
NBSIR 83-

A Discussion of Gridnet
Algorithms and Simulation Results

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Center for Computer Systems Engineering

Washington, DC 20234

November 1 982

Issued February 1983

Task Code RF

Work Unit 00065

Sponsored by

defense Nuclear Agency
ashington, DC 20305

NATIONAL BURE*:/
OF STANDARDS

MAR 2 1 1983

oq^ O.CC- G\ec .

NBSIR 83-2660

A DISCUSSION OF GRIDNET
ALGORITHMS AND SIMULATION RESULTS

S3- S5(cG0
I*****

C •

J. A. Epstein

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

Institute for Computer Sciences and Technology

Center for Computer Systems Engineering

Washington, DC 20234

November 1982

Issued February 1983

Task Code RF

Work Unit 00065

Sponsored by

Defense Nuclear Agency
Washington, DC 20305

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

TABLE OF CONTENTS

Page

INTRODUCTION 1

REVIEW OF GRIDNET 2

Network Configuration . . . 4

DISCUSSION OF ROUTING ALGORITHMS 6

SIMULATION RESULTS 8

Connectivity 8

Random Networks 8

IMPROVEMENTS ON THE SIMULATION MODEL 10

Partial Outages 10

Improved Integrity of New Simulation 14

PROCESSOR REQUIREMENTS 15

SUBJECTS FOR FURTHER STUDY 19

Maintenance of Updated Routing Information 19

Condensing Append Information 20

Resolving Packet Overflow 24

Network Topology „ 25

Content of Information Field 28

CONCLUSIONS 30

APPENDICES 31

A. Discussion of why routing heuristic cannot
guarantee delivery 31

B. Proof of why routing heuristic cannot
guarantee delivery 32

REFERENCES 33

-iii-

GLOSSARY OF TERMS 34

LIST OF FIGURES

Page

Figure 1. Loops Connected to Form GRIDNET 4

Figure 2. Graphic Representation of GRIDNET 6

Figure 3. Loop Types and Gateway Station Numbers 7

Figure 4. Connectivity of fractured GRIDNETs 9

Figure 5. Distribution for outage selection for new
simulation 11

Figure 6. Tree illustrating one-way Lee's algorithm .. 12
Figure 7. Network used in Fig. 6 illustration of

one-way Lee's algorithm 13
Figure 8. Illustration of new simulation's integrity . 14
Figure 9. Trees illustrating two-way Lee's algorithm . 17
Figure 10. Network used in Fig. 9 illustration of

two-way Lee's algorithm 18
Figure 11. Comparison of append data representations .. 22
Figure 12. Sample network illustrating append list 23
Figure 13. Example of a partition for sharing

topological information 27

-iv-

A Discussion of Gridnet Algorithms and Simulation Results

J. A. Epstein

This report is an evaluation of the results
of computer simulation of GRIDNET conducted during
the period from 17 May 1982 to 12 November 1982.

This report describes the testing and modifi-
cation of algorithms which permit messages in a

GRIDNET to be routed from any source to any desti-
nation, in a network having thousands of nodes,
and to accomplish this routing in an efficient
manner using only limited local knowledge of net-
work operability status. Estimates were developed
for both algorithm performance and runtime effi-
ciency. Additional studies were made concerning
network connectivity, reducing packet overhead,
network topology, and resolving packet overflow.

Key words: alternate routing; communications
networks; distributed control; network
connectivity; packet overhead; packet switching;
survivability.

INTRODUCTION

The studies described in this report followed the com-
pletion of U.S. Department of Commerce contract
NB80SBCA0477 by the General Electric Company, Space Systems
Division, Huntsville Alabama. (5,6)

Under the above contract, General Electric (henceforth,
G. E.) developed and tested algorithms for routing packets
in a GRIDNET. GRIDNET is a highly survivable network con-
taining thousands of nodes. G. E. also performed studies on
network traffic loading, a subject which is beyond the scope
of this paper.

- 1-

The target objectives of NB80SBCA0477 included that the
routing algorithms developed deliver messages in all rout-
able networks and that the path length taken was not to
exceed the minimum path length by more than 30%. G. E.
delivered a heuristic algorithm in September 1981 which met
these objectives for the 72 arbitrarily selected networks
which were the basis for evaluation, delivering all routable
messages with an average path length which was 25% greater
than the minimum path length. G. E. believed that the algo-
rithm would properly route messages in any routable network,
although this later turned out not to be the case. Follow-
ing completion of the contract, N. Geer of G. E., on his own
initiative, delivered a non-heuristic algorithm to NBS.
Further investigation showed this algorithm to be equivalent
to Lee's algorithm, a classic routing algorithm used pri-
marily for wiring design (7).

All routing simulations discussed in this report are
for a 150 loop GRIDNET network, although only a portion of
this network is shown in some of the graphics. This was an
expansion of a 60 loop GRIDNET used for the 72 test net-
works .

The first part of this paper describes the studies of
the routing algorithms performed from 17 May 1982 to 30 Sep-
tember 1982. A later section entitled "Subjects for Further
Study" introduces new subjects which were developed and stu-
died from 30 June 1982 to 12 November 1982. These topics
include methods of maintaining information about inoperative
stations, reducing packet overhead, resolving packet over-
flow, and a proposed format for the information field for an
interloop packet.

A review of GRIDNET for the uninitiated precedes all
other discussions. The following section, "Review of GRID-
NET," is an excerpt from pp. 3-7 from the section of the
same name in (3), taken with permission.

