

NBSIR 83-2658

Solcom: A Computer Program to Integrate Solar and Conservation Economics For New Commercial Buildings

Operations Research Divisiun
Center for Aspplied Mathematics
National Engineering Laboratory
National Bureau of Standards
-QC ıgton D.C. 20234

SOLCOM: A COMPUTER PROGRAM
TO INTEGRATE SOLAR AND CONSERVATION ECONOMICS FOR NEW COMMERCIAL BUILDINGS

Stephen R. Petersen

U.S. DEPARTMENT OF COMMERCE
National Bureau of Standards
National Engineering Laboratory
Center for Applied Mathematics
Operations Research Division
Washington, DC 20234

January 1983
U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

Abstract

This report provides a methodology, algorithms and a computer program for determining the minimum life-cycle cost combination of three interdependent conservation strategies in new commercial buildings. These three strategies consist of (1) envelope modifications to reduce seasonal and peak load heating and cooling requirements, (2) heating and cooling plant modifications to increase their seasonal efficiency, and (3) the use of an active solar space and water heating system. The resulting computer program, called SOLCOM, can be run on a microcomputer in three stages.

The SOLCOM program performs a complete life-cycle cost analysis for the active solar system and for each envelope and plant modification to be considered, including tax and mortgage effects. The program then determines the optimal overall conservation investment strategy, including envelope modifications and the corresponding seasonal and peak load heating and cooling requirements; space heating, water heating, and space cooling plant efficiencies; and collector size for the active solar heating system.

Key words: building economics, commercial buildings; energy conservation; engineering economics; heating and cooling equipment; heating and cooling loads; life-cycle cost analysis; optimization algorithms; solar heating.

PREFACE

This report describes a computer program, developed at the National Bureau of Standards, for the simultaneous optimization of a number of interdependent energy-conservation-related investments in new commercial buildings. At present, this computer program, called "SOLCOM", is still experimental in nature. It has not been field tested in actual building design exercises. While the SOLCOM program provides a technically sound basis for the application of a microcomputer to complex economic decisions in new buildings, some improvements may be needed to make the program more user oriented. Use of the SOLCOM program in actual building design problems must be made at the users own risk.

For a limited time, NBS will provide a copy of the SOLCOM program, for experimentation and field testing use, by written request if accompanied by a 5 1/4-1n "floppy" disk (compatible with the Radio Shack TRS-80 model III microcomputer) and a self-addressed return envelope. Requests should be addressed to:

Stephen Petersen
Operations Research Division Bldg. 224, Rm. B120
National Bureau of Standards Washington, D.C. 20234

ACKNOWLEDGMENTS

The author wishes to thank all those persons who contributed to the review and final preparation of this report. Particular appreciation is extended to Robert Chapman, James Barnett and William B. May for their careful review and many helpful suggestions. The author also wishes to thank Robert Dikkers, Leader of the NBS Solar Technology Group for his support of this project, and the Office of Solar Heat Technologies, Department of Energy, for funding this research. Finally, a special thanks to Brenda Thompson of the CBT Word Processing Group for typing this report.

TABLE OF CONTENTS

Page
ABSTRACT 111
PREFACE iv
ACKNOWLEDGMENTS v
LIST OF FIGURES vil
LIST OF TABLES vil

1. INTRODUCTION 1
2. THE SOLCOM PROGRAM 5
2.1 WHAT SOLCOM CAN DO 5
2.2 DATA ENTRY FOR SOLCOM 10
2.3 RUNNING THE SOLCOM PROGRAM 11
3. CALCULATION PROCEDURES USED IN SOLCOM 22
3.1 ENERGY ESTIMATING PROCEDURES 22
3.2 SOLAR FRACTION ESTIMATING PROCEDURES 24
4. OPTIMIZATION CRITERIA AND ALGORITHMS 28
4.1 INDEPENDENT OPTIMIZATION CRITERIA 30
4.2 SIMULTANEOUS OPTIMIZATION OF DESIGN VARIABLES 35
4.3 OPTIMIZATION ALGORITHMS USED IN SOLCOM 37
4.3.1 Optimization of Solar Collector Area 38
4.3.2 Optimization of Envelope Modifications, AHR and ACR 43
4.3.3 Optimization of Space Heating Plant Efficiency 47
4.3.4 Optimization of Water Heating Plant Efficiency 48
5. FINANCIAL ANALYSIS METHODOLOGY 50
5.1 CALCULATION OF DISCOUNT FACTORS 50
5.1.1 Cost Escalation Factors 50
5.1.2 Discount Factors 50
5.1.3 Modified Uniform Present Value Factors 51
5.2 GENERAL LCC MODEL FOR CONSERVATION INVESTMENTS IN BUILDINGS 51
5.2.1 Non-Energy Costs 51
5.2.2 Energy Costs 56
5.3 CALCULATION OF CUMULATIVE DEPRECIATION FACTORS AND FINANCING FACTORS 56
5.3.1 Cumulative Depreciation Factors 56
5.3.2 Financing Factors 57
6. SUMMARY 60
REFERENCES 61
APPENDIX A. SOLCOM DATA SHEETS A-1
APPENDIX B. SOLAR LOAD RATIO COEFFICIENTS B-1
APPENDIX C. LISTING OF SOLCOM PROGRAM C-1

LIST OF FIGURES

Page
3.1 Solar fraction vs. collector area for given building (general form) 25
4.1 Cumulative envelope modification cost as a function of annual heating requirements (general form) 29
4.2 Plant cost as a function of efficiency (general form) 29
4.3 Solar fraction as a function of collector area and annual heating requirements (general form) 31
4.4 Total heating-related life-cycle costs: annual heating requirements variable 31
4.5 Total heating-related life-cycle costs: plant efficiency variable 32
4.6 Total heating-related life-cycle costs: collector area variable 32
4.7 First derivative of the total cost curve as a function of collector area (f'(A)) 40
4.8 Convergence algorithms to locate $f^{\prime}(A)=0$ 40
LIST OF TABLES
Table 2.1 Sample Output from Overall Optimization Analysis (SI Units) 7
Table 2.2 Sample Output from Solar-Only Optimization Analysis (SI Units) 9
Table 2.3 Supporting File FL2 (SI Units) 14
Table 2.4 Sample Output from Overall Optimization Analysis (Customary Units) 17
Table 2.5 Supporting File FLl (Customary Units) 19

The large number of design measures for reducing purchased energy use in new commercial buildings can make the final design decision a difficult one. There are literally hundreds of different energy-conserving methods that can be incorporated into a new building design, from insulation to energy management systems. The designer seeks the optimal combination of these measures -- not only in terms of today's energy market, but in terms of his projection of the future energy market as well. Failure to plan for the future during the design stage could significantly reduce the economic life of a building. While retrofitting of the building with additional energy conservation features at some point in time may stave off economic obsolescence, these same features can usually be incorporated into the original design at considerably lower cost.

Economic analysis plays an important role in the building design process by providing systematic and objective decision-making methods for evaluating energy-saving measures in new buildings. For example, life-cycle cost methods can be used to determine which of several alternatives is least expensive in doing a certain job (e.g., reducing heat loss or heat gain through windows to a specified rate), not only in terms of initial cost but also in terms of maintenance, repair and replacement costs over the building life. Economic analysis can also be used with life-cycle costs and benefits to help to determine how much of a particular conservation measure should be used, (e.g., how much insulation should be used in exterior walls). Ultimately, these same analytical methods can be used to determine the economically optimal combination of all conservation measures to be incorporated into the building design. The economically optimal combination of conservation measures is defined here as that combination of measures which minimizes total present-value, energyrelated costs over the life of the building (or over a specified study period), while satisfying required building performance objectives (e.g., thermal comfort and design aesthetics).

Design measures for conserving energy in new buildings can be classified into four general categories, each of which competes somewhat with the others in reducing purchased energy requirements:
(1) envelope or other structural modifications which reduce end-use energy requirements (e.g., space heating and cooling requirements),
(2) equipment modifications which increase the efficiency of energy conversion to its end use form,
(3) renewable energy systems which substitute "free" energy available at the building site (e.g., solar and wind power) for purchased energy usage, and
(4) energy management systems to cut back or shut down energy using systems when demand is reduced or eliminated during certain hours of the day or days of the week.

This report explicitly addresses economic optimization procedures for the first three of these design categories, specifically with regard to space heating, space cooling, and service water heating. The fourth category essentially establishes the operational profile for which the first three categories of conservation measures must be evaluated. As such, energy management systems are not explicitly considered as a design variable to be optimized in this report.

A major obstacle to the determination of an overall minimum life-cycle cost design is the functional interdependence among the first three of these competing approaches to energy conservation. For example, as the envelope of the building is tightened up to reduce space heating loads, smaller purchased energy savings are attributable to improvements in the heating plant efficiency, or to the addition of a solar heating system. The substitution of solar heating for conventional heating results in smaller operating cost savings from both envelope and conventional equipment improvements. And efficiency improvements to conventional space heating equipment reduce the energysaving benefits from improvements in the building envelope and solar heating system. Determining the optimal allocation of conservation investment among these three categories must be undertaken simultaneously. This requires a systematic procedure that can be employed within a reasonable amount of time and with a reasonable amount of effort.

The purpose of this report is to provide a methodology, algorithms, and a supporting computer program that can be used by building design professionals to determine the optimal amount of conservation investment to be made in each of these three competing conservation categories. The resulting computer program, called SOLCOM, is primarily intended for use as a design tool for new commercial buildings with active solar space and water heating equipment. However, it can be used in the analysis of residential building designs with active solar heating equipment as well. SOLCOM integrates a wide range of building and component performance data, cost data and financial analysis criteria for a specific building design. It then determines the economically optimal combination of conservation measures, including envelope conservation features, conventional space heating, water heating, and space cooling equipment efficiencies, and solar heating equipment size. Changes in energy costs, conservation costs, the discount rate, study period, tax treatments and other financial analysis criteria can be entered into the program in order to determine the sensitivity of the optimal design configuration to these variables.

A significant amount of thermal performance data and economic-engineering analysis is needed before the SOLCOM program can be used. Space heating and cooling requirements, water heating requirements, and peak heating and cooling loads for the basic building envelope design must be determined, based on an anticipated occupancy profile and the climatic location. Appropriate envelope modifications must be selected and their impact on heating and cooling requirements and peak loads estimated. Space heating, water heating, and space cooling plant efficiencies and distribution energy requirements must be determined for each alternative system to be evaluated. Also, specific thermal performance parameters for the solar heating equipment must be known. Building
energy analysis programs, such as BLAST ${ }^{1}$, DOE- 2^{2}, and TRNSYS ${ }^{3}$, can be used to obtain most of these physical performance data requirements. Solar performance parameters are based on the Solar Load Ratio ${ }^{4}$ method. The report serves primarily as a users guide to the SOLCOM program. However, the life-cycle cost and economic optimization methodologies and algorithms used in SOLCOM are thoroughly documented and can be used independently of SOLCOM if desired. Examples of SOLCOM optimization analyses are shown for a hypothetical building design but are not intended to provide insight into the relative merits of any of the conservation methods examined.

This report represents a considerable extension of previous work on simultaneous optimization of energy conservation measures in buildings. Sav ${ }^{5}$ has stated the economic optimality conditions that must be satisfied in order to find a simultaneous solution to the design problem. Balcomb 6 has reported a methodology to determine the optimal mix of conservation and solar energy in building design for residential applications, but without consideration of domestic hot water, space cooling or simultaneous optimization of the conventional equipment efficiencies. Noll and Thayer ${ }^{7}$ have examined graphically the nature of the tradeoff between solar equipment sizing and envelope performance improvements. Barley ${ }^{8}$ has developed an algorithm for optimizing both the relative size of active solar equipment and insulation levels in each portion of a building independently of the other portions, and includes water heating as well as space heating in the analysis. None of these reports focuses on commercial building applications, nor do they allow optimization of the heating and cooling equipment as in SOLCOM. The SOLCOM computer program, which can be run

1 Hittle, D. C., BLAST, The Building Loads Analysis and System Thermodynamics Program, CEEDO-TR-77-35/CERL-TR-E-119/ADA048734, U.S. Army Construction Engineering Research Laboratory Systems [CERL], December 1977.

2 DOE-2 Reference Manual (Version 2.1), eds. D.A. York and E. F. Tucker, LBL-8706 Rev. 1, Lawrence Berkeley Laboratory, Berkeley, CA, and LA-7689-M. Ver. 2.1., Los Alamos National Laboratory, Los Alamos, N.M., 1980.

3 TRNSYS - A Transient Simulation Program. Solar Energy Laboratory, Report 38, University of Wisconsin, Madison, WI. November 1976.

4 See both Schnurr, Norman M., Hunn, Bruce D., and Williamson, III, Kenneth D., "The Solar Load Ratio Method Applied to Commercial Building Active Solar System Sizing," Solar Engineering - 1981 Proceedings of the ASME Solar Energy Division 3rd Annual Conference on Systems Simulation, Economic Analysis/Solar Heating and Cooling Operation Results, Reno, Nevada, April 27-May 1, 1981, American Society of Mechanical Engineers, New York, N.Y., 1981, and Department of Energy, DoE Facilities Solar Design Handbook, DoE/AD-0006/1, U.S. Government Printing Office, Washington, D.C., 1978.

5 Sav, G. Thomas, "Economic Optimization of Solar Energy and Energy Conservation in Commercial Buildings," Systems Simulations and Economic Analysis for Solar Heating and Cooling, Proceedings of the U.S. Department of Energy Conference, San Diego, CA, June 27-29, 1978, pp. 88-90.
on a microcomputer in three stages, provides a ready facility for solving large-scale design optimization problems not available in these other reports.

Because this report serves primarily as a users guide to the SOLCOM computer program, the program is described first. In section 2, three SOLCOM subprograms are discussed, input data requirements are detailed, and examples of the output are provided. In section 3, the computational procedures used in SOLCOM to calculate annual energy use in a commercial building are discussed, and the Solar Load Ratio (SLR) method of calculating solar fractions for space heating and water heating is outlined.

In section 4 , the optimization criteria for determining the least life-cycle cost combination of conservation measures in a building are examined. Optimization criteria are first presented for determining the optimal value of a single variable in a simple space-heating-only model. Simultaneous optimization methods are then discussed for the same model. Finally, the algorithms for determining the optimal combination of envelope modifications, the optimal solar collector area, and the optimal efficiency of the space heating plant and water heating plant, as used in SOLCOM, are presented.

In section 5, the financial analysis method needed to determine the present value of all conservation-related costs and energy costs are discussed. This includes the analysis of initial costs, future operating and maintenance costs, and salvage (or resale) value, tax adjustments, and mortgage arrangements. Appendix A provides blank data sheets which can be used to organize the data input needed to run the SOLCOM program. Appendix B lists the SLR coefficients of six different active solar heating systems for commercial buildings that can be used in the SOLCOM program. Appendix C provides 1istings of the SOLCOM program 1tself.

6 Balcomb, J. Douglas, "Conservation and Solar: Working Together," LA-UR-80-2330, Los Alamos Scientific Laboaratory, Los Alamos, N.M., 1980. and "Optimum Mix of Conservation and Solar Energy in Building Design," Proceedings of the 1980 Annual Meeting of the AS/ISES, June 2-6, 1980; Phoentx, AZ, pp. 1202-1206.

7 Noll, Scott and Thayer, Mark, "Passive Solar Auxiliary, Heat and Building Conservation Optimization: A Graphical Analysis," Fourth Passive Solar Conference Proceedings, Kansas City, Oct 3-5, 1979.

8 Barley, C. Dennis, "Load Optimization in Solar Space Heating Systems," Solar Energy, Vol. 23, pp. 149-156.

2.1 WHAT SOLCOM CAN DO

The SOLCOM program was developed primarily to serve as a computer tool for use by architects, engineers, and building researchers. Its purpose is to determine the economically optimal mix of certain energy conservation measures in a new commercial building design. More specifically, it allows the designer to evaluate the technical and economic tradeoffs between three competing conservation approaches: (1) improvements in the thermal performance of the building envelope to reduce space heating and cooling requirements, both in peak load and annual terms; (2) higher efficiency conventional space heating, water heating, and space cooling equipment; and (3) more use of active solar heating equipment.

The SOLCOM program is written in BASIC computer language and is compatible at present with the Radio Shack TRS-80 Model III microcomputer (48K RAM) with one or more disk drives and a compatible line printer with 132-character line width. 1 The SOLCOM program actually consists of three subprograms which are run in sequence: SOLCOM1, SOLCOM2, and SOLCOM3. It is assumed that the user is familiar with the steps required to load and run a BASIC program from a $51 / 4-i n$ disk.
(1) SOLCOM1 is a financial analysis subprogram which computes the present value cost associated with each design option to be evaluated, including a variety of tax effects and financing arrangements, over the study period selected by the user. SOLCOMl also computes the present value of unit energy costs over the study period for each energy type specified. All of the conservation measures to be evaluated, as well as base efficiency data for the conventional heating and cooling systems are entered in the SOLCOMl program. Pertinent cost data, financial analysis assumptions, and borrowing terms, if any, are also entered in SOLCOMI. The results of SOLCOMI analysis are stored in an intermediate data file which is then read by SOLCOM2.
(2) SOLCOM2 is an optimization subprogram which determines the minimum life-cycle cost combination of solar equipment size, conventional equipment efficiencies, and envelope modifications. SOLCOM2 also determines the corresponding annual heating and cooling requirements, peak heating and cooling loads, and conventional equipment size requirements. It reads in life-cycle cost data from the intermediate file created in SOLCOMI. Relevant optimization results and financial analysis data are stored in a second intermediate file to be passed on the SOLCOM3.

1 Certain trade names and company products are identified in order to adequately specify the computer equipment used. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the products are necessarily the best available for the purpose.
(3) SOLCOM 3 provides the format needed to print out the results of the SOLCOM analysis. The intermediate file created by SOLCOM2 is read into SOLCOM3. This data is processed into a comprehensive LCC report, which includes many of the assumptions, the optimal combination of conservation measures, and the resulting annual and peak load energy requirements for each end use.

SOLCOM determines the economically optimal solar collector size and space heating and water heating plant efficiencies in a single run. However, in order to optimize the space cooling plant efficiency, individual runs of SOLCOM must be made for each alternative cooling efficiency level considered. The results of these runs can then be compared manually in order to select the overall configuration with the lowest total life-cycle cost. (Inclusion of alternative cooling efficiency levels in a single analysis results in unacceptably long run times.)

Two different types of analysis can be made with SOLCOM, as specified by the user during execution. The overall optimization mode finds the minimum lifecycle cost combination of envelope modifications, conventional equipment efficiencies and solar collector area. An example of the output for this overall optimization is shown in Table 2.1. The sample output first lists many of the basic assumptions used in the life-cycle cost analysis and then provides the results of the actual optimization analysis. Note that the life-cycle costs attributed to the three categories of conservation expenditures do not include energy costs or savings. Energy costs make up a fourth category of costs. While the envelope modifications to be included in the optimal design are printed out in decreasing order of cost effectiveness, their absolute cost effectiveness (based on the energy savings attributable to each) is not included in this report.

The solar-only optimization mode prints out the annual heating and cooling requirements, the optimal solar collector area and corresponding solar fraction for the base envelope configuration and subsequent configurations with cumulative conservation modifications (in the order that these modifications are entered in the supporting data files). An example of this solar-only optimization is shown in Table 2.2. The first line of calculated values pertains to the base envelope configuration and each subsequent line gives results for a new envelope configuration containing an additional conservation measure. In order to run the solar-only optimization, the user must specify which of the space heating and water heating efficiencies contained in the input data files to use. This solar-only optimization mode is useful for observing the relationship between the optimal collector size and the annual space heating and water heating requirements for a building. In addition, the solar-only optimization shows the corresponding cumulative envelope modification costs, equipment costs, energy cost, and the total life-cycle cost corresponding to each alternative envelope configuration. If the envelope modifications are entered in order of decreasing cost effectiveness, the optimal envelope configuration includes all conservation modifications up to and including the modification resulting in the lowest total life-cycle cost. In table 2.2, the total (lifecycle) cost is minimized for a building having a space heating plant efficiency of 60 percent, a water heating plant efficiency of 60 percent, and a cooling plant efficiency of 200 percent (i.e., coefficient of performance of 2.0) by


```
* PROJECT NAME: TEST PROELEM (SI UNITS)
* RUN DATE:01/08/83 00:11:00
* STUDY PERIOD: 20 YEARS (1982 TO 2001)
* TAX 5TATUS: TAX-PAYING EUSINESS
* INCOME TAX RATE: FEDERAL=46.00%, STATE= 5.00%
* PROPERTY TAY RATE: 2 00% GTATE SALEG TAX RATE
PROPERTY TAX RATE: 2.00% STATE SALES TAX RATE: 0.0日%
* CAPITAL GAINS MULTIPLIER: FEDERAL=40.00%, STATE=40.0®%
* SUPPORTING FILE: FL2
```


ANNUAL DISCOUNT RATE AND COST ESCALATION RATES

$\begin{aligned} & \text { FROM: } \\ & \text { TO: } \end{aligned}$	1982 1986	1987	1992
**************	******	******	******
DISCOUNT RATE	10.00\%	10.00%	10.00\%
AVERAGE ANNUAL			
COST INCREASE			
MAINTENANCE	10.00\%	10.00\%	10.00\%
ELDG VALUE	15.02\%	10.00\%	10.00\%
NATURAL GAS	12.00%	11.00\%	10.00%
ELECTRICITY	10. DC\%	10.00\%	10.00\%

EASE YEAR UNIT ENERGY COSTS

END USE
************* SPACE HEATING WATER HEATING SPACE COOLING FANS/PUMPS: SOLAR DISTRIEUTION: HTG DISTRIRUTION: CLG

ENERGY TYPE UNIT

ENERGY TYPE	UNIT	KJ /UNIT
***********	$* * * * * *$	$* * * * * * * *$
NATURAL GAS	GJ	1000000
NATURAL GAS	GJ	1000000
ELECTRICITY	KWH	3600
ELECTRICITY	KNH	3600
ELECTRICITY	KWH	3600
ELECTRICITY	HWH	3600

UNIT COST

$\$ 9.478$
$\$ 9.472$
$\$ 0.060$
$\$ 0.060$
$\$ 0.060$
$\$ 0.060$

Table 2.1 (continued)

OPTIMIZATION ANALYSIS

* * * * * * * * * *

(1) OPTIMAL ENVELOPE MODIFICATIONS (IN DECREASING ORDER OF́ COST EFFECTIVENESS):

	FIRST	LIFE-CYCLE
MOD1	COST	COST*
MOD2	$\$ 1,000$	$\$ 835$
MOD3	$\$ 1,500$	$\$ 790$
TOTAL ENVELOPE MODIFICATION COST	$\$ 2,000$	$\$ 1,054$
APPLICABLE TAX CREDITS	$\$ 4,500$	$\$ 2,679$
NET FIRST COST	$\$ 693$	

(2) OPTIMAL CONVENTIONAL EQUIPMENT EFFICIENCY:
OUTPUT CAP. SEASONAL
$(\mathrm{MJ} / \mathrm{HR})$ EFFICIENCY
307

FIRST	LIFE-CYCLE
COST	COST*
$\$ 10,260$	$\$ 9,090$
$\$ 3,700$	$\$ 3,956$
$\$ 6,721$	$\$ 6,586$
$\$ 20,681$	$\$ 19,632$
$\$ 231$	

```
SPACE HEATING 397 75.00%
WATER HEATING N/A 75.00%
SPACE COOLING 182 200.00%
    TOTAL CONVENTIONAL EQUIPMENT COST
    APPLICABLE TAX CREDITS
```

 NET FIRST COST
 (3) SOLAR HEATING SYSTEM APPLICABLE TAX CREDITS NET FIRST COST

LIFE-CYCLE FIRST LIFE-CY
COST COST*
\$22,017 \$16,581

OPTIMAL COLLECTOR SIZE SOLAR FRACTION(S): SPACE HEATING WATER HEATING COMEINED
FIXED COST COST PER SO. M
78.1 SQ. M
18.2\%
40.1\%
23.8%
\$1,000 $\$ 269$
(4) ENERGY REOUIREMENTS AND COST:

OUTPUT ENERGY REQUIREMENTS	ANNUAL	PEAK LOAD
SPACE HEATING	GJ/YR,	$($ MJ/HR $)$
WATER HEATING	375	269
SPACE COOLING	127	N/A
	149	149

INPUT ENERGY REQUIREMENTS

NPUT ENERGY REQUIREMENTS	******	ANNU	******	$\begin{gathered} \text { FIRST-YR } \\ \text { COST } \end{gathered}$	$\begin{gathered} \text { LIFE } \cdot \text { CYCLE } \\ \text { COST* } \end{gathered}$
SPACE HEATING PLANT	402	GJ	NATUR	\$3,808	\$43,661
WATER HEATING PLANT	101	GJ	NATUR	\$958	\$10,988
SPACE COOLING PLANT	21,015	KWH	ELECT	\$1,261	\$12,937
SOLAR FANS/PUMPS	557	KWH	ELECT	\$33	\$343
DISTRIEUTION SYSTEM:					
SPACE HEATING	1,775	KWH	ELECT	\$107	\$1,093
SPACE COOLING	705	KWH	ELECT	\$42	\$434
Total energy cost				\$6,209	\$69,456
L LIFE cycle cost					\$108,348

(5) TOTAL LIFE CYCLE COST
$\$ 108,348$

* AFTER-TAX LIFE-CYCLE COST

Table 2.2 Sample Output from Solar-Only Optimization Analysis (SI Units)

using the first three envelope modifications and a solar heating system with a total collection area of $132.7 \mathrm{~m}^{2}$, resulting in a total life-cycle cost of $\$ 118,858$.

2.2 DATA ENTRY FOR SOLCOM

One supporting data file is needed to run the SOLCOMl program. This file, contains cost data, financial analysis assumptions, descriptors of the modifications to be examined, thermal performance data for the basic building and the envelope modifications, and incident solar radiation data. 1 All input data are entered directly by the user into the data file using line numbers specified in the data sheets. Interactive commands are used only for procedural decisions during execution. The data file can be easily modified using the BASIC edit mode of the microcomputer. In general, these data files are too long and complicated to warrant the use of an interactive file-creating subroutine for data entry and modification. It is recommended that supporting files be created separately from the SOLCOM program, saved ${ }^{2}$ under their own names, and merged with the SOLCOMI program upon execution. This allows a permanent record of the data file used for a given building analysis and allows it to be rerun at some future time.

SOLCOM analyses can be made in either SI units or conventional units of measurement. Care must be exercised to use consistent units in the data entry stage.

Because of the number and diversity of the data requirements needed in the supporting file, 18 data entry sheets have been prepared to assist the SOLCOM user. These data sheets are located in Appendix A. Not all of these data sheets or data entries will be needed for every case, but they cover every currently allowable input to the SOLCOM program. However, no default values are provided, so that all relevant data entries must be made. The line numbering scheme for the data entries does not have to be adhered to rigidly, but each data point must be entered in the order shown and each data line must be numbered higher than the one preceeding. The highest data line number that

[^0]can be used is 19999. The term "DATA" must follow immediately after each line number as shown. Each data entry must be separated by a comma, but no trailing commas are permitted. Extreme care must be used in the data entry process since no error checking routine is presently available. Actual examples of the supporting data file are shown in section 2.3 , along with the corresponding SOLCOM optimization analysis.

2.3 RUNNING THE SOLCOM PROGRAM

As described in section 2.1, the SOLCOM program is run in three stages: SOLCOM1, SOLCOM2 and SOLCOM3, respectively. The TRS-80 microcomputer has two ways of displaying output data: on the CRT screen (soft copy) and on the printer (hard copy). The SOLCOM program has user-interactive data input requests and error messages which show on the CRT screen. Only the final formatted output from SOLCOM3, and the collector-only optimization analysis in SOLCOM2, are printed out in hard copy.

To run SOLCOM, SOLCOMI must first be loaded into the computer memory using the BASIC "LOAD" command. The supporting data file is then entered (or merged) into SOLCOM1 (see section 2.2). SOLCOM1 can then be started with a "RUN" command. When all of the computations are complete (this takes 2-5 minutes), a message will appear on the CRT screen:

"ENTER TRANSFER FILE NAME FOR SOLCOM2"

At this point the user must enter the name of the transfer file to be created in order to transfer the intermediate results to the SOLCOM2 program. (File names have a maximum of eight letters or numbers and must begin with a letter, e.g., "OUT1". Do not use the name of another program or file already stored on the same disk or that existing program or file will be erased.) Once the transfer file is created, the SOLCOMl analysis is completed. SOLCOM2 can be automatically run at this point if the user responds affirmatively to the CRT message:
"DO YOU WANT TO RUN SOLCOM2?"
If the user answers negatively, the SOLCOM1 program ends and can then be run again with changes in the supporting data file or with a new supporting data file.

SOLCOM2 can be run separately (if a transfer file from SOLCOM1 is available) or by being called in by SOLCOM1. When SOLCOM2 is run, several user input requests are made on the CRT screen:
(1) "ENTER TRANSFER DATA FILE NAME FROM SOLCOM1"

The user should enter the same name as that entered in SOLCOM1 for transfer file (e.g., OUT1), or should enter the name of another file created in a previous run of SOLCOM1.
(2) "COMPLETE OPTIMIZATION (1) OR SOLAR COLLECTOR SIZE OPTIMIZATION ONLY (2)?"

