2 1 2 1 - +

412 2 1 1 2 2 1 + +

224 2 1 1 2 2 1 + +

324 1 2 1 2 2 1 - -

424 2 1 2 1 2 1 + +

336 2 1 2 1 2 1 + +

436 2 1 1 2 2 1 - -

448 1 2 1 2 1 2 + +

PART B

CHANGES STATISTIC
R2 THEIL U RMSE&TI POS. INFO

FORECAST E R E R E R E R

212 1 2 2 1 2 1 — —

312 1 2 2 1 2 1 - -

412 2 1 1 2 1 2 + -

224 2 1 1 2 1 2 - -

324 1 2 2 1 2 1 /
-

424 2 1 1 2 1 2 + -

336 1 2 2 1 1 2 - -

436 2 1 1 2 1 2 + -

448 2 1 1 2 1 2 + -
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statistic and the root mean squared error statistic. However, it is also

obvious that some major disagreement also exists between the root mean squared

error and the Theil U inequality. For example, consider forecast 224 in Part

A of Table 4.5 where, based on maximizing the R~ statistic, the regression

model is revealed as best (rank = 1), and the econometric model worst. If the

criterion were the minimization of the Theil U inequality (recall that the U

inequality is greater than or equal to zero with a value of zero indicating a

perfect fit), then exactly the opposite ranking would occur. A somewhat

similar reversal with respect to the root mean squared error occurs with

forecast 324 when the criterion is maximizing the R^ statistic. In this case

the Theil U inequality also produces incorrect rankings. An examination of

Part B reveals a rather shocking result, the R^ and Theil U inequality

criteria produce diametrically opposed rankings. This unfortunate state of

affairs is further complicated by noting that the minimum root mean squared

error or maximum transinformation criterion produce rankings which conflict

with both of the other statistics. Given the desirable attributes of the root

mean squared error, it is gratifying that the transinformation statistic

produces the same ranking. One should not be too hasty and conclude that

transinformation is just a variant of the root mean squared error. In

particular, transinformation tells the analyst everything that the root mean

squared error tells him. Transinformation also provides the analyst with a

measure of how large the root mean squared error can get before use of the

model may become misleading (i.e., the model’s forecasts are spurious). An
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overview of the fourth column would reveal that six of the 18 forecasts for

the level of the real price of motor gasoline index were, on the average,

spurious. The previous statement does not imply that each and every forecast

value within the given forecast period (e.g., 324) was spurious. As was shown

in the discussion of the graphical results, some segments of the forecast

periods may be surprisingly accurate. The previous statement reflects a basic

difference between an assessment of the overall forecast versus an assessment

of the various components of the forecasts. The approach taken in this

section is similar to the empirical studies by Nelson* and Fromm and Klein^ in

that emphasis is placed on the performance of the model during the entire

forecast period. An alternative approach would be to analyze the

distributional properties of the residuals as a function of the model’s lead

time. Although the theoretical criteria upon which such an analysis would be

based were outlined in section 4.2, the project staff determined that time and

funding constraints could not justify the additional computational effort

required for an empirical test.

*Nelson, C.R., "The Predictive Performance of the FRB-MIT-PENN Model of the

U.S. Economy," American Economic Review , Vol. 62 (December 1972),

pp. 902-917

.

^Fromm, G., and L. Klein, "The NBER/NSF Model Comparison Seminar: An
Analysis of Results," Annals of Economic and Social Measurement ,

Vol 5

(1976), pp. 1-27.



By examining the fourth column of Part B one finds that 14 out of the 18

forecasts for monthly changes are, on the average, spurious. Thus, one can

see why Granger and Newbold have claimed that evaluating a model based on its

predictive performance for the level of an economic variable is perhaps giving

it more credit than it is due.

In light of the difficulties concerning the interpretation of the various

accuracy assessment statistics, it is useful to ask "how often should one

expect the alternatives to the maximum transinformation (minimum root mean

squared error) criterion to produce the same rankings?" Although we are

undoubtedly concerned whether or not the criterion would produce the same

ranking, especially if we are considering a combination of forecasts, we are

probably more concerned whether or not the objective criterion can correctly

identify the first ranked model. In order to calculate this probability it is

necessary to determine how many times each criterion ranked the model first

given that the maximum transinformation (minimum root mean squared error)

criterion ranked it first. These conditional probabilities are given for each

statistic for both levels and changes. ^ An examination of the probabilities

in Table 4.6 reveals that the R2 statistic outperforms the Theil U inequality

*A11 probabilities shown in Table 4.6 are based on data presented in Table

4.5. The probabilities are defined as the ratio of the number of times the

R2or U criterion (see Table 4.5) ranked the model first given that the

maximum transinformation criterion ranked it first.
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on levels but is outperformed on changes. One should interpret this result

with some caution, however, since this is the U° rather than the U statistic.