REVIEW OF GRIDNET

In 1979, a novel data
CROSSFIRE was proposed (1)

communication concept called
for an application requiring a

- 2 -

high degree of security and integrity. In this system, a

primary station controls communications with a number of as-
sociated secondary stations using a bit-oriented, link lev-
el, protocol. Communication takes place over two loops,
each carrying the same data. One loop transfers the data in
a clockwise direction and the other carries the same data in
a counterclockwise direction. Communication is between any
of the several secondary stations and the single primary
station that supervises and controls the flow of traffic on
the loop. The secondary stations receive identical data
that arrives at slightly different times on each of the two
loops, and they regenerate the binary signals before for-
warding each bit stream to the next adjacent station in the
proper direction. This function is performed on all data
received by a secondary station, even data addressed to it,
without regard to its source. The primary station accepts,
but does not regenerate and retransmit, data received on
each loop from the secondary stations. Each time a primary
station receives a correct copy of a message that it has
previously transmitted on one of the loops it serves to con-
firm that the loops and all of the enroute repeaters are
functioning correctly. As a result of the redundant
transmission paths, the delivery of a packet to its destina-
tion on the loops cannot be prevented by cutting both loops
or disabling a node at any single geographic location. The
occurrence of such a cut or break can be immediately detect-
ed by the primary station since it will cease to receive one
or both of the delayed copies of its outgoing transmission.
Then, by polling each secondary station on the loop, and
determining whether their response is on the clockwise or
the counterclockwise loop, the location of the break can be
localized to a region between two secondary stations. This
region may consist of a single link, or it may include a
node and the links that are immediately adjacent to that
node

.

In addition, by conducting continuous polling during
the intervals between the transmission of normal traffic,
the loops are never idle for a significant period of time.
This aids in the almost immediate detection of any attempt
to cut or jam a loop. Further protection against the injec-
tion of spurious or unauthorized data is provided by compar-
ing the contents of the data streams that are received over
the clockwise and counterclockwise loops on a bit by bit
basis. This is in addition to the use of the normal cycli-
cal redundancy frame check sequence. Collectively, these
procedures make it virtually certain that any fault, outage,
or adversary's action will be quickly detected.

- 3-

These CROSSFIRE advantages can be extended to large
networks by interconnecting a number of CROSSFIRE type sys-
tems together using gateway stations at their intersections.
Multiple interconnections of the loops and adaptive routing
using distributed processing provide the potential for es-
tablishing alternate routes between distant pairs of sta-
tions despite simultaneous interruptions to the continuity
of multiple loops. This conceptual approach has been termed
GRIDNET (2).

Network Configuration

In GRIDNET, loops are interconnected in the regular
hexagonal array pattern shown in figure 1, where stations
have not been shown and where loops are shown as smooth, un-
iform shapes. Gateway stations are located at each point
where two loops touch.

Figure 1. Loops Connected to Form GRIDNET

If this structure is flattened slightly, and the loops
are collapsed and depicted as straight lines, the configura-
tion of figure 2 results and this graphic representation
provides the basis for an orderly addressing scheme.

- 4 -

Each GRIDNET address has three parts designated S, L,
and N . The S address component represents the "station
number" on a loop. The gateway station in the first qua-
drant on a loop is assigned the value of one for its S ad-
dress component. The other stations are assigned increas-
ingly higher S component addresses in accordance with their
location on the loop as measured in a clockwise direction
looking at their graphical representation on the array. The
four lowest station numbers are reserved for assignment to
the (up to four) gateway stations. The secondary stations
are then numbered starting with the value 5. For a 12 sta-
tion loop, with two secondaries between each pair of gate-
ways, the station number sequence in the clockwise direction
is 1, 5 , 6 , 2 , 7 , 8 , 3 , 9 , 10 , 4 , 11 , 12 . The S component
of the address will range from one to some maximum value as
defined for the system. Typically, this maximum value will
be less than 30. The L component of the address represents
a "level" counting from the bottom upward on a topological
graph of the system. In figure 2, the L values for the
loops appear along the Y axis of the array. The final ad-
dress component, N, represents a "loop number". These are
shown along the X axis of the figure.

The L and N address components are not assigned values
beginning with the origin of the coordinate system, and this
provides room for future expansion of the network in any
direction. In a similar fashion, all L,N values need not be
occupied provided that lack of occupancy does not fragment
the network. The origin of both L and N are such that the
loops that appear as vertical interconnectors in figure 2

have even values for both L and N, while the horizontal in-
terconnector loops have odd values for these address com-
ponents. All of the address components must have integer
values greater than zero. These address components are used
in developing routing information for messages that flow
through the network. The L and N portions of the address of
a message are used to determine to which enroute loop it
should be forwarded in order to reduce the distance to its
destination L,N. When a message reaches its destination
L,N, then the S address component designates the station on
that loop to which delivery is made.

Each loop that is "interior" to the network and fully
connected has four gateway stations. Peripheral loops that
are only partially connected have fewer gateway stations,
normally two. A gateway is logically two stations, one on
each loop. Each of the two logical stations has a different
address but they can communicate directly with each other by

- 5-

N

Figure 2. Graphic Representation of GRIDNET

exchanging ownership of buffers containing information that
is to be transferred between the two loops. All link con-
trol, flow control and routing functions are performed by
the gateways. They also perform certain of the network
management functions. Each gateway keeps track of the
operational status of all of the stations on its home loop
and adjacent loops and of the ability of each of the second
adjacent loops to communicate with their foreign loops in
order to accomplish traffic routing.

The graphic representation of GRIDNET shown in figure 2

provides a basis for identifying three types of loops based
on the orientation of their connections to adjacent loops.
The Type I, II , and III loops are shown in figure 3 with
their respective gate numbers. The connecting adjacent
loops are given as relative L and N values. The connecting
loop gateway station number is also shown. These gateway
station numbers are used in the routing procedure.

DISCUSSION OF ROUTING ALGORITHMS

After both a routing heuristic (from DOC contract
#NB80SBCA0477) and a routing algorithm, based on Lee's

- 6 -

L 1.N - '

L 1.N 1

Figure 3. Loop Types and Gateway Station Numbers

Algorithm (7) (submitted later by N. Geer of G. E. after
completion of G. E.'s contract) were available, there was
some question as to which was superior. For the networks
tested by G. E., both delivered all routable messages, which
was one of the goals of the GRIDNET specifications. On
those networks, the heuristic delivered the messages more
efficiently by traversing fewer loops, but its runtime was
considerably longer.

It was decided to perform a statistical analysis on the
routers, to determine both relative and absolute perfor-
mance. In addition, a third router was proposed combining
the other two by making an initial heuristic computation to
guess which of the original routers should be used. A
software package was developed which tested the three
routers on the same random networks. After running this
software package on a few hundred randomly created networks,
a sophisticated network was created which caused the origi-
nal heuristic to fail. Further investigation showed that no
fine tuning of this heuristic could be used to guarantee
delivery [Appendices A ,B] . So Lee's algorithm was, for the
present, the only available choice. Examples of Lee's algo-
rithm appear later in the text.