Enter "1" or "2" as desired (see section 2.1).
If " 1 " is entered, the computer will request additional input:
"ENTER SEARCH STARTING POINT INDEXES (I,J,W) FOR ENVELOPE, SPACE hEATING EFF, WATER HEATING EFF"

These indexes correspond to the $I^{\text {th }}$ envelope modification, $J^{\text {th }}$ space heating plant efficiency, and $W^{\text {th }}$ water heating plant efficiency, as described in the data file used in SOLCOMl (Data sheets 6, 9, and 11, respectively). Entries should be separated by a comma. Good guesses as to what the optimal values of I, J, and W are will help SOLCOM2 converge more rapidly on the optimal combination of investments.

A second request is made for the complete optimization case:
"ENTER FIRST GUESS FOR THE OPTIMAL COLLECTOR AREA FOR THE STARTING POINTS USED."

This area (in m^{2} for $S I$ units or ft^{2} for conventional units) should be between the minimum (M1) and maximum (M2) collector sizes specified in the SOLCOM1 data file. (See data sheet 15.)

If the solar collector size optimization only option is selected (2), SOLCOM2 requests the following data:
"ENTER INDEXES FOR SPACE HEATING (J) AND WATER HEATING (W) PLANTS."
The user enters 1 for the base heating plant efficiency or the appropriate J index for any other space heating plant efficiency used in the SOLCOM1 file, followed by a comma, and the desired value of the W index for the water heating plant efficiency. No further user input is required. The results of the solar-only optimization are output by the line printer.

If only the solar collector size optimization output is required, SOLCOM3 is not needed and no transfer file is created. If the complete optimization analysis is made in SOLCOM2, a transfer file to SOLCOM3 is needed. SOLCOM asks:
"ENTER TRANSFER FILE NAME FOR SOLCOM3."
The user enters a file name (e.g., OUT2). Then SOLCOM3 is automatically loaded and run at this point.

SOLCOM3 requires only one input from the user:
"ENTER TRANSFER FILE NAME FROM SOLCOM2."

The user enters the name of the transfer file used to save the results of the SOLCOM2 analysis. At this point the results of the complete SOLCOM analysis will be printed out.

Table 2.1 shows the results from a SOLCOM analysis of a hypothetical office building, based on the SOLCOM1 input data file shown in table 2.3 (FL2). This is an example of a run made in SI units. Envelope modifications are hypothetical and are identified here only by arbitrary designators (MOD1, MOD2, etc.). Table 2.2, which shows a solar-only optimization example for the same building, is also based on the data base in supporting file FL2.

Table 2.4 shows a SOLCOM analysis of the same building, made in conventional units, with supporting data file shown in table 2.5 (FL1). The same run was made in both SI and conventional units to assist the user in preparing data files in either measurement system and to show that the results are identical in terms of optimal design specifications and corresponding costs.

In both of these examples, the auxiliary space heating and water heating plants are separate. SOLCOM can also be used with a combined space and water heating auxiliary plant, or for space heating only, by proper specification of variables Q1 and Q2 in the supporting file to SOLCOM1. (See data sheet 11.)

```
999 REM FILE NAME IS FL2. ANY CHANGES MUST RE SAVED IN ASCII FORMAT.
1EOD REM DATA SHEET 1
10D1 DATA FLZ
:CZこ DATA TEST PROZLEM (SI UNITS)
[6j3 DHTA 2,i982,20,1,46
1004 DATA 5,0,40,40,2
2000 REM DATA SHEET 2
2001 DATA J
2:01 DATA 5,10,10,10
2102 DATA 5,10,10,10
2103 DATA 10,10,10,10
3000 REM DATA SHEET 3
30D1 DATA 2
3101 DATA 12,10
3102 DATA 11,10
ミ003 DATA 10,10
LCOO REM DATA SHEET }
4 1 0 1 ~ D A T ' A ~ 9 . 4 7 7 8 , 1 0 0 0 0 0 0 , N A T U R A L ~ G A S , G J ~
412こ DATA 0.06,3600,ELECTRICITY, KWH
50:30 REM DATA SHEET 5
S0\1 DATA D
ODOU REMI DATA SHEET 6
GMOI DATA 5
&1Z: DATA 1, MOD1:1000,25,2
&102 DATA 2, MOD2,1500,0,0
G:D3 DATAA 3, MODJ, 2000,0,0
6104 DATA 4, MOD4,2500,0,0
6105 DATA 5, MOD5,3000,0,0
6201 DATA 50,50,25,10,10
6202 DATA 50,50,25,10,10
6203 DATA 50,50,25,10,10
b204 DATA 50,50,25,10,10
6205 DATA 50,50,25,10,10
70QO REM DATA SHEET }
7100 REM DATA SHEET 7-1
7101 DATA 10,50
7122 DATA 15,50
80DET REM DATA SHEET 8
8301 DATA 15,0
ODOZ DATA 1
3101 DATA 6.667,6.667,6.667,6.667,6.667
8106 DATA 6.667,0.667,6.667,6.667,6.667
8111 DATA 6.667,6.667,6.667,6.667,6.667
9QOQ REM DATA SHEET 9
90ER1 DATA 3,1,2,1.5,4.739
701: DATA, 68,5000,9.4778,100,3
9012 LATA 70,500,25,0
9013 DATA 75,1000,50,0
SO21 DATA 50,50,25,0,0
9022 DATA 0,50,25,10,10
9023 DATA 0,50,25,10,10
100才0 REM DATA SHEET 10
10iDO REM DATA SHEET :0-1
10101 DATA 5,500
10IOE DATA 10,500
10103 DATA 15,500
```

Table 2.3 （continued）

```
11VOQ FEM DATA SHEET 11
13001 DATA ごこ
1103E DATA 3,1
11011 DATA 60,300D0,100,2
11012 DATA 70:200%0,0
11013 DATA 75,50D,0,0
11021 DAÖ 50,50,25,0,0
11022 DATS 0,50,25,0,0
11023 DATA O, 50, 25,0,Q
12OQT REVM DATA SHEET 12
1210D REM DATA SHEET 12-1
1210: DATA B,500
12102 DATA 16,500
1300:3 REIM DATA SHEET }1
IZQCi DATA 2,2,2OD,1.2,4.739
13002 DATA 5000,9.4778,200,1
130G% DATA 5!3,50,25,0,0
1312S DATA 10,100
14ROO REM DATA SHEET }1
14COD DATA 15,0
14OCZ DATA 1
:41:21 DATA 6.667,6.667,6.667,6.667,6.667
14106 DATA 6.667,6.667,6.667,6.667,6.667
14111 DATA 6.667,6.667,6.667,6.667,6.667
15000 REM DATA SHEET 15
150\1 DATA 1000,269.1,2,1,4.739
15002 DATA 29,465,100,3
15003 DATA 50,50,0,10,10
15101 DATA 5,500
15102 DATA 10,500
15103 DATA 15,500
10000 REM DATA SHEET 1ó
1G001 DATA 15,0
16002 DATA }
16101 DATA 6.667,6.667,6.667,6.667,6.667
16106 DATA 6.667,6.667,6.667,6.667,6.667
16111 DATA 6.667:6.667,6.667,6.667,6.667
```


Table 2.3 (continued)

```
17000 REM DATA SHEET 17
17101 DATA 84.408,63.306,42.204,21.102
17105 DMTA 21.102,0,0,0
17:29 DATA 21.102,42.204,42.204,84.408
171:% DATA 316.53.158.265,158.265
1720: DATA 10.551,10.551,10.551,10.551
172e5 DATA 10.551,10.551,12.551,10.551
17204 DATA 10.551,10.551,10.55:,10.551
17301 DATA 1001b,12423,14445,15728
17305 DATA 16330,16989,16693,16534
:7307 DATA 16250,14956,:11140,8551
BBOMO REM DATA SHEET 18
18099 REM DATA SHEET 18-1
16:00% EATA 1
18:01 DATA 4.2204,3.1653,2.1102,1.0551
1BIZ5 DATA 1.0551,0,0,0
15109 DATA 1.0551,2.1102,2.1102,4.2204
15113 DATA 21.102,4.2204,4.2204
\8199 REM DATA SHEET 18-2
1E200 DATA 2
18201 DATA 3.1653,2.1102,2.1102:1.0551
:E205 DATA 0,0,0,0
2こ07 DATA 1.0551,1.0551,2.1102,3.1653
\13 DATA 15.8264,3.1653,3.1653
B2GF REM DATA SHEET 18-3
OTMCD DATA 3
832: DATA 2.1102,2.1102,1.0551,1.0551
18JO5 DATA D,D,0,0
@307 D4TA 0,1.0551,1.0551,2.1102
18313 DATA 10.551,2.1102,2.1102
\Ez79 REM DATA SHEET 18-4
:OUDO DATA 4
i3401 DATA 1.0551,2.055%,1.0551,0
\triangleCDE DATA O, D,O,0
ESDO-nATA D, D,1.0.551,1.055.1
54&23 DATA =,2755,1.0551,1.0551
:E4%G REM DATA SHEET 18-5
IESDO TATA }
550: DATA 1.0551,1.0551,1.0551,0
15505 DATA D,D,0,0
18507 DATA 0,0,1.0551,1.0551
18513 DATA 5.2755,1.0551,1.0551
```

Table 2.4 Sample Output from Overall Optimization Analysis (Customary Units)

```
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* PROJECT NAME: TEST PROELEM (CUST. UNITS)
* RUN DATE:01/0B/g3 01:52:13
* STUDY PERIOD: 20 YEARS (1982 TO 2001)
* TAX STATUS: TAX-PAYING EUSINESS
* INCOME TAX RATE: FEDERAL=46.00%; STATE= 5.D0%%
* PROPERTY TAX RATE: 2.00% STATE SALES TAX RATE: 0.00%
* CAPITAL GAINS MULTIPLIER: FEDERAL=40.00%, STATE=40.00%
* SUPPORTING FILE: FLI
```

ANNUAL DISCOUNT RATE AND COST ESCALATION RATES

* * * * * * * * * * * * * * * * * * * * * * * * *

FROM: 1982 1987 1992

DISCOUNT RATE $10.00 \% 10.00 \% 10.00 \%$
AVERAGE ANNUAL
COST INCREASE:
MAINTENANCE $\quad 10.00 \% \quad 10.00 \% \quad 10.00 \%$
PLEG VALUE $10.00 \% \quad 10.00 \% \quad 10.000 \%$
NATURAL GAS $12.00 \% \quad 11.00 \% 10.00 \%$
ELECTRICITY $10.00 \% \quad 10.00 \% \quad 10.00 \%$
base year unit energy costs

END USE	Energy type	UNIT	gTUAUNT	UNIT COET
*************	***********	******	********	*********
SPACE HEATING	natural gas	THEEM	100000	\$1.036
WATER HEATING	NATURAL GAS	THERM	100000	\$1.008
SPACE COOLING	ELECTRICITY	KWH	3412	\$0.660
FANS/PUMPS: SOLAR	ELECTRICITY	KWH	3412	¢0.060
DISTRIEUTION: HTG	ELECTRICITY	HWH	3412	\$0.060
DISTRIRUTION: CLG	ELECTRIC	WH		\$0.0.0

Table 2.4 （continued）
OPTIMIZATION ANALYSIS

（1）OPTIMAL ENVELOPE RIODIFICATIONS（IN DECREASING ORDER OF FIRST COST
MOD 1
MOD2
MOD3
TOTAL ENVELOFE MODIFICATION COST
$\$ 1,000$
\＄1，500
ま2，000
$\$ 4: 5610$
\＄693
APPLICABLE TAX CREDITS
\＄3， 807
（2）OPTIMAL CONVENTIONAL EQUIPMENT EFFICIENCY：
OUTPUT CAP．SEASONAL （MBTU／HR）EFFICIENCY

FIRST
COST

```
SPACE HEATING 376
WATER HEATING
N／A \(75.00 \%\)
SPACE COOL ING
172 \(75.00 \%\)
CONVENTIONAL．EQUIFMENT COST
APPLICAELE TAX CREDITS NET FIRST COST
```

```
COST EFFECTJVENESS)
    LIFE-CYCLE
        COST*
        $835
        $790
        $1,254
        $2,079
```

 \$10,260
 \(\$ 3,700\)
 \$6,721
 LIFE-CYCLE
 CosT*
 \(\$ 7,090\)
 53, 956
 \$6,586
 \(\$ 20,681 \quad \$ 19,632\)
 \(\$ 2.31\)
 \(\$ 20,450\)
 FIRST
 CosT
 \$22,050
 \$3,396
 \$18,654
 LIFE-CYCLE
 COST*
 (3) SOLAR HEATING SYSTEM
APPIICARLE TAX CREDITS
OPTIMAL COLLECTOR SIZE
842.0 S0.FT.
SOLAR FRACTION(S):
SPACE HEATING
WATER HEATING
COMEINED
XED COST
18.2\%
40. 1%
23.8%
FIXED COST \$1,00ロ
COST PER SQ.FT.
$\$ 25$
（4）ENERGY REOUIREMENTS AND COST：

OUTPUT ENERGY REQUIREMENTS	ANNUAL （MABTU／YR）	PEAK LOAD
（METU／HR）		

INPUT ENERGY REGUTREMENTS

```
SPACE HEATING PIANT
WATER HEATING PLANT
SPACE COOLING PL..ANT
SOLAR FANS/PUMPS
DISTRRIEUTION SYSTEM:
            SPACE COOLING
                TOTAL ENERGY COST
```

 SFACE HEATING i, 775 KWH
 | $\ddot{*} * * * * *$ | ANNUAL | ＊＊＊＊＊＊ | $\begin{gathered} \text { FIRST-YR } \\ \text { COST } \end{gathered}$ | $\begin{gathered} \text { LIFE-CYCLE } \\ \text { COST* } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3，807 | THERM | NATUR | \＄3，807 | \＄43， 65.1 |
| 958 | THERM | NATUR | \＄958 | \＄10，983 |
| 21，015 | HWH | ELECT | \＄1，261 | \＄12，937 |
| 558 | K゙WH | ELECT | \＄33 | \＄343 |
| 1， 775 | KWH | ELECT | \＄107 | \＄1，073 |
| 705 | ドWH | EL．ECT | \＄42 | \＄434 |
| | | | \＄6，208 | \＄69，441 |
| | | | | \＄108， 355 |

（5）TOTAL LIFE CYCLE COST
$\$ 108,355$

```
＊AFTER－TAX LIFE－CYCLE COST
WOTE：METU \(=1,000\) BTU；MMETU \(=1,000,000\) ETU
```


Table 2.5 Supporting File "FLl" (Customary Units)

```
GY4 NLIA F IIE NAME IS FLI. ANY CHANGES MUST BE SAVED IN ASCII FORMAT.
```



```
1(n): DAT\A FLl.
100% DATHA TEET PRODLEM (CUST. UNITS)
100.3 DATA 1,1982,20,1,46
10,24 DATA 5,0,40,40,2
2OOB REM DATA SHEET 2
2001 DATA 3
2101 DATA 5.10,10,10
2102 DATA 5,10,10,10
2103 DATA 10, 10,10,10
3000 REM DATA SHEET 3
3ND1 DATA 2
3:0! DATA 12,10
3102 IIATA 11,10
3103 DATA 10,10
4OOD REN DATA SHEET }
4101 DATA 1.00,1000GD,NATURAL GAS,THERM
4102 DATA D.06,3412,ELECTRICITY, KWH
50LO REM DATA SHEET 5
5001 DATA D
G0DO FEM DATA SHEET 6
GROI DATA 5
6181 DATA 1, MOD1,1000,25,2
G102 DATA 2, MOD2,1500,D,D
6103 DATA 3, MOD3:20ET,D,0
6104 DATA 4y MOD4,2500,7,0
G:0J NATA 5, MODS,3000,0,0
6201 DATA 50,50,25410,10
g2OE DATA 50,50,25,10,10
6203 DATA 50,50,25,10,10
6204 DATA 50,50,25,10,10
6205 DATA 50,50,25,10,10
70IOU REM DATA GHEET 7
7100 REM DATA SHEET 7-1
7101 DÁTA 10,50
7102 DATA 15,50
EKDO REM DATA SHEET B
E001 DATA 15,0
8002 DATA 1
8.101 DATA 6.667:6.667,6.067,6.667,6.667
8106 Df:TA 6.667,5.6&7,6.667,6.567,6.667
8111 DATA G.667,6.667,6.667,6.667,6.667
GDOD REM DATA SHEET ?
9001 DATA 3y1,2:1.5,5
9011 DATA S0,50U0,10,120,3
7012 DATA 70,500,25,0
70J.J DATA 75,1000.50,0
5D21 SATA 50,50:25,0,0
90,2 DATA 0,50,25,10,10
5023 DATA 0,50,25,10,10
10000 REM DATA SHEET 10
1010G REM DATA SHEET 10-1
10101 LATA 5,500
10102 DATA 10,5007
10203 DATA 55:500
```


Table 2.5 (continued)

```
11000 REM DATA SHEET 11
11001 DATA 2,2
11003 DATA 3,1,3000,100,2
1 1 0 1 2 ~ D A T A ~ 7 0 , 2 0 0 , 0 , 0 ~
11013 DATA 75,500,0,0
11021 DATA 50,50,25,0,0
11022 DATA 0,50,25,0,0
11023 DATA 0,50,25,0,0
12000 REM DATA SHEET 12
12100 REM DATA SHEET 1Z-1
12101 DATA 8,500
12102 DATA 16,500
13000 REM DATA SHEET }1
13001 DATA 2,2,200,1.2,5
13002 DATA 5000,10,200,1
13003 DATA 50,50,25,0,0
13101 DATA 10,100
14000 REM DATA SHEET }1
14001 DATA 15,0
14002 DATA 1
14101 DATA 6.667,6.667,6.667,6.667,6.667
14106 DATA 6.667,6.667,6.667,6.667,6.667
14111 DATA &.667,6.667,6.667,6.667,6.667
15000 REM DATA SHEET 15
15001 DATA 1000,25,2,1,5
15002 DATA 320,5000,100,3
15003 DATA 50,50,0,10,10
15101 DATA 5,500
15102 DATA 10,500
15103 DATA 15,500
16000 REM DATA SHEET 16
16001 DATA 15,0
16002 DATA 1
16101 DATA 6.667,6.667,6.667,6.667,6.667
16106 DATA 6.667,6.667,6.667,6.667,6.667
16111 DATA 6.667,6.667,0.667,6.667,6.667
```

Table 2.5 (continued)

17000	FEM DATA SHEET 17
1710.1	DATA 80,60,40,20
17105	DATA 20, $0,0,0$
17109	DATA 20,40,40,80
17113	DATA 300,150,150
17201	DATA 10,10,10,10
17205	DATA 10,10,10,10
17209	DATA 10,10,10,10
17301	DATA 892,1094,1272,1385
17305	DATA 1438,1496,1470,1456
1738	DATA 1431,1317,981,753
18000	REM DATA ShEET 18
18099	REM DATA SHEET 18-1
18100	data 1
13101	DATA $4,3,2,1$
18105	DATA $1,0,0,0$
13109	DATA 1,2,2,4
181.13	DATA 20,4,4
$1817{ }^{\circ}$	REM DATA SHEET 18-2
18200	data 2
18201	DATA 3,2,2,1
15205	DATA $0,0,0,0$
18209	DATA 1, 1, 2, 3
18213	data 15, 3,3
18297	REM DATA SHEET 18-3
18309	DATA 3
18301	DATA $2,2,1,1$
18305	DATA $\mathbb{O}, \square, 0, \square$
18389	DATA 0, 1, 1,2
18313	DATA 10, 2,2
18397	REM DATA SHEET 18-4
18420	DATA 4
18491	DATA 1, 1, 1, D
18485	DATA 0,0,0,0
18409	DATA 0,0,1,1.
18413	DATA 5,1,1
13479	REM DATA SHEET 18-5
18500	data 5
1850:	DATA 1, 1, 1, 0
18505	DATA $0,0,0,0$
18509	DATA $0,0,1,1$
18513	data 5,1,1

3.1 ENERGY ESTIMATING PROCEDURES

The methodology used in SOLCOM2 to estimate annual purchased and solar energy use for space heating, water heating, and space cooling in a commercial building is described in this section. Purchased energy requirements may be made up of several different energy types, specified individually by end use. For example, gas can be specified for space and water heating and electricity for space cooling. Electricity is always assumed to be used by the HVAC distribution system and by the fans and pumps in the solar heating equipment. However, only one type of energy can be specified for any given equipment type. (Switching among fuels for space heating cannot be handled in the program.)

Annual energy use is estimated separately for each of the following functions:
(1) space heating plant,
(2) water heating plant,
(3) space cooling plant,
(4) fans and pumps: solar equipment,
(5) distribution system: heating, and
(6) distribution system: cooling.

Energy prices can be specified individually for each of these functions, even if the same energy type is used, so that seasonal differences in utility rate structures can be reflected. For example, electricity rates are generally higher in summer than in winter, so that a higher average kWh price may be more appropriate for cooling than for space heating. Because water heating is required throughout the year, an average annual rate is most appropriate for this function. (Time-of-use rates cannot be handled by the SOLCOM program.)

Each kWh of electricity used to run the fans and/or pumps in the heating and cooling distribution system is assumed to result in the generation of $3,600 \mathrm{KJ}$ ($3,412 \mathrm{Btu}$) of thermal energy. During heating operations this additional thermal energy helps offset space heating requirements; during cooling operations the additional thermal energy adds to the space cooling requirements. The distribution system is assumed to provide space heating from both the conventional space heating plant and the solar heating equipment. The thermal energy from the fans and/or pumps in the solar heating system itself is assumed to be included in the useful energy output of that system and not in addition to that output. Energy use by the distribution system during periods when no space heating or cooling is required (i.e., for ventilation purposes only) is not accounted for in SOLCOM. It is assumed that any changes in ventilation requirements during these periods resulting from the envelope modifications made will be insignificant.

The following equations describe the calculation procedures used in SOLCOM2 to determine annual purchased energy requirements for each of the six functions listed above.

1. Space Heating Plant

Purchased
Energy
Requirements
(Units ${ }_{1} / \mathrm{yr}$)
where

$$
\begin{equation*}
=\frac{\left(1-\mathrm{EE} \cdot \mathrm{DE}_{1}\right) \cdot \mathrm{AHR} \cdot(1-\mathrm{FH}) \cdot \mathrm{S}}{\mathrm{HE} \cdot \mathrm{Tu} / \mathrm{Unit} 1}, \tag{3.1}
\end{equation*}
$$

$$
\begin{array}{rl}
\mathrm{EE} & =.0036 / \mathrm{kWh} \text { if AHR is in GJ or } 0.003412 / \mathrm{kWh} \text { if AHR is } \\
& \text { in } 10^{6} \mathrm{Btu}, \\
\mathrm{DE}_{1} & \mathrm{kWh} \text { consumed by distribution system per GJ or } \\
& 10^{6} \mathrm{Btu} \text { of AHR, } \\
\mathrm{AHR} & \left.=\text { annual space heating requirements (in GJ or } 10^{6} \mathrm{Btu}\right), \\
\mathrm{FH} & =\text { annual solar fraction, space heating, } \\
\mathrm{HE} & =\text { seasonal efficiency of the space heating plant (useful } \\
& \text { thermal output/thermal equivalent input), } \\
\mathrm{Tu} / \text { Unit }_{1}= & \text { thermal content (KJ or Btu) of energy units } \\
& \text { purchased for space heating, and } \\
\mathrm{S} & =10^{6} .
\end{array}
$$

2. Water Heating Plant

Purchased
$\begin{aligned} & \text { Energy } \\ & \text { Requirements }\end{aligned}=\frac{\mathrm{AWR} \cdot(1-\mathrm{FW}) \cdot \mathrm{S}}{\mathrm{WE} \cdot \mathrm{Tu} / \mathrm{Unit} 2}$
(Units2/yr)
where
AWR = annual water heating requirements (in GJ or $10^{6} \mathrm{Btu}$), $\mathrm{FW}=$ annual solar fraction, water heating,
WE = annual average efficiency of water heating plant, and $\mathrm{Tu} / \mathrm{Unit}_{2}=$ thermal content (KJ or Btu) of energy units purchased for water heating.
3. Space Cooling Plant

Purchased
Energy
Requirements

$$
\begin{equation*}
=\frac{\left(1+\mathrm{EE} \cdot \mathrm{DE}_{2}\right) \cdot \mathrm{ACR} \cdot \mathrm{~S}}{\mathrm{CE} \cdot \mathrm{Tu} / \mathrm{Unit}_{3}} \tag{3.3}
\end{equation*}
$$

(Units $3 / y r$)
where

$$
\begin{aligned}
E E= & 0.0036 \text { if ACR is in GJ, or } 0.003412 \text { if ACR is in } 10^{6} \mathrm{Btu} \\
D E_{2}= & \mathrm{kWh} \text { consumed by distribution system per GJ or } 10^{6} \mathrm{Btu} \\
& \text { of ACR, } \\
\mathrm{ACR}= & \text { annual space cooling requirements (in GJ or } 10^{6} \mathrm{Btu} \text {), } \\
\mathrm{CE}= & \text { seasonal efficiency (or seasonal performance factor if } \\
& \text { CE }>1.0 \text {) of space cooling plant, and } \\
\mathrm{Tu} / \text { Unit }_{3}= & \text { thermal content (KJ or Btu) of energy units used for } \\
& \text { space cooling. }
\end{aligned}
$$

4. Solar Heating System: Pumps/fans
```
Purchased
Energy
Requirements
\(\left(\mathrm{kWh}_{4} / \mathrm{yr}\right)=\left[\left(1-\mathrm{EE} \cdot \mathrm{DE}_{1}\right) \cdot \mathrm{AHR} \cdot \mathrm{FH}+\mathrm{AWR} \cdot \mathrm{FW}\right] \cdot \mathrm{DE}_{3}\)
where \(\quad \mathrm{DE}_{3}=\mathrm{kWh}\) consumed by solar heating system per GJ or
    \(10^{6}\) Btu useful output.
```

5. Distribution System: Space Heating
```
Purchased
Energy
Requirements = AHR - DE .
(kWh5/yr)
```

6. Distribution System: Space Cooling
```
Purchased
Energy
Requirements = ACR - DE 2.
(kWh6/yr)
```

It should be recognized here that the seasonal efficiencies of the space and water heating plants are assumed to remain relatively constant as the envelope is upgraded and the solar fraction is increased. The degree to which this assumption is realistic depends largely on the type of equipment used, especially with regard to cycling performance. This assumption is not likely to be realistic if an air source heat pump is used in the heating mode, since the average air temperature during the on-cycle will be lower as the envelope is tightened up and the solar fraction increased. In general, it is best to use estimates of seasonal efficiency that are valid for the overall optimal design of the building, including the solar collector sizing. This may require several iterations with the SOLCOM program, with a reestimation of the seasonal efficiencies for the conventional heating and cooling equipment made after one SOLCOM run and used in the next until no significant differences appear.

3.2 SOLAR FRACTION ESTIMATING PROCEDURES

In order to estimate the optimal size of a solar heating system, it is necessary to be able to determine the annual solar fraction corresponding to any collector size based on the system type, building heating requirements, and incident solar radiation. Figure 3.1 shows the general relationship between the solar fraction and collector area for a particular building installation. This relationship is characterized by a curve which is relatively straight at first but gradually increases less and less as the collector area is increased more and more. Eventually very large increases are needed to produce even small increases in the solar fraction as it approaches 100 percent.

Figure 3.1 Solar fraction vs. collector area for given building (general form)

There are a variety of methods available to relate the annual solar fraction to collector area, with varying degrees of accuracy and computational requirements. These range from complex engineering algorithms which require hourly performance calculations over the entire year to a single equation with coefficients representative of a given system type and location. Ideally, a single equation method, such as that proposed by Lamerio and Bendt ${ }^{1}$ would be used in the optimization analysis. With such an equation the total life-cycle cost curve could be differentiated (either mathematically or numerically) with respect to collector area to find the collector area for which total cost is minimized. However, single equation models do not represent the annual performance of a space heating system or combined space and water heating systems well enough for optimization purposes. The absolute value of the solar fraction may be reasonably well estimated for any given collector size using a single-equation method. But, the estimated change in the solar fraction due to the change in collector area - which is critical to the optimization analysis - does not appear to be accurate enough to give a reasonable estimate of the optimal collector size. This is unfortunate, because any alternative requires a separate algorithm to compute the annual solar fraction for a given collector area, heating load profile, and incident solar gain schedule. Since no continuous function relating solar fraction and collector area results, any optimization algorithm must make multiple entries into the subroutine used to compute the solar fraction as it converges on the optimal collector area. Since the determination of an optimal collector area is made repeatedly as the building envelope is modified and the equipment efficiencies are changed, it is important that the solar fraction algorithm be as efficient as practical. This essentially precludes the use of hourly or even daily estimates of solar fractions from collector areas. As a practical matter, a monthly calculation procedure is the least aggregated method that is compatible with microcomputer applications.

The Solar Load Ratio (SLR) ${ }^{2}$ method for space heating and combined space and water heating systems is used in the SOLCOM program to estimate solar fractions from collector areas. This method calculates monthly solar fractions based on a solar load ratio particular to the building, its location, and collector size, using a set of four coefficients that typify the performance of a known heating system type. Monthly fractions and heating loads are then aggregated to provide an annual solar fraction. The following two equations are used to find the monthly solar fraction:

1 Lamerio, Gerald F. and Bendt, Paul, "The GFL Method for Sizing Solar Energy Space and Water Heating Systems," SERI-30, Solar Energy Research Institute, Golden, Colorado, 1978.