Theil has corrected many of the deficiencies of the U° statistic with the U

statistic. Most software packages, however, continue to print out the U°

rather than the U statistic and for that reason it is presented here. Since

the corrected Theil U inequality is just a monotone transformation of the root

mean squared error, minimizing it should produce the correct rankings. Recall

that the Theil U inequality was designed for cases where changes and not

levels were the object of the forecast, so that a value of U less than or

equal to one would not necessarily imply that the model's forecasts were not

spurious. It is also important to note that the corrected Theil U inequality

makes no assumptions about the distribution governing either the process or

the residuals so that meaningful measures of the information content of the

forecast cannot necessarily be derived from it.

TABLE 4.6

COMPARISONS OF RANKINGS

Statistic Classification
Probability that Rankings Agree

Levels Changes

P (model ranked 1

given rank = 1)

0.667 0.556

U P (model ranked 1

given rank = 1) 0.556 0.889
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4.4 Concluding Remarks

The previous discussion has pointed out some of the weaknesses of the

classical approach to accuracy assessment. These weaknesses were addressed

both from a theoretical point of view in Section 4.1 and based on empirical

considerations in Section 4.3. The major thrust of this chapter was to expose

these weaknesses and demonstrate how they could be reduced or eliminated

through resort to a new technique based on concepts from information theory.

Although the advantages of the information theoretic approach have been

established and some broad guidelines for implementing such an approach into a

comprehensive forecast evaluation program have been given, much work remains

to be done.

It is important to point out that the focus of the information theoretic

approach presented in this chapter was based on an assumption that the models

under consideration produced unbiased forecasts. Although this assumption is

reasonable, it is probably overly optimistic, especially in cases where the

values of one or more variables used in the model are rapidly changing. The

mechanics of generalizing the information theoretic approach to measure the

performance of biased forecasts is under study and is planned for inclusion in

subsequent papers on the subject where some computational simplifications will

also be outlined.
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The analytics of performing the dynamic decomposition and the policy

decomposition outlined in Section 4.2 should also be perfected so that these

valuable tools can be readily accessible to decision makers. Two other areas

where additional work is needed concern: (1) the sensitivity of the

transinformation measure to the probabilistic structure of the process and its

forecast errors; and (2) techniques for optimally combining the forecasts from

competing models. A final area of concern involves the extension of the

information theoretic measures from the single equation framework to

simultaneous equation models of a dynamic system. At this stage it is unclear

whether such an extension will permit the retention of a univariate measure or

will entail the development of a "transinformation" vector or matrix. Since

arguments can be made for both approaches, some analysis might be done to

determine which approach offers the greatest advantages to both model

builders, model users, and decision makers. P.A.V.B. Swamy has outlined, in a

personal communication to the authors, a theoretical approach which stresses

the importance of exact finite sample properties and Bayesian methods of

estimation. The Swamy approach, which uses a quadratic loss function as its

basis, first limits the class of candidate models to those which possess

finite second-order moments. The axiomatic approach of DeGroot* is then used

to insure that the maximization of expected utility is a valid criterion for

^DeGroot, Morris H.
,
Optimal Statistical Decisions (New York: McGraw-Hill

Book Company, 1970).
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choosing among competing models. In a recent paper by Bernardo^ and

subsequent discussion by DeGroot^, it has been shown that the use of the

entropy measure is equivalent to considering a decision problem in which one

must choose a density function, f, from the class of all densities on the

parameter space, 0, subject to the loss function

L(6, f)= -log (f ( 8 ) )

.

Therefore one can interpret the techniques outlined in this chapter as a

special case of Swamy's approach to forecast evaluation and model selection.

IBernardo, Jose, "Reference Posterior Distribtuions for Bayesian Inference,
Journal of the Royal Statistical Society , No. 2 (1979), pp. 113-128.

^DeGroot, Morris H. , "Discussion of Professor Bernardo's Paper," Journal of

the Royal Statistical Society , No. 2 (1979), pp. 135-136.
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5. FINDINGS AND CONCLUSIONS

by
Lambert S. Joel

Center for Applied Mathematics
National Bureau of Standards
Washington, D, C. 20234

Our conclusions at the end of this second year of scrutiny of major energy

models fall under two general headings, judgments on the model STIFS and

judgments concerning assessment and model use methodology.

We will discuss briefly our findings concerning STIFS.

(1) STIFS is not in deliverable condition. Simply put, STIFS is not yet a

model or a system of models, but a framework for a model system.

Consequently, although STIFS can be pressed into service as a provisional

policy analysis tool in the hands of its architects , while undergoing

development, it cannot be operated for policy analysis by any independent user

(no matter how broadly "independent" is interpreted) with or without existing

documentation.

(2) While there is possibly some scope for selection of efficient

off-the-shelf computational software for regression, time series analysis, and

the like in the satellite component models, the integrating model, which we

suspected to follow the (Leontieff) input-output structure and therefore to be

amenable to efficiency improvement, is already in the simplest computational

form possible.
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(3) The superficially counterintuitive notion, produced by the developers in

the process of coefficient estimation, that weather variations do not affect

nationally aggregated annual energy consumption has been verified in our

sensitivity analyses. The ostensible reason is that the size of the

contiguous United States (3xl0^mi^) permits fairly sizable regions to have

severe seasonal weather while the nation is nominally subject to mild weather

and vice versa.