- 7 -

SIMULATION RESULTS

Since the results of the simulations done by G. E. re-
lied only on 72 test networks, it was decided to do a more
in-depth study of algorithm performance, based upon a large
number of randomly created networks. In addition, it was
decided to perform a limited study of network survivability.

Connectivity

A major objective of GRIDNET is to provide the capabil-
ity to transfer a message between two stations in the net-
work if any path between those stations exists. Thus, it is
of interest to develop estimates of network connectivity
characteristics as increasing numbers of loops are des-
troyed. That is, it was decided to determine how many dis-
joint connected components a GRIDNET is broken into when a

certain number of loops within the network are destroyed,
and how many loops are fractured away from the main body
(largest component) of the network. Figure 4 shows the
graphs produced by running this experiment on the 150 loop
network with 200 random networks for each number of missing
loops (1-150) for a total of 30,000 networks. Each random
network was created by individually removing a fixed number
of randomly selected loops from an originally intact net-
work.

The graph shows that between 25 and 30 missing loops
the number of loops being fractured away from the main net-
work accelerates rapidly. That is, when 25 or 30 loops
(about 20%) are missing, the network begins to fragment.

Random Networks

In GRIDNET, each gateway has knowledge of its "double
adjacency neighborhood." This means that connecting
CROSSFIRE loops share information about the status of the
loops to which they are connected, out to a level of two
loops. Each packet passing through a gateway acquires that
local knowledge. This allows a gateway to make a routing
decision based upon the information contained in a packet.
This mechanism has been implemented in various ways for the
computer simulations. Each routing decision is based only
upon the information contained in the current packet, and
the knowledge of the gateway's local neighbors.

- 8-

z
Ld
Z
O
CL

2
o
o
Q
LdF
V

z
o
o
z
O

Q
L_
O
=*=

e 25 58 75 IN 125 150

L_
O
=%;

Figure 4. Connectivity of fractured GRIDNETs

After it was determined that the heuristic delivered by
G. E. could not guarantee delivery for all networks, a study
was made to compare the performance of Lee's algorithm with
the minimum path length. For each random network created,
one source and ten destinations were tried. This is because
in order to compute minimum paths for a network with n
nodes, it is necessary to perform 0(n2

) calculations, if the
destination is selected at random. By performing just twice
the expected number of calculations for one destination
(still 0(n2

)) the minimum paths from the source to all nodes
in the network can be determined.

One thousand different random networks were created as
above, except that the number of loops removed was also
selected randomly. For each of these a single random source
and ten random destinations were randomly selected to pro-
vide a total of ten thousand network configurations.
Twenty-six percent were unroutable, of which 75% were un-
routable at least partially due to the fact that the desti-
nation loop was missing, i.e., network fragmentation oc-
cured. In fact, the random networks in this simulation

- 9-

averaged 27 outages in the 150 loop network. Recall from
the previous section that at around this number of outages
the network begins to fragment, which makes it an interest-
ing region to study. This is because the networks examined
are unfragmented or are just beginning to fragment.

Of the routable networks, the routing algorithm
delivered its message in all cases, taking an average of
only 17% more loops than the minimum path. This is less
than both the 30% target in the G. E. contract and the 25%
observed for the networks tested by G. E. (4).

IMPROVEMENTS ON THE SIMULATION MODEL

This section describes improvements made on the simula-
tion model to better simulate the routing operations in a

GRIDNET. These improvements focused primarily upon the
representation of information concerning inoperative sta-
tions and communication links, and sharing this information
in a more realistic fashion.

Partial outages

Until June 1982, all routing simulation considered en-
tire GRIDNET loops as operative or inoperative. This was
acceptable as an initial simplifying assumption even though
it is not consistent with the basic notion of GRIDNET as a
highly survivable network, in which portions of loops can
continue to function. So, it was decided to update the
simulation package and routing algorithms to account for
partial outages, i.e., loops which have some or all of their
gateways and links between gateways inoperative.

A method has been developed to internally represent
partial outages, where each loop in the network has an
outage byte associated with it. The high order four bits
correspond to the four gateways. The low order four bits
correspond to the link between, say, gateway n and gateway
n+1 (modulo 4). Where a bit is set, the corresponding gate-
way or link is inoperative. For example, if gateway 4 is

- 10 -

known to be inoperative and so are both links adjacent to
gateway 4, the outage byte would be 0001 1001. As another
example, if all gates are operative but the link between
gates 3 and 4 is broken, the outage byte would be 0000 0010.
It is important to note that the outage byte for a loop
which is (at least thought to be) fully intact is 0000 0000.

In the graphic representation used in the simulation
model, a gateway outage is represented by a single hash mark
in the appropriate position on the loop. A link outage is
represented by a double hash mark in the appropriate posi-
tion on the loop.

In this simulation, eliminating one half of a gateway
is considered to be equivalent to eliminating the connection
between the two halves of the gateway, and the CROSSFIRE
links between the eliminated gateway half and the two adja-
cent gateways on the same loop.

Figure 5. Distribution for outage selection for new simulation

- 11 -

Gate outages are selected for the random networks with
the probabilities shown in figure 5. Link outages which are
not part of gate outages are introduced independantly ac-
cording to the same distribution. The average (expected
value) occurs at about 42 outage items.

Edge markings indicate gate taken from parent nod

Figure 6. Tree illustrating one-way Lee's algorithm

The tree in figure 6 illustrates the routing procedure
used for the network in figure 7. Each node in the tree
represents a gateway in the network which has been included
as a possible link in a path. The algorithm makes a
breadth-f irst-search [1] from the destination in all direc-
tions until it reaches the current loop or until all possi-
bilities have been exhausted. If the latter is true, no

[1] Starting at vertex v and marking it as visited, in
a breadth-first-search all unvisited vertices adjacent
to v are visited next. Then unvisited vertices adja-
cent to these vertices are visited and so on. This is
analogous to an ever widening circle, similar to a wave
caused by throwing a stone into water.

- 12 -

path exists from the current loop to the destination, so an
attempt is made to find a path back to the source by swap-
ping the source with the destination and running the algo-
rithm again. If neither path exists, the message is killed.
This condition is not possible in the simulation, since
outages do not occur dynamically in the model.