2 Schnurr, Norman M., Hunn, Bruce D., and Williamson, III, Kenneth D., "The Solar Load Ratio Method Applied to Commercial Building Active Solar System Sizing," Solar Engineering - 1981 Proceedings of the ASME Solar Energy Division 3rd Annual Conference on Systems Simulation, Economic Analysis/ Solar Heating and Cooling Operation Results, Reno, Nevada, April 27-May 1, 1981. American Society of Mechanical Engineers, New York, NY, 1981. See also Powell and Rodgers' FEDSOL Program User's Manual, Appendix E-2, and U.S. Department of Energy, DoE Facilities Solar Handbook.

$$
\begin{array}{ll}
F_{\mathrm{m}}=b_{1} X_{\mathrm{m}} & \text { for } 0<X_{\mathrm{m}} \leq b_{2}, \text { and } \\
F_{\mathrm{m}}=1-b_{3} e^{-b_{4} X_{m}} & \text { for } X_{m}>b_{2}, \tag{3.1b}
\end{array}
$$

where

$$
\text { where } \quad \begin{aligned}
\mathrm{F}_{\mathrm{m}} & =\text { monthly solar fraction, } \\
\mathrm{X}_{\mathrm{m}} & =\text { monthly solar load ratio }=\mathrm{A}_{\mathrm{c}} \mathrm{H}_{\mathrm{T}} / \mathrm{TL}_{\mathrm{m}}, \\
\mathrm{~A}_{\mathrm{c}} & =\text { collector area, } \\
\mathrm{H}_{\mathrm{t}} & =\text { solar energy per unit area incident monthly on the plane of the } \\
& \text { collector, } \\
\mathrm{TL}_{\mathrm{m}}= & \text { monthly combined space and water heating load (net of thermal } \\
& \text { output from fans and pumps in distribution system), and } \\
\mathrm{b}_{1} \text { through } \mathrm{b}_{4}= & \text { system performance coefficients, based on the solar load ratio } \\
& \text { method (see appendix } \mathrm{A}) .
\end{aligned}
$$

The annual solar fraction (F) is then calculated by summing useful monthly solar energy output and monthly loads and dividing as follows:

$$
\begin{equation*}
F=\frac{\sum_{m=1}^{12} F_{m} \cdot \mathrm{TL}_{\mathrm{m}}}{\sum_{\mathrm{m}=1}^{12} \mathrm{TL}_{\mathrm{m}}} \tag{3.2}
\end{equation*}
$$

Appendix B lists system performance coefficients ($b_{1}-b_{4}$) for several different solar heating equipment types compatible with commercial buildings. These coefficients are dimensionless; thus they work equally well with SI and conventional units of measurement. These coefficients are taken from Powell and Rodgers, FEDSOL Program User's Manual. Other coefficients can be substituted for these in the SOLCOM2 program before execution (lines 2460-2690).

The SLR method has been modified slightly in the SOLCOM program in order to provide separate estimates of the annual solar fraction for space heating (FH) and water heating (FW) when separate conventional heating plants are used. This is because separate plants will likely have different efficiencies and may even use different types of energy with different costs. The monthly fractions are calculated as shown in equations 3.la and 3.1b. However, in calculating the annual fractions, the following equations are used in addition to equation 3.2 to break out FH and FW separately:

$$
\begin{equation*}
\mathrm{FH}=\frac{\sum_{\mathrm{m}=1}^{12} \mathrm{~F}_{\mathrm{m}} \cdot \mathrm{HL}_{\mathrm{m}}}{\sum_{\mathrm{m}=1}^{12} \mathrm{HL}_{\mathrm{m}}} \tag{3.4}
\end{equation*}
$$

$$
\text { and } \quad F W=\frac{\sum_{m=1}^{12} F_{m} \cdot W_{\mathrm{m}}}{\sum_{\mathrm{m}=1}^{12} \mathrm{WL}_{\mathrm{m}}}
$$

4. OPTIMIZATION CRITERIA AND ALGORITHMS

A relatively simple model of the total heating-related life-cycle cost of a building is used in sections 4.1 and 4.2 to demonstrate the concepts of independent and simultaneous economic optimization criteria. A more complete exposition of the optimization algorithms used in SOLCOM is provided in section 4.3.

In its most elementary form, the total life-cycle heating-related cost of a solar-heated building can be expressed as

$$
\begin{align*}
& T C=\frac{A H R(1-F)}{E F F} \cdot K e \cdot U P V *+K_{e n v}+K_{e q u i p}+K_{\text {solar }} \text {, and } \tag{4.1}\\
& K_{\text {solar }}=K_{F}+K_{V} \cdot A, \tag{4.2}
\end{align*}
$$

where $T C=$ the total present-value of all heating-related costs over the study period used,
$A H R=$ annual heating requirements (in some units),
$F=$ solar fraction for a given collector area,
EFF = seasonal efficiency of the heating equipment,
$K_{e}=$ unit price of energy (in the same units used to denote AHR),
UPV* $=$ modified uniform present value factor based on the study period length, discount rate, and rate of price increase for the energy type used,
$K_{\text {env }}=$ present value cost of all envelope modifications corresponding to the AHR above,
$K_{\text {equip }}=$ present value cost of the conventional heating equipment corresponding to the EFF above,
$K_{\text {solar }}=$ present value cost of solar heating equipment with collector area A that provides the solar fraction F, given the AHR above,
$K_{F}=$ the fixed cost for the type of solar heating system used, and
$K_{V}=$ the variable cost per unit of collector area.
Kenv, Kequip, and $K_{\text {solar }}$ include all costs incurred over the study period (e.g., initial cost; operating, maintenance and repair costs; tax adjustments), except for the energy used for heating. In general, it is assumed that the least costly means of achieving any given level of thermal performance for any given component modification is used, provided that it does not diminish other performance requirements of the same components. For example, the insulation material with the lowest effective cost per unit of thermal resistance would be used rather than a more expensive material, provided that it satisfied the minimum technical specifications for insulation materials.
${ }^{1}$ While K_{V} is related to the collector area, it also includes any other variable costs which occur as a result of scaling up the system (e.g., storage and plumbing costs). K_{F} and K_{V} may not be valid over the entire range of possible collector sizes but should be specified for the region in which the optimal area is expected to occur.

Figure 4.1 Cumulative envelope modification cost as a function of annual heating requirements (general form)

Figure 4.2 Plant cost as a function of efficiency (general form)

In section 4.1 , the model described in equation (4.1) is used to formulate economic optimization criteria for AHR, EFF, and A, independently of one another. Optimization criteria are developed for both continuous and discrete changes in these three variables. In section 4.2, the same model is used to formulate simultaneous optimization criteria for both continuous and discrete functions.

4.1 INDEPENDENT OPTIMIZATION CRITERIA

In this section, independent economic optimization criteria are formulated for AHR, EFF, and A. That is, only one variable is optimized at a time while the other two are held constant.

Initially it is assumed that AHR and EFF are continuous functions of Kenv and Kequip, respectively. Moreover, we assume that AHR decreases at a decreasing rate as Kenv increases (see figure 4.1) while EFF increases at a decreasing rate as Kequip increases (see figure 4.2). In general, the solar fraction (F) increases at a decreasing rate as the solar collector area (A) increases (see figure 3.1). However, F is also a function of the AHR, since any decrease in AHR will increase F if A is held constant (see figure 4.3).

The functional relationships between total life-cycle cost and each of the three independent design variables are shown in figures 4.4, 4.5, and 4.6. In each of these figures, the total LCC curve is the sum of $K_{\text {env }}$, K $\mathrm{K}_{\text {equip, }}$, $\mathrm{K}_{\text {solar }}$ and LC energy costs. In each case it is evident that increases in conservation investment initially reduce life-cycle costs, but that beyond some point, further increases result in higher life-cycle costs. The point at which the TLCC function is minimized for each of these three independent variables (AHR' EFF', and A^{\prime} in figures $4.4,4.5$, and 4.6 , respectively) can be found by finding the first derivative of equation 4.1 with respect to that variable, setting the first derivative equal to zero, and solving for the corresponding value of that variable.

Thus, to determine the optimal AHR (AHR') and corresponding envelope modifications, given that EFF and A are fixed, the partial derivative of TC with respect to AHR is set equal to 0 ,

$$
\begin{equation*}
\frac{\partial T C}{\partial A H R}=\left[\frac{K_{e} \cdot U P V^{*}}{E F F}\left(1-F-A H R \frac{d F}{d \overline{A H R}}\right)\right]+\frac{\mathrm{dK}_{\mathrm{env}}}{d A H R}=0, \tag{4.3}
\end{equation*}
$$

and this equation is solved for AHR'. ${ }^{l}$ Note that both $\mathrm{dF} / \mathrm{dAHR}$ and $\mathrm{dK}_{\mathrm{env}} / \mathrm{dAHR}$ are needed to solve for the optimal AHR since both the solar fraction (F) and Kenv change as AHR is changed.

[^1]

Figure 4.3 Solar fraction as a function of collector area and annual heating requirements (general form)

ANNUAL HEATING REQUIREMENTS
Figure 4.4 Total heating-related life-cycle costs: annual heating requirements variable

Figure 4.5 Total heating-related lifecycle costs: plant efficiency variable

Figure 4.6 Total heating-related lifecycle costs: collector area variable

COLLECTOR AREA

To determine the optimal heating equipment efficiency (EFF'), given that AHR and A are fixed in size, use:

$$
\begin{equation*}
\frac{\partial T C}{\partial E F F}=\frac{K_{e} \cdot U P V * \cdot A H R(F-1)}{E F F^{2}}+\frac{\mathrm{dK}_{\text {equip }}}{d E F F}=0 \tag{4.4}
\end{equation*}
$$

and solve for EFF'. Finally, to determine the optimal solar collector area (A'), given that AHR and EFF are fixed, find

$$
\begin{equation*}
\frac{\partial T C}{\partial A}=\frac{-K_{e} \cdot U P V * \cdot A H R}{E F F} \frac{d F}{d A}+K_{V}=0 \tag{4.5}
\end{equation*}
$$

and solve for A'. However, because of the potentially high fixed cost component (K_{F}) associated with solar heating systems, an additional criterion must be satisfied. This additional criterion can be stated as

$$
\begin{equation*}
\frac{A H R \cdot F^{\prime}}{E F F} \cdot K_{e} \cdot U P V^{*} \geqslant K_{F}+K_{V} \cdot A^{\prime} \tag{4.6}
\end{equation*}
$$

where F^{\prime} is the optimal solar fraction corresponding to A^{\prime}. In essence, equation 4.6 requires that the total energy savings attributable to the optimal size solar heating system are large enough to amortize not only the variable cost component but the fixed cost component as well, since the fixed cost component does not enter the area optimization equation (4.5). If equation 4.6 cannot be satisfied for F^{\prime} (and the corresponding value of A^{\prime}), the optimal solar heating size is zero; i.e., no solar heating is used at all.

If the functional relationships between $K_{\text {env }}$ and $A H R$, $K_{\text {equip }}$ and EFF, and $K_{\text {solar }}$, A, and F are continuously differentiable, the determination of optimal values for AHR, EFF, and A, independently of one another, is straightforward. The relationship between $\mathrm{K}_{\text {solar }}$, A and F is generally continuous and thus the optimal A can be found as shown above. However it is impractical to modify most envelope or mechanical equipment components in any continuous sense. Instead, discrete modifications (e.g., double glazing, flue damper) are usually incorporated into their designs. In such cases, the optimal level of AHR and EFF must be determined using discrete evaluation techniques rather than through mathematical differentiation.

In order to determine the optimal level of AHR, and the corresponding combination of envelope modifications, independently of EFF and A and using discrete optimization techniques, the $n l$ discrete envelope modifications to be considered must be first ranked in decreasing order of cost effectiveness. That is

$$
\begin{equation*}
\frac{-\Delta A H R_{i} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{UPV}^{*}}{\Delta \mathrm{~K}_{\mathrm{env}}^{\mathbf{i}}} \geqslant \frac{-\Delta A H R_{\mathrm{i}+1} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{UPV}^{*}}{\Delta \mathrm{~K}_{\mathrm{env}}^{i+1}} \tag{4.7}
\end{equation*}
$$

for each envelope modification $i=1,2, \ldots, n 1-1$, where
$\mathrm{AHR}_{1}=$ the AHR resulting when all envelope modifications $1,2, \ldots$, 1 are incorporated into the envelope design,

$$
\begin{aligned}
\Delta A H R_{i} & =A H R_{i}-A H R_{i-1} \\
K_{e n v}^{1} & =\text { cumulative total cost of all envelope modifications } 1,2, \ldots i, \text { and } \\
\Delta K_{e n v}^{i} & =K_{e n v}^{i}-K_{e n v}^{i-1} .
\end{aligned}
$$

Equation 4.1 can be restated as

$$
\begin{equation*}
T C_{i}=\frac{A H R_{i}\left(1-F_{i}\right)}{E F F} \cdot K_{e} \cdot U P V *+K_{e n v}^{i}+K_{e q u i p}+K_{\text {solar }} \tag{4.8}
\end{equation*}
$$

where $\mathrm{TC}_{i}=$ the total heating-related life-cycle cost of the building when all envelope modifications $1,2, \ldots$, i are incorporated into its design.

Now the change in $T C$ per unit change in AHR $\left(\triangle T C_{1} / \triangle A H R_{1}\right)$ can be calculated for each subsequent modification, $1=2,3, \ldots, n l$ as follows:

$$
\begin{equation*}
\frac{\Delta \mathrm{TC}_{i}}{\Delta \mathrm{AHR}_{i}}=\left[1-\mathrm{F}_{1-1}-\mathrm{AHR}_{1}\left(\frac{\Delta \mathrm{~F}_{1}}{\Delta \mathrm{AHR}_{1}}\right)\right] \cdot \frac{\mathrm{K}_{e} \cdot \mathrm{UPV}^{*}}{E F F}+\frac{\Delta \mathrm{K}_{\mathrm{env}}^{1}}{\Delta \mathrm{AR}_{i}} \tag{4.9}
\end{equation*}
$$

where $F_{i}=$ solar fraction corresponding to $A H R_{i}$, given A, and
$\Delta F_{i}=F_{i}-F_{i-1}\left(F_{o}=\right.$ solar fraction for unmodified (i.e., base) envelope configuration).

Since the envelope modifications are ranked in decreasing order of cost effectiveness, $\Delta T C_{i} / \Delta A H R_{i}$ will decrease for each additional modification and eventually turn negative. At the point where $\Delta T C_{i} / \Delta A H R_{i}$ turns negative, $\Delta T C_{i}$ begins to increase. Therefore, an optimization algorithm is required to find the last 1 for which $\Delta T C_{i} / \Delta A H R_{1}$ is greater than or equal to zero. From a practical standpoint, this is most easily accomplished by evaluating $1=1,2,3 \ldots$ stepwise until $\Delta \mathrm{TC}_{i} / \Delta \mathrm{AHR}_{i}$ turns negative, and then backing up one step to i^{\prime}, the optimal integer. (No further modifications need to be evaluated.) The optimal envelope design contains i^{\prime} modifications ($1,2, \ldots$, i') $^{\prime}$.

Similarly, discrete equipment modifications to improve seasonal heating efficiency can be evaluated using

$$
\begin{equation*}
\frac{\Delta T C_{j}}{\Delta E F F_{j}}=\left[\frac{A H R(F-1)}{E F F_{j} \cdot E F F_{j-1}}\right] K_{e} \cdot U P V^{*}+\frac{\Delta K_{e q u i p}^{j}}{\Delta E F F_{j}} \tag{4.10}
\end{equation*}
$$

where $\Delta T C_{j}=$ the change in total life-cycle heating-related cost attributable to the jth equipment modification, $j=2,3, \ldots, n 2$,
$\mathrm{EFF}_{1}=$ the seasonal efficiency of the base space heating equipment,
$E F F_{j}=$ the seasonal efficiency of the upgraded space heating equipment with cumulative modifications $2,3, \ldots, j$, and
$\Delta E F F_{j}=E f f_{j}-E F F_{j-1}$.

If the n2 equipment modifications are ranked in order of decreasing cost effectiveness, then $\triangle T C_{j} / \triangle E F F_{j}$ will increase as j is increased, and eventually turn positive. (This is reversed from the envelope modification analysis because $\triangle E F F_{j}$ has a positive sign while $\triangle A H R_{i}$ has a negative sign.) The optimization algorithm then can find the optimal f by evaluating $j=2,3 \ldots$ until $\Delta T C_{j} / \Delta E F F_{j}$ turns positive, and then backing up one step to j^{\prime}. (Again, no further modifications need be considered.) The optimal heating equipment configuration includes j modifications ($1,2, \ldots, j^{\prime}$).

Before continuing on to the discussion of simultaneous optimization methods in section 4.2, two important points should be noted:
(1) The value of the results are limited by the validity of the input data. Considerable effort prior to the optimization analysis described above is needed to make sure that the basic envelope design, equipment types, and modifications considered are the most appropriate and cost effective for the overall design objectives. Similarly, the type of solar heating equipment to be used, the ratio of storage volume to collector area, collector tilt angle, and other system parameters that affect performance and cost must be carefully selected in advance. Only the size of the solar heating system is determined in SOLCOM. However, the total life-cycle cost of buildings with different types of conventional heating systems, different solar heating systems, and different approaches to reducing space heating and cooling requirements can be compared through separate optimization analyses. In this way, the usefulness of these optimization methods and the SOLCOM computer program can be greatly expanded.
(2) When an individual component is optimized, independently of the other components, the life of the component can sometimes be used in the economic analysis if it is shorter than the life expectancy (or study period) for the overall building. (This does not hold true if the use of that component essenti.ally "locks in" the replacement decision, in which case the analysis should be conducted over the entire study period.) However, when two or more components are to be optimized simultaneously, the same study period must be used for each. This requires a complete schedule of replacement and maintenance costs over the study period, as well as a careful consideration of the "salvage" (or resale) value of those components.

An important limitation to the methodology upon which SOLCOM is based is that any replacement to an original component is assumed to have the same performance characteristics as the original. Thus for instance, if the heating equipment is replaced at some point during the study period, its efficiency is assumed to be the same as before, even though it may be logical to increase it at that time when better information is available and new technologies have been introduced to improve efficiency or lower costs.

4.2 SIMULTANEOUS OPTIMIZATION OF DESIGN VARIABLES

In section 4.1 , the methodology for determining independently the optimal level of annual space heating requirements (AHR), heating equipment efficiency (EFF), and solar collector size (A), was discussed. However, it is apparent from
equation 4.1 that the purchased energy usage for space heating is dependent on all three of these design variables. As a result, the change in total lifecycle costs due to a change in any one of these three variables depends in part on the values assumed for the other two. In order to find the optimal level for any one, all three must be determined simultaneously.

If the optimal levels of AHR, EFF, and A can be determined mathematically, so that equations $4.3,4.4$, and 4.5 are specified, the simultaneous solution is relatively straightforward. Since there are three unknowns and three equations, the optimal level for each design variable can be found by a simultaneous solution of the equation system, using basic algebra to substitute terms.

In practice, however, discrete methods of evaluation are generally more applicable to the determination of optimal AHR and equipment efficiency in a building, while differentiation techniques can be used to find the optimal collector area. As a result, an iterative process must be used to identify the optimal combination of design variables. The iterative process described here is based on the same assumptions about the ranking of the envelope and equipment modifications (in terms of decreasing life-cycle cost effectiveness) outlined in section 4.1 . It is actually a series of "nested" optimization algorithms which can be described by the following interrelated steps:
STEP 1: Deţermine the optimal collector area ($A_{i, j}^{\prime}$) and corresponding solar fraction (F_{i}, j), using equations 4.5 and 4.6 for each $A H R_{i}$ evaluated in STEP 2, and $E F F_{j}$ from STEP 3.
STEP 2: Determine the optimal AHR (AHR ${ }^{j}$) for each $E F F_{j}$ evaluated in STEP 3, using:

$$
\begin{equation*}
\frac{\Delta T C_{i, j}}{\Delta A H R_{i}}=\left[1-F_{i-1, j}^{\prime}-A H R_{i}\left(\frac{\Delta F_{i, j}^{\prime}}{\Delta A H R_{i}}\right)\right] \cdot \frac{K_{e} \cdot U P V^{*}}{E F F_{j}}+\frac{\Delta K_{e n v}^{i}}{\Delta A H R_{i}}+\frac{\Delta A_{i, j}^{\prime} \cdot K_{V}}{\Delta A H R_{i}} \tag{4.11}
\end{equation*}
$$

where
$\Delta A_{i, j}^{\prime}=A_{i, j}^{\prime}-A_{i-1, j}^{\prime}$
$\Delta F_{i, j}^{\prime}=F_{i, j}^{\prime}-F_{i-1, j}^{\prime}$, and
$A H R_{0}=$ annual heating requirements of unmodified envelope,
for $1=1,2, \ldots$, until $\Delta T C_{i, j} / \Delta A H R_{i}$ turns negative.
$A H R^{j}$ is then set equal to $A H R_{i-1}$ (i.e. one step back from the point where $\Delta T C_{1}, j / \Delta A H R_{1}$ turns negative). If i is increased to $n l$ (the total number of envelope modification identified) without $T C_{i, j} / A H R_{i}$ turning negative, then $A H R^{j}$ is set equal to $A H R_{n 1}$. $A_{j}^{\prime}, F_{j}^{\prime}$, and $K_{\text {env }}^{j}$ are the optimal collector area, solar fraction, and total envelope modification cost, respectively, corresponding to AHRJ.

STEP 3: Determine the optimal heating equipment efficiency (EFF') using:

$$
\begin{aligned}
\frac{\Delta T C_{j}}{\Delta E F F_{j}}= & {\left[\frac{A H R D^{j} \cdot E F F_{j-1} \cdot\left(1-F_{j}^{\prime}\right)-A H R j^{-1} \cdot E F F_{j}\left(1-F_{j-1}^{\prime}\right)}{E F F_{j} \cdot E F F_{j-1}}\right] \cdot K_{e} \cdot U P V * } \\
& +\frac{\Delta K_{e n v}^{j}}{\Delta E F F_{j}}+\frac{\Delta K_{j}^{j}}{\Delta E F F_{j}}+\frac{K_{V} \cdot \Delta A_{j}^{\prime}}{\Delta E F F_{j}}, \\
\text { where } \quad \Delta K_{\text {env }}^{j} \quad & =K_{\text {env }}^{j}-K_{\text {env }}^{j-1}, \\
\Delta K_{\text {equip }}^{j} & =K_{\text {equip }}^{j}-K_{\text {equip }}^{j-1}, \text { and } \\
\Delta A_{j}^{\prime}= & A_{j}^{\prime}-A_{j}^{\prime}-1,
\end{aligned}
$$

for $\mathrm{j}=2,3, \ldots$ until $\Delta \mathrm{TC}_{\mathrm{j}} / \Delta E \mathrm{EF}_{\mathrm{j}}$ turns positive.
EFF' is then set equal to $E F F_{j}$. If j is increased to $n 2$ (the total number of equipment efficiencies identified) without $\Delta \mathrm{TC}_{\mathrm{j}} / \Delta \mathrm{EFF} \mathrm{j}_{\mathrm{j}}$ turning positive, then $E F F^{\prime}$ is set equal to $E F F_{n 2}$ -

The number of iterations required to find optimal values of A, AHR, and EFF can be considerably reduced if good guesses (based on a priori information) are made and used as starting points. If the starting points selected for $A H R_{i}$ or $E F F_{j}$ result in an increase rather than a decrease in the total cost function, indices i or j must be decremented until a corresponding decrease in the total cost function results.

This three-step algorithm can be expanded to find optimal values of other design parameters which must be evaluated simultaneously with A, AHR, and EFF. For example, the optimal level of annual cooling requirements and the efficiency of the cooling equipment may also need to be included in the analysis. In the following subsection, a more complete description of the optimization algorithm used in SOLCOM is presented. This includes the determination of optimal water heating equipment efficiency, and incorporates space cooling considerations and electric energy used for fans and pumps in the underlying engineering equations upon which the optimization analysis is based.

4.3 OPTIMIZATION ALGORITHMS USED IN SOLCOM

In this subsection a more comprehensive examination of the optimization algorithms used in SOLCOM is presented. These include the determination of the optimal collector area (4.3.1), optimization of envelope modifications with respect to both space heating and space cooling requirements (4.3.2), optimization of the space heating plant (4.3.3), and optimization of the water heating plant (4.3.4).

4.3.1 Optimization of Solar Collector Area

Collector size is the only one of the design variables optimized in SOLCOH that is treated continuously, although lower and upper limits on permissible collector size do constrain the solution. Since an equation to relate the annual solar fractions for space heating (FH) and water heating (FW) to collector area (A) does not exist, direct differentation of the total life-cycle cost (LCC) function (which includes the collector area and corresponding solar fraction) is not possible. Instead, a convergence algorithm, based on the Newton-Raphson method of successive approximation and numerical difference methods, is used to find the minimum LCC collector area.

Before the actual convergence algorithm is executed, two tests are made in order to determine whether the optimal area is equal to either the minimum permissible or the maximum permissible collector size specified. These tests are made as follows:

TEST 1 Is the minimum collector size optimal?
The SLR method (section 3.2) is used to estimate solar fractions $F H$ and FW for M1 (the minimum collector area) and for $M 1-Z$ and $M 1+Z$. (Z is a discrete interval size used to approximate the first and second derivatives of the total cost function with respect to A, based on numerical difference techniques. SOLCOM uses $Z=0.5 \mathrm{~m}^{2}$ in $S I$ calculations and $5 \mathrm{ft}^{2}$ for conventional unit calculations). Calculate the total energy and solar equipment cost (TC) for M1, Ml-Z, and Ml+Z (T1, T2, and T3 respectively) using

$$
\begin{equation*}
\mathrm{TC}=\frac{\mathrm{KH}}{\mathrm{HE}} \cdot \mathrm{HL} \cdot(1-\mathrm{FH})+\frac{\mathrm{KW}}{\overline{W E}} \cdot \mathrm{WL} \cdot(1-\mathrm{FW})+\mathrm{QT} \cdot \mathrm{DE}_{3} \cdot \mathrm{KS}+\mathrm{K}_{\mathrm{F}}+\mathrm{K}_{V} \cdot \mathrm{~A} \tag{4.13}
\end{equation*}
$$

where $K H=$ cost per $G J\left(10^{6} \mathrm{Btu}\right)$ for space heating energy $x U P V_{h}^{*}$,
$U P V_{h}^{*}=$ modified uniform present value factor for space heating energy ${ }^{1}$,
$\mathrm{HE}=$ seasonal efficiency of space heating plant,
$H L=$ net annual heating requirements $=A H R\left(1-E E \cdot D E D_{1}\right)$,
$\mathrm{AHR}=$ annual heating requirements in $\mathrm{GJ}\left(10^{6} \mathrm{Btu}\right)$,
$\mathrm{EE}=3.6 \mathrm{MJ} / \mathrm{kWh}(3412 \mathrm{Btu} / \mathrm{kWh})$,
$D E_{1}=k W h$ per $G J\left(10^{6} \mathrm{Btu}\right)$ AHR required for heating distribution system,
$\mathrm{FH}=$ annual solar fraction, space heating, based on HL,
$K W \quad=$ cost per $G J\left(10^{6} \mathrm{Btu}\right)$ for water heating energy $x U P V_{w}^{*}$,
$U P V_{\mathrm{W}}^{*}=$ modified present value factor for water heating energy ${ }^{1}$,

[^2]```
= seasonal efficiency of water heating plant,
WL = annual water heating requirements in GJ (}1\mp@subsup{0}{}{6}\textrm{Btu})\mathrm{ equivalent temperature rise,
FW annual solar fraction, water heating, based on WL,
QT = useful energy output from solar heating equipment (annual) =
 HL•FH + WL•FW,
DE 3 = kWh per GJ (}1\mp@subsup{0}{}{6}\textrm{Btu})\mathrm{ useful output from solar heating equipment
 needed for fans and/or pumps,
KS = cost per kWh for electricity used to run fans and/or pumps in
 solar heating equipment x UPV s,
UPV* = modified uniform present value factor for electricity used by
 solar equipment }\mp@subsup{}{}{2}\mathrm{ ,
 KF = fixed cost of solar heating equipment,
 K
 area, and
 A = collector area in m}\mp@subsup{m}{}{2}(f\mp@subsup{t}{}{2})
Calculate Dl = (T3-T2)/(2•Z).

Dl is a discrete approximation to the first derivative of the TC function at A=Ml (\(\mathrm{f}^{\prime}(\mathrm{Ml})\)).

If \(\mathrm{Dl}>0\), the optimal collector area would be less than M1 if Ml was not the minimum permissible area. In this case the optimal area (\(A^{\prime}\)) is set equal to Ml. The net savings (NS) for the solar heating equipment are calculated for \(A^{\prime}=\mathrm{Ml}\) and the corresponding values of FH and FW using:
\[
\begin{equation*}
\mathrm{NS}=\left(\mathrm{KH} / \mathrm{HE}_{\mathrm{j}}\right) \cdot \mathrm{HL}_{\mathrm{i}} \cdot \mathrm{FH}+\left(\mathrm{KW} / \mathrm{WE}_{\mathrm{W}}\right) \cdot \mathrm{WL} \cdot \mathrm{FW}-\left(\mathrm{K}_{\mathrm{F}}+\mathrm{K}_{\mathrm{V}} \cdot \mathrm{~A}\right)-\mathrm{QT} \cdot \mathrm{DE}_{3} \cdot \mathrm{KS} \tag{4.15}
\end{equation*}
\]
where \(i, j\), and \(w\) are the indices for the envelope modifications, space heating equipment and water heating equipment respectively.