In summary form, our conclusions on the wider issues of assessment are:

( 1 ) Reading Code

Sooner or later, the assessment of a large-scale model will entail close

examination of computer programs. There are two general reasons: outputs

fail to conform to expectation in some way, or the model is to be operated in

a manner not envisioned in the design of the system. In the first case,

counterintuitive model outputs (or outputs differing from prespecified sample

values) could result from a variety of causes, for instance erroneous

conceptualization of the model by the developers (or the assessors), erroneous

mathematization, defective computer programs, or interaction with an operating

system or supporting data for the model. In any event, virtually no

large-scale model is cast as a coherent "closed-form" mathematical function

amenable to verification by means of, say, computation with a desk calculator.

Therefore, difficulties must be resolved by reading computer code. The ease

with which this process of reconciliation between the computer programs arid
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the conceptual content of model can be accomplished is related to the quality

of documentation and the extent of annotation (in the form of comment cards)

in the programs. It also depends on the availability of the model developers

for consultation. This suggests that during debugging of the computer

programs by the analysts/programmers/developers of the model, which is a very

close parallel to reconciliation by assessors, special effort should be made

to refine the documentation so that difficulties encountered in debugging may

be avoided in subsequent similar activities by assessors or users.

The second generic situation which can be expected to require reading

code—non-standard operation—implies some modification of the model by

assessors (or users). This could range from a change in the value of a

"hard-wired" constant, that is, one which is not treated in the model as an

input subject to change from run to run, to alterations in the structural form

of the model. In our case, considerable computational time and analysis of

outputs was saved in the sensitivity experiments, by changes in the procedure

for initializing model runs so as to allow ganged sequences of model runs with

"automatically" iterated scenario changes. Although we had cooperative

assistance from EIA staff, the work would have been greatly drawn out if we

hadn't studied the computer code.

(2) The Impracticability of Early Assessment

Technical assessment is an evaluation of validity and practicability of a
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model for its intended purpose. No model is ever constructed without

technical assessment, because assessment for orientation is an inseparable

aspect of analytical development. "Third-party” or "independent " assessment,

however, is an administrative construct. Let us define it as evaluation of a

model under specific assignment by someone other than the sponsor^ or the

developer(s) of the model. In the early stages of model formulation,

third-party assessment is likely to be of limited value. Documentation will

be nonexistent or at best extremely scanty and provisional, so that excessive

effort will be required to assemble information that will enable proper

assessment. (As model development approaches nominal completion, it is

normally easier for an assessment effort to "get up to speed.”) Moreover,

model development is unlikely to be a process of unswerving progressive

synthesis; when elements are discarded, time spent on these by assessors is

time lost, by and large. If legal/ethical objections and contractual

objections could be overcome, so that an assessment team would participate

cooperatively in model development while maintaining an independent stance as

technical evaluators, early assessment might yet be "cost effective."

* Conventionally this is done on a contractual basis. We will avoid ambiguity
by designating a subordinate group within a sponsor institution and tasked
with the responsibility for evaluating a model developed outside the group,

as "not the sponsor."
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(3) Monte Carlo Methods

Our exercise of portions of the model system and our experimental analysis of

the relationship of climatological to energy-demand data, have reinforced^ our

confidence in the utility of Monte Carlo techniques for developing

representative application scenarios as opposed to "best case" or "optimistic"

vs. "worst case" or "pessimistic" scenario settings, which give, at best,

conceptually possible extreme values that is, upper and lower bounds, with

excessively small probability of actual occurrence.

(4) Information Theory and Forecast Accuracy

The determination of forecast quality for large-scale models remains a major

unsolved problem related to, and rivaling the difficulty of, formulating the

models and making the forecasts. The accuracy of a single short-term point

forecast can, of course, be measured directly ex post , as the difference

between a measured and a forecast value of some variable of interest, but such

isolated differences do not tell us much about forecast quality. At the very

least we would want some sizeable number, perhaps a time series, of

observations and predictions before we would be willing to make statements of

confidence in a forecast model. The richer the context of a forecast model,

*The Monte Carlo method was employed to good effect in the analysis of the

MOGSM resource base in the first year of the study.
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that is, the greater the number of significant components of the system under

study, particularly those whose action or evolution is governed by chance

insofar as we can tell , the less feasible is a faithfully representative

model, and the less reliable are simple measurements of divergence as

indicators of forecast quality.

One criterion for suitability of an algorithmic (that is, mechanically

applicable) measure of forecast quality is that it should produce a ranking of

a collection of forecasts consistent with a ranking based on, say, expert

intuition. In chapter 4 methods of accuracy based on information theory have

been demonstrated to be consistent with conventional measures based on various

well-accepted statistical/econometric tests, and to furnish at slight

additional computation costs, important additional information concerning the

effect of imprecision in model parameters and the range of uncertainty of data

inputs on the expected accuracy of forecasts. Technically, these results

(consistency and superior power of discrimination) have been established only

for single equation (scalar) models and unbiased forecasts; additional

research is indicated to extend them to biased forecasts and to simultaneous

equation (matrix) models.
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