Z = RE-ROUTING POINT
S = SOURCE OF MESSAGE
D = DESTINATION OF MSG

Figure 7. Network used in Fig. 6 illustration of one-way Lee's algorithm

If a path is selected, it is the shortest path avail-
able based upon current knowledge. If two or more paths are
of equal length, priority is assigned to paths leading
directly into the destination gate, and clockwise from that
gate and other potential gates in the path.

For the example in figures 6 and 7, the path from the
destination passed through the tree nodes a,f, and o, to
node B, which is on the source loop. The gate routing list
from the destination to the source is 1,3, 3, 2. The gateway
numbering scheme of GRIDNET implies that the routing list
from the source to the destination is 3, 1,1, 4.

While the simulation model based on complete loop
outages sequentially searched a list to determine whether or
not an entry was already in the routing table, the partial
loop outage model uses a direct lookup table instead, in the
interests of runtime efficiency.

- 13 -

Improved Integrity of Simulation

Earlier simulations assumed that each loop has
knowledge of all loops within a double adjacency neighbor-
hood of itself, regardless of their operability status. It
seems unreasonable to assume this, since if a station is

inoperative it cannot relay any information to its neigh-
bors. Therefore, to improve the integrity of the new simu-
lation it is assumed that a station does not obtain outage
information whose transmission is blocked by an outage.

This condition is enforced in the simulation by inter-
nally traversing the double adjacency neighborhood to col-
lect information, passing through only those links and gate-
ways which are operative.

L
0
0
P

L
E
V
E
L

J I 1 1 —1

2 4 6 8 10

LOOP NUMBER

Z = RE-ROUTING POINT
S = SOURCE OF MESSAGE
D = DESTINATION OF MSG

Figure 8. Illustration of integrity of new simulation

Figure 8 illustrates the improved integrity. The cir-
cles at 3,5,3 and 4,3,5 represent the source and destination
gates. Although the outages on the destination loop are
within a double adjacency neighborhood of the source loop.

- 14 -

the packet is unaware of their presence until it reaches
loop 4,4, since the outage transmission is blocked due to
the inoperative gateway 2,4,4. From there, it attempts to
route through gate 1 on the destination loop, until it
reaches loop 2,6, where it learns that the link between
gates 1 and 4 is broken, and returns the message back to the
sender since there is no possible direction of approach
remaining

.

PROCESSOR REQUIREMENTS

After the simulation results showed that the routing
algorithms performed well for badly fractured networks, em-
phasis was shifted to CPU runtime, especially since using
partial outages adds to algorithm complexity.

An initial attempt was made to estimate CPU time by
counting CPU instructions. This was done by looking
thorough the assembly language cross-listing from an effi-
cient version of the simulation, written in C (9). C was
used largely because Fortran lacks the efficient "bit-
fiddling" capability to manipulate the data representations
used for partial outages. Assembly language instructions
were counted, and an attempt was made to compensate for the
fact that the assembler (VAX 11/780 Macro) [2] was somewhat
more sophisticated than the assemblers to be used in actual-
ly implementing GRIDNET on microprocessors. Statements in-
crementing instruction counters were inserted at the ap-
propriate places in the earlier simulation, which was writ-
ten in Fortran.

[2] Certain commercial equipment, instruments, or ma-
terials are identified in this paper in order to ade-
quately specify the experimental procedure. Such iden-
tification does not imply recommendation or endorsement
by the either the National Bureau of Standards or the

Defense Nuclear Agency, nor does it imply that the ma-
terials or equipment identified are necessarily the
best available for the purpose.

- 15 -

The findings were that about 260,000 microprocessor in-
structions are required to route a message from source to
destination for the random networks with partial outages
described in the previous section. Assuming about 3 mi-
croseconds per microprocessor instruction indicates that it
requires 0.78 seconds of microprocessor CPU time to route a

message from source to destination.

These findings did not correlate with performance as
observed by waiting for large batches of random networks to
be computed, and based upon knowledge of the system loading
factor. The resulting time (0.78 seconds of CPU time) was
much longer than expected. So, it was determined to do a

more accurate study, based upon the CPU time of the VAX
11/780, as maintained by its operating system.

In addition, several adjustments were made to further
improve runtime efficiency.

First, it was decided to select an initial minimum
route based only upon network topology, and to only change
that route using Lee's algorithm as necessary. Each gateway
station maintains a compact list of the shortest paths from
itself to all other loops in the network, based solely upon
network topology.

Second, an improvement in Lee's algorithm, suggested in

(7), was implemented. The suggestion is to perform a
breadth-first-search from both the source and destination,
until the two expanding regions meet, and then concatenating
the two resulting paths. This provides the same quality
routes as before, but, on the average, reduces the
algorithm's search space.

An example of the search in both directions is given in
figure 9 for the network in figure 10. The search meets at
the letter I, which is the gateway pair (1 , 7 , 3) , (3 , 8 , 4)

.

The path from the source to this gateway pair passes through
the tree nodes B and I. The gate routing list for this path
is 3,1. The path from the destination to this gateway pair
passes through the tree nodes a and f. The gateway routing
list for this path is 1,3. The gate routing list for the
reverse path is 1,4. Concatenation yields the gate routing
list 3, 1,1, 4. Incidentally, for implementation in the phy-
sical model, two processors with shared memory can be used
with this algorithm to further improve runtime.

- 16 -

dest

Edge markings indicate gate taken from parent node

Figure 9. Trees illustrating two-way Lee’s algorithm

Third, the entire simulation was rewritten in C, to in-
crease efficiency and to produce more readable code.

The results for the random networks were that 23.4 mil-
liseconds of VAX 11/780 CPU time were required to route the
average message from source to destination. It is estimated
that a microprocessor at the current level of technology is
three times slower than a VAX 11/780. So, about 70 mil-
liseconds of microprocessor CPU time would be required,
which differs from the earlier result by an order of

Z = RE-ROUTING POINT
S = SOURCE OF MESSAGE
D = DESTINATION OF MSG

Figure 10. Network used in Fig. 9 illustration of two-way Lee's algorithm

magnitude. This change was due to the earlier inaccurate
modelling and the newer, more efficient routing algorithm
used.