Now \(A^{\prime}=M 1\) if \(N S \geq 0\), and
\[
\begin{equation*}
A^{\prime}=0 \text { if } N S<0 \tag{4.16a}
\end{equation*}
\]

If \(\mathrm{Dl}<0\), then the optimal area must be greater than Ml. Proceed to TEST 2.
If \(D 1=0\), use equations 4.15 and \(4.16 a\) or \(4.16 b\) to find \(A^{\prime}\).
TEST 2 Is the maximum collector size optimal?
The SLR method is used to estimate FH and FW for M2 (the maximum permissible collector area), and for \(\mathrm{M} 2-\mathrm{Z}\) and \(\mathrm{M} 2+\mathrm{Z}\). Calculate total energy and solar equipment cost corresponding to areas \(\mathrm{M} 2, \mathrm{M} 2-\mathrm{Z}\), and \(\mathrm{M} 2+\mathrm{Z}\) (\(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3\), respectively) using equation 4.13. Calculate \(\mathrm{Dl}=(\mathrm{T} 3-\mathrm{T} 2) /(2 \cdot \mathrm{Z})\).

If Dl>O, the optimal collector size must be less than M2. Proceed to convergence algorithm below.

If \(D 1<0\), the optimal area must be greater than M2. \(A^{\prime}\) is set equal to M2 and net savings for \(A=M 2\) are calculated using equation 4.15 .
```

Now $A^{\prime}=M 2$ if $N S \geq 0$, and
$A^{\prime}=0$ if $N S<0$.

```

If \(\mathrm{Dl}=0\), use equations 4.15 and 4.17 a or 4.17 b to find \(\mathrm{A}^{\prime}\).

\section*{Convergence Algorithm}

The convergence algorithm is used only when it is known that the optimal collector area (A') lies between Ml and M2, the minimum and maximum permissible collector areas, respectively. \(A^{\prime}\) can generally be found in a few iterations using the Newton-Raphson method of successive approximation. The actual number of iterations needed depends on both the proximity of the starting point to \(A^{\prime}\) and the slope of the solar fraction curve at \(A^{\prime}\). (As the slope of the solar fraction curve becomes relatively flat, more iterations will generally be needed for convergence.)

From equation 4.5 it is known that the first derivative of the total cost function at \(A^{\prime}\) is zero (\(f^{\prime}\left(A^{\prime}\right)=0\)). Since the total cost function (equation 4.13) is \(U\)-shaped, \(f^{\prime}(A)\) must be negative for values of \(A\) less than \(A^{\prime}\) and positive for values of \(A\) greater than \(A^{\prime}\). Figure 4.7 shows the general shape of the f'(A) function. The optimization algorithm must converge on the point where the \(f^{\prime}(A)\) function changes from negative to positive (i.e., where \(f^{\prime}\left(A^{\prime}\right)=0\)).

The Newton-Raphson method is very efficient at converging on \(f^{\prime}(A)=0\). An initial guess as to \(A^{\prime}, A_{k}\left(M 1<A_{k}<M 2\right)\), is made. The second derivative of the TC function at \(A_{k}\left(F "\left(A_{k}\right)\right.\) is approximated numerically by calculating \(D 2\) as follows:
\[
\begin{equation*}
\mathrm{D} 2=(\mathrm{T} 3-2 \cdot \mathrm{~T} 1+\mathrm{T} 2) / \mathrm{Z}^{2}, \tag{4.18}
\end{equation*}
\]
where \(T 1, T 2\), and \(T 3\) are total costs calculated at \(A_{k}, A_{k}-Z\) and \(A_{k}+Z\), respectively. The calculation of \(A_{k+1}\), the trial solution to \(A^{\prime}\), is made using
\[
\begin{equation*}
A_{k+1}=A_{k}-f^{\prime}\left(A_{k}\right) / f^{\prime \prime}\left(A_{k}\right), \tag{4.19a}
\end{equation*}
\]
or numerically
\[
\begin{equation*}
A_{k+1}=A_{k}-D 1 / D 2 \tag{4.19b}
\end{equation*}
\]

In essence, \(A_{k+1}\) is the point at which a line drawn tangent to \(f^{\prime}\left(A_{k}\right)\) intersects the horizontal axis, as shown in figure 4.8. This process is repeated, substituting \(A_{k+1}\) for \(A_{k}\), until the difference between \(A_{k}\) and \(A_{k+1}\) converges to some specified tolerance level, say \(1 \mathrm{~m}^{2}\left(\sim 10 \mathrm{ft}^{2}\right)\). The last trial value obtained with such a tolerance will generally be within \(0.1 \mathrm{~m}^{2}\left(\sim 1 \mathrm{ft}^{2}\right)\) of the actual optimum and is used as \(A^{\prime}\).

\section*{COLLECTOR AREA}

Figure 4.7 First derivative of the total cost curve as a function of collector area (f'(A))

\section*{COLLECTOR AREA}

Figure 4.8 Convergence algorithms to locate \(f^{\prime}(A)=0\)

Since the calculation of FH and FW for any given collector area, space heating load, water heating load, and equipment efficiency level requires the solution of several equations in a monthly model, it is important that convergence be rapid. Rapid convergence is also important because this optimization algorithm is repeated many times as envelope modifications are analyzed and equipment efficiencies (space heating, water heating, and space cooling) are changed. When the initial guess for \(A_{k}\) is within \(5 \mathrm{~m}^{2}\left(\sim 50 \mathrm{ft}^{2}\right)\) of \(A^{\prime}\), this algorithm can usually locate \(A^{\prime}\) in one iteration. Under most conditions, convergence can be obtained in four iterations or less. However, several modifications have been made to this convergence algorithm, as used in SOLCOM, to improve its performance under certain conditions which might otherwise slow it down:
(1) Test for D2>0. The numerical approximation of \(\mathrm{f}^{\prime \prime}\left(\mathrm{A}_{k}\right)\), D2, should have a positive value over the entire \(f^{\prime}(A)\) function. That is, each additional unit area of collector yields a smaller increase in the solar fractions than the one before. (This is the second order condition needed to ensure that \(f^{\prime}(A)=0\) occurs at the minimum point on the TC curve.) It is possible that discontinuities in the empirical relationship between the solar fraction and collector area will result in a negative value for \(D 2\) at some value of \(A_{k}\), causing divergence from, rather than convergence on, \(A^{\prime}\). If \(D 2\) is found to be negative, \(A_{k}\) is increased by \(2 \cdot 2\) and D2 is recomputed in order to move it out of the region of discontinuity.

It is conceivable that, for a particular type of solar heating system, or for a different model of solar heating performance than the SLR method used here, an additional unit of collector area may yield a larger increase in the solar fraction than the one preceding, at least initially when the solar fraction is very low. The optimal collector area cannot occur in this region (as long as the unit cost of collector area (\(\mathrm{K}_{\mathrm{V}}\)) is constant) since energy savings are increasing faster than costs. The second derivative of the total cost function will be negative throughout such a region, again preventing convergence on \(A^{\prime}\). Increasing \(A_{k}\) by \(2 \cdot Z\) (as discussed above) will eventually move \(A_{k}\) out of this region. However, by specifying Ml (the minimum collector size) large enough to keep \(A_{k}\) out of this region, this potential problem can be avoided altogether.
(2) Test for \(\mathrm{Ml}<\mathrm{A}_{\mathrm{k}+1}<\mathrm{M} 2\).
\[
\begin{aligned}
& \text { If } A_{k+1}<M 1 \text {, set } A_{k+1}=M 1 . \\
& \text { If } A_{k+1}>M 2 \text {, set } A_{k+1}=M 2 .
\end{aligned}
\]
(3) Test for M3 < \(A_{k+1}<M_{4}\).

In order to increase the rate of which the Newton-Raphson method converges to \(A^{\prime}\) in some cases, it is useful to dynamically specify new lower and upper bounds (M3 and M4, respectively) on \(A_{k+1}\), as follows:

> If D1 for \(A_{k}<0\), set \(M 3=A_{k}\);
> if Dl for \(A_{k}>0\), set \(M 4=A_{k}\).

Then, if \(A_{k+1}<M 3\), set \(A_{k+1}\) to \((M 3+M 4) / 2\);
\[
\text { if } A_{k+1}>M 4 \text {, set } A_{k+1} \text { to }(M 3+M 4) / 2 \text {. }
\]

As a general rule, if the total annual heating requirements are reduced by sone given percentage, the optimal collector area will decrease by the same percentage and the corresponding solar fraction will remain unchanged \({ }^{l}\). This relationship is not exact if the percentage reduction in heating loads is not the same for each month of the year, nor if water heating loads (which remain constant) are included. However, this rule can be very helpful in determining a starting point for the convergence algorithm as AHR are reduced in the envelope optimization analysis. Usually only one iteration is needed to find the optimal collector area for a new AHR once the optimal area for the previous envelope configuration has been determined.

The starting point to find \(A_{1+x}\) for \(\mathrm{HL}_{i+x}\), given \(A_{1}\) for \(\mathrm{HL}_{i}\), where x is a positive or negative integer representing the number of envelope modifications added to or subtracted from the configuration with \(\mathrm{HL}_{\mathrm{i}}\), is computed in SOLCOM as as follows:
\[
\begin{equation*}
\mathrm{A}_{\mathrm{i}+\mathrm{x}}=\frac{\mathrm{A}_{\mathrm{i}}^{\prime}\left[\mathrm{HL}_{\mathrm{i}+\mathrm{x}} \cdot \mathrm{KH} / \mathrm{HE}+\mathrm{WL} \cdot \mathrm{KW} / \mathrm{WE}+\mathrm{FT}\left(\mathrm{HL}_{i+x}+\mathrm{WL}\right) \cdot \mathrm{DE}_{3} \cdot \mathrm{KS}\right]}{\mathrm{HL}_{i} \cdot \mathrm{KH} / \mathrm{HE}+\mathrm{WL} \cdot \mathrm{KW} / \mathrm{WE}+\mathrm{FT}\left(\mathrm{HL}_{i}+\mathrm{WL}\right) \cdot \mathrm{DE}_{3} \cdot \mathrm{KS}} \tag{4.20}
\end{equation*}
\]
where \(\mathrm{FT}=\) annual solar fraction for combined space and water heating (total output/total load).

No general rule exists for estimating the change in optimal collector area due to a change in energy prices or changes in conventional equipment efficiency. (In fact, the amount of change in optimal collector area due to a change in energy price depends in part where on the solar fraction curve the optimal fraction lies before the change is made, and the shape of the curve.) Since no expedient approximation rule could be worked out, the optimal collector area computed for a given HL and WL, based on \(\mathrm{HE}_{\mathrm{j}}\) and \(\mathrm{WE}_{\mathrm{W}}\), is used as the starting point in SOLCOM to search for the new optimal area as HE and WE are increased or decreased.

\subsection*{4.3.2 Optimization of Envelope Modifications, AHR and ACR}

The general search procedure used in SOLCOM to find the optimal combination of envelope modifications to reduce space heating loads is similar to that outlined in section 4.2 (Steps 1 and 2). However, the actual optimization algorithms used in SOLCOM are more comprehensive than the general search procedure in that the total cost function is expanded to include reductions in annual cooling requirements (ACR), separate space and water heating plants and solar fractions, and electricity usage for fans and/or pumps in both the heating/cooling distribution system and the solar heating equipment. Approximation techniques are used to provide a more efficient starting point for the search algorithm in order to reduce the number of times the optimal solar collector size must be determined. Ranking of the envelope modifications in

\footnotetext{
1 Sav, G. Thomas, "Economic Optimization of Solar Energy and Energy Conservation in Commercial Buildings."
}
decreasing order of cost effectiveness is also verified in this part of SOLCOM, and if necessary, redetermined as the space heating plant efficiency changes.

The total cost function in SOLCOM can be expressed as follows:
\[
\begin{align*}
\mathrm{TC}= & \mathrm{ECSH}+\mathrm{ECWH}+\mathrm{ECSC}+\mathrm{ECS}+\mathrm{ECDH}+\mathrm{ECDC}+\mathrm{PCSH}+\mathrm{PCWH} \tag{4.21}\\
& +\mathrm{PCSC}+\mathrm{MCE}+\mathrm{SSC},
\end{align*}
\]

TC \(=\) total life cycle heating- and cooling-related costs,
ECSH \(=\) LC energy cost for space heating plant,
ECWH \(=\) LC energy cost for water heating plant,
ECSC \(=\) LC energy cost for space cooling plant,
ECS \(=\) LC electricity cost for space heating equipment,
ECDH \(=\) LC electricity cost for distribution system, heating,
ECDC \(=\) LC electricity cost for distribution system, cooling,
PCSH \(=\) LC plant cost, space heating,
PCWH \(=\) LC plant cost, water heating,
PCSC \(=\) LC plant cost, space cooling,
MCE \(=\) total LC envelope modification costs, and
SSC \(=\) LC solar heating system costs.
Life-cycle energy costs are found by multiplying annual energy use for each function by the cost per unit for the type of energy used (as of the beginning of the study period), a modified uniform present value factor (UPV*), and an after-tax equivalence (ATE) factor. Computation of annual energy use for each of the six energy use functions above is detailed in equations 3.1 through 3.6 in section 3. Computation of the UPV* and ATE factors is explained in sections 5.1 and 5.2. Unit energy costs are selected by the user to represent actual energy costs at the building site. Computation procedures to find the lifecycle costs of all equipment and envelope modifications, including initial costs as well as future costs and savings (e.g., maintenance, replacements, resale value and tax savings) are also detailed in section 5.

As each envelope modification is brought into the analysis, all of the cost elements in equation 4.21 (except for the water heating plant) may change. Modifications that reduce AHR will likely reduce the design heating load (DHL), allowing the use of a smaller space heating plant. The same envelope modification may lead to a reduction (or possibly an increase) in the annual cooling requirements (ACR) and the design cooling load (DCL) as well, resulting in a change in the size of the space cooling plant. As the AHR are reduced, a smaller solar collector size (if any) will be optimal, but solar fraction for water heating will be increased. Changes in AHR and ACR also result in proportional changes in distribution energy requirements.

The algorithms used in SOLCOM to determine the optimal combination of envelope modifications are divided into several stages:
(1) ranking of envelope modifications,
(2) first approximation to optimum, and
(3) actual determination of optimum.

\section*{(1)} Ranking of Envelope Modifications

Each of the envelope modifications analyzed in SOLCOM must be ranked in decending order of life-cycle cost effectiveness or the optimization algorithm will fail. The incremental energy savings (in terms of \(\triangle A H R, \triangle D H L, \triangle A C R\), and \(\triangle D C L\)) entered into the program have ideally been determined in this order since there is some interdependence among the modifications. That is, when the incremental energy savings attributable to the \(i^{\text {th }}\) modification (\(M_{f}\)) are calculated for a specific building using a load determination model, alf of the more cost-effective modifications (\(M_{1}, M_{2}, \cdots, M_{1-1}\)) have already been incorporated, while all of the less cost-effective modifications (\(M_{i+1}, M_{i+2}, \ldots M_{n 1}\)) have yet to be considered.

However, the proper economic ranking of the modifications may change as the plant efficiencies are changed or the solar fraction for space heating (FH) changes. Ideally, the optimal values for each of these parameters should be used when establishing the initial ordering of the modifications. Since these values are obviously not known at the outset, an informed estimate must be made for each. If the ranking of modifications determined in the SOLCOM analysis differs significantly from the ranking used in estimating the energy savings (especially for modifications near the cut-off point in the optimization) it may be wise to recalculate the energy savings based on this new ranking and rerun SOLCOM with the new data.

The SOLCOM program initially evaluates the list of envelope modifications, in the order entered, to determine the AHR, DHL, ACR, and DCL as each additional envelope modification is incorporated into the building design. Based on the initial search values (specified by the user), SOLCOM calculates an optimal collector area and corresponding solar fractions. Using these initial search values and solar fractions, SOLCOM then steps through the list of nl envelope modifications to make sure they are ranked in decending order of cost effectiveness, based on a benefit-cost ratio (\(R_{i}: 1=1,2, \cdots, n 1\)), so that \(R_{1} \geq R_{2} \geq \cdots \geq R_{n 1}\), where
\[
\begin{align*}
\mathrm{R}_{\mathbf{i}}= & {\left[\Delta \mathrm{HL}_{\mathbf{i}} \cdot\left((1-\mathrm{FH}) \cdot \mathrm{KH} / \mathrm{HE}+\mathrm{DE}_{3} \cdot \mathrm{KS} \cdot \mathrm{FH}\right)+\Delta \mathrm{AHR}_{\mathbf{i}} \cdot \mathrm{DE}_{1} \cdot \mathrm{KD}_{1}\right.} \\
& +\Delta \mathrm{CL}_{\mathbf{i}} \cdot \mathrm{KC} / \mathrm{CE}+\Delta \mathrm{ACR}_{\mathbf{i}} \cdot \mathrm{DE}_{2} \cdot \mathrm{KD}_{2}+\Delta \mathrm{MH}_{\mathbf{i}} \cdot \mathrm{HO} \cdot \mathrm{VCHE} \tag{4.22}\\
& \left.+\Delta \mathrm{MC}_{\mathbf{i}} \cdot \mathrm{CO} \cdot \mathrm{VCCE}\right] / \Delta \mathrm{MCE}_{\mathbf{i}}
\end{align*}
\]
and where \({ }^{1}\)
\[
\begin{aligned}
& K_{1}=\text { cost per } k W h \text { for heating distribution system } x \text { UPV* for same, } \\
& \mathrm{KD}_{2}=\text { cost per } \mathrm{kWh} \text { for cooling distribution system } \mathrm{x} \text { UPV* for same, } \\
& \Delta A C R_{i}=\text { change in annual cooling requirements in GJ (} 10^{6} \mathrm{Btu} \text {) due to } i^{\text {th }} \\
& \text { modification, } \\
& \Delta \mathrm{CL}_{\mathrm{i}}=\Delta \mathrm{ACR}_{\mathrm{i}} \cdot\left(1+\mathrm{EE} \cdot \mathrm{DE}_{2}\right) \text {, }
\end{aligned}
\]

\footnotetext{
1 Other variables are described in section 4.3.1
}
\[
\begin{aligned}
& D E_{2}=k W h \text { per } G J\left(10^{6} \mathrm{Btu}\right) \text { ACR required for cooling distribution system, } \\
& \Delta M H_{1}=\left(D_{1} L_{1}-D_{1-1}\right)\left(1-E E \cdot D E_{1}\right), \\
& \Delta M C_{1}=\left(D C L_{1}-D C L_{1-1}\right)\left(1+E E \cdot D E_{2}\right) \text {, } \\
& \mathrm{DHL}_{1}=\text { design heating load (MJ or } 10^{3} \mathrm{Btu} \text {) for envelope with modifications } \\
& 1 \text { through i, } \\
& D C L_{1}=\text { design cooling load (MJ or } 10^{3} \mathrm{Btu} \text {) for envelope with modifications } \\
& 1 \text { through } 1 \text {, } \\
& \text { HO = oversizing factor for heating plant, } \\
& \text { CO = oversizing factor for cooling plant, } \\
& \text { VCHE = variable cost per MJ (} 10^{3} \text { Btu) output capacity for heating plant, } \\
& \text { VCCE }=\text { variable cost per } M J\left(10^{3} \mathrm{Btu}\right) \text { output capacity for cooling plant, } \\
& \text { and }
\end{aligned}
\]
\(\Delta M C E_{i}=M C E_{i}-M C E_{i-1}\), the incremental cost of the \(i^{\text {th }}\) modification.
This ranking procedure is based on the assumption that the optimal solar fraction(s) remain unchanged as the AHR are reduced, as discussed in section 4.2. While this assumption is not exactly correct, it is so close that any difference would rarely affect the resulting ranking. (An extra step in the search procedure in SOLCOM is designed to catch an error here if this assumption causes a misordering of envelope modifications.)

If the order in which the modifications are initially entered does not satisfy this ranking criteria, it is changed internally in SOLCOM until it does. Note, however, that the values entered for \(\triangle A H R, \triangle D H L, \triangle A C R\), and \(\triangle D C L\) for any given modification do not change. In fact, if these values were to be recalculated in the load determination program based on this new order, there would probably be some difference from the original estimates because of the interdependent nature of the envelope modifications. For this reason, if the final ordering of the modifications (printed out after the optimization analysis) differs significantly from the initial ordering used to find \(\triangle A H R_{i}, \triangle A D H L_{i}, \triangle A C R_{i}\), and \(\triangle \mathrm{DCL}_{1}\), especially for the last few modifications included in the optimum configuration, serious consideration should be given to recalculating the value of these changes in the new ordering.

\section*{(2) First Approximation to Optimum Combination of Envelope Modifications}

A first approximation to the optimum combination of envelope modifications is sought in order to reduce the number of iterations for which the collector area must be optimized as SOLCOM steps through \(1=1,2\), ... nl. This first approximation is based on the assumption that the optimal solar fractions remain unchanged as the envelope is modified and that the optimal collector area can be approximated using equation 4.20 above. The collector size is first optimized for the starting point designated by the user or determined in a previous iteration. Then \(T C_{1}\) and \(T C_{1-1}\) are determined using equation 4.21,
with approximate values substituted for the collector area and solar fractions if the exact value is not known from a previous iteration. The difference is calculated as
\[
\begin{equation*}
\mathrm{DT}_{i}=\mathrm{TC}_{i}-\mathrm{TC}_{i-1} \tag{4.23}
\end{equation*}
\]

If \(\mathrm{DT}_{1}>0\), so that total costs increase as the \(1^{\text {th }}\) modification is brought in, \(i\) is decremented by 1 until either (a) \(\mathrm{DT}_{1} \leq 0\), in which case all modifications \(1,2, \ldots, i\) are cost effective, or (b) \(1=1\) and \(\mathrm{DT}_{i}>0\), in which case no modifications are cost effective.

If \(\mathrm{DT}_{i} \leq 0\), so that total costs decrease or remain constant as the \(i^{\text {th }}\) modification is brought in, i is incremented by 1 until either
(a) \(\mathrm{DT}_{1}>0\), in which case all modifications 1,2 , ... \(1-1\) are cost effective (but \(i\) is not), or (b) \(i=n l\) and \(\mathrm{DT}_{\mathrm{i}} \leq 0\), in which case all nl modifications are cost effective.

\section*{(3) Actual Determination of Optimum Combination of Envelope Modifications}

At this point a first approximation to the optimum combination of envelope modifications has been found and it will serve as the starting point to find the actual optimum combination. In practice, this first approximation usually is the actual optimum as well but it must be verified and adjusted if not.

Starting with the last cost-effective modification determined above (say the \(i^{\text {th }}\)), \(\mathrm{TC}_{i}\) and \(\mathrm{TC}_{i-1}\) are recalculated using the actual optimum solar fractions and collector areas for \(A H R_{i}\) and \(A H R_{1-1}\) (as detailed in section 4.3.1). The same evaluation procedures for \(\mathrm{DT}_{\mathrm{i}}\) discussed in (2) above are used to find the actual optimum combination of modifications, but the solar collector area must be reoptimized with each step if it is unknown.

One additional check is made, however, to ensure that an error in the ranking of modifications does not terminate the optimization search prematurely. (The possibility of an error was discussed in (1) above.) The search algorithm goes one step past the termination point in order to ensure that the modifications are ranked properly at this critical point, i.e., the total cost continues to increase. If a ranking error is detected, the modifications are reordered and the search process is then continued as described above.

\subsection*{4.3.3 Optimization of Space Heating Plant Efficiency}

Up to five space heating plant efficiencies may be specified in SOLCOM, listed in order of increasing efficiency. The incremental benefit-cost ratio (\(\mathrm{R}_{\mathrm{j}}^{\mathrm{h}}\)) for each increase in efficiency must be smaller than the one preceding it, i.e.
\[
\begin{equation*}
\mathrm{R}_{2}^{\mathrm{h}}>\mathrm{R}_{3}^{\mathrm{h}}>\cdots>\mathrm{R}_{\mathrm{n} 2}^{\mathrm{h}} . \tag{4.24}
\end{equation*}
\]

This benefit-cost ratio is calculated as follows:
\[
\begin{equation*}
R_{j}^{h}=\frac{\frac{1}{H E_{j}}-\frac{1}{H E_{j-1}}}{\Delta P_{C S H}^{j}}, \tag{4.25}
\end{equation*}
\]
where \(H E_{j}=\) seasonal efficiency of the \(j^{\text {th }}\) space heating plant, and
\(\begin{aligned} & \Delta \text { PCSH }_{j}= \text { PCSH }_{j}-\text { PCSH }_{t}{ }^{\text {l }} \text {, the incremental LCC of the } j^{\text {th }} \text { plant relative } \\ & \text { to the }(j-1)^{\text {entant. }}\end{aligned}\)
If \(R_{j}^{h} \leq R_{j+1}^{h}\), the \(j^{\text {th }}\) plant is dropped out of the optimization analysis since it cannot be optimal. The incremental LCC of the \((j+1)^{\text {th }}\) plant \(\left(~ \triangle \mathrm{PCSH}_{j+1}\right)\) is then increased to include \(\Delta \mathrm{PCSH}_{\mathrm{j}}\), and n 2 is decreased accordingly.

The search algorithm to find the optimal \(\mathrm{HE}_{j}(j=1,2, \ldots, n 2)\) in SOLCOM is analogous to the search algorithm used to find the optimal envelope configuration. Equation 4.21 is used to calculate \(\mathrm{TC}_{j}\) and \(T C_{j-1}\), given WE, for the starting point specified (\(1<\mathrm{f} \leq \mathrm{n} 2\)). The optimal combination of envelope modifications, optimal collector area and corresponding solar fractions are determined for both \(\mathrm{HE}_{j}\) and \(\mathrm{HE}_{j-1}\) and are used in the determination of \(T C_{j}\) and \(T C_{j-1}\), respectively. The difference in total life cycle costs, \(\mathrm{DT}_{j}\), is computed as:
\[
\begin{equation*}
D T_{j}=T C_{j}-T C_{j-1} \tag{4.26}
\end{equation*}
\]

If \(\mathrm{DT}_{j}>0, \mathrm{j}\) is decremented by 1 until either
(a) \(\mathrm{DT}_{j} \leq 0\), in which case \(\mathrm{HE}_{j}\) is optimal or
(b) \(\mathrm{j}=2\) and \(\mathrm{DT}_{j}>0\), in which case \(\mathrm{HE}_{1}\) is optimal.

If \(\mathrm{DT}_{\mathrm{j}} \leq 0\), then j is incremented by 1 until either
(a) \(\mathrm{DT}_{\mathrm{j}}>0\), in which case \(\mathrm{HE}_{j-1}\) is optimal, or
(b) \(\mathrm{j}=\mathrm{n} 2\) and \(\mathrm{DT}_{\mathrm{j}} \leq 0\), in which case \(\mathrm{HE}_{\mathrm{n} 2}\) is optimal.

At this point, the optimal efficiency for the space heating plant and the corresponding optimal combination of envelope modifications and collector area have all been identified, given WE, the efficiency of the water heating plant. If space heating and water heating are provided by the same plant, then WE is assigned the same value as \(\mathrm{HE}_{\mathrm{j}}(\mathrm{j}=1,2, \ldots \mathrm{n} 2)\) in SOLCOM. In this case, no further iterations are needed, for WE is optimized at the same time as HE. If the water heating plant is separate, and more than one efficiency level is to be considered in the SOLCOM analysis, the optimization algorithm for the water heating plant must be executed.

\subsection*{4.3.4 Optimization of Water Heating Plant Efficiency}

The search algorithm to find the optimal water heating plant efficiency is essentially the same as the search algorithm used for the space heating plant above. \(\mathrm{WE}_{1}\) is the efficiency of the basic water heating plant. \(\mathrm{WE}_{\mathrm{w}}\) (\(\mathrm{w}=2\), 3 ,, n3) is the efficiency of the \(W^{\text {th }}\) improved plant. The incremental benefit-cost ratio (\(R_{1}^{W}\)) for each increase in efficiency must be smaller
than the one preceding it, i.e.,
\[
\begin{equation*}
\mathrm{R}_{2}^{\mathrm{W}}>\mathrm{R}_{3}^{\mathrm{W}}>\cdots>\mathrm{R}_{\mathrm{n} 3}^{\mathrm{W}} \tag{4.27}
\end{equation*}
\]

This benefit-cost ratio is similar to equation (4.25):
\[
\begin{equation*}
\mathrm{R}_{\mathrm{W}}^{\mathrm{W}}=\frac{\frac{1}{\mathrm{WE}_{\mathrm{W}}}-\frac{1}{\mathrm{WE}_{\mathrm{W}-1}}}{\Delta \mathrm{PCWH}} \tag{4.28}
\end{equation*}
\]
where \(W E_{w} \quad=\) average efficiency of the \(w^{\text {th }}\) water heating plant, and

If \(R_{W}^{W} \leq R_{W+1}^{W}\), the \(w^{t h} p l a n t\) is dropped out of the optimization analysis since it cannot be optimal. The incremental LCC of the (\(w+1)^{\text {th }}\) plant \(\left(~ \triangle \mathrm{PCW}_{W+1}\right)\) is then increased to include \(\triangle \mathrm{PCWH}_{\mathrm{w}}\), and n 3 is decreased accordingly.