Results indicate that only 14% of the tested networks
were unroutable in the improved simulation, as compared with
26% in the earlier simulation. This is because the networks
used in the new simulation are not as badly fractured as the
earlier networks, due largely to the alternative intraloop
routing capabilities of the GRIDNET and CROSSFIRE concepts.
Of the unroutable networks, 55% had an outage at the desti-
nation gateway, indicating that a majority of unroutable
networks occur due to an outage at the destination gateway,
not due to network fragmentation.

In the same vein, the average path taken contained only
5% more loops than the shortest path, as compared with 17%
in the earlier simulations involving only complete loop
outages

.

- 18 -

An addition factor affecting the processor requirements
is the buffer size necessary to accomodate packet overhead.
Information concerning loop status (outages) is referred to
as "append information" since this information is appended
to the information field of the packet as it is discovered.
The combination of the append list and the gate routing list
is referred to as the "rubber buffer," since it is the only
portion of the packet which grows and shrinks once the pack-
et is under way. The size of this rubber buffer was meas-
ured for the first time in this version of the simulation.
Assuming two bits per gate in the routing list (values are
1-4), and three bytes per outage (L, N, and data) in the ap-
pend list, the average rubber buffer size was 71 bytes, with
a standard deviation of 37 bytes. These statistics are im-
portant in determining an optimal use of bandwidth, and
choice of buffer size

SUBJECTS FOR FURTHER STUDY

This section contains discussions of new ideas which
have been considered but not yet implemented in any model.
Some implementation plans do exist, in particular for
developing data on how well condensing append information
performs

.

Maintenance of Updated Routing Information

Although all simulations to date have used only the in-

formation contained in the packet, there is no inherent rea-
son why a gateway station cannot glean information from each
message which passes through the gateway, maintain it in

some fashion, and use the accumulated information for future
routing

.

It has always been (and continues to be) assumed that a

packet need not contain any information about loops which
are intact. The append list is said to be complete if all

loops which are within a double adjacency neighborhood of

the path taken by the packet, and which also contain
outages, are included in the list. Similarly, a routing
list is said to be complete if it contains the entire list

of gates from the origin to the current loop.

- 19 -

If the append and routing lists are both complete, then
each gateway can compute a "certainty list." The certainty
list consists of which gateways and links the message being
examined has passed within a double adjacency neighborhood.
This can be done by internally traversing the routing list
up to this point, and using the certainty information to
override the previous information contained at the gateway.
This provides a mechanism for continuously updating the in-
formation contained at each gateway.

If a message is determined to be unroutable based upon
the current information contained at the gateway, that in-
formation is purged and re-routing is attempted based only
upon the append information contained in the packet. This
provides a periodic cleansing of the outage information con-
tained at the gateway.

Condensing Append Information

When a large number of outages occur, the append list
can become large. Since it is undesirable to reserve a
large portion of the packet for routing information, a
method of reducing the size of the append list has been pro-
posed.

The underlying idea is a tree structure. Consider the
GRIDNET as a mesh, where each loop is a marble attached to
the mesh according to the GRIDNET specifications. If the
marble representing the origin loop is picked up, the entire
mesh will hang from that marble like a tree. Since only
those loops containing outages need to be included as infor-
mation in the packet, the marbles representing loops without
outages may be cut away, along with the surrounding mesh.

Now consider the fact that each GRIDNET gateway knows
only about its double adjacency neighborhood. Therefore,
the known append information is in a fairly narrow corridor.
This is largely due to the small neighborhood, and partially
because it is hoped that the path is fairly straight. This
narrow corridor in turn implies that a large percentage of
the loops which must be in the list have no neighboring
loops (except for a tree parent) in the list.

Taking all of these factors into consideration, a data
representation is suggested where each entry in the tree
contains a link byte or a data byte or both. Link bytes are
divided ito four two bit groupings. Based upon its position
in the link byte, each grouping corresponds to one of the

- 20 -

gate numbers 1-4. Each grouping consists of a child bit and
a data bit. If the child bit is 1, the loop reached through
this gateway has a link byte r which implies that one or more
of its neighbors (not counting its parent) are in the tree.
If the data bit is 1, the loop reached through this gateway
has a non-zero data byte. By convention, if both bytes are
present, the data byte precedes the link byte. Data
(outage) bytes are in the same format as was mentioned in
the earlier discussion concerning simulation model improve-
ments .

The following listing indicates the significance of
each possible value of the two bit groupings in the link
bytes

.

Child Data Discussion

0

0

1

1

0 No link through this gateway for the tree.
Child loop not contained in the tree or
parent loop.

1 Data only. This is used for leaf nodes, i.e.

entries with non-zero data but no tree chil-
dren.

0 Child only. This is used for loops which are
used only to preserve the connectivity of the
tree.

1 Data and children.

The tree is listed in preorder, i.e., the entry for a

node precedes those of its children. This ordered property
allows the list to be read and written properly, without in-
cluding any address fields.

Figure 11, which refers to the network in figure 12,

illustrates the value of this data compression. The old
method, using 3 bytes per outage, requires 18 bytes to store
the information about the six partially inoperative loops,

while the new method performs the same task using only 13

by te s

.

It is guessed that the implementation of this tree

structure would reduce the mean length of the append list by

about 25% for networks similar to those used in the latest

simulation. Furthermore, it is guessed that the standard
deviation for the length of the append list would be reduced

by about 35% for those same networks. This is due to the

fact that when a large number of outages occur, the concen-
tration of loops with outages increases. This in turn

- 21 -

Old Representation

0000 0101 5 (L)

0000 0111 7 (N)

0000 1001 (5,7) data

0000 0011 3 (L)

0000 0011 3 (N)

0000 1010 (3,3) data

0000 0011 3 (L)

0000 0101 5 (N)

0100 0011 (3,5) data

0000 0101 5 (L)

0000 0011 3 (N)

0000 0100 (5,3) data

0000 0110 6 (L)

0000 0010 2 (N)

0000 1001 (6,2) data

0000 0111 7 (L)

0001 0011 11(N)

0000 0001 (7,11) data

New Representation

(5,5)

data

(5.5) link

(6.6) link

(7.7) link

(7,9) link

(7,11) data

(5.7) data

(4.4) link

(3.5) data

(3.3) data

(5.3) data

(5,3)

link

(6,2) data

0000 0000

1001 1011

1000 0000

0010 0000

0100 0000

0000 0001

0000 1001

0001 0100

0100 0011

0000 1010

0000 0100

0000 0001

0000 1001

Figure 11. Comparison of append data representations

implies that relatively few tree nodes will be needed to
preserve the connectivity of the tree.

If these guesses are reliable, consider the number of
bytes which must be reserved in order to assure that packet
overflow only occurs 1% of the time. For the statistics
computed in the latest simulation results, 167 bytes must be
reserved for append information to assure that packet

- 22 -

L
O
O
P

L
E
V
E
L

20

18

16 -

14 -

12 -

-e- e- e- e- £)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

o @ o o di

C) c? Q) S9 (? Q>
• * & 0 0 0 0

o o o o di

0 0 0 0 0C?CiC?Ci^C5c?C5C?Ci
I I I I I I I I I

10

8 -

2 -

6

C = CURRENT LOOP
S = SOURCE OF MESSAGE
D = DESTINATION OF MSG

8 10 12

LOOP NUMBER

14 16 18 20

Figure 12. Sample network illustrating append list

overflow occurs only 1% of the time. If the guesses listed
above are correct, the same condition can be met with the
new data structure by reserving only 116 bytes.

The worst case for the tree structure occurs when a
large number of entries are needed to preserve tree connec-
tivity. If this turns out to be a major problem, the ap-
proach stated here could be modified to include an arbitrary
number of trees.

It is undesirable to build this tree once per loop, so
the following scheme for updating the tree to a limited de-
gree is suggested:

The tree is obtained from the packet by the gateway,
which compares its double adjacency knowledge to see whether
any new nodes must be added to the tree. If there are new
nodes to be added, an attempt must be made to minimize the

- 23 -

number of network nodes which are used to preserve the con-
nectivity of the tree. Each gateway station maintains a
list of the shortest paths from itself to all other nodes in
the network, based solely upon network topology. Another
copy of this list can be maintained, sorted by the number of
hops from the current loop to every other loop in the net-
work. This latter list is sequentially traversed until a

loop which is already in the tree is found. When this oc-
curs, the list of gates from that loop back to the current
loop is traversed. At each loop a test is made to see
whether this loop is within a small neighborhood (say dou-
ble) of each loop which is to be added to the tree. If this
is the case, the list is modified accordingly. This ap-
proach does not always provide the smallest number of tree
entries, but it should perform reasonably well.

Note that the minimum tree for the network in figure 12
requires 12 bytes rather than 13. The tree indicated in
figure 11 was built on the assumption that the just-stated
algorithm is used.

Resolving Packet Overflow

When a complicated routing is required, the "rubber
buffer," which is carried along with the fixed protocol and
the message text, may overflow the packet. This possiblity
can only be averted by reserving a disproportionate amount
of bandwidth for the rubber buffer.

Three methods of resolving this difficulty were con-
sidered:

The first method suggested was to discard the message
text, and send the rest of the packet back to the source
gate to inform it that the message had not been delivered.

The second method suggested was to split the message in
half, marking each of the two messages with a binary string
describing which part of the message it is, and attempt to
route both messages to the destination. The receiving sta-
tion, or one of the gateways on its loop, would then have to
reassemble the pieces, which do not necessarily arrive in
order. The problem of reassembling a message which has been
split several times can be solved with a binary tree. In

24-

addition, reassembling the message at the destination re-
quires more intelligence and memory at each secondary sta-
tion than is really desirable. If reassembly is done at a

gateway on the destination loop, it becomes difficult to de-
cide which gateway and impossible to guarantee message
delivery. This also introduces the requirement that there
be some sort of dynamic storage allocator available.

The third method suggested was to discard some of the
append information in a first-in-first-out (FIFO) fashion.
This takes away the completeness property of the rubber
buffer which was discussed above.

The first method was discarded since it involves too
high a cost in either bandwidth or in the number of un-
delivered messages. The second method was discarded since
it causes the problems listed earlier and can create a great
deal of traffic if a message is split several times. The
third suggestion has been adopted as least objectionable. A
special flag can be included in the message header indicat-
ing whether append information has been destroyed, and thus
instructing gateways in the routing path as to which algo-
rithm to use in computing their own append tables. If the
append data is stored using trees, then leaf nodes which are
opposite in direction from the current loop, relative to the
origin, are discarded first, as these data probably will not
be needed again.

Network Topology

It is proposed that each gateway should have complete
knowledge as to which loops are actually present within the
network. This allows a gateway to make more intelligent
routing decisions, independent of its append information.
That is, it will not attempt to route messages into loops
which do not exist, or past the edges of the network. This
requires two sorts of topological information: boundaries
and holes.

- 25 -

The requirement for the boundaries of GRIDNETs is that
they be horizontally convex (thinking of L coordinates as
the ordinate and N coordinates as the abscissa) . This helps
in the internal data representation of the append list.

Holes, or missing loops within or on the boundaries of
the network, can be stored in a table with one bit per loop
within the boundaries of the network.

Note that holes may occur on the boundaries of the net-
work. This means that there is no real restriction as to
the shape of the network— the property of horizontal convex-
ity is only used to save memory at the gateway stations.

The topological information may be shared as follows:

When the system comes up, a predesignated maintenance
station will know the network topology. Say that this sta-
tion has GRIDNET coordinates S,L1,N1. Then it will send out
four messages (one through each of the gateways on loop
L1,N1) with the topological information and a pre-selected
roundabout route such that each loop in the network receives
the information with little or no duplication. The source
and destination for each message would be S,L1,N1. The mes-
sages would have to be in a special "share message and ack-
nowledge" mode where only single loop lookahead is used for
re-routing, and re-routing must be to the next possible loop
in the predesignated route. Each loop which receives the
information must mark a bit in the message field which
corresponds to that loop (based on the toplogical informa-
tion) to acknowledge receipt.

The gateway on each loop which receives the topological
information must share it with the other three gateways on
its loop, using its local CROSSFIRE links. If local
CROSSFIRE routing is not possible, the gateway must try to
send the information the long way, through the network.

This approach is believed to be better than spreading
the topological information in all directions, since it in-
forms the maintenance station as to which loops can be con-
tacted. It also creates considerably less traffic, although
that would not be a major problem when the network first
comes up.