An initial starting point for \(w(1<w \leq n 3)\) is specified by the user during the execution of SOLCOM2. The optimal heating system efficiency, combination of envelope modifications, and collector area and the corresponding total LCC (\(T_{W}\) and \(\mathrm{TC}_{\mathrm{W}-1}\)) are determined for both \(\mathrm{WE}_{\mathrm{w}}\) and \(\mathrm{WE}_{\mathrm{W}-1}\), as described in sections 4.3.1-4.3.3.
\(D T_{W}\) is then calculated as
\[
\begin{equation*}
\mathrm{DT}_{\mathrm{w}}=\mathrm{TC}_{\mathrm{w}}-\mathrm{TC}_{\mathrm{w}-1} \tag{4-29}
\end{equation*}
\]

If \(\mathrm{DT}_{\mathrm{w}}>0\), then w is decremented by 1 until either:
(a) \(\mathrm{DT}_{\mathrm{W}} \leq 0\), in which case \(\mathrm{WE}_{\mathrm{W}}\) is optimal, or
(b) \(\mathrm{w}=2\) and \(\mathrm{DT}_{\mathrm{w}}>0\), in which case \(\mathrm{WE}_{1}\) is optimal.

If \(D T_{W} \leq 0, j\) is incremented by 1 until either
(a) \(D T_{W}>0\), in which case \(\mathrm{WE}_{\mathrm{W}-1}\) is optimal, or
(b) \(\mathrm{w}=\mathrm{n} 3\) and \(\mathrm{DT}_{\mathrm{w}} \leq 0\), in which case \(\mathrm{WE}_{\mathrm{n}}\) is optimal.

Optimal values have now been determined for the collector area and corresponding solar fractions; for envelope modifications and corresponding AHR, ACR, DHL, and DCL; and for space heating and water heating system efficiencies. In addition the total LCC associated with the overall conservation investment has been calculated. If it is desirable to determine an optimal cooling system efficiency (CE) as well, separate runs of SOLCOM can be made with each CE to be evaluated, along with its corresponding cost data. The CE resulting in the lowest overall total LCC indicates the optimal overall configuration, including CE.

\section*{5. FINANCIAL ANALYSIS METHODOLOGY}

In this section the methodology used in SOLCOM1 to determine life-cycle costs for each of the envelope modifications, plant efficiency improvements, and the solar heating system, as well as for energy costs, is detailed. Tax treatments (including depreciation and tax credits), resale value, inflation, and financing arrangements are also discussed.

\subsection*{5.1 CALCULATION OF DISCOUNT FACTORS, COST ESCALATION FACTORS, AND UPV* FACTORS}

The SOLCOM program requires that annual cost escalation rates be specified individually for several different categories of expenditures. These categories include individual energy types, operating and maintenance costs and conservation measure costs. These cost escalation rates, and the discount rate used to convert future costs to present value, can be changed during the study period to better track long term expectations of inflation and opportunity costs.

The methods used to convert annual price escalation rates and discount rates to cumulative escalation factors and discount factors are detailed in the following sections.

\subsection*{5.1.1 Cost Escalation Factors}

The cost escalation factor for any given year \(1\left(C E F_{1}\right)\) represents the ratio of the cost for a given cost element at the end of year 1 to its cost at the beginning of the study period (1.e., the beginning of year 1). Cost escalation factors for each cost category are computed as follows:
\[
\begin{align*}
& C E F_{0}=1 \tag{5.1a}\\
& C E F_{i}=C E F_{1-1} \cdot\left(1+C E R_{i}\right) \text { for } 1=1,2, \ldots, N \tag{5.1b}
\end{align*}
\]
where \(C E R_{1}=\) the cost escalation rate in year 1 , and \(N=\) length of the study period (in years).

\subsection*{5.1.2 Discount Factors}

The discount factor for any given year 1 represents the ratio of the present value of a given dollar amount to the actual dollar amount incurred in year 1 for a given cost element. The discount factor is computed as follows:
\[
\begin{align*}
& D F_{0}=1 \tag{5.2a}\\
& D F_{1}=D F_{1-1} /\left(1+D R_{1}\right) \text { for } 1=1,2, \ldots, N \tag{5.2b}
\end{align*}
\]
where \(D F_{i}=\) discount factor in year 1 , and
\(D R_{1}=\) discount rate in year 1.

\subsection*{5.1.3 Modified Uniform Present Value Factors}

The modified uniform present value factor (UPV*) is used to find the present value of a stream of related costs (or savings) which occur annually over the study period (N), increasing (or decreasing) at some known rate. UPV* factors are used in SOLCOM to determine the present value of annual energy expenditures for each energy type and the present value of annually recurring operating and maintenance costs. Since the discount rate may not be constant over the entire study period, UPV* factors are computed using the following summation formula (instead of a closed-form equation):
\[
\mathrm{UPV}^{*}=\sum_{i=1}^{N} \mathrm{CEF}_{i} \cdot \mathrm{DF}_{i} \cdot
\]

\subsection*{5.2 GENERAL LCC MODEL FOR CONSERVATION INVESTMENTS IN BUILDINGS}

\subsection*{5.2.1 Non-Energy Costs}

Conservation measures to improve the overall energy efficiency of a new building generally have life-cycle costs (LCC) significantly different from their first cost alone. The LCC of any given conservation measure (distinct from its energy cost implications) is made up of a number of cost elements, each attributable specifically to that measure, as follows:
\[
\begin{equation*}
\mathrm{LCC}=\mathrm{FC}+\mathrm{ST}-\mathrm{CT}+\mathrm{AROM}+\mathrm{NAROM}+\mathrm{PT}-\mathrm{RV}+\mathrm{RT}-\mathrm{TS} \tag{5.3}
\end{equation*}
\]
where \(\mathrm{FC}=\) first cost,
ST = sales tax,
CT = investment or conservation tax credits,
AROM = annual recurring operating and maintenance costs,
NAROM = non-annual recurring operating and maintenance costs, including replacement cosr,
PT = property taxes,
RV = resale value,
RT = capital gains and depreciation recapture taxes, and
TS = income tax savings (from ST, AROM, NAROM, PT, depreciation, and interest payments, if any),
and all costs are expressed in life-cycle, present-value dollar terms.
If the investment is financed, then
\[
\begin{equation*}
\mathrm{FC}=\mathrm{DP}+\mathrm{MP}, \tag{5.4}
\end{equation*}
\]
where \(\mathrm{DP}=\) down payment (at beginning of study period), and
\(M P=\) present value of all principal and interest payments, and
TS is adjusted to include tax savings from interest payments.
The following calculation methods are used in SOLCOM to compute a LCC factor for each measure which incorporates each of these cost elements. (Note that
all cost elements, except O\&M-related costs, are calculated in SOLCOM as a percentage of the first cost. O\&M-related costs can be calculated either as a percentage of the first cost or independently of first cost.) Each of these factors is computed once in the SOLCOMl subprogram and then transferred to the SOLCOM2 subprogram.
(1) First Cost (FC) This variable is entered directly into the data list of SOLCOM1. If FC is financed, see subsection 5.3.2 which describes financing factors.
(2) Sales Tax (ST)
\(S T=F C \cdot A P \cdot T X\),
where \(A P=\) percentage of first cost to which sales tax is applicable (\%/100), and
TX = sales tax rate (\%/100).
(3) Investment or Conservation Tax Credits (CT)

These tax credits are assumed to be realized at the end of the first year. State tax credits are adjusted to reflect increased Federal tax liability. Thus:
\[
\begin{align*}
& C T=C T_{F}+C T_{S}, \tag{5.6}\\
& C T_{F}=(F C+S T) \cdot C F \cdot D F_{1}, \text { and } \tag{5.7}\\
& C T_{S}=(F C+S T) \cdot C S(1-T F) \cdot D F_{1}, \tag{5.8}
\end{align*}
\]
where \(\mathrm{CT}_{\mathrm{F}}=\) Federal tax credit, \(C T_{S}=\) state tax credit (net),
\(\mathrm{CF}=\) Federal tax credit rate (\%/100),
CS = state tax credit rate (\%/100),
\(\mathrm{DF}_{1}=\) discount factor at end of year 1 , and
\(\mathrm{TF}=\) Federal tax rate (\%/100).
(4) Annually Recurring \(0 \& M\) Costs (AROM)
\[
\begin{equation*}
\mathrm{AROM}=\mathrm{ARC} \cdot \mathrm{UPV}_{\mathrm{m}}^{*}, \tag{5.9}
\end{equation*}
\]
where ARC = annual recurring cost (in base-time dollars) and \(U P V_{\mathrm{m}}^{*}=U P V^{*}\) for \(0 \& M\) costs.
\[
\begin{equation*}
\mathrm{NAROM}=\sum_{i=1}^{\mathrm{NN}} \mathrm{NRC}_{i} \cdot \mathrm{CEF}_{\mathrm{yi}}^{\mathrm{m}} \cdot \mathrm{DF}_{\mathrm{yi}} \tag{5.10a}
\end{equation*}
\]
where \(N N=\) number of non-annually recurring costs,
\(\mathrm{NRC}_{i}=\) amount of \(i^{\text {th }}\) non-annually recurring cost (in base-time dollars),
\(\mathrm{CEF}_{\mathrm{yi}}^{\mathrm{m}}=\) cost escalation factor for \(0 \& M\) expenditures in year \(y i\),
\(\mathrm{DF}_{\mathrm{yi}}=\) discount factor for year yi , and
\(y i=\) year of occurrence of \(i^{\text {th }}\) cost (base year \(=1\)).
Capital replacement costs are included in the NAROM cost element, which results in their treatment as a tax deductable expenditure in the year of occurrence, rather than capital expenditure which must be depreciated over time. A more comprehensive analysis would incorporate a depreciation schedule for capital replacements. However, it is unlikely that current depreciation schedules will still be in use at the time a replacement is made.

\section*{(6) Property Taxes (PT)}

Property taxes are based on an assumed linear reduction in real asset value from first cost to remaining value (in constant dollars) at the end of the study period and a corresponding increase in nominal value due to the general rate of increase in prices for such measures. They are calculated as though they are paid at the beginning of each year, based on the asset value at that time, but the tax savings are discounted from the end of the year. Property taxes attributable to any given conservation measure can be set to zero by setting \(\mathrm{PP}=0\) for that measure.
\[
\begin{equation*}
P T=F C \cdot P P \cdot T P \cdot \sum_{i=1}^{N}\left[1-\left(\frac{i-1}{N}\right)(1-R P)\right] \cdot C E F_{i-1}^{c} \cdot D F_{i-1} \tag{5.10b}
\end{equation*}
\]
where \(P P=\) assessment rate for the particular measure \((\% / 100)\), \(\mathrm{TP}=\) property tax rate (\%/100),
\(R P=\) remaining value factor for measure at end of study period (in base year dollars), and
\(\mathrm{CEF}_{\mathrm{i}}^{\mathrm{C}}=\) cost escalation factor for conservation measures in year i.

\section*{(7) Resale Value (RV)}

Resale value is the remaining value of each conservation measure at the end of the study period, whether the building is to be sold, torn down, or held. RV can be set equal to zero by setting \(\mathrm{RP}=0\).
\[
\begin{equation*}
\mathrm{RV}=\mathrm{FC} \cdot \mathrm{RP} \cdot \mathrm{CEF}_{\mathrm{N}}^{\mathrm{C}} \cdot \mathrm{DF}_{\mathrm{N}} \cdot \tag{5.11}
\end{equation*}
\]

\section*{(8) Capital Gains and Depreciation Recapture Taxes (RT)}

Capital gains tax and depreciation recapture tax are calculated for both the state and Federal government if the nominal resale value (SP) of a given conservation measure is greater than its first cost less cumulative straight-line depreciation. RT can be set equal to zero by specifying \(\mathrm{CG}_{1}=0\) for Federal tax purposes and \(\mathrm{CG}_{2}=0\) for state tax purposes. (\(\mathrm{CG}_{1}\) and \(\mathrm{CG}_{2}\) are Federal and state capital gains factors, respectively, in data sheet 1.) Depreciation computations are discussed in subsection 5.3 below.

Capital gains tax liability to Federal (CGF) and state (CGS) tax agencies are calculated using the positive difference between the nominal resale value of an asset and its first cost as follows:
\[
\begin{aligned}
\mathrm{CGF} & =[\mathrm{SP}-\mathrm{FC}] \cdot \mathrm{TF} \cdot \mathrm{CG}_{1} \cdot \mathrm{DF}_{\mathrm{N}} \text { for }(\mathrm{SP}>\mathrm{FC}), \\
\mathrm{CGS} & =[\mathrm{SP}-\mathrm{FC}] \cdot \mathrm{TS} \cdot(1-\mathrm{TF}) \cdot \mathrm{CG}_{2} \cdot \mathrm{DF}_{\mathrm{N}} \text { for }(\mathrm{SP}>\mathrm{FC}), \\
\text { where } \mathrm{SP} & =\mathrm{FC} \cdot \mathrm{RP} \cdot \mathrm{CEF}_{\mathrm{N}}^{\mathrm{C}}, \\
\mathrm{TF} & =\text { Federal income tax (marginal), and } \\
\mathrm{TS} & =\text { state income tax state (marginal). }
\end{aligned}
\]

Depreciation recapture tax liability \(\left(\mathrm{RT}_{f}\right.\) and \(\mathrm{RT}_{s}\) for Federal and state, respectively) varies according to the type of property and appropriate recapture rule \({ }^{1}\). One of three different rules may apply:
(a) Recapture Rule 1: The positive difference between the nominal resale value (SP) and the remaining basis (first cost less cumulative depreciation) is taxed as ordinary income.
\begin{tabular}{lll}
\(R T_{f}=\left(F C-R B_{f}\right) \cdot T F \cdot D F_{N} \quad\) for \(S P \geq F C\), or & (5.13a) \\
\(R T_{f}=\left(S P-R B_{f}\right) \cdot T F \cdot D F_{N} \quad\) for \(F C>S P>R B_{f}\), and \\
\(R T_{S}=\left(F C-R B_{S}\right) \cdot T S(1-T F) \cdot D F_{N} \quad\) for \(S P \geq F C\), or & (5.13b) \\
\(R T_{S}=\left(S P-R B_{S}\right) \cdot T S(1-T F) \cdot D F_{N} \quad\) for \(F C>S P>R B_{S}\), & (5.14b)
\end{tabular}
where \(R B_{f}=F C-C D_{f}\), remaining basis using Federal depreciation schedule, \(\mathrm{CD}_{\mathrm{f}}=\) cumulative depreciation using Federal depreciation schedule, \(\mathrm{RB}_{\mathrm{S}}=\mathrm{FC}-\mathrm{CD}_{\mathrm{S}}\), remaining basis using state depreciation schedule, and \(\mathrm{CD}_{\mathrm{S}}=\) cumulative depreciation using state depreciation schedule.

\footnotetext{
1 A good overview of depreciation guidelines and recapture rules is available in the Commerce Clearing House, Editorial Staff Publication, "Economic Recovery Tax Act of 1981, Law and Explanation, Chapter 2 ("Business Tax Incentives"), Chicago, Illinois, August 1981.
}
(b) Recapture Rule 2: The positive difference between the nominal resale value and the remaining basis is taxed as capital gains.
\[
\begin{align*}
& \mathrm{RT}_{\mathrm{f}}=\left(\mathrm{FC}-\mathrm{RB}_{\mathrm{f}}\right) \cdot \mathrm{TF} \cdot \mathrm{CG}_{1} \cdot \mathrm{DF}_{\mathrm{N}} \text { for } \mathrm{SP} \geq \mathrm{FC} \text {, or } \tag{5.15a}\\
& R T_{f}=\left(S P-\mathrm{RB}_{\mathrm{f}}\right) \cdot \mathrm{TF} \cdot \mathrm{CG}_{1} \cdot \mathrm{DF}_{\mathrm{N}} \text { for } \mathrm{FC}>\mathrm{SP}>\mathrm{RB}_{\mathrm{f}} \text {, and } \tag{5.15b}\\
& R T_{S}=\left(F C-\mathrm{RB}_{\mathrm{s}}\right) \cdot \mathrm{TS} \cdot \mathrm{CG}_{2} \cdot(1-T F) \cdot \mathrm{DF}_{\mathrm{N}} \text { for } \mathrm{SP} \geq \mathrm{FC} \text {, or } \tag{5.16a}\\
& R T_{s}=\left(S P-R B_{S}\right) \cdot T S \cdot C G_{2} \cdot(1-T F) \cdot D F_{N} \text { for } F C>S P>R B_{f} \text {. } \tag{5.16b}
\end{align*}
\]
(c) Recapture Rule 3: The positive difference between the nominal resale value and the remaining basis (first cost less straight-line depreciation) is taxed as capital gains. Any excess depreciation claimed through use of an accelerated method of depreciation is taxed as ordinary income.
\[
\begin{align*}
& R T_{f}=\left[\left(F C-R B_{f}^{\prime}\right) \cdot C G_{1}+\left(R B_{f}^{\prime}-R B_{f}\right)\right] \cdot T F \cdot D F_{N} \quad \text { for } S P>F C \text {, } \tag{5.17a}\\
& R T_{f}=\left[\left(S P-R B_{f}^{\prime}\right) \cdot C G_{1}+\left(R B_{f}^{\prime}-R B_{f}\right)\right] \cdot T F \cdot D F_{N} \quad \text { for } F C>S P>R B_{f}^{\prime} \text {, or } \tag{5.17b}\\
& R T_{f}=\left(S P-R B_{f}\right) \cdot T F \cdot D F_{N} \quad \text { for } R B_{f}^{\prime}>S P>R_{f} \text {, and } \tag{5.17c}\\
& R T_{s}=\left[\left(F C-R B_{s}^{\prime}\right) \cdot C G_{2}+\left(R B_{s}^{\prime}-R B_{s}\right)\right] \cdot T S(1-T F) \cdot D F_{N} \quad \text { for } S P \geq F C \text {, } \tag{5.18a}\\
& R T_{S}=\left[\left(S P-R B_{s}^{\prime}\right) \cdot C G_{2}+\left(R B_{s}^{\prime}-R B_{S}\right)\right] \cdot T S(1-T F) \cdot D F_{N} \quad \text { for } F C>S P>R B_{f}^{\prime} \text {, or (5.18b) } \\
& R T_{S}=\left(S P-R B_{S}\right) \cdot T S(1-T F) \cdot D F_{N} \quad \text { for } R B_{S}^{\prime}>S P>R B_{S} \text {, } \tag{5.18c}
\end{align*}
\]
where \(R B_{f}^{\prime}=\) remaining basis using straight-line depreciation rules, Federal and \(\mathrm{RB}_{\mathrm{S}}^{\prime}=\) remaining basis using straight-line depreciation rules, state.
(9) Income Tax Savings

Present-value income tax savings are computed in SOLCOMl as follows:
(a) Tax savings from sales tax payments \(\left(\mathrm{TS}_{\mathrm{ST}}\right)\) :
\[
\begin{equation*}
\mathrm{TS}_{\mathrm{ST}}=\mathrm{ST} \cdot(\mathrm{TF}+\mathrm{TS}(1-\mathrm{TF})) \cdot \mathrm{DF}_{1} \tag{5.19}
\end{equation*}
\]
(b) Income tax savings from annually recurring \(0 \& M\left(\mathrm{TS}_{\text {AROM }}\right)\) :
\[
\begin{equation*}
\mathrm{TS}_{\mathrm{AROM}}=\mathrm{AROM}(\mathrm{TF}+\mathrm{TS}(1-\mathrm{TF})) \tag{5.20}
\end{equation*}
\]
(c) Income tax savings from non-annually recurring \(0 \& M\left(T S_{\text {NAROM }}\right)\) :
\[
\begin{equation*}
\mathrm{TS}_{\text {NAROM }}=\operatorname{NAROM}(\mathrm{TF}+\mathrm{TS}(1-\mathrm{TF})) \tag{5.21}
\end{equation*}
\]
(d) Income tax savings from property tax payments (\(\mathrm{TS}_{\mathrm{PT}}\)):
(Property taxes are assumed to be paid at the beginning of the year but not realized as tax savings until the end of the year.)
\[
\begin{equation*}
T S_{P T}=F C \cdot P P \cdot T P\left[\sum_{i=1}^{N}\left[1-\left(\frac{1-1}{N}\right)(1-R P)\right] \cdot C E F_{i-1}^{c} \cdot D F_{i}\right] \cdot(T F+T S(1-T F)) \tag{5.22}
\end{equation*}
\]
(e) Income tax savings from depreciation (TS \({ }_{\text {DEP }}\)):
\[
\begin{equation*}
T S_{D E P}=D_{1} \cdot T F+D D_{2} \cdot T S(1-T F) \tag{5.23}
\end{equation*}
\]
where \(\mathrm{DD}_{1}=\) present value of cumulative depreciation, Federal, and \(\mathrm{DD}_{2}=\) present value of cumulative depreciation, state.
(The methodology used to compute cumulative depreciation is detailed in section 5.3 below.)
(f) Income tax savings fron interest payments (TS INT):
\[
\begin{equation*}
T S_{I N T}=I N^{\prime} \cdot(T F+T S(1-T F)) \tag{5.24}
\end{equation*}
\]
where \(I N^{\prime}=\) present-value of interest payments, discounted from end of year.
(The methodology used to compute interest payments is detailed in section 5.3 below.)

\subsection*{5.2.2 Energy Costs}

In addition to the life-cycle costs of the specific conservation measures examined in SOLCOM, life-cycle costs must be calculated for each energy type used in the building. Life-cycle energy costs are computed in terms of the cost per GJ or \(10^{6}\) Btu of each energy type purchased per year each year over the study period.
\[
\begin{equation*}
E C_{i}=\$ / U_{i} \cdot U P V_{i}^{*} \tag{5.25}
\end{equation*}
\]
where \(E C_{i}=\) present-value life cycle cost of \(i^{\text {th }}\) energy type per \(\mathrm{GJ}\left(10^{6} \mathrm{Btu}\right)\) per year for \(N\) years,
\(\$ / U_{i}=\) cost per \(G J\left(10^{6} \mathrm{Btu}\right)\) of energy type \(i\) at beginning of study period, and
\(U P V_{i}^{*}=\) modified uniform p. v. factor for the \(i^{\text {th }}\) energy type.
Tax savings for energy type (\(\mathrm{TS}_{\mathrm{Ei}}\)) are computed as
\[
\begin{equation*}
T S_{E 1}=E C_{1}(T F+T S(1-T F)) \tag{5.26}
\end{equation*}
\]

\subsection*{5.3 CALCULATION OF CUMULATIVE DEPRECIATION FACTORS AND FINANCING FACTORS}

\subsection*{5.3.1 Cumulative Depreciation Factors}

Cumulative depreciation factors for each of the three conservation investment classes (envelope modifications, conventional heating and cooling equipment improvements, solar equipment) are calculated for both Federal and state income
tax purposes. These cumulative depreciation factors are calculated from depreciation schedules entered into the SOLCOML program. (Separate depreciation schedules for Federal and state tax purposes can be entered if warranted; otherwise, the depreciation factor for state taxes is the same as that computed for Federal tax purposes.

The depreciation schedule has the form \(D_{1}, D_{2}, \ldots, D_{M}\)
where \(D_{i}=\) the ratio of depreciation allowance to first cost in year \(i\) (\(i=1\), \(2, \ldots ., M)\), and
\(M=\) the number of years in the study period, or the depreciation period, whichever is shorter.

Cumulative depreciation factors are calculated both in present value (i.e., discounted) and nominal (i.e., non-discounted) terms as follows:
\[
\begin{equation*}
D A=\sum_{i=1}^{M} D_{i} \cdot D F_{i} \text {, and } \tag{5.27}
\end{equation*}
\]
\[
\begin{equation*}
D D=\sum_{i=1}^{M} D_{i} \tag{5.28}
\end{equation*}
\]
where \(D A=\) the present-value cumulative depreciation factor, and DD \(=\) the nominal cumulative depreciation factor.

In addition, a straight-line cumulative depreciation factor (SC) must be calculated if depreciation recapture rule 3 is used and the resale value of the investment is greater than the remaining basis (SP \(>\) FC-DD) at the end of the study period. This is calculated as
\[
\begin{array}{lr}
S L=1 & \text { for } N \geq M, \text { or } \\
S L=N / D L & \text { for } N<D L \tag{5.29b}
\end{array}
\]
where \(N=\) the length of the study period, and
DL = the actual length of the depreciation period for a given class of assets.

\subsection*{5.3.2 Financing Factors}

All of the conservation measures evaluated in SOLCOM are considered to have the same financing terms, if any. Three different financing alternatives can be specified in SOLCOM:
(1) fully amortized loan with equal payments in each time period,
(2) interest-only payments at periodic intervals (of equal length) but not less than one per year); principal paid back at end of loan life, and
(3) principal and interest deferred to end of loan period.

While a longer loan life than the time horizon can be specified, any unpaid principal is assumed to be paid back at the end of the study period. A down payment factor (\(D P\)), the ratio of initial payment to actual first cost (including sales tax) for a given conservation measure is specified in the input data file (see data sheet 5.) The loan amount factor is then computed as (1-DP).

Computation procedures to find the present value factor for principal and interest payments are as follows:
(1) Loan Type 1 (Amortized)
(a) Loan payment factor (CR):
\[
\begin{equation*}
\mathrm{CR}=\frac{\mathrm{LI} / \mathrm{LN} \cdot(1+\mathrm{LI} / \mathrm{LN})^{\mathrm{LN} \cdot \mathrm{LL}}}{(1+\mathrm{LI} / \mathrm{LN})^{\mathrm{LN} \cdot \mathrm{LL}-1}} \tag{5.30}
\end{equation*}
\]
where \(\mathrm{LI}=\) annual interest rate (nominal),
LN \(=\) number of payments per year, and
\(\mathrm{LL}=\) loan life (in years).
(b) Present-value factor for loan payments discounted from time of payment (Ll):
\[
\begin{equation*}
\mathrm{L} 1=(1-\mathrm{DP}) \cdot \sum_{1=1}^{\mathrm{LM}} \mathrm{CR} \cdot \frac{\left(1+\mathrm{DR} R_{1}^{\prime} / \mathrm{LN}\right)^{\mathrm{LN}}-1}{D R_{1}^{\prime} / \mathrm{LN} \cdot\left(1+D R_{1}^{\prime} / \mathrm{LN}\right)^{\mathrm{LN}}} \cdot \mathrm{DF}_{1-1} \tag{5.31}
\end{equation*}
\]
where \(D R_{1}^{\prime}=L N \cdot\left(1+D R_{1}\right)^{1 / L N}-L N\), and
LM \(=\) LL or study period, whichever is shorter.
(\(D R_{1}\) is the nominal equivalent of the effective discount rate in year \(1, D R_{1}\). If \(\mathrm{LN}=1, D R_{1}\) and \(D R_{1}\) are equivalent.)
(c) Present-value factor for interest payments discounted from end of year (L2):
\[
\begin{align*}
& L 2=\sum_{1=1}^{L M} \cdot D F_{i} \sum_{k=1}^{L N} I_{1, k} \tag{5.33}\\
& \text { where } I_{1, k}=P_{1, k-1} \cdot L I / L N, \quad 1=1,2, \ldots, L M \tag{5.34}\\
& \\
& P_{1,0}=1-D, \ldots, L N \tag{5.35}\\
& P_{1,0}=P_{1-1, L N}, \quad 1=2,3, \ldots, L M \tag{5.36}\\
& P_{1, k}=P_{1, k-1}+I_{1, k}-C R(1-D P), \quad k=1,2, \ldots, L N \tag{5.37}
\end{align*}
\]
(d) If the loan life is greater than the study period (LL \(>N\)) then the present value of the remaining principal (L3) must be calculated:
\[
\begin{equation*}
\mathrm{L} 3=\mathrm{P}_{\mathrm{LM}, \mathrm{LN}} \cdot \mathrm{DF}_{\mathrm{N}} \tag{5.38}
\end{equation*}
\]
(2) Loan Type 2 (Interest Only)
(a) Present-value factor for interest payments discounted from time of payment (Ll):
\[
\begin{equation*}
\mathrm{L} 1=(1-\mathrm{DP}) \sum_{i=1}^{\mathrm{LM}} \frac{\mathrm{LI}}{\mathrm{LN}} \cdot \frac{\left(1+\mathrm{DR} R_{i}^{\prime} / \mathrm{LN}\right)^{\mathrm{LN}}-1}{\mathrm{DR}} \mathrm{R}_{\mathrm{i}}^{\prime} / \mathrm{LN} \cdot\left(1+\mathrm{DR}_{\mathrm{i}}^{\prime} / \mathrm{LN}\right)^{\mathrm{LN}} \cdot \mathrm{DF}_{\mathrm{i}-1} \tag{5.39}
\end{equation*}
\]
(b) Present-value factor for interest payments discounted from end of year (L2):
\[
\begin{equation*}
\mathrm{L} 2=(1-\mathrm{DP}) \sum_{\mathrm{i}=1}^{\mathrm{LM}} \mathrm{LI} \cdot \mathrm{DFi} \tag{5.40}
\end{equation*}
\]
(c) Present-value for remaining principal at end of loan period (L3):
\[
\begin{equation*}
\mathrm{L} 3=(1-\mathrm{DP}) \cdot \mathrm{DF}_{\mathrm{LM}} \tag{5.41}
\end{equation*}
\]
(3) Loan Type 3 (Interest and Principal Deferred)
(a) Present-value factor for interest payments made at end of loan period (L1):
\[
\begin{equation*}
\mathrm{L} 1=(1-\mathrm{DP})\left[(1+\mathrm{LI})^{\mathrm{LM}}-1\right] \cdot \mathrm{DF}_{\mathrm{LM}} \tag{5.42}
\end{equation*}
\]
(b) Present-value factor for remaining principal at end of loan period (L3):
\[
\begin{equation*}
\mathrm{L} 3=(1-\mathrm{DP}) \cdot \mathrm{DF}_{\mathrm{LM}} \tag{5.43}
\end{equation*}
\]

This report provides a methodology, algorithms, and a computer program to determine simultaneously the lowest life-cycle cost combination of energyconserving envelope modifications, equipment efficiencies, and size of an active solar heating system for a new commercial building. These three competing approaches to energy conservation in a new building design must be analyzed simultaneously because they are functionally interdependent. That is, a change in any one will significantly affect the energy savings attributable to each of the others. The computer program, called SOLCOM, can be used by design professionals on a microcomputer. Considerable financial analysis and thermal performance data is required to run the program. The thermal performance data will require extensive engineering analysis of the appropriate conservation modifications and of the active solar heating system design prior to the use of the SOLCOM program.

This report represents a significant advance over previous studies which evaluated solar heating systems and other energy conservation methods in buildings in a systematic manner. The economic optimization algorithm for determining the size of a solar heating system, based on the Newton-Raphson method of successive approximation, greatly decreases the amount of computer time needed to converge on an optimal collector size. This algorithm makes the use of a microcomputer to solve the simultaneous optimization problem a practical choice.

However, only a hypothetical building is used in this report to demonstrate the application of the SOLCOM program. In order to demonstrate the usefulness of this program to professionals engaged in commercial building design, actual building and system performance data are needed. As active solar heating systems become more attractive to commercial building developers during the next decade, an expansion of this report to include realistic examples of design problems and their solutions would greatly increase the value of the SOLCOM program.

\section*{REFERENCES}

Balcomb, J. Douglas, "Conservation and Solar: Working Together," LA-UR-80-2330, Los Alamos Scientific Laboratory, Los Alamos, N.M., 1980.

Balcomb, J. Douglas, "Optimum Mix of Conservation and Solar Energy in Building Design," Proceedings of the 1980 Annual Meeting of the AS/ISES, June 2-6, 1980, Phoenix, AZ, pp. 1202-1206.

Barley, C. Dennis, "Load Optimization in Solar Space Heating Systems," Solar Energy, Vo1. 23, pp. 149-156.

Commerce Clearing House, Economic Recovery Tax Act of 1981, Law and Explanation, Chicago, Illinois, 1981.

Department of Energy, DoE Facilities Solar Design Handbook, DoE/AD-0006/1, U.S. Government Printing Office, Washington, D.C., 1978.

Hittle, D. C., BLAST, The Building Loads Analysis and System Thermodynamics Program, CEEDO-TR-77-35/CERL-TR-E-119/ADA048734, U.S. Army Construction Engineering Research Laboratory Systems [CERL], December 1977.

Lameiro, Gerald F. and Bendt, Paul, The GFL Method for Sizing Solar Energy Space and Water Heating Systems, SERI-30, Solar Energy Research Institute, Golden, Colorado, 1978 .

Noll, Scott and Thayer, Mark, "Passive Solar Auxiliary, Heat and Building Conservation Optimization: A Graphical Analysis," Fourth Passive Solar Conference Proceedings, Kansas City, October 3-5, 1979.

Powell, Jeanne W., and Rodgers Jr., Richard C., FEDSOL: Program User's Manual and Economic Optimization Guide for Solar Federal Buildings Projects, NBSIR 81-2342, U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., August 1981.

Ruegg, Rosalie T., Sav, G. Thomas, Powell, Jeanne W., and Pierce, E. Thomas, Economic Evaluation of Solar Energy Systems in Commercial Buildings: Methodology and Case Studies, NBSIR 82-2540, U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., July 1982.

Sav, G. Thomas, "Economic Optimization of Solar Energy and Energy Conservation in Commercial Buildings," Proceedings of the U.S. Department of Energy Conference, San Diego, CA, June 27-29, 1978, pp. 88-90.

Schnurr, Norman M., Hunn, Bruce D., and Williamson, III, Kenneth D., "The Solar Load Ratio Method Applied to Commercial Building Active Solar System Sizing," Solar Engineering - 1981 Proceedings of the ASME Solar Energy Division 3rd Annual Conference on Systems Simulation, Economic Analysis/Solar Heating and Cooling Operation Results, Reno, Nevada, April 27-May 1, 1981, American Society of Mechanical Engineers, New York, N.Y., 1981.

TRNSYS - A Transient Simulation Program, Solar Energy Laboratory, Report 38, University of Wisconsin, Madison, WI, November 1976.

York, D. A., and Tucker, E. F., DOE-2 Reference Manual (Version 2.1), LBL-8706 Rev. 1 and LA-7689-M., Lawrence Berkeley Laboratory, Berkeley Callfornia, and Los Alamos, National Laboratory, Los Alamos, N.M., 1980.

\section*{APPENDIX A}

SOLCOM DATA SHEETS
1. PROJECT IDENTIFICATION AND ECONOMIC PARAMETERS
2. DISCOUNT RATES AND PRICE ESCALATION RATES BY TIME INTERVALS
3. ENERGY PRICE ESCALATION RATES BY TIME INTERVAL Y(I)
4. ENERGY COST DATA
5. MORTGAGE DATA
6. ENVELOPE MODIFICATION IDENTIFICATION DATA
7. NON-ANNUALLY RECURRING O\&M COSTS - ENVELOPE MODIFICATIONS
8. DEPRECIATION DATA FOR ENVELOPE MODIFICATIONS
9. SPACE HEATING EQUIPMENT DATA
10. NON-ANNUALLY RECURRING O\&M COSTS - SPACE HEATING PLANT IMPROVEMENTS
11. WATER HEATING PLANT DATA
12. NON-ANNUALLY RECURRING O\&M COSTS - WATER HEATING PLANT IMPROVEMENTS
13. SPACE HEATING SYSTEM DATA
14. DEPRECIATION SCHEDULE FOR CONVENTIONAL HEATING AND COOLING PLANTS
15. SOLAR HEATING SYSTEM DATA
16. DEPRECIATION DATA FOR SOLAR HEATING EQUIPMENT
17. BASIC ENVELOPE PERFORMANCE DATA, WATER HEATING REQUIREMENTS, AND INCIDENT SOLAR RADIATION
18. REDUCTIONS IN HEATING AND COOLING LOADS DUE TO ENVELOPE MODIFICATIONS

PROJECT IDENTIFICATION AND ECONOMLC PARAMETERS
01001 DATA

THIS PAGE PURPOSELY LEFT BLANK.

\section*{DATA SHEET 2}

\section*{discount rates and price escalation rates BY TIME INTERVAL}

02001 DATA

\(\begin{array}{llll}\begin{array}{l}\text { Line } \\ \text { Number }\end{array} & Y(I) & R 1(I) & R 2(I)\end{array} \quad\) R3(I) \(\begin{gathered}\text { "IN" } \\ \text { entries } \\ \text { only }\end{gathered}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 02102 & & & & & & \\
\hline & & & & & & - 2 \\
\hline 02103 & DATA & & & & & \(\mathrm{I}=3\) \\
\hline 02104 & DATA & & & & & \(I=4\) \\
\hline 02105 & DATA & & & & & \(I=5\) \\
\hline 02106 & dATA & & & & & \(\mathrm{I}=6\) \\
\hline 02107 & DATA & & & & & \(\mathrm{I}=7\) \\
\hline 02108 & DATA & & & & & \(\mathrm{I}=8\) \\
\hline 02109 & DATA & & & & & \(I=9\) \\
\hline 02110 & DATA & & & & & \(\mathrm{I}=10\) \\
\hline
\end{tabular}

IN Number of time intervals for which a discount rate and price escalation rates are entered (see lines 2101-2150 and 3101-3150). (\(0<\mathrm{IN} \leq 50\).)

The discount rate and price escalation rates for certain cost elements can be varied from time interval to time interval.
\(Y\) (I) Length of the \(I^{\text {th }}\) time interval (in whole years) for which a discount rate and price escalation rates are given.

The sum of all \(Y(I), I=1,2, \ldots, I N\), must be at least as great as the length of the study period (TH).
Rl(I) Discount rate in the \(I^{\text {th }}\) time interval (\%).
R2(I) Annual rate of increase in operating and maintenance costs in \(I^{\text {th }}\) time interval (\%).
R3(I) Annual rate of increase in the cost of conservation measures, including solar equipment, in the \(I^{\text {th }}\) time interval (\%).

\section*{DATA SHEET 3}

\section*{ENERGY PRICE ESCALATION RATES}

BY TIME INTERVAL Y(I)

3001 DATA

EN entries only* \(\rightarrow\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Line Number & R4(\(\mathrm{I}, 1\)) & R4(\(\mathrm{I}, 2)\) & R4(1,3) & R4(1,4) & R4(1,5) & R4 \((1,6)\) & only** \\
\hline 03101 DATA & & & & & & & \(\mathrm{I}=1\) \\
\hline 03102 DATA & & & & & & & \(\mathrm{I}=2\) \\
\hline 03103 DATA & & & & & & & \(\mathrm{I}=3\) \\
\hline 03104 DATA & & & & & & & \(\mathrm{I}=4\) \\
\hline 03105 DATA & & & & & & & \(\mathrm{I}=5\) \\
\hline 03106 DATA & & & & & & & \(\mathrm{I}=6\) \\
\hline 03107 DATA & & & & & & & \(\mathrm{I}=7\) \\
\hline 03108 DATA & & & & & & & \(\mathrm{I}=8\) \\
\hline 03109 DATA & & & & & & & \(\mathrm{I}=9\) \\
\hline 03110 DATA & & & & & & & \(\mathrm{I}=10\) \\
\hline \multicolumn{8}{|c|}{continue as needed} \\
\hline 03150 DATA & & & & & & & \(\mathrm{I}=50\) \\
\hline
\end{tabular}

Variable
EN
Number of energy types to be entered.
The same energy types with different unit prices (e.g., electricity for space heating at winter rates and electricity for cooling
at summer rates) are counted separately. (\(0<\mathrm{EN} \leq 6\))

Annual rate of increase in the \(K^{t h}\) energy type price in \(I^{\text {th }}\) time interval (\%).
* EN entries corresponding to number of energy types specified in line 3001.
** IN entries corresponding to number of time intervals used in Data Sheet 2.

DATA SHEET 4
ENERGY COST DATA
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Line \\
Number
\end{tabular} & KE (K) & TU (K) & ENS(K) & EMS (K) & \[
\begin{gathered}
\text { EN } \\
\text { entries } \\
\text { only* } \\
\downarrow
\end{gathered}
\] \\
\hline 04101 DATA & & & & & \(K=1\) \\
\hline 04102 DATA & & & & & \(K=2\) \\
\hline 04103 DATA & & & & & \(K=3\) \\
\hline 04104 DATA & & & & & \(K=4\) \\
\hline 04105 DATA & & & & & \(K=5\) \\
\hline 04106 DATA & & & & & \(K=6\) \\
\hline
\end{tabular}

Variable
Description
KE(K) Cost per unit of energy type \(K\) (in base-time dollars).
TU(K) Thermal units per unit of energy type \(K\), in KJ (Btu); e.g. \(3,600 \mathrm{KJ} / \mathrm{kWh}(3,412 \mathrm{Btu} / \mathrm{kWh})\).

ENS(K) Name of \(K^{\text {th }}\) energy type.
EMS(K) Name of unit used for \(K^{t h}\) energy type (e.g. kWh, liter, gallon).
* EN entries corresponding to number of energy types entered in Data Sheet 3.

\section*{DATA SHEET 5}

\section*{MORTGAGE DATA}

05101 DATA LT

Skip the following if \(\mathrm{LT}=0\)
05002 DATA
 ,
 ,

Variable Description

LT Loan type designator: LT \(=0\) : no loan LT = 1: anortized loan, LT \(=2\) : interest only loan, LT \(=3\) : interest and principal deferred loan.
LL
Life of loan (years)
LN
LI
Number of payments per year.
Nominal interest rate per year (\%)
DP Down payment as a percent of initial cost (including sales tax).
this page purposely left blank.

\section*{DATA SHEET 6}

\section*{ENVELOPE MODIFICATION IDENTIFICATION DATA}

06001 DATA
N1

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line Number & EP(I) & ET(I) & ER(\(\mathrm{I}, 1\)) & EG(I) & ES(I) & \[
\begin{gathered}
\text { entries } \\
\text { only }
\end{gathered}
\] \\
\hline 06201 DATA & & & & & & \(\mathrm{I}=1\) \\
\hline 06202 DATA & & & & & & \(\mathrm{I}=2\) \\
\hline 06203 DATA & & & & & & \(\mathrm{I}=3\) \\
\hline 06204 DATA & & & & & & \(\mathrm{I}=4\) \\
\hline 06205 DATA & & & & & & \(I=5\) \\
\hline 06206 DATA & & & & & & \(I=6\) \\
\hline 06207 DATA & & & & & & \(I=7\) \\
\hline 06208 DATA & & & & & & \(\mathrm{I}=8\) \\
\hline 06209 DATA & & & & & & \(\mathrm{I}=9\) \\
\hline 06210 DATA & & & & & & \(\mathrm{I}=10\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline N1 & Number of envelope modifications to be entered (\(0<\mathrm{N} 1 \leq 10\)). \\
\hline EN(I) & Code number for \(I^{\text {th }}\) modification (\(\left.0<\operatorname{EN}(\mathrm{I}) \leq 100\right)\). This code number is used again in data sheet 18-I to match thermal performance data to the appropriate modification. \\
\hline E\$(I) & Name of \(I^{\text {th }}\) envelope modification. \\
\hline EC(\(\mathrm{I}, 1\) & Initial cost of the \(I^{\text {th }}\) envelope modification. \\
\hline EA(I) & Annual recurring \(0 \& M\) (AROM) cost for the \(I^{\text {th }}\) envelope modification (in base time dollars).* Enter actual cost \((E A(I)>1)\) or the ratio of AROM cost to \(\operatorname{EC}(\mathrm{I}, 1)\) (\(\mathrm{EA}(\mathrm{I})<1)\). \\
\hline NE(I) & Number of non-annually recurring (NAROM) costs (e.g., repair or replacement costs) to be entered for the \(I^{\text {th }}\) envelope modification. \\
\hline EP(I) & \begin{tabular}{l}
Assessment rate for property tax computation purposes for the \(I^{\text {th }}\) envelope modification (percent of actual value). \\
If the conservation measure is not expected to increase property taxes, set \(E P(I)=0\).
\end{tabular} \\
\hline ET(I) & Percent of EC(1,1) which is subject to sales tax. \\
\hline ER(I) & \begin{tabular}{l}
Resale value of the \(I^{\text {th }}\) envelope modification at end of study period, as a percent of EC(\(I, 1\)), unadjusted for inflation. \\
This resale value is the value this measure would add to the selling price of the building at the end of the study period, whether or not the building is to be sold.
\end{tabular} \\
\hline EG(I) & Federal investment or energy tax credit for the \(I^{\text {th }}\) modification, as a percent of \(\mathrm{EC}(\mathrm{I}, 1)\). \\
\hline ES(I) & Same as EG(I), but for a state tax credit. \\
\hline
\end{tabular}

\footnotetext{
* Annual recurring \(0 \& M\) costs do not include energy costs in this report.
}

\section*{DATA SHEET 7-I}

\section*{NON-ANNUALLY RECURRING O\&M COSTS - ENVELOPE MODIFICATIONS}

Separate data sheet required for each envelope modification \(I\) for which \(N E(I)>0\) No data needed if \(\mathrm{NE}(\mathrm{I})=0\)
\begin{tabular}{|c|c|c|c|}
\hline Line Number* & YI(\(\mathrm{I}, \mathrm{K}\)) & Y2 (I,K) & NE(I) entries only \\
\hline \(07 \times 01\) DATA & & & \(K=1\) \\
\hline \(07 \mathrm{X02}\) DATA & & & \(K=2\) \\
\hline \(07 \times 03\) data & & & \(K=3\) \\
\hline \(07 \times 04\) DATA & & & \(K=.4\) \\
\hline \(07 \times 05\) data & & & \(K=5\) \\
\hline 07X06 DATA & & & \(K=6\) \\
\hline \(07 \mathrm{X07}\) DATA & & & \(K=7\) \\
\hline \(07 \times 08\) data & & & \(K=8\) \\
\hline \(07 \times 09\) data & & & \(K=9\) \\
\hline 07X10 DATA & & & \(K=10\) \\
\hline \(07 \times 11\) DATA & & & \(\mathrm{K}=11\) \\
\hline \(07 \times 12\) data & & & \(\mathrm{K}=12\) \\
\hline \(07 \times 13\) data & & & \(\mathrm{K}=13\) \\
\hline \(07 \times 14\) DATA & & & \(\mathrm{K}=14\) \\
\hline \(07 \times 15\) DATA & & & \(K=15\) \\
\hline & \multicolumn{2}{|l|}{continue as needed} & \\
\hline \(07 \times 99\) DATA & & & \(K=99\) \\
\hline
\end{tabular}
* Note - use the following schedule to assign line numbers:
\begin{tabular}{l|l}
\(I\) & line numbers \\
\hline 1 & \(07101-07199\) \\
2 & \(07201-07299\) \\
3 & \(07301-07399\) \\
4 & \(07401-07499\) \\
5 & \(07501-07599\)
\end{tabular}
\begin{tabular}{r|r}
\(I\) & line numbers \\
\hline 6 & \(07601-07699\) \\
7 & \(07701-07799\) \\
8 & \(07801-07899\) \\
9 & \(07901-07999\) \\
10 & \(08001-08099\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Yl(\(\mathrm{I}, \mathrm{K}\)) & Year of occurrence of \(\mathrm{K}^{\text {th }}\) NAROM cost to \(I^{\text {th }}\) envelope modification (base year \(=1\)). NAROM is assumed to occur on the last day of year \(\mathrm{Yl}(\mathrm{I}, \mathrm{K})\). \\
\hline Y2 (\(\mathrm{I}, \mathrm{K}\)) & Amount of \(\mathrm{K}^{\text {th }}\) NAROM cost (in base-time dollars). Enter actual cost (Y2 (\(\mathrm{I}, \mathrm{K}\)) \(\geq 1\)) or ratio of \(K^{\text {th }}\) NAROM cost to EC(\(\left.I, 1\right)(\overline{\mathrm{Y}} 2(\mathrm{I}, \mathrm{K})<1)\). Note: Use ratio, not percent. \\
\hline
\end{tabular}
08001 DATA \(\qquad\) , \(\overline{E D}\)
Skip lines 08002 - 08141 if \(D G=0\).
08002 DATA \(\overline{\operatorname{RR}(G)}\)
Line
Number
DG entries only +
DG entries only +
\begin{tabular}{|c|c|c|c|c|c|}
\hline 08101 DATA & & & & & \\
\hline 08106 DATA & & & & & \\
\hline 08111 DATA & & & & & \\
\hline 08116 DATA & & & & & \\
\hline 08121 DATA & & & & & \\
\hline 08126 DaTA & & & & & \\
\hline 08131 DATA & & & & & \\
\hline 08136 DATA & & & & & \\
\hline 08141 DATA & & & & & \\
\hline
\end{tabular}
years \(1-5\)
years 6-10
years 11-15
years 16-20
years 21-25
years \(26-30\)
years 31-35
years \(36-40\)
years 41-45
Skip lines 08198 - 08241 if \(E D=0\).
08198 DATA \(\qquad\)
Skip lines \(08199-08241\) if \(D S=0\).
08199 DATA
RR(S)
Line Number

\begin{tabular}{|c|c|c|c|c|c|}
\hline 08201 DATA & & & & & \\
\hline 08206 DATA & & & & & \\
\hline 08211 DATA & & & & & \\
\hline 08216 DATA & & & & & \\
\hline 08221 DATA & & & & & \\
\hline 08226 DATA & & & & & \\
\hline 08231 DATA & & & & & \\
\hline 08236 DATA & & & & & \\
\hline 08241 DATA & & & & & \\
\hline
\end{tabular}
years 1-5
years 6-10
years 11-15
years 16-20
years 21-25
years \(26-30\)
years 31-35
years \(36-40\)
years 41-45

\footnotetext{
* The Economic Recovery Tax Act of 1981 is fairly explicit about which of these methods to use for different building classes. Even if the building is not to be sold at the end of the study period, there is still a potential liability of this amount that may partially offset the resale value. However, depreciation recapture and capital gains liability at the end of the study period can be set to zero by setting \(\operatorname{RR}(G)=2, C G(1)=0\), \(\operatorname{RR}(S)=2\), and \(C G(2)=0\).
}

SPACE HEATING EQUIPMENT DATA
N2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Line Number & HP (J) & HT(J) & HR(J) & HG(J) & HS(J) & entries only \\
\hline & & & & & & \(t\) \\
\hline 09021 & & & & & & \(J=1\) \\
\hline 09022 & & & & & & \(J=2\) \\
\hline 09023 & & & & & & \(\mathrm{J}=3\) \\
\hline 09024 & & & & & & \(J=4\) \\
\hline 09025 & & & & & & \(J=5\) \\
\hline
\end{tabular}

N2 Number of alternative space heating plants to be entered (\(0<\mathrm{N} 2 \leq 5\)).
HB Index of energy type used by space heating plant. HB corresponds to \(K\) in data sheet 4 , i.e., \(H B=1\) for energy type designated as ENS (1), etc.
DB(1) Index of energy type used by distribution system for space heating. This energy type will always be electricity, but the proper index number (\(K\) in data sheet 4) must be designated.
HO Oversizing ratio for space heating plant (nominal capacity/design heating load).
DE(1) kWh consumed per GJ (\(10^{6} \mathrm{Btu}\)) of heating output by fans and/or pumps in distribution system.
HE(1) Seasonal energy efficiency (output/input) of base space heating plant, measured before entering distribution system (percent).
HF Initial fixed cost of base space heating plant (i.e., that portion of the total cost not sensitive to output capacity).
HV Initial variable cost of base space heating plant, in dollars per \(\mathrm{MJ}\left(10^{3} \mathrm{Btu}\right)\) nominal output capacity.
HA(1) AROM cost for base heating plant (in base-time dollars). Enter actual cost \((H A(1) \geq 1)\) or ratio of AROM cost to total initial cost (HA(1) < 1).
NH(1) Number of NAROM entries for base space heating plant.
HE(J) Seasonal energy efficiency of the \(J^{\text {th }}\) space heating plant (percent) \(H E(J)>H E(J-1)\), i.e., each new plant is more efficient than the one before (using the same energy type).
\(H C(J, 1)\) Additional initial cost of \(J^{\text {th }}\) space heating plant relative to the \((J-1)^{\text {th }}\) plant. Enter actual \(\left.\cos t(H C(J, 1)\rangle 1\right)\) or ratio of additional cost to base plant cost (\(\mathrm{HC}(\mathrm{J}, 1)<1)\).
HA(J) AROM cost (in base-time dollars) due only to the improvement in efficiency from \(\mathrm{HE}(\mathrm{J}-1)\) to \(\mathrm{HE}(\mathrm{J})\).
NH(J) Number of NAROM entries for the increase in efficiency from HE \((J-1)\) to HE \((J)\).
HP(J) Assessment rate for property tax computation purposes for the base space heating plant \((J=1)\) or the \(J^{\text {th }}\) modification \((J>1)\), as a percent of actual value.
HT(J) Percent of the initial cost of the base space heating plant (\(J=1\)) or \(J^{\text {th }}\) modification \((J>1)\) subject to sales tax.
\(H R(J) \quad\) Resale value of the base plant \((J=1)\) or \(J^{\text {th }}\) modification (\(J>1\)) at end of the study period as a percent of its initial cost, unadjusted for inflation.
HG(J) Federal investment or energy tax credit for base heating plant \((J=1)\) or \(J^{t h}\) modification \((J>1)\) as a percent of its initial cost.
HS(J) Same as HG(1), but for state tax credits.

NON-ANNUALLY RECURRING O\&M COSTS - SPACE HEATING PLANT IMPROVEMENTS
Separate data sheet required for each space heating plant improvement for which \(\mathrm{NH}(\mathrm{J})>0\). No data needed if \(\mathrm{NH}(\mathrm{J})=0\).
\begin{tabular}{|c|c|c|c|}
\hline Line Numbers* & Y3 (J,K) & Y4 (J,K) & NH(J) entries only \\
\hline 10X01 DATA & & & \(K=1\) \\
\hline \(10 \times 02\) DATA & & & \(K=2\) \\
\hline \(10 \times 03\) DATA & & & \(K=3\) \\
\hline 10X04 DATA & & & \(K=4\) \\
\hline \(10 \times 05\) DATA & & & \(K=5\) \\
\hline \(10 \mathrm{X06}\) DATA & & & \(K=6\) \\
\hline 10 X 07 DATA & & & \(K=7\) \\
\hline \(10 \times 08\) DATA & & & \(K=8\) \\
\hline \(10 \times 09\) DATA & & & \(\mathrm{K}=9\) \\
\hline \(10 \times 10\) DATA & & & \(\mathrm{K}=10\) \\
\hline & \multicolumn{2}{|l|}{continue as needed} & \\
\hline \(10 \times 99\) DATA & & & \(\mathrm{K}=99\) \\
\hline
\end{tabular}
* Note: Use the following schedule to assign line numbers:
\begin{tabular}{l|l}
J & line numbers \\
\hline 1 & \(10101-10199\) \\
2 & \(10201-10299\) \\
3 & \(10301-10399\) \\
4 & \(10401-10499\) \\
5 & \(10501-10599\)
\end{tabular}
\begin{tabular}{ll}
\(Y 3(J, K)\) & \begin{tabular}{l}
Year of occurrence of \(K^{t h}\) NAROM cost to base space heating \\
plant \((J=1)\) or \(J\) th modification \((J>1)\). Base year a 1.
\end{tabular} \\
NAROM is assumed to occur on last day of year Y Y \((J, K)\).
\end{tabular}

11001 DATA \(\qquad\) \(\frac{}{Q}\)

Skip all the following unless \(\mathrm{Q}=2\) and \(\mathrm{Q} 2=2\).
11002 DATA \(\qquad\) WB
\[
\begin{gathered}
\text { N3 } \\
\text { entries } \\
\text { only* } \\
\downarrow
\end{gathered}
\]

Line
Number
WE(W)
WC(W, 1)
WA(W)
NW(W)
\begin{tabular}{|l|l|l|l|l|}
\hline 11011 DATA & & & & \\
\cline { 2 - 5 } 11012 DATA & & & & \\
\cline { 2 - 5 } 11013 DATA & & & & \\
\cline { 2 - 5 } 11014 DATA & & & & \\
\cline { 2 - 5 } 11015 DATA & & & & \\
\hline
\end{tabular}

N3
\begin{tabular}{|c|c|c|c|c|c|}
\hline Line Number & WP(W) & WT(W) & WR(W) & WG(W) & WS(W) \\
\hline 11021 DATA & & & & & \\
\hline 11022 DATA & & & & & \\
\hline 11023 DATA & & & & & \\
\hline 11024 DATA & & & & & \\
\hline 11025 DATA & & & & & \\
\hline
\end{tabular}
entries only* \(+\)
\[
W=1
\]
\(\mathrm{W}=2\)
\(W=3\)
\(\mathrm{W}=4\)
\(\mathrm{W}=5\)
* N3 entries corresponding to water heating plant numbers.

Q1 Water heating plant code:
Q1 = 1 if space heating and water heating are provided by the same plant;
Q1 \(=2\) if space heating and water heating are provided by separate plants.
If \(Q 1=1\), no entries are needed for water heating plant. In either case, solar heating equipment provides both space and water heating. (If \(\mathrm{Q} 2=1, \mathrm{Q} 1\) is ignored; use \(\mathrm{Q} 1=0\).)
Solar equipment code:
If \(\mathrm{Q} 2=1\), solar equipment does not provide service hot water;
If \(Q^{2}=2\), solar equipment provides both space and water heating.
When \(\mathrm{Q} 2=1\), there is no need to evaluate the water heating plant or water heating requirements because they are functionally independent from the simultaneous optimization problem.
N3 Number of alternative water heating plants to be entered (\(0<\mathrm{N} 3 \leq 5\)) .
WB Index of energy type used by water heating plant. WB corresponds to \(K\) in data sheet 4 , i.e., WB \(=1\) for ENS(1), etc.
WE(W) Seasonal energy efficiency of the \(W^{\text {th }}\) water heating plant (\(W=1\) for base plant), percent (\(W E(W)>W E(W-1)\)).
WC(\(W, 1\)) For \(W=1\), initial cost of the base plant.
For \(W>1\), additional initial cost due to increase in efficiency from WE(W-1) to WE(W).
WA(W) AROM cost for the base plant (\(W=1\)) or the improvement in energy efficiency from WE(W-1) to WE(W). Enter actual cost (WA(W) \(\geq 1\)) or ratio of AROM to WC(\(\mathrm{W}, 1\)) (WA(W) < 1).
NW(W)
Number of NAROM entries for \(\mathrm{W}^{\text {th }}\) plant.
WP(W)
Assessment rate for property tax computation purposes for the base water heating plant (\(W=1\)), or \(W^{\text {th }}\) modification (\(W>1\)), as a percent of actual value.
WT(W)
WR(W) Resale value of base plant \((W=1)\), or \(W^{\text {th }}\) modification (\(\mathrm{W}>1\)), at the end of the study period as a percent of its initial cost, unadjusted for inflation.
WG(W)

WS(W)
Federal investment or energy tax credit for base water heating plant (\(W=1\)), or \(W^{\text {th }}\) modification (\(W>1\)), as a percent of its initial cost.
Same as \(W G(W)\), but for state tax credits.