Figure 13 shows a possible set of routes for the con-
cept suggested above. The routes for the four messages were
arrived at by hand, since, to date, limited attempts to
develop a good algorithm for performing the walk have
failed

.

- 26 -

Figure 13. Example of a partition for sharing topological information

If a gateway station comes up after the rest of the
network, it can begin querying its neighbors on the topology
after certain of its timers have expired.

- 27 -

Content of Information Field

A suggested format for the information field (4) for an
interloop message follows, based upon the topics discussed
throughout this paper.

Size of packet in bytes

Size of message in bytes

Recommended delivery gate

Destination station number

Destination L,N coordinates

Recommended return gate

Origin station number

Origin L,N coordinates

Origin flag

End-to-end acknowledge flag

Some appends destroyed flag

Share message and acknowledge flag

Return to sender flag

Gateways acceptable for delivery

Size of administrative data

Administrative data

Message text

Number of append bytes

Outage information

Number of routing records

Pointer to current routing record

List of gates for routing

(2 bytes)
{PKTSI Z

}

(2 bytes)
{msgsiz}
(2 bits)
{rdg}
(6 bits)
{sd}
(2 bytes)
{ld,nd}
(2 bits)
{rrg}
(6 bits)
(so)
(2 bytes)
{lo,no}
(! bit)
{orgf}
(1 bit)
{eteack}
(1 bit)
{sappdf}
(1 bit)
{smackf}
(1 bit)
{rtsf}
(4 bits)
{OKGTS

}

(1 byte)
{admsiz}
(ADMSIZ bytes)
{admind}
(MSGSIZ bytes)
{msgtxt}
(2 bytes)
{numapp}
(NUMAPP bytes)
{app}
(2 bytes)
{numrut}
(2 bytes)
{currut}
(2 bits x NUMRUT)
{rutlst}

- 28 -

The following procedure is suggested for updating the
packet, including new routing instructions:

Fetch append tree from buffer to main memory "new appends",
building the main memory append tree simultaneously.

Fetch routing list from buffer to main memory.
Logically traverse routing list up to this point and compare

it with the new append data, creating the certainty list.
Based upon certainty list, merge new appends with old appends.
Modify main memory old append list to include local knowledge.
Modify internal append tree.

Check routing list.
If (routing blocked) {

Attempt to compute re-routing using main memory append list.
If (re-routing failed) {

Overwrite main memory appends with "new appends."
Modify main memory append list to include local routing.
Attempt re-routing again.
If (new re-routing failed) {

Swap origin with destination.
Set RTS.
Attempt to compute a route back to origin.
If (routing back to origin failed) kill the message.

If (out of room in the packet) {

Select which append data is not to be included, and remove
it from the append tree.

}

Load the append tree and the routing list back into the packet.

- 29 -

CONCLUSIONS

The results from these simulations show that, for net-
works with a significant number of outages, Lee's algorithm
delivers all messages in relatively few loops with accept-
able end-to-end processing time.

Problems still remain in limiting the total CPU pro-
cessing time, while maintaining the tree structure suggested
for representing outages. Much of this time can be further
reduced by the use of parallel processors. In particular,
the aforementioned tree can be constructed while, in paral-
lel, a test is performed to determine whether re-routing
needs to be performed. The presence of multiple micropro-
cessors at each gateway pair, will keep total runtime at ac-
ceptable levels.

While it is hoped that they are well founded, any simu-
lation makes a number of assumptions about the process being
modelled. Therefore, it is necessary to build a feasibility
demonstration model for GRIDNET in order to properly test
the ideas developed and to remove any window of uncertainty.

APPENDICES

A. Discussion of why routing heuristic cannot guarantee delivery

The heuristic algorithm developed by G. E. under con-
tract NB80SBCA0477 belongs to a class of routing algorithms
known as line-searchers. This particular algorithm attempts
to create a route by always selecting the adjacent loop with
the shortest Euclidean distance from the destination loop.
Once a path is completed, it is optimized. To avoid moving
in circles, a link between the two halves of a gateway may
be traversed in each direction no more than once.

The danger of a line-search algorithm is that there is
a strong possibility that two adjacent nodes (loops) will
have each other as the smallest value of the measure func-
tion, which can cause a back-and-for th motion. This means
that one must mark paths to make sure that a link is not
traversed twice in the same direction. The problem with
this, however, is that one can construct routable networks
for which the router starts off in the correct direction,
turns around because it learns about some outages which
cause it to think that the other direction is better, only
to find that the latter path is blocked. If the twice-
traversed (forwards and backwards) link is the only way out,
the routing will be unable to proceed despite the fact that
the network is routable.

A suggested alternative was to make traversed paths
"conditionally blocked," and to allow them to be tried once
all other attempts have been exhausted. This will not work
either, though, since one can constuct an unroutable network
with the sort of back-and-for th scenario as described above.

- 31-

B. Proof of why routing heuristic cannot guarantee delivery

To show that routing algorithms like the one delivered
by G. E. for NB80SBCA0477 cannot guarantee delivery in a
GRIDNET , consider the following:

The four nodes (loops) a,b,c, and d are connected to
each other in that order. Nodes b and c have no other
neighboring nodes. Node d has at least one other neighbor-
ing node, which has a path to the destination D. Node a
also has at least one other neighboring node, but no path to
the destination.

D
X

abed
The attempt is to show that if b is the source, if the

initial direction selected is c, and if, for some reason,
node b is selected over node d, both directions of the link
between nodes b and c have been traversed, so that link can
never be traversed again. Since the only possible path to
the destination passes through node d, routing can never be
completed even though a route exists. This argument is only
valid since a gateway in a GRIDNET does not have global net-
work knowledge, and can fall into this trap due to initial
ignorance.

Now it remains to show that such a situation can always
come about. Consider a function f(p,D), where f is a "good"
measure which becomes small as p approaches D. If
f(a,D) >= f (c , D) and f(d,D) > f(b,D), the condition is sa-
tisfied. Fixing the first condition, it remains to be shown
that f(d,D) > f(b,D) is possible. This condition can be im-
posed, based upon the definition of a "good" measure, if b
is closer to D than d is, except for the outage in between.

So, since it lacks global knowledge, the routing algo-
rithm can fail to deliver a packet in a network for which a
path exists. Note that the figure above can be generalized
to a GRIDNET, or many other network configurations.

- 32 -

REFERENCES

1. R. T. Moore, R. J. Carpenter, A. W. Holt, A. L.
Koenig and R. B. J. Warnar, "Phase II Final Report
Computerized Site Security Monitor and Reponse Sys-
tem", National Bureau of Standards, NBSIR 79-1725,
PB 294 343, NTIS, Springfield, VA 22161.

2. R. T. Moore, "GRIDNET" , National Bureau of Stan-
dards, NBSIR 80-2149, PB 81-144370, NTIS Spring-
field, VA 22161.

3. R. T. Moore, "HYBRID GRIDNET Packet and Circuit
Switching in a Single Network", NBSIR 82-2588, NTIS
Springfield, VA 22161.

4. R. T. Moore, "A Discussion of Gridnet Simulation
Results", NBSIR 81-2414, PB 82-142894, NTIS Spring-
field, VA 22161.

5. H. A. Graf et al., GRIDNET Simulation Final Report,
Volume 1, System Description and Results, General
Electric Report No. 81HV008 , 7 August 1981, PB
82-116 013, NTIS, Springfield, VA 22161.

6. H. A. Graf et al., GRIDNET Simulation Final Report,
Volume 2, Model Descriptions and Operating Instruc-
tions, General Electric Report No. 81HV008, 7 August
1981, PB 82-116 013, NTIS, Springfield, VA 22161.

7. F. Rubin, "The Lee Path Connection Algorithm", IEEE
Transactions on Computers, C-23, September 1974, pp.
907-914.

8. ANSI X3. 66-1979, American National Standard for Ad-
vanced Data Communication Control Procedures
(ADCCP) , American National Standards Institute, Inc.
1430 Broadway, New York, N. Y. 10018.

9. Kernighan, B. W. and Ritchie, D. M. , "The C Program-
ming Language", Prentince-Hall Inc., Englewood
Cliffs, NJ, 1978.

- 33 -

GLOSSARY OF TERMS

Breadth-first-search. Starting at vertex v and marking it
as visited, in a Breadth-first-search all unvisited ver-
tices adjacent to v are visited next. Then unvisited
vertices adjacent to these vertices are visited and so
on. This is analogous to an ever widening circle, simi-
lar to a wave caused by throwing a stone into water.

Fixed Overhead. Fixed Overhead refers to the portion of the
packet which is reserved for various control functions.

Gateway. A Gateway is the facility that permits a message
to be transferred from one loop to another. It consists
of two stations that are each able to access a common
buffer memory. One of the stations is on one loop and
the other station is on an adjacent loop. Each of the
stations is capable of functioning both as a primary sta-
tion and as a secondary station, and each of them are
considered to be half of a gateway. When a message is to
be transferred from one loop to the other, the sending
half-gateway places it in the common buffer memory and
notifies the receiving half-gateway. The receiving
half-gateway removes the message from the common buffer
memory and forwards it along the path toward its destina-
tion. (4)

Horizontally Convex. Horizontally Convex describes a region
for which all horizontal lines between two arbitrary
points (loops) {Nl,Ll} and {N2,Ll} always remain within
the boundaries of the region. For example, region (a) is
horizontally convex, but region (b) is not.

G &
(a) (b)

Loop. A Loop is a closed, circular, data communications
configuration. In the GRIDNET, dual Loops are used and
the same data is transferred around one of the pair in a
counter-clockwise direction. A Primary Station is con-
nected with one or more Secondary stations. Gateway sta-
tions interconnect Loops and a message originating at a
station on one loop may be routed through several inter-
mediate Loops before reaching its destination station on
a distant Loop. (4)

Packet. In GRIDNET, a Packet is based upon the ADCCP proto-
col, and consists of a flag, a station address, a control
field, a variable length information field which may

- 34 -

include control functions and addresses, a frame check
sequence, and a trailing flag. (8)

Primary Station. A Primary Station issues commands to the
Secondary Stations (s). The Primary Station controls the
movement of message traffic. In GRIDNET the role of Pri-
mary Station is rotated among the Gateways. These may
number from one to four depending upon the configuration
of the network. (4)

Route. Route is the path or sequence of Loops that a mes-
sage may traverse in going from its source to its desti-
nation. (4)

Secondary Station. A Secondary Station responds to commands
that are issued by the Primary Station. In GRIDNET, a

Gateway functions as a Secondary Station whenever it is
not the acting Primary Station. A Loop may have up to
perhaps 20 additional Secondary Stations that are not
Gateways. (4)

- 35-

NBS-114A (REV. 2»8C)

U.s. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

2. Performing Organ. Report No. 3. Publication Date

NBSIR 83-2660 February 1983

4.

TITLE AND SUBTITLE

A Discussion of Gridnet Algorithms and Simulation Results5.

AUTHOR(S)

J. A. Epstein

6.

PERFORMING ORGANIZATION (If joint or other than NBS, see in struction s) 7. Contract/Grant No.

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

8.

Type of Report & Period Covered

Interim, 5/17/82-11/12/82

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State. ZIP

)

Defense Nuclear Agency
Washington, D. C. 20305

10.

SUPPLEMENTARY NOTES

] Document describes a computer program; SF-185, FIPS Software Summary, is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant
bi bliography or literature survey, mention it here)

This report is an evaluation of the results of computer simulation of GRIDNET

conducted during the period from 17 May 1982 to 12 November 1982.

This report describes the testing and modification of algorithms which permit

messages in a GRIDNET to be routed from any source to any destination, in a network

having thousands of nodes, and to accomplish this routing in an efficient manner

using only limited local knowledge of network operability status. Estimates were

developed for algorithm performance and runtime efficiency. Additional studies

were made concerning network connectivity, reducing packet overhead, network

topology, and resolving packet overflow.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

alternate routing; communications networks; distributed control; network connectivity,

packet overhead; packet switching; survivability

13. AVAILABILITY 14. NO. OF
PRINTED PAGES

QX] Unlimited

| |

For Official Distribution. Do Not Release to NTIS 39

H Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402. 15. Price

[X] Order From National Technical Information Service (NTIS), Springfield, VA. 22161 $8 . 50

U SCOMM'DC 6043-P80

r