NON-ANNUALLY RECURRING O\&M COSTS - WATER HEATING PLANT IMPROVEMENTS
Separate data sheet required for each water plant improvement for which \(\mathrm{NW}(\mathrm{W})>0\). No data needed if \(\mathrm{NW}(\mathrm{W})=0\).
NW(W)

Line
Number*
Y5 (W,K)
Y6(W,K)

\section*{entries}
only
\(\downarrow\)
\begin{tabular}{|c|c|c|c|c|}
\hline 12X01 & DATA & & & \(K=1\) \\
\hline 12X02 & DATA & & & \(K=2\) \\
\hline 12X03 & data & & & \(K=3\) \\
\hline 12X04 & DATA & & & \(K=4\) \\
\hline 12X05 & DATA & & & \(K=5\) \\
\hline 12X06 & DATA & & & \(K=6\) \\
\hline 12X07 & DATA & & & \(K=7\) \\
\hline 12 X 08 & data & & & \(K=8\) \\
\hline \(12 \times 09\) & data & & & \(\mathrm{K}=9\) \\
\hline \(12 \times 10\) & DATA & & & \(K=10\) \\
\hline & & continue & e as needed & \\
\hline 12 X 99 & data & & & \(K=99\) \\
\hline
\end{tabular}
* Note: Use the following schedule to assign line numbers
\begin{tabular}{l|r}
\(W\) & line numbers \\
\hline 1 & \(12101-12199\) \\
2 & \(12201-12299\) \\
3 & \(12301-12399\) \\
4 & \(12401-12499\) \\
5 & \(12501-12599\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Y5 (W, K) & \begin{tabular}{l}
Year of occurrence of \(K^{\text {th }}\) NAROM cost to base water heating plant (\(\mathrm{W}=1\)) or \(\mathrm{W}^{\text {th }}\) modification \((W>1)\). Base year \(=1\). \\
NAROM is assumed to occur on last day of year Y5(W, K).
\end{tabular} \\
\hline Y6(W,K) & Amount of \(\mathrm{K}^{\text {th }}\) NAROM cost (in base-time dollars). Enter actual cost (\(\mathrm{Y} 6(\mathrm{~W}, \mathrm{~K}) \geq 1\)) or ratio of \(\mathrm{K}^{\text {th }}\) NAROM cost to incremental cost of \(\mathrm{W}^{\text {th }}\) water heating plant (\(\mathrm{WC}(\mathrm{W}, 1)\)), \((\mathrm{Y} 6(\mathrm{~W}, \mathrm{~K})<1)\). \\
\hline
\end{tabular}

SPACE COOLING PLANT DATA

CB

Index of energy type used by space cooling plant. CB corresponds to \(K\) in data sheet 4 , i.e., \(C B=1\) for \(\operatorname{ENS}(1)\), etc.
Index of energy type used by distribution system for space cooling. This energy type will always be electricity, but the proper index number (K in data sheet 4) must be designated.

Seasonal efficiency (or coefficient of performance) for space cooling plant (before entering distribution system, (\%)).
Oversizing ratio for space cooling equipment (nominal capacity/design cooling load). (Note: Use ratio, not percent.)
kWh consumed per GJ (\(10^{6} \mathrm{Btu}\)) of cooling output by fans and/or pumps in the distribution system.
Initial fixed cost of space cooling plant (i.e., that portion of total cost not sensitive to output capacity).
Initial variable cost of space cooling plant in dollars per MJ (\(10^{3} \mathrm{Btu}\)) nominal output capacity.
AROM cost for space cooling plant (in base-time dollars). Enter actual cost or ratio of AROM to total initial cost.
Number of NAROM entries for space cooling plant.
Assessment rate for property tax computation purposes for the space cooling plant as a percent of actual value.
Percent of the initial cost of the space cooling plant subject to sales tax. Note: Initial cost \(=\) \(\mathrm{CF}+\mathrm{CV} \cdot \mathrm{CAP}\), where CAP \(=\) nominal output capacity in \(\mathrm{MJ}\left(10^{3} \mathrm{Btu}\right)\).
Resale value of space cooling plant at end of study period as a percent of its initial cost, unadjusted for inflation.
Federal investment or energy tax credit for space heating plant, as a percent of its initial cost.
Same as CG, but for state tax credits.
Year of occurrence of \(\mathrm{K}^{\text {th }}\) NAROM cost to space cooling plant. Base year \(=1\).
NAROM is assumed to occur on last day of year \(Y 7(K)\).
Amount of \(\mathrm{K}^{\text {th }}\) NAROM cost (in base-time dollars). Enter actual cost (\(Y 8(K) \leq 1\)) of ratio of \(K^{\text {th }}\) NAROM cost to initial cost of space cooling plant (Y8(K)<1).

DEPRECIATION SCHEDULE FOR CONVENTIONAL HEATING AND COOLING PLANTS
14001 DATA \(\qquad\) , HD

Skip lines \(14002-14111\) if \(D G=0\).
14002 DATA
RR(G)
```

DY(fed., plant)

```

Line
Number
DG entries only \(\rightarrow\)

years 1-5
years 6-10
years 11-15

Skip lines \(14198-14211\) if \(\mathrm{HD}=0\).
14198 DATA \(\qquad\)
Skip lines \(14199-14211\) if \(D S=0\).
14199 DATA

```

DY(state, plant)

```

Line
Number
\[
\text { DS entries only } \rightarrow
\]

years 1-5
years 6-10
years 11-15

A-24
\begin{tabular}{|c|c|}
\hline DG & Number of years over which any plant or plant modification is to be depreciated - Federal schedule. \\
\hline HD & Depreciation code for state tax purposes: \\
\hline & HD \(=0\) : state depreciation schedule is same as Federal. \\
\hline & HD \(=1\) : state depreciation schedule is different from Federal. \\
\hline RR(G) & Depreciation recapture rule code - Federal tax (See data sheet 8 for codes). \\
\hline DY(fed, plant) & Percent of initial plant cost (or plant modification cost) to be depreciated in each year (1, 2,, DG) - Federal schedule. \\
\hline DS & Same as DG, but for state depreciation schedule. \\
\hline RR(S) & Depreciation recapture rule for state income tax. \\
\hline DY(state, plant) & Same as DY(fed, plant), but for state depreciation schedule. \\
\hline
\end{tabular}

SOLAR HEATING SYSTEM DATA
15001 DATA \(\quad\) SF \(\qquad\) , \(\qquad\) , \(\qquad\) , DE(3)

15002 DATA \(\qquad\) , \(\qquad\) , \(\qquad\) , \(\qquad\)
15003 DATA \(\qquad\) , \(\qquad\) , \(\qquad\)
\(\qquad\) , \(\frac{}{\text { SS }}\)

Skip the following if NS \(=\emptyset\) :

SF Initial fixed cost of solar heating equipment.
SV Initial variable cost of solar heating equipment, in dollars per \(\mathrm{m}^{2}\) (ft \({ }^{2}\)) of collector area.
SB Index of energy type used by fans and/or pumps in solar heating equipment.

Electricity is always used but the proper index (with appropriate kWh price) must be designated. SB corresponds to \(K\) in data sheet 4, i.e., SB = 1 for \(\operatorname{ENS}(1)\), etc.
Solar heating system code.
Coefficients for six different solar heating systems which can provide space heating and service hot water are stored in the SOLCOM program. The system code designates which of these are to be used. The user must be sure that the cost data entered into SOLCOMI for the solar heating system is consistent with the system type designated here.
So \(=1\) : liquid system, 1 - cover, selective.
SO \(=2\) : liquid system, 1 - cover, non-selective.
\(\mathrm{SO}=3\) : liquid system, 2 - cover, non-selective.
SO \(=4\) : air system, 1 - cover, selective.
SO \(=5\) : air system, 1 - cover, non-selective.
SO \(=6\) : air system, 2 - cover, non-selective.
DE(3) \(\quad \mathrm{kWh}\) consumed per GJ (\(10^{6} \mathrm{Btu}\)) of useful heat provided by the solar heating system to run fans and/or pumps.
M1 Minimum permissible collector size in \(\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)\) 。
M2
SA

NS
Maximum permissible collector size in \(\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)\).
AROM cost for solar equipment (in base-time dollars). Enter actual cost (\(S A \geq 1\)) or ratic of AROM to total first cost (\(\mathrm{SA}<1\)).
Number of NAROM entries for solar heating equipment.
SP Assessment rate for property tax computation purposes for the solar heating equipment as a percent of actual value.
Percent of the initial cost of the space cooling plant subject to sales tax. Note: Initial cost \(=S F+S V\) - AREA, where AREA \(=\) collector area in \(m^{2}\left(\mathrm{ft}^{2}\right)\).
SR Resale value of solar heating equipment at end of study period as a percent of its initial cost, unadjusted for inflation.

> SG

SS
Y9(K)
\(Y \emptyset(K) \quad A m o u n t\) of \(K^{\text {th }}\) NAROM cost (in base-time dollars).
Enter actual cost \((Y \emptyset(K) \geq 1)\) or ratio of \(K^{\text {th }}\) NAROM cost to initial cost of solar heating equipment (\(Y \emptyset(K)<1\)).

\section*{dATA SHEET 16}
depreciation data for solar heating equipment
16001 DATA \(\qquad\) , \(\qquad\)
Skip lines \(16002-16113\) if \(D G=0\).
16002 DATA \(\qquad\)

years 1-5
years 6-10
years 11-15

Skip lines 16201 - 16213 if \(S D=0\).
16198 DATA \(\qquad\)
Skip lines \(16202-16213\) if \(D S=0\).
16199 DATA
RR(S)

DG Number of years over which solar heating equipment is to be depreciated - Federal schedule.
SD
Depreciation code for state tax purposes
\(S D=0\) : state depreciation schedule is same as Federal.
\(D D=1:\) state depreciation schedule is different from Federal.
RR(G) Depreciation recapture sale code - Federal tax. (See data sheet 8 for codes.)
DY(fed, solar) Percent of initial solar equipment cost to be depreciated in each year (\(1,2, \ldots\) DG) Federal schedule.
DS
RR(S)
DY(state, solar) Depreciation recapture rule for state income tax. Same as DY(fed, solar), but for state depreciation schedule.

\section*{DATA SHEET 17}

BASIC ENVELOPE PERFORMANCE DATA, WATER HEATING REQUIREMENTS, AND INCIDENT SOLAR RADIATION

```

HL( $\varnothing, M) \quad$ Monthly space heating requirements (output) for base building
(before the envelope modifications are brought in), $M=1,2$,
..., 12 , in GJ ( $10^{6} \mathrm{Btu}$ ).
$\mathrm{MH}(\varnothing) \quad$ Maximum hourly space heating load for the year, in MJ $\left(10^{3} \mathrm{Btu}\right)$.
$C L(\emptyset) \quad$ Annual cooling requirements (output) for the base building, in GJ ( $10^{6} \mathrm{Btu}$ ).
$M C(\varnothing) \quad$ Maximum hourly space cooling load for the year, in MJ ( $10^{3} \mathrm{Btu}$ ).
WL(M) Monthly water heating requirements, in GJ ( $10^{6} \mathrm{Btu}$ ), $M=1,2$, ..., 12 .
IR (M) Daily average incident solar radiation on tilted collector surface in $M^{t h}$ month, in $K J / m^{2}\left(B t u / f t^{2}\right), M=1,2, \ldots, 12$.

```

\section*{REDUCTIONS IN HEATING AND COOLING LOADS} DUE TO ENVELOPE MODIFICATIONS

Separate data sheet required for each envelope modification.
\(18 \mathrm{X00}\) DATA \(\overline{\mathrm{EI}(\mathrm{I})}\)
Line
Number \(\quad \mathrm{DH}(\mathrm{I}, \mathrm{M}), \mathrm{M}=1\) to 12

Jan., Feb., Mar., Apr. May, June, July, Aug.

Sept., Oct., Nov., Dec.
\(18 \times 13\) DATA \(\qquad\) \(\overline{D C(I)}\), D2(I)

Note: Use the following schedule to assign line numbers:
\begin{tabular}{|c|c|c|c|}
\hline I & line numbers & I & line numbers \\
\hline 1 & 18101-18113 & 6 & 18601-18613 \\
\hline 2 & 18201-18213 & 7 & 18701-18713 \\
\hline 3 & 18301-18313 & 8 & 18801-18813 \\
\hline 4 & 18401-18413 & 9 & 18901-18913 \\
\hline 5 & 18501-18513 & 10 & 19001-19013 \\
\hline
\end{tabular}

EI(I) Code number for the \(I^{\text {th }}\) envelope modification, corresponding to EN(I) in data sheet 6. Every envelope modification on data sheet 6 must have a corresponding data sheet here.
DH(I,M)

D1 (I)
DC(I)
D2 (I) Reduction \({ }^{1}\) in monthly space heating requirements due to the \(I^{\text {th }}\) envelope modification, in \(G J\left(10^{6} \mathrm{Btu}\right), M=1,2, \ldots\), 12.

Reduction \({ }^{1}\) in maximum space heating load due to the \(I^{\text {th }}\) envelope modification, in \(\mathrm{MJ} / \mathrm{hr}\left(10^{3} \mathrm{Btu} / \mathrm{hr}\right)\). Reduction \({ }^{1}\) in annual cooling requirements due to the \(I^{\text {th }}\) envelope modification, in \(\mathrm{KJ}\left(10^{3} \mathrm{Btu}\right)\).
Reduction \({ }^{1}\) in maximum space cooling load due to the \(I^{\text {th }}\) envelope modification, in \(\mathrm{KJ} / \mathrm{hr}\left(10^{3} \mathrm{Btu} / \mathrm{hr}\right)\).

\footnotetext{
1 Reductions in heating or cooling requirements are entered as positive numbers. If an increase in heating or cooling requirements results from any envelope modifications, use a negative sign. (Some modifications, e.g. solar screening, may reduce cooling requirements but increase heating requirements, and vice versa.)
}

Solar load ratio coefficients for six different "standard" solar heating systems that can provide both space and water heating in commercial buildings are referenced in the SOLCOM optimization program. The use of these coefficients is explained in section 3.2. These coefficients are as follows \({ }^{1}\) :

System Type
B1 B2 B3
B4
Liquid Systems
\begin{tabular}{llllll}
1. 1-cover, selective & 0.317 & 1.478 & 1.314 & 0.613 \\
2. & 1-cover, non-selective & 0.291 & 1.581 & 1.298 & 0.555 \\
3. 2-cover, non-selective & 0.287 & 1.605 & 1.302 & 0.550
\end{tabular}

Air Systems
\begin{tabular}{llllll}
1. 1-cover, selective & 0.415 & 1.187 & 1.360 & 0.830 \\
2. 1-cover, non-selective & 0.426 & 1.177 & 1.392 & 0.872 \\
3. 2-cover, non-selective & 0.371 & 1.314 & 1.353 & 0.739
\end{tabular}

1 Source: Powell, Jeanne W. and Rodgers, Jr., Richard C., FEDSOL: Program User's Manual and Economic Optimization Guide for Solar Federal Buildings Projects, NBSIR 81-2342, U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., August 1981.

\section*{APPENDIX C LISTING OF SOLCOM PROGRAM}
PROGRAM NAME: SOLCOM1
\(D 3(50), D F(50), D R(50), I E(3,50), I M(50), I V(50), I(50)\)
\(E \$(10), E C(10,4), E A(10), E P(10), E T(10), E R(10), E M(10), E S(10), E G(10)\)
\(H E(5), \operatorname{HC}(5,4), H A(5), H P(5), \operatorname{HT}(5), \operatorname{HR}(5), \operatorname{HF}(5), \operatorname{HG}(5), \operatorname{HS}(5), H 1(5), H 2(5)\)
ZC(20), P(30,12)
WE 5\(), W C(5,4), W A\)
\(C C(4), S C(4), D A(2\),
\(R 1(50), R 2(50), R 3\)
\(D H(10,12), D C(10)\)
\(\operatorname{DH}(10,12), \operatorname{DC}(10), D 1(10), D 2(10), C L(1), M H(1), M C(1), W L(12), \operatorname{IR}(12), H L(1,12), E I(10))\) N\&,
TH, TT, TG, TS, TX, CG(1), CG(2), TP, IN
\(T G=T G / 10 \varnothing: T S=T S / 10 \varnothing: T X=T X / 10 D: C G(1)=C G(1) / 1 \varnothing 0: C G(2)=C G(2) / 100: T P=T P / 100\)
IF \(T T=1\) THEN 20140
\(Y, D R, I M, I V\)
\(1 \nabla 0: I M=I M / 100: I V=I V / 100\)
\(Y: R 1(I)=D R: R 2(I)=I M: R 3(I)\) \(=I Y: R 1(I)=D R: R 2(I)=I M: R 3(I)=I V\)
\(J=1\) TO Y(I)

\section*{\(=\operatorname{DF}(Y-1) /(1+D R)\)
\((Y=\operatorname{DR}(Y-1) *(1+\operatorname{IM})\)
\()=\operatorname{IM}(Y(Y-1) *(1+I V)\)
J
\(I\)
\(E N\)
\(K=1\) TO EN
\(, D)=1\)
\(K\)}
FOR
\(\mathrm{y}=\mathrm{y}+1\)

\section*{\(Y=\varnothing\)
\(F O R\) \\ FOR I=1 TO IN}
\(\mathrm{I}=1\) TO IN
\(R 4(I, K ゙)\)
\(K)=R 4(I, K) / 1000\)
\(K\)
\(J=1\) TO \(Y(I)\)

20420
 MM \(=2\) THEN \(2 Ф 470\)
\(10[6 / T U(K) * K E(K)\)
10[\(6 / T U(K)\) *KE(K)
\(\begin{array}{ll}=0 \\ =1 & \text { TO TH }\end{array}\)
\(Y=K M(K)+K M * I E(K, Y) * D F(Y) *(1-(T G+T S *(1-T G)))\) ュ
21080 READ HE (J), HC \((J, 1)\)
21085 HE (J) \(=\mathrm{HE}(\mathrm{J}) / 100\)
HC \((J, 1)>1\) THEN \(21110:\) REM HC \((J, 1)\) IS ACTUAL ADDITIONAL FIRST COST
READ HA \((J), N H(J)\) 21133: REM HA \((J)\) IS ACTUAL AN. RECUR. O\&M COST
REM HA(J) IS RATIO OF AN. RECUR. O\&M COST TO HC(.T,1)
TO NZ
\((J), H T(J), H R(J), H G(J), H S(J)\)
\(P(J) / 100: H T(J)=H T(J) / i 00: H R(J)\)
\(=H P(J) / 100: H T(J)=H T(J) / i 00: H R(J)=H R(J) / 100: H G(J)=H G(J) / 100: H S(J)=H S(J) / 100\)
\(\begin{array}{lll}J=1 & \text { TO } & \text { N2 } \\ H(J)=0 & \text { THEN }\end{array}\)
THEN 21270
\(\mathrm{NH}(J)\)
AD Y1,Y2
Y1>TH THEN 21260
\(H 2(J)=1\) THEN 21240
Y2 1 THEN 21250
INT "NAR O\&M COST
\(Y 2>1\) THEN 21220
\((J, 2)=\operatorname{HC}(J, 2)+Y 2 *\)
IF \(Y 2>1\) THEN 21220
\(H C(J, 2)=H C(J, 2)+Y 2 * \operatorname{IM}(Y 1) * D F(Y 1)\)
NEXT \(Y\)
NEXT \(J\)
READ \(1, Q 2\)
IF Q2=1 THEN 21600
IF Q1=2 THEN 21310
KW=KH:WB=HB
GOTO 21600
CC \((J, 2)=H C(J, 2)+Y 2 * \operatorname{IM}(Y 1) * D F(Y 1)\)
NEXT \(Y\)
REXT \(J\)
IF \(Q 2=1, Q 2\)
F Q1 \(=2\) THEN 21600
KW \(=K H: W B=H B\)
\(G O T O ~\)
21600

\section*{21600
READ CO}
CC \((J, 2)=H C(J, 2)+Y 2 * \operatorname{IM}(Y 1) * D F(Y 1)\)
NEXT \(Y\)
REXT \(J\)
IF \(Q 2=1, Q 2\)
F Q1 \(=2\) THEN 21600
KW \(=K H: W B=H B\)
\(G O T O ~\)
21600
OP

W=KM(WB) N3
ORAD WE \(W=(W), W C(W, 1)\)
\(W=1\) THEN 21400
(\(W\)) \(=1: \operatorname{REM}\) WC(\(W, 1\)) IS RATIO OF ADDITIONAL 1 ST COST OF WTH EFF IMPROVEMENT TO WC \((1,1)\)
EAD WA \((W)\), NW (W)
\((W)>=1\) THEN 21405
\(=1:\) REM WA(W) IS RATIO OF AROM FOR IMPROVEMENT \(W\) TO INCREMENTAL FIRST COST
\(W=1\) TO N3
WP (W), WT
\(W P(W), W T(W), W R(W), W G(W), W S(W)\)
\(=W P(W) / 100: W T(W)=W T(W) / 100: W R\)
\(W=W P(W) / 100: W T(W)=W T(W) / 100: W R(W)=W R(W) / 100: W G(W)=W G(W) / 100: W S(W)=W S(W) / 100\)
\(W=1\) To
\(N W(W)=0\) THEN
NW \((W)=0\) THEN 21590
\(R \quad Y=1\) TO NW \((W)\)
Y \(1>\) TH THEN 21580
HEN 21550
1 THEN 21570
NON-RECURRIN
\(2<1\) THEN 21570
21530
TOP "NON-RECURRING COSTS IN YEAR "Y1" ARE NOT CONSISTENT WITH RECURRING O\&M COSTS FOR WATER HEATING EQUIPMENT "J
то 21530

STOP
IF Y2＞1 THEN 22120
WヨISAS 9NII甘ヨH y甘TOS y0y ヨาnajhJs NOII甘IJヨyd 30 a甘ヨy 0 THEN 22260

（2 24
\(, 3)=\)
\(2,3!=\)
\(2,3)=\)
\(M=1\)

\section*{\(M H(\theta), C L(\theta), M C(\theta)\)}
\(K=1\) TO \(N 1\),
\(N(K)=E I(I)\) THEN 22520
\(K\)
EM
\(C(2)=Z C(1) * Z T * T X:\) REM SALES TAX
\(C(3)=Z C(1)+Z C(2):\) REM TOTAL INITIAL COST
\(Z C(4)=Z C(3) * Z S *(1-T G) * D F(1): R E M\) NET STATE INVESTMENT TAX CREDIT
\(C(5)=Z C(3) * Z G * D F(1):\) REM FEDERAL INVESTMENT TAX CREDIT \(<>\)
\(=Z C(3)\)
2720
\(2 C(3)\)
\(Z C(3) * D P:\) REM DOWN PAYMENT
\(Z C(3) *(1-D P) *(L 1+L 3):\) REM

TAX LIAEILITY AT
PEEINNING OF YEAR Y
ROPERTY TAX PAYMENTS UALUE AT END OF TIME HORIZON
（16）\(=2 C(7) /(L 1+L 3) * L 2 *(T G+T S *(1-T G)):\) REM P．\(V\) ．OF INCOME TAX SAVINGS FROM INTEREST コンヅウ ZD＝1 THEN 22880
TO 22890 （1）
EXPENDITURE （15）\(=Z C(2) *(1<\rangle\) THEN 22940
C（16）\(=0\)
REM FEDERAL CAP GAINS AND DEPR．RECAP．TAX COMPUTATION
\(C(1) * Z R * I V(T H):\) REM ACTUAL SELLING PRICE
\(=\emptyset\) THEN 23040
ZC（17）＝RT＊DF（TH）：REM P．V．OF CAPITAL GAINS AND RECAPTURE TAXES
IF ZD＝THEN 23120
\(\mathrm{E}=2: R E M\) STATE CAP GAINS AND DEPR．RECAP TAX COMPUTATION
TR＝TS＊（1－TG）
\(\mathrm{C}(17)=\mathrm{ZC}(17)+\mathrm{RT} * \mathrm{DF}(\mathrm{TH})\)
REM \((19)=Z C(6)+Z C(7)-Z C(4)-Z C(5)\)
\(C(18)=Z C(8)+Z C(9)-Z C(14) \quad\) ZC（16）
\(19)=\mathrm{ZC}(19)+2 \mathrm{CC}(12)+\mathrm{ZC}(17)\)
M：SURROUTINE TO CALCULATE CAPITAL GAINS AND DEPRECIATION RECAPTURE TAXES AT END OF STUDY PERIOD
 23390
\(23: 40\)
23260 THEN
THEN
THEN
23050
\(17)=0\)
\(0 \quad 231\)
\(: R E M\)
\(Z C(1)\)
\(Z D=\square\)
\(R=T G\)
GOTO 23390
\(R T=P S-(Z C(1) *(I-S L(B, A))\} * T Y+Z C(1) *(S L(B, A)-D D(B, A)) * T B\)
\(G O T O 23390\)
\(R T=(P S-Z C(1)) * T R * C G(E)+Z C(1) * S L(R, A) * T C+Z C(1) *(D D(E, A)-S\)
\(R T=(P S-Z C(1)) * T R * C G(E)+Z C(1) * S L(E, A) * T C+Z C(1) *(D D(E, A)-S L(B, A)) * T 8\)
\(G O T O 23390\)
\(R T=P S-(Z C(1) *(1-D D(E, A))) * T 8\)

\section*{COST CALCULATIONS} ENVELOP \(=1\) TO N1
I \(J=1\) TO NZ
\(Z C(\square)=H C(J, 2): Z T=H T(J): Z S=H S(J): Z G=H G(J)\)
GOSUB 225BR
\(3)=2 C(18)\)
\(4)=Z C(19)\)
: \(Z T=E T(I): Z S=E S(I): Z G=E G(I)\)
\(A(I): Z R=E R(I): Z P=E P(I): A=1: Z D=E D\)
\(4)=Z C(18)+Z C(19)\)

MMMMMMMMさ

\(W=1\) TO N3
\(\frac{11}{3}\)
REM WATER HEATING EQUIPMENT COST CALCULATIONS
\(Z C(1)=1: Z C(9)=W C(W, 2)\)
\(Z T=W T(W): Z S=W S(W): Z G=W G(W)\)
\(Z A=W A(W): Z R=W R(W): Z P=W P(W): A=2: Z D=H D\)
8
0
0
0
0
0
0
0
0
0
REM SPACE COOLING COST CALCULATIONS
근
\(Z C(9)=C C(2): Z T=C T: Z S=C S: Z G=C G\)
\(Z A=C A: Z R=C R: Z P=C P: A=2: Z D=H D\)

\((1)=1\)
\((9)=S C(2): Z T=S T: Z S=S S: Z G=S G\)
\(=S A: Z R=S R: Z P=S P: A=3: Z D=S D\)
\(S U B 22580\)
\((3)=Z C(18)\)
\((4)=Z C(19)\)
\(T 024770\)
SUBROUTINE TO CALCULATE PR

\section*{\(M\) SUEROUTINE TO CALCULATE PRESENT VALUE FACTORS RELATED TO FINANCING:} L2=P.V. FACTOR FOR INTEREST PAYMENTS, DISCOUNTED FROM END OF YEAR (FOR TAX DEDUCTION PURPOSES)
L \(3=P . V\). FACTOR FOR PRINCIPAL REPAYMENT (IF ANY) AT END OF LOAN PERIOD (OR END OF TIME HORIZON IF

FIRST)
IF
 M: LOAN TYPE 2 COMPUTATIONS
\(I=0\) THEN 24490

460 \(L 1=L 1+L I * D F(I-1)\) TO LM
THEN
(I)
\(\stackrel{\pi}{\pi}\)
 Moron or

REM：LOAN TYPE 3 COMPUTATIONS（LM）
return REM SUERO
 \(R E A D\)
\(R R\)
\(F O R\)
TO
DN孚完

\section*{24760
DN}
\(Y=1\)
\(D Y\)
\(Y / 100\)
\(>T H T\)
\(A+D Y * D\)
\(D+D Y\)
\(Y\)
\(H<D N\)

\section*{THEN 24750}
H THEN 24710
DY＊DF \((Y)\) \(1-D P) *(1+L I)\)
\(1-D P) *(L M)\) \(\pi\)
\(\pi\)
＂ENTER DATA FILE NAME FOR TRANSFER TO SOLCOM2＂；A\＄ F1\＄
\＃1，YO；TH；TT；TG；TS；TX；CG（1）；CG（2）；TP；IN；MM；EN
\(\qquad\)

K＝1 TO EN：PRINT \＃1，KE（K）；TU（K）；EN\＄（K）；＂，＂；EM\＄（K）：NEXT K FOR \(K=1\) TO EN：PRINT \＃1，KE（K）；TU（K）；EN\＄（K）；＂，＂；EM\＄（K）：NEXT K
PRINT \＃1，KH；KW；KCiKS；KD（1）；KD（2）
PRINT \＃1，LT；LL；LN；LI；DP；L\＄（LT）
\(\stackrel{+}{\square}\) FOR \(K=1\) TO EN：PRINT \＃1，KE（K）；TU（K）；EN\＄（K）；＂，＂；EM\＄（K）：NEXT K
PRINT \＃1，KH；KW；KCiKS；KD（1）；KD（2）
PRINT \＃1，LT；LL；LN；LI；DP；L\＄（LT）
TO N1
\＃1，EN（I）；EC（I，1）；EC（I，4）；EG（I）；ES（I）；ET（I）
上玄々号

1 THEN 25170
T（J）
\＃1，WE（W）；W1（W）；WC（W，1）；WC（W，3）；W2（W）；WC（W，4）；WG（W）；WS（W）；WT（W） 25240
a3NIawo \＃1，CB；DE（2）；CE；CO；CF；CV；CC（3）；C2；CC（4）；CG；CS；CT
\(\# 1, S B ; S F ; S V ; S C(3) ; S 9 ; S C(4) ; M 1 ; M 2 ; S G ; S S ; S T\) \＃1，HE（J） \＃1，Q1，02 \(\# 1, Q 1,02\)
\(=2\)
\(=1\)
AND \(01=2\)
THEN 2520 THEN 25200 \(2=1\) THEN 25240
T \＃1，WB：REM THIS TO N TO EN：PRINT \＃S，R4（I，K）；：NEXT K：PRINT \＃1，
「ちちち権
上 \＃1）SB；

NAME：SOLCOM2
 aNMO

 In N 5上気 \({ }^{\square} \sum_{n}^{2}\)文边
 \(M=10\)
\(F=0\)
\(E=0\).
\(G O T O\)
\(E=0\).

\section*{\(=1\) TO IN：INPUT \＃1，Y（I），R1（I），R2（I），R3（I）
\(=1\) TO EN：INPUT \＃1，R4（I，K）：NEXT K} \(\stackrel{7}{11}\) \(=1\) \(\#\) Inc
\(I=\) RR
NPUT
INT
> \(\# 1, E \$(I), E N(I), E C(I, 1), E C(I, 4), E G(I), E S(I), E T(I)\)
\(E C(I, 4)\) EC（I，4） \(31: N(2)=28: N(3)=31: N(4)=30: N(5)=31: N(6)=30\)
\(31: N(8)=31: N(9)=30: N(10)=31: N(11)=30: N(12)=31\)
\[
\begin{aligned}
& \text {,HE (1), HO, HF, HV,HC(1, 3),H2(1),HC(1, 4),HG(1),HS(1),HT(1) } \\
& 1 \text { THEN } 430
\end{aligned}
\]
\[
\begin{aligned}
& =2 \text { TO N2 } \\
& \# 1, H E(J), H 1(J), H C(J, 1), H C(J, 3), H Z(J), H C(J, 4), H G(J), H S(J), H T(J) \\
& \# 1, 囚 1,02
\end{aligned}
\]
\(\qquad\)
\＃1，Q1，0．2
\(=2\) AND Q1 2 THEN 460
\(=1\) THEN 500 \(\# 1\) ，WB
500
\＃1，WB \＃1，WE（W），W1（W），WC（W，1），WC（W，3），WZ（W），WC（W，4），WG（W），WS（W），WT（W） \(\mathrm{H}, \mathrm{CR}, \mathrm{DE}(2), \mathrm{CE}, \mathrm{CO}, \mathrm{CF}, \mathrm{CV}, \mathrm{CC}(3), \mathrm{C} 2, \mathrm{CC}(4), \mathrm{CG}, \mathrm{CS}, \mathrm{CT}\) \＃1，Se， \(\mathrm{SF}, \mathrm{SV}, \mathrm{SC}(3), \mathrm{Sq}, \mathrm{SC}(4), \mathrm{M1}, \mathrm{M} 2, \mathrm{SG}, \mathrm{SS}, \mathrm{ST}\)
\(\# 1, \mathrm{DE}(1), \mathrm{DE}(2), \mathrm{DE}(3), \mathrm{SO}\) 안 \(\# 1, M H(\nabla): M H(\Omega)=M H(\theta) *(1-E E * D E(1))\)
\(\# 1, C L(\Omega): C L(\theta)=C L(\theta) *(1+E E * D E(2))\)
\(\# 1, M C(\theta): M C(\theta)=M C(\theta) *(1+E E * D E(2))\) \＃

\section*{UT \＃1，LT，LL，LN，LI，DP，L\＄
UT \＃1，N1，N2,\(~ N 3 ~\)} によこちょ 5己
另㐫岂号
 \(\underbrace{2} 5\) 555 EI） I）7M
\(12:\) INPUT \＃1：WL（M）：WL（13）＝WL（13）＋WL（M）：NEXT M
\(12: I N P U T ~ \# I, I R(M): N E X T M\)
N1 TO
TO
TO

\(\Sigma\)
（I，M）：NEXT

？
＂COMPLETE OPTIMIZATION（1）OR SOLAR COLEECTOR OPTIMIZATION ONLY（ 2 ）？＂；Q9
ENTER INDEX FOR SPACE HEATING EQUIPMENT（J）＂；J \(W E(W)=H E(J)\)

690
GOTO 690

USING A6\＄；HE（J）＊100，WE（W）＊100，CE＊100
USING AT\＄；SF（1），SV（1），M\＄
巳．1\＄
USIN
USIN
USING EZ\＄；KH，KW，KC
USING B3\＄；KD（1），KD（2），KS

\section*{1\＄：LPRINT A \(2 \$\)
THEN 780}

A3 \(\$\)
90
A5\＄
0 TO
BUILDING＂： ＂（SQ．FT）
＂\({ }^{18}(5 Q \mathrm{M})\)＂；
\(A 5\)
830
\((I-1, J) *(H L\)
870 XT
PRINT
IF MM＝
PRINT RINT它々 0号

WE（W）） SUBROUTINE TO FIND OPTIMAL COLLECTOR AREA AND FRACTIONS CORRESPONDING TO I， \(\mathbf{j}, \mathrm{W}\)
\(11: M 4=M 2\)
\(0: F B=0\)
\(A 5>M 1\) THEN 1050
UB 930
\(F A=1\) THEN \(1050:\) REM OPT AREA \(>\) MIN AREA
REM SUBROUTINE TO DETERMINE IF OPT AREA \(=\varnothing,=\) MIN AREA，OR \(>\) MIN AREA
9
0
0
-1
9
0
0
0
\(F(1)=F 1(1): A(1)=M 1\)
\(I F D 1\rangle=\square\)
IF \(D 1\rangle=\emptyset\) THEN \(100 \emptyset:\) REM OPTIMAL AREA \(<=\) MIN AREA IF D \(1>=\emptyset\) ．
\(F A=1: A 5=(M 3 * 2+M 4) / 3:\) REM IF FA \(=1\) ，TEST 1 HAS BEEN MADE AND OP
\(\stackrel{M}{\text { M }}\)山
IF

\section*{90 GOT 1040}
THEN 1030 : REM OPTIMAL COLLECTOR AREA =MI (MIN AREA)
\[
\begin{array}{ll}
40 \\
=M 1
\end{array}
\]
\(M 1: F T(I, J)=F 1(1): F H(I, J)=F 2(1): F W(I, J)=F 3(1): A S=M 1\) F

\section*{THEN 1220}

\section*{THEN 1220 : REM OPT AREA < MAX AREA} \(=0\) c动空

10

\section*{THEN \(1200:\) REM OPT AREA \(=\) MV (MAX AREA)
\(=\emptyset: F T(I, J)=\emptyset: F H(I, J)=\varnothing: F W(I, J)=\emptyset: A S=\emptyset\)}
\(=M 2: F T(I, J)=F 1(1): F H(I, J)=F 2(1): F W(I, J)=F 3(1): A 5=M 2\)
URN

\section*{IS NOW FIRST GUESS
THEN 1270 \\ 1290 \\ 1290
AS \(M 4\) THEN 1290}
THE
N 1360

20
SO Q SE
AS
\(=M 3\)
AS \(=13\)
KOTO

SN
IO
IO 앙

=A
F AS
F MM
\(7=10\)
\(\stackrel{\square}{11}\)

NS \(>0\) THEN 1620
, \(+K C / C E * C L(I)+\) SD (2\() * E E * C 5 * D E(2)\) 930

\(T 1 \#=K H / H E(J) * H L(I, 13) *(1-F Z(1))+K W / W E(W) * W L(13) *(1-F 3(1))+Q T(1) * D E(3) * K S * E E+E K\)
\(T 2 \#=K H / H E(J) * H L(I, 13) *(1-F 2(2))+K W / W E(W) * W L(13) *(1-F 3(2))+Q T(2) * D E(3) * K S * E E+E K\) \(F 2(3)=Q H(3) / H L(I, 13)\)
\(\mathrm{T} 3 \#=K \mathrm{H} / \mathrm{HE}(\mathrm{J}) * H L(\mathrm{I}, 13) *(1-\mathrm{F} 2(3))+\mathrm{KW} / \mathrm{WE}(\mathrm{W}) * W L(13) *(1-\mathrm{F} 3(3))+\mathrm{QT}(3) * \mathrm{DE}(3) * K S * E E+E K\)
\(\mathrm{D} 1=(\mathrm{T} 3 \#-\mathrm{T} \# \#) /(2 * 29)\)
D2 \(=(T 3 \#-2 * T 1 \#+T 2 \#) / 29[2\)
RETURN
REM SLR COEFFICIENTS FOR SOLAR HEATING SYSTEMS号 \(\mathrm{B}(1,1)=.317: \mathrm{B}(1,2)=1.478: \mathrm{B}(1,3)=1.314: \mathrm{B}(1,4)=.613\) \(B(2,1)=.291: B(2,2)=1.581: B(2,3)=1.298: B(2,4)=.555\) REM SYSTEM 3：LIQUID， 2 COVER，NON－SELECTIVE 550 REM SYSTEM 4：AIR， 1 COVER，SELECTIVE \(B(4,1)=.415: B(4,2)=1.187: B(4,3)=1.360: B(4,4)=.830\) REM SYSTEM 5：AIR， 1 COVER，NON－SELECTIVE
\(B(5,1)=.426: B(5,2)=1.177: B(5,3)=1.392: B(5,4)=.872\)

\(\mathrm{B}(6,1)=.371: \mathrm{B}(6,2)=1.314: \mathrm{B}(6,3)=1.353: \mathrm{B}(6,4)=.739\)
\(\mathrm{~B} 1=\mathrm{B}(50,1): \mathrm{B} 2=\mathrm{B}(50,2): \mathrm{B} 3=\mathrm{B}(50,3): \mathrm{P} \cdot 4=\mathrm{B}(50,4)\)号

70
\(1+\)
\(* A O(I+亡, J)\)
\(B 70 \quad: A X(I)=I\)
\(=A O(I, J)\) \(=I+1\)
IF TX(I) \(=1\) THEN 3950
IF \(\mathrm{I}:\) Gosue \(4100: T X(I)=1\)

\section*{TX(I)=1 THEN 40000}
\(2=1\)
cosue
\(4100: T X(1)=1\)
\(I=I+1\)
\(D=T C(I, J)-T C(I-1, J\)
\(I F D T<=\emptyset\) THEN 4050

\section*{\(I=I=T C(I, J)-T C(I-1, J)\)}

\section*{= THEN 4060}
GOTO 3846
\(A 5=H L(I, 13) * K H / H E(J)+W L(13) *(K / W E(W)+F T(19, J) * T L(I, 13) * D E(3) * K S * E E\)
\(A 5=A S /(H L(I 9,13) * *(H / H E(J)+W L(13) * K W / W E(W)+F T(19, J) * T L(I 9,13) * D E(3) * K 5 * E E)\)
z릉
REM COMPUTE TOTAL COST OF I,J,W AND I-1,J,W OPTIONS
\(C 5=C L(I) /(1+E E * D E(2))\)
\(T 1=H L(I, 13) * K H / H E(J) *(1-F H(I 2, J))+H L(I, 13) * F H(I 2, J) * D E(3) * K S * E E ~\)
\(T 1=H L(I, 13) * K H / H E(J) *(1-F H(I 2, J))+H L(I, 13) * F H(I 2, J) * D E(3) * K S * E E\)
\(T 1=T 1+W L(13) *(W W E W E(W) *(1-F W(I 2, J))+W L(13) * F W(I 2, J) * D E(3) * K S * E E\)
\(T 1=T 1+C L(I) * K C / C E \quad(1) * E E\)
\(1=T 1+H S * D E(1) * K D(1) * E E\)
\(1=T 1+C 5 * D E(2) * K D(2) * E E\)
THEN 421ם

\section*{220
\((1)+5 V(1) * \operatorname{BO}(I)\)
\(+E K(I)+K 4+H K(J\),}
SF (1)
T1 \(+E K(I)+K 4+H K(J, 1)+H K(J, 2) * M H(I) * H O+C K(1)+C K(2) * M C(I) * C O+W K(W, 1)\)
RN

EM CHECKING ROUTINE - INCREMENT I ONCE MORE
\(\mathrm{I}+2(\mathrm{I})=1\) THEN 4310
\(19=1-1: \operatorname{GOSUB} 4070\)
\(A 5=A 5 * A O(I-1, J)\)
S=A5*AO(I-1, J)
\(0 S U B: 870: A X(\)
 \(\begin{aligned} & 4100 \\ & J)=T 1\end{aligned}: T X(I)=1\)
"

FTX
(I) \(=1\) THEN 4410
\(4100: T X(I)=1\)

sue
sue
\begin{tabular}{c}
CI \\
\(=1\) \\
\(=T\) \\
\hline
\end{tabular}

HECKING ROUTINE－DECREMENT I ONCE MORE
THEN 4870
\((I)=1\) THEN 4630
\(2: G O S U R ~ 4070\)
＊AO \(1+2, J)\)
\(870 \quad: A X(I)=1\)
\(=A O(I, J)\)
（I） 1 THEN 4670
GOSUR \(4100: T X(I)=1\)
\(J)=T 1\)
\((I)=1\) THEN 4720
\(4100: T X(I)=1\)
\(J)=T 1\)
\((I-1, J)-T C(I-2, J): P R I N T{ }^{n} D^{T}\left(n I^{n} "-2\right)={ }^{n} D T\)
THEN \(487 \emptyset\)
TC \((I, J)-T C(I-1, J)\)
DT \(=0\) THEN 4560 \(+5\) \(I F D T\)
\(I=I-1\)
RETURN
REM Cl
\(I F I<2\)
\(I=I-2\)
\(I F ~ A X\)
\(I 9=I+\)
\(A S=A 5\)
\(G O S U B\)
\(B O(I)\) ごット
\(12=1\)
\((I, J)=C(I-1, J)\)
\(<=\emptyset\) THEN 4240
\(: J)\)
\(4100: 7 \times(I)=1\) ：\(A X(I)=\) 870
\(=A 0(\)
\(G 0 S U\)
\(J)=T\)
\((I, J\)
\(<=0\)
HEN 424ロ \(+\)

\(\mathrm{IF} \mathrm{D}_{\mathrm{i}}^{\mathrm{T}} \mathrm{I}-1\)
1：GOSUR 4070
4：AO（I－1，J）
\(870: A X(I)=1\)
\(=A O(I, J)\)
GOSUB \(4100: T X(I)=1\)
4560
REM SWITCH I AND I＋1 MODIFICATIONS
FOR \(M=1\) TO 13：G1 \((M)=D H(I, M): N E X T \quad M\)
\(G 2=D C(I): G 3=D 1(I): G 4=D 2(I)\)
\(I=1-1\)
GOTO
4
FOR M＝1 TO 13：DH \((I, M)=D H(I+1, M): N E X T\)
\((I)=D C(I+1): D 1(I)=D 1(I+1): D 2(I)=D 2(I+1)\)
\(D K(I)=D K(I+1): E N(I)=E N(I+1): E \$(I)=E \$(I+1)\)
OR \(M=1\) TO \(13: D H(I+1, M)=G 1(M): N E X T M\)
）\(=G 2: D 1(I+1)=G 3: D 2(I+1)=G 4\)
\()=G 5: E N(I+1)=G 6: E \$(I+1)=G \$ \$ 20\)

十なさせざけ
IF \(J 1<=N 2\) THEN 5630
W1 \(<=\) N3 THEN 5650

I \(1: J=J 1: W=W 1\)
SOID：REM FIND OPTIMAL AO，I，AND J GIVEN W
IF \(Q 2=1\) HEN 5920
\(=1\) THEN 5820
THEN 5830 （W）
5010
\((W+1)\)
1 THEN
5730 THEN 5920
THEN 5920 5010
\(T(W+1)<T T(W)\) THEN 5810
\(=1\) THEN 5920
5730 \(\mathrm{W}+1\) \(\quad \begin{aligned} & =A \\ & =W-1 \\ & \\ & \text { SUB }\end{aligned}\)
 SE日G

IF \(W=N 3\)

\section*{（W）\(>=T T(W-1)\) THEN 5910
5830}
OPT W AT THIS POINT

IF \(W=\)
\(A S=A A\)
\(W=W+1\)
GOSUE
\(\frac{1}{\frac{1}{3}}=\) \(\mathrm{H}=\mathrm{H}\)
\(\mathrm{M}=\mathrm{O}\) GOTO

＂1 \(1, K H, K W, K C, K S, K D(1), K D(2)\)
\(\# 1, L T, L L, L N, L I, D P, L \$\) い范\＃\＃
塷
6850 NEXT K
GIVEN W

AND COOLING EQUIPMENT to space heating, water heating, nen

\footnotetext{
\(E(J-1)=\operatorname{HE}(J): \operatorname{HF}(J-1)=\operatorname{HF}(\mathrm{I}-1)+\mathrm{HF}(J): \operatorname{HV}(J-1)=\operatorname{HV}(J-1)+\operatorname{HV}(J)\)
\(\operatorname{HE}(\mathrm{J}-1)=\operatorname{HE}(\mathrm{J}): \operatorname{HF}(\mathrm{J}-1)=\operatorname{HF}(\mathrm{I}-1)+\operatorname{HF}(\mathrm{J}): \operatorname{HV}(\mathrm{J}-1)=\operatorname{HV}(\mathrm{J}-1)+\operatorname{HV}(\mathrm{J})\)
N2 \(2=\mathrm{N}-1\)
IF \(\mathrm{J}<\mathrm{N} 2+1\) THEN 7460 IF \(\mathrm{J}=2\) (J) \(<=R(\mathrm{~J}-1)\) THEN 7510

} 880
10
0000
000告
\((1)=H V * H C(1,4)\)
\(H 2(1)=1\) THEN
\(H 2(1)=1\) THEN 7170
\(F(1)=\operatorname{HF}(1)+H C(1,3)\)

\(\mathrm{HF}(1)=\operatorname{HF}(1)+H F * H C(1,3)\)
\(H V(1)=H V(1)+H V * H C(1,3)\)

FOR \(L=1\) TO N1
6910
\(=10 \mathrm{~N} 1\)
\(L)=\operatorname{EN}(L):\) XT
TUR.
TURN
芹

\(\operatorname{HF}(J)=\operatorname{HF}(J)+H C(J, 1) * H F * H C(J, 3)\)
\(H V(J)=H V(J)+H C(J, 1) * H V * H C(J, 3)\)
\(\operatorname{NEXT} J\)
\(J)=H C(J\)
\(J)=0\)
07270
\(J)=H F * H\)
\(J)=H V * H\)
\(H Z(J)=\)
\(J)=H F(J\)
\(J)=H V(J)\)
TO 7370
\(H 2(J)=1\) THEN 7310
\((J)=H F(J)+H C(J, 3)\)
\(H F\)
\(H V(J)=H V(J)\)
H1 \((J)=1\) THEN 7350
\(J)=H F(J)+H C(J, 1) * H C\)
(J)

THEN 7510
. F \(j=2\) THEN 7510
\(8040 W M(W, 1)=W C(W, 4) * W C(W, 1)+W C(W, 3) * W C(W, 1)\)

\(8080 K(W)=(i / W E(W-1)-i / W E(W)) * 1000 / W M(W, 1)\)
F \(R(W)=\langle R(W-1)\) THEN 8210
\(W E(W-1)=W E(W): W M(W-1,1)=W M(W-1,1)+W M(W, 1): W M(W-1,2)=W M(W-1,2)+W M(W, 2)\)

\[
\begin{aligned}
& Y D, T H, T T, T G, T S, T X, C G(1), C G(2), T P, I N, M I V, E N \\
& E M, E E
\end{aligned}
\]
> ，SF（1），SU（i），DE（3），WL（13），EW（5，10）

\section*{}岗岕

\section*{\＃1，CB， \(\mathrm{DE}(2), \mathrm{CE}, \mathrm{CO}, \mathrm{CF}, \mathrm{CV}, \mathrm{CG}, \mathrm{CS}, \mathrm{CT}\)} ，SR，SF，SV，SG，SS，ST
IO，JO，WO，AO，FH，FW，FT
THEN 16404
\(=2\) THEN 16405 6405 ROUNDING FACTOR FOR COLLECTOR AREA（SQ M）
（AOMSZ +.5 ）＊SZ
\＃1，HW（WO，1），HW（WO，2），CW（WO，1），CW（WO，2）
TO JO
，HK（ \(u, ~\)
\＃1，HKK（J，3），HK（J，4）
\(\rightarrow 0\)
\(=H E(J 0)\)
16500
\(T\) \＃ 1 ，WK（WO，1）
\(W=1\) TO WO

\section*{\(\stackrel{y}{0}\)}

\#1, WK (W, 2)
 "SG.FT.": M1\$
"MMETU/YR": M2\$
"METU/HR": M3中
"BTU": MESTM
"SPACE HEATING"
"WATER HEATING"
"SPACE COOLING"
"FANS/PUMPS: SOLA
"DISTRIEUTION: HT
"DISTRIEUTION: CL
"TAX-PAYING EUSIW
"TAX EXEMPT"
\(\qquad\)

 5

USING F
TO IN
THEN 1
USING \(F\)
THEN 18440
USING F\& 12);R3(I)*100,

USING \(\overline{\text { F }}\) (13); "MAINTENANCE",
TO IN 18390
THEN \(183(2) ; R 2(=) * 200\),

 ப

 NT
NT
NT
NT
NT
：T
\(L=\)
\(I=\) ata
 NiNR moma品伿品品品品品品品品品品品品品品品品品

18863 NEXT J To WO

\section*{\((H 1-H(D) *(H G(J)+H S(J) *(1-T G)):\)} USING F\＄（22）；T0，T2
USING F\＄（2）；T3
USING F \(\$(24) ; T 0-T 3\)齐 \(6=T\)
EXT

G \(6=T 6+(W K(W, 2)-W K(W-1,2)) *(W G(W)+W S(W) *(1-T G)):\) PRINT W，T 6

FIRST \(\%\) SEASONAL
LIFE－CYCLE＂
\(\operatorname{COST}\)
\(\operatorname{COST*} ; M 3 \$(M M)\) IENCY
G EQUIP NG EQUIP NG EQUIP

USING F\＄（43）；＂WATER HEATING＂，WE（WO）＊100，WK（WO，2），WK（WO，1）
Equip Quip

LIFE－CYCLE＂
COST＊＂
 PPRINT＂OUSING＂OUTPUT CAP． \(=3\) H1 \(=\mathrm{HK}(\mathrm{JO}, 3)+\mathrm{HK}(J 0,4) * H W(W 0,2) * H O:\) REM TOTAL FIRST
\(T 6=T 6+(C F+C V * C W(W O, 2) * C O) *(1+T X * C T) *(C G+C S *(1-T G)):\) PRINT T 6

\section*{（2）OPTIMAL COUVENTIONAL EQUIPMENT EFFICIENCY：＂}

路に
（SGESS＊（1－TG））：REM SOLAR TAX CREDIT
8940
\(8=0\)
USING F\＄（27）；T7，SF（1）＋SV（1）＊AO
USING \(F \$(23) ; T 8\) SF
USING \(\$ \$(24) ; T 7-T 8\)荡年

\％

三.

19630 LPRINT USING Fक(32):M2 (NMM), M3 (MM)
19640 LPRINT USING Fヵ(33):"SこACE HEATING", HN(WO, 1)/(1-EE*DE(1)),HW(WO, 2)/(1-EE*DE(1))
7650 LPRINT USING F\$(44):"WATER HEATING", W-(13)
RRINT F\$(35)
\(=1\) (\(1-\) FH) *EM/(TU(HR) *HE (JO))

\section*{FEDERAL INFORMATION PROCESSING STANDARD SOFTWARE SUMMARY}

11. Submitting organization and address
12. Technical contact(s) and phone

Center for Applied Mathematics National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234

Stephen R. Petersen
(301) 921-3701
13. Narrative

The SOLCOM program was written to demonstrate the use of economic optimization algorithms for integrating solar and other energy conservation features into new commercial building designs. These algorithms will be useful to design engineering teams who must determine the proper size of an energy conservation budget in a new building and its allocation among competing solar and conservation investments. It is intended to be used on a microcomputer with 48 K memory, one disk drive, and 132 character line printer.
14. Keywords building design; commercial buildings; energy conservation; engineering economics heating and cooling equipment; heating and cooling loads; life-cycle cost analysis; optimization algorithms; solar heating
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
15. Computer manuf'r and model Radio Shack \\
TRS-80 Model III \\
16. Computer operating system \\
TRSDOS
\end{tabular} & \begin{tabular}{l}
17. Programing language(s) \\
BASIC
\end{tabular} & 18. Number of source program statements
\[
1800
\] \\
\hline \begin{tabular}{|l|c|}
\hline 19. Computer memory requirements & 20. Tape drives \\
48K Ram & 0
\end{tabular} & 21. Disk/Drum units 1 & 22. Terminals 1 \\
\hline \multicolumn{3}{|l|}{23. Other operational requirements Line printer} \\
\hline \begin{tabular}{l}
24. Software availability \\
Available \\
Limited \\
In-house only
\(\square\)
\end{tabular} & \begin{tabular}{l}
25. Documentation availability \\
Available \\
Inadequat \\

\end{tabular} & In-house only \\
\hline
\end{tabular}
26. FOR SUBMITTING ORGANIZATION USE
\begin{tabular}{l}
U.s. DEPT. OF COMM. \\
BIBLIOGRAPHIC DATA \\
SHEET (See instructions) \\
\hline
\end{tabular}
1. PUBLICATION OR REPORT NO.

NBSIR 83-2658
2. Performing Organ. Report Nof 3. Publlcation Date February 1983
4. TITLE AND SUBTITLE

SOLCOM: A Computer Program to Integrate Solar and Conservation Economics for New Commercial Buildings

\section*{5. AUTHOR(S)}

Stephen R. Petersen
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

\section*{7. Contracu/Grant No.}
8. Type of Report \& Perlod Covered Final
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. Clit. Stote, Z(P)

Office of Solar Heat Technologies
Department of Energy
Washington, D.C. 20545
10. SUPPLEMENTARY NOTES

区 \(\mathcal{X}\) Document describes a computer program; SF-185, FIPS Software Summary, is attached.
11. ABSTRACT (A 200-word or less foctual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here)
This report provides a methodology, algorithms and a computer program for determining the least life-cycle cost combination of three interdependent conservation strategies in new commercial buildings. These three strategies include (1) envelope modifications to reduce seasonal and peak load heating and cooling requirements, (2) heating and cooling plant modifications to increase their seasonal efficiency, and (3) the use of an active solar space and water heating system. The resulting computer program, called SOLCOM, can be run on a microcomputer in three stages.

The SOLCOM program performs a complete life-cycle cost analysis for the active solar system and for each envelope and plant modification to be considered, include tax and mortgage effects. The program then determines the optimal combination of envelope modifications and the resulting seasonal and peak load heating and cooling requirements; the optimal space heating, water heating, and space cooling plant efficiencies; and the optimal collector size for the active solar heating system.
12. KEY WORDS (Six to twelve entries; alphobetical order: capitalize only proper names; and separate key words by semicolons) building design; commercial buildings; energy conservation; engineering economics; heating and cooling equipment; heating and cooling loads; life-cycle cost analysis; optimization algorithms; solar heating
13. AVAILABILITY
[xX Unlimited
\(\square\) For Official Distribution. Do Not Release to NTIS
Order From Superintendent of Documents, U.S. Government Printing Office, Washington. D.C. 20402.

XXXOrder From National Technical Information Service (NTIS), Springfield, VA. 22161
14. NO. OF

PRINTED PAGES
15. Price
\(\$ 14.50\)```

[^0]: 1 The average daily incident solar radiation, by month, needed to run the SOLCOM program requires that the angle and orientation of the solar collectors be known and used to modify the avallable solar radiation on a horizontal plane at the building site. For a discussion of this procedure see Powe11, Jeanne W., and Rodgers Jr., Richard C., FEDSOL: Program User's Manual and Economic Optimization Guide for Solar Federal Buildings Projects, NBSIR 81-2342, U.S. Department of Commerce, National Bureau of Standards, Washington, D.C., August 1981.

 2 A data file which is to be merged into a program must be saved in ASCII format if the TRS-80 microcomputer is used. This is accomplished as: SAVE "FILE NAME", A. After the SOLCOMl program is loaded, the command MERGE "FILE NAME" will pull the file into the program. The user should take care that no other data lines (lines with the word "DATA" after the line number) are in the SOLCOM program before the merge is made.

[^1]: 1 Second order conditions require that $\partial^{\prime} T C / \partial^{\prime} A H R$ be positive in order to assure that $\partial T C / \partial A H R=0$ occurs at a minimum point rather than a maximum point in the TC function. However, as specified, the TC function cannot have a maximum, so that this second order condition need not be demonstrated. Similar conditions hold for the total cost functions related to conventional and solar heating equipment in this report.

[^2]: 1 Modified uniform present value factors are discussed in section 5.1 .